Fair Ranking with Biased Data

Ashudeep Singh, Himank Yadav, Zhengxiao Du, Magd Bayoumi, Yi Su, Thorsten Joachims

Department of Computer Science, Cornell University
Department of Information Science, Cornell University

Funded in part through NSF Awards IIS-2008139, IIS-1615706, IIS-1901168.
Ranking in Online Systems

Ranking function π that ranks items for context x.
What is the ideal ranking?

Goal: Maximize utility of rankings to the users.

© Fast Company

1960
1994
2020

Goal: ???
Two-Sided Market

Online Retail

- Utility to Users:
 Customers find products they want

- Utility to Items:
 Sellers get revenue
Two-Sided Market

Music Streaming

• Utility to Users:
 Customers find music they enjoy

• Utility to Items:
 Artists get streaming revenue
Two-Sided Market

Research Papers

• Utility to Users:
 Readers find relevant articles

• Utility to Items:
 Writers get their voice out (and tenure)
Maximizing Utility to Users

Probability Ranking Principle [Robertson, 1977]:
• Rank documents by probability of relevance $\to y^*$
• For virtually any measure U of ranking quality

$$y^* := \arg\max_y [U(y|x)]$$
Dynamics of Utility Maximization

Probability Ranking Principle:

• Rank documents by probability of relevance \(y^* \) [Robertson, 1977]

• For virtually any measure \(U \) of ranking quality
 \[y^* := \arg\max_y [U(y|x)] \]

• Are rankings fair/desirable?

<table>
<thead>
<tr>
<th>Rank</th>
<th>Item</th>
<th>(P(\text{read}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Times 1</td>
<td>50.99</td>
</tr>
<tr>
<td>2</td>
<td>Times 2</td>
<td>50.98</td>
</tr>
<tr>
<td>3</td>
<td>Times 3</td>
<td>50.97</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>100</td>
<td>Review 1</td>
<td>49.99</td>
</tr>
<tr>
<td>101</td>
<td>Review 2</td>
<td>49.98</td>
</tr>
<tr>
<td>102</td>
<td>Review 3</td>
<td>49.97</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Fairness of Exposure

Fair ranking policy π allocates exposure to items based on merit.

Endogenous Factors
How to allocate exposure based on merit in order to
- be fair to the items
- satisfy legal requirements
- shape market dynamics (e.g. superstar economics, spam, polarization)

Exogenous Factors
How to estimate merit without biases like
- position bias
- trust bias
- uncertainty bias
- stereotypes
Position-Based Exposure Model

Definition:

Exposure e_j is the probability a user observes the item at position j.

$$
\text{Exp}(G|x,y) = \sum_{j \in G} e_j
$$

How to estimate?

• Eye tracking [Joachims et al. 2007]
• Intervention studies [Joachims et al. 2017]
• Intervention harvesting [Agarwal et al. 2019] [Fang et al. 2019]
Fairness Disparity

Goal: $\text{Exp}(G|x, y) = f(\text{Rel}(G|x))$

Example: Make exposure proportional to relevance (per group)

$$\frac{\text{Exp}(G_0|x, y)}{\text{Exp}(G_1|x, y)} = \frac{\text{Rel}(G_0|x)}{\text{Rel}(G_1|x)}$$

Disparity: $D(y|x) = |\text{Exp}(G|x, y) - f(\text{Rel}(G|x))|$
Learning Fair Ranking Policies

Goal: Policy π that maximizes expected utility U with small disparity D.

$$\pi^* = \arg\max_\pi E_x [U(\pi|x)] \quad \text{s.t.} \quad E_x [D(\pi|x)] \leq \delta$$

Learning: Empirical Risk Minimization

$$\hat{\pi} = \arg\max_\pi \frac{1}{n} \sum_{i=1}^n U(\pi|x_i) \quad \text{s.t.} \quad \frac{1}{n} \sum_{i=1}^n D(\pi|x_i) \leq \delta$$

\rightarrow Lagrange multiplier

$$\hat{\pi} = \arg\max_\pi \frac{1}{n} \sum_{i=1}^n U(\pi|x_i) - \lambda \frac{1}{n} \sum_{i=1}^n D(\pi|x_i)$$

[Singh & Joachims, 2019]
Stochastic Ranking Policies

• Policy:
 \(\pi(y|x) \) is conditional distribution over rankings.

• Utility:
 \(U(\pi|x) = \sum_y U(y|x)\pi(y|x) \)

• Exposure:
 \(\text{Exp}(G|x, \pi) = \sum_{j \in G} \sum_y e_{\text{rank}(j|y)}\pi(y|x) \)

\[\begin{array}{cccc}
 y_1 & y_2 & y_3 & y_4 \\
 A & B & A & B \\
 B & A & C & C \\
 C & C & B & A \\
 D & D & D & G \\
 E & E & E & F \\
 F & F & F & E \\
 G & G & G & D \\
\end{array} \]

0.52 0.23 0.20 0.05

[Singh & Joachims, 2018]
Policy Training

Training objective:

$$\hat{\pi} = \arg\max_{\pi} \frac{1}{n} \sum_{i=1}^{n} U(\pi|x_i) - \lambda \frac{1}{n} \sum_{i=1}^{n} D(\pi|x_i)$$

Policy class:

- Plackett-Luce $\pi_w(y|x) = PL(s_1, \ldots, s_k)$ with per-item scoring model $s_j = s(y_j|x, w)$

Training algorithm:

- Policy gradient with Monte-Carlo estimates of gradient.
- Entropy regularization.
- Variance reduction.

[Singh & Joachims, 2019]
Experiment

Data
- Yahoo LTR Challenge

Fairness
- Proportional exposure
- Individual fairness

Ranking policy
- Plackett-Luce
- Deep network scorer

→ Generalizes to be fair on test data.

[Singh & Joachims, 2019]
Fairness of Exposure

Fair ranking policy π allocates exposure to items based on merit.

Endogenous Factors
How to allocate exposure based on merit in order to
- be fair to the items
- satisfy legal requirements
- shape market dynamics (e.g. superstar economics, spam, polarization)

Exogenous Factors
How to estimate merit without biases like
- position bias
- trust bias
- uncertainty bias
- stereotypes
Interaction Feedback

Data

- Query distribution: $x_j \sim P(X)$
- Deployed ranker: $\tilde{y}_j \sim \pi_0(y|x_j)$
- Feedback: clicks, purchases, plays, reads

\[\rightarrow \text{Feedback is biased!} \]
Modeling Position Bias

• Assume:
 – Click implies observed and relevant:

 \[(\text{click}_i = 1) \leftrightarrow (\text{obs}_i = 1) \land (\text{rel}_i = 1)\]

• Problem:
 – No click can mean not relevant OR not observed

 \[(\text{click}_i = 0) \leftrightarrow (\text{obs}_i = 0) \lor (\text{rel}_i = 0)\]

→ Understand observation mechanism
Inverse Propensity Score Estimators

- **Observation Propensities**
 - \(Q(\text{obs}_j = 1|x, \bar{y}) \)
 - Random variable \(\text{obs}_j \in \{0,1\} \) indicates whether relevance label \(\text{rel}_j \) is observed.
 - Can use position-based exposure \(Q(\text{obs}_j = 1|x, \bar{y}) = e_j \)

- **Inverse Propensity Score (IPS) Weighting**
 - Utility: \(\hat{U}(y|x) = \sum_j g(\text{rank}(j|y)) \frac{\text{click}(j|x)}{e_j} \) (e.g. DCG)
 - Relevance: \(\hat{\text{Rel}}(G|x) = \sum_{j \in G} \frac{\text{click}(j|x)}{e_j} \)
 - Unbiased! In expectation independent of past rankings.

<table>
<thead>
<tr>
<th>Presented</th>
<th>(\bar{y})</th>
<th>(Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>0.8</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>0.2</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>0.2</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>0.2</td>
</tr>
</tbody>
</table>

[Joachims et al., 2017] [Yadav et al., 2020]
Fair Policy Training

Training objective:

\[
\hat{\pi} = \arg\max_{\pi} \frac{1}{n} \sum_{i=1}^{n} \hat{U}(\pi | x_i) - \lambda \frac{1}{n} \sum_{i=1}^{n} \hat{D}(\pi | x_i)
\]

Utility

- Unbiased \(\hat{U}(y|x) \) gives unbiased \(\hat{U}(\pi | x_i) \)

Disparity

- Average relevance \(\hat{Rel}(G) = \sum_x \hat{Rel}(G|x) \)
- Amortized group disparity (similar to [Biega et al., 2018])

\[
\hat{D}(y|x) = \hat{Rel}(G_1)Exp(G_0|x) - \hat{Rel}(G_0)Exp(G_1|x)
\]

[Yadav et al., 2020]
Experiment

Data
- Microsoft LTR Corpus

Fairness
- Amortized proportional exposure
- Group fairness

Ranking policy
- Plackett-Luce
- Linear scorer

[Yadav et al., 2020]
Comparison

• Group blind
 – Fairness through unawareness

• Post processing
 – IPS regression
 – Biega et al. fairness

• Fair-PG-Rank
 – Method from before

[Yadav et al., 2020]
Fairness of Exposure

A fair ranking policy π allocates exposure to items based on merit.

<table>
<thead>
<tr>
<th>Endogenous Factors</th>
<th>Exogenous Factors</th>
</tr>
</thead>
</table>
| How to allocate exposure based on merit in order to
 - be fair to the items
 - satisfy legal requirements
 - shape market dynamics (e.g. superstar economics, spam, polarization) | How to estimate merit without biases like
 - position bias
 - trust bias
 - uncertainty bias
 - stereotypes |
Matching Markets

<table>
<thead>
<tr>
<th>Employer</th>
<th>Preference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>A > D > ...</td>
</tr>
<tr>
<td>Y</td>
<td>C > A > ...</td>
</tr>
<tr>
<td>X</td>
<td>E > C > ...</td>
</tr>
<tr>
<td>W</td>
<td>A > B > ...</td>
</tr>
<tr>
<td>V</td>
<td>A > D > ...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Applicant</th>
<th>Preference</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>X > Z > ...</td>
</tr>
<tr>
<td>B</td>
<td>W > V > ...</td>
</tr>
<tr>
<td>C</td>
<td>Y > X > ...</td>
</tr>
<tr>
<td>D</td>
<td>Y > Z > ...</td>
</tr>
<tr>
<td>E</td>
<td>V > Z > ...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

→ Multi-sided Preferences, Fairness, and Social Welfare.

[Tu et al., 2014] [Hopcroft et al., 2011]
Simulation Experiment

Effect on Market

Two-sided market with $|J| = 50$ and $|C| = 100$

- Social welfare based
- Relevance based

Effect on Individuals

Two-sided market (random)

Individual utility difference

[Su et al., 2021]
Research Agenda for Ranking

• Fairness to items
• Fairness to user groups
• Market-level objectives
• Long-term dynamics
• Transparency
• Privacy

http://www.joachims.org