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Ranking in Online Systems

Ranking function ! that ranks items for context x.



What is the ideal ranking?
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Goal: Maximize 
utility of rankings 

to the users.
Goal: ???



Two-Sided Market
Online Retail
• Utility to Users:

Customers find products 
they want

• Utility to Items:
Sellers get revenue



Two-Sided Market
Music Streaming
• Utility to Users:

Customers find music they 
enjoy

• Utility to Items:
Artists get streaming 
revenue



Two-Sided Market
Research Papers
• Utility to Users:

Readers find relevant 
articles

• Utility to Items:
Writers get their voice out 
(and tenure)



Maximizing Utility to Users
Probability Ranking Principle [Robertson, 1977]: 
• Rank documents by probability of relevance à !∗
• For virtually any measure U of ranking quality

!∗ ≔ argmax* U !|,



Dynamics of Utility Maximization

Probability Ranking Principle:

• Rank documents by 
probability of relevance à !∗
[Robertson, 1977]

• For virtually any measure U of 
ranking quality

• Are rankings fair/desirable?

!∗ ≔ argmax* U !|,

Query: Software Engineer
Rank Item P(interview)

1 Adam 50.99

2 Bob 50.98

3 Charlie 50.97

… … …

100 Alice 49.99

101 Barbara 49.98

102 Claire 49.97

… … …

Exposure 

high

Exposure 

low

Recommended for TJ
Rank Item P(enjoy)

1 A1 50.99

2 A2 50.98

3 A3 50.97

… … …

100 A100 49.99

101 A101 49.98

102 A102 49.97

… … …

Top News Stories
Rank Item P(read)

1 Times 1 50.99

2 Times 2 50.98

3 Times 3 50.97

… … …

100 Review 1 49.99

101 Review 2 49.98

102 Review 3 49.97

… … …



Fairness of Exposure

Endogenous Factors 
How to allocate exposure 
based on merit in order to
• be fair to the items
• satisfy legal requirements
• shape market dynamics 

(e.g. superstar economics, 
spam, polarization)

Exogenous Factors 
How to estimate merit without 
biases like
• position bias
• trust bias
• uncertainty bias
• stereotypes

Fair ranking policy ! allocates exposure to items based on merit.



Position-Based Exposure Model

Definition: 

Exposure !" is the probability a users observes the 

item at position #.
$%& ' %, ) =+

"∈-
!"

How to estimate? 

• Eye tracking [Joachims et al. 2007]

• Intervention studies [Joachims et al. 2017]

• Intervention harvesting [Agarwal et al. 2019] [Fang 
et al. 2019]

Rank Exposure 
P(observe)

1 !.
2 !/
3 !0
… …

100 !.11
101 !.1.
102 !.1/
… …



Fairness Disparity

Goal: !"# $ ", & = ( )*+ $|"
Example: Make exposure proportional to relevance 

(per group)

Disparity: - & " = !"#($|", &) − ( )*+ $|"

!"#($1|", &)
!"# $2|", &

= )*+($1|")
)*+($2|")

[Singh & Joachims, 2018] [Biega et al., 2018]



Learning Fair Ranking Policies
Goal: Policy ! that maximizes expected utility " with small disparity #.

!∗ = argmax+,- " !|/ 0. 2. ,- # !|/ ≤ 4

Learning: Empirical Risk Minimization

5! = argmax+
1
789:;

<
" !|/9 0. 2. 1789:;

<
# !|/9 ≤ 4

à Lagrange multiplier 

5! = argmax+
1
789:;

<
" !|/9 − > 1789:;

<
# !|/9

[Singh & Joachims, 2019]



Stochastic Ranking Policies
• Policy: 

! " # is conditional distribution over 
rankings.

• Utility: 
$ !|# = ∑(U " # ! " #

• Exposure: 
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[Singh & Joachims, 2018]



Policy Training

Training objective:

!" = argmax)
1
+,-./

0
1 "|3- − 5 1+,-./

0
6 "|3-

Policy class: 

– Plackett-Luce "7 8 3 = 9: ;/, … , ;> with per-item scoring model 

s@ = ; 8A 3, B
Training algorithm:

– Policy gradient with Monte-Carlo estimates of gradient.

– Entropy regularization.

– Variance reduction.

[Singh & Joachims, 2019]



Experiment
Data
– Yahoo LTR Challenge

Fairness
– Proportional 

exposure
– Individual fairness

Ranking policy
– Plackett-Luce
– Deep network scorer

à Generalizes to be fair on test data.
[Singh & Joachims, 2019]



Fairness of Exposure

Endogenous Factors 
How to allocate exposure 
based on merit in order to
• be fair to the items
• satisfy legal requirements
• shape market dynamics 

(e.g. superstar economics, 
spam, polarization)

Exogenous Factors 
How to estimate merit without 
biases like
• position bias
• trust bias
• uncertainty bias
• stereotypes

Fair ranking policy ! allocates exposure to items based on merit.



Interaction Feedback

Data
– Query distribution: !" ∼ $(&)
– Deployed ranker: ()" ∼ *+()|!")
– Feedback: clicks, purchases, 

plays, reads

à Feedback is biased!

Presented -.
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Click

Click



Modeling Position Bias
• Assume:

– Click implies observed and relevant: 
!"#!$% = 1 ↔ )*+% = 1 ∧ -."% = 1

• Problem: 
– No click can mean not relevant OR not observed 

!"#!$% = 0 ↔ )*+% = 0 ∨ (-."% = 0)
à Understand observation mechanism

Presented 34
A
B
C
D
E
F

Click



Inverse Propensity Score Estimators
• Observation Propensities 

– ! "#$% = 1|), +,
– Random variable "#$% ∈ {0,1} indicates whether relevance 

label 123% is observed.
– Can use position-based exposure ! "#$% = 1|), +, = 2%

• Inverse Propensity Score (IPS) Weighting
– Utility: 4U , ) = ∑% 7 189: ;|, <=><? ; )

@A
(e.g. DCG)

– Relevance: BC23 D ) = ∑%∈E
<=><? ; )

@A
à Unbiased! 

In expectation independent of past rankings.

Presented FG !
A 1.0
B 0.8
C 0.5 
D 0.2
E 0.2
F 0.2

[Joachims et al., 2017] [Yadav et al., 2020]



Fair Policy Training
Training objective:

!" = argmax)
1
+,-./

0
12 "|4- − 6 1+,-./

0
17 "|4-

Utility
– Unbiased 1U(:|4) gives unbiased 12 " 4-

Disparity
– Average relevance <=>? @ = ∑B <=>? @ 4
– Amortized group disparity (similar to [Biega et al., 2018])
17 : 4 = <=>? @/ C4D @E 4 − <=>? @E C4D @/ 4

[Yadav et al., 2020]



Experiment
Data
– Microsoft LTR Corpus

Fairness
– Amortized 

proportional exposure
– Group fairness

Ranking policy
– Plackett-Luce
– Linear scorer 

[Yadav et al., 2020]



Comparison
• Group blind
– Fairness through 

unawareness
• Post processing
– IPS regression
– Biega et al. fairness

• Fair-PG-Rank
– Method from before

[Yadav et al., 2020]



Fairness of Exposure

Endogenous Factors 
How to allocate exposure 
based on merit in order to
• be fair to the items
• satisfy legal requirements
• shape market dynamics 

(e.g. superstar economics, 
spam, polarization)

Exogenous Factors 
How to estimate merit without 
biases like
• position bias
• trust bias
• uncertainty bias
• stereotypes

Fair ranking policy ! allocates exposure to items based on merit.



Matching Markets

à Multi-sided Preferences, Fairness, and Social Welfare.

Employer Preference
Z A > D > …

Y C > A > …

X E > C > …

W A > B > …

V A > D > …

… …

Applicant Preference
A X > Z > …

B W > V > …

C Y > X > …

D Y > Z > …

E V > Z > …

… …

←
→

Job 
Recommender

[Tu et al., 2014] [Hopcroft et al., 2011]



Simulation Experiment

[Su et al., 2021]

Effect on Market Effect on Individuals



Research Agenda for Ranking
• Fairness to items
• Fairness to user groups
• Market-level objectives
• Long-term dynamics
• Transparency
• Privacy
… and many more.http://www.joachims.org

http://www.joachims.org/

