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ABSTRACT
Conversational and question-based recommender systems have
gained increasing attention in recent years, with users enabled
to converse with the system and better control recommendations.
Nevertheless, research in the �eld is still limited, compared to tra-
ditional recommender systems. In this work, we propose a novel
Question-based recommendation method, Qrec, to assist users to
�nd items interactively, by answering automatically constructed
and algorithmically chosen questions. Previous conversational rec-
ommender systems ask users to express their preferences over
items or item facets. Our model, instead, asks users to express
their preferences over descriptive item features. The model is �rst
trained o�ine by a novel matrix factorization algorithm, and then
iteratively updates the user and item latent factors online by a
closed-form solution based on the user answers. Meanwhile, our
model infers the underlying user belief and preferences over items
to learn an optimal question-asking strategy by using Generalized
Binary Search, so as to ask a sequence of questions to the user.
Our experimental results demonstrate that our proposed matrix
factorization model outperforms the traditional Probabilistic Matrix
Factorization model. Further, our proposed Qrec model can greatly
improve the performance of state-of-the-art baselines, and it is also
e�ective in the case of cold-start user and item recommendations.

KEYWORDS
Conversational Recommender Systems; Question-based Recom-
mender Systems; Matrix Factorization; Cold-start Problem

ACM Reference Format:
Jie Zou, Yifan Chen, and Evangelos Kanoulas. 2020. Towards Question-based
Recommender Systems. In Proceedings of the 43rd International ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR ’20),
July 25–30, 2020, Virtual Event, China. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3397271.3401180

1 INTRODUCTION
Online shopping on Internet platforms, such as Amazon, and eBay,
is increasingly prevalent, and helps customers make better purchase
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decisions [44]. The high demand for online shopping calls for task-
oriented conversational agents which can interact with customers
helping them �nd items or services more e�ectively [34]. This
greatly stimulates related research on conversational and question-
based recommender systems [34, 41].

Traditional recommender systems infer user preferences based
on their historical behaviors, with the assumption that users have
static preferences. Unfortunately, user preferences might evolve
over time due to internal or external factors [31]. Besides, the quality
of traditional recommendations su�ers greatly due to the sparsity
of users’ historical behaviors [33]. Even worse, traditional recom-
mendation systems fail to generate recommendations for new users
or new items, for which the historical data is entirely missing: the
cold-start problem [33]. Compared to the traditional approaches,
question-based and conversational recommender systems overcome
these issues by placing the user in the recommendation loop [34, 41].
By iteratively asking questions and collecting feedback, more accu-
rate recommendations can be generated for the user.

Work on conversational and question-based recommenders [7,
21, 34, 41] demonstrates the importance of interactivity. Chris-
takopoulou et al. [7] presented a recommender system, which elic-
its user preferences over items. Sun and Zhang [34] and Li et al.
[21] train their models on a large number of natural language con-
versations, either on the basis of prede�ned and well-structured
facets [34] or based on free-style dialogues but require dialogues
to mention items [21]. Zhang et al. [41] proposed a uni�ed para-
digm for product search and recommendation, which constructs
questions on extracted item aspects, and utilizes user reviews to
extract values as simulated user answers. While these works have
developed a successful direction towards conversational recom-
mendation, research in the �eld is still limited. Christakopoulou
et al. [7] collects user preferences over items, which is ine�cient
when the item pool is large and continuously updated. Sun and
Zhang [34], Zhang et al. [41] and Li et al. [21] make certain as-
sumptions over their input data, most importantly the availability
of historical conversational data, or the availability of hierarchical
item facets and facet-value pairs. In our work, we drop these as-
sumptions: we only hypothesize that items can be discriminated
based on textual information associated with them, e.g. descriptions
and reviews [44, 46]. Our model asks questions based on extracted
descriptive terms in the related contents, and beliefs are updated
based on collaborative �ltering, which is one of the most successful
technologies in recommender systems [13, 33].

In this work, we propose a novelQuestion-based recommendation
method, Qrec, to assist users to �nd items interactively 1. Our pro-
posed model (1) follows the works by Zou et al. [46] and Zou and

1Source code: https://github.com/JieZouIR/Qrec
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Kanoulas [44], and generates questions over extracted informative
terms; a question pool is constructed by entities (informative terms)
extracted from the item descriptions and reviews. (2) proposes a
novel matrix factorization method to initialize the user and item
latent factors o�ine by using user-item ratings; (3) develops a belief-
updating method to track the user’s belief (preferences over items),
and uses Generalized Binary Search (GBS) [28] to select a sequence
of questions based on the tracked user belief, aiming at learning
to ask discriminative questions to gain new information about the
user; (4) asks questions, receives answers, updates the user and
item latent factors online accordingly by incorporating feedback
from the user based on our proposed matrix factorization algorithm,
and also renews the user belief to select the next question to ask.
(5) generates a recommendation list based on the �nal user and
item latent factors.

Our model combines the advantages of collaborative �ltering
based on matrix factorization and content analysis by querying
users about extracted informative terms. The matrix factorization
model is able to utilize the rating data and discover latent correla-
tion between items, while incorporating question-answering over
content information, provides explicit content discrimination to
assist the recommender systems. By iteratively asking questions
over informative terms and collecting the immediate feedback from
the user, our question-based recommender can track the shifted user
preferences, clarify the user needs, and improve capturing the true
underlying user latent factors and item latent factors. Besides, the
information gathered from the user constitutes the new observa-
tions to overcome the sparsity and cold-start problem.

The main contribution of this paper is three-fold: (1) We pro-
pose a novel question-based recommendation method, Qrec, that
interacts with users by soliciting their preferences on descriptive
item characteristics. (2) We propose a novel framework, that in-
corporates the online matrix factorization and online users’ belief
tracking for sequential question asking. (3) We propose a novel ma-
trix factorization method which can incorporate the o�ine training
and e�cient online updating of the user and item latent factors.

To the best of our knowledge, this is the �rst work that incor-
porates online matrix factorization and question asking for item
related features. The evaluation results show that our Qrec model
achieves the highest performance compared to state-of-the-art base-
lines and our model is e�ective in both user and item cold-start
recommendation scenarios.

2 RELATEDWORK
Recommender systems can be classi�ed into three categories: content-
based [29], collaborative �ltering [13, 17], and hybrid [42] systems.
Conversational and question-based recommender systems can ex-
tend recommender systems in any of the three categories. Early
related attempts include the work by Bridge [2], Carenini et al.
[3], Felfernig et al. [8], Mahmood and Ricci [24, 25], Thompson
et al. [35]. More recently, di�erent ways of feedback are intro-
duced [7, 10, 15, 23, 32, 39, 40, 43]. Zhao et al. [43] studied the
problem of interactive collaborative �ltering, and proposed meth-
ods to extend Probabilistic Matrix Factorization (PMF) [27] using
linear bandits to select the item to ask feedback for and incorporate
the rating back to the PMF output. Loepp et al. [23] focused on
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Figure 1: Framework of our proposed question-based recommenda-
tion model, Qrec. Co�on is an extracted entity (informative term),
U, V, p, q are model variables, and � is a hyper-parameter of user
belief.

set-based feedback, while Graus and Willemsen [10] focused on
choice-based feedback to learn the latent factors and perform inter-
active preference elicitation online. Contrary to these works that
update the individual user’s latent representation, Christakopoulou
et al. [7] proposed a method to update all user and item latent fac-
tor parameters of a PMF variant at every feedback cycle, obtaining
absolute and pairwise user feedback on items. We refer the reader
to He et al. [12] and Jugovac and Jannach [16] for a literature review
of interactive recommendation. Compared with Christakopoulou
et al. [7], our model also updates all user and item latent factor
parameters but based on our own matrix factorization model. Fur-
ther, while Christakopoulou et al. [7] elicit user ratings on items,
our Qrec model asks questions about extracted descriptive terms
of the items, and learns a strategy of asking sequential questions.
Furthermore, the selection of questions in Qrec is adaptive to the
change of user preferences, instead of relying on the distribution
of the items [7]. Last, Christakopoulou et al. [7] focus on rating
prediction while our work focus on the top-N recommendation.
They use semi-synthetic data for which they need to obtain the
ground truth of the user’s preference to every item (like/dislike)
using bootstrapping, and thus simulate user’s answers for each
question, which is not available in our case.

Zhang et al. [41] designed a uni�ed framework for product
search and recommendation, and proposed a Personalized Multi-
Memory Network (PMMN) architecture for conversational search
and recommendation by asking questions over “aspects” extracted
from user reviews by the means of sentiment labeling. Their model
obtains the opinion of the user (i.e. value of the aspect-value pair)
for the “aspect” as feedback. They utilize the user query as an initial
query and use the aspect-value pairs of the conversation to expand
the representation of the user’s query, and thus to match the search
and recommendation results. Di�erent from this work which uses
only the content of user reviews, we incorporate user ratings by
collaborative �ltering based on our proposed matrix factorization
model. Besides, their work trains a model using the data for each
user while our online question answering can work without these
training data for cold start users and items.Moreover, they query the
aspect-value pairs extracted from user review and choose questions
based on the log-likelihood of probability estimation over aspects,
while we ask questions about descriptive terms of items and select
questions based on the user belief tracking and GBS.
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Reinforcement learning and deep learning on dialogue agents
have also been studied for recommendations [4, 6, 11, 20, 22]. Sun
and Zhang [34] proposed a deep reinforcement learning framework
to build a conversational recommendation agent, which queries
users on item facets and focuses on the long-term utility of suc-
cess or conversion rate. Li et al. [21] presented a publicly available
dataset called ReDial, and explored a neural method based on dia-
logue for composing conversational recommendations. They try
to predict user opinion over the mentioned items based on the
dialogue and sentiment classi�cation to generate a recommenda-
tion. On the basis of the ReDial dataset, Chen et al. [4] proposed a
knowledge-based recommender dialog system framework, which
incorporates a recommender into a dialog system by using knowl-
edge graphs and transformers. All the aforementioned works are
trained on usage data (i.e. existing natural language conversations
or interactions with the recommender system). Sun and Zhang
[34] require a large number of repeated interactions between the
users and the information seeking system to train upon, while Li
et al. [21] and Chen et al. [4] require mentioning items during the
natural language dialogue. Such kind of data is not always available.
Di�erent from these works, our method does not require such data
with large numbers of repeated interactions and mentioned items.

Learning to ask is another recent and related �eld of study [14,
37]. Hu et al. [14] presented a policy-based reinforcement learning
method to identify the optimal strategy of question selection by con-
tinuously learning the probability distribution over all the objects
on a 20 Questions game setup. They regard the learned probability
distribution on con�dence as a state and select the next question
according to this state. Di�erent from our work, their work intro-
duces data-hungry techniques, which require having large numbers
of labeled data and repeated interactions from multiple users for a
target item to train upon. A recent line of work that also involves
learning to ask is the work in dialogue and information seeking
conversational systems [1, 5]. For example, Wang et al. [37] studied
how to ask good questions in large-scale, open-domain conversa-
tional systems with neural question generation mechanisms. These
models need to be trained on existing natural language conver-
sations, which is di�erent from our setup that depends on user
ratings. Zou and Kanoulas [44] proposed an interactive sequential
Bayesian model for product search. They learn to ask a good ques-
tion by a cross-user duet training, which learns a belief over product
relevance and the rewards over question performances. Di�erent
from their work which focuses on a sequential Bayesian product
search model based on a cross-user duet training, our model in-
corporates the user feedback into a matrix factorization model for
the recommendation. Further, they require the question answering
history and purchase behavior from the same input query for their
duet training, while our model does not require having such data.

3 METHODOLOGY
In this section, we discuss how we build our question-based recom-
mender system. Our framework shown in Figure 1 comprises of
�ve modules: (1) an o�ine initialization module (Section 3.1); (2) a
continuous updating module (Section 3.1); (3) a question learning
module (Section 3.2); (4) a question asking module (Section 3.3);
and (5) a recommendation module (Section 3.4).

3.1 Latent Factor Recommendation
In this section, we describe two of the subcomponents of our Qrec
model (shown in Figure 1): the o�ine initialization module and the
continuous updating module.

Let R 2 RN⇥M be a user-item matrix, and Ri . represents the
i-th row of R, R.j represents the j-th column of R. Here N and
M are the number of users and the number of items, respectively.
Similarly, we use Yi . to represent the i-th row of our online a�nity
matrix Y 2 RN⇥M , which is for incorporating user feedback (will
be discussed later), use Y.j to represent the j-th column of Y. U =
[u1, u2, . . . , ui, . . . , uN], V = [v1, v2, . . . , vj, . . . , vM], where ui, vj
are user and item latent factors respectively. ui and vj are column
vectors. Unless mentioned otherwise, all the vectors in this paper
are column vectors. D is the item collection represented by item
documents (descriptions and reviews).

Matrix factorization recommendation techniques have proven
to be powerful tools to perform collaborative �ltering in recom-
mender systems [19]. Assume we have N users andM items, matrix
factorization decomposes a partially-observed matrix R 2 RN⇥M
into two low-rank matrices, the user latent factors U 2 RN⇥K
and the item factors V 2 RM⇥K where K is the dimension of user
and item latent factors. The prediction of the unobserved entries
in R is performed as a matrix completion, i.e. R ⇡ UV>. Matrix
factorization-based methods have been proposed and successfully
applied to various recommendation tasks [7, 17, 19, 27]. In ma-
trix factorization, users and items are mapped to the same latent
space. Items that have been co-liked by users will lie close in a low
dimensional embedding space (latent vector).

In this paper, we propose a novel model to perform the matrix
factorization recommendation, and we refer to it as QMF. The
generative process for our model is:

1. For each user i = 1, . . . ,M , draw a user latent factor ui ⇠
N(0, ��1u I);

2. For each item j = 1, . . . ,N , draw an item latent factor vj ⇠
N(0, ��1� I).

3. For each user-item pair (i, j) 2 R, draw Ri j ⇠ N(p|(ui �
vj), 1).

4. In each user session targeting at a certain item, for each
user-item pair (i, j 0) 2 Y, draw Yi j0 ⇠ N(q|(ui � vj0),��1I)
for each question asked.

In the above, �u , �� are the hyper-parameters modeling the vari-
ances in latent vectors, and � is a hyper-parameters modeling the
variance in Yi j0 . p and q are the free parameters of column vector
withK dimension for Ri j andYi j , respectively. The intuition behind
is that p and q can capture some general information across users
and items.

3.1.1 Optimization. When optimizing our model, the maximiza-
tion of posterior distributions over U and V can be formulated as
follows according to the generative process:

max
U,V,p,q

p(U, V, p, q |R, Y, �u, �� , �p, �q, � ). (1)

Then the maximization of the posterior probability can be reformu-
lated as the minimization of its negative logarithm, which is
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(2)

where � = {p, q} are the parameters, and � is a trade-o� of the
online a�nity Y for incorporating the user feedback.

O�ine Optimization. When optimizing o�ine by using the his-
torical ratings of all users, we use gradient descent with Adaptive
Moment Estimation (Adam) optimizer [18] for Eq. (2), with � set
to 0, since we do not have the historical question asking data and
thus do not have Yi j for the question asking. Therefore, we do not
train q, instead set q to all-ones vector in this paper, but one can
also train q using historical question asking data. That is, the model
variables U,V, p are learned by maximizing the log-posterior over
the user and item latent vectors with �xed hyper-parameters, given
the training observations R.

Online Optimization. Since we aim to recommend items on-
line, it is necessary to update the variables e�ectively and e�-
ciently according to the user feedback. Thus, we optimize Eq. (2)
by Alternating Least Square (ALS) technique to update the model
variables ui, and vj in order to guarantee e�ciency. Then we have
our following derived closed-form solution:

ui =
�
Vp

|Vp + �Vq
|Vq + �u I

��1 (Vp
|Ri + �Vq

|Yi ) (3)

vj =
�
Up

|Up + �Uq
|Uq + �� I

��1 (Up
|R.j + �Uq

|Y.j ) (4)

where
Vp = Vdiag(p),
Vq = Vdiag(q),
Up = Udiag(p),
Uq = Udiag(q).

ALS repeatedly optimizes one of U and V while temporarily �xing
the other to be constant. After each question being asked and feed-
back received, we update U and V. We assume that there is a target
item related document d⇤ 2 D and de�ne an indicator vector �lj
for the l-th question, with each dimension j corresponding to an
item in the collection:

�lj = 1{e
dj
l = e

d⇤
l }, (5)

Yj =
l�1’
t=0

�tj , (6)

where edjl is true if the item related document dj contains the l-
th requested entity el (see details for the question construction
in Section 3.3), and 1{·} is an indicator function. ed

⇤
l expresses

whether the target item contains the l-th requested entity el . This
also represents the answer by the user, given that the user’s answers
are driven by a target item. Hence, for example if the question is “Are
you seeking for a [cotton] item?” and the target item description
includes “cotton” as an entity, then�lj is 1 for all items that also have
“cotton” as an important entity. If the question is “Are you seeking
for a [beach towel] item?” and the target product does not contain
a “beach towel” in its description or reviews (hence the answer of

the user is “no”) then �lj is 1 for all the items that are not beach
towels. Yj is the accumulated �j with the dimension corresponding
to j-th item until the l-th question.

Based on whether or not the target item is relevant to the re-
quested entity, the feedback from user becomes a new or an updated
observation for our system, and hence it is used to update Y related
to the particular user, i.e. Yi , which is a vector of the online a�nity
for user i , with each of the dimension Yi j corresponding to j-th
item. Then ui, and all item factors V are updated by Eq. (3) and
Eq. (4). Note that this observation only a�ects the current user’s
interaction session, and not any follow-up user interactions. As we
ask about an entity e and observe the user’s response, the user’s
preference over the items which are consistent with the answer
increases. The variance of the inferred noisy preferences over these
items which is consistent with the answer as well as the variance
of the nearby items in the learned embedding are reduced. The
model’s con�dence in its belief over the user’s preference on these
items increases. As the system keeps asking questions to user i and
incorporates his/her responses, the latent user feature vectors U
and latent item feature vectors V change and move towards the
true underlying user and item latent vectors.

After updating our matrix factorization model, we use the �nal
user latent factor U and item latent factor V to computing UV>
to yield a ranking of items to generate the recommendation list,
which constitutes the recommendation module in Figure 1.

3.2 Question Learning
In this section, we describe how we select the next question to
ask from the question pool (see Section 3.3 for the question pool
construction). After the o�ine initialization by using all of the
historical ratings, the user initiates an interaction with our recom-
mender system, our system asks a few questions to learn about
the user latent factor, the item latent factor, and the user’s belief.
During this interactive phase, it is important to select the most
informative questions that lead to learning e�ectively the user’s
preference, so as to minimize the number of questions asked and
locate the target item e�ectively.

Similar to Wen et al. [38] and Zou et al. [46], we use the esti-
mated user preferences to help the question learning module to
learn the most discriminative question to ask next. We model the
user preferences for the items by a (multinomial) probability distri-
bution �⇤ over itemsD, and the target item is drawn i.i.d. from this
distribution. We also assume that there is a prior belief P over the
user preferences �⇤, which is a probability density function over
all the possible realizations of �⇤.

Pl = Dir (� + Yi ), (7)

where P is a Dirichlet distribution with parameter � . Having applied
the o�ine initialization of our matrix factorization model, items can
be scored and ranked for each user, the rank of each item expresses
our initial belief on the preference of items for each given user. This
initial belief will be used to initialize the hyper-parameter � of the
Dirichlet distribution. In particular, we set �i for item i to 1/(pi +1),
where pi is the index of item i in the ranked list. Yi is the vector
for the user i with each dimension corresponding to accumulated
�lj until the l-th question.
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Let Pl be the system’s belief over �⇤ prior to the l-th question.
We compute the user preferences �⇤l (d) prior to the l-th question
by:

� ⇤l (d ) = E�⇠Pl [� (d )]8d 2 D . (8)

The �⇤ is a multinomial distribution over items D, and P is
modeled by the conjugate prior of the multinomial distribution,
i.e. the Dirichlet distribution. From the properties of the Dirichlet
distribution, the user preferences �⇤l can be updated by counting
and re-normalization of � and Yi . As the system keeps asking ques-
tions to the user and incorporates his/her response, the predicted
belief and preferences about the user is updated accordingly. This
belief tracker thus speci�es the direction for moving towards the
true underlying belief distribution and true user preferences. This
predicted user preferences will be used for guiding the question
selection.

Same to Wen et al. [38] and Zou et al. [46], we apply GBS to �nd
the entity that best splits the probability mass of predicted user
preferences closest to two halves for the remaining of the items
during the l-th question, as the nearly-optimal entity to ask.

el = argmin
e

��� ’
d2Cl

(21{ed = 1} � 1)� ⇤l (d )
��� (9)

where el is the l-th chosen entity, Cl is the candidate version space
containing the set of remaining items when asking the l-th question;
the initial Cl is equal toD, ed expresses whether the itemd contains
the entity e or not. Speci�cally, for the entity embedding in this
paper, the entity is represented by one-hot encoding, i.e. if the entity
appears in a certain item documents, the value of the dimension
corresponding to this item is 1 (ed = 1), otherwise the value of
the dimension corresponding to this item is 0 (ed = 0). After each
question is asked and the answer is obtained, the user preferences
�⇤ are updated by the belief tracker module. GBS tend to select
entities by minimizing the objective function of Eq. (9). This means,
GBS selects the entity which is able to split the sum of calculated
user preferences corresponding to the item with ed = 1 and the
sum of user preferences corresponding to the item with ed = 0
closest to two halves.

3.3 Question Asking
The proposed method of learning informative questions to ask to
users, depends on the availability of a pool of questions regarding
informative terms. Given an item, the user should be able to answer
questions about this item with a “yes” or a “no”, having a reference
to the relevant item (or item in mind).

In this work, we use the approach taken by Zou et al. [46], and
Zou and Kanoulas [44] to extract meaningful short-phrases – typ-
ically entities – from the surface text to construct the question
pool using the entity linking algorithm TAGME [9]. These entities
are recognized to comprise the most important characteristics of
an item [44, 46], and we generate questions about the presence or
absence of these entities in the item related documents. One could
also use other sources like labelled topics, extracted keywords, item
categories and attributes, to construct questions.

In TAGME, each annotated short-phrase in unstructured text
is weighted using a probability, that measures the reliability of
that substring being a signi�cant mention. Only the short-phrases

Algorithm 1: The proposed Qrec algorithm
input :A item document set, D, the set of annotated entities in the

documents, E, the ratings R, number of questions to be asked
Nq

1 l  0
2 Yi  0
3 O�ine intialization of our matrix factorization model:

U, V = QMF (R)
4 Rankin�l = Sor t (UV>)
5 �  Rankin�l
6 while l < Nq and |Cl | > 1 do
7 Compute the user belief with � : Pl = Dir (� + Yi )
8 Compute the user preferences with Pl (� ):

� ⇤l (d ) = E�⇠Pl [� (d )] 8d 2 D
9 Find the optimal target entity by question learning:

10 el = argmine
��� Õd2Cl (21{e

d = 1} � 1)� ⇤l (d )
���

11 Ask the question about el , observe the reply ed
⇤

l
12 Remove el from question pool
13 Cl+1 = Cl \ d 2 D : edl = e

d⇤
l

14 Update Yi by the reply ed⇤l according to Eq. (5) and Eq. (6)
15 Update U, V by ALS according to Eq. (3) and Eq. (4)
16 l  l + 1
17 end
18 Generate recommendation list by updated U, V:

r esult = Sor t (UNqVNq >)

with high probability should be considered as entities. In this paper,
similar to Ferragina and Scaiella [9], and after a set of prelimi-
nary experiments, we set the threshold to 0.1 and �lter out the
short-phrases whose probability is below 0.1. Prior to this, we also
removed stop words such as “about”, “as well” etc..

Having extracted the most important entities from the corpus,
the proposed algorithm asks a sequence of questions in the form of
“Are you seeking for a [entity] related item?” to locate the target
item. In this case, the users can respond with a “yes”, a “no” or a
“not sure” according to their belief.

3.4 Question-based Recommender System
The algorithm of our question based recommender system is pro-
vided in Algorithm 1. Our Qrec model performs two rounds: the
o�ine phase and the online phase. The o�ine phase includes line
3-5, and the online phase includes line 6-17 in Algorithm 1. During
the o�ine phase, we �rstly initialize our model parameters o�ine
by using the history rating data across all users. We make the as-
sumption that we have access to historical user-item interaction
data (e.g., rating or purchasing data), even though our system can
work without it as well. When a new user session starts, we use the
initialized user’s latent factors and items’ latent factors to yield the
preliminary ranking of candidate items.We then utilize this ranking
score to initialize the Dirichlet prior parameter � . When there is a
new user session starts in online phase, we calculate the user belief
with this � and Yi . After that, we compute the user preferences
with prior belief equal to Pl , and �nd the optimal entity el by GBS.
We ask whether the entity el is present in the target item that the
user wants to �nd, d⇤, observe the reply ed

⇤
l , remove el from the

question pool, and update the candidate version space Cl . Then we
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Table 1: Statistics of the dataset. #entity is the number of unique
entities.

Dataset #users #items #ratings density #entity
Home and
Kitchen

9,124 557 10,108 0.20% 9,296

Pet Supplies 2,248 2,475 15,488 0.28% 71,074

update Yi by the user response, and update the user latent factors
U and the item latent factors V using ALS based on the updated Yi .
After the online question asking phase is over, the recommendation
list is generated by sorting the inner product of the last updated
user latent factors UNq and item latent factors VNq .

4 EXPERIMENTS AND ANALYSIS
4.1 Experimental Setup

4.1.1 Dataset. In our experiments we use a collection of Ama-
zon items 2 [26]. Each item contains rich metadata such as title,
descriptions, categories, and reviews from users as well. Follow-
ing Van Gysel et al. [36] and Zou and Kanoulas [44], we use four
di�erent product domains from the Amazon product dataset, but
due to the limited space, we only report two domains in this paper,
which are "Home and Kitchen", and "Pet Supplies" respectively. The
documents associated with every item consist of the item descrip-
tion and the reviews provided by Amazon customers. On the two
item domains, we use the same item list 3 with Van Gysel et al. [36],
and �ltered those items and users that appeared in less than �ve
transactions to construct the user-item recommendation matrix
like most of Collaborative Filtering papers [13]. We randomly split
the entire dataset of user-item interactions to a training, validation
and testing set with 80%, 10% and 10% split similar to other recom-
mendation papers, e.g. Sun and Zhang [34]. Statistics on the dataset
are shown in Table 1.

4.1.2 Parameter Se�ing. To learn the matrix factorization em-
bedding, we set the hyper-parameters to the combination that
achieved the highest pairwise accuracy in the o�ine observations:
the maximum training iterations of PMF and our matrix factor-
ization model is set to 100, and �u = �� = �p = �q = 0.1. The
parameters � , the dimension of the latent factorsK , and the number
of questions asked Nq are decided in RQ1.

4.1.3 Evaluation Metrics. We use average Recall at cut-o� 5
(recall@5), Average Precision at 5 (AP@5), and Mean Reciprocal
Rank (MRR) and Normalized Discounted Cumulative Gain (NDCG)
as our evaluation metrics, which are commonly used metrics for
capturing accuracy in recommendation [7, 41, 43]. NDCG is calcu-
lated by top 100 items like other paper [36]. The ground truth used
to compute the aforementioned metrics is constructed by looking
at the historical buying behavior of the user; an item is considered
relevant if the user wrote a review and gave a rating to it, similar
to other works [36, 41].

4.1.4 Baselines. We compare our method with �ve baselines;
the �rst two are static baselines, while the other three are interac-
tive baselines. In particular the baselines are: (1) PMF, which is a
typical, static recommendation approach; (2)NeuMF [13], which is
2http://jmcauley.ucsd.edu/data/amazon/
3Product list: https://github.com/cvangysel/SERT/blob/master/PRODUCT_SEARCH.md

one of the state of the art approaches of collaborative �ltering and
widely used as the baseline by other papers. (3) QMF+Random,
which uses our proposed matrix factorization for o�ine initializa-
tion and then randomly chooses a question from the question pool
to ask; (4) SBS, which is the sequential Bayesian search algorithm.
We applied the SBS [38] to our recommendation task and uses the
same question asking strategy with our Qrec model, but with the
uniform prior; and (5) PMMN [41], the Personalized Multi-Memory
Network model, which is a state-of-the-art conversational recom-
mender system asking questions on aspect-value pairs. For the
PMF, QMF+Random, and SBS baselines, we use the same parameter
setting with our Qrec model. For the NeuMF and PMMN, we use
the optimal parameters reported in the corresponding paper and
tuned their hyper-parameters in the same way as they reported.

4.1.5 Simulating Users. Our experimentation depends on users
responding to questions asked by our method. In this paper we
follow recent work [34, 41, 44–46] and simulate users. We also
conduct a small user study described next. During the simulation,
we follow the approach proposed by Zou et al. [46] and Zou and
Kanoulas [44], i.e. we assume that the user will respond to the
questions with full knowledge of whether an entity is present or
not in the target item. Hence, we assume that the user will respond
with “yes” if an entity is contained in the target item documents
and “no” if an entity is absent. This simulation also follows the one
used by Zhang et al. [41], which assumes that the user has perfect
knowledge of the value of an aspect for the target product.

4.1.6 Online User Study. To con�rm some of the assumptions
made in this work and test how well our recommender system
works “in-situ” we also conduct a small online user study. The ideal
users would be ones who have actually bought a number of items
on an online shopping platform and now converse with our system
embedded in the platform to �nd their next target item. In the
absence of such a user base and commercial recommender system
we use a crowdsourcing platform. First, we let the crowd worker
select a product category she feels familiar with. Then, we randomly
sample a product from our test data as a target product. To let the
user familiarize herself with the target product we provide her with
a product image, title, description, and the entities extracted from
the product reviews. After the user indicates that she is familiar
with the product and the conversation with the system can start,
the information of the target item disappears from the screen and
a question is selected by our algorithm to be asked to the user.
The user needs to provide an answer to the question according
to the information she read in the previous step, and then our
system updates according to the user answer. With each question
being answered, the user is shown a grid (4-by-4) of the pictures of
sixteen top ranked items. The user can stop answering questions
any time during her interaction with the system. When stoping
the interaction with the system, users are asked a number of exit
questions about their experiences with the system.

4.1.7 Research�estions. Through the experiments in this work
we aim to answer the following research questions:
RQ1 What is the impact of the trade-o� � , the dimension of the

latent factors K , and the number of questions asked Nq?
RQ2 How e�ective is Qrec compared to prior works?
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Figure 2: The impact of the trade-o� parameter � (top), and the di-
mension of the latent factors K (bottom) on "Home and Kitchen"
(left) and "Pet Supplies" (right) categories.

RQ3 How e�ective is Qrec for the cold-start user and the cold-start
item problem?

RQ4 Does the o�ine initialization help?
RQ5 Are the assumptions made in this work along with the e�ec-

tiveness of our algorithm con�rmed by a user study?

4.2 Impact of Parameters (RQ1)
In RQ1, we examine the impact of the trade-o� parameter � , the
dimension of the latent factors K , and the number of questions
asked Nq over the e�ectiveness of our model. We compare the
performance for di�erent parameters. When the comparison for the
given parameter, we �x the other two parameters. The performance
evolution of di�erent � and di�erent dimension of the latent factors
K on the two categories is shown in Figure 2, and the results of
di�erent number of questions on the two categories can be seen
in "Qrec" column of Table 2. The � ranges from 0 to 5 with a step
of 0.5, and the K ranges from 1 to 10 with a step of 1. As one can
observe, with the increase of � , the performance �rst improves and
then drops. The best � is 0.5 on the two categories. � can control
how much online user feedback is incorporated into the user latent
factor and item latent factor. In particular, when � is 0, i.e. the
online updating do not take the user feedback (i.e. Y) into account,
as expected the performance is very bad. As for the dimension of the
latent factors K , the overall performance trend also rises and then
goes down with the increase of K . This suggests that the dimension
of the latent factors K should not be set too high or too low. In
this paper, we set it to the optimal value, i.e. 3. Unless mentioned
otherwise, in the rest of research questions, we use the optimal
parameter � , which is 0.5, and K we used is the optimal value 3. To
�gure out the impact of the number of asked questions, we vary
Nq and see the performance shown in "Qrec" column of Table 2. As
shown in Table 2, the performance of our Qrec model increases on
all metrics with the increase of the number of questions, as expected.
The more questions asked, the better the user needs are captured,
and the closer the modeled user latent factor and item latent factor
are to the true real-time user and item latent factors. Furthermore,
the performance of Qrec reaches very good performance already,

within the �rst 10 questions, while asking more than 10 questions
does not add much regarding the performance.

4.3 Performance Comparison (RQ2)
To answer how e�ective is our proposed method compared to
prior works, we compare our results with �ve baselines, PMF,
NeuMF, QMF+Random, SBS, and PMMN. The results on the two
categories are shown in Table 2. From Table 2, we can see that
our proposed model, Qrec, achieves the highest results on all four
metrics compared with the interactive baselines QMF+Random,
SBS, and PMMN, on these two categories, which suggests that our
question-based recommender system Qrec is e�ective. Our Qrec
model performs better than QMF+Random, this suggests that our
question selection is e�ective. There are few �uctuations on some
metrics for QMF+Randomwith di�erent number of questions asked,
this is because the uncertainty of random question selection in dif-
ferent number of questions asked. Our Qrec model is superior to
the SBS model, this suggests that using the prior from the o�ine
initialization is bene�cial. We will further discuss this in RQ4. Fur-
ther, our Qrec model performs better than PMMN [41], especially
after 5 questions asked. This might be explained by the fact that
asking questions on extracted entities can gather more information
from users and is able to better learn user true preferences than
asking questions on aspect-value pairs. Further, what we indeed
observed is that the results of all four metrics regarding PMMN
do not increase much and the result di�erences between PMMN
and our Qrec become big when the number of questions is larger
than 10. The reason for this is the fact that it is rather di�cult
to extract more than 10 aspect-value pairs from each user review
for a certain item. As a consequence, there are no more available
questions to ask, and thus the metric results never increase. Overall,
this suggests that asking question on extracted entities is more
e�ective.

It also can be observed that our proposed matrix factorization
model achieves better performance than PMF on the four metrics,
this suggests that our proposed matrix factorization model is rather
helpful. The reason might be because that adding the parameter P
improves the model capability of �tting. The NeuMF model outper-
forms linear models PMF and QMF, this is because the nonlinear
deep neural model can obtain more subtle and better latent rep-
resentations. But note that the stacked neural network structures
also make them di�cult to train and incur a high computational
cost. Speci�cally, our model is able to achieve better results than
the NeuMF model on all of four di�erent metrics with less than
5 questions. With more questions being asked, the result di�er-
ences between NeuMF and our Qrec become bigger. This shows
that interactive or question-based recommendation can improve
the performance over static models as interactive or question-based
recommendation can continuously learn from the user.

4.4 Cold Start Performance Analysis (RQ3)
To explore if our proposed method is e�ective for the cold-start
user and the cold-start item problem or not, we extract cold-start
user tuples (i.e. user-item interactions in which the user never
appear in the training set) and cold-start item tuples (i.e. user-item
interactions in which the item never appear in the training set)
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Table 2: The comparison with PMF, NeuMF, QMF+Random, SBS, and PMMN on the "Home and Kitchen" (top) and the "Pet Supplies" (bottom)
categories. #. represents the number of asked questions. QMF+Rand. represents the QMF+Randammodel. Our proposedmodel achieve highest
results when comparedwith interactive baselines, and ourmodel performs better than the state of the art collaborative �lteringmodel NeuMF
on all of four di�erent metrics with less than 5 questions.

recall@ 5 AP@ 5
#. PMF QMF NeuMF QMF+Rand. SBS PMMN Qrec PMF QMF NeuMF QMF+Rand. SBS PMMN Qrec
2 0.011 0.062 0.222 0.075 0.060 0.073 0.130 0.004 0.037 0.121 0.047 0.028 0.021 0.072
5 0.011 0.062 0.222 0.095 0.353 0.194 0.443 0.004 0.037 0.121 0.064 0.170 0.091 0.247
10 0.011 0.062 0.222 0.121 0.883 0.216 0.943 0.004 0.037 0.121 0.088 0.661 0.105 0.884
15 0.011 0.062 0.222 0.151 0.933 0.216 0.982 0.004 0.037 0.121 0.117 0.863 0.105 0.973
20 0.011 0.062 0.222 0.188 0.962 0.216 0.995 0.004 0.037 0.121 0.144 0.911 0.105 0.990

NDCG MRR
#. PMF QMF NeuMF QMF+Rand. SBS PMMN Qrec PMF QMF NeuMF QMF+Rand. SBS PMMN Qrec
2 0.036 0.082 0.183 0.113 0.181 0.212 0.215 0.011 0.048 0.136 0.062 0.053 0.050 0.100
5 0.036 0.082 0.183 0.131 0.389 0.300 0.443 0.011 0.048 0.136 0.079 0.226 0.135 0.295
10 0.036 0.082 0.183 0.158 0.749 0.310 0.915 0.011 0.048 0.136 0.104 0.671 0.147 0.889
15 0.036 0.082 0.183 0.184 0.899 0.310 0.980 0.011 0.048 0.136 0.132 0.869 0.147 0.975
20 0.036 0.082 0.183 0.211 0.935 0.310 0.993 0.011 0.048 0.136 0.159 0.915 0.147 0.991

recall@ 5 AP@ 5
#. PMF QMF NeuMF QMF+Rand. SBS PMMN Qrec PMF QMF NeuMF QMF+Rand. SBS PMMN Qrec
2 0.008 0.016 0.214 0.016 0.007 0.056 0.076 0.005 0.008 0.119 0.008 0.003 0.026 0.030
5 0.008 0.016 0.214 0.017 0.052 0.139 0.268 0.005 0.008 0.119 0.009 0.024 0.095 0.140
10 0.008 0.016 0.214 0.033 0.668 0.143 0.966 0.005 0.008 0.119 0.024 0.393 0.097 0.770
15 0.008 0.016 0.214 0.035 0.952 0.143 0.999 0.005 0.008 0.119 0.025 0.823 0.098 0.997
20 0.008 0.016 0.214 0.039 0.994 0.143 1.000 0.005 0.008 0.119 0.029 0.961 0.098 1.000

NDCG MRR
#. PMF QMF NeuMF QMF+Rand. SBS PMMN Qrec PMF QMF NeuMF QMF+Rand. SBS PMMN Qrec
2 0.012 0.056 0.179 0.069 0.032 0.121 0.141 0.007 0.019 0.134 0.021 0.010 0.046 0.054
5 0.012 0.056 0.179 0.068 0.190 0.231 0.327 0.007 0.019 0.134 0.022 0.054 0.115 0.179
10 0.012 0.056 0.179 0.038 0.557 0.233 0.830 0.007 0.019 0.134 0.028 0.427 0.117 0.774
15 0.012 0.056 0.179 0.039 0.870 0.233 0.998 0.007 0.019 0.134 0.028 0.829 0.117 0.997
20 0.012 0.056 0.179 0.049 0.971 0.233 1.000 0.007 0.019 0.134 0.034 0.961 0.117 1.000

Table 3: The results on cold-start tuples. The top table represents
the cold-start user tuples on "Home and Kitchen" and bottom table
represents the cold-start item tuples on "Pet Supplies" category. Our
Qrec model can still achieve high performance for cold start users
and cold start items.

# of questions recall@5 AP@5 NDCG MRR
PMF 0.005 0.002 0.039 0.011
2 0.127 0.071 0.215 0.099
5 0.448 0.245 0.442 0.293
10 0.944 0.883 0.914 0.889
15 0.985 0.974 0.981 0.976
20 0.996 0.991 0.994 0.992

# of questions recall@5 AP@5 NDCG MRR
PMF 0.000 0.000 0.000 0.000
2 0.000 0.000 0.008 0.003
5 0.046 0.011 0.157 0.035
10 0.853 0.561 0.676 0.576
15 0.991 0.961 0.971 0.962
20 1.000 1.000 1.000 1.000

from our testing dataset. Because there are very few cold-start item
tuples in "Home and Kitchen" category, and very few cold-start
user tuples in "Pet Supplies" category, to the extent that results
would not be reliable, we only use cold-start user tuples from the
"Home and Kitchen" category and cold-start item tuples from the
"Pet Supplies" category to validate the cold-start addressing ability

of our model. Statistics on two categories shows that there are about
84% cold-start user tuples on the "Home and Kitchen" category and
about 7% cold-start item tuples on the "Pet Supplies" category. The
results on the two categories are shown in Table 3. As it is observed,
our Qrec model can still achieve high recall@5, AP@5, NDCG, and
MRR for cold start users and cold start items. As it is known, PMF
does not really work for cold start users and cold start items, which
is indeed what we observe. We conclude that our Qrec model is
capable of tackling the cold-start recommendation problem.

4.5 Contribution of O�line Initialization (RQ4)
In this research question, we investigate the e�ect of our o�ine
initialization. We compare the performance results including the
o�ine initialization and the performance results excluding the of-
�ine initialization of our model (i.e. random initialization for the
model parameters when the new user session starts). Our hypothe-
sis is that the o�ine learned parameters from the historical ratings
capture some general trend and provide a generic prior to guide the
model. Indeed, the results shown in Table 4 demonstrates the model
with o�ine initialization achieves higher performance than the one
without o�ine initialization, especially when the early stage of
question asking (here: the number of asked questions is less than
10). Based on the observation of performance improvements when
initializing the model from the o�ine data, we conclude that using
o�ine initialization is highly bene�cial.
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Table 4: Results for the e�ects of o�line initialization on the "Home and Kitchen" (top) and the "Pet Supplies" (bottom) categories. Qrec_o�l.
represents the Qrec including o�line initialization, Qrec_rand. represents the Qrec with random initialization (i.e, excluding o�line initial-
ization). The Qrec including o�line initialization is superior to the Qrec excluding o�line initialization.

recall@5 AP@5 NDCG MRR
# of questions Qrec_o�. Qrec_rand. Qrec_o�. Qrec_rand. Qrec_o�. Qrec_rand. Qrec_o�. Qrec_rand.

2 0.13 0.08 0.07 0.04 0.22 0.19 0.10 0.07
5 0.44 0.34 0.25 0.17 0.44 0.39 0.29 0.22
10 0.94 0.93 0.88 0.88 0.91 0.91 0.89 0.89
15 0.98 0.98 0.97 0.97 0.98 0.98 0.97 0.97
20 1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.99

recall@5 AP@5 NDCG MRR
# of questions Qrec_o�. Qrec_rand. Qrec_o�. Qrec_rand. Qrec_o�. Qrec_rand. Qrec_o�. Qrec_rand.

2 0.08 0.02 0.03 0.01 0.14 0.05 0.05 0.02
5 0.27 0.11 0.14 0.06 0.33 0.24 0.18 0.09
10 0.97 0.97 0.77 0.65 0.83 0.74 0.77 0.65
15 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
20 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

4.6 Online User Study (RQ5)
In this research question we �rst want to examine the assumptions
made in this work. In particular, we �rst want to understand how
many questions actual users are willing to answer, how well do
they answer them, and how is their experience with the system.
We collected 489 conversations made between our system and 21
crowd workers on 33 target items. From the collected data, we
observe that users answered an average number of 15 questions
per target item in the system (with the median being 12). Further,
in the exit questionnaire, 71.4% of the users declare that they are
willing to answer between 10 and 20 questions. Despite a median
time of 5 seconds to answer a question, in the exit questionnaire,
95.2% of the users indicate that the system’s questions were easy to
answer. From the results we collected, most of the users think the
conversational system is helpful and they will use it in the future. In
particular, 81% of users found the experience positive, 14.3% neutral,
and 4.7% negative. Last but not least, the users provided the correct
answers to the system’s question 95% of the time, they were not
sure about their answers 3.5% of the time, and they gave the wrong
answers (i.e. their answers disagreed with the description of the
product) 1.5% of the time.

The second important question is howwell the system performed.
We measured performance after 5, 10, 15, and 20 queries asked (for
those conversations that had this number of questions), as well as
the performance when the user indicated that she wanted to stop.
The results are shown in Table 5, and are in agreement with the
Qrec results of Table 2.

5 CONCLUSIONS AND DISCUSSION
In this paper, we propose a novel question-based recommendation
method, Qrec, which directly queries users on the automatically
extracted entities in relevant documents. Our model is initialized
o�ine by our proposed matrix factorization model QMF and up-
dates the user and item latent factors online by incorporating the
modeling of the user answer for the selected question. Meanwhile,
our model tracks the user belief and learns a policy to select the
best question sequence to ask. Experiments on the Amazon prod-
uct dataset demonstrate that the e�ectiveness of the Qrec model
compared to existing baselines.

Table 5: System e�ectiveness on user study. Results are in agree-
ment with the Qrec results of Table 2.

# of questions recall@5 AP@5 NDCG MRR
5 0.333 0.082 0.305 0.129
10 0.848 0.717 0.777 0.727
15 0.879 0.760 0.806 0.762
20 0.909 0.775 0.820 0.776

stopping 0.939 0.790 0.834 0.791

In this work, the questions asked to users are based on the pres-
ence or absence of entities in the target items, following past work.
Richer type of questions could be constructed by using other sources
such as categories, keywords, labelled topics [47, 48], structural
item properties, and domain-speci�c informative terms. Also, we
ignore the fact that entities may be semantically related to the tar-
get item even though they are not contained lexically in the item
documents. Further, we leave the number of questions asked as a
parameter to be prede�ned instead of algorithmically decided. Our
work uses a stand-alone algorithm that learns the informativeness
of questions to ask based on GBS. One can also use other techniques
(e.g., reinforcement learning) to learn the optimal question asking
strategy, or incorporate more factors, e.g., the relatedness and im-
portance level of di�erent informative terms, to extend the work.
Still, the user may change their target item during the interaction
with the system [30]. Theoretically our method is able to deal with
this kind of situation, with new answers received gradually for the
new target item. Last, we conduct a small user study, however a
larger and in-situ user study by intervening at the interface of a
commercial recommender system would be more informative. We
leave all these as future work.
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