Session: Long - E-Commerce and Advertising I

CIKM ’19, November 3-7, 2019, Beijing, China

Learning to Ask: Question-based Sequential
Bayesian Product Search

Jie Zou
University of Amsterdam
Amsterdam, The Netherlands
j-zou@uva.nl

ABSTRACT

Product search is generally recognized as the first and foremost
stage of online shopping and thus significant for users and retailers
of e-commerce. Most of the traditional retrieval methods use some
similarity functions to match the user’s query and the document
that describes a product, either directly or in a latent vector space.
However, user queries are often too general to capture the minute
details of the specific product that a user is looking for. In this paper,
we propose a novel interactive method to effectively locate the best
matching product. The method is based on the assumption that
there is a set of candidate questions for each product to be asked. In
this work, we instantiate this candidate set by making the hypothe-
sis that products can be discriminated by the entities that appear in
the documents associated with them. We propose a Question-based
Sequential Bayesian Product Search method, QSBPS, which directly
queries users on the expected presence of entities in the relevant
product documents. The method learns the product relevance as
well as the reward of the potential questions to be asked to the user
by being trained on the search history and purchase behavior of a
specific user together with that of other users. The experimental
results show that the proposed method can greatly improve the
performance of product search compared to the state-of-the-art
baselines.

KEYWORDS

Product Search; Learning To Asking; Bayesian Search; Question-
based Search

ACM Reference Format:

Jie Zou and Evangelos Kanoulas. 2019. Learning to Ask: Question-based
Sequential Bayesian Product Search. In The 28th ACM International Con-
ference on Information and Knowledge Management (CIKM ’19), Novem-
ber 3-7, 2019, Beijing, China. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3357384.3357967

1 INTRODUCTION

Purchasing goods and services over the Internet is by many consid-
ered a convenient and cost-effective shopping method. This has led

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CIKM 19, November 3-7, 2019, Beijing, China

© 2019 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.

ACM ISBN 978-1-4503-6976-3/19/11...$15.00
https://doi.org/10.1145/3357384.3357967

RIGHTS LIN KO

369

Evangelos Kanoulas
University of Amsterdam
Amsterdam, The Netherlands
e.kanoulas@uva.nl

to an ever-increasing focus on online shopping technologies. The
first and foremost stage of online shopping is generally recognized
to be that of product search [20]. In product search, the users usu-
ally formulate queries to express their needs and find products of
interest by exploring the retrieved results.

When it comes to product search, the majority of methods use
some similarity functions to match the query and documents that de-
scribes a product. In these cases, the query and product documents !
are usually represented as vectors in observed or latent vector space
and the distance between these vectors is computed [1, 9, 10, 22].
However, the queries in product search are often too general to
capture the minute details of the exact product a user is looking
for [6, 7].

Although the problem of efficiently finding the best match for
a query with similarity and representation learning in a given set
has been studied before [1, 9, 10, 22], interactive methods that can
help users better specify their needs still remain underexplored.
The main focus of this work is to effectively find the best matching
product for the user by asking "yes"/"no" questions to the searchers.
Given a pool of available questions to be asked on products, for
which the answer can either be “yes”, or “no”, or “not sure”, our
method performs a duet training, to learn both the product rele-
vance and the informativeness of a question. That is, our proposed
method uses limited data from existing users to construct a system
belief over product relevance for any new user/query. Further, it
is trained to select questions with the highest potential reward
based on the system belief over product relevance. In particular,
our method extends Generalized Binary Search (GBS) [17] over
questions to find the question that best splits the probability mass
of predicted product relevance and has the highest trained reward
for the remaining of the products. After the question is being asked
and answered by the user a posterior belief over product relevance
is obtained and used for the selection of the next question. Lastly,
the true belief over product relevance for the user is revealed se-
quentially through interactions with the user to generate the final
product search results.

The main contribution of this paper is three-fold:

e A novel interactive product search method based on con-
structed questions, QSBPS, which directly queries users about
the expected presence of an informative term in product re-
lated documents.

o A method that learns question reward and cross-user system
belief with limited data.

o An extensive analysis of the performance of the algorithms
that includes an analysis of noise tolerance in user answers.

!In this paper, we use product documents to refer to product descriptions and reviews.

https://doi.org/10.1145/3357384.3357967
https://doi.org/10.1145/3357384.3357967
https://doi.org/10.1145/3357384.3357967

Session: Long - E-Commerce and Advertising I

The evaluation results show that our approach can achieve better
results compared to the state-of-the-art baselines.

2 RELATED WORK
2.1 Product Search

E-shopping and e-retailing are attracting more and more attention,
which has led to new developments in technology [20]. Most previ-
ous product search methods focus on structured information about
products, e.g., brands, types and categories. Based on a semanti-
cally annotated product family ontology, Lim et al. [14] presented
a multi-facet product search and retrieval framework. Vandic et al.
[23, 24] noticed that product information on pages is usually not
well-structured, and proposed a faceted product search algorithm
by using semantic web technology. Duan et al. [6, 7] observed
that there is a vocabulary gap between product specifications and
search queries, and developed a probabilistic mixture model to sys-
tematically mine product search logs by learning an attribute-level
language model. Van Gysel et al. [22], on the other hand, introduced
a latent vector space model to learn representations for products
based on their associations with unstructured documents, which
avoids the limitations of searching in structured data. They learned
distributed representations of a given word sequence and products
as well as a mapping between query and product space. Ai et al.
[1] presented a hierarchical embedding model to learn semantic
representations for queries, products, and users. They constructed
a latent space retrieval model for personalized product search. Za-
mani and Croft [28] proposed a general framework that jointly
models and optimizes a retrieval model and a recommendation
model. Some studies also investigated the effectiveness of incor-
porating external information [10]. Guo et al. [10] presented the
translation-based search (TranSearch) model, which tries to match
the user’s target product from both textual and visual modalities
by leveraging the "also_view" and "buy_after_viewing" of prod-
ucts. Then Guo et al. [9] proposed an Attentive Long Short-Term
Preference model (ALSTP) for personalized product search by con-
sidering the long-term and short-term user preferences using two
attention networks. Similar to previous work we also hypothesize
that there is a gap between the language of product documents
and user queries. Different from past work, we propose a question-
based sequential Bayesian interactive learning on user preferences
to learn their actual needs. Past work is complementary to ours,
since it can be leveraged to inform a prior on product relevance, but
it can also be used to construct questions on the basis of product
structured information.

Zhang et al. [29] proposed a unified paradigm for product search
and recommendation, which constructs questions on aspect-value
pairs, to ask the user questions over aspects. Their model obtains
the opinion of the user (i.e., value of the aspect-value pair) for the
"aspect™ as feedback and thus expand the representation of the
user query. Different from that work based on aspect-value pairs
and constructs the question by manual predefined language pat-
terns, we ask questions about automatically extracted informative
terms without complex language patterns. Further, the selection of
questions in Zhang et al. [29] relies on the log-likelihood of proba-
bility estimation over limited aspects while our question selection

RIGHTS LIN KO

370

CIKM ’19, November 3-7, 2019, Beijing, China

is based on the cross-user duet learning of question effectiveness
and user preferences.

2.2 Interactive Search

Quantifying relevance on the basis of users’ queries, or learning a
model of relevance from past queries, cannot always capture the
minute details of relevance, not only in product search, but also in
other search tasks, such as those that require high recall [4]. Inter-
active information retrieval, instead, suggests putting the human in
the loop and learning a relevance model throughout an interactive
search process, where users provide feedback on the relevance of
presented documents, and the model adapts to this feedback [5].
Most of the methods take a special treatment of the query [29], typ-
ically expanding it with terms from labeled documents. However,
query expansion has show suboptimal performance [4], in part
because handling the relation between the original query and feed-
back documents is challenging [15]. Active learning [5] and multi-
armed bandits [12] have also been proposed to iteratively learn
task-specific models. Different from the afore-mentioned methods
that focus on receiving feedback at the level of documents, our
interactive method asks explicit questions to the users in terms of
entities contained in the documents of the collection. Similar to our
work, Wen et al. [25] proposed a sequential Bayesian search (SBS)
algorithm for solving the problem of efficiently asking questions in
an interactive search setup. They learn a policy that finds items in
a collection using the minimum number of queries. Based on Wen
et al. [25], Zou et al. [30] devised an SBSTAR algorithm to find
the last few missing relevant documents in Technology Assisted
Reviews by asking "yes" or "no" questions to reviewers. Our QSBPS
algorithm differs by performing a cross-user duet training, to learn
not only a belief over product relevance but also the reward over
the performance of questions, as well as their noise-tolerance.

2.3 Learning to Ask

Learning to Ask is a new field of study that has recently attracted
considerable attention. A number of studies focus on identifying
good questions to be asked in a 20 Questions game setup. Chen
et al. [3] presented a Learning to Ask framework, within which
the agent learns smart questioning strategies for both information
seeking and knowledge acquisition. Hu et al. [13] proposed a policy-
based reinforcement learning method also within a 20 Questions
game setup, which enables the questioning agent to learn the opti-
mal policy of question selection through continuous interactions
with the users. Both aforementioned works introduce data-hungry
techniques, which require having large numbers of repeated inter-
actions between the users and the information seeking system to
train upon. Different from these approaches, our method does not
require having multiple searchers and their interactions for a given
product.

3 METHODOLOGY

In this section, we provide a detailed description of the proposed
method 2. The research framework is shown in Figure 1. Our ap-
proach consists of three parts: (a) the construction of a pool of
questions; (b) the system belief and the question reward training

Zsource code: https://github.com/UvA-HuMIL/QSBPS

https://github.com/UvA-HuMIL/QSBPS

RIGHTS

Session: Long - E-Commerce and Advertising I

Figure 1: Research framework

Questions generation and model training step
History data I
of all users

System belief
training

Entity
annotation

Question rewards|
training

Question pool
construction

] amn [

H

‘ Interactive search step

|

New | |Systembelief| | Questions | | Bayesian User preference
query initialization asking update ranking list
End

using historical data from each user individually, and across users;
and (c) the interactive search step, which sequentially selects ques-
tions to be asked to the user and updates the user preferences. The
focus of this work lies in the two latter parts.

3.1 Question Pool Construction

The proposed method of learning informative questions to ask to
users, described in details in Sections 3.2 and 3.3, depends on the
availability of a pool of questions on product properties. That is,
given a product, the user should be able to answer the question,
with a reference to the relevant product, with a “yes” or a “no”.

There are different methods one could employ to construct such
a set of questions. For instance, one can use labelled topics [31, 32],
extracted keywords [11], item categories and attributes, or ex-
tract triplets and generate a rich set of questions based on these
triplets [19]. In this work, we take a rudimentary approach. Our as-
sumption is that a user can discriminate between products based on
the language of the documents (i.e., descriptions and reviews) they
are associated with. We then identify informative terms (instan-
tiated by entities in this work) using the entity linking algorithm
TAGME (8], similar to previous research [26, 27]. We assume that
these informative terms comprise the most important characteris-
tics of a product, and we generate questions about the presence or
absence of such entity in the product related documents. That is,
we instantiate the question candidate set by identifying entities in
the product related documents. For example, from the following
description of a product, "Apple iPhone XS (64GB), gold color. The
most durable glass ever in a smartphone. And a breakthrough dual-
camera system. iPhone XS is everything you love about iPhone.
Taken to the extreme.’, the extracted entities can be "Apple", "iPhone
XS", "gold color", "smartphone”, "dual-camera system", and "iPhone".
We don’t use any filter on the annotation scores of the TAGME
results, i.e. all annotations are being considered, which is also a
widely used setting in previous work [18, 26]. After that, the pro-
posed algorithm asks a sequence of questions of the form “Are you
interested in [entity]?” to locate the target product.

<

371

CIKM ’19, November 3-7, 2019, Beijing, China

Algorithm 1: QSBPS Offline Learning
input :A product documents collection, D, the set of
annotated entities in D, & , a set of topics 7, a prior
Dirichlet parameter, g
output:System belief P; (1), question rewards R;(e)
1 foreach topict € 7 do
2 Compute the initial user preference with ap:
75(d) = Epopy[7(d)] Vd € D
3 Let D; be the set of products within ¢

4 neo0

5 foreach d € D; do

6 foreach entitye € & do

7 Update the system’s belief P using Bayes’ rule:
Prnt1() oc m(d)Py(7) Vi

8 Calculating reward for each entity:
Rd(@) — Ibefor‘el;‘lafter

9 ne—n+1

10 end

1 end

12 Output trained system belief P (1) = Pj41(7)
13 Output average reward for each entity:

Ri(e) = @ 2dep, Rale)

14 end

Algorithm 2: QSBPS Online Learning

input :A product documents collection, D, the set of
annotated entities in D, &, a set of topics 77, a
number of questions to be asked, Ny, the system
belief P;()Vt € 7, and the question rewards
R[(e)Vt eT

output: User preference ﬂ;]q

1 foreach topict € 7 do

2 Load P(r), Rs(e)
3 1
4 System belief initialization: P;() < P; (1)
5 while I < Ny and |U;| > 1 do
6 Compute the user preference with P;(r):
7;(d) = Eqp,[7(d)] Vd € D
7 Find the optimal target entity: ¢; =
argmine | Sgey, (21{e(d) = 1} - Dr*(d)| — y Re(e)
8 Ask the question about e;, observe the reply e;(d*)
9 Remove e; from entity pool
10 U =UnieD:eli)=el(d)
11 Update the system’s belief: Py, () oc 7(d)P;(7) Vr
12 l—1Il+1
13 end
14 end

3.2 Cross-user Duet Learning

In this section, we describe the training algorithm that jointly learns
(a) abelief over the effectiveness of questions (entities) in identifying

Session: Long - E-Commerce and Advertising I

relevant products, R;(e), and (b) a system belief over the relevance of
the products, P;(rr). Instead of using the SBS algorithm [25], a data-
hungry algorithm that requires a large amount of training data for
each user’s request, our approach uses a duet learning approach on
the given topic, t.2 The proposed method updates the system belief
over relevance and the entity effectiveness after every question is
being answered by the user, performing well using limited and weak
signals. The system belief training over products learns the interest
of the users over products, while the entity effectiveness training
over entities learns the reward or informativeness of questions, and
thus finds the optimal policy for asking questions. Our algorithm
performs two rounds. During the offline phase, the algorithm learns
what is the average users’ preference over the products within each
product category, and how effective are entities in identifying these
products. Then, during the online interactive search phase, the
algorithm continues learning product relevance on the basis of the
user’s answers to the algorithm’s questions.

The offline training phase is described in Algorithm 1. We as-
sume that there is a target relevant product d* € D . The user
preferences for the products are modelled by a (multinomial) prob-
ability distribution 7* over products D, and the target product is
drawn i.i.d. from this distribution. We also assume that there is a
prior belief Py over the user preferences 7*, which is a probability
density function over all the possible realizations of 7*. The prior
system belief Py is a Dirichlet distribution, with a hyper-parameter
ap, which can be set by using any other product search algorithm
that measures the lexical or semantic similarity between the query
and product documents, or any collaborative filtering method. In
this paper, we use an uninformative uniform system belief distri-
bution by setting all ag’s to 1 to isolate the effect of the proposed
method. That is, the user preference is initialized to be the same for
each product.

During the duet training phase, there is a training set D; for each
topic, which contains all of the training products for this topic. For
each product in D;, we generate a set of questions based on all the
entities in the collection, and we obtain a posterior belief using the
Bayes’ rule after every question for the target training product d
is being answered, and calculate the reward R(e) for each question
(entity). We then get the average reward for each entity to be used
in the online interactive search, and obtain the trained system belief
P; (), which is also used as a prior belief over products during the
interactive search.

System Belief: We learn the system belief from the training
data of all users on a certain topic, assuming that the training
products on a certain topic are related in the entity embedding
space, and thus can provide useful guidance. One could also learn
user personalized preferences and entity informativeness, however,
we do not do so, hypothesizing that users can buy significantly
different products.

Let P; be the system’s belief over 7* in the n-th question. We
compute the user preference 7 (d) in the n-th question by,

Tp(d) = Eq-p, [7(d)]Vd € D 1)

Similar to Wen et al. [25], we model the user preference 7*
by a multinomial distribution over products O. Then, the system

3Topics in this paper are product subcategories, which can represent user queries.
“In the rest of paper, "product” and "product document" will be used interchangeably

RIGHTS LIN KO

372

CIKM ’19, November 3-7, 2019, Beijing, China

updates its belief after observing the user answer to a question
asked, which is sampled i.i.d. from 7*.

Pri1(7) o« 2(d)Py (1) V7 @)

We model the prior Py, by the conjugate prior of the multino-
mial distribution, i.e., the Dirichlet distribution, with parameter a.
Further, we define the indicator vector Z;(d) = 1{e;(d) = ¢;(d*)},
where ¢;(d) means whether the product d contains entity e; or not.
From Bayes’ rule, the posterior belief prior to the question [is:

n
Pp+1 = Dir(a + sz)

®)
j=0
From the properties of the Dirichlet distribution, we have:
) ald)+ 3y Z/(d)
Tn(d) = Ex~p, [7(d)] = ©

Zareplald)+ X7, Zj(d")

where a(d) is the iy entry of a, which corresponds to product
d. Therefore, the user preference 7} can be updated by counting
and re-normalization.

Question Reward: For the question reward learning, we use
historical training data to learn the reward of each entity. We define
the following simple reward function, which can learn the ranking
rising ratio of the target product relative to the candidate products

version space when training.

R(e) = Iefore — Lafter
U]

where the efore is the index of the target product in the ranked
list before asking the question about entity e, the I g, is the index
of target product in the ranked list after asking the question about
entity e, and |U| is the number of products in the candidate set U.
The ranking list is generated according to the user preference ;'
over the products. Note that we use the worst ranking index as the
index of product in the ranked list when there are ties over the user
preferences. Thus, in the first question, Jefore is initialized to the
last ranking index, which is equal to the number of products in the
collection.

After the system belief learning and question reward learning,
the model uses its current user preference 7*(d) from the belief
P; and the estimated reward R;(e) to derive a policy to find the
optimal entity to query.

®)

3.3 QSBPS Algorithm

In this section, we introduce two versions of the QSBPS algorithm.
The first version assumes that there is no noise in the answers of
a user. That is, when an entity appears in the text of the relevant
product the user gives a correct positive answer, while when it does
not the user gives a correct negative answer (see user simulation
in Section 4.1.3). The online interactive learning of our proposed
algorithm is provided in Algorithm 2. We first load in the trained
system belief P;(r) and question rewards R;(e), then compute the
user preference with prior belief equal to P;(rr), and find the optimal
entity e; by Equation 6. Inspired by Wen et al. [25], we extend GBS
over entities to find the entity that best splits the probability mass of
predicted product relevance closest to two halves, but also maximize

Session: Long - E-Commerce and Advertising I

the question reward for the remaining of the products during /iy,
question, as the optimal entity.

O

e; = argmin
e

. @1{e(d) = 1} = D7 (d)| - y * Re)

deu;

where e; is the [y, choosen entity, u; is the set of products of the can-
didate version space when asking the I, question, e(d) expresses
whether the product d contains the entity e or not, while y is the
weight to trade the question reward R(e). We ask whether the entity
e; is present in the target product that the user wants to find, d*,
observe the reply e;(d*), and remove e; from the entity pool. Then
we reduce Uj, update the system’s belief P; using Bayes’ rule and
recalculate the user preference, i.e., the user preference is updated
sequentially by Bayesian learning that refers to sequential Bayesian
based search. Since the user preference 7* is a multinomial distri-
bution over products D, and Py, a Dirichlet distribution, updating
the system belief is performed in a similar to Eq.3 manner.

In Algorithm 2, we make the assumption, that users, when pre-
sented with an entity, know with 100% confidence whether the
entity appears in the target product. To relax this assumption we
also propose a noise-tolerant version of the algorithm. That is, we
allow the user to make mistakes and provide the algorithm with
the wrong answer. We integrate the probability that the user will
give the wrong answer to a question about entity e, h(e), into the
new objective function, at line 7 of Algorithm 2,

e; = arg min
e

Z (21{e(d) = 1} = 1)x"(d)| +2B = h(e) —y * Ry (7)
deD

We observe the noisy answer and update the posterior system
belief according to this noisy answer. Intuitively, a question will be
chosen to be asked not only if it is about an informative entity, but
also if this entity is the one for which users have a good confidence
in providing an answer. The experiments will be discussed in RQ4.
Regarding the error rate for each entity h(e), we consider two
settings: In the first setting all of the h(e) are simply set to equal
values, and we experiment with different error rates that range
from 0.1 to 0.5 with a step of 0.1, to explore the performance trend
of our model with different error rates. An error rate h(e) of 0.5
means that the user has a 50% probability to give the wrong answer.
In the second setting, given that users are usually more confident
in their answers about an entity e if e is frequently occurring in the
given topic, we define h(e) as a function of average term frequency
(TF) in the topic for each entity, which is in the range of (0, 0.5]:

1

he) =207 TFavg())

®

Where TF,vg(e) represents the average term frequency of entity
e in the given topic. The choice of this function is ad-hoc and any
other function of any other characteristic of entities could also
be used. Ideally, one should conduct a user study to identify a
reasonable error rate function, the properties of entities that affect
the error rate, or even the characteristics of the users that influence
the error rate. We leave such a user study as future work.

RIGHTS LIN KO

373

CIKM ’19, November 3-7, 2019, Beijing, China

Table 1: Overview of the dataset. M denotes Metadata only and M&R
denotes Metadata & Reviews. Arithmetic mean and standard devia-
tion are indicated wherever applicable.

Home & Kitchen Clothing, Shoes &

Jewelry
Number of products 8,192 16,384
Number of description docs 8,192 16,384
Number of reviews 79,938 77,640
Length of documents 70.02 + 73.82 58.41 + 61.90
Reviews per product 9.76 + 52.01 4.74 + 18.60
Number of topics 729 833
Products per topic 11.24 + 31.16 19.67 + 55.24
Number of entities (M) 232,086 385,727
Number of entities (M&R) 1,483,659 1,408,828
Entities per product (M) 28.33 + 23.93 23.54 + 19.25

Entities per product (M&R) 181.11 + 797.55 85.99 + 276.30

4 EXPERIMENTS AND ANALYSIS

Through the experiments conducted in this work we aim to answer

the following research questions:

RQ1 What is the impact of the number of questions asked and the
parameter y that trades the weight of question reward?

RQ2 What is the influence of using user reviews along with prod-
uct descriptions?

RQ3 Does our duet training by using other users’ data help?

RQ4 What is the performance when considering noisy answers?

RQ5 How effective is our proposed method for finding the best
matching product compared to prior works?

4.1 Experimental Setup

4.1.1 Dataset. In our experiments we use the collection of Ama-
zon products > [16]. It includes millions of customers, products and
reviews. Each product contains rich metadata such as title, product
descriptions, product categories, and also reviews from customers.
Similar to Van Gysel et al. [22], we use the same four different
product domains from the Amazon product dataset, but due to the
limited space, we only report two domains in this paper, which are
"Home & Kitchen", and the "Clothing, Shoes & Jewelry". Statistics
on these two domains are shown in Table 1. The documents asso-
ciated with every product consist of the product description and
the reviews provided by Amazon customers. To construct topics
(queries) we use the method employed in Van Gysel et al. [22],
and Ai et al. [1], i.e. we use a subcategory title from the above two
product domains to form a topic string. Each topic (i.e. subcategory)
contains multiple relevant products and products can be relevant
to multiple topics. After that, we remove the topics which contain
just a single product, since having a single relevant product does
not allow constructing a training set and test set. Similar to [1], we
randomly split the dataset to 70% and 30% subsets, and we use 70%
of the products for each topic (i.e. subcategory) for training. We
also use a 10% of the data as validation set. The validation set is
used to select the optimal parameters to avoid overfitting.

4.1.2 Evaluation Measures. To quantify the quality of algorithms,
we use Mean Reciprocal Rank (MRR), and average Recall@k (k= 5)

Shttp://jmcauley.ucsd.edu/data/amazon/

Session: Long - E-Commerce and Advertising I

and Normalized Discounted Cumulative Gain (NDCG) as the evalu-
ation measures. We evaluate the performance of the algorithms for
each individual user purchase observed in the data. Hence, for the
same query but two different users, the relevant product (i.e. the
product purchased) can be different. Therefore, in our dataset there
is only a single relevant product for each query that resulted in a
purchase, hence the use of MRR. Recall at rank 5, expresses whether
the relevant document appears in the top-5 ranked products, while
NDCG penalizes the effectiveness score by the rank at which the
relevant product appears in a smoother way compared to MRR.

4.1.3 User Simulation. Our experimentation depends on users
responding to questions asked by our method. Conducting a user
study is in our future plans, however, in this paper we follow recent
work that simulates users [21, 29]. We simulate users following
two different settings: (1) we assume that the user will respond to
the questions with full knowledge of whether an entity is present
or not in the target product. Hence, we assume that a user has
a product in mind, which is deterministic but unknown, and the
user will respond with “yes” if an entity is contained in the target
product documents and “no” if an entity is absent from the target
product documents on the offline training phase and the online
interactive search phase. This setting is the same used by Zhang
et al. [29], which assumes that the user has perfect knowledge of
the value of an aspect for the target product; (2) additionally, we
allow the users to give the wrong answer to our product search
system with a given probability during online interactive search.
We consider two noisy answers settings, which are described in
Section 3.3, while the precise experiment is described in RQ4.

4.1.4 Baselines. We compare our method with six baselines,
in which the first three baselines are interactive baselines while
the last three ones are query-product semantic matching baselines:
(1) Random, which randomly chooses the entity from the entity
pool to ask a question about; (2) SBS [25], which is the sequen-
tial Bayesian search algorithm, that uses different training than
our algorithm; (3) PMMN [29], i.e. the Personalized Multi-Memory
Network, which is a state-of-the-art conversational recommender
system asking questions on aspect-value pairs. Similar to the exper-
iments run in the original paper, we assume that the system is able
to retrieve the right candidate aspects for the product with 100%
accuracy, which leads to an upper bound performance impossible
to be actually reached by a real system; (4) LSE © [22], which is one
of the state-of-the-art latent vector models, that jointly learns the
representations of words, products and the relationship between
them in product search; (5) TranSearch’ [10], which is one of
the state-of-the-art product search models using multi-modal pref-
erence modeling from both textual and visual modalities. For fair
consideration, we use the textual version of their TranSearch model,
i.e.,, TranSearch; with pre-training; and (6) ALSTP?® [9], which is
one of the state-of-the-art product search models using attention
networks of long-term and short-term user preferences. For the
latter four baselines, we use the optimal parameters reported in the
corresponding product search papers.

®https://github.com/cvangysel/SERT
Thttps://github.com/guoyang9/TranSearch
8https://github.com/guoyang9/ALSTP

RIGHTS LI N Ky

374

CIKM ’19, November 3-7, 2019, Beijing, China

Figure 2: Heatmap of the MRR results on the validation set of
"Home & Kitchen" (top), and "Clothing, Shoes & Jewelry" (bottom).
The MRR is shown as a function of the number of questions asked
and the weight of question reward y. The more red the heatmap,
the better the performance of the method. The optimal weight pa-
rameter y for the corresponding number of questions asked is desig-
nated by the white boundary box and is reported in the table below
the heatmap. (Unless mentioned otherwise, in what follows the op-
timal weight parameter y we used for the corresponding number of
questions asked is designated in the figure).

Home & Kitchen

10 15 20 25
of Questions Asked
[0 T J20 [|
[os Joi Jo1 Jox |

‘ #of questions asked ‘ 5

[optimal y B

Clothing, Shoes & Jewelry

0.8
0.6
0.4

0.2

10 15 20 25 30
of Questions Asked
[0 [5 [»][5 []
[o2 [os [ox o o]

[[#of questions asked | s

[owimaiy B

4.2 The Impact of the Number of Questions
and the Question Reward Parameter y

In this section we answer RQ1. Our proposed method is param-
eterized by the number of questions to be asked to the user and
the hyper-parameter y which is the weight of question reward in
QSBPS. We evaluate the results on the validation set. The number of
question asked to the user ranges from 5 to 30 with an interval of 5,
and the weight y ranges from 0 to 1 with an interval of 0.1. Figure 2
shows the heat map of MRR results for every combination of the
number of asked questions and the question training controlling
parameter y on "Home & Kitchen" and "Clothing, Shoes & Jewelry"
categories. The x-axis is the number of questions asked, and the
y-axis is different value of weight parameter y. From Figure 2 it can
be seen that the MRR increases with the number of questions asked
to the user, as expected: the more the questions asked the better
the performance of the algorithm. It can also be observed that MRR
fluctuates over different question reward controlling parameter
y- Different number of asked questions produce different optimal
value for y. The optimal y for 5, 10, 15, 20, 25, and 30 questions is 1,
0.5, 0.1, 0.1, 0.1, and 0, respectively on "Home & Kitchen", while 1,

RIGHTS

Session: Long - E-Commerce and Advertising I

CIKM ’19, November 3-7, 2019, Beijing, China

Table 2: The comparison of MRR, and Recall@5, and NDCG results on "Home & Kitchen" (top), and "Clothing, Shoes & Jewelry" (bottom) by
using metadata only versus using metadata & reviews. As it can be observed, user reviews, while noisy, can improve the selection of informative
questions, by discussing interesting properties/entities of the products not present in the product descriptions.

MRR Recall@5 NDCG
of questions asked | Meta only | Meta & review | Metaonly | Meta & review | Metaonly | Meta & review
5 0.290 0.292 0.427 0.439 0.411 0.423
10 0.568 0.684 0.690 0.809 0.647 0.749
15 0.702 0.860 0.790 0.923 0.758 0.890
20 0.779 0.932 0.855 0.965 0.821 0.947
25 0.822 0.956 0.890 0.977 0.856 0.966
30 0.846 0.982 0.862 0.984 0.870 0.985
MRR Recall@5 NDCG
of questions asked | Meta only | Meta & review | Metaonly | Meta & review | Metaonly | Meta & review
5 0.140 0.145 0.213 0.213 0.274 0.288
10 0.327 0.486 0.462 0.645 0.445 0.588
15 0.490 0.719 0.630 0.835 0.585 0.777
20 0.575 0.819 0.715 0.906 0.657 0.859
25 0.668 0.897 0.736 0.928 0.724 0.917
30 0.745 0.930 0.802 0.960 0.789 0.945

Table 3: The performance of our algorithm when excluding all training, when including only questions effectiveness training, when including
only product relevance training, and performing the proposed duet training by using other users’ data, represented in the table by No-train,
Q-train, P-train, and Duet, respectively on the "Home & Kitchen" (top) and "Clothing, Shoes & Jewelry" (bottom). As it can be observed Duet
training outperforms all other options demonstrating the suitability of the proposed method.

MRR Recall @ 5 NDCG
of questions asked | No-train ~Q-train P-train Duet | No-train Q-train P-train Duet | No-train Q-train P-train Duet
5 0.00 0.14 0.04 0.29 0 0.21 0.05 0.44 0.12 0.29 0.18 0.42
10 0.13 0.53 0.35 0.68 0.27 0.69 0.59 0.81 0.30 0.63 0.49 0.75
15 0.78 0.77 0.84 0.86 0.82 0.85 0.89 0.92 0.82 0.81 0.87 0.89
20 0.91 0.87 0.93 0.93 0.92 0.92 0.95 0.97 0.93 0.89 0.95 0.95
25 0.95 0.91 0.96 0.96 0.96 0.94 0.97 0.98 0.96 0.93 0.97 0.97
30 0.98 0.92 0.98 0.98 0.98 0.95 0.98 0.98 0.98 0.94 0.99 0.99
MRR Recall @ 5 NDCG
of questions asked | No-train Q-train P-train Duet | No-train = Q-train P-train Duet | No-train Q-train P-train Duet
5 0.00 0.05 0.03 0.15 0 0.07 0.04 0.21 0.11 0.19 0.16 0.29
10 0.06 0.33 0.21 0.49 0.07 0.48 0.34 0.65 0.21 0.45 0.35 0.59
15 0.57 0.60 0.66 0.72 0.65 0.73 0.74 0.84 0.65 0.68 0.72 0.78
20 0.79 0.73 0.82 0.82 0.83 0.83 0.88 0.91 0.83 0.79 0.86 0.86
25 0.88 0.81 0.90 0.90 0.90 0.89 0.93 0.93 0.90 0.85 0.92 0.92
30 0.92 0.85 0.93 0.93 0.94 0.92 0.96 0.96 0.93 0.88 0.94 0.94

0.2,0.8, 0.1, 0, and 0, respectively, on "Clothing, Shoes & Jewelry".
As we can see, the overall trend of optimal y is decreasing with the
number of questions. This suggest that question reward training is
more important in the early stages of question asking, especially
when the number of questions is 5 and 10. When the number of
questions asked is large, the importance of question reward training
decreases. The reason could be that a large number of questions
are sufficient for high performance regardless of reward.

4.3 The Influence of Using User Reviews Data

For RQ2, we explore the impact of using the user reviews data. We
compare the differences between the results using products meta
data only and the results using both products meta data and user
reviews data. The comparison results are shown in Table 2 with
three metrics, MRR, Recall@5 and NDCG on the two categories.

<

375

For each number of questions asked, the near-optimal y was used
as indicated by the white-boundary boxes and tables in Figure 2. As
shown in Table 2, we can see that three metrics are higher for the
combined meta data and reviews data compared to only using meta
data, especially when the number of questions is greater than 5.
This indicates that user reviews are important in the users buying
process, and offer entities that can be more discriminative than the
ones included in the product description documents.

4.4 The Influence of the Duet Training

To answer RQ3, we investigate the impact of our duet training using
other users’ data, i.e. learning both the questions performance over
entity and the system belief over products, by comparing it to (1)
using no training, (2) using only questions performance training
on entities, and (3) using only system belief training on products.

RIGHTS

Session: Long - E-Commerce and Advertising I

CIKM ’19, November 3-7, 2019, Beijing, China

Table 4: The results of noisy answers on "Home & Kitchen" (top), and "Clothing, Shoes & Jewelry" (bottom) when h(e) is a fixed, ranging
from10% to 50% with a step 10%. Our method outperforms the best query-product matching baselines, the TranSearch and ALSTP model,
which are presented in Table 6, after about 3 questions asked with 10% of wrong answers, and after about 6 questions being asked with 20% of
wrong answers. Naturally the performance of our method is equal to random ranking when wrong answers are provided 50% of the time.

MRR Recall @ 5 NDCG
of questions No- 10% 20% 30% 40% 50% No- 10% 20% 30% 40% 50% No- 10% 20% 30% 40% 50%
asked noise noise noise
5 0.292 0.186 0.111 0.063 0.033 0.016 | 0.439 0.274 0.166 0.088 0.049 0.024 | 0.423 0.313 0.232 0.175 0.135 0.111
10 0.684 0.398 0.194 0.082 0.033 0.012 | 0.809 0.507 0.268 0.117 0.045 0.016 | 0.749 0.501 0.312 0.196 0.138 0.107
15 0.860 0.538 0.283 0.114 0.033 0.007 | 0.923 0.640 0.373 0.152 0.044 0.008 | 0.890 0.622 0.396 0.229 0.138 0.100
20 0.932 0.651 0.342 0.130 0.036 0.007 | 0.965 0.752 0.433 0.169 0.050 0.010 | 0.947 0.718 0.450 0.247 0.142 0.099
MRR Recall @ 5 NDCG
of questions No- 10% 20% 30% 40% 50% No- 10% 20% 30% 40% 50% No- 10% 20% 30% 40% 50%
asked noise noise noise
5 0.145 0.090 0.052 0.029 0.016 0.008 | 0.213 0.129 0.074 0.040 0.022 0.010 | 0.288 0.219 0.168 0.135 0.110 0.095
10 0.486 0.238 0.110 0.047 0.018 0.007 | 0.645 0.325 0.157 0.068 0.023 0.007 | 0.588 0.361 0.230 0.156 0.113 0.092
15 0.719 0393 0.175 0.064 0.019 0.005| 0.835 0.507 0.231 0.088 0.025 0.007 | 0.777 0.498 0.294 0.176 0.116 0.090
20 0.819 0.505 0.230 0.082 0.018 0.004 | 0.906 0.616 0.312 0.114 0.025 0.005| 0.859 0.595 0.349 0.194 0.116 0.089

Table 5: The results of noisy answers on "Home & Kitchen" (top), and "Clothing, Shoes & Jewelry" (bottom) when h(e) is modelled by term
frequency. Our method, when the optimal f is being used, outperforms the best query-product matching baselines, presented in Table 6, after

about 4 questions are being asked, despite the noise in the answers.

MRR Recall @ 5 NDCG
of questions asked | No-noise optimal § =0 | No-noise optimal § =0 | No-noise optimal 8 =0
5 0.292 0.156 0.129 0.439 0.232 0.185 0.423 0.281 0.248
10 0.684 0.245 0.194 0.809 0.325 0.264 0.749 0.358 0.308
15 0.860 0.295 0.220 0.923 0.376 0.283 0.890 0.401 0.329
20 0.932 0.330 0.250 0.965 0.400 0.308 0.947 0.431 0.356
MRR Recall @ 5 NDCG
of questions asked | No-noise optimal § =0 | No-noise optimal § =0 | No-noise optimal § =0
5 0.145 0.061 0.048 0.213 0.090 0.069 0.288 0.176 0.160
10 0.486 0.095 0.068 0.645 0.133 0.094 0.588 0.209 0.181
15 0.719 0.112 0.091 0.835 0.152 0.123 0.777 0.224 0.204
20 0.819 0.126 0.106 0.906 0.170 0.142 0.859 0.239 0.217

Our hypothesis is that the historical data of a specific user together
with that of other users captures important information and the
model training of our duet learning framework from these data
will be beneficial even if the training data does not exactly match
the information of the specific target user. Indeed, Table 3 shows
three metrics using duet training are higher than the ones that
corresponds to excluding one questions training, system belief
training or both, especially when the number of questions is less
than 20. For each number of questions asked, the near-optimal y
was used as indicated by the white-boundary boxes and tables in
Figure 2. We conclude that using our duet learning framework is
highly beneficial. When large number of questions (greater than 15)
are asked, the "No-train" achieve higher performance than "Q-train".
This might be because "Q-train" only use the noisy rewards trained
by the weak signals and do not use GBS policy like "No-train","P-
train”, and "Duet" to select the optimal question to ask, and thus
less effective when the number of questions are getting high.

4.5 The Influence of Noisy Answers

Given that the user may not always give us the right answer, we
also explore the noise-tolerance of our QSBPS algorithm towards

<

376

answering RQ4. We develop a noise-tolerant version our QSBPS
algorithm as shown in Section 3.3 and investigate what the influence
of noisy answers is. We simulate the noisy answer of the user under
two settings. In the first setting, we fix the probability of error, &,
and consider it as a parameter that ranges from 10% to 50% with
a step 10%. The results when h(e) is a fixed number ¢ is shown
in Table 4. For each number of questions asked, the near-optimal
y was used as indicated by the white-boundary boxes and tables
in Figure 2. It is obvious and expected that the performance as
captured by three metrics decreases with the increase of e. When
¢ is equal to 50%, which means the user answer the question with
"yes" or "no" at random, we observe very low performance. On
the other hand, when ¢ is equal to 10%, the values of three metrics
are still relatively high. Further, note that, in comparison to the
best query-product matching baselines, the TranSearch and ALSTP
model, which is presented in Table 6, for 10% wrong answers, our
method outperforms the baseline after 3 questions asked, and for
20% wrong answers, after 6 questions being asked.

In the second setup, we define h(e) as a function of term fre-
quency of entity as shown in Equation 8. Similar to RQ1, we evalu-
ate the MRR on validation set for the two categories, to select the

RIGHTS

Session: Long - E-Commerce and Advertising I

CIKM ’19, November 3-7, 2019, Beijing, China

Table 6: NDCG and Recall@5 on "Home & Kitchen" (top), and "Clothing, Shoes & Jewelry" (bottom) for the compared methods. #. represents

the number of questions asked.

NDCG Recall @ 5
#. | Random LSE TranSearch ALSTP PMMN SBS QSBPS | Random LSE TranSearch ALSTP PMMN SBS QSBPS
0.011 0.176 0.198 0.181 0.271 0.001 0.401 0.006 0.074 0.131 0.149 0.158 0 0.439
10 0.012 0.176 0.198 0.181 0,285 0.267 0.742 0.006 0.074 0.131 0.149 0.188 0.267 0.809
15 0.015 0.176 0.198 0.181 0.286 0.815 0.888 0.010 0.074 0.131 0.149 0.188 0.828 0.923
20 0.014 0.176 0.198 0.181 0.286 0923 0.946 0.009 0.074 0.131 0.149 0.188 0.919 0.965
25 0.015 0.176 0.198 0.181 0.286 0.960 0.966 0.008 0.074 0.131 0.149 0.188 0961 0.977
30 0.016 0.176 0.198 0.181 0.286 0.980 0.985 0.011 0.074 0.131 0.149 0.188 0.981 0.984
NDCG Recall @ 5
#. | Random LSE TranSearch ALSTP PMMN SBS QSBPS | Random LSE TranSearch ALSTP PMMN SBS QSBPS
0 0.098 0.101 0.131 0.231 0.001 0.256 0 0.045 0.056 0.083 0.101 0 0.213
10 0 0.098 0.101 0.131 0.248 0.178 0.577 0 0.045 0.056 0.083 0.13 0.075 0.645
15 0.001 0.098 0.101 0.131 0.249 0.632 0.772 0.001 0.045 0.056 0.083 0.13 0.664 0.835
20 0.001 0.098 0.101 0.131 0.249 0.817 0.856 0.001 0.045 0.056 0.083 0.13 0.833 0.906
25 0.001 0.098 0.101 0.131 0.249 0.895 0.915 0.002 0.045 0.056 0.083 0.13 0.904 0.928
30 0.001 0.098 0.101 0.131 0.249 0931 0.943 0.001 0.045 0.056 0.083 0.13 0.944 0.960

optimal f. Due to space limitations, the heatmaps were omitted and
we only report the optimal f here. The optimal f is 1 on "Home &
Kitchen", and 0.8 on "Clothing, Shoes & Jewelry". The results when
h(e) is modelled by term frequency using the optimal weight param-
eter f§ are shown in Table 5. For each number of questions asked,
the near-optimal y was used as indicated by the white-boundary
boxes and tables in Figure 2. As one can observe, the performance as
measured by the three metrics when using the optimal f is higher
than that when =0, which suggests that the objective function of
our noise-tolerant version of QSBPS algorithm is effective. Further,
note that our method, when the optimal f is being used, outper-
forms the best query-product matching baselines, the TranSearch
and ALSTP model, presented in Table 6, after 4 questions are being
asked, despite the noise in the answers.

4.6 The Effectiveness of Our Proposed Method
Compared with Other Algorithms

In RQ5, we answer how effective is our proposed method for find-
ing the best matching product compared to the six baselines shown
in Section 4.1, by reporting NDCG and Recall@5. Table 6 shows
the results. For our method, for each number of questions asked,
the near-optimal y was used as indicated by the white-boundary
boxes and tables in Figure 2. As indicated in Table 6, our QSBPS
algorithm achieves the highest effectiveness scores when compared
to Random, LSE, SBS, TranSearch, ALSTP, and PMMN. Our QSBPS
algorithm exceeds Random, which indicates, as expected that our
question selection strategy is better than choosing questions in
random. After less than 5 questions, our QSBPS algorithm greatly
improve over the LSE, TranSearch, and ALSTP model. This clearly
suggests that a theoretically optimal sequence of entity-centered
questions can be rather helpful and greatly improve the perfor-
mance in product search. Our QSBPS algorithm perform better
than SBS, which indicates the effectiveness of our cross-user duet
training. Last, our QSBPS model proves to be better than the in-
teractive PMMN system. This can be explained, by either the fact
that our pool of questions is better, or the fact that our question
sequence strategy is better. Given that in both systems, QSBPS, the

<

377

question strategy is strongly connected to the type of questions
placed in the question pool, it makes it very hard to decompose
the effect in the improvements demonstrated by QSBPS. One final
observation on PMMN is that its performance almost does not in-
crease when the number of questions is larger than 10. The reason
for this is the fact that it is rather difficult to extract more than 10
aspect-value pairs from each user review for a certain item. As a
consequence, there are no more available questions to ask.

5 CONCLUSIONS AND DISCUSSION

The focus of this work is helping users to find the most relevant
product in a large repository. We propose a question-based sequen-
tial Bayesian product search algorithm, called QSBPS, which effi-
ciently locates the most relevant product by directly querying users
on the presence or absence of an informative term in product related
documents. Our framework first identifies and extracts informative
terms (instantiated by entities in this work) mentioned in the text
of the given product, and then trains a system belief and question
reward model by using historical data. Based on the trained model,
our method derives a policy of the optimal questions to be asked
to the user. After receiving an answer to each question asked to
the user, the posterior product preference of the user is calculated
to generate the ranked recommendation list. Experiments on the
Amazon product dataset demonstrate the effectiveness of QSBPS
compared to state-of-the-art. Further, we illustrate the performance
of our method when noisy answers are received by users.

In this work we pivot around the presence or absence of entities
in the target products to generate a pool of questions to be asked
to the user, which is still a rudimentary method of generating ques-
tions. Clearly, there is a richer set of possible questions to be asked,
questions that may or may not be answered by a “yes” or a “no”.
Questions similar to the ones we have constructed could also be
constructed by using labelled topics [31], keywords extraction [2],
item categories and attributes, or extracted triplets [19]. Richer type
of questions could be also constructed by identifying properties
of the products in the descriptions and reviews and their relation
to the product. For example, for a “Canon EOS 5D Mark II” digital

RIGHTS

Session: Long - E-Commerce and Advertising I

camera, the following relations could be identified in the product
description: “resolution”, “manufacturer”, “LCD screen dimension”.
We leave this as future work. Further, our works simulates user
answers, noisy or not. A user study can be particularly helpful in
understanding whether users are willing to answer a small number
of questions, under what conditions (e.g., they may be willing if
they have already reformulated their query a number of times), and
to what extent they can provide correct answers. From a technical
perspective, our work proposes a stand-alone algorithm that learns
the informativeness of questions, along with user preferences. In
principle, however, one can use a ranking method (any of the base-
lines) to construct an informative prior belief on user preferences
and reduce the number of necessary questions to find the product to
smaller than 5. Further, one can also incorporate other factors (e.g,
the importance level of different informative terms) to the objective
function of question selection to extend the work. Furthermore, in
this work we made the assumption that we know the topic of a
user’s query, so that we can load the right prior over preferences,
and entity rewards. In practice, one needs some technique (of text
similarity) to soft-match an arbitrary query to the already known,
which we intent to explore in the future. Last, it is highly likely
that an entity is semantically related to the desired product but it
is not lexically contained in the description of it. In this work we
do not explore any semantic correlation modeling, but we leave it
as the future work.

REFERENCES

[1] Qingyao Ai, Yongfeng Zhang, Keping Bi, Xu Chen, and W. Bruce Croft. 2017.
Learning a Hierarchical Embedding Model for Personalized Product Search. In
Proceedings of the 40th International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR °17). ACM, New York, NY, USA,
645-654. https://doi.org/10.1145/3077136.3080813

Ricardo Campos, Vitor Mangaravite, Arian Pasquali, Alipio Mario Jorge, Célia
Nunes, and Adam Jatowt. 2018. A Text Feature Based Automatic Keyword
Extraction Method for Single Documents. In Advances in Information Retrieval.
Springer International Publishing, Cham, 684-691.

Yihong Chen, Bei Chen, Xuguang Duan, Jian-Guang Lou, Yue Wang, Wenwu Zhu,
and Yong Cao. 2018. Learning-to-Ask: Knowledge Acquisition via 20 Questions.
In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining (KDD ’18). ACM, New York, NY, USA, 1216-1225.
Gordon V. Cormack and Maura R. Grossman. 2014. Evaluation of Machine-
learning Protocols for Technology-assisted Review in Electronic Discovery. In
Proceedings of the 37th international ACM SIGIR conference on Research & develop-
ment in information retrieval (SIGIR ’14). ACM, New York, NY, USA, 153-162.
Gordon V Cormack and Maura R Grossman. 2015. Autonomy and reliability
of continuous active learning for technology-assisted review. arXiv preprint
arXiv:1504.06868 (2015).

Huizhong Duan, ChengXiang Zhai, Jinxing Cheng, and Abhishek Gattani. 2013.
A probabilistic mixture model for mining and analyzing product search log. In
Proceedings of the 22nd ACM international conference on Information & Knowledge
Management (CIKM ’13). ACM, New York, NY, USA, 2179-2188.

Huizhong Duan, ChengXiang Zhai, Jinxing Cheng, and Abhishek Gattani. 2013.
Supporting Keyword Search in Product Database: A Probabilistic Approach. Proc.
VLDB Endow. 6, 14 (Sept. 2013), 1786-1797.

Paolo Ferragina and Ugo Scaiella. 2010. TAGME: On-the-fly Annotation of
Short Text Fragments (by Wikipedia Entities). In Proceedings of the 19th ACM
International Conference on Information and Knowledge Management (CIKM ’10).
ACM, New York, NY, USA, 1625-1628. https://doi.org/10.1145/1871437.1871689
Yangyang Guo, Zhiyong Cheng, Ligiang Nie, Yinglong Wang, Jun Ma, and Mohan
Kankanhalli. 2019. Attentive Long Short-Term Preference Modeling for Person-
alized Product Search. ACM Transactions on Information Systems (TOIS) 37, 2
(2019), 19.

Yangyang Guo, Zhiyong Cheng, Ligiang Nie, Xin-Shun Xu, and Mohan Kankan-
halli. 2018. Multi-modal Preference Modeling for Product Search. In Proceedings
of the 26th ACM International Conference on Multimedia (MM ’18). ACM, New
York, NY, USA, 1865-1873. https://doi.org/10.1145/3240508.3240541

TE Gupta. 2017. Keyword extraction: a review. International Journal of Engineering
Applied Sciences and Technology 2, 4 (2017), 215-220.

[2

3

4

[5

[6

=

=

[10]

(1]

378

CIKM ’19, November 3-7, 2019, Beijing, China

[12] Katja Hofmann, Shimon Whiteson, and Maarten de Rijke. 2013. Balancing ex-
ploration and exploitation in listwise and pairwise online learning to rank for
information retrieval. Information Retrieval 16, 1 (2013), 63-90.
Huang Hu, Xianchao Wu, Bingfeng Luo, Chongyang Tao, Can Xu, Wei Wu, and
Zhan Chen. 2018. Playing 20 Question Game with Policy-Based Reinforcement
Learning. In Proceedings of the 2018 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Computational Linguistics, Brussels,
Belgium, 3233-3242. https://doi.org/10.18653/v1/D18-1361
Soon Chong Johnson Lim, Ying Liu, and Wing Bun Lee. 2010. Multi-facet product
information search and retrieval using semantically annotated product family
ontology. Information Processing & Management 46, 4 (2010), 479 — 493.
Yuanhua Lv and ChengXiang Zhai. 2009. Adaptive Relevance Feedback in Infor-
mation Retrieval. In Proceedings of the 18th ACM Conference on Information and
Knowledge Management (CIKM °09). ACM, New York, NY, USA, 255-264.
[16] Julian McAuley, Rahul Pandey, and Jure Leskovec. 2015. Inferring Networks
of Substitutable and Complementary Products. In Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD
’15). ACM, New York, NY, USA, 785-794. https://doi.org/10.1145/2783258.2783381
Robert Nowak. 2008. Generalized binary search. In 2008 46th Annual Allerton
Conference on Communication, Control, and Computing. IEEE, 568-574.
Hadas Raviv, Oren Kurland, and David Carmel. 2016. Document Retrieval Using
Entity-Based Language Models. In Proceedings of the 39th International ACM
SIGIR Conference on Research and Development in Information Retrieval (SIGIR
’16). ACM, New York, NY, USA, 65-74. https://doi.org/10.1145/2911451.2911508
Sathish Reddy, Dinesh Raghu, Mitesh M. Khapra, and Sachindra Joshi. 2017.
Generating Natural Language Question-Answer Pairs from a Knowledge Graph
Using a RNN Based Question Generation Model. In Proceedings of the 15th Con-
ference of the European Chapter of the Association for Computational Linguistics:
Volume 1, Long Papers. Association for Computational Linguistics, Valencia, Spain,
376-385.
[20] Jennifer Rowley. 2000. Product search in e-shopping: a review and research
propositions. Journal of consumer marketing 17, 1 (2000), 20-35.
Yueming Sun and Yi Zhang. 2018. Conversational Recommender System. In The
41st International ACM SIGIR Conference on Research & Development in Information
Retrieval (SIGIR ’18). ACM, New York, NY, USA, 235-244.
Christophe Van Gysel, Maarten de Rijke, and Evangelos Kanoulas. 2016. Learning
Latent Vector Spaces for Product Search. In Proceedings of the 25th ACM Inter-
national on Conference on Information and Knowledge Management (CIKM ’16).
ACM, New York, NY, USA, 165-174. https://doi.org/10.1145/2983323.2983702
Damir Vandic, Flavius Frasincar, and Uzay Kaymak. 2013. Facet Selection Algo-
rithms for Web Product Search. In Proceedings of the 22Nd ACM International
Conference on Information & Knowledge Management (CIKM °13). ACM, New
York, NY, USA, 2327-2332. https://doi.org/10.1145/2505515.2505664
Damir Vandic, Jan-Willem van Dam, and Flavius Frasincar. 2012. Faceted product
search powered by the Semantic Web. Decision Support Systems 53, 3 (2012), 425
- 437.
Zheng Wen, Branislav Kveton, Brian Eriksson, and Sandilya Bhamidipati. 2013.
Sequential Bayesian Search. In Proceedings of the 30th International Conference
on Machine Learning (Proceedings of Machine Learning Research), Vol. 28. PMLR,
Atlanta, Georgia, USA, 226-234.
Chenyan Xiong and Jamie Callan. 2015. EsdRank: Connecting Query and Docu-
ments Through External Semi-Structured Data. In Proceedings of the 24th ACM
International on Conference on Information and Knowledge Management (CIKM
’15). ACM, New York, NY, USA, 951-960. https://doi.org/10.1145/2806416.2806456
Chenyan Xiong, Jamie Callan, and Tie-Yan Liu. 2017. Word-Entity Duet Repre-
sentations for Document Ranking. In Proceedings of the 40th International ACM
SIGIR Conference on Research and Development in Information Retrieval (SIGIR °17).
ACM, New York, NY, USA, 763-772. https://doi.org/10.1145/3077136.3080768
Hamed Zamani and W Bruce Croft. 2018. Joint modeling and optimization of
search and recommendation. arXiv preprint arXiv:1807.05631 (2018).
Yongfeng Zhang, Xu Chen, Qingyao Ai, Liu Yang, and W. Bruce Croft. 2018.
Towards Conversational Search and Recommendation: System Ask, User Respond.
In Proceedings of the 27th ACM International Conference on Information and
Knowledge Management (CIKM ’18). ACM, New York, NY, USA, 177-186.
[30] Jie Zou, Dan Li, and Evangelos Kanoulas. 2018. Technology Assisted Reviews:
Finding the Last Few Relevant Documents by Asking Yes/No Questions to Re-
viewers. In The 41st International ACM SIGIR Conference on Research & Develop-
ment in Information Retrieval (SIGIR '18). ACM, New York, NY, USA, 949-952.
https://doi.org/10.1145/3209978.3210102
Jie Zou, Ling Xu, Mengning Yang, Xiaohong Zhang, and Dan Yang. 2017. Towards
comprehending the non-functional requirements through Developers’ eyes: An
exploration of Stack Overflow using topic analysis. Information and Software
Technology 84 (2017), 19 — 32. https://doi.org/10.1016/j.infsof.2016.12.003
[32] Jie ZOU, Ling XU, Mengning YANG, Xiachong ZHANG, Jun ZENG, and Sachio
HIROKAWA. 2016. Automated Duplicate Bug Report Detection Using Multi-
Factor Analysis. IEICE Transactions on Information and Systems E99.D, 7 (2016),
1762-1775. https://doi.org/10.1587/transinf.2016EDP7052

[13]

[14]

[15]

[17]

[18]

[19]

[21]

[22

[23]

[24

[25]

[26]

[27]

[28]

[29

[31]

https://doi.org/10.1145/3077136.3080813
https://doi.org/10.1145/1871437.1871689
https://doi.org/10.1145/3240508.3240541
https://doi.org/10.18653/v1/D18-1361
https://doi.org/10.1145/2783258.2783381
https://doi.org/10.1145/2911451.2911508
https://doi.org/10.1145/2983323.2983702
https://doi.org/10.1145/2505515.2505664
https://doi.org/10.1145/2806416.2806456
https://doi.org/10.1145/3077136.3080768
https://doi.org/10.1145/3209978.3210102
https://doi.org/10.1016/j.infsof.2016.12.003
https://doi.org/10.1587/transinf.2016EDP7052

