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Ranking in Online Systems

Ranking function m that ranks items for context x.
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What is the ideal ranking?
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Go Get It will get you.
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Goal: Maximize
utility of rankings
to the users.
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Two-Sided Market

Online Retail

 Utility to Users:

Customers find products
they want

e Utility to Items:

Sellers get revenue




Two-Sided Market

Music Streaming

 Utility to Users:
Customers find music they
enjoy

e Utility to Items:

Artists get streaming
revenue

(=E
| A e

Search

Your Library

¢) Install App

‘ Thorsten Joachims

Kid's Car Mix

~ Nena 40 - Das
avich = 8 Minu
Hope
nnie 2014 . L)
Ukulele beats . e )
ikudele = ‘
Calming Christian :
| &4
Spread the Gospel
Rhythm & Praise

Slaapliedjes

Come Th... o o e
The Praise

Marmor, Stein & KIDZ BOP 39 (Deluxe

Eisen Bricht
Drali Deutscher

:“’(i're"r.\l'l“‘f

SHOWMAN

Edition)

Kidz Bop Kids

Your heavy rotation
The music you've had on repeat this month.

A

P

..(" A g i

The Greatest
Showman (Origin

Annie 2014



Two-Sided Market}

Research Papers

KDD 2020 Accepted Papers

 Utility to Users:

Readers find relevant
articles

Research Track Papers

e Utility to Items:

Writers get their voice out
(and tenure)




Maximizing Utility to Users

Probability Ranking Principle [Robertson, 1977]:
* Rank documents by probability of relevance =2 y*
e For virtually any measure U of ranking quality

y* = argmax, [U(y|x)]



Dynamics of Utility Maximization

Probability Ranking Principle:

 Rank documents by
probability of relevance =2 y* > Item
[Robertson, 1977] = Times 1

* Forvirtually any measure Uof [ Times 2
ranking quality :

y" = argmax, [U(y[x)]

Times 3

_ Review 1
* Are rankings fair/desirable? 1 Review 2

Review 3




Fairness of Exposure

Fair ranking policy i allocates exposure to items based on merit.

Endogenous Factors

How to allocate exposure
based on merit in order to

* be fair to the items
e satisfy legal requirements

* shape market dynamics
(e.g. superstar economics,
spam, polarization)

Exogenous Factors

How to estimate merit without
JEN-RILE

e position bias
* trust bias
* uncertainty bias

* stereotypes




Position-Based Exposure Model

Definition:
Exposure e; is the probability a users observes the
item at position j.

Exp(Glx,y) = 2 e

j€G

How to estimate?
e Eye tracking [Joachims et al. 2007]
* Intervention studies [Joachims et al. 2017]

* Intervention harvesting [Agarwal et al. 2019] [Fang
et al. 2019]




Fairness Disparity

Goal: Exp(Glx,y) = f(Rel(G|x))
Example: Make exposure proportional to relevance

er grou
(PETBIOUP) & (Golx,y)  Rel(Gol)

Exp(G1lx,y)  Rel(Gy|x)

Disparity: D(y|x) = ‘Exp(Glx, y) — f(Rel(Glx))‘

[Singh & Joachims, 2018] [Biega et al., 2018]



Learning Fair Ranking Policies

Goal: Policy T that maximizes expected utility U with small disparity D.
n* = argmax E,|[U(m|x)] s.t. E.|D(m|x)] <6

Learning: Empirical Risk Minimization

n n
| 1
= argmaxngz U(m|x;) s.t. EE D(m|x;) <6
=l =1
- Lagrange multiplier

n n
1 1
T = argmaxngz U(m|x;) — AEE D (m|x;)
= =1

[Singh & Joachims, 2019]



Stochastic Ranking Policies

* Policy:

m(y|x) is conditional distribution over
rankings.

e Utility:
U(rlx) = X, Uy [x)m(ylx) n
* EXposure:

Exp(G|x,m) = Z z erank(j|y)7'[(3’|x) G
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0.52 0.23 0.20 0.05

[Singh & Joachims, 2018]



Policy Training
Training objective:
. 1N et - LS peelx,
T = argmaxnn; U(m|x;) An; D(m|x;)

Policy class:
—  Plackett-Luce m,,(y|x) = PL(sq, ..., Sx) with per-item scoring model
Sj = S(y] X, W
Training algorithm:
— Policy gradient with Monte-Carlo estimates of gradient.
— Entropy regularization.
— Variance reduction.

[Singh & Joachims, 2019]



Experiment

Data
— Yahoo LTR Challenge
Fairness

— Proportional
exposure

— Individual fairness
Ranking policy

— Plackett-Luce

— Deep network scorer

— Generalizes to be fair on test data.

[Singh & Joachims, 2019]



Fairness of Exposure

Fair ranking policy i allocates exposure to items based on merit.

Endogenous Factors

How to allocate exposure
based on merit in order to

* be fair to the items
e satisfy legal requirements

* shape market dynamics
(e.g. superstar economics,
spam, polarization)

Exogenous Factors

How to estimate merit without
JEN-RILE

e position bias
* trust bias
* uncertainty bias

* stereotypes




Interaction Feedback

Data
— Query distribution: x; ~ P(X)
— Deployed ranker: ¥; ~ 1o (y|x;)

— Feedback: clicks, purchases,
plays, reads

- Feedback is biased!



Modeling Position Bias

* Assume:
— Click implies observed and relevant:

(click; = 1) & (obs; = 1) A (rel; = 1)

* Problem:
— No click can mean not relevant OR not observed

(click; = 0) & (obs; = 0) V (rel; = 0)

e

—> Understand observation mechanism




Inverse Propensity Score Estimators

* Observation Propensities _
— Q(obsj = 1|x, 37)
— Random variable obs; € {0,1} indicates whether relevance

label rel; is observed.
— Can use position-based exposure Q(obsj = 1|x, 37) = ¢

* Inverse Propensity Score (IPS) Weighting
— Utility: O(y|x) = ng(rank(jly)) % (e.g. DCG)

click(J|x)
€j

— Relevance: Rel(G|x) = 2jeG

- Unbiased!
In expectation independent of past rankings.

[Joachims et al., 2017] [Yadav et al., 2020]



Fair Policy Training

Training objective:
n n
~ | _ | ~
T = argmaxngz U(m|x;) — AEZ D(m|x;)
i=1 i=1

Utility
— Unbiased U(y|x) gives unbiased U (m|x;)
Disparity
— Average relevance Rel(G) = Y, Rel(G|x)
— Amortized group disparity (similar to [Biega et al., 2018])
D(y|x) = Rel(G,)Exp(Go|x) — Rel(Go)Exp(Gy|x)

[Yadav et al., 2020]



Experiment

Data : - Full-info
— Microsoft LTR Corpus . e
i 36k
Fairness | 0.08 77 3%k

— Amortized
proportional exposure

— Group fairness
Ranking policy - : - .
0.465 0.470 0.475 0.480 0.485 0.490 0.495 0.500 0.505
— Plackett-Luce Avg. DCG
— Linear scorer

X
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[Yadav et al., 2020]



Comparison

-&— Group-blind

* Group blind
—d— PoOSl-processing

— Fairness through | it oo
unawareness —p= FULTR-Linear

FULTR-MLP
* Post processing

— IPS regression
— Biega et al. fairness

 Fair-PG-Rank
— Method from before

[Yadav et al., 2020]



Fairness of Exposure

Fair ranking policy i allocates exposure to items based on merit.

Endogenous Factors

How to allocate exposure
based on merit in order to

* be fair to the items
e satisfy legal requirements

* shape market dynamics
(e.g. superstar economics,
spam, polarization)

Exogenous Factors

How to estimate merit without
JEN-RILE

e position bias
* trust bias
* uncertainty bias

* stereotypes




Matching Markets
e

Job
Recommender

%

— Multi-sided Preferences, Fairness, and Social Welfare.

[Tu et al., 2014] [Hopcroft et al., 2011]



Simulation Experiment

Effect on Market Effect on Individuals

Two-sided market with | 7] = 50 and |C| =100 Two-sided market (random)

Bl Social welfare based
relevance based
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[Su et al., 2021]



Research Agenda for Ranking

* Fairness to items

* Fairness to user groups
 Market-level objectives
* Long-term dynamics

* Transparency

* Privacy
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