

Dueling Bandits for
Online Ranker Evaluation

Masrour Zoghi

Graduation committee:

Chairmen: Prof.dr. P.M.G. Apers Universiteit Twente
Prof.dr.ir. A. Rensink Universiteit Twente

Supervisors: Prof.dr. P.M.G. Apers Universiteit Twente
Prof.dr. M. de Rijke Universiteit van Amsterdam

Co-supervisor: Dr.ir. D. Hiemstra Universiteit Twente
Members: Prof. N. de Freitas University of Oxford

Prof.dr.ir. B.R.H.M. Haverkort Universiteit Twente
Dr. R. Munos DeepMind
Prof.dr. M.J. Uetz Universiteit Twente
Prof.dr.ir. A.P. de Vries Radboud Universiteit Nijmegen

CTIT Ph.D. Thesis Series No. 17-427
Centre for Telematics and Information Technology
University of Twente
P.O. Box 217
7500 AE Enschede, The Netherlands

Copyright © 2017 Masrour Zoghi, Enschede, The Netherlands
ISBN: 978-90-365-4287-6
ISSN: 1381-3617 (CTIT Ph.D. thesis Series No. 17-427)
DOI: 10.3990/1.9789036543026
https://doi.org/10.3990/1.9789036543026

https://doi.org/10.3990/1.9789036543026

DUELING BANDITS FOR
ONLINE RANKER EVALUATION

DISSERTATION

to obtain
the degree of doctor at the University of Twente,

on the authority of the rector magnificus
Prof.dr. T.T.M. Palstra

on account of the decision of the graduation committee,
to be publicly defended

on Friday February 24, 2017 at 14:45

by

Masrour Zoghi

born on September 19, 1978
in Karaj, Iran

This dissertation has been approved by:
Prof.dr. P.M.G. Apers (supervisor)
Dr.ir. D. Hiemstra (co-supervisor)
Prof.dr. M. de Rijke (supervisor)

Acknowledgments

I would like to first thank my advisor, Maarten, for his patient guidance over the years.
In addition to that, I benefited from conversations and collaborations with a long list of
researchers, including Akshay Balsubramani, Bogdan Cautis, Chun Ming Chin, Fernando
Diaz, Miro Dudik, Nando de Freitas, Mohammad Ghavamzadeh, Katja Hofmann, Frank
Hutter, Thorsten Joachims, Damien Jose, Satyen Kale, Evangelos Kanoulas, Zohar Karnin,
Akshay Krishnamurthy, Brano Kveton, Damien Lefortier, Lihong Li, Ilya Markov, Rémi
Munos, David Pal, Filip Radlinski, Rob Schapire, Anne Schuth, Milad Shokouhi, Alex
Slivkins, Adith Swaminathan, Csaba Szepesvari, Tomas Tunys, Ziyu Wang, Zheng Wen
and Shimon Whiteson. I would also like to extend my gratitude to my colleagues at
ILPS for their support, not to mention an endless supply of interesting conversations.
In particular, I would like to thank Petra for her indispensable help in navigating the
bureaucracy. Furthermore, a special thanks goes to Djoerd and the rest of my committee
for patiently reading through this thesis.

On a more social level, I would like to thank my friends Jean, Spyros and Tony for
many enjoyable conversations that made my stay in Amsterdam memorable, as well my
cousin Amin and his friends, who made my numerous trips to Berlin the highlight of my
half-decade excursion to Europe.

Masrour Zoghi
Jan 2017

Contents

1 Introduction 1
1.1 Research Outline and Questions . 2
1.2 Main Contributions . 6
1.3 Thesis Overview . 7
1.4 Origins . 7

2 Background 9
2.1 Problem Setting . 9

2.1.1 The K-armed bandit problem 9
2.1.2 The K-armed dueling bandit problem 11

2.2 Related Work . 14
2.2.1 IF and BTM . 14
2.2.2 SAVAGE . 16
2.2.3 Doubler . 17
2.2.4 Sparring . 18
2.2.5 Assumptions vs. Results . 19
2.2.6 RMED . 19
2.2.7 Other solution concepts . 20

3 Experimental Setup 21

4 Relative Upper Confidence Bound 23
4.1 The Algorithm . 23
4.2 Theoretical Results . 27
4.3 Proofs . 29

4.3.1 Proof of Lemma 4.1 . 29
4.3.2 Proof of Proposition 4.2 . 32
4.3.3 Proof of Theorem 4.4 . 34
4.3.4 Proof of Theorem 4.5 . 36

4.4 Experimental Results . 38
4.4.1 Details of the Experimental Setup 40

4.5 Summary . 41

5 Relative Confidence Sampling 43
5.1 The Algorithm . 43
5.2 Experiments . 45

5.2.1 Accuracy Results . 46
5.2.2 Cumulative Regret Results . 48
5.2.3 Stability of RUCB and RCS 49
5.2.4 Size of the Set of Rankers . 50

5.3 Summary . 51

v

CONTENTS

6 MergeRUCB 53
6.1 The Algorithm . 54
6.2 Theory . 54
6.3 Proofs . 58
6.4 Experiments . 61

6.4.1 Large scale experiments . 63
6.4.2 Lerot simulation vs Bernoulli samples 63
6.4.3 Dependence on K . 64
6.4.4 Effect of click models . 64
6.4.5 Parameter dependence . 65

6.5 Summary . 66

7 Copeland Confidence Bounds 67
7.1 Motivation . 67

7.1.1 The Condorcet Assumption . 67
7.1.2 Other Notions of Winners . 68
7.1.3 The Quantities C and LC . 70

7.2 The CCB Algorithm . 70
7.3 Theory . 73
7.4 Proofs . 76

7.4.1 An Outline of the Proof of Theorem 7.1 76
7.4.2 The Gap ∆ . 79
7.4.3 Background Material . 79
7.4.4 Proof of Proposition 7.3 . 80
7.4.5 Proof of Lemma 7.6 . 85
7.4.6 Proof of Lemma 7.7 . 90

7.5 Experiments . 93
7.6 Summary . 95

8 Conclusions 97
8.1 Summary of Results . 97
8.2 Future Work . 98

Bibliography 101

vi

1
Introduction

In every domain where a service or a product is provided, an important question is that
of evaluation: given a set of possible choices for deployment, what is the best choice?
An important example, which is considered in this work, is that of ranker evaluation
from the field of information retrieval (IR). The goal of IR is to satisfy the information
need of a user in response to a query issued by them, where this information need is
typically satisfied by a document (or a small set of documents) contained in what is often
a large collection of documents [51]. This goal is often attained by ranking the documents
according to their usefulness to the issued query using an algorithm, called a ranker, a
procedure that takes as an input a query and a set of documents and specifies how the
documents need to be ordered [51].

Let us illustrate this. The typical scenario, familiar to anyone with internet access, is
that of web search: suppose you happen to be reading a thesis and run into a cited paper
that has piqued your interest and you would like to inspect it more closely; then, if you
are trapped in the 1990s, you could spend a substantial amount of time guessing the URL
of the publisher and search through their archives for the issue that contains the article, or
you could do what every person living in 2016 would do, which is to type the title of the
article into a popular search engine and get a link to the article. In this case, the collection
is all documents and pages on the web and the information need of the user is satisfied by
the sought after article. There is, however, the issue that there might be several articles
with similar titles or there might even be different versions of the same article and the user
might be looking for a very specific version. The remedy used to address this difficulty is
often to present a list of documents, rather than a single document, to the user, hoping
that one or more of them satisfy the user’s need. This gives rise to the problem of ranking,
whose goal is to place the more useful documents at the top.

This thesis is concerned with ranker evaluation [39, 45, 60]. The goal of ranker
evaluation is to determine the quality of rankers to allow us to use the best option: given
a finite set of possible rankers, which one of them leads to the highest level of user
satisfaction? There are two main methods for carrying this out:

Absolute metrics: The idea here is to use a metric that assigns an absolute measure
of the quality of each ranker in the form of a real number and picks the ranker
of the highest quality according to our metric. This could be either an offline
metric (e.g., NDCG [41], MAP [32], etc.), which is calculated using annotated
relevance judgments for the documents being ranked, or an online metric (e.g.,

1

1. Introduction

time to success [27], which is calculated based on the feedback provided by the
users. The latter is often carried out using A/B tests [46, 47]. This is carried out by
applying each ranker to a different portion of the traffic and using a measure of the
performance of the rankers to compare them against each other.

Relative comparisons: Alternatively, one could directly compare each ranker to the
other rankers under consideration using interleaved comparisons [43]: This carried
out by merging the results produced by a pair of rankers and using the feedback
provided by the user on the resulting list of documents to decide which of the two
rankers was preferred to the other. These relative comparisons could then be used
to decide which ranker is preferred to the rest by the users of the system.

This thesis is concerned with the second, relative form of ranker evaluation because it
is more efficient at distinguishing between rankers of different quality [20]: for instance
interleaved comparisons take a fraction of the time required by A/B testing, but they
produce the same outcome [62]. The reason for this improved efficiency is that absolute
metrics calculate average performance across the whole population of queries and users
and so the estimated quantities tend to have rather large variance; an relative comparison,
on the other hand, takes place between the results produced by two rankers for a single
query and based on the feedback of a single user, so the comparison tends to be better
indicator of the relative quality of the two rankers. More precisely, the problem of online
ranker evaluation from relative feedback can be described as follows: given a finite set
of rankers, choose the best using only pairwise comparisons between the rankers under
consideration.

More generally, in the above description, we could replace the word “ranker” with any
object that yields itself to relative comparisons, such as images [76] or animations [11],
where the task might be a subjective one such as “find the photo with the happiest face.”
What makes relative comparisons more suitable for such a task is the fact that it is much
easier to decide which of two photos look happier than to assign a “happiness score” to
a single image. More importantly, when faced with such a task, a population of users is
more likely to express consistent preferences for one image over the other than it is for
them to assign similar scores to individual images.

1.1 Research Outline and Questions

Here, we describe the research questions addressed in this thesis, each of which is a
variation on the following question:

suppose we are given a finite set of objects (called “arms” for historical
reasons [59]) such that we can only compare two of them at a time; then,
can we find the best arm efficiently without imposing prohibitively restrictive
assumptions?

Examples of arms include ads, images and animations. We will be especially interested in
rankers and often read “ranker” for “arm.”

There are three components of the above question in italics that need to be made more
precise for the research questions to make sense:

2

1.1. Research Outline and Questions

1. What does it mean to be the best arm?

2. What constitutes a prohibitively restrictive assumption?

3. How is efficiency measured?

These questions are going to be addressed in greater detail in Chapter 2; however, in order
for the research questions to make sense, we provide here a brief and high level discussion
of how these questions were answered in the literature that preceded this thesis. The first
paper to investigate the question in italics was that of Yue et al. [74], where the authors
formulated the dueling bandit problem, whose goal is to find the best arm as quickly as
possible using only pairwise comparisons (cf. §2.1.2 for the precise definition). They
also proposed an algorithm, called Interleaved Filter (IF), which required the arms to
satisfy a total ordering assumption, which precluded any situation where the arms are in a
cyclical preference relationship, i.e., if we happen to have three arms A, B and C such
that A is preferred to B, B is preferred to C and C is preferred to A, then IF would not
be guaranteed to find the “best” arm. In this situation, the best arm is simply the arm at
the top of the hierarchy dictated by the total ordering assumption.

It turns out that cyclical preference relationships occur regularly in applications
[24, 78]. This is because even if each individual user interacting with the system is
rational in their choices, a population of users could easily be irrational, in the sense that
they might have cycles in their preferences. Moreover, even when comparing pairs of real
valued random variables, one can come across cyclical relationships, as pointed out by
Gardner [29].

Now, given that assuming a total ordering among the arms is not a safe assumption in
practice, the first natural question is: what is the most natural choice for the “best arm”?
To answer this, it helps to bear in mind the intended application, which is to find an option
that is preferred over the rest, so a natural solution is to adopt the notion of a Condorcet
winner from the field of Social Choice Theory [25]: a Condorcet winner is an arm that is
preferred to every other arm on average, i.e., given a comparison between the Condorcet
winner and any other arm, the former is more likely to win than the latter.

The next natural question is if one can devise an algorithm that is guaranteed to work
in the absence of a total ordering, but just assuming the existence of a Condorcet winner.
Moreover, can such an algorithm be as efficient as IF? This leads us to the issue of what we
mean by efficiency: Yue et al. [74] define a measure of the performance of a dueling bandit
algorithm, called cumulative regret, which is the sum of the “regret” or missed opportunity
incurred by the dueling bandit algorithm as it compares different pairs of arms in each
time-step to find the best one. More precisely, the regret accumulated by the algorithm
when it chooses to compare two arms is measured in terms of the probability with which
each of the two arms loses to the Condorcet winner in a one-on-one comparison. The
reader is referred to §2.1.2 for the precise definition, but for now let us point out that
lower cumulative regret means that the algorithm is performing better, so we prove upper
bounds on the cumulative regrets of our algorithms to show that they do not perform too
poorly, while a lower bound on cumulative regret means that no algorithm can perform
better than what the bound prescribes.

Using this measure of the quality of the algorithm, Yue et al. [74] provide a lower
bound on how low the cumulative regret of any dueling bandit algorithm has to be: given

3

1. Introduction

K arms and an experiment of length T ,1they prove that the cumulative regret of the
algorithm has to be higher than Ω(K log T). Also, they show that the cumulative regret
of IF is bounded by O(K log T), which matches the lower bound.

One can divide the results that existed in the literature before the beginning of the
research that gave rise to this thesis into two groups:

1. Algorithms with similar regret results as IF’s, i.e., O(K log T), but proven under
similarly or even more restrictive assumption, e.g., Beat the Mean (BTM) [73],
Doubler and MultiSBM [3].

2. Algorithms that were proven under more general assumptions but with regret
bounds of the form O(K2 log T), e.g., the different variants of Sensitivity Analysis
of VAriables for Generic Exploration (SAVAGE) [65].

Given the above dichotomy, one might wonder whether the same could be shown under the
more general Condorcet assumption, which is the purpose of our first research question:

RQ1 Can the lower bound for dueling bandits be met without the total ordering assump-
tion?

As we will see in Chapter 4, this question is answered in the affirmative using the first
algorithm proposed in this thesis, called Relative Upper Confidence Bound (RUCB). We
prove an upper bound on the cumulative regret of RUCB that takes the form O(K log T)
under the Condorcet assumption, which breaks the dichotomy that existed in the results
preceding the publication of RUCB.

Despite the improvements that RUCB introduced over existing work, it has a number
of flaws that the rest of this thesis attempts to address, as outlined in the research questions
that follow. Let us begin by listing these shortcomings:

Exploration. As discussed in greater detail in Chapter 4, RUCB tends to be rather
conservative when it comes to balancing exploration and exploitation. For instance,
RUCB refuses to compare an arm against itself unless it is very confident that the arm
is the Condorcet winner. Let us point out what this means in practice, using the ranker
evaluation example: suppose we are given K rankers to evaluate in an online fashion,
which means that rather than fixing a budget for our evaluation, by the end of which we
need to produce a winner, we keep carrying out interleaved comparisons hoping that the
best arm is chosen by the algorithm more and more frequently. In this scenario, if the
dueling bandit algorithm proposes the same arm to be compared against itself, we can
simply display the ranked list produced by the ranker proposed by the algorithm, without
conducting an interleaved comparison. If the algorithm required feedback in this case,
we could simply flip a fair coin and return the result to the algorithm, since we know
that each arm beats itself with probability 0.5. Therefore, the sooner the dueling bandit
algorithm starts proposing the Condorcet winner to be compared against itself, the better

1By “length of the experiment” we mean the number of pairwise comparisons carried out by the dueling
bandit algorithm. We think of each comparison as occurring in a single time-step, which corresponds to a full
iteration of the algorithm. Given this interpretation, we use the words “time-step” and “iteration” interchangeably
and use “length” or “duration” for the number of comparisons conducted by the algorithm.

4

1.1. Research Outline and Questions

its performance. We call such a behavior on the part of the algorithm as being more
exploitative, and it is a desirable property for a dueling bandit algorithm to have because
the sooner the algorithm begins to compare the Condorcet winner against itself, the sooner
it stops accumulating regret. Indeed, we use the cumulative regret of the algorithm as
evidence for how exploitative it is. This forms the motivation behind our second research
question:

RQ2 Can we devise an algorithm that is more exploitative than RUCB?

We answer this question in the affirmative by introducing Relative Confidence Sampling
(RCS) in Chapter 5 and carrying out an experimental comparison between RCS and
RUCB.

Dependence onK. Another difficulty with RUCB is that its regret bound takes the form
O(K2 +K log T): note that the additive term is quadratic in K. This is simply because
RUCB has to compare all pairs of arms before it can discover the Condorcet winner. This
means that RUCB would have difficulty scaling up to dueling bandit problems with larger
numbers of arms: note that for all practical purposes the log T term can be thought of
as a constant; suppose that we can run 1010 iterations of RUCB (which is a sequential
algorithm) per second and we run the algorithm for the life-time of the universe, then
log T would still be bounded by 1000, whereas K can easily be in the thousands, in which
case the K2 term would dominate the K log T term. So, for large-scale problems, it is
essential to eliminate the quadratic dependence on K. This is formulated in our next
research question:

RQ3 Can the quadratic dependence on the number of arms in the regret bound for RUCB
be eliminated?

We address this question by introducing an algorithm called mergeRUCB and prove that
its cumulative regret grows linearly in the number of arms rather than quadratically under
the Condorcet assumption.

Condorcet assumption. Finally, there remains the Condorcet assumption, which RUCB
requires from the dueling bandit problem under consideration for its proper functioning.
Even though experiments show that it is less likely for a Condorcet winner to fail to exist
than for the total ordering assumption to be violated, dueling bandit problems without
Condorcet winners do arise in practice [79]. This gives rise to the following research
question:

RQ4 Can the lower bound for the dueling bandit problem be met under practically general
assumptions?

We address this by introducing the Copeland Confidence Bound (CCB) algorithm and
proving a regret upper bound that resembles that of RUCB. The only restriction CCB
imposes upon the dueling bandit problem under consideration for this guarantee is that no
two arms should be completely tied with each other.

Even though the above requirement might seem stringent, let us examine what it
means in practice. For instance, in the ranker evaluation application, this means that

5

1. Introduction

for every pair of rankers under consideration, one of them should be preferred over the
other. Now, given that each of these rankers is in practice the outcome of the arduous
labour of a team of engineers whose goal is to beat the state of the art and that under
normal circumstances these teams would be in close contact with each other during the
development process, it is rather difficult to imagine two teams proposing exactly the same
ranker twice. Similarly, in other application domains, unless two images or animations
are identical, it is impossible for a population of users to be completely ambivalent as far
as preference for one item over the other is concerned.

Given these observations, we consider the requirement for the non-existence of ties to
pose little hindrance in practice and so we consider the result for CCB to be “practically
general.”

1.2 Main Contributions

In this section, we provide an overview of the main contributions of this thesis, which can
be divided into two groups:

Algorithmic contributions. The main algorithmic contribution of this thesis is devising
the CCB algorithm, which solves the dueling bandit problem under practically general
assumptions. Additionally, this thesis makes the following contributions:

• A simple algorithm (i.e., RUCB) that adapts a popular algorithm for the multi-armed
bandit (MAB) problem, called Upper Confidence Bound (UCB), to the dueling
bandit setting under the Condorcet assumption.

• A simple modification of RUCB (i.e., RCS) that combines the ideas of two well-
known MAB algorithms, namely UCB and Thompson sampling, and which allows
for a more efficient algorithm.

• A scalable version of RUCB (i.e., mergeRUCB) whose regret grows linearly in the
number of arms, rather than quadratically.

Theoretical contributions The main theoretical contribution of this thesis is providing
the first theoretical analysis of an algorithm that holds under practically general assump-
tions, but also its (temporally) asymptotic dependence on the number of arms is linear,
i.e., it takes the form O(K log T), where K is the number of arms and T is the number
of time-steps the algorithm has been run. Additionally, we would like to point out the
following contributions:

• A novel proof technique for a UCB-style algorithm that allows for high probability
regret bounds without the need to specify the probability of failure as a parameter
to the algorithm.

• The first theoretical analysis of a dueling bandit algorithm that has no quadratic
dependence on the number of arms and does not assume a total ordering on the
arms.

6

1.3. Thesis Overview

1.3 Thesis Overview

This section provides an overview of the remainder of this thesis. In Chapter 2, we give a
precise definition of the problem setting and provide the necessary background for the
reader to comprehend the results in the subsequent chapters.

In Chapter 3 we describe the experimental setup used in later chapters, which includes
datasets, metrics, and significance tests.

Chapters 4-7 provide the details of the four proposed algorithms, as well as theoretical
and experimental results comparing them against the state of the art at the time they were
proposed.

More precisely, we have the following break down:

• Chapter 4 presents the RUCB algorithm and its theoretical guarantees. It also
provides an experimental comparison between RUCB, Beat the Mean (BTM) and
Condorcet SAVAGE, using the ranker evaluation problem.

• Chapter 5 presents the RCS algorithm and an experimental comparison between
RCS, RUCB, Condorcet SAVAGE and BTM. Due to technical difficulties a theoret-
ical analysis of RCS remains elusive.

• Chapter 6 presents the mergeRUCB algorithm, which is the state of the art scalable
dueling bandit algorithm under the Condorcet assumption. We provide both a
theoretical analysis of mergeRUCB, as well as a comprehensive experimental
comparison.

• Chapter 7 discusses the CCB algorithm, which is the first practically general and
efficient algorithm with theoretical guarantees. We compare CCB against numerous
algorithms that preceded it, demonstrating its good performance in practice.

In Chapter 8, we summarize the main results obtained in the thesis and provide suggestions
for future work.

All research chapters build on background introduced in Chapter 2 and alll use the
experimental setup detailed in Chapter 3, even though several chapters introduce addi-
tional experimental details required to answer their specific research question. Assuming
knowledge of the background material provided in Chapter 2 and 3, every chapter is self-
contained. Despite this, the preferred reading order is the natural order, Chapter 4, 5, 6,
and 7.

1.4 Origins

The material in this thesis first appeared in the following publications:

• Chapter 4 is based on Masrour Zoghi, Shimon Whiteson, Remi Munos, and Maarten
de Rijke, Relative upper confidence bound for the k-armed dueling bandits problem,
which appeared in ICML, 2014 [78].

• Chapter 5 is based on Masrour Zoghi, Shimon Whiteson, Maarten de Rijke, and
Remi Munos, Relative confidence sampling for efficient on-line ranker evaluation,
which appeared in WSDM, 2014 [77].

7

1. Introduction

• Chapter 6 is based on Masrour Zoghi, Shimon Whiteson, and Maarten de Rijke,
MergeRUCB: A method for large-scale online ranker evaluation, which appeared in
WSDM, 2015 [80].

• Chapter 7 is based on Masrour Zoghi, Zohar Karnin, Shimon Whiteson, and Maarten
de Rijke, Copeland dueling bandits, which appeared in NIPS, 2015 [79].

Work on the thesis also benefitted from insights gained through research that led to the
following publications:

• Miroslav Dudı́k, Katja Hofmann, Robert E. Schapire, Aleksandrs Slivkins, and
Masrour Zoghi, Contextual dueling bandits, which appeared in Conference on
Learning Theory (COLT), 2015 [24].

• Ziyu Wang, Masrour Zoghi, Frank Hutter, David Matheson, and Nando de Freitas,
Bayesian optimization in high dimensions via random embeddings, which appeared
in IJCAI, 2013 [67].

• Masrour Zoghi, Tomáš Tunys, Lihong Li, Damien Jose, Junyan Chen, Chun Ming
Chin, and Maarten de Rijke, Click-based hot fixes for underperforming torso queries,
which appeared in SIGIR, 2016 [81].

• Akshay Balsubramani, Zohar Karnin, Robert Schapire, and Masrour Zoghi, Instance-
dependent regret bounds for dueling bandits, which appeared in Conference on
Learning Theory (COLT), 2016 [9].

8

2
Background

This chapter provides the reader with the necessary background to read the following
chapters. In the following two sections, we provide the precise problem statement and
discuss the related work.

2.1 Problem Setting

The problem addressed in this thesis is the K-armed dueling bandit problem [75] which
is a modification of the K-armed bandit problem [64]. We begin by discussing the latter
in the following subsection.

2.1.1 The K-armed bandit problem
The K-armed bandit problem (also called multi-armed bandits or MAB for short) is speci-
fied by K real-valued random variables X1, . . . , XK (called “arms”), whose distributions
are unknown to the us, but from which we can draw samples. Loosely speaking, the
goal of the problem is identify the random variable with the highest mean as quickly as
possible. More precisely, for each i, let us denote the mean of Xi by µi and every time a
sample is drawn from Xi, we define the regret incurred by this action to be

r = max
k

µk − µi.

To lessen the notational burden, we will assume in the following that maxk µk = µ1: in
other words, the first arm is the one with the highest mean and so we can write regret as
r = µ1 − µi. However, the algorithm solving the problem is assumed not to be aware of
the fact arm 1 is the best arm.

Now, let us consider the following iterative process: in each time-step, we get to select
one of the arms and observe the random sample from the corresponding random variable.
Note that we do not observe regret because we do not know which arm has the highest
mean. Our goal then is to minimize our cumulative regret over time, defined to be the sum
of the regret we incurred by our choice of arm at each time-step. More precisely, letting rt
be the regret incurred at time t, then cumulative regret after T time-steps is defined to be

RT =

T∑

t=1

rt =

T∑

t=1

(µ1 − µit) , (2.1)

9

2. Background

where it is the arm chosen at time t.
A simple, yet effective algorithm for solving the K-armed bandit problem is the Upper

Confidence Bound (UCB) algorithm, which we describe in the following, since the key
idea behind it is heavily used by the algorithms discussed in this thesis. The pseudo-code
for UCB is provided in Algorithm 1: the algorithm keeps track of the number of times
each arm has been pulled (i.e., N on Line 2) and the sum of the values returned by each
arm (i.e., W on Line 1) and uses these numbers to estimate the mean of each arm (i.e.,
W/N on Line 4).

Algorithm 1 Upper Confidence Bound (UCB)
Require: K arms a1, . . . , aK corresponding to K independent real-valued random vari-

ables and α > 1
2 ,

1: W = [wi] = 0K // 1D array of the sum of the values returned by each arm
2: N = [ni] = 0K // 1D array of the number of times each arm has been pulled
3: for t = 1, 2, . . . do
4: U(t) = [ui(t)] = W

N +
√

α ln t
N // The UCB for each arm: all operations are

element-wise; x0 = 1 for any x.
5: ı̂ = arg maxi ui(t), with ties broken randomly.
6: Pull arm aı̂, increment nı̂ and add the value returned by aı̂ to wı̂.

At this point, the first idea that might come to mind is to use these estimates to decide
which arm to play, however the danger of such a simple approach is that if by sheer bad
luck one were to underestimate the mean of the best arm as being below the true mean
of the second best arm, then one might never be able to dig oneself out of this “false
optimum.” The purpose of the second summand in Line 4 of Algorithm 1 is to prevent
such a catastrophic outcome from occurring. More precisely, the term

√
α ln t/N gives

each arm an optimistic boost that has two important properties: first of all, the boost grows
with time, so even if UCB falls in the trap of mistaking a suboptimal arm for the winner,
we know that the UCB of the best arm will keep growing and eventually overtake the
UCB of the impostor. The second important property of

√
α ln t/N is that because the

denominator under the square root is equal to the number of times each arm has been
pulled, the optimistic boost is larger for arms that have been pulled less frequently. In
other words, if we are less confident about our estimate of the mean of an arm we give it a
bigger chance to be picked. So, each arm is pulled “enough” times for us to be relatively
certain that we are not mistakenly disqualifying a good arm.

Speaking in more precise terms, the fact that renders the ui useful is that we can show
the following key intermediate result:

li(t) ≤ µi ≤ ui(t) for large enough t with high probability, (2.2)

where µi is the mean of arm ai as before, and ui(t) is the UCB for the same arm after t
time-steps and we define

li(t) =
wi(t)

ni(t)
−
√
α ln t

ni(t)
.

To the reader familiar with concentration inequalities from probability theory [68], this
might seem, upon first inspection, like a direct application of the Chernoff-Hoeffding

10

2.1. Problem Setting

bound [34]. However, it turns out to be more complicated due to the fact that our estimates
of the µi are not unbiased. We will discuss these subtleties when we prove a similar result
in the dueling bandit context in Chapter 4.

For now, let us note that if one were to assume the veracity of inequality (2.2), then
it is easy to see why after T time-steps each suboptimal arm is pulled at most O(log T)
many times: indeed, assume as before that µ1 = maxi µi and denote the sub-optimality
gap of each arm by

∆i = µ1 − µi.
Now, for each arm ai with strictly positive ∆i, define Ti be the last time until time T
when arm ai was pulled, and note that the following facts hold at time Ti:

µ1 ≤ u1(Ti) by (2.2)
u1(Ti) ≤ ui(Ti) by Line 5 of Algorithm 1 and that ai was chosen by UCB at time Ti,

which means that together with inequality (2.2) applied to arm ai at time Ti we have

li(Ti) ≤ µi < µ1 ≤ ui(Ti).

Since the gap between µi and µ1 is equal to ∆i, we can conclude that

∆i = µ1 − µi ≤ ui(Ti)− li(Ti) = 2

√
α lnTi

ni(Ti)− 1
≤ 2

√
α lnT

ni(T)− 1
,

where the last inequality is due to the fact that time Ti was the last time before T when
ai was pulled and so ni(T) = ni(Ti) and ln is a monotonic function, so lnTi ≤ lnT .
Now, we can use the above inequality to bound ni(t) by an expression in terms of ∆i as
follows:

ni(t) ≤
4α lnT

∆2
i

+ 1.

This in turn allows us to bound the regret accumulated by UCB with the important caveat
that we have not specified how large t needs to be for inequality (2.2) to hold: this is
pinned down in Chapter 4 and specifies the non-asymptotic (in T) component of the regret
bound.

2.1.2 The K-armed dueling bandit problem
The K-armed dueling bandit problem [75] is a variation on the K-armed bandit problem,
where instead of pulling a single arm at each time-step, we choose a pair of arms (ai, aj)
to be compared against each other and receive either ai as the better choice with some
unknown probability pij or aj with probability pji = 1− pij . We define the preference
matrix P = [pij], whose ij entry is equal to pij . Note that in the dueling bandit setting
the quality of each arm is only defined in relation to other arms, so unlike the K-armed
bandit problem, there are no absolute quantities µi to dictate which arm is the best. Indeed,
deciding what constitutes a winner in this setting is a problem that has kept social choice
theorists occupied for decades [61].

We address the problem of defining the best arm in the dueling bandit setting in two
ways:

11

2. Background

• by assuming the existence of an arm that on average beats all other arms, the so-
called Condorcet winner [65]: formally, the Codorcet winner is an arm ac such that
for all j 6= c we have pcj > 0.5;

• by using the Copeland winner [65], which is guaranteed to exist: a Copeland winner
is defined with the highest Copeland score, which is the number of other arms that
a given arm beats; more precisely, we define

Cpld(ai) = #{j | pij > 0.5},

and arm ac is said to be a Copeland winner is Cpld(ac) ≥ Cpld(ai) for all i.

Note that the Copeland winner is a generalization of the Condorcet winner, since in
situations where the Condorcet winner exists, it is the unique Copeland winner, since the
Condorcet winner by definition beats all other arms.

Moreover, we define the following two notions of regret:

Condorcet: If we know a priori that the Condorcet winner exists, we define the regret
incurred by comparing a pair of arms ai and aj to be

r =
p1i + p1j − 1

2
, (2.3)

where arm a1 is assumed to be the Condorcet winner as before. Note that we
accumulate zero regret from the comparison if and only if ai and aj are both the
Condorcet winner, otherwise the regret is strictly positive since by assumption we
have p1i > 0.5 for all i 6= 1.

Copeland: If the goal is to find a Copeland winner and the existence of a Condorcet
winner is not guaranteed, we define the regret incurred by comparing arms ai and
aj to be

r =
2Cpld(a1)− Cpld(ai)− Cpld(aj)

K
, (2.4)

where arm a1 is assumed to be a Copeland winner.

Moreover, in either case, we define cumulative regret in a similar fashion as with Equation
(2.1):

RT =

T∑

t=1

rt (2.5)

where rt is the regret incurred as a result of the comparison carried out in time-step t.
A few general comments are in order at this point. Let us first point out that from a

preference learning point of view the Condorcet winner is a desirable notion of a winner
because, by its very definition, the Condorcet winner is preferred to all other arms by
the users whose preferences we are trying to accommodate. So, if the Condorcet winner
exists, our dueling bandit algorithm should converge to it. Indeed, an important property
of the Copeland winner is that in the presence of a Condorcet winner, the two definitions
coincide. However, let us clarify at this point that we are not claiming that the Copeland
winner is the best generalization of the Condorcet winner one can envisage. Indeed, this

12

2.1. Problem Setting

question is a very difficult one to answer in general because one often has to deal with
multiple conflicting criteria for what constitutes a good notion of a winner, which is
why there is a proliferation of such notions in social choice theory [61] without a clear
contender for the best answer. We have chosen the Copeland winner here mostly because
of its precedence in the dueling bandit literature [14].

Let us also take a few minutes to explain by way of an example some difficulties that
one needs to overcome when attempting to solve a dueling bandit problem. Consider the
following preference matrix:

P =

.5 .51 .51 .51
.49 .5 1 .4
.49 0 .5 .75
.49 .6 .25 .5

 .

Note that the first arm (corresponding to the first row and column) is the Condorcet winner
even though it beats the other arms by very thin margins, while the other three arms
(corresponding to rows and columns 2–4) are in a cyclical relationship, with each of them
beating one of the the other two, while losing to the third one. Moreover, note that the
second arm is what is known in the literature as the Borda winner, i.e. an arm that beats
the “average arm” by the widest margin [65]. More precisely, ab is a Borda winner if we
have

b = arg maxi

K∑

k=1

pik.

Indeed, one of the main challenges when designing a dueling bandit algorithm is to
make sure the algorithm does not fall into the trap of mistaking the Borda winner for the
Condorcet winner and prematurely start comparing the Borda winner against itself. This
is because one of the major difficulties with the dueling bandit problem is that it is much
more difficult to recover from such a mistake than it is when solving the multi-armed
bandit (MAB) problem: when dealing with an MAB, pulling an arm always gives us
a feedback, so if we mistake an inferior arm for the optimal one and keep pulling it,
we get better and better estimates of its mean; on the other hand, in the dueling bandit
setting, comparing an arm against itself yields no additional information because we know
in advance that each arm is tied with itself. Given this, if our algorithm were to stop
exploration and to only compare the Borda winner against itself, it would never realize
its own folly and so would never recover from this “local optimum,” hence accumulating
linear regret. So, the urge to start exploiting what we believe to be the best arm should be
carefully balanced with the need to perform adequate exploration.

The above preference matrix illustrates another reason for why the dueling bandit
problem is more challenging than the regular bandit problem: in the case of the latter,
even though we might not know which arm is the best one, we can estimate the regret of
each arm because we can estimate the means of all of the arms: for instance, if we know
with high probability the mean reward of each arm with an accuracy of ε, then we can
estimate the regret of each arm with an accuracy of 2ε. In the case of the dueling bandit
problem, however, there is a discontinuity in the definition of regret that prevents us from
getting a similar estimate of the regret of each arm. For instance, in the above example, if
we know the entries of the matrix with an accuracy that is greater than 0.1, then both the

13

2. Background

first arm and the second one could be the Condorcet winner, but that would mean that the
regret associated with playing the third arm might be either 0.01 or 0.5, which is not a
very good estimate by any stretch of imagination.

Finally, another property of the dueling bandit problem defined by the above preference
matrix is that each suboptimal arm is beaten by the widest margin by an arm other than
the Condorcet winner, so if the algorithm were to adopt a “hill climbing” strategy [71],
it would forever cycle among the sub-optimal arms. By “hill climbing” in this setting
we mean the following scheme: we can start by choosing a random arm and try to find
another arm that beats it by the widest margin and replace the former by the latter and
repeat this process.

2.2 Related Work

In this section, we discuss other algorithms that have appeared in the literature for the
K-armed dueling bandit problem.

2.2.1 IF and BTM

The first two methods proposed for the K-armed dueling bandit problem are Interleaved
Filter (IF) [75] and Beat the Mean (BTM) [73], both of which were designed for a
finite-horizon scenario. These methods work under the following restrictions:

1. a total ordering of the arms, i.e. we can relabel the arms as a1, . . . , aK such that
pij > 0.5 for all i < j.

2. Stochastic Triangle Inequality (STI): for any pair (j, k), with 1 < j < k, the
following condition is satisfied:

∆1k ≤ ∆1j + ∆jk,

where ∆ij := pij − 0.5.

3. IF and BTM require two slightly different conditions:

IF: Strong Stochastic Transitivity (SST): for any triple (i, j, k), with i < j < k,
the following condition is satisfied:

∆ik ≥ max{∆ij ,∆jk}.

BTM: Relaxed Stochastic Transitivity (RST): there exists a number γ ≥ 1 such
that for all pairs (j, k) with 1 < j < k, we have

γ∆1k ≥ max{∆1j ,∆jk}.

In the case of BTM, the constant γ, which measures the degree to which SST fails to hold,
needs to be passed to the algorithm explicitly: the higher the γ, the more challenging the

14

2.2. Related Work

problem, with SST holding when γ = 1. Given these assumptions, the following regret
bounds have been proven for IF [75] and BTM [73]. For large T , we have

E
[
RIFT
T

]
≤ CK log T

∆min
, and

RBTMT
T ≤ C ′ γ

7K log T

∆min
with high probability,

where RT is cumulative regret in the Condorcet setting, defined by Equations (2.5) and
(2.3). Moreover, IFT means that IF is run with the exploration horizon set to T and
similarly for BTMT ; ∆min is the smallest gap ∆1j := p1j − 0.5, assuming that a1 is the
best arm; and C and C

′
are universal constants that do not depend on the specific dueling

bandit problem.
The first bound holds only when γ = 1 but matches the lower bound in [75, Theorem

2]. The second bound holds for γ ≥ 1 and is sharp when γ = 1. This lower bound
was proven for certain instances of the K-armed dueling bandit problem that satisfy
∆1i = ∆1j for all i, j 6= 1.

On the one hand, BTM permits a broader class of K-armed dueling bandit problems
than IF; however, it requires γ to be explicitly passed to it as a parameter, which poses
substantial difficulties in practice. If γ is underestimated, the algorithm can in certain
circumstances be misled with high probability into choosing the Borda winner instead
of the Condorcet winner. On the other hand, though overestimating γ does not cause the
algorithm to choose the wrong arm, it nonetheless results in a severe penalty, since it
makes the algorithm much more exploratory, yielding the γ7 term in the upper bound on
the cumulative regret.

We will now give a description of IF and BTM in order to explain the key ideas that
gave rise to these algorithms as well as their weaknesses.

IF: As mentioned before, IF assumes the existence of a total ordering of the arms, in the
sense that if arm ai is preferred to arm aj and arm aj is preferred to arm ak, then
we can conclude that ai is preferred to ak. Given this rather strong assumption on
the dueling bandit problem at hand, a very sensible idea would be to do a form of
“hill climbing.” More specifically, IF begins by choosing a random arm â as the
point of reference and compares it against the other arms until we realize with high
probability that â loses to another arm, at which point the algorithm pivots to the
latter arm as the point of reference and starts comparing it against the remaining
arms. Additionally, the algorithm keeps track of the arms that are beaten by â and
eliminates them from consideration, hence reducing the number of comparisons
needed to find the best arm.

Let us point out that as long as we assume the existence of a Condorcet winner,
this algorithm will eventually converge to it: this is because every arm loses to the
Condorcet winner and so they will be eliminated eventually through this process.
However, the main flaw of IF is that it can stumble upon an arm â that loses to all
other arms by a very tiny margin, while the remaining arms lose to the Condorcet
winner by a wide margin, so that the regret accumulated by comparing â against
the other arms is large. Recall that the regret incurred by a comparison between

15

2. Background

a pair of arms is determined by the extent to which each of them loses to the
Condorcet winner, so even if â loses to the Condorcet winner by a small margin,
comparing it against an arm other than the Condorcet winner can be costly. Indeed,
the main purpose of the Strong Stochastic Transitivity assumption is to rule out
such a scenario, hence obtaining a near optimal regret bound for IF.

BTM: In order to explain the idea behind BTM, let us begin by defining the following
quantity: given a K ×K preference matrix P = [pij], define the Borda score of
arm ai as the quantity 1

K

∑
j pij , which is the probability with which arm ai beats

a uniformly randomly chosen arm aj . Now, the key observations behind BTM are
the following:

1. First of all, the Borda score of the Condorcet winner is always greater than or
equal to 0.5 because by definition the Condorcet winner beats all other arms
with probability greater than 0.5, so the Condorcet winner is not a “Borda
loser” in the sense that it does not lose against the “average arm” and so
as long as we eliminate Borda losers, the Condorcet winner would not be
eliminated.

2. Secondly, the other important property of the Condorcet winner of a dueling
bandit problem is that it remains the Condorcet winner of any dueling bandit
problem obtained by removing any arm other than the Condorcet winner: this
is simply because in the smaller dueling bandit problem the Condorcet winner
of the larger problem still wins against every other arm with probability greater
than 0.5.

Putting these two observations together, we see that as long as we keep eliminating
Borda losers, we will eventually be left with nothing but the Condorcet winner by
this process of elimination. This is precisely how BTM operates.

2.2.2 SAVAGE
Sensitivity Analysis of VAriables for Generic Exploration (SAVAGE) [65] is an algorithm
that outperforms both IF and BTM by a wide margin when the number of arms is of
moderate size. Moreover, one version of SAVAGE, called Condorcet SAVAGE, makes the
Condorcet assumption and has the best theoretical results among the algorithms studied
by Urvoy et al. [65, Theorem 3]. However, the regret bounds provided for Condorcet
SAVAGE are of the form O(K2 log T), and so are not as tight as those of IF, BTM or our
algorithms, presented in subsequent chapters.

Here, we provide a brief description of the SAVAGE family of algorithms, at the core
of which is a general scheme that can be applied to a broad class of bandit problems to
decide which arms can be safely eliminated from consideration, given a probability δ
with which the algorithm is allowed to fail. Rather than speaking in general terms, we
will describe two particular instances of this scheme that are relevant to the discussion
here, namely Condorcet SAVAGE and Copeland SAVAGE. Both variants of the algorithm
compare pairs of arms in a round robin fashion and drop pairs of arms from consideration
as soon as it transpires that it is safe to do so, according to the following rules in each
case.

16

2.2. Related Work

Condorcet SAVAGE: If we know that the dueling bandit problem has a Condorcet
winner, then any arm that loses with high probability to another arm cannot be a
Condorcet winner and so can be eliminated from further consideration. Proceeding
in this fashion, we will eventually be left with nothing but the Condorcet winner,
which is precisely how Condorcet SAVAGE finds the Condorcet winner.

Copeland SAVAGE: If the goal is to find a Copeland winner, then we can remove an arm
from consideration if the most optimistic estimate of its Copeland score is lower
than the most pessimistic Copeland score of another arm. In this way, Copeland
SAVAGE eliminates arms until all that is left is a collection of Copeland winners.
However, in addition to this, Copeland SAVAGE utilizes the following strategy
to avoid unnecessary comparisons: for any pair of arms, one of whom beats the
other with high probability, we can discontinue comparisons between them, since
carrying out more comparisons between such pairs of arms is unlikely to change
the Copeland scores of either arms.

Let us point out that the regret bounds for all of IF, BTM and SAVAGE bound only RT ,
where T is the predetermined horizon of the experiment. In particular, the horizon T
needs to be passed to the algorithm in advance. By contrast, in subsequent chapters, we
bound the cumulative regret of our proposed algorithms for all time-steps.

2.2.3 Doubler

Doubler, which was proposed by Ailon et al [3], is a method for converting K-armed
bandit algorithms into dueling bandit algorithms, under the assumption that the preferences
among the arms arise from underlying utilities associated with the arms. More specifically,
there are K real numbers {u1, . . . , uK}, each quantifying the intrinsic quality of the
corresponding arm, together with a link function that takes as input a pair of utilities and
outputs the probability that one arm beats the other, satisfying the property that the arm
with the higher utility beats the one with the lower utility with probability greater than 0.5.
This is the so-called utility-based dueling bandit problem [3].

Given this setup, Doubler employs a hill climbing strategy to converge to the best arm,
i.e., the one with the highest utility, which is also the Condorcet winner. More precisely,
Doubler proceeds in epochs of increasing size, in each of which the left arm is chosen in
an i.i.d. manner from the distribution of arms that were chosen for the right arm in the last
epoch, while the right arm is chosen using a K-armed bandit algorithm (e.g., UCB); the
feedback received by the K-armed bandit algorithm is the wins and losses the right arm
encounters when compared against the left arm. In other words, the goal of the right arm
is to beat the distribution from which the left arm is sampled from. For a more detailed
explanation of the algorithm, the interested reader is referred to [3].

Since the utility assumption induces a total ordering on the arms, and in each epoch the
K-armed bandit algorithm tries to do better than its old self in the last epoch, the algorithm
eventually converges to the best arm. Indeed, without the total ordering assumption and in
the presence of strong cyclical relationships among the arms, Doubler could very easily
get stuck in a loop and never converge to the Condorcet winner.

17

2. Background

2.2.4 Sparring

Sparring, as proposed by [3], is another, more elegant, method for converting K-armed
bandit algorithms into dueling bandit ones, although unlike Doubler there are no known
optimal theoretical analyses of Sparring. The key insight is the realization that the dueling
bandit problem is a special example of a so-called symmetric game [55]. More precisely,
we can think of the two arms being chosen to be compared against each other as two
opponents engaged in a contest governed by the underlying preference matrix, with the
winner of the comparison gaining a reward and the loser incurring a loss. This is related
to the so-called adversarial bandit problem [7], where in each time-step an adversary
chooses the reward of each arm and the goal of the algorithm is to choose arms in such a
way that the reward it accumulates is not too much smaller than the reward that it would
have accumulated had it chosen any single arm in all of the time-steps. There is a rather
extensive body of work on adversarial bandits, spanning multiples decades: the reader is
referred to Bubeck and Cesa-Bianchi [12] for a comprehensive survey.

Now, given an algorithm, A, that solves the adversarial bandit problem, we can use it
to solve the dueling bandit problem in the following fashion, called Sparring-A: initiate a
“row” copy of the algorithm, calledAr, and a “column” copy, calledAc; in each time-step,
Ar proposes a “row” arm, which we denote by ar, and Ac proposes a “column” arm,
which we call ac, and the two arms are compared against each other, with the probability
of the row arm ar beating the column arms ac being prc; once the comparison has been
carried out, the algorithm that proposed the arm that won the comparison receives a reward
of 1 and the other side receives a reward of 0. In this setup, each copy of the algorithm
plays the role of an adversary for the other, and so if algorithm A does well against any
arbitrary adversary, then both algorithms will converge to the Condorcet winner (if it
exists) because the Condorcet winner loses to no other arm on average and so the player
who consistently chooses the Condorcet winner will incur the smallest loss against an
omniscient adversary, who knows the preference matrix P precisely; given that, it would
also incur small loss against a non-omniscient adversary. In the absence of a Condorcet
winner, both players Ar and Ac will converge to what is called the von Neumann winner
[24].

The astute reader might notice a discrepancy between the last two paragraphs: indeed,
the theory of adversarial bandits guarantees that if we make use of an algorithm A that is
designed to function in the adversarial setting, then Sparring-A will incur small regret,
however the regret guarantees obtained in this way take the form O(

√
T), whereas the

regret bounds proven for all of the algorithms discussed so far take the form O(log T).
What is intriguing, as far as the Sparring style of algorithms are concerned, is that extensive
experimentation by various researchers has demonstrated that settingA to be an algorithm
like UCB, produces results that attain logarithmic regret rate [3]. Let us point out that UCB
is emphatically not guaranteed to work against an omniscient adversary because UCB is
deterministic and so the adversary can simply modify the rewards it assigned to various
arms such that the arm that UCB is going to choose in the next round is suboptimal.
Therefore, the theory of adversarial bandits does not provide us with any guarantees
regarding the performance of Sparring-UCB and indeed, as of the writing of this thesis,
no such guarantees have been proven and it remains an interesting, albeit non-trivial, open
problem.

18

2.2. Related Work

Figure 2.1: A comparison of the assumptions and the results associated with the algorithms
discussed so far. In the above description, “U.B.” and “L.B.” are short for “regret upper-
bound” and “regret lower-bound.”

2.2.5 Assumptions vs. Results

Let us pause for a moment to insert the following interjection: the algorithms discussed in
Sections 2.2.1–2.2.4 were proposed and analyzed before the work presented in this thesis.
Furthermore, these results roughly fall into two categories: those with more restrictive
assumptions and stronger bounds and those with more general assumptions and weaker
bounds. In fact, a more complete picture of the restrictions and the results is provided in
Figure 2.1.

Indeed, RUCB [78] and CCB [79], to be presented in Chapters 4 and 7, respectively
were the first algorithms to break this dichotomy in the Condorcet and Copeland setting,
respectively, in the sense that they are both applicable to a large class of K-armed dueling
bandit problems and they come with theoretical guarantees of the formO(K2 +K log T).
Furthermore, mergeRUCB, to be presented in Chapter 6, improves upon this in the
Condorcet setting by eradicating the quadratic dependence on the number of arm, K, in
the additive constant.

In the Copeland setting, the solution was provided by Zohar Karnin using the Scalable
Copeland Bandit (SCB) algorithm [79], although SCB has the drawback that it has
poor dependence on the gaps of the dueling bandit problem, so the problem of devising
a practical algorithm for the Copeland dueling bandit problem that has no quadratic
dependence on the number of arms remains an open problem. See Chapter 7.

2.2.6 RMED

More recently, the Relative Minimum Empirical Divergence (RMED) algorithm has been
proposed by Komiyama et al. [49] as an algorithm with an optimal asymptotic regret
bound, which improves upon the results for RUCB. The authors prove a lower bound on

19

2. Background

the cumulative regret of any dueling bandit algorithm, which takes the form

RT ≥
K∑

k=2

min
{j|pij<.5}

(∆1i + ∆1j) log T

2d(pij , .5)
,

where d(p, q) := p log p
q + (1 − q) log 1−p

1−q . The upper bound for RMED matches this
lower bound asymptotically. Indeed, the algorithm is directly inspired by the lower bound,
in the sense that the main quantity that RMED keeps track of measures how far an arm is
from RMED’s estimate of its optimal number of pulls. Furthermore, despite its asymptotic
optimality, the regret bound for RMED has a quadratic dependence on the number of
arms. As discussed in Chapter 6, the mergeRUCB algorithm remedies this shortcoming.

2.2.7 Other solution concepts
In addition to the above, bounds have been proven for other notions of winners, including
Borda [15, 16, 65], Random Walk [15, 54], and very recently von Neumann [24]. These
bounds either rely on restrictive assumptions to obtain a linear dependence on K, the
number of arms, or are more broadly applicable, at the expense of a quadratic dependence
on K.

A related setting is that of partial monitoring games [56], in which an agent chooses
at each round an action from a finite set and receives a reward based on an unknown
function chosen by an oblivious process. The observed information is a known function
of the chosen action and the current oblivious process. One extreme setting in which the
observed information equals the reward captures the multi-armed bandit problem. In the
other extreme, the observed information equals the entire vector of rewards (for all actions),
giving rise to the so-called full information game. Our setting is a strict case of partial
monitoring as it falls in neither extremes. While a dueling bandit problem can be modeled
as a partial monitoring problem, doing so yields weaker results. In particular, most partial
monitoring results consider either non-stochastic settings or present problem-independent
results. In both cases the regret is lower bounded by

√
T , which is inapplicable to our

setting (see [5] for a characterization of partial monitoring problems). Bartók et al. [10]
do present problem-dependent bounds from which a logarithmic (in T) bound can be
deduced for the dueling bandit problem. However, the dependence on the number of arms
K is quadratic, whereas our work achieves a linear dependence in K.

Now that we have presented related work for the K-armed dueling bandit problem,
we are ready to present our own solutions. Before doing so, in the next chapter we first
present the experimental setup that we will be using in the remainder of the thesis.

20

3
Experimental Setup

In our experiments, we follow Hofmann [35] and use a setup built on three large-scale
learning to rank datasets: the Microsoft Learning to Rank (MSLR), the Yahoo! Learning
to Rank Challenge (YLR) and Yandex datasets. The Yahoo! dataset consists of two
distinct subsets, Set 1 and Set 2, both of which we use in our experiments. These datasets
consist of query-document pairs, each represented by a query id and a feature vector,
whose coordinates correspond to features such as BM25, TF.IDF, etc. Additionally, the
dataset specifies the relevance of the document to the query using the numbers 0, 1, 2, 3
and 4, where 0 indicates a completely irrelevant document and 4 a highly relevant one.
The numerical specifics of these datasets are provided in Table 3.1.

Table 3.1: The specifics of the datasets used.

Datasets Queries URLs Features Reference

MSLR-WEB30K 31,531 3,771,125 136 [52]
Yandex 9,124 97,290 245 [70]
YLR Set 1 19,944 473,134 519 [18]
YLR Set 2 6,330 172,870 596 [18]

Using these datasets, we create a finite set of rankers, each of which corresponds to a
ranking feature provided in the dataset, e.g., PageRank or BM25, and from this set we
choose a subset to test our algorithms on. The ranker evaluation task thus corresponds to
determining which single feature constitutes the “best” ranker: in the Condorcet case, this
corresponds to a ranker that is preferred to all other rankers across the query population,
while in the absence of a Condorcet winner, the goal is to find a ranker that is preferred to
the highest number of other rankers, i.e., the Copeland winner.

To compare a pair of rankers, we use Probabilistic Interleave (PI) [36], though any
other interleaved comparison method could be used instead. In broad strokes, the idea
of interleaved comparisons is to use the feedback obtained from the users’ interaction
with the system to compare two rankers using the following procedure: given a query,
a set of documents to be ranked, and two rankers r1 and r2, apply each ranker to the
document set to obtain two lists of documents l1 and l2 and then merge these two lists to
obtained an interleaved list and present this list to the user and use a “credit assignment”
method [57] for deciding which ranker it was whose results the user found more relevant.

21

3. Experimental Setup

Numerous methods for carrying out interleaved comparisons have been proposed in
the literature, including Balanced Interleave [42, 43], Team-Draft Interleave [57] and
Document Constraints [33]. However, as shown in [37], Probabilistic Interleave has
a number of desirable properties that make it preferable to the remaining methods for
theoretical reasons; however, these advantages are obtained through the introduction of a
larger dose of randomness in the interleaving process, which might make PI less suitable
in practice.

The astute reader would have noticed while reading the last paragraph that one step in
the process of interleaved comparison involves obtaining feedback from a user, which we
do not have access to in the academic environment in which this thesis was written. To
remedy this issue, we model the user’s click behavior on the resulting interleaved lists
by employing a probabilistic user model [22, 36] that uses as input the manual labels
(classifying documents as relevant or not for given queries) provided with each learning to
rank dataset. Queries are sampled randomly and clicks are generated probabilistically by
conditioning on these assessments using a user model that resembles the behavior of an
actual user [30, 31]. This approach follows an experimental paradigm that has previously
been used for assessing the performance of rankers [33, 36–38]. Indeed, by now, there is
an extensive literature on such click models [21].

We use cumulative regret as our main metric for evaluating the performance of our
algorithms. Cumulative regret is the total amount of regret encountered by the algorithm
until a given time, where the regret incurred by comparing arms ai and aj is defined as
follows depending on whether or not there exists a Condorcet winner:

r =

{ ∆i+∆j

2 if there exists a Condorcet winner
2Cpld(a1)−Cpld(ai)−Cpld(aj)

K−1 if arm a1 is a Copeland winner, but not Condorcet.

Here, the “gap” ∆k for an arm ak is defined to be p1k − .5, while Cpld(ak) denotes its
Copeland score (i.e., the number of arms to which ak is preferred).

Note that a ranker evaluation algorithm accumulates regret whenever it makes a
suboptimal choice, meaning that it does not interleave the best ranker with itself. The
more suboptimal the rankers in the interleaved comparisons, the higher is the accumulated
regret. Thus, according to the cumulative regret minimization objective, the goal of the
ranker evaluation algorithm is to increase the frequency with which it chooses the best
ranker as soon as possible; doing so results in lower regret curves: the flatter the curve,
the lower the frequency of picking poor rankers.

22

4
Relative Upper Confidence Bound

In this chapter, we will describe our first propsed algorithm, called Relative Upper Con-
fidence Bounds (RUCB) [78], which adapts a well-known multi-armed bandit algorithm
called Upper Confidence Bounds (UCB) algorithm [8] to the dueling bandit setting. The
sections of this chapter are organized as follows: in §4.1, we provide the pseudocode for
the algorithm and offer some intuition for its sensibility; in §4.2, we state our theoretical
results, bounding the regret accumulated by RUCB; in §4.2, we give detailed proofs of
the results stated in the previous section; in §4.4, we provide some experimental results
demonstrating the effectiveness of the algorithm; and finally §4.5 contains a summary of
the findings discussed in this chapter.

4.1 The Algorithm

We now introduce Relative Upper Confidence Bound (RUCB), which is applicable
to any K-armed dueling bandit problem with a Condorcet winner, as defined in Section
2.1.2. In each time-step, RUCB, shown in Algorithm 2, goes through the following three
stages:

I. RUCB puts all arms in a pool of potential champions. Then, it compares each arm ai
against all other arms optimistically: for all i 6= j, it computes the upper bound
uij(t) = µij(t) + cij(t), where µij(t) is the frequentist estimate of pij at time t
and cij(t) is an optimism bonus that increases with t and decreases with the number
of comparisons between i and j (Line 4). If uij < 1

2 for any j, then ai is removed
from the pool: the set of remaining arms is called C. If we are left with a single
potential champion at the end of this process, we let ac be that arm and put it in the
set B of the hypothesized best arm (Line 9). Note that B is always either empty or
contains one arm; moreover, an arm is demoted from its status as the hypothesized
best arm as soon as it optimistically loses to another arm (Line 8). Next, from the
remaining potential champions, a champion arm ac is chosen in one of two ways:
if B is empty, we sample an arm from C uniformly randomly; if B is non-empty,
the probability of picking the arm in B is set to 1

2 and the remaining arms are given
equal probability of being chosen (Line 11).

II. Regular UCB is performed using ac as a benchmark (Line 13), i.e., UCB is performed
on the set of arms a1c . . . aKc. Specifically, we select the arm d = arg maxj ujc.

23

4. Relative Upper Confidence Bound

Algorithm 2 Relative Upper Confidence Bound
Require: α > 1

2 , T ∈ {1, 2, . . .} ∪ {∞}
1: W = [wij]← 0K×K // 2D array of wins: wij is the number of times ai beat aj
2: B = ∅
3: for t = 1, . . . , T do
4: // I: Run an optimistic simulated “tournament”:

5: U := [uij] = W
W+WT +

√
α ln t

W+WT // All operations are element-wise; x0 := 1

for any x.
6: uii ← 1

2 for each i = 1, . . . ,K.
7: C ←

{
ac | ∀ j : ucj ≥ 1

2

}
.

8: If C = ∅, then pick c randomly from {1, . . . ,K}.
9: B ← B ∩ C.

10: If |C| = 1, then B ← C and let ac be the unique element in C.
11: if |C| > 1 then
12: Sample ac from C using the distribution:

p(ac) =

{
0.5 if ac ∈ B,

1

2
|B| |C\B|

otherwise.

13: // II: Run UCB in relation to c:
14: d← arg maxj ujc, with ties broken randomly. Moreover, if there is a tie, d is not

allowed to be equal to c.
15: // III: Update W
16: Compare arms ac and ad and increment wcd or wdc depending on which arm wins.
Ensure: An arm ac that beats the most arms, i.e., c with the largest

count #
{
j| wcj
wcj+wjc

> 1
2

}
.

When c 6= j, ujc is defined as above. When c = j, since pcc = 1
2 , we set ucc = 1

2
(Line 5).

Note that, since ujc gives a “home-court” advantage to aj , ad is the arm most likely
to beat ac when ad has the “home-court” advantage. Since ucc = 1

2 , ac must win
all its “away” games to be chosen in stage II, whereas it needed to win all of its
home games to be chosen in stage I.

III. The pair (ac, ad) are compared against each other and the score sheet is updated as
appropriate (Line 7).

Note that in stage I the comparisons are based on ucj , i.e., ac is compared optimisti-
cally to the other arms, making it easier for it to become the champion. By contrast, in
stage II the comparisons are based on ujc, i.e., ac is compared to the other arms pes-
simistically, making it more difficult for ac to be compared against itself. This is important
because comparing an arm against itself yields no information. Thus, RUCB strives
to avoid auto-comparisons until there is great certainty that ac is indeed the Condorcet
winner.

Eventually, as more comparisons are conducted, the estimates µ1j tend to concentrate

24

4.1. The Algorithm

above 1
2 and the optimism bonuses c1j(t) become small. Thus, both stages of the algorithm

increasingly select a1, i.e., ac = ad = a1, which accumulates zero regret.
Note that Algorithm 2 is a finite-horizon algorithm if T <∞ and a horizonless one if

T =∞, in which case the for loop never terminates.

25

4. Relative Upper Confidence Bound

Table 4.1: List of notation used in this section
Symbol Definition

t Time
T The length of time for which the algorithm is run
pij The probability that arm i is preferred to arm j
RT Regret accumulated in the first T time-steps
K Number of arms
α The input of Algorithm 2
Nij(t) Number of comparisons between ai and aj until time t
wij(t) Number of wins of ai over aj until time t

uij(t)
wij(t)

Nij(t)
+

√
α ln t

Nij(t)

lij(t) 1− uji(t)
δ Probability of failure

C(δ)

(
(4α− 1)K2

(2α− 1)δ

) 1
2α−1

∆j p1j − 0.5

∆ij
∆i + ∆j

2
∆max maxi ∆i

Dij
4α

min{∆2
i ,∆

2
j}

, or
4α

∆2
j

if i = 1, or 0 if i = j

D
∑

i<j

Dij

Ĉ(δ)

(
4∆max log

2

δ
+ 2∆maxC

(
δ

2

)
+ 2D ln 2D

)

D̂j
2α (∆j + 4∆max)

∆2
j

T̂δ Definition 4.3
Tδ A time between C(δ/2) and T̂δ when a1 was compared against itself
a ∨ b max{a, b}

26

4.2. Theoretical Results

4.2 Theoretical Results

In this section, we state our finite-time high-probability and expected regret bounds for
RUCB: the proofs are provided in §4.3. We first state Lemma 4.1 which will be used
to prove a high-probability bound on the number of comparisons for each suboptimal
arm in Proposition 4.2. An immediate consequence of this result is a high probability
regret bound of the form O(K2 log T), which is similar to the bound for SAVAGE [65]
but for the horizonless setting. However, in Theorem 4.4 we show that this can be lowered
to O(K log T) and we deduce an expected regret bound in Theorem 4.5. This result is
proven under conditions that are much more general than those for IF [75] and without
requiring the user to specify the γ parameter as BTM does [73]. Moreover, it matches the
asymptotic lower bound proven in [75, Theorem 2].

The results in Theorems 4.4 and 4.5 are surprising because a K-armed dueling bandit
problem depends on roughly K2

2 independent parameters, so one would expect a bound of
the form O(K2 log T) unless strong prior information is infused into the algorithm, as
with IF and BTM. However, these theorems show that one can get asymptotic behaviour
resembling that of a regular K-armed bandit algorithm on a very broad class of dueling
bandit problems with very little prior knowledge. This finding is also of great practical
significance because there are many situations in which one has a choice between applying
a K-armed bandit algorithm to an unreliable quantity, such as Click Through Rate, or
using a K-armed dueling bandit algorithm to conduct direct comparisons, which are
known to be more reliable when dealing with humans [37, §2.1]. These results show that,
given such a dilemma, using a dueling bandit approach does not come at the expense of
the asymptotic behaviour.

Finally, note that the high probability bound proven in Theorem 4.4 does not rely on
the probability of failure, δ, being passed to the algorithm. Thus, we can use it to also
bound higher moments (hence also the variance) of the cumulative regret for RUCB for all
times. This is in contrast to high probability bounds that require δ to be specified before
the algorithm starts [1, 6, 63], from which one cannot obtain expected regret bounds for
all times. While, given a time T , one can set δ = 1/T in the algorithm to get a logarithmic
expected regret bound at time T , getting a logarithmic expected regret bound at time T 1+ε

for any ε > 0, requires rerunning the algorithm with δ = 1/T 1+ε.
As before, we assume without loss of generality that a1 is the optimal arm. See

Table 4.1 for definitions of symbols used throughout.
Let us begin by stating out main technical lemma that is crucial in all theoretical

arguments presented in this thesis and will be used over and over again.

Lemma 4.1. Let P := [pij] be the preference matrix of a K-armed dueling bandit
problem with arms {a1, . . . , aK}. Then, for any dueling bandit algorithm and any α > 1

2
and δ > 0, we have

P
(
∀ t > C(δ), i, j, pij ∈ [lij(t), uij(t)]

)
> 1− δ.

In more plain terms, the inequality in the above lemma asserts that the probability of a
certain desirable event is large: the event is that beyond a certain initial time period (i.e.
C(δ) time-steps), for all pairs of arms ai and aj , the confidence intervals [lij(t), uij(t)]
are “truthful” in the sense that they contain the real preference probability pij .

27

4. Relative Upper Confidence Bound

Let us now turn to our first high-probability bound:

Proposition 4.2. Given K arms {a1, . . . , aK} with preference matrix P = [pij], such
that a1 is the Condorcet winner, and δ > 0 and α > 1

2 , then, if we apply Algorithm 2
to this K-armed dueling bandit problem, given any pair (i, j) 6= (1, 1), the number of
comparisons between arms ai and aj performed up to time t, denoted by Nij(t), satisfies

P
(
∃ t, (i, j) 6= (1, 1): Nij(t) > C(δ) ∨Dij ln t

)
< δ (4.1)

and, Nδ
ij(t), the number of times ai was compared against aj between time-steps C(δ)

and t, satisfies

P
(
∃ t > C(δ), (i, j) 6= (1, 1): Nδ

ij(t) > Dij ln t
)
< δ (4.2)

In a similar vein as in Lemma 4.1, the inequalities in Proposition 4.2 state that the
probability of a certain undesirable event is small, where the event is that for any pair
of arms ai and aj , with at least one of them being suboptimal (i.e. not the Condorcet
winner a1), the number of comparisons between them is too large. In other words, it is
very likely that the number of comparisons involving suboptimal arms is small, which is
what is needed to prove a regret bound because the only comparisons that do not incur
regret are the ones where the Condorcet winner is compared against itself.

We use the next definition in what follows:

Definition 4.3. Let T̂δ be the smallest time satisfying

T̂δ > C

(
δ

2

)
+
∑

i<j

Dij ln T̂δ,

which is guaranteed to exist since the expression on the left of the inequality grows linearly
with T̂δ and the expression on the right grows logarithmically. Note that T̂δ is specified by
the K-armed dueling bandit problem.

With this in hand, we now state our main result, which is a high probability regret
bound:

Theorem 4.4. Given the setup of Proposition 4.2, for any δ > 0, we have with probability
1− δ that for all times T the following bound on the cumulative regret holds:

RT ≤ Ĉ(δ) +

K∑

j=2

D̂j lnT, (4.3)

where

Ĉ(δ) :=

(
4 ln

2

δ
+ 2C

(
δ

2

)
+ 2D ln 2D

)
∆max

D̂j := D1j (∆1j + 2∆max) =
2α (∆j + 4∆max)

∆2
j

,

28

4.3. Proofs

with C(·) and D as in Proposition 4.2, and ∆max:=maxi ∆i and ∆ij :=
∆i+∆j

2 , while
RT is the cumulative regret in the Condorcet case as defined in Section 2.1.2.

Next, we state our expected regret bound, which is a direct consequence of Theorem
4.4:

Theorem 4.5. Given the setup of Proposition 4.2 together with the notation of Theorem
4.4, we have the following expected regret bound for RUCB, where the expectations
are taken across different runs of the algorithm: if we have α > 1, the expected regret
accumulated by RUCB after T iterations is bounded by

E[RT] ≤
[

8 +

(
2(4α− 1)K2

2α− 1

) 1
2α−1 2α− 1

α− 1

]
∆max

+ 2D∆max ln 2D +

K∑

j=2

2α (∆j + 4∆max)

∆2
j

lnT,

In the regret bound in Theorem 4.5, note that the only term that grows with T consists
of K terms rather than K2. In other words, the bound is of the form O(K log T), rather
than O(K2 log T).

4.3 Proofs

4.3.1 Proof of Lemma 4.1
In this section, we prove Lemma 4.1, whose statement is repeated here for convenience.
Recall from Section 4.2 that we assume without loss of generality that a1 is the optimal
arm. Moreover, given any K-armed dueling bandit algorithm, we define wij(t) to be the
number of times arm ai has beaten aj in the first t iterations of the algorithm. We also
define

uij(t) :=
wij(t)

wij(t) + wji(t)
+

√
α ln t

wij(t) + wji(t)
,

where α is any positive contant, and lij(t) := 1− uji(t). Moreover, for any δ > 0, define

C(δ) :=

(
(4α− 1)K2

(2α− 1)δ

) 1
2α−1

.

Lemma 4.1. Let P := [pij] be the preference matrix of a K-armed dueling bandit
problem with arms {a1, . . . , aK}. Then, for any dueling bandit algorithm and any α > 1

2
and δ > 0, we have

P
(
∀ t > C(δ), i, j, pij ∈ [lij(t), uij(t)]

)
> 1− δ. (4.4)

Proof. To decompose the lefthand side of (4.4), we introduce the notation Gij(t) for the
“good” event that at time t we have pij ∈ [lij(t), uij(t)], which satisfies the following:

29

4. Relative Upper Confidence Bound

(i) Gij(t) = Gji(t) because of the three equalities

pji = 1− pij
lji(t) = 1− uij(t)
uji(t) = 1− lij(t)

(ii) Gii(t) always holds, since (pii, lii(t), uii(t)) =
(

1
2 ,

1
2 ,

1
2

)
. Together with (i),

this means that we only need to consider Gij(t) for i < j.

(iii) Define τ ijn to be the iteration at which arms i and j were compared against
each other for the nth time. If Gij

(
τ ijn + 1

)
holds, then the events Gij(t) hold for

all t ∈
(
τ ijn , τ

ij
n+1

]
because when t ∈

(
τ ijn , τ

ij
n+1

]
, wij and wji remain constant

and so in the expressions for uij(t) and uji(t) only the ln t changes, which is a
monotonically increasing function of t. So, we have

lij(t) ≤ lij(τ ijn + 1) ≤ pij ≤ uij(τ ijn + 1) ≤ uij(t).

Moreover, the same statement holds with τ ijn replaced by any T ∈
(
τ ijn , τ

ij
n+1

]
, i.e.,

if we know that Gij(T) holds, then Gij(t) also holds for all t ∈
(
T, τ ijn+1

]
. This is

illustrated in Figure 4.1.

Now, given the above three facts, we have for any T

P
(
∀ t ≥ T, i, j, Gij(t)

)
= P

(
∀ i > j, Gij(T) and ∀n s.t. τ ijn > T, Gij(τ ijn)

)
. (4.5)

Let us now flip things around and look at the complement of these events, i.e. the “bad”
event Bij(t) that pij /∈ [lij(t), uij(t)] occurs. Subtracting both sides of Equation (4.5)
from 1 and using the union bound gives

P
(
∃ t > T, i, j s.t. Bij(t)

)
≤
∑

i<j

[
P
(
Bij(T)

)
+ P

(
∃n : τ ijn > T and Bij(τ ijn)

)]
.

Further decomposing the righthand side using union bounds and making the condition
explicit, we get

P
(
∃ t > T, i, j s.t. Bij(t)

)

≤
∑

i>j

[
P

(∣∣∣pij − µijNij(T)

∣∣∣ >
√

α lnT

Nij(T)

)
+

P

∃n ≤ T s.t. τ ijn > T and

∣∣pij − µijn
∣∣ >

√
α ln τ ijn
n

+ P

∃n > T s.t.

∣∣pij − µijn
∣∣ >

√
α ln τ ijn
n

]
,

30

4.3. Proofs

τ ijn T τ ijn+1

time

µijn

µijn+1

µijn+2

pij

· · · · · · · · ·

pij µij(t) Confidence intervals [lij(t), uij(t)]
Chernoff-Hoeffding upper bound

on P
(
pij /∈ [lij(t), uij(t)]

)

Figure 4.1: An illustrations of the idea behind Lemma 4.1 using an example of how the
confidence intervals of a single pair of arms (ai, aj), and their relation to the comparison
probability pij , might evolve over time. The time-step τ ijm denotes the mth time when
the arms ai and aj were chosen by RUCB to be compared against each other. We also
define µijm := µij(τ

ij
m). The time T is when the confidence intervals [lij(t), uij(t)] begin

to include pij . The lemma then states that with probability 1 − δ, we have T ≤ C(δ).
Moreover, for each time-step, the area of the shaded region under the vertical graphs is the
bound given by the Chernoff-Hoeffding (CH) bound on the probability that the confidence
interval will not contain pij . Note that the CH bound has the form e−(x−µijn)2

and so in
order for this number to be the area under a graph (hence making it easier to illustrate in
a figure), we have drawn the derivative of this function, f ijn (x) := |x− µijn |e−(x−µijn)2

,
which is why the graphs are equal to 0 in the middle. Note that this does not mean that µijn
has very low probability of being close to pij : the graphs drawn here are not the PDFs of
the posteriors, but simply a manifestation of the bound given by the Chernoff-Hoeffding
bound. More specifically, the property that they satisfy is that P

(
pij /∈ [lij(t), uij(t)]

)
≤

∫ lij(t)
−∞ f ijNij(t)(x)dx+

∫∞
uij(t)

f ijNij(t)(x)dx.

since T < n < τ ijn . Here, µijn :=
wij(τ

ij
n)

wij(τ
ij
n)+wji(τ

ij
n)

is the frequentist estimate of pij
after n comparisons between arms ai and aj .

Now, in the above sum, we can upper-bound the first term by looking at the higher
probability event that Bij(T) happens for any possible number of comparisons between
ai and aj , and since we know that Nij(T) ≤ T , we can replace Nij(T) with a variable n
that can take values between 0 and T . For the second term, we know that τ ijn > T , so we
can replace τ ijn with T and remove the condition τ ijn > T and look at all n ≤ T . For the
third term, since we always have that n < τ ijn , we can replace τ ijn with n and get a higher
probability event. Putting all of this together, we get the following looser bound:

31

4. Relative Upper Confidence Bound

P
(
∃ t > T, i, j s.t. Bij(t)

)
≤
∑

i<j

[
P

(
∃n ∈ {0, . . . , T} :

∣∣pij − µijn
∣∣ >

√
α lnT

n

)

+ P

(
∃n ∈ {0, . . . , T} :

∣∣pij − µijn
∣∣ >

√
α lnT

n

)

+ P

(
∃n > T s.t.

∣∣pij − µijn
∣∣ >

√
α lnn

n

)]

≤
∑

i<j

[
2

T∑

n=0

P

(
∣∣pij − µijn

∣∣ >
√
α lnT

n

)

+

∞∑

n=T+1

P

(
∣∣pij − µijn

∣∣ >
√
α lnn

n

)]
. (4.6)

To bound the expression on line (4.6), we apply the Chernoff-Hoeffding bound,
which in its simplest form states that given i.i.d. random variables X1, . . . , Xn, whose
support is contained in [0, 1] and whose expectation satisfies E[Xk] = p, and defining
µn := X1+···+Xn

n , we have P (|µn − p| > a) ≤ 2e−2na2

. This gives us

P
(
∃ t > T, i, j s.t. Bij(t)

)
≤
∑

i<j

2

T∑

n=1

2e
−2�n

α lnT

�n +

∞∑

n=T+1

2e
−2�n

α lnn

�n

=
K(K − 1)

2

[
T∑

n=1

4

T 2α
+

∞∑

n=T+1

2

n2α

]

≤ 2K2

T 2α−1
+K2

∫ ∞

T

dx

x2α
, since

1

x2α
is decreasing.

≤ 2K2

T 2α−1
+K2

∫ ∞

T

dx

x2α

=
2K2

T 2α−1
+

K2

(1− 2α)x2α−1

∣∣∣∣
∞

T

=
(4α− 1)K2

(2α− 1)T 2α−1
. (4.7)

Now, since C(δ) =
(

(4α−1)K2

(2α−1)δ

) 1
2α−1

for each δ > 0, the bound in (4.7) gives us
(4.4).

4.3.2 Proof of Proposition 4.2
Proof. Given Lemma 4.1, we know with probability 1− δ that pij ∈ [lij(t), uij(t)] for
all t > C(δ). Let us first deal with the easy case when i = j 6= 1: when t > C(δ) holds,

32

4.3. Proofs

ai cannot be played against itself, since if we get c = i in Algorithm 2, then by Lemma
4.1 and the fact that a1 is the Condorcet winner we have d 6= i since uii(t) = 1

2 < p1i ≤
u1i(t), where ad is the second arm chosen by Algorithm 2 on Line 14.

Now, let us assume that distinct arms ai and aj have been compared against each
other more than Dij ln t times and that t > C(δ). If s ≤ t is the last time ai and aj were
compared against each other, we must have

uij(s)− lij(s) = 2

√
α ln s

Nij(t)
(4.8)

≤ 2

√
α ln t

Nij(t)
< 2

√√√√ α ln t
4α ln t

min{∆2
i ,∆

2
j}

= min{∆i,∆j}.

On the other hand, for ai to have been compared against aj at time s, one of the
following two scenarios must have happened:

I. In Algorithm 2, we had c = i and d = j, in which case both of the following
inequalities must hold:

a. uij(s) ≥ 1
2 , since otherwise c could not have been set to i by Line 5 of

Algorithm 2, and

b. lij(s) = 1 − uji(s) ≤ 1 − p1i = pi1, since we know that p1i ≤ u1i(t), by
Lemma 4.1 and the fact that t > C(δ), and for d = j to be satisfied, we must
have u1i(t) ≤ uji(t) by Line 6 of Algorithm 2.

From these two inequalities, we can conclude

uij(s)− lij(s) ≥
1

2
− pi1 = ∆i. (4.9)

This inequality is illustrated using the lower right confidence interval in the (ai, aj)
block of Figure 4.2, where the interval shows [lij(s), uij(s)] and the distance
between the dotted lines is 1

2 − pi1.

II. In Algorithm 2, we had c = j and d = i, in which case swapping i and j in the
above argument gives

uji(s)− lji(s) ≥
1

2
− pj1 = ∆j . (4.10)

Similarly, this is illustrated using the lower left confidence interval in the (aj , ai)
block of Figure 4.2, where the interval shows [lji(s), uji(s)] and the distance
between the dotted lines is 1

2 − pj1.
Putting (4.9) and (4.10) together with (4.8) yields a contradiction, so with probability
1− δ we cannot have Nij be larger than both C(δ) and Dij ln t. This gives us both (4.1)
and (4.2).

33

4. Relative Upper Confidence Bound

a1

1
2

a1

ai aj

1
2

pi1

ai
∆i

1
2

pj1

aj
∆j

Figure 4.2: An illustration of the proof of Proposition 4.2. The figure shows an example
of the internal state of RUCB at time s. The height of the dot in the block in row am and
column an represents the comparisons probability pmn, while the interval, where present,
represents the confidence interval [lmn, umn]: we have only included them in the (ai, aj)
and the (aj , ai) blocks of the figure because those are the ones that are discussed in the
proof. Moreover, in those blocks, we have included the outcomes of two different runs:
one drawn to the left of the dots representing pij and pji, and the other to the right (the
horizontal axis in these plots has no other significance). These two outcomes are included
to address the dichotomy present in the proof. Note that for a given run, we must have
[lji(s), uji(s)] = [1− uij(s), 1− lij(s)] for any time s, hence the symmetry present in
this figure.

4.3.3 Proof of Theorem 4.4

Proof. If we apply Inequality (4.2) in Proposition 4.2 with t = T̂δ (as in Definition 4.3),
we know that with probability 1 − δ

2 there is a time Tδ ∈
(
C
(
δ
2

)
, T̂δ

]
when arm a1

was compared against itself, which means that at that time we had uj1(Tδ) <
1
2 . This

in turn implies that B = {a1} from that point on, since by Lemma 4.1 we have that
1
2 < p1j ≤ u1j(t) for all t > Tδ > C

(
δ
2

)
.

Since we have B = {a1}, we know that when choosing ac in Algorithm 2, the
probability of choosing a1 is equal to 1

2 . Given this, we can expect that from Tδ onwards,

34

4.3. Proofs

the algorithm will spend roughly half of its time comparing a1 against other arms. In what
follows, we show that this is indeed the case.

Let Ñij(T) denote the number of times arm ai was compared against aj between
times Tδ and T . Proposition 4.2 shows that, again with probability 1 − δ

2 , we have
Ñij(T) ≤ Dij lnT for all i < j: note that this 1− δ

2 is the same as the one used above.
In particular, this means that Ñ1(T), the number of times between times Tδ and T when
we had c = 1 6= d, is bounded by

Ñ1(T) ≤
K∑

j=2

Ñ1j(T) ≤
K∑

j=2

D1j lnT =: N̂1(T). (4.11)

Let us introduce here two sets of random variables:

• τ0, τ1, τ2, . . ., where τ0 := Tδ and τl is the lth time arm a1 was compared against
another arm after Tδ .

• n1, n2, . . ., where nl is the number of times in Algorithm 2 we had c 6= 1 6= d
between τl−1 and τl.

Now, note that RUCB chooses c 6= 1 or d 6= 1 in time-step t if and only if uj1(t) ≥ 1
2

for some j > 1 and that we can have uj1(t + 1) < uj1(t) only if at the end of the
tth iteration, arm a1 was compared against arm aj . In other words, whenever we have
uj1(T) ≥ 1

2 for some j > 1, the algorithm will continue to set (c, d) 6= (1, 1) until all of
the uj1 with j > 1 get submerged below 1

2 and that the last comparison before we get to
this state must be between a1 and another arm. With this picture in mind, with probability
1− δ

2 , we have

RT ≤ Tδ∆max +

K∑

j=2

D1j∆1j lnT +

N̂1(T)∑

l=1

nl∆max, (4.12)

where N̂1(T) is as in Inequality (4.11), and so all we need to do is bound Tδ and
the sum of the intervals nl for l = 1, . . . , N̂1(T). Let us deal with the former first: we
know that Tδ ≤ T̂δ and that the latter is defined to be the smallest time-step satisfying
the inequality in Definition 4.3, so all we need to do is produce one number that, when
plugged in for T̂δ, satisfies the inequality, and one such number is 2C

(
δ
2

)
+ 2D ln 2D.

To see this, let us temporarily use the notation C := C
(
δ
2

)
, and use the concavity of the

log function, a first order Taylor expansion, and the fact that we have lnx < x for any x,
to get

C +D ln(2C + 2D ln 2D) ≤ C +D ln(2D ln 2D) +��D
�2C

��2D ln 2D

≤ C +D ln(2D)2 + C = 2C + 2D ln 2D,

where we used the fact that D > 2 and so ln 2D > 1.
Let us now return to the task of bounding the sum of the intervals nl. To do so,

we introduce the random variables n̂1, n̂2, . . ., which are independent samples from the

35

4. Relative Upper Confidence Bound

geometric distribution with decay 1
2 . Note that n̂l bounds nl from above since it counts

the number of iterations it would take for Line 11 of Algorithm 2 to produce a1 and once
we have c = 1, we are guaranteed to have a comparison between a1 and another arm, as
long as uj1 ≥ 1

2 for some j > 1. Furthermore, the sum of independent geometric random
variables has a negative binomial distribution [26, §VI.8], with the following probability
mass function, cf. [26, Equation VI.8.1]:

f(n; r) := P

(
r∑

l=1

n̂l = n

)
=

(
n+r−1
n

)

2n+r
,

where in our case p = 1
2 and so it is eliminated from the notation of the PMF. In order

to bound this sum with high probability, we note that when n ≥ 2r, then we have

f(n; r)

f(n+ 1; r)
=

(
n+r−1
n

)

2n+r(
n+r
n+1

)

2n+r+1

=

(n+ r − 1)!

n!(r − 1)!

(n+ r)!

(n+ 1)!(r − 1)!× 2

=
2(n+ 1)

n+ r
= 2

[
1− r − 1

n+ r

]
≥ 2− 2r − 2

3r
>

4

3
.

Therefore, we have f(n; r) ≤ f(2r; r)
(

3
4

)n−2r ≤
(

3
4

)n−2r
for all n ≥ 2r, since

f(2r; r) is a probability and so at most equal to 1. From this we can conclude that with

probability 1− δ
2 , we have n ≤ 2r +

ln δ
2

ln 3
4

< 2r − 4 ln δ
2 : note that both the numerator

and the denominator of the second summand are negative and so the fraction is positive.
Now, setting r = N̂1(T) :=

∑K
j=2D1j lnT and plugging the resulting upper bound into

the regret bound given in (4.12) give us the desired result.

4.3.4 Proof of Theorem 4.5

Here, we provide the proof of the expected regret bound claimed in Theorem 4.5, starting
by repeating the statement of the theorem:

Theorem 4.5. Given the setup of Proposition 4.2 together with the notation of Theorem
4.4, we have the following expected regret bound for RUCB, where the expectations are
taken across different runs of the algorithm: if we have α > 1, the expected regret
accumulated by RUCB after T iterations is bounded by

E[RT] ≤
[

8 +

(
2(4α− 1)K2

2α− 1

) 1
2α−1 2α− 1

α− 1

]
∆max

+ 2D∆max ln 2D +

K∑

j=2

2α (∆j + 4∆max)

∆2
j

lnT. (4.13)

36

4.3. Proofs

0 r0 = Ht(q0) t
r

0
1

q 0
F
R
t(
r 0

)
q

FRt
(r)

H−1
t (r), the inverse function of

Ht(q) := C(1− q)∆∗ +
∑

i>jDij∆ij ln t

Figure 4.3: A schematic graph illustrating the proof of Theorem 4.5. Note that the
expression for HT (q) is extracted from (4.3), which also implies that H−1

T is necessarily
below FRT : formulated in terms of CDFs, (4.3) states that FRT (HT (q0)) > q0 =
H−1
T (HT (q0)), where q0 = 1 − δ0 is a quantile. From this, we can conclude that

FRT (r) > H−1
T (r) for all r.

Proof. We can obtain the bound in (4.13) from (4.3) by integrating with respect to δ from
0 to 1. This is because given any one-dimensional random variable X with CDF FX , we
can use the identity E[X] =

∫ 1

0
F−1
X (q)dq. In our case, X = RT for a fixed time t and, as

illustrated in Figure 4.3, we can deduce from (4.3) that FRT (r) > H−1
T (r), which gives

the bound

F−1
RT

(q) < HT (q) = Ĉ(1− q) +

K∑

j=2

D̂j lnT.

Now, assume that α > 1. To derive (4.13) from the above inequality, we need to
integrate the righthand side, and since it is only the first two terms in the definition of
Ĉ that depends on δ, that is all we need to integrate. Let us deal with the first term first,
using the substitution 1− q = δ, dq = −dδ:

∫ 1

q=0

4∆max ln
2

1− q dq = 4∆max

[
ln 2−

∫ 0

δ=1

− ln δ dδ

]

= 4∆max

[
ln 2−

∫ 1

δ=0

ln δ dδ

]

= 4∆max(ln 2 + 1) < 8∆max

To deal with the second term in Ĉ, recall that it is equal to

2∆maxC

(
δ

2

)
:= 2∆max

(
2(4α− 1)K2

(2α− 1)δ

) 1
2α−1

,

so to simplify notation, we define

L := 2∆max

(
2(4α− 1)K2

2α− 1

) 1
2α−1

.

37

4. Relative Upper Confidence Bound

Now, we can carry out the integration as follows, again using the substitution 1− q = δ,
dq = −dδ:

∫ 1

q=0

C(1− q)dq =

∫ 0

δ=1

−C(δ)dδ

=

∫ 1

0

2

(
2(4α− 1)K2

(2α− 1)δ

) 1
2α−1

dδ

= L

∫ 1

0

δ−
1

2α−1 dδ

= L

[
δ1− 1

2α−1

1− 1
2α−1

]1

0

=

(
2(4α− 1)K2

2α− 1

) 1
2α−1 2α− 1

α− 1
.

4.4 Experimental Results

To evaluate RUCB, we apply it to the problem of ranker evaluation from the field of
information retrieval (IR) [51]. A ranker is a function that takes as input a user’s search
query and ranks the documents in a collection according to their relevance to that query.
Ranker evaluation aims to determine which among a set of rankers performs best. One
effective way to achieve this is to use interleaved comparisons [57], which interleave the
documents proposed by two different rankers and presents the resulting list to the user,
whose resulting click feedback is used to infer a noisy preference for one of the rankers.
Given a set of K rankers, the problem of finding the best ranker can then be modeled as a
K-armed dueling bandit problem, with each arm corresponding to a ranker.

We evaluated RUCB, Condorcet SAVAGE and BTM using randomly chosen subsets
from the pool of 64 rankers provided by LETOR, a standard IR dataset, discussed in greater
detail in Section 4.4.1, yielding K-armed dueling bandit problems with K ∈ {16, 32, 64}.
For each set of rankers, we performed 100 independent runs of each algorithm for a
maximum of 4.5 million iterations. For RUCB we set α = 0.51, which approaches the
limit set by our high-probability result. Since BTM and SAVAGE require the exploration
horizon as input, we ran BTMT and CSAVAGET for various horizons T ranging from
1000 to 4.5 million. In the plots in Figure 4.4, the markers on the green and the blue
curves show the regret accumulated by BTMT and CSAVAGET in the first T iteration
of the algorithm for each of these horizons. Thus, each marker corresponds, not to the
continuation of the runs that produced the previous marker, but to new runs conducted
with a larger T .

Since RUCB is horizonless, we ran it for 4.5 million iterations and plotted the cumula-
tive regret, as shown using the red curves in the plots in Figure 4.4. For all three algorithms,
the middle curve shows average cumulative regret and the dotted lines show minimum
and maximum cumulative regret across runs. Note that these plots are in log-linear scale,

38

4.4. Experimental Results

103 104 105 106

time

2000

4000

6000

8000

cu
m

ul
at

iv
e

re
gr

et

LETOR NP2004 Dataset with 16 rankers

103 104 105 106

time

5000

10000

15000

20000

25000

30000

35000

cu
m

ul
at

iv
e

re
gr

et

LETOR NP2004 Dataset with 32 rankers

103 104 105 106

time

20000

40000

60000

80000

100000

120000

140000

cu
m

ul
at

iv
e

re
gr

et

LETOR NP2004 Dataset with 64 rankers

BTM
Condorcet SAVAGE
RUCB α = 0.51

Figure 4.4: Average cumulative regret for 100 runs of BTM, Condorcet SAVAGE and
RUCB with α = 0.51 applied to three K-armed dueling bandit problems with K =
16, 32, 64. Note the time axis uses a log scale, so that the curves depict the relation
between log T and RT ; also, the dotted curves signify best and worst regret performances
across all runs.

so they depict the relation between RT and log T , which can be seen to be asymptotically
linear. The regret curves for BTM are cut-off in these plots, since in all three experiments
RBTMT

T grew linearly with T in the first 4.5 million iterations. As can be seen from the
plots in Figure 4.4, RUCB accumulates the least regret of the three algorithms: the average
regret accumulated by RUCB is less than half of that of Condorcet SAVAGE by the end of
each of the three experiments and even the worst performing run of RUCB accumulated
considerably less regret than the best performing run of Condorcet SAVAGE.

Finally, the plots in Figure 4.5 show the accuracy of all three algorithms across 100
runs, computed at the same times as the exploration horizons used for BTM and SAVAGE
in Figure 4.4. Note that RUCB reaches the 80% mark almost twice as fast as Condorcet
SAVAGE, all without knowing the horizon T . The contrast is even more stark when
comparing to BTM.

39

4. Relative Upper Confidence Bound

103 104 105 106

time

0.0

0.2

0.4

0.6

0.8

1.0
be

st
ra

nk
er

ra
te

(a
cc

ur
ac

y)
LETOR NP2004 Dataset with 16 rankers

RUCB α = 0.51

Condorcet SAVAGE
BTM

103 104 105 106

time

0.0

0.2

0.4

0.6

0.8

1.0

be
st

ra
nk

er
ra

te
(a

cc
ur

ac
y)

LETOR NP2004 Dataset with 32 rankers

103 104 105 106

time

0.0

0.2

0.4

0.6

0.8

1.0

be
st

ra
nk

er
ra

te
(a

cc
ur

ac
y)

LETOR NP2004 Dataset with 64 rankers

Figure 4.5: Average accuracy for 100 runs of BTM, Condorcet SAVAGE and RUCB with
α = 0.51 applied to three K-armed dueling bandit problems with K = 16, 32, 64. Note
that the x-axes in these plots use a log scale.

4.4.1 Details of the Experimental Setup

Our experimental setup is built on real IR data, namely the LETOR NP2004 dataset [50].
This dataset is based on the TREC Web track named-page finding task, where a query
is what the user believes to be a reasonable estimate of the name of the webpage she is
seeking. Using this data set, we create a set of 64 rankers, each corresponding to a ranking
feature provided in the data set, e.g., PageRank. The ranker evaluation task in this context
corresponds to determining which single feature constitutes the best ranker [38].

To compare a pair of rankers, we use probabilistic interleave (PI) [36], a recently
developed method for interleaved comparisons. To model the user’s click behavior on
the resulting interleaved lists, we employ a probabilistic user model [22, 36] that uses
as input the manual labels (classifying documents as relevant or not for given queries)
provided with the LETOR NP2004 dataset. Queries are sampled randomly and clicks are
generated probabilistically by conditioning on these assessments in a way that resembles
the behavior of an actual user [31].

Following [73], we first used the above approach to estimate the comparison probabil-
ities pij for each pair of rankers and then used these probabilities to simulate comparisons

40

4.5. Summary

between rankers. More specifically, we estimated the full preference matrix by performing
4000 interleaved comparisons on each pair of the 64 feature rankers.

4.5 Summary

In this chapter, we proposed a new method called Relative Upper Confidence Bound
(RUCB) for the K-armed dueling bandit problem that extends the Upper Confidence
Bound (UCB) algorithm to the relative setting by using optimistic estimates of the pair-
wise probabilities to choose a potential champion and conducting regular UCB with the
champion as the benchmark.

We proved finite-time high-probability and expected regret bounds for RUCB that
match an existing lower bound and evaluated it empirically in an information retrieval
application. Unlike existing results, our regret bounds hold for all time-steps, rather
than just a specific horizon T input to the algorithm. Furthermore, they take the form
O(K log T) while making much less restrictive assumptions than existing algorithms
with similar bounds. Finally, the empirical results showed that RUCB greatly outperforms
state-of-the-art methods.

There are two natural extensions to this research that one could consider for further
investigation. First, building off extensions of UCB to the continuous bandit setting [13,
23, 53, 63, 66], one could extend RUCB to the continuous dueling bandit setting, without a
convexity assumption as in [40, 71]. Second, building off Thompson Sampling [2, 44, 64],
an elegant and effective sampling-based alternative to UCB, one could investigate whether
a sampling-based extension to RUCB would be amenable to theoretical analysis. Both
these extensions involve overcoming not only the technical difficulties present in the
regular bandit setting, but also those that arise from the two-stage nature of RUCB. The
latter of these two ideas has been validated experimentally in [77], which we describe in
Chapter 5, although a theoretical analysis is still lacking. Very recently, a modification of
RUCB has been proposed in [69] that uses Thompson Sampling to choose the optimistic
Condorcet winner more effectively, although the remaining choices are made using
confidence bounds.

41

5
Relative Confidence Sampling

In this chapter, we present the Relative Confidence Sampling (RCS) algorithm, which
aims to reduce cumulative regret by being less conservative than RUCB about eliminating
arms from contention. While RCS is related to RUCB, it differs in one crucial respect: in
the first phase of the algorithm, when a potential Condorcet winner is being chosen, RCS
uses sampling to conduct the round-robin tournament. The goal in doing so is to exploit
one of the key lessons that has been learned in the study of regular K-armed bandits: that
much better performance can be obtained by maintaining posterior distributions over the
expected value of each arm and sampling from those posteriors to determine which arm to
select. This is evidenced by the superior performance of Thompson Sampling [2, 44, 64],
a K-armed bandit method that employs such sampling, over various UCB-type algorithms
[19, 44].

Unlike the UCB family of algorithms, which rely on surrogates for the means of the
arms that are significantly different from those means themselves, sampling-based methods
rely on samples drawn from posteriors that tend not to gravitate toward the extremes,
leading to more appropriate choices being made more frequently. In the particular case of
RUCB, the algorithm tends to be very conservative in its choice of a potential Condorcet
winner, in the sense that unless it is highly confident that an arm ai is inferior to another
arm, it will go on considering ai as a potential Condorcet winner. By contrast, RCS is
less timid in its choices: the more an arm beats the rest, the greater its chances of being
chosen as a Condorcet winner to be compared against the rest.

The remainder of this chapter is organized as follows: in §5.1, we provide and explain
the pseudo-code for RCS; in §5.2, we describe the experiments carried out to compare
RCS against other dueling bandit algorithms, present the results and offer a detailed
discussion; in §5.3, we summarize the findings in this chapter.

5.1 The Algorithm

The RCS algorithm, described in Algorithm 3, takes as input a set of arms and an
oracle such as an interleaved comparison method that can compare these arms and return
a noisy estimate of which is the winner. As it is horizonless, RCS does not have an output:
as time goes by it chooses the best arm more and more frequently. RCS has one parameter
α (Line 1), which controls how exploratory the algorithm’s behavior is: the higher the
value of α, the more slowly the algorithm settles on a single arm. RCS maintains a

43

5. Relative Confidence Sampling

Algorithm 3 Relative Confidence Sampling (RCS)
Require: A set of arms a1, . . . , aK , a number α > 1/2 and an oracle that can take a pair

of arms and return one as the winner (e.g., an interleaved comparison method)
1: Choose α > 1

2
2: W← 0K×K // 2D array of wins: Wij is the number of times ai beat aj
3: for t = 1, 2, . . . do
4: // I: Run a simulated “tournament”:
5: Θ(t)← 1K×K

2
6: for i, j = 1, . . . ,K with i < j do
7: Θij(t) ∼ Beta(Wij + 1,Wji + 1)

// Here Beta(α, β) is the Beta distribution with non-negative parameters α and β

8: Θji(t) = 1−Θij(t)
9: Pick c such that Θcj(t) ≥ 1

2 for all j. If no such arm exists, pick the arm that has
been chosen champion least often.

10: // II: Run UCB in relation to c:
11: U(t) = W

W+WT +
√

α ln t
W+WT

// All operations are element-wise, with x
0 := 1 for any x.

12: Uii(t)← 1
2 for each i = 1, . . . ,K.

13: d← arg maxj Ujc(t)
14: // III: Update W
15: Compare arms ac and ad and increment either Wcd if ac beat ad or Wdc otherwise.

scoresheet W (Line 2), in which it records the comparison results and proceeds in two
phases:

I: A tournament is simulated based on the current scoresheet, i.e., samples Θij are
collected for each pair of arms (i, j) with i > j, from the posterior Beta distribution
maintained on pij ; Since pji = 1 − pij , RCS sets Θji = 1 − Θij (Lines 6-9).
Also, RCS sets Θii = 1

2 for each arm i, since pii = 1
2 and thus its posteriors are all

concentrated at 1
2 (Line 5). Given these sampled results, arm i beats arm j in the

simulated tournament if Θij >
1
2 for i 6= j. There are two possibilities at this stage

(Line 10):

1. There is a champion arm c that beats all other arms in this tournament, i.e.,
Θcj >

1
2 for all j 6= c.

2. No arm beats all other arms, in which case RCS sets c = argminiNi, where
Ni is the number of times arm i was previously chosen as champion. In other
words, c is the arm that has been the champion least often.

Eventually, once the Condorcet winner has been compared against the rest of the
arms often enough, its superiority over the rest will cause their elimination in this
phase of the algorithm. So, as times goes by, c will be the Condorcet winner more
and more often.

II: The UCB algorithm is applied to theK-armed bandit problem with means {p1c, . . . , pKc}
(Lines 12-14). In other words, for each j ∈ {1, . . . ,K}, we calculate the optimistic

44

5.2. Experiments

estimate

ujc :=
Wjc

Wjc + Wcj
+

√
α ln t

Wjc + Wcj
,

where the first term is our estimate of the comparison probability pjc and the second
term is a confidence radius that is added to ensure adequate exploration by allowing
the other arms to compare themselves against c optimistically. RCS picks the arm d
for which udc is higher than all other ujc.

The astute reader would have noticed that this aspect of RCS closely resembles
the corresponding component in RUCB and indeed the reason for that similarity is
simply that now that arm ac has been chosen as a potential Condorcet winner, the
arms can be thought of as forming a multi-armed bandit problem, where the mean
of each arm is its probability of beating ac; given this, a natural choice is to apply
UCB to this problem, which is what this step does.

Finally, arms c and d are compared against each other using a real interleaved comparison
and W is updated accordingly (Line 16).

To better understand the rationale behind RCS, consider the following example from
the world of tennis: suppose we wish to use aK-armed dueling bandit method to efficiently
identify the world’s best tennis player. In addition, suppose that Rafael Nadal is likely
to win, say with probability 0.55, a match against the other top players since, according
to The New York Times (June 9, 2013) “Nadal is also the only member of the so-called
Big Four to have a head-to-head edge over all the other members of that club: [Novak]
Djokovic, Roger Federer and Andy Murray.” Finally, suppose also that, though Federer
loses in expectation to Nadal, he has a 0.75 probability of beating Djokavic and Murray.
Thus, Nadal is the Condorcet winner but Federer is the Borda winner.

In this example, a key danger is that a K-armed dueling bandits algorithm may
mistakenly conclude that Federer is the champion and stop comparing him against other
players, most importantly Nadal. RCS avoids this pitfall in two ways. First, if Nadal has
not been compared against the others enough times, then ΘNF , where N is Nadal and F
is Federer, will have high variance so that in Phase I, Federer will have difficulty beating
the others in the simulated tournament in order to be chosen as the champion. In cases
where no player beats everyone in the simulated tournament, RCS ensures that everyone
gets a chance at being the champion, including Nadal. This ensures that our posterior
belief in Nadal’s chance of beating all other players will further concentrate above 0.5,
making it even more likely that he will win future simulated tournaments. Second, even
in cases where Federer does win the simulated tournament in Phase I, the fact that Nadal
and Federer have not been compared often means that the upper bound UNF will very
likely be above UFF = 1

2 , hence preventing a fruitless comparison between Federer and
himself. Instead, Federer will be compared to Nadal, ensuring that Nadal’s superiority is
eventually discovered.

5.2 Experiments

In this section we present the results of four sets of experiments that we designed to
answer the following four questions:

45

5. Relative Confidence Sampling

Q1 How do SAVAGE and RCS perform at ranker evaluation on large-scale learning to
rank datasets in terms of the accuracy of the predicted Condorcet winner?

Q2 How do RUCB and RCS perform on these datasets in terms of cumulative regret?

Q3 How does RUCB perform when the parameter α is too small for its theoretical
guarantees to hold? Moreover, how does RCS perform in the same range?

Q4 How do RUCB and RCS scale as the number of arms grows?

We perform these experiments by performing interleaved comparisons between pairs
of arms using Probabilistic Interleave (PI) on the MSLR and Yahoo! Learning to Rank
Challenge datasets, as described in Chapter 3. The answers to these questions are provided
in the following four subsections.

5.2.1 Accuracy Results
The performance of RCS in terms of accuracy was compared against Condorcet SAVAGE,
which was the state of the art in according to this metric [65]. The left plots in Figure
5.1 compare the accuracy of RCS and Condorcet SAVAGE at 10 different horizons on
three 10-armed bandits obtained from the three different datasets by considering 10 of the
feature arms. Note that the horizontal axis is in log scale and accuracy is the percentage
of the runs that correctly produced the best arm as the winner at the given horizon.

Note that, because Condorcet SAVAGE requires the horizon as input, the algorithm
must be rerun from scratch for each horizon. Thus, to obtain the plotted results, we
conducted independent runs for each of the 10 horizons considered. By contrast, since
RCS is a horizonless algorithm, we simply ran it until the longest horizon and then
measured its accuracy at each of the 10 horizons.

Concerning Q1, these results show that RCS has consistently higher accuracy than
Condorcet SAVAGE on all datasets. This is a particularly striking result because RCS
does not have any parameters optimized for the specific horizons in these experiments.
Condorcet SAVAGE, by contrast, has the advantage that it receives the horizon as input
and can thus adapt its behavior accordingly. Nonetheless, RCS outperforms Condorcet
SAVAGE according to the metric for which Condorcet SAVAGE was designed. Though
the lines appear close in the graph due to the log scale, the learning speed actually
differs substantially: RCS reaches the same level of accuracy almost twice as quickly as
Condorcet SAVAGE. For example, on the Yahoo! Set 1, RCS achieves an accuracy of 0.8
after 1000 steps while SAVAGE achieves it only after 2000 steps.

We also provide the regret accumulated by each algorithm in the right column of plots
in Figure 5.1. Note that these plots are in log-log scale. As with the accuracy plots, these
plots select the performance of separate runs conducted at each horizon for Condorcet
SAVAGE, while each RCS run was used to measure regret at all horizons. As is clear from
these plots, RCS dramatically outperforms Condorcet SAVAGE despite being ignorant of
the predetermined horizon. In fact, in each experiment, by the time Condorcet SAVAGE
reaches 100% accuracy, it has accumulated at least 3 times as much regret as when RCS
achieves that same accuracy.

The superior performance of RCS over Condorcet SAVAGE according to both accuracy
and regret is due to related phenomena: the main advantage of RCS over Condorcet

46

5.2. Experiments

102 103 104

time

0.0

0.2

0.4

0.6

0.8

1.0

be
st

ra
nk

er
ra

te
(a

cc
ur

ac
y)

MSLR Dataset with 10 rankers and α = 0.501

Condorcet SAVAGE
RCS α = 0.501

102 103 104 105

time

101

102

103

cu
m

ul
at

iv
e

re
gr

et

MSLR Dataset with 10 rankers and α = 0.501

Condorcet SAVAGE
RCS α = 0.501

102 103 104

time

0.0

0.2

0.4

0.6

0.8

1.0

be
st

ra
nk

er
ra

te
(a

cc
ur

ac
y)

Yahoo! Dataset 1 with 10 rankers and α = 0.501

102 103 104 105

time

101

102

103

cu
m

ul
at

iv
e

re
gr

et

Yahoo! Dataset 1 with 10 rankers and α = 0.501

102 103 104

time

0.0

0.2

0.4

0.6

0.8

1.0

be
st

ra
nk

er
ra

te
(a

cc
ur

ac
y)

Yahoo! Dataset 2 with 10 rankers and α = 0.501

102 103 104 105

time

101

102

103

cu
m

ul
at

iv
e

re
gr

et

Yahoo! Dataset 2 with 10 rankers and α = 0.501

Figure 5.1: Accuracy (best arm rate) and average cumulative regret over 90 runs; in the
plots in the left column, the x-axis uses a log scale; in the plots in the right column, both
axes use log scales. Log scales were used for the x-axes to make the accuracy plots easier
to read and in the y-axes of the regret plots since the regret accumulated by Condorcet
SAVAGE is an order of magnitude higher than that of RCS.

SAVAGE is that, instead of comparing pairs of arms uniformly randomly, as is the case
with Condorcet SAVAGE, it rapidly focuses on comparing the Condorcet winner against

47

5. Relative Confidence Sampling

10000 20000 30000 40000 50000
time

100

200

300

400

500

600

cu
m

ul
at

iv
e

re
gr

et
MSLR Dataset with 10 rankers and α = 0.501

RUCB α = 0.501

RCS α = 0.501

10000 20000 30000 40000 50000
time

100

200

300

400

500

cu
m

ul
at

iv
e

re
gr

et

Yahoo! Dataset 1 with 10 rankers and α = 0.501

10000 20000 30000 40000 50000
time

100

200

300

400

500

600

cu
m

ul
at

iv
e

re
gr

et

Yahoo! Dataset 2 with 10 rankers and α = 0.501

Figure 5.2: Cumulative regret averaged over 90 runs on the three datasets. All plots use
axes with linear scale, since the two curves are much closer to each other than the ones in
the regret plots in Figure 5.1.

the rest, thereby reducing regret, because one of the summands in the definition of regret
(cf. (2.3)) is now zero and, more importantly, doing so leads to much better estimates of
the probabilities p1j , and thus greater confidence in the supremacy of the best arm. This in
turn leads to more frequent comparisons between the best arm and itself, further reducing
regret and increasing accuracy.

We also tested the accuracy of RUCB and found higher accuracy for RCS than RUCB,
though the difference was relatively small. There was, however, a substantial difference
in the regret performances of RUCB and RCS, as demonstrated in the next section. We
omitted the accuracy curves for RUCB in order to improve the readability of the plots.

5.2.2 Cumulative Regret Results

Turning now to the other method for evaluating K-armed dueling bandits algorithms,
Figure 5.2 shows the expected cumulative regret obtained when applying RUCB and RCS
to three 10-armed dueling bandits problems obtained from the three different datasets.
For both RCS and RUCB, the parameter α is set to be 0.501 so that RUCB’s theoretical
guarantees [78] hold. The curves in the plots show the mean cumulative regret over 90

48

5.2. Experiments

0 50000 100000 150000 200000 250000 300000 350000 400000
time

0

200

400

600

800

1000

1200

1400

cu
m

ul
at

iv
e

re
gr

et

MSLR Dataset with 10 rankers and α = 0.1

RUCB α = 0.1

RCS α = 0.1

Figure 5.3: Cumulative regret averaged over 30 runs.

independent runs of each algorithm. The plots show results on the first 50,000 time steps,
using linear scales on both axes.

Regarding Q2, the plots in Figure 5.2 clearly demonstrate that RCS accumulates
substantially less regret than RUCB, with the former accumulating roughly a third less
regret than latter. In other words, not only does RCS find the best arm more quickly
than RUCB, it also makes less severe errors in the process of doing so. In more concrete
terms, the difference in the regret levels at which the two algorithms plateau is on the
order of 200 in these three datasets, which roughly translates to an extra 2000 interleaved
comparisons involving suboptimal arms: this is because the probability with which
the Condorcet winner beats the remaining arms is around 0.6. Needless to say, this
performance difference can have a great impact on user satisfaction and engagement.
Thus, these results highlight the benefits of a sampling-based approach to exploration.

Moreover, given the qualitative similarity between the performances of RUCB and
RCS when α > 0.5, we strongly suspect that similar regret bounds as those proven for
RUCB [78] also hold for RCS. However, the use of sampling would necessitate a more
intricate theoretical argument that we leave as future work.

Finally, in these experiments both algorithms had similar variance across runs; the
best performing run of RUCB had a higher regret curve than the average regret curve of
RCS.

5.2.3 Stability of RUCB and RCS

The improved performance of RCS over RUCB in the previous section can be attributed
to the fact that RCS engages in less unnecessary exploration. Since lowering α makes
both RCS and RUCB less exploratory, an important question, as posed in Q3, is whether
regret can be even further reduced by setting α to values below 0.5.

To address this question, we investigate the stability of RUCB and RCS by setting
α = 0.1, which lies outside the range permitted by RUCB’s theoretical results. Figure
5.3 shows the cumulative regret results averaged over 30 runs of both RUCB and RCS on

49

5. Relative Confidence Sampling

the MSLR dataset: fewer runs were used in this case to illustrate how easily RUCB can
misbehave when α is below 0.5. These results show that the average cumulative regret for
RUCB grows linearly, which was due to two of the runs never reaching the point where
they keep interleaving the best arm with itself. By contrast, though RCS accumulates
almost twice as much regret at α = 0.1 than α = 0.501, the performance degradation is
much less severe than for RUCB, with RCS’s cumulative regret curve flattening much
more. Similar results were also observed with the other datasets.

The performance difference is due to the fact that reducing α results in shrinking
the confidence intervals maintained by RUCB, which results in the tournament phase
of the algorithm not being exploratory enough. Hence, RUCB focuses prematurely on
a single arm that has a temporary advantage over the others, preventing it from getting
better estimates of the comparison probabilities between the Condorcet winner and the
rest, which is necessary for the Condorcet winner to be chosen by the tournament. This,
however, is not a stumbling block for RCS because there are no confidence intervals in the
tournament phase, which relies on sampling instead. Figure 5.3 demonstrates that these
samples ensure enough exploration to avoid getting stuck with a suboptimal arm. Thus,
while lower values of α are not beneficial to either algorithm, RCS remains stable while
RUCB can experience the catastrophic negative performance associated with linear regret.

5.2.4 Size of the Set of Rankers

In order to study the issue of scalability, we compare RCS to RUCB on problems with 20,
30 and 40 arms, all extracted from the MSLR dataset. See Figure 5.4.

Regarding Q4, these results show that the cumulative regret curve of RCS flattens
much sooner than that of RUCB. Thus, RCS starts focusing on the best arm more quickly
than RUCB: more specifically, where the two curves cross, RUCB was spending on
average 6 to 9 times more iterations interleaving non-optimal arms than RCS. For instance,
in the experiments with 20 arms, in the vicinity of the crossing point, 3.6% of RCS’s
comparisons involved subptimal arms, whereas 27% of RUCB’s did; the same quantities
for the 30 and 40 arm experiments are 1.9% vs. 17% and 3.3% vs. 21%. On the other
hand, at time T = T0

2 , where T0 is the time at which the two average regret curves cross,
these differences are much smaller with the same numbers being 31% vs. 33%, 31% vs.
36% and 44% vs. 45% for the 20, 30 and 40 arm experiments, respectively.

Note that this more rapid convergence to the best arm requires more aggressive
exploration early on. This can be deduced from the fact that, before plateauing, the red
curves for RCS have slightly steeper slopes than the green curves for RUCB during the
same period. This is due to the fact that RCS abstains from removing any arms from
consideration until it became clear which arm is the best, whereas RUCB stops comparing
poorer arms earlier in the process. Nevertheless, RCS starts interleaving the best arm with
itself in substantially fewer iterations and thus accumulates much less regret in the long
run. For instance, at time T = 2T0, where T0 is the time at which the two average regret
curves cross, the average cumulative regret of RUCB is 30%, 12.3% and 12.6% higher
than that of RCS for 20, 30 and 40 arm experiments, respectively.

Moreover, the regret curves for RCS are much flatter after they plateau than those of
RUCB, which means that, once the best arm is identified, RCS is more likely to avoid
futile interleaved comparisons with suboptimal arms. More precisely, at time T = 2T0,

50

5.3. Summary

0 500000 1000000
time

0

1000

2000

3000

4000

5000

6000
cu

m
ul

at
iv

e
re

gr
et

MSLR Dataset with 20 rankers and α = 0.501

RUCB α = 0.501

RCS α = 0.501

0 500000 1000000 1500000
time

0

2000

4000

6000

8000

10000

12000

14000

16000

cu
m

ul
at

iv
e

re
gr

et

MSLR Dataset with 30 rankers and α = 0.501

0 500000 1000000 1500000 2000000
time

0

5000

10000

15000

20000

25000

cu
m

ul
at

iv
e

re
gr

et

MSLR Dataset with 40 rankers and α = 0.501

Figure 5.4: Cumulative regret averaged over 90 runs on the MSLR-WEB30K dataset, with
20, 30, 40 arms. For comparison, the plot for 10 arms is the leftmost plot in Figure 5.2;
note that the scales differ between the four plots, which is necessary in order to illustrate
the non-asymptotic portion of all of the results.

the percentage of comparisons RUCB devotes to suboptimal arms is still roughly 8 times
higher than that of RCS, e.g., 2% and 0.3%, respectively, for the 20 arm experiment.

5.3 Summary

In this chapter, we have proposed a new method for addressing the K-armed dueling
bandit problem and experimentally evaluated it using online ranker evaluation. Our
method, Relative Confidence Sampling (RCS), was evaluated against the existing methods
on large scale learning to rank datasets using two measures of performance: accuracy and
cumulative regret. RCS significantly outperforms the existing state-of-the-art methods
according to both measures. In particular, given the need in online ranker evaluation
scenarios to identify and compare the best arm as quickly as possible, RCS has a large
advantage over SAVAGE and RUCB, since when asked to return the best arm with
accuracy in mind, it has a higher probability of returning the best arm, while minimizing
the number of queries wasted on comparing suboptimal arms (as evidenced by the lower
regret curves for RCS), without requiring prior knowledge of the length of the evaluation

51

5. Relative Confidence Sampling

or imposing restrictive assumptions such as a total ordering of the arms.
Given the results in §5.2.4, an interesting question that naturally arises is whether or

not there exists an algorithm that scales well with the number of arms. This question is
partially addressed in the next chapter, where we present a dueling bandit algorithm, called
mergeRUCB, that asymptotically has linear dependence on the number of arms, rather
than a quadratic one. Other attempts at dealing with this question are works such as [11]
and [72], which deal with an infinite number of arms, with the additional assumption that
the dueling bandit problem arises from underlying utilities that determine the probability
with which an arm beats another. However, we pose as an interesting research question
for further inquiry whether it is possible to adapt various extensions of the UCB algorithm
to the case with infinitely many arms [13, 23, 53, 63, 66] to the dueling bandit setting in
order to devise an algorithm that can solve continuous-armed dueling bandit problems,
under no more restrictive an assumption than the existence of a Condorcet winner.

Finally, there remains the issue of our assumption that the dueling bandit problem
contains a Condorcet winner, which might not hold in practice. We address this point
in Chapter 7 with the introduction of the Copeland Confidence Bound algorithm that
searches for a generalization of the Condorcet winner called the Copeland winner, which
is guaranteed to exist.

52

6
MergeRUCB

In this chapter, we address the scalability issue brought up at the end of the last chapter.
More specifically, a challenge that the algorithms considered so-far face is that the number
of parameters that must be learned grows quadratically with K, i.e., the number of arms.
This in turn results in excessive exploration. The challenge is especially relevant in the
case of web search, where a large number of arms may be under consideration. This is of
practical significance because as reported for instance in [48] on any given day over 200
concurrent experiments are being run at Bing, with users ending up in one of billions of
possible variants of the site. Therefore, algorithms, such as SAVAGE, RUCB and RCS,
would have difficulty scaling to such large values of K. Other algorithms such as IF and
BTM avoid this problem by making more restrictive assumptions, such as a total ordering
of the arms, that make it possible to identify the best arm without explicitly considering
all pairs. However, this approach is problematic because the required assumptions often
do not hold in applications such as ranker evaluation.

We remedy the above shortcomings by bridging the gap between these two ap-
proaches. Specifically, we propose and evaluate a new method for evaluating rankers,
called mergeRUCB, that makes only weak assumptions about the K-armed dueling
bandit problem, but provably requires only O(K) comparisons and therefore performs
well when many rankers must be compared, as is typically the case in web search. As the
name suggests, mergeRUCB uses a divide and conquer strategy to reduce the number of
exploratory comparisons carried out by the evaluation process. It proceeds by grouping
rankers into small batches so that fewer comparisons are needed before rankers can be
eliminated.

The remainder of this chapter is organized as follows: in §6.1, we describe the
algorithm and provide intuition for the specific choices made in its design; in §6.2, we
state our main theoretical result and the necessary lemmas; in §6.3, we provide formal
proofs for the claims made in the previous section; in §6.4, we conduct an experimental
evaluation of mergeRUCB, comparing it against other dueling bandit algorithms using
large-scale examples from ranker evaluation; and finally §6.5 gives an overview of the
findings in this chapter.

53

6. MergeRUCB

6.1 The Algorithm

In this section, we present mergeRUCB, shown in Algorithm 4, to deal with K-armed
dueling bandit problems involving many arms. As with sorting algorithms, most naive
approaches to the K-armed dueling bandit problem suffer from quadratic dependence
on K because they require every arm to be compared against every other arm. However,
this quadratic dependence can be avoided by a mergesort-style algorithm that carries
out comparisons only “locally,” i.e., items are placed in small batches that are processed
separately and then merged together.

The same principle underlies mergeRUCB. The crucial difference is that, unlike in
sorting, one comparison is not sufficient to determine which of a pair of arms is better,
since feedback is stochastic. Furthermore, the number of times two arms must be compared
is larger if the arms are more similar. In the worst case, we have pij = 0.5 and the two
arms cannot be distinguished. This case is problematic because ρi and ρj might be weak
arms overall (i.e., lose badly to other arms), in which case comparing them to each other
many times will incur large regret. MergeRUCB deals with this difficulty by using the
best arm in the batch to eliminate the rest. If a batch contains only similar arms and is thus
too slow in eliminating arms, it is combined with other batches that have more variety.

In the following, we explain the components of mergeRUCB, which proceeds in stages
(Line 4). Before the first stage, the algorithm groups arms into small batches Bi (Line 2).
Then, within each stage, mergeRUCB carries out interleaved comparisons among arms
that reside in the same batch. At any given time, the choice of arms to compare against
each other inside a given batch is guided by a matrix U of upper confidence bounds (Line
7), which is obtained by optimistically estimating the preference probabilities pij : the
optimism is included to ensure sufficient exploration among the arms. The matrix U is
used both to eliminate arms if they lose to other arms by a wide margin (Line 8) and to
choose the arm ρd (Line 10) that is selected so as to hasten the elimination of ρc, which is
chosen randomly. The algorithm proceeds in this fashion until the number of remaining
arms becomes small (Line 12), at which point the stage is concluded by merging pairs of
batches together to form bigger batches (Line 13). This initiates the next stage, and the
process repeats until a single arm remains. Our theoretical results state that the probability
that this remaining arm is the Condorcet winner is greater than 1− δ.

6.2 Theory

In this section, we provide theoretical guarantees for the proper functioning and scalability
of mergeRUCB. We begin by listing a number of reasonable assumptions that we impose
upon the problem in order to guarantee the proper functioning of the algorithm:

A1. We assume that there is no repetition of rankers, i.e., any pair of rankers ρi and ρj are
different and thus pij 6= 0.5, unless both rankers are uninformative: they provide
no useful information and so lose to all other rankers, i.e., pki ≥ 0.5 and pkj ≥ 0.5
for all k.

A2. We assume that at most a third of the rankers are uninformative.

54

6.2. Theory

Algorithm 4 mergeRUCB(δ)
Require: A set of arms ρ1, . . . , ρK ;

an oracle that can take a pair of arms and return one as the winner (e.g., an interleaved
comparison method);
the size of each partition, p ≥ 4;
the maximum probability of failure, δ;
α > 1

2 .
1: W← 0K×K {2D array of wins: Wij is the number of times ρi has beaten ρj}
2: B1 =

{
{ρ1, . . . , ρp}︸ ︷︷ ︸

B1

, . . . , {ρ(b1−1)p+1, . . . , ρK}︸ ︷︷ ︸
Bb1

}
, a set of disjoint batches of arms,

with b1 = bKp c

3: C(δ) =

⌈(
(4α−1)K2

(2α−1)δ

) 1
2α−1

⌉

4: S = 1 {The stage that the algorithm is in.}
5: for t = 1, 2, . . . do
6: i = t mod bS

7: U = W
W+WT +

√
α ln(t+C(δ))

W+WT , where all operations are element-wise.

8: For each ρk ∈ Bi if Ukl <
1
2 for any ρl ∈ Bi, remove ρk from Bi.

9: Select ρc ∈ Bi randomly.
10: Set d := arg max{l|ρl∈Bi\{ρc}}Ulc.
11: Compare ρc against ρd and increment Wcd if c won and Wdc otherwise.

12: if
∑
i |Bi| ≤

K

2S
then

13: Combine pairs of batches of arms so that each new batch has between p/2 and
3p/2 arms in it, pairing the smallest batches with the largest ones, making sure
that each batch contains at least two arms. Update the sets Bi, putting them all
in the set BS , and define bS := |BS |.

14: S = S + 1

In online ranker evaluation in web search settings, assumption A1 is reasonable because
the rankers ρi under evaluation are typically the result of substantial deliberation and
research and so the chances of the same informative ranker appearing twice are slim. The
second assumption is motivated by the Yahoo! Learning to Rank challenge dataset, in
which either 104 or 181 (depending on the dataset) out of 700 feature rankers always return
zero. More generally, it is plausible that some uninformative rankers are inadvertently
included in the evaluation process. However, if there are too many of them, the evaluation
task will be lengthened.

Here, we provide a high probability bound on the regret accumulated by mergeRUCB;
Table 6.1 lists our notation.

Theorem 6.1. Given a K-armed dueling bandit problem with rankers ρ1, . . . , ρK with
ρ1 the Condorcet winner, then if we apply mergeRUCB(δ), with probability 1− δ we have

55

6. MergeRUCB

Table 6.1: List of notation used in Section 6.2.Symbol Definition

K Number of rankers
α Exploration parameter in Algorithm 4
δ Probability of failure
p Initial size of the batches
S Stage of the algorithm
BS Set of batches in stage S
bS Number of batches in stage S
RT Cumulative regret at time T
wij(t) Number of times ρi beat ρj in the first t time-steps
Nij(t) wij(t) + wji(t)

uij(t) Uij :=
wij(t)

Nij(t)
+

√
α ln t

Nij(t)
lij(t) 1− uji(t)

C(δ)

(
(4α− 1)K2

(2α− 1)δ

) 1
2α−1

∆ij pij − 0.5
∆B,min mini,j∈B ∆ij

TB
4α
(
q−1

2

)
log(T + C(δ))

∆2
B,min

Ti TBi

∆̂S

(
2bS
3

+ 1
)th

largest element of {∆B,min|B ∈ BS}

T̂S
8αpK ln(T + C(δ))

∆̂2
S

ln t Natural logarithm of t

the following bound on cumulative regret at time T :

RT ≤
16αpK ln(T + C(δ)) max

j
∆1j

min
S=1,...,dlog2 Ke

∆̂2
S

≤ 8αpK ln(T + C(δ))

min
{(i,j) | pij 6=0.5}

∆2
ij

.

This theorem says that if mergeRUCB is run for T time-steps with probability of failure set
to δ, then with probability 1− δ, the total regret accumulated by the algorithm is bounded
by an expression that is logarithmic in T and linear in K. This in turn tells us that the
number of suboptimal interleaved comparisons grows linearly in K, since accumulating
non-zero regret corresponds to suboptimal comparisons. Unlike existing results in the
literature, the strongest of which take the form O(K2) +O(K log T), Theorem 6.1 is the
first regret bound that is completely linear in K.

Furthermore, even though as stated the above theorem is a high probability bound, by
setting δ = 1/T , we obtain a bound on the expected regret of mergeRUCB at time T as
follows: since the maximum amount of regret that the algorithm can accumulate in the

56

6.2. Theory

first T time-steps is bounded by T , we have

ERT ≤ δT + (1− δ)8αpK ln(T + C(δ))

∆2
min

≤ 1 +
8αpK lnT

∆2
min

+
8αpKC(1/T)

T∆2
min

,

≤ 1 +
8αpK lnT

∆2
min

+
8αpK

(
T (4α−1)K2

(2α−1)

) 1
2α−1

T∆2
min

,

where ∆min = min{(i,j) | pij 6=0.5}∆2
ij and the second inequality is obtained by using a

Taylor expansion of ln t at t = T . Now, if α ≥ 1, the last summand in the right-hand
side of the above inequality is in O(1), and so we have a finite-horizon expected regret
bound of the form O(K lnT). Moreover, this finite horizon bound can be turned into an
infinite horizon one (up to ln lnT factors) using the ‘squaring trick’ [4]. We would like to
emphasize that these results hold under very general assumptions that do not preclude the
existence of cyclical relationships among the rankers.

The proof of Theorem 6.1 relies on the following lemma.

Lemma 6.2. In mergeRUCB(δ), consider a batch B of size q, at least one of whose
rankers is informative. Let ∆B,min denote the smallest nonzero gap ∆kl := |pkl− 1

2 | 6= 0,
with ρk, ρl ∈ B. Then, the number of comparisons NB that could have happened between
pairs of rankers in B before it is merged with another batch is bounded with probability
1− δ as follows:

NB < TB :=
4α
(
q−1

2

)
ln(T + C(δ))

∆2
B,min

.

The proof of this lemma follows directly from the fact that the number of comparisons
between any pair of rankers in the batch is at most 4α ln(T+C(δ))

∆2
B,min

, as proven in Lemma 6.3

below, since there are
(
q−1

2

)
distinct pairs of rankers in B.

Lemma 6.3. Given any pair of distinct rankers ρi, ρj ∈ B, the maximum number of
comparisons that could have been carried out between these two rankers in the first
T time-steps of Algorithm 4 before a merger between B and another batch occurs, is
bounded by 4α ln(T+C(δ))

∆2
B,min

.

The proof of Lemma 6.3 considers the two possible cases: either at least one of the rankers
under consideration is informative or both are uninformative. In the first case, if the two
rankers have been compared more times than the above number, we show that one of the
two must have eliminated the other, while in the second case, if the two rankers have been
compared too many times, then a third, informative ranker (whose existence is guaranteed
by the assumption of the lemma) must have eliminated one of them.

The proof of the above lemma relies on Lemma 4.1, which we repeat here for the
reader’s convenience:

57

6. MergeRUCB

Lemma 6.4. Let P := [pij] be the preference matrix of a K-armed dueling bandit
problem with arms {a1, . . . , aK}. Then, for any dueling bandit algorithm and any α > 1

2
and δ > 0, we have

P
(
∀ t > C(δ), i, j, pij ∈ [lij(t), uij(t)]

)
> 1− δ.

Given the above facts, we can describe the main idea of the proof of Theorem 6.1 as
follows. The central difficulty in the proof is that there may exist batches that consist
entirely of uninformative rankers. This is problematic because in these batches no rankers
are eliminated, since for each pair of rankers ρi, ρj in such a batch, we have pij = 0.5 and
so with high probability we have neither uij < 0.5 nor uji < 0.5. The proof overcomes
this difficulty by showing that such fully uninformative batches all disappear at the end
of the first stage of the algorithm. This occurs because of how the batches are merged at
the end of each stage (cf. Line 13 of Algorithm 4): the largest batches are combined with
the smallest ones. Since uninformative batches inevitably fail to eliminate any rankers,
they have the largest number of rankers, while the smallest batches are guaranteed to
contain informative rankers. Therefore, from the second stage onwards, mergeRUCB is
guaranteed not to compare rankers in a batch, none of whose elements will be eliminated.

6.3 Proofs

In this section, we prove the results stated in the last section.

Proof of Lemma 6.3. Let us begin by assuming that the number of comparisons between
ρi and ρj is greater than 4α ln(T+C(δ))

∆2
B,min

, and let us distinguish between two cases:

1. At least one of ρi and ρj is informative: in this case, by assumption A1, we know
that pij 6= 0.5, and moreover by Lemma 6.4, we know that with probability 1−δ we
have pij ∈ [lij(t), uij(t)], with t being the last time that ρi was compared against
ρj and lij := 1−uji. However, this tells us that one of the two rankers should have
been eliminated already, since we have

uij(t)− lij(t) = 2

√
α ln(t+ C(δ))

Nij(t)

≤ 2

√
α ln(T + C(δ))

Nij(t)

< 2

√√√√√
α ln(t+ C(δ))

4α ln(T + C(δ))

∆2
B,min

= ∆B,min ≤ ∆ij , (6.1)

where the last inequality is due to our assumption that Nij(t) >
4α ln(T+C(δ))

∆2
B,min

.

Therefore, the confidence interval [lij(t), uij(t)] does not contain 0.5, which is the
criterion used by Algorithm 4 to eliminate rankers.

58

6.3. Proofs

2. Rankers ρi and ρj are both uninformative: by assumption A1 and Lemma 6.4,
uninformative rankers cannot eliminate informative rankers, so no matter how many
rankers have been eliminated from B, there must be an uneliminated third ranker
ρk that is informative in the batch together with ρi and ρj , and by assumption A1,
we have pki > 0.5 and pkj > 0.5. Again, applying Lemma 6.4 as in the previous
case, we know that with probability 1− δ we have

0.5 = pij ∈ [lij(t), uij(t)];

on the other hand, using the same chain of inequalities as in (6.1), we can deduce
that

uij(t)− lij(t) < ∆B,min ≤ min{∆ki,∆kj}. (6.2)

Now, in order for ρi to have been compared to ρj at time t, we must have had one
of the following two scenarios:

(a) mergeRUCB chose c = i and d = j at time t: this requires the satisfaction of
the following two conditions:

• uij(t) ≥ 0.5, by Line 8 of Algorithm 4.
• lij(t) ≤ pik: this is because in order to have d = j, we must have
uji(t) ≥ uki(t) and by Lemma 6.4, we have uki(t) ≥ pki, and so
lij(t) := 1− uji(t) ≤ 1− pki = pik.

This means that we have uij(t) − lij(t) ≥ ∆ki. However, this contradicts
inequality (6.2), so we could not have had (c, d) = (i, j).

(b) mergeRUCB chose c = j and d = i at time t: repeating the same argument
as in the previous case with i and j swapped, we get uji(t)− lji(t) ≥ ∆kj ,
which also contradicts inequality (6.2).

Therefore, our assumption that the number of comparisons between ρi and ρj is greater
than 4α ln(T+C(δ))

∆2
B,min

cannot hold in either scenario.

Proof of Theorem 6.1. We begin by considering the first stage of the algorithm:

S = 1 During the first stage, we have two types of batches: those that consist solely
of uninformative rankers and those that contain at least one informative ranker.
Assumption A2 implies that at least two thirds of the batches have at least one
informative ranker, so we can apply Lemma 6.2 to them.

To estimate number of time-steps mergeRUCB spends in its first stage, we introduce
the following notation: recall from Algorithm 4 that b1 is the number of partitions
in the first stage of the algorithm and let ∆̂1 denote the

(
2b1
3 + 1

)th
largest number

in the set {∆B,min|B ∈ B1}. Now, once all but one of the rankers in every batch B
with ∆B,min ≥ ∆̂1 have been eliminated, the algorithm moves to the next stage.
This occurs because at least half of the rankers have been eliminated, since there are
2b1
3 + 1 batches, inside which p− 1 rankers are eliminated, and so the total number

59

6. MergeRUCB

of eliminated rankers is at least
(

2b1
3

+ 1

)
(p− 1) ≥ 2(b1 + 1)

3
(p− 1)

≥ 2K

3p
(p− 1)

≥ 2K

3

3

4
≥ K

2
. (since p ≥ 4)

Therefore, Line 12 of Algorithm 4 forces the next stage to begin. Now, applying
Lemma 6.2 to the 2b1

3 batches B with ∆B,min ≥ ∆̂1, and using the fact that the
size of the batches is at most 2p (cf. Line 2 of Algorithm 4), we can conclude that
with probability 1− δ the number of time-steps in the first stage of mergeRUCB
could not have been more than

K

p
× 4α

(
2p
2

)
ln(T + C(δ))

∆̂2
1

≤ 8αpK ln(T + C(δ))

∆̂2
1

=: T̂1.

S ≥ 2 At the end of the first stage of the algorithm, we combine the largest remaining
batches with the smallest ones. The fact that exactly half of the rankers were
eliminated in the first stage implies that this policy for combining batches forces
every fully uninformative batch to acquire an informative ranker, since by Assump-
tion A1 and Lemma 6.4, the probability of an uninformative ranker eliminating an
informative ranker is less than δ. Hence, from this point on, we can apply Lemma
6.2 to every batch.

We can use a similar argument as with the first stage of the algorithm to bound the
number of time-steps that mergeRUCB would spend in the Sth stage. To that end,
let ∆̂S denote the

(
2bS
3 + 1

)th
largest number in the set {∆B,min|B ∈ BS}. Now,

applying the same argument as above and using the fact that in stage S we have
K/2S−1 rankers, we get that the number of comparisons in stage S of mergeRUCB
is bounded by

8αpK ln(T + C(δ))

2S−1∆̂2
S

=: T̂S .

After dlog2Ke stages, only a single ranker remains, beyond which point mergeRUCB
goes on interleaving that ranker with itself. This ranker is the Condorcet winner
with probability 1− δ because the probability of the Condorcet winner being elimi-
nated by another ranker is at most δ. Therefore, in order to estimate the total regret
accumulated by mergeRUCB we can sum the T̂S for S = 1, . . . , dlog2Ke and
multiply the result by the maximum regret any comparison can result in, which is
maxj ∆1j . This gives the bound in the statement of Theorem 6.1 once we notice
that

dlog2 Ke∑

S=1

1

2S−1∆̂S

≤ 2

min
S=1,...,dlog2 Ke

∆̂2
S

This concludes the proof of Theorem 6.1.

60

6.4. Experiments

6.4 Experiments

We use all three learning to rank datasets discussed in Chapter 3 to test the scalability of
mergeRUCB in comparison to the other algorithms discussed so far. More specifically,
our experiments aim to answer the following specific questions:

Q1 Does mergeRUCB outperform BTM, the state-of-the-art online ranker evaluation
algorithm for large-scale evaluation problems?

Q2 How does mergeRUCB scale as the number of arms increases in comparison to
existing algorithms?

Q3 How does the click model affect the scalability of the various algorithms?

Q4 How does the performance of mergeRUCB depend on the parameters α and p? In
particular, how do our default parameters perform?

For the large-scale experiments in §6.4.1, aimed at answering Q1, we use all of the
feature arms available in these datasets and perform the comparisons between arms by
directly using Lerot to simulate interleaved comparisons. In this case, our assumption that
there exists a Condorcet winner happens to be satisfied in the case of all four datasets. For
all other experiments, for each value of K tested, we choose 10 subsets of arms of size
K and apply each algorithm to each subset: this choice is made by sampling subsets of
size K at random and keeping the first 10 that have Condorcet winners. As illustrated in
[77], the probability that a subset has a Condorcet winner depends on K, but is generally
very high. In addition, since the Lerot-based experiments for Q1 took three months to
complete,1 we use a faster proxy setup for the other experiments: for each pair of feature
arms ρi, ρj in the MSLR dataset, we estimate the probability pij that ρi beats ρj by
simulating 400,000 interleaved comparisons between the two using Lerot.2 Given these
numbers pij , in the remaining experiments, we perform comparisons between arms ρi and
ρj for each pair (i, j) by drawing a sample from the Bernoulli distribution with mean pij ,
i.e., by flipping a biased coin. This is a standard approach to evaluating dueling bandit
algorithms (cf. [73, 75, 78]). We verify the accuracy of the proxy approach in §6.4.2.

In all experiments other than those in §6.4.5, we use the following parameter settings:
α = 1.01 and p = 4. In fact, the only constraint on α is that it should be greater than 0.5
in order for C(δ) (cf. Line 3 in Algorithm 4) to be well-defined and for our theoretical
results in §6.2 to hold. However, as α approaches 0.5, the expression for C(δ) grows
super-exponentially as a function of α, and so the benefits of having more slowly growing
confidence intervals (cf. Line 7 of Algorithm 4) are outweighed by the added exploration
caused by starting with larger confidence intervals. Indeed, as demonstrated in §6.4.5,
there is little or no gain from changing these parameters from the above values. Moreover,
for all of our experiments, we chose the probability of failure, δ to be 0.01. Finally, all
experiments other than those in §6.4.4 used the navigational click model (cf. Table II of
[37]) to simulate user click behavior.

1This was primarily due to shortcomings of the competing algorithms, which need to be run sequentially. By
contrast, mergeRUCB can easily be parallelized across different batches.

2The resulting matrices can be found here (as Numpy matrices): bit.ly/nips15data

61

bit.ly/nips15data

6. MergeRUCB

105 106 107

time

200000

400000

600000

800000

1000000

1200000

cu
m

ul
at

iv
e

re
gr

et
MSLR Dataset with 136 Rankers

Beat the Mean
RUCB α = 0.51

mergeRUCB α = 1.01

105 106 107

time

500000

1000000

1500000

2000000

2500000

3000000

cu
m

ul
at

iv
e

re
gr

et

Yandex Dataset with 245 Rankers

105 106 107

time

1000000

2000000

3000000

4000000

5000000

6000000

cu
m

ul
at

iv
e

re
gr

et

Yahoo! Dataset 1 with 700 Rankers

105 106 107

time

1000000

2000000

3000000

4000000

5000000

6000000

cu
m

ul
at

iv
e

re
gr

et

Yahoo! Dataset 2 with 700 Rankers

Figure 6.1: Average cumulative regret plots for four large-scale evaluation problems.

105 106 107

time

200000

400000

600000

800000

1000000

1200000

cu
m

ul
at

iv
e

re
gr

et

MSLR Dataset with Lerot

Beat the Mean
Condorcet SAVAGE
RCS α = 0.51

RUCB α = 0.51

mergeRUCB α = 1.01

105 106 107

time

0

200000

400000

600000

800000

1000000

cu
m

ul
at

iv
e

re
gr

et

MSLR Dataset with Proxy

Figure 6.2: Average cumulative regret on the 136-ranker evaluation problem arising from
the MSLR dataset using Lerot (left) or the proxy approach (right).

In the following subsections, we present our experimental results to answer the
questions raise above.

62

6.4. Experiments

20 40 60 80 100 120
number of rankers

0

200000

400000

600000

800000

1000000

cu
m

ul
at

iv
e

re
gr

et
at

tim
e

10
7

Scalability for MSLR Navigational CM

Figure 6.3: Average cumulative regret after 107 iterations on K-ranker evaluation prob-
lems with K ranging from 10 to 130.

6.4.1 Large scale experiments

We first address our main research question, Q1. We tested mergeRUCB on the full
set of feature vectors of the four large learning to rank datasets described in Table 3.1,
directly using Lerot instead of the proxy approach. The MSLR results, shown in Figure 6.1
(top-left), were carried out for 10 million time-steps, since two of the three algorithms
converge to the Condorcet winner within that time frame. For the remaining datasets,
we extended the horizon to 25 million time-steps, again to make sure two of the three
algorithms converge. These results are shown in the remaining plots in Figure 6.1. Note
that, in these plots and those that follow, the time axis uses a log scale, while the vertical
axis uses a linear scale.

For these experiments, we tested three algorithms: mergeRUCB and RUCB, which
had the best performance in the scalability experiments in §6.4.3, together with BTM,
which is the state of the art K-armed dueling bandit algorithm for large K, according
to [65, 73]. These plots show that, as the number of arms increases (going from 136 to
245 to 700), so does the difference between the performance of mergeRUCB and the
remaining algorithms.

6.4.2 Lerot simulation vs Bernoulli samples

The remaining results presented in this work use the proxy approach described in §6.4.
So, before proceeding further, we validate the proxy approach by showing that it provides
qualitatively similar results to those generated with Lerot. To do so, we compare the
performances of five K-armed dueling bandit algorithms on the MSLR dataset using
both approaches. The results for Lerot are shown in Figure 6.2 (left), while those of the
proxy approach are shown in Figure 6.2 (right). Comparing the two plots shows that
there is no qualitative difference in the relative performance of the various dueling bandit
algorithms under consideration here. Consequently, we use the proxy method to conduct

63

6. MergeRUCB

105 106 107

time

0

50000

100000

150000

200000

250000

300000

350000

cu
m

ul
at

iv
e

re
gr

et

MSLR Navigational CM with 70 Rankers

BTM
Condorcet SAVAGE
RCS α = 0.51

RUCB α = 0.51

mergeRUCB α = 1.01

Figure 6.4: Average cumulative regret on the 70-ranker evaluation problem arising from
MSLR.

the experiments described in the rest of this section.

6.4.3 Dependence on K

To address Q2, we compare 5 dueling-bandit algorithms on K-ranker evaluation exper-
iments with K ranging from 10 to 130 in increments of 10 with the K arms chosen
randomly from the 136 feature arms in the MSLR dataset.

Figure 6.3 shows the results: the horizontal axis measures K, the number of arms,
while the vertical axis shows the regret accumulated after 107 iterations. As this plot
demonstrates, for K ≥ 70, mergeRUCB outperforms all other dueling bandit algorithms.

Of course, while Figure 6.3 shows performance across different values of K, it does
so for only one moment in time: after 107 iterations. However, comparing Figure 6.3
to Figure 6.2 confirms that, for K = 136, the regret accumulated by the algorithm after
107 time-steps is a good indication of the overall performance of the algorithm over time.
Figure 6.4 confirms that the same is true when K = 70.

6.4.4 Effect of click models

To address Q3, we conducted the same scalability test as in §6.4.3, using three different
click models proposed in [37], namely the perfect, navigational and informational click
models. The perfect click model represents the behavior of a persistent user, who inspects
every single document in the retrieved list and clicks on each document with a probability
proportional to the document’s relevance to the given query. The navigational click model
simulates the behavior of a user who is trying to satisfy a specific information need and is
likely to stop inspecting the items in the list upon viewing a relevant document. Finally,
the informational click model mimics the behavior of a user whose information need is
not satisfied by a single document and is trying to gather information about a general

64

6.4. Experiments

20 40 60 80 100 120
number of rankers

0

100000

200000

300000

400000

500000

600000

700000
cu

m
ul

at
iv

e
re

gr
et

at
tim

e
10

7

Scalability for MSLR Perfect CM

Condorcet SAVAGE
RCS α = 0.51

RUCB α = 0.51

mergeRUCB α = 1.01

20 40 60 80 100 120
number of rankers

0

100000

200000

300000

400000

500000

600000

700000

cu
m

ul
at

iv
e

re
gr

et
at

tim
e

10
7

Scalability for MSLR Navigational CM

20 40 60 80 100 120
number of rankers

0

100000

200000

300000

400000

500000

600000

700000

cu
m

ul
at

iv
e

re
gr

et
at

tim
e

10
7

Scalability for MSLR Informational CM

Figure 6.5: Average cumulative regret after 107 iterations on K-ranker evaluation prob-
lems with K ranging from 10 to 130 for the perfect (top-left), navigational (top-right),
and informational (bottom) click models.

topic. Accordingly, the informational click model is more likely to continue inspecting
the items retrieved by the arm even after encountering a relevant document.

The results, shown in Figure 6.5, demonstrate that RCS is affected more severely by
the click model than either mergeRUCB or RUCB. This is because, in our experience, RCS
tends to be sensitive to the margins by which the Condorcet winner beats the remaining
arms: as these gaps shrink, the performance of RCS degrades dramatically. This is
precisely what takes place when one replaces the perfect click model with the navigational
one and the latter with the informational click model, since doing so increases the number
of clicks in interleaved comparisons, making them noisier.

6.4.5 Parameter dependence

To address Q4, we repeated the experiments in §6.4.3, using the following grid of parame-
ters:

(p, α) ∈ {4, 6, 8, 10} × {0.71, 0.81, 0.91, 1.01, 1.11, 1.21}.
Figure 6.6 shows, for each number of arms, the minimum and maximum cumulative
regrets accumulated by mergeRUCB across the above set of parameters, as well as the
regret for the default parameters used in the other experiments. Note that the vertical

65

6. MergeRUCB

20 40 60 80 100 120
number of rankers

104

105

cu
m

ul
at

iv
e

re
gr

et
at

tim
e

10
7

Effect of parameters on mergeRUCB

Worst Parameters
(p, α) = (4, 1.01)

Best Parameters

Figure 6.6: Effect of parameters on mergeRUCB’s with MSLR dataset and navigational
click model.

axis uses a log scale, which is chosen to facilitate comparing the three curves for small
values of K, since in a linear plot they would be too close to distinguish from each other.
As can be seen from the plots, the regret accumulated by mergeRUCB, using the default
parameters (p, α) = (4, 1.01), is consistently close, if not equal, to the regret accumulated
by the best choice of parameters, which validates our intuition that the default parameters
are sensible.

6.5 Summary

In this chapter, we have proposed a new algorithm, called mergeRUCB, for the K-armed
dueling bandit problem in situations that are of particular interest for web search, i.e.,
with large numbers of arms. We conducted extensive experimentation to understand the
behavior of this algorithm in comparison to other online evaluation algorithms. The results
of these experiments demonstrate that mergeRUCB can significantly outperform existing
state of the art algorithms on large-scale evaluation problems. Moreover, we provided
theoretical guarantees proving the proper functioning of mergeRUCB.

The algorithm presented in this chapter makes it feasible for search engines to perform
large-scale online ranker evaluation experiments that might be too costly if other K-armed
dueling bandit algorithms were used. Furthermore, our theoretical results provide the
necessary assurance for undertaking such large-scale evaluation tasks. Since we care
more about the worst-case performance of ranker evaluation algorithms than their average
performance, our theoretical results bound the regret of the algorithm with high probability
rather than proving bounds on expected regret, unlike previous work such as [75, 78].

66

7
Copeland Confidence Bounds

In this chapter, we present the final dueling algorithm discussed in this thesis. The
algorithm, named Copeland Confidence Bounds (CCB), is designed to deal with dueling
bandit problems that lack a Condorcet winner, which is required by all of the algorithms
discussed so far. In such a scenario, there is an over-abundance of proposals for definitions
of what constitutes a winner coming from social choice theory and game theory [58, 61],
with each definition having its merits and shortcomings, and CCB seeks to find one such
definition, called the Copeland winner, as described in Section 2.1.2.

The remainder of this chapter is organized as follows: in §7.1, we present experimental
evidence for the need for an algorithm that generalizes beyond the Condorcet case; in §7.2,
we present the pseudo-code for CCB and motivate some of the choices made in the design
of the algorithm; in §7.3, we present our main result, bounding the regret accumulated by
CCB; in §7.4, we provide proofs of the results stated in the previous section; in §7.5, we
evaluate CCB experimentally, and finally §7.6 offers an overview of the findings in this
chapter.

7.1 Motivation

In this section, we begin by motivating the need for an algorithm such as CCB that can
deal with dueling bandit problems without Condorcet winners (cf. §2.1.2). Moreover, we
offer a comparison between the Copeland winner, the notion used by CCB against other
definitions of what constitutes a winner in the absence of the Condorcet winner. Finally,
we end this section by investigating some quantities that will arise in our regret bounds in
§7.3.

7.1.1 The Condorcet Assumption

To test how stringent the Condorcet assumption is, we use the informational preference
matrix described in §7.5 to estimate for each K = 1, . . . , 136 the probability PK that a
given K-armed dueling bandit problem, obtained from considering K of our 136 feature
rankers, would have a Condorcet winner by randomly selecting 10, 000 K-armed dueling
bandit problems and counting the ones with Condorcet winners. As can be seen from
Figure 7.1, as K grows, the probability that the Condorcet assumption holds decreases
rapidly. We hypothesize that this is because the informational click model explores more

67

7. Copeland Confidence Bounds

0 20 40 60 80 100 120

Number of arms

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

ba
bi

lit
y

Probability of having a Condorcet winner

Figure 7.1: The probability that the Condorcet assumption holds for subsets of the feature
rankers in the MSLR dataset. The probability is shown as a function of the size of the
subset.

of the list of ranked documents than the navigational click model, which was used in
Chapter 4, and so it is more likely to encounter non-transitivity phenomena of the sort
described in [29].

7.1.2 Other Notions of Winners

As mentioned before, numerous other definitions of what constitutes the best arm have
been proposed, some of which specialize to the Condorcet winner, when it exists. This
latter property is desirable both in preference learning and social choice theory: the
Condorcet winner is the choice that is preferred over all other choices, so if it exists, there
is good reason to insist on selecting it. The Copeland winner, as discussed in this chapter,
and the von Neumann winner [24, 58] satisfy this property, while the Borda (a.k.a. Sum
of Expectations) and the Random Walk (a.k.a. PageRank) winners [14] do not. The von
Neumann winner is in fact defined as a distribution over arms such that playing it will
maximize the probability to beat any fixed arm. The Borda winner is defined as the arm
maximizing the score

∑
j 6=i pij and can be interpreted as the arm that beats other arms by

the most, rather than beating the most arms. The Random Walk winner is defined as the
arm we are most likely to visit in some Markov Chain determined by the preference matrix.
In this section, we provide some numerical evidence for the similarity of these notions in
practice, based on the sampled preference matrices obtained from the ranker evaluation
from IR, which was described in the Section 7.1.1. Table 7.1 lists the percentage of
preference matrices for which pairs of winners overlap. In the case of the von Neumann

68

7.1. Motivation

0 20 40 60 80 100 120

Number of arms

1

2

3

4

5

6
C

Number of Copeland winners

0 20 40 60 80 100 120

Number of arms

0
1
2
3

L
C

Number of losses of Copeland winners

Figure 7.2: Observed values of the parameters C and LC : the area of the circle with
coordinates (x, y) is proportional to the percentage of examples with K = x which
satisfied C = y (in the top plot) or LC = y in the bottom plot.

winner, which is defined as a probability distribution over the set of arms [24], we used
the support of the distribution (i.e., the set of arms with non-zero probability) to define
overlap with the other definitions.

Table 7.1: Percentage of matrices for which the different notions of winners overlap in the
experimental setup described in §7.1.1.

Overlap Copeland von Neumann Borda Random Walk
Copeland 100% 99.94% 51.49% 56.15%

von Neumann 99.94% 100% 77.66% 82.11%
Borda 51.49% 77.66% 100% 94.81%

RandomWalk 56.15% 82.11% 94.81% 100%

As these numbers demonstrate, the Copeland and the von Neumann winners are
very likely to overlap, as are the Borda and Random Walk winners, while the first two
definitions are more likely to be incompatible with the latter two. Furthermore, in the case
of 94.2% of the preference matrices, all Copeland winners were contained in the support
of the von Neumann winner, suggesting that in practice the Copeland winner is a more
restrictive notion of what constitutes a winner.

69

7. Copeland Confidence Bounds

7.1.3 The Quantities C and LC

We also examine additional quantities relevant to our regret bounds: the number of
Copeland winners, C; the number of losses of each Copeland winner, LC ; and the range
of values in which these quantities fall. Using the above randomly chosen preference
sub-matrices, we counted the number of times each possible value for C and LC was
observed. The results are depicted in Figure 7.2: the area of the circle with coordinates
(x, y) is proportional to the percentage of examples with K = x which satisfied C = y
(in the top plot) or LC = y (in the bottom plot). As these plots show, the parameters C
and LC are generally much lower than K.

7.2 The CCB Algorithm

In this section, we present CCB (see Algorithm 5), which is based on the principle of
optimism followed by pessimism: it maintains optimistic and pessimistic estimates of the
preference matrix, i.e., matrices U and L (Line 6). It uses U to choose an optimistic
Copeland winner ac (Lines 7–9 and 11–12), i.e., an arm that has some chance of being a
Copeland winner. Then, it uses L to choose an opponent ad (Line 13), i.e., an arm deemed
likely to discredit the hypothesis that ac is indeed a Copeland winner.

More precisely, an optimistic estimate of the Copeland score of each arm ai is cal-
culated using U (Line 7), and ac is selected from the set of top scorers, with preference
given to those in a shortlist, Bt (Line 11). These are arms that have, roughly speaking,
been optimistic winners throughout history. To maintain Bt, as soon as CCB discovers
that the optimistic Copeland score of an arm is lower than the pessimistic Copeland score
of another arm, it purges the former from Bt (Line 9B).

The mechanism for choosing the opponent ad is as follows. The matrices U and L
define a confidence interval around pij for each i and j. In relation to ac, there are three
types of arms:

(1) arms aj s.t. the confidence region of pcj is strictly above 0.5,

(2) arms aj s.t. the confidence region of pcj is strictly below 0.5, and

(3) arms aj s.t. the confidence region of pcj contains 0.5.

Note that an arm of type (1) or (2) at time t′ may become an arm of type (3) at time t > t′

even without queries to the corresponding pair as the size of the confidence intervals
increases as time goes on.

CCB always chooses ad from arms of type (3) because comparing ac and a type (3)
arm is most informative about the Copeland score of ac. Among arms of type (3), CCB
favors those that have confidently beaten arm ac in the past (Line 13), i.e., arms that in
some round t′ < twere of type (2). Such arms are maintained in a shortlist of “formidable”
opponents (Bit) that are likely to confirm that ai is not a Copeland winner; these arms are
favored when selecting ad (Lines 10 and 13).

The sets Bit are what speed up the elimination of non-Copeland winners, enabling
regret bounds that scale asymptotically with K rather than K2. Specifically, for a non-
Copeland winner ai, the set Bit will eventually contain LC + 1 strong opponents for ai

70

7.2. The CCB Algorithm

(Line 9C), where LC is the number of losses of each Copeland winner. Since LC is
typically small, as discussed in §7.1, asymptotically this leads to a bound of onlyO(log T)
on the number of time-steps when ai is chosen as an optimistic Copeland winner, instead
of a bound of O(K log T), which a more naive algorithm would produce.

71

7. Copeland Confidence Bounds

Algorithm 5 Copeland Confidence Bounds
Require: A Copeland dueling bandit problem and an exploration parameter α > 1

2 .
1: W = [wij]← 0K×K // 2D array of wins: wij is the number of times ai beat aj
2: B1 = {a1, . . . , aK} // potential best arms
3: Bi1 = ∅ for each i = 1, . . . ,K // potential to beat ai
4: LC = K // estimated max losses of a Copeland winner
5: for t = 1, 2, . . . do
6: Define the matrces

U := [uij] =
W

W + WT
+

√
α ln t

W + WT

L := [lij] =
W

W + WT
−
√

α ln t

W + WT

with uii = lii = 1
2 , ∀i // All operations are element-wise; x0 := 1 for any x.

7: Cpld(ai) = #
{
k |uik ≥ 1

2 , k 6= i
}

and Cpld(ai) = #
{
k | lik ≥ 1

2 , k 6= i
}

// Op-
timistic and pessimistic Copeland score, respectively

8: Ct = {ai |Cpld(ai) = maxj Cpld(aj)}
9: Set Bt ← Bt−1 and Bit ← Bit−1 and update as follows:

A. Reset disproven hypotheses: If for any i and aj ∈ Bit we have lij > 0.5, reset
Bt, LC and Bkt for all k (i.e., set them to their original values as in Lines 2–4
above).

B. Remove non-Copeland winners: For each ai ∈ Bt, if Cpld(ai) < Cpld(aj)

holds for any j, set Bt ← Bt \ {ai}, and if |Bit| 6= LC + 1, then set
Bit ← {ak|uik < 0.5}. However, if Bt = ∅, reset Bt, LC and Bkt for all k.

C. Add Copeland winners: For any ai ∈ Ct with Cpld(ai) = Cpld(ai), set
Bt ← Bt ∪ {ai}, Bit ← ∅ and LC ← K − 1 − Cpld(ai). For each j 6= i,
if we have |Bjt | < LC + 1, set Bjt ← ∅, and if |Bjt | > LC + 1, randomly
choose LC + 1 elements of Bjt and remove the rest.

10: With probability 1/4, sample (c, d) uniformly from the set

{(i, j)|aj ∈ Bit and 0.5 ∈ [lij , uij]}

(if it is non-empty) and skip to Line 14.
11: If Bt ∩ Ct 6= ∅, then with probability 2/3, set Ct ← Bt ∩ Ct.
12: Sample ac from Ct uniformly at random.
13: With probability 1/2, choose the set Bi to be either Bit or {a1, . . . , aK} and then

set d← arg max{j∈Bi | ljc≤0.5} ujc. If there is a tie, d is not allowed to be equal to
c.

14: Compare arms ac and ad and increment wcd or wdc depending on which arm wins.

72

7.3. Theory

7.3 Theory

In this section, we present our main regret bound for CCB. Assuming that the number of
Copeland winners and the number of losses of each Copeland winner are bounded (cf.
§7.1), CCB’s regret bound takes the form O(K2 +K log T).

Throughout this section we impose the following condition on the preference matrix:

A There are no ties, i.e., for all pairs (ai, aj) with i 6= j, we have pij 6= 0.5.

This assumption is not very restrictive in practice. For example, in the ranker eval-
uation setting from information retrieval, each arm corresponds to a ranker, a complex
and highly engineered system, so it is unlikely that two rankers are indistinguishable.
Furthermore, some of the results we present in this section actually hold under even
weaker assumptions. However, for the sake of clarity, we defer a discussion of these
nuanced differences to §7.4.

In this section, we provide a rough outline of our argument for the bound on the
regret accumulated by Algorithm 5. For a more detailed argument, the interested reader is
referred to §7.4.

Consider a K-armed Copeland bandit problem with arms a1, . . . , aK and preference
matrix P = [pij], such that arms a1, . . . , aC are the Copeland winners, with C being the
number of Copeland winners. Moreover, we define LC to be the number of arms to which
a Copeland winner loses in expectation.

Using this notation, our expected regret bound for CCB takes the form:

O
(
K2 + (C + LC)K lnT

∆2

)
(7.1)

Here, ∆ is a notion of gap defined in §7.4, which is an improvement upon the smallest
gap between any pair of arms.

This result is proven in two steps. First, we bound the number of comparisons
involving non-Copeland winners, yielding a result of the form O(K2 lnT). Second,
Theorem 7.1 closes the gap between this bound and the one in (7.1) by showing that,
beyond a certain time horizon, CCB selects non-Copeland winning arms as the optimistic
Copeland winner very infrequently.

Theorem 7.1. Given a Copeland bandit problem satisfying Assumption A and any δ > 0

and α > 0.5, there exist constants A(1)
δ and A(2)

δ such that, with probability 1 − δ, the
regret accumulated by CCB is bounded by the following:

A
(1)
δ +A

(2)
δ

√
lnT +

2K(C + LC + 1)

∆2
lnT.

Using the high probability regret bound given in Theorem 7.1, we can deduce the
expected regret result claimed in (7.1) for α > 1, as a corollary by integrating δ over the
interval [0, 1].

73

7. Copeland Confidence Bounds

Table 7.2: List of notation used in this chapter
Symbol Definition

K Number of arms
[K] The set {1, . . . ,K}
a1, . . . , aK Set of arms
pij Probability of arm ai beating arm aj
Cpld(ai) Copeland score: number of arms that ai beats, i.e. |{j | pij > 0.5}|
C Number of Copeland winners, i.e. arms ai with Cpld(ai) ≥ Cpld(aj) for all j
a1, . . . , aC Copeland winner arms
α UCB parameter of Algorithm 5
δ Probability of failure

C(δ)

(
(4α− 1)K2

(2α− 1)δ

) 1
2α−1

Ni(t) Number of times arm ai was chosen as the optimistic Copeland winner until time t
Nδ
i (t) Number of times arm ai was chosen as the optimistic Copeland winner in the

interval (C(δ), t]

Nij(t) Total number of time-steps before t when ai was compared against aj (notice that
this definition is symmetric with respect to i and j)

Nδ
ij(t) Number of time-steps between times C(δ) and t when ai was chosen as the op-

timistic Copeland winner and aj as the challenger (note that, unlike Nij(t), this
definition is not symmetric with respect to i and j)

τij The last time-step when ai was chosen as the optimistic Copeland winner and aj as
the challenger (note that τij ≥ C(δ) iff Nδ

ij(t) > 0)
wij(t) Number of wins of ai over aj until time t

uij(t)
wij(t)

Nij(t)
+

√
α ln t

Nij(t)

lij(t) 1− uji(t)
Cpld(ai) #

{
k |uik ≥ 1

2
, k 6= i

}
Cpld(ai) #

{
k | lik ≥ 1

2
, k 6= i

}
Ct {i |Cpld(ai) = maxj Cpld(aj)}
Li the set of arms to which ai loses, i.e. aj such that pij < 0.5

LC The largest number of losses that any Copeland winner has, i.e. maxCi=1 |{j | pij <
0.5}|

LC Algorithm 5’s estimate of LC
Bt The potentially best arms at time t, i.e. the set of arms that according to Algorithm

5 have some chance of being Copeland winners
Bit The arms that at time t have the best chance of beating arm ai (Cf. Line 12 in

Algorithm 5)
∆ij |pij − 0.5|
∆min min{∆ij |∆ij 6= 0}
i∗ the index of the (LC + 1)th largest element in the set {∆ij | pij < 0.5} in the case

that i > C

74

7.3. Theory

Table 7.3: List of notation used in this chapter (Cont’d)
Symbol Definition

∆∗i

{
∆ii∗ if i > C

0 otherwise

∆∗ij

{
∆∗i + ∆ij if pij ≥ 0.5

max{∆∗i ,∆ij} otherwise

(See Figures 7.5 and 7.4 for a pictorial explanation.)
∆∗min min

i>C
∆∗i

N̂δ
ij(T)

4α lnT

(∆∗ij)
2 if i 6= j

0 if i = j and i > C

N̂δ
i (T)

K∑
j=1

N̂δ
ij(T)

N̂δ(T)
∑
i 6=j

N̂δ
ij(T) + 1

Tδ ≥ C(δ
2
) + 8K2(LC + 1)2 ln 6K2

δ
+K2 ln 6K

δ

+ 32αK(LC+1)

∆2
min

lnTδ + N̂δ/2(Tδ)

+4K maxi>C N̂
δ/2
i (Tδ)

Tδ is the smallest integer satisfying the above inequality (Cf. Definition 7.4).
T0 C(δ/2) + N̂δ/2(Tδ)

+ 32αK(LC+1) lnTδ
∆2

min

+8K2(LC + 1)2 ln 6K2

δ

nb 2KN̂
δ/2
b (T̂δ) + K2 ln(4K/δ)

2

Binom(n, p) A “binomial” random variable obtained from the sum of n independent Bernoulli
random variables, each of which produces 1 with probability p and 0 otherwise.

∆i max
{

cpld(a1)− cpld(ai),
1

K−1

}
Hi

∑
j 6=i

1

∆2
ij

H∞ maxiHi
∆ε
i max {∆i, ε(1− cpld(a1))}

75

7. Copeland Confidence Bounds

7.4 Proofs

In this section, provide the proofs for the result claimed in the previous section, starting
with a rough outline of the argument in §7.4.1, followed by detailed proofs of the needed
lemmas.

7.4.1 An Outline of the Proof of Theorem 7.1

To analyze Algorithm 5, consider a K-armed Copeland bandit problem with arms
a1, . . . , aK and preference matrix P = [pij], such that arms a1, . . . , aC are the Copeland
winners, with C being the number of Copeland winners. Throughout this section, we
assume that the parameter α in Algorithm 5 satisfies α>0.5, unless otherwise stated. We
first define the relevant quantities:

Definition 7.2. Given the above setting we define:1

1. Li := {aj | pij < 0.5}, i.e., the arms to which ai loses, and LC := |L1|.

2. ∆ij := |pij − 0.5| and ∆min := mini 6=j ∆ij .

3. Given i > C, define i∗ as the index of the (LC + 1)th largest element in the set
{∆ij | pij < 0.5}.

4. Define ∆∗i to be ∆ii∗ if i > C and 0 otherwise. Moreover, let us set ∆∗min :=
mini>C ∆∗i .

5. Define ∆∗ij to be ∆∗i + ∆ij if pij ≥ 0.5 and max{∆∗i ,∆ij} otherwise.2

6. ∆ := min {mini≤C<j ∆ij ,∆
∗
min}, where ∆∗min is defined as in item 4 above.

7. C(δ) :=
(
(4α− 1)K2/(2α− 1)δ

) 1
2α−1 where α is as in Algorithm 5.

8. Nδ
ij(t) is the number of time-steps between times C(δ) and t when ai was chosen

as the optimistic Copeland winner and aj as the challenger. Also, N̂δ
ij(t) is defined

to be (4α ln t)/
(
∆∗ij
)2

if i 6= j, 0 if i = j > C and t if i = j ≤ C. We also define
N̂δ(t) :=

∑
i 6=j N̂

δ
ij(t) + 1.

Using this notation, our expected regret bound for CCB takes the form:

O
(
K2 + (C + LC)K lnT

∆2

)
(7.2)

This result is proven in two steps. First, Proposition 7.3 bounds the number of
comparisons involving non-Copeland winners, yielding a result of the form O(K2 lnT).
Second, Theorem 7.10 closes the gap between this bound and that of (7.2) by showing that,

1See Tables 7.2 and 7.3 for a summary of the definitions used in this chapter.
2See Figures 7.4 and 7.5 for a pictorial explanation.

76

7.4. Proofs

beyond a certain time horizon, CCB selects non-Copeland winning arms as the optimistic
Copeland winner very infrequently.

Note that we have ∆∗ij ≥ ∆ij for all pairs i 6= j. Thus, for simplicity, the analysis in
this section can be read as if the bounds were given in terms of ∆ij . We use ∆∗ij instead
because it gives tighter upper bounds. In particular, simply using the gaps ∆ij would
replace the denominator of the expression in (7.2) with ∆2

min, which leads to a substantially
worse regret bound in practice. For instance, in the ranker evaluation application used in
the experiments, this change would on average increase the regret bound by a factor that
is of the order of tens of thousands. See §7.4.2 for a more quantitative discussion of this
point.

We can now state our first bound, proved in §7.4.4 under weaker assumptions.

Proposition 7.3. Given any δ > 0 and α > 0.5, if we apply CCB (Algorithm 5) to a
dueling bandit problem satisfying Assumption A, the following holds with probability
1− δ: for any T > C(δ) and any pair of arms ai and aj , we have Nδ

ij(T) ≤ N̂δ
ij(T).

One can sum the inequalities in the last proposition over pairs (i, j) to get a regret
bound of the form O(K2 log T) for Algorithm 5. However, as Theorem 7.10 will show,
we can use the properties of the sets Bit to obtain a tighter regret bound of the form
O(K log T). Before stating that theorem, we need a few definitions and lemmas. We
begin by defining the key quantity:

Definition 7.4. Given a preference matrix P and δ > 0, then Tδ is the smallest integer
satisfying

Tδ ≥ C(
δ

2
) + 8K2(LC + 1)2 ln

6K2

δ

+K2 ln
6K

δ

+
32αK(LC + 1)

∆2
min

lnTδ

+ N̂
δ
2 (Tδ)

+ 4K max
i>C

N̂
δ
2
i (Tδ).

Remark 7.5. Tδ is poly(K, δ−1) and our regret bound below scales as log Tδ .

The following two lemmas are key to the proof of Theorem 7.10. Lemma 7.6 (proved
in §7.4.5) states that, with high probability by time Tδ , each set Bit contains LC + 1 arms
aj , each of which beats ai (i.e., pij < 0.5). This fact then allows us to prove Lemma
7.7 (§7.4.6), which states that, after time-step Tδ, the rate of suboptimal comparisons is
O(K lnT) rather than O(K2 lnT).

Lemma 7.6. Given δ > 0, with probability 1 − δ, each set BiTδ with i > C contains
exactly LC + 1 elements with each element aj satisfying pij < 0.5. Moreover, for all
t ∈ [Tδ, T], we have Bit = BiTδ .

77

7. Copeland Confidence Bounds

Lemma 7.7. Given a Copeland bandit problem satisfying Assumption A and any δ > 0,
with probability 1− δ the following holds: the number of time-steps between Tδ/2 and T
when each non-Copeland winner ai can be chosen as optimistic Copeland winners (i.e.,
times when arm ac in Algorithm 5 satisfies c > C) is bounded by

N̂ i := 2N̂ i
B + 2

√
N̂ i
B ln

2K

δ
,

where N̂ i
B :=

∑
j∈BiTδ/2

N̂
δ/4
ij (T).

Remark 7.8. Due to Lemma 7.6, with high probability we have N̂ i
B ≤ (LC+1) lnT

(∆∗min)
2 for

each i > C and so the total number of times between Tδ and T when a non-Copeland
winner is chosen as an optimistic Copeland winner is inO(KLC lnT) for a fixed minimal
gap ∆∗min. The only other way a suboptimal comparison can occur is if a Copeland
winner is compared against a non-Copeland winner, and according to Proposition 7.3,
the number of such occurrences is bounded by O(KC lnT). Hence, the number of
suboptimal comparisons is in O(K lnT) assuming that C and LC are bounded. In §7.1,
we provide experimental evidence for this.

We now define the quantities needed to state the main theorem.

Definition 7.9. We define the following three quantities:

A
(1)
δ := C(δ/4) + N̂δ(Tδ/2)

A
(2)
δ :=

∑

i>C

√
LC + 1

∆∗i
ln

2K

δ

A(3) :=
∑

i≤C<j

1

(∆ij)
2 + 2

∑

i>C

LC + 1

(∆∗i)
2

Finally, we repeat the statement of Theorem 7.1 for the reader’s convenience.

Theorem 7.10. Given a Copeland bandit problem satisfying Assumption A and any δ > 0
and α > 0.5, with probability 1− δ, the regret accumulated by CCB is bounded by the
following:

A
(1)
δ +A

(2)
δ

√
lnT +A(3) lnT ≤ A

(1)
δ +A

(2)
δ

√
lnT +

2K(C + LC + 1)

∆2
lnT.

For a general assessment of the above quantities, assuming that LC and C are both
O(1), the above quantities in terms of K become A(1)

δ = O(K2), A(2)
δ = O(K log(K)),

A(3) = O(K). Hence, the above bound boils down to the expression in (7.2). We now
turn to the proof of the theorem.

Proof of Theorem 7.10. Let us consider the two disjoint time-intervals [1, Tδ/2] and
(Tδ/2, T]:

78

7.4. Proofs

[1,Tδ/2]: In this case, applying Proposition 7.3 to Tδ, we get that the number of time-
steps when a non-Copeland winner was compared against another arm is bounded
by A(1)

δ . As the maximum regret such a comparison can incur is 1, this deals with
the first term in the above expression.

(Tδ/2,T]: In this case, applying Lemma 7.7, we get the other two terms in the above
regret bound.

Now that we have the high probability regret bound given in Theorem 7.10, we can
deduce the expected regret result claimed in (7.2) for α > 1, as a corollary by integrating
δ over the interval [0, 1].

7.4.2 The Gap ∆

The regret bound for CCB, given in (7.2), depends on the gap ∆ defined in Definition
7.2(6), rather than the smallest gap ∆min as specified in Definition 7.2(2). The latter would
result in a looser regret bound and Figure 7.3 quantifies this deterioration in the ranker
evaluation example under consideration here. In particular, the plot depicts the average of
the ratio between the two bounds (the one using ∆ and the one using ∆min) across the
10, 000 sampled preference matrices used in the analysis of the Condorcet winner for each
K in the set {2, . . . , 135}. The average ratio decreases as the number of arms approaches
136 because, as K increases, the sampled preference matrices increasingly resemble the
full preference matrix and so their gaps ∆ and ∆min approach those of the full 136-armed
preference matrix as well. As it turns out, the ratio ∆2/∆2

min for the full matrix is equal
to 1, 419. Hence, the curve in Figure 7.3 approaches that number as the number of arms
approaches 136.

7.4.3 Background Material

Let us begin by reminding the reader of some useful lemmas that we will make use of
repeatedly in the rest of this section:
Maximal Azuma-Hoeffding Bound [17, §A.1.3]: Given random variables X1, . . . , XN

with common range [0, 1] satisfying E[Xn|X1, . . . , Xn−1] = µ, define the partial sums
Sn = X1 + · · ·+Xn. Then, for all a > 0, we have

P
(

max
n≤N

Sn > nµ+ a
)
≤ e−2a2/N

P
(

min
n≤N

Sn < nµ− a
)
≤ e−2a2/N

We also repeat the following lemma from Chapter 4 for the reader’s convenience:

Lemma 7.11 (Lemma 4.1). Let P := [pij] be the preference matrix of aK-armed dueling
bandit problem with arms {a1, . . . , aK}. Then, for any dueling bandit algorithm and any
α > 1

2 and δ > 0, we have

P
(
∀ t > C(δ), i, j, pij ∈ [lij(t), uij(t)]

)
> 1− δ.

79

7. Copeland Confidence Bounds

20 40 60 80 100 120

Number of arms

0

20000

40000

60000

80000

100000

120000

140000

A
ve

ra
ge

ra
tio

Average of the ratio ∆2/∆2
min over examples of a given size

Figure 7.3: The average advantage gained by having the bound in (7.2) depend on ∆
rather than ∆min: for each number of arms K, the expectation is taken across the 10, 000
K-armed preference matrices obtained using the sampling procedure described in §7.4.2.

7.4.4 Proof of Proposition 7.3
Before starting with the proof, let us point out the following two properties that can be
derived from Assumption A in Section 7.3:

P1 There are no ties involving a Copeland winner and a non-Copeland winner, i.e., for
all pairs of arms (ai, aj) with i ≤ C < j, we have pij 6= 0.5.

P2 Each non-Copeland winner has more losses than every Copeland winner, i.e., for
every pair of arms (ai, aj), with i ≤ C < j, we have |Li| < |Lj |.

Even though we have assumed in the statement of Proposition 7.3 that Assumption A
holds, it turns out that the proof provided in this section holds as long as the above two
properties hold.

Proposition 7.3 Applying CCB to a dueling bandit problem satisfying properties P1
and P2, we have the following bounds on the number of comparisons involving various
arms for each T > C(δ): for each pair of arms ai and aj , such that either at least one of
them is not a Copeland winner or pij 6= 0.5, with probability 1− δ we have

Nδ
ij(T) ≤ N̂δ

ij(T) :=

4α lnT
(
∆∗ij
)2 if i 6= j

0 if i = j > C

(7.3)

80

7.4. Proofs

Proof of Proposition 7.3. We will prove these bounds by considering a number of cases
separately:

1. i ≤ C and pij 6= 0.5: First of all, since ai is a Copeland winner, this means
that according to the definitions in Tables 7.2 and 7.3, ∆∗ij is simply equal to ∆ij ;
secondly, assuming by way of contradiction that Nδ

ij(t) >
4α lnT

∆ij
> 0, then we

have τij > C(δ) and so by Lemma 7.11, we have with probability 1− δ that the
confidence interval [lij(τij), uij(τij)] contains the preference probability pij . But,
in order for arm aj to have been chosen as the challenger to ai, we must also have
0.5 ∈ [lij(τij), uij(τij)]; to see this, let us consider the two possible cases:

(a) If we have pij > 0.5, then having

0.5 /∈ [lij(τij), uij(τij)]

implies that we have lij(τij) > 0.5, which in turn implies

uji(τij) = 1− lij(τij) < 0.5 = uii(τij),

but this is impossible since in that case ai would have been chosen as the
challenger.

(b) If we have pij < 0.5, then have

0.5 /∈ [lij(τij), uij(τij)]

implies that we have uij(τij) < 0.5, but this is impossible because it means
that we had lji(τij) > 0.5, and CCB would have eliminated it from considera-
tions in its second round.

So, in either case, we cannot have 0.5 /∈ [lij(τij), uij(τij)]. Therefore, at time τij ,
we must have had uij(τij) − lij(τij) > |pij − 0.5| =: ∆ij . From this, we can
conclude the following, using the definition of uij and lij :

uij(τij)− lij(τij) := 2

√
α ln τij
Nij(τij)

≥ ∆ij

∴ 2

√
α ln τij
Nδ
ij(τij)

≥ ∆ij ∵ Nδ
ij(τij) ≤ Nij(τij)

∴ 2

√
α lnT

Nδ
ij(τij)

≥ ∆ij ∵ τij ≤ T

∴ Nδ
ij(τij) ≤

4α lnT

∆2
ij

,

giving us the desired bound. The reader is referred to Figure 7.4 for an illustration
of this argument.

2. C < i: Let us deal with the two cases included in Inequality (7.3) separately:

81

7. Copeland Confidence Bounds

ai

1
2

ai

aC aj

∆∗ij

∆∗iK

Figure 7.4: This figure illustrates the definition of the quantities ∆∗i and ∆∗ij in the case
that arm ai is a Copeland winner, as well as the idea behind Case 1 in the proof of
Proposition 7.3. In this setting we have ∆∗i = 0 and ∆∗ij = ∆ij . On the one hand, by
Lemma 7.11, we know that the confidence intervals will contain the pij (the blue dots in
the plots), and on the other as soon as the confidence interval of pij stops containing 0.5
for some arm aj , we know that it could not be chosen to be compared against ai. In this
way, the gaps ∆∗ij regulate the number of times that each arm can be chosen to be played
against ai during time-steps when ai is chosen as optimistic Copeland winner.

(a) i = j > C: In plain terms, this says that with probability 1 − δ no non-
Copeland winner will be compared against itself after time C(δ). The reason
for this is the following set of facts:

• Since ai is a non-Copeland winner, we have by Property P1 that it loses
to more arms than any Copeland winner.

• For ai to have been chosen as an optimistic Copeland winner, it has to
have (optimistically) lost to no more than LC arms, which means that
there exists an arm k such that pik < 0.5, but uik ≥ 0.5.

• By Lemma 7.11, for all time steps after C(δ), we have lik ≤ pik < 0.5,
and so in the second round we have uki > 0.5 = uii, and so ai could be
not chosen as the challenger to itself.

(b) i 6= j: In the case that ai is not a Copeland winner and aj is different from
ai, we distinguish between the following two cases, where ∆∗i is defined as in
Tables 7.2 and 7.3:

i. pij ≤ 0.5−∆∗i : In this case, the definition of ∆∗i reduces to ∆ij . Now,
since when choosing the challenger, CCB eliminates from consideration
any arm aj that has lji > 0.5, the last time-step τij after C(δ) when
aj was chosen as the challenger for ai, we must have had uij(τij) :=
1− lji(τij) ≥ 0.5. On the other hand, Lemma 7.11 implies that we must
also have lij(τij) ≤ pij , and therefore, we have uij(τij)−lij(τij) ≥ ∆ij ;

82

7.4. Proofs

so, doing the same calculation as in part 1 of this proof, we have

uij(τij)− lij(τij) := 2

√
α ln τij
Nij(τij)

≥ ∆ij

∴ 2

√
α ln τij
Nδ
ij(τij)

≥ ∆ij ∵ Nδ
ij(τij) ≤ Nij(τij)

∴ 2

√
α lnT

Nδ
ij(τij)

≥ ∆ij ∵ τij ≤ T

∴ Nδ
ij(τij) ≤

4α lnT

∆2
ij

,

ii. pij > 0.5−∆∗i : Repeating the above argument about uij(τij), we can
deduce that uij(τij) ≥ 0.5 must hold. Furthermore, Lemma 7.11 states
that with probability 1 − δ we have uij(τij) ≥ pij . Putting these two
together we get

uij(τij) ≥ max{0.5, pij}. (7.4)

Moreover, we will show next that with probability 1 − δ, we have
lij(τij) ≤ 0.5−∆∗i ; this is a consequence of the following facts:

• Since ai was chosen as the optimistic Copeland winner, we can
deduce that ai had no more that LC optimistic losses.

• Let ak1
, . . . , akl be the l ≤ LC arms to which ai lost optimistically

during time-step τij . Then, the smallest pik with k /∈ {k1, . . . , kl},
must be less than to equal to the {LC + 1}th smallest element in the
set {pik | k = 1, . . . ,K}.

• This, in turn, is equal to the {LC + 1}th smallest element in the set
{pik|pik < 0.5} (since this latter set of numbers are the smallest
ones in the former set). But, this is equal to 0.5−∆∗i by definition.

So, we have the desired bound on lij(τij) and combining this with In-
equality (7.4), we have

uij(τij)− lij(τij) ≥ max{0, pij − 0.5}+ ∆∗i = ∆∗ij ,

where the last equality follows directly from the definition of ∆∗ij and the
fact that pij > 0.5−∆∗i . Now, repeating the same calculations as before,
we can conclude that with probability 1− δ, we have

Nδ
ij(τij) ≤

4α lnT
(
∆∗ij
)2 .

A pictorial depiction of the various steps in the second part of the proof can be found
in Figure 7.5, where the bottom row of plots in the figure corresponds to the confidence
intervals around probabilities pij (depicted using the blue dots) for j = 1, . . . ,K, while

83

7. Copeland Confidence Bounds

a1

1
2

a1

ai∗ aC ai

pii∗

1
2

ai
∆∗i1

∆∗i2 ∆∗i ∆∗iK

Figure 7.5: This figure illustrates the definition of the quantities ∆∗i and ∆∗ij in the case
that arm ai is not a Copeland winner, as well as the idea behind Case 2 in the proof of
Proposition 7.3.

the top row corresponds to those for probabilities p1j , where a1 is by assumption one of
the Copeland winners (although we could use any other Copeland winner instead).

The two boxes in the top row with red intervals represent arms to which a1 loses
(i.e. p1j < 0.5), the number of which happens to be 2 in this example, which means that
LC = 2. Now, by Definition 7.2(3), i∗ is the index with the index j with the (LC + 1)th

(in this case 3rd) lowest pij , and since the three lowest pij in this example are piK , piC
and pii∗ , this means that the column labeled as ai∗ is indeed labeled correctly. Given this,
Definition 7.2(4) tells us that ∆∗i is the size of the gap shown in the block corresponding
to pair (ai, ai∗).

Moreover, by Definition 7.2(5), the gap ∆∗ij is defined using one of the following three
cases: (1) if we have pij < pii∗ (as with the ones with red confidence intervals in the
bottom row of plots), then we get ∆∗ij := ∆ij = 0.5−pij ; (2) if we have pii∗ < pij ≤ 0.5

(as in the plots in the 2nd, 3rd and 7th column of the bottom row), then we get ∆∗ij := ∆∗i ;
(3) if we have 0.5 < pij (as in the 1st and 6th column in the bottom row), then we get
∆∗ij := ∆ij + ∆∗i .

The reasoning behind this trichotomy is as follows: in the case of arms aj in group (1),
they are not going to be chosen to be played against ai as soon as the top of the interval

84

7.4. Proofs

goes below 0.5, and by Lemma 7.11, we know that the bottom of the interval will be
below pij . In the case of the arms in groups (2) and (3), the bottom of their interval needs
to be below pii∗ because otherwise that would mean that neither arm ai∗ nor arms in
group (1) were eligible to be included in the arg max expression in Line 13 of Algorithm
5, which can only happen if we have uij < 0.5 for j = i∗ as well as the arms in group
(1), from which we can deduce that the optimistic Copeland score of ai must have been
lower than K − 1− LC , and so ai could not have been chosen as an optimistic Copeland
winner. Using the same argument, we can also see that the tops of the confidence intervals
corresponding to arms in group (2) must be above 0.5, or else it would be impossible
for ai to be chosen as an optimistic Copeland winner. Moreover, by Lemma 7.11, the
intervals of the arms aj in group (3) must contain pij .

7.4.5 Proof of Lemma 7.6

Let us begin with the following direct corollary of Proposition 7.3:

Corollary 7.12. Given any δ > 0, any T > C(δ) and any sub-interval of length
N̂δ(T) :=

∑
i 6=j N̂

δ
ij(T) + 1, with probability 1 − δ, there is at least one time-step

when there exists c ≤ C such that

Cpld(ac) = Cpld(ac) = Cpld(ac)

≥ Cpld(aj) ∀ j, (7.5)

Proof. According to Proposition 7.3, with probability 1−δ, there are at most
∑
i 6=j N̂

δ
ij(T)

time-steps between C(δ) and T when Algorithm 5 did not compare a Copeland winner
against itself: i.e. c and d in Algorithm 5 did not satisfy c = d ≤ C.

In other words, during this time-period, in any sub-interval of length N̂δ(T) :=∑
i 6=j N̂

δ
ij(T) + 1, there is at least one time-step when a Copeland winner was compared

against itself. During this time-step, we must have had

Cpld(ac) = Cpld(ac) = Cpld(ac)

≥ Cpld(aj) ∀ j,

where the first two equalities are due to the fact that in order for Algorithm 5 to set c = d,
we must have 0.5 /∈ [lcj , ucj] for each j 6= c, or else ac would not be played against itself;
on the other hand, the last inequality is due to the fact that ac was chosen as an optimistic
Copeland winner by Line 8 of Algorithm 5, so its optimistic Copeland score must have
been greater than or equal to the optimistic Copeland score of the rest of the arms.

Lemma 7.13. If there exists an arm ai with i > C such that BiC(δ/2) contains an arm aj

that loses to ai (i.e. pij > 0.5) or such that BiC(δ/2) contains fewer than LC + 1 arms,
then the probability that by time-step T0 the sets Bit and Bt are not reset by Line 9.A of

85

7. Copeland Confidence Bounds

Algorithm 5 is less than δ/6, where we define

T0 := C(δ/2) + N̂δ/2(Tδ)

+
32αK(LC + 1) lnTδ

∆2
min

+ 8K2(LC + 1)2 ln
6K2

δ
.

Proof. By Line 9.A of Algorithm 5, as soon as we have lij > 0.5, the set Bit will be
emptied. In what follows, we will show that the probability that the number of time-steps
before we have lij > 0.5 is greater than

∆T := N̂δ/2(Tδ) +N

with

N :=
32αK(LC + 1) lnTδ

∆2
min

+ 8K2(LC + 1)2 ln
6K2

δ

is bounded by δ/6K2. This is done using the amount of exploration infused by Line 10
of Algorithm 5. To begin, let us note that by Corollary 7.12, there is a time-step before
T0 := C(δ/2) + N̂δ/2(Tδ) when the condition of Line 9.C of Algorithm 5 is satisfied for
some Copeland winner. At this point, if Bit contains fewer than LC + 1 elements, then
it will be emptied; furthermore, for all k > C, the sets BkT0

will have at most LC + 1
elements and so the set

St := {(k, `)|a` ∈ Bkt and 0.5 ∈ [lk`, uk`]}

contains at most K(LC + 1) elements for all t ≥ T0. Moreover, if at time-step T1 :=
C(δ/2) + ∆T we have aj ∈ BiT1

, then we can conclude that (i, j) ∈ St for all t ∈
[C(δ/2), T1], since, if at any time after C(δ/2) arm aj were to be removed from Bit, it
will never be added back because that can only happen through Line 9.B of Algorithm 5
and by Lemma 7.11 and the assumption of the lemma we have uij > pij > 0.5.

What we can conclude from the observations in the last paragraph is that if at time-step
T1 we still have aj ∈ BiT1

, then there are ∆T time-steps during which the probability
of comparing arms ai and aj was at least 1

4K(LC+1) and yet no more than 4α lnTδ
∆2
ij

comparisons took place, since otherwise, we would have lij > 0.5 at some point before
T1. Now, let Bijn denote the indicator random variable that is equal to 1 if arms ai and aj
were chosen to be played against each other by Line 10 of Algorithm 5 during time-step
T1 + n. Also, let X1, . . . , XN be iid Bernoulli random variables with mean 1

4K(LC+1) .
Since Bijn and Xn are Bernoulli and we have E

[
Bijn
]
≤ E[Xn] for each n, then we can

conclude that

P

(
N∑

n=1

Bijn < s

)
≤ P

(
N∑

n=1

Xn < s

)
for all s.

On the other hand, we can use the Hoeffding bound to show that the right hand side of

86

7.4. Proofs

the above inequality is smaller than δ/6 if we set s = 4α lnTδ
∆2
ij

:

P

(
N∑

n=1

Xn <
4α lnTδ

∆2
ij

)
≤ P

(
N∑

n=1

Xn <
4α lnTδ

∆2
min

)

= P

(
N∑

n=1

Xn <
N

4K(LC + 1)
− a
)
≤ e
−

2a2

N

with a := −4α lnTδ
∆2

min

+
N

4K(LC + 1)

= e
− 32α2 ln2 Tδ

∆4
min

N
+

4α lnTδ
K(LC+1)∆2

min

− N
8K2(LC+1)2

≤ e
4α lnTδ

K(LC+1)∆2
min

− N
8K2(LC+1)2

= e− ln 6K2/δ = δ/6K2.

Now, if we take a union bound over all pairs of arms ai and aj satisfying the condition
stated at the beginning of this scenario, we get that with probability δ/6 by time-step
C(δ/2) + ∆T all such erroneous hypotheses are reset by Line 9.A of Algorithm 5,
emptying the sets Bit.

Lemma 7.14. Let t1 ∈ [C(δ/2), Tδ) be such that for all i, j satisfying aj ∈ Bit1 we have
pij < 0.5. Then, the following two statements hold with probability 1− 5δ/6:

1. If the set Bt1 in Algorithm 5 contains at least one Copeland winner, then if we set
t2 = t1 + nmax, where

nmax := 2K max
i>C

N̂
δ/2
i (Tδ) +

K2 ln(6K/δ)

2
,

then Bt2 is non-empty and contains no non-Copeland winners, i.e. for all ai ∈ Bt2
we have i ≤ C.

2. If the set Bt1 in Algorithm 5 contains no Copeland winners, i.e. for all ai ∈ Bt1 ,
we have i > C, then within nmax time-steps the set Bt will be emptied by Line 9.B
of Algorithm 5.

Therefore, with probability 1− 5δ/6, by time t1 + 2nmax all non-Copeland winners (i.e.
arms ai with i > C) are eliminated from Bt.

Proof. We will consider the two cases in the following, conditioning on the conclusions of
Lemma 7.11, Proposition 7.3 and Corollary 7.12, all simultaneously holding with 1− δ/2:

1. Bt1 contains a Copeland winner (i.e. ac ∈ Bt1 for some c ≤ C): in this case, by
Lemma 7.11, we know that the Copeland winner will forever remain in the set Bt
because

Cpld(ac) ≥ max
j

Cpld(aj) ≥ max
j

Cpld(aj),

87

7. Copeland Confidence Bounds

then Bt2 will indeed be empty. Moreover, in what follows, we will show that the
probability that any non-Copeland winner in Bt is not eliminated by time t2 is less
than δ/6. Let us assume by way of contradiction that there exists an arm ab with
b > C such that ab is in Bt2 : we will show that the probability of this happening is
less than δ/6K, and so, taking a union bound over non-Copeland winning arms, the
probability that any non-Copeland winner is in Bt2 is seen to be smaller than δ/6.

Now, to see that the probability of ab being in the set Bt2 is small, note that the fact
that ab being in Bt2 implies that ab was in the set Bt for the entirety of the time
interval [C(δ/2), t2] as we will show in the following. If ab is eliminated from Bt
at some point between t1 and t2, it will not get added back into Bt because that can
only take place if the set Bt is reset at some point and there are only two ways for
that to happen:

(a) By Line 9.A of Algorithm 5 in the case that for some pair (i, j) with aj ∈ Bit
we have lij > 0.5; however, this is ruled out by our assumption that at time
t1 we have pij < 0.5 and by Lemma 7.11, which stipulates that we have
lij ≤ pij < 0.5.

(b) By Line 9.B of Algorithm 5 in the case that all arms are eliminated from Bt,
but this cannot happen by the fact mentioned above that ac will not not be
removed from Bt.

So, as mentioned above, we indeed have that at each time-step between t1 and t2,
the set Bt contains ab. Next, we will show that the probability of this happening is
less than δ/6K. To do so, let us denote by Sb the time-steps when arm ab was in
the set of optimistic Copeland winners, i.e.

Sb :=
{
t ∈ (t1, t2]

∣∣ ab ∈ Ct
}
.

We can use Corollary 7.12 above with T = Tδ to show that the size of the set Sb
(which we denote by |Sb|) is bounded from below by t2 − t1 −

∑
i 6=j N̂

δ/2
ij (Tδ):

this is because whenever any Copeland winner ac is played against itself, Equation
(7.5) holds, and so if we were to have ab /∈ Ct during that time-step ab would have
had to get eliminated from Bt because ab not being an optimistic Copeland winner
would imply that

Cpld(ab) < Cpld(ac) = Cpld(ac).

But, we know from facts (a) and (b) above that ab remains in Bt for all t ∈ (t1, t2].
Therefore, as claimed, we have

|Sb| ≥ t2 − t1 −
∑

i 6=j

N
δ/2
ij (Tδ) ≥ 2KN̂

δ/2
b (Tδ) +

K2 ln(6K/δ)

2
=: nb, (7.6)

where the last inequality is due to the definition of nmax := t2 − t1. On the other
hand, Proposition 7.3 tells us that the number of time-steps between t1 and t2 when

88

7.4. Proofs

ab could have been chosen as an optimistic Copeland winner is bounded as

N
δ/2
b (Tδ) ≤ N̂δ/2

b (Tδ). (7.7)

Furthermore, given the fact that during each time-step t ∈ Sb we have ab ∈ Bt ∩ Ct,
the probability of ab being chosen as an optimistic Copeland winner is at least
1/K because of the sampling procedure in Lines 14-17 of Algorithm 5. However,
this is considerably higher than the ratio obtained by dividing the right-hand sides
of Inequality (7.7) by that of Inequality (7.6). We will make this more precise in
the following: for each t ∈ Sb, denote by µbt the probability that arm ab would
be chosen as the optimistic Copeland winner by Algorithm 5, and let Xb

t be the
Bernoulli random variable that returns 1 when arm ab is chosen as the optimistic
Copeland winner and 0 otherwise. As pointed out above, we have that µbt ≥ 1

K for
all t ∈ Sb, which, together with the fact that |Sb| ≥ nb, implies that the random
variable Xb :=

∑
t∈Sb X

b
t satisfies

P (Xb < x) ≤ P (Binom(nb, 1/K) < x). (7.8)

This is both because the Bernoulli summands of Xb have higher means than the
Bernoulli summands of Binom(nb, 1/K) and because Xb is the sum of a larger
number of Bernoulli variables, so Xb has more mass away from 0 than does
Binom(nb, 1/K). So, we can bound the right-hand side of Inequality (7.8) by
δ/6K with x = N̂

δ/2
b (Tδ) to get our desired result. But, this is a simple conse-

quence of the Hoeffding bound, a more general form of which is quoted in Section
7.4.3. More precisely, we have

P
(
Binom(nb, 1/K) < N̂

δ/2
b (Tδ)

)
= P

(
Binom(nb, 1/K) <

nb
K
− a
)

with a :=
nb
K
− N̂δ/2

b (Tδ)

< e−2a2/nb

= e

−2(nbK −N̂
δ/2
b

(Tδ))
2

nb

= e−2nb/K
2+4N̂

δ/2
b (Tδ)/K−2N̂

δ/2
b (Tδ)

2/nb

≤ e−2nb/K
2+4N̂

δ/2
b (Tδ)/K

= e− ln(6K/δ) = δ/6K

Using the union bound over the non-Copeland winning arms that were in Bt1 , of
whom there is at most K − 1, we can conclude that with probability δ/6 they are
all eliminated from Bt2 .

2. Bt1 does not contain any Copeland winners: in this case, we can use the exact
same argument as above to conclude that the probability that the set Bt is non-empty
for all t ∈ (t1, t2] is less than δ/6 because as before the probability that each arm
ab ∈ Bt1 is not eliminated within nb time-steps is smaller than δ/6K.

89

7. Copeland Confidence Bounds

Let us now state the following consequence of the previous lemmas:

Lemma 7.6. Given δ > 0, the following fact holds with probability 1− δ: for each
i > C, the set BiTδ contains exactly LC + 1 elements with each element aj satisfying
pij < 0.5. Moreover, for all t ∈ [Tδ, T], we have Bit = BiTδ .

Proof. In the remainder of the proof, we will condition on the high probability event that
the conclusions of Lemma 7.11, Corollary 7.12, Lemma 7.13 and Lemma 7.14 all hold
simultaneously with probability 1− δ.

Combining Lemma 7.14, we can conclude that by time-step T1 := T0 + 2nmax all
non-Copeland winners are removed from BT1

, which also means by Line 9.B of Algorithm
5 that the corresponding sets BiT1

, with i > C are non-empty, and Lemma 7.13 tells us
that these sets have at least LC + 1 elements aj each of which beats ai (i.e. pij < 0.5).

Now, applying Corollary 7.12, we know that within N̂δ/2(Tδ) time-steps, Line 9.C of
Algorithm 5 will be executed, at which point we will have LC = LC and so Bit will be
reduced to LC + 1 elements. Moreover, by Lemma 7.11, for all t > T1 and aj ∈ Bit we
have lij ≤ pij < 0.5 and so Bit will not be emptied by any of the provisions in Line 9 of
Algorithm 5.

Now, since by definition we have T δ ≥ T1+N̂δ/2(Tδ), we have the desired result.

7.4.6 Proof of Lemma 7.7
Lemma 7.7 Given a Copeland bandit problem satisfying Assumption A and any δ > 0,
with probability 1−δ the following statement holds: the number of time-steps between Tδ/2
and T when each non-Copeland winning arm ai can be chosen as optimistic Copeland
winners (i.e. time-steps when arm ac in Algorithm 5 satisfies c = i > C) is bounded by

N̂ i := 2N̂ i
B + 2

√
N̂ i
B ln

2K

δ
,

where
N̂ i
B :=

∑

j∈BiTδ/2

N̂
δ/4
ij (T).

Proof. The idea of the argument is outlined in the following sequence of facts:

1. By Lemma 7.6, we know that with probability 1 − δ/2, for each i > C and all
times t > Tδ/2 the sets Bit will consist of exactly LC + 1 arms that beat the arm ai,
and that Bit = BiTδ/2

.

2. Moreover, if at time t > Tδ/2 > C(δ/4), Algorithm 5 chooses a non-Copeland
winner as an optimistic Copeland winner (i.e. i > C), then with probability 1− δ/4
we know that

Cpld(ai) ≥ Cpld(a1) ≥ Cpld(a1) = K − 1− LC .

3. This means that there could be at most LC arms aj that optimistically lose to ai
(i.e. uij < 0.5) and so at least one arm ab ∈ Bit does satisfy uib ≥ 0.5

90

7.4. Proofs

4. This, in turn, means that in Line 13 of Algorithm 5 with probability 0.5 the arm ad
will be chosen from Bit.

5. By Proposition 7.3, we know that with probability 1 − δ/4, in the time interval
[Tδ/2, T] each arm aj ∈ BiTδ/2

can be compared against ai at most N̂δ/4
ij (T) many

times.

Given that by Fact 3 above we need at least one arm aj ∈ Bit to satisfy uij ≥ 0.5
for Algorithm 5 to set (c, d) = (i, j), and that by Fact 4 arms from Bit have a higher
probability of being chosen to be compared against ai, this means that arm ai will be
chosen as optimistic Copeland winner roughly twice as many times we had (c, d) = (i, j)
for some j ∈ BiTδ/2

. A high probability version of the claim in the last sentence together
with Fact 5 would give us the bound on regret claimed by the theorem. In the remainder
of this proof, we will show that indeed the number of times we have c = i is unlikely to
be too many times higher than twice the number of times we get (c, d) = (i, j), where
j ∈ BiTδ/2

. To do so, we will introduce the following notation:

N i: the number of time-steps between Tδ/2 and T when arm ai was chosen as optimistic
Copeland winner.

Bin: the indicator random variable that is equal to 1 if Line 13 in Algorithm 5 decided
to choose arm ad only from the set Bitn and zero otherwise, where tn is the nth

time-step after Tδ/2 when arm ai was chosen as optimistic Copeland winner. Note
that Bi is simply a Bernoulli random variable with mean 0.5.

N i
B: the number of time-steps between Tδ and T when arm ai was chosen as optimistic

Copeland winner and that Line 13 in Algorithm 5 chose to pick an arm from BiTδ/2

to be played against ai. Note that this definition implies that we have

N i
B =

Ni∑

n=1

Bin. (7.9)

Moreover, by Fact 5 above, we know that with probability 1− δ/4 we have

N i
B ≤ N̂ i

B :=
∑

j∈BiTδ/2

N̂
δ/4
ij (T). (7.10)

Now, we will use the above high probability bound on N i
B to put the following high

probability bound on N i: with probability 1− δ/2 we have

N i ≤ N̂ i := 2N̂ i
B + 2

√
N̂ i
B ln

2K

δ
.

To do so, let us assume that the we have N i > N̂ i and consider the first N̂ i time-
steps after Tδ/2 when arm ai was chosen as optimistic Copeland winner and note that by
Equation (7.9) we have

N̂i∑

n=1

Bin ≤ N i
B

91

7. Copeland Confidence Bounds

and so by Inequality (7.10) with probability 1−δ/4 the left-hand side of the last inequality
is bounded by N̂ i

B: let us denote this event with E . On the other hand, if we apply the
Hoeffding bound (cf. §7.4.3) to the variables Bi1, . . . , B

i
N̂i

, we get

P
(
E ∧ N i > N̂ i

)
≤ P

N̂i∑

n=1

Bin < N̂ i
B

= P

N̂i∑

n=1

Bin < N̂ i/2−
√
N̂ i
B ln

2K

δ

≤ e
−

A2N̂
i
B
(
ln 2K

δ

)2

A2N̂
i
B + A2

√
N̂ i
B ln 2K

δ (by Chernoff-Hoeffding) (7.11)

To simplify the last expression in the last chain of inequalities, let us use the notation
α := N̂ i

B and β := ln 2K
δ . Given this notation, we claim that the following inequality

holds if we have α ≥ 4 and β ≥ 2 (which hold by the assumptions of the theorem):

αβ2

α+
√
αβ
≥ β. (7.12)

To see this, let us multiply both sides by the denominator of the left-hand side of the above
inequality:

αβ2 ≥ αβ +
√
αβ. (7.13)

To see why Inequality (7.13) holds, let us note that the restrictions imposed on α and β
imply the following pair of inequalities, whose sum is equivalent to Inequality (7.13):

αβ2 ≥ 2αβ
+ αβ2 ≥ 2

√
αβ2

= 2αβ2 ≥ 2αβ + 2
√
αβ2

Now that we know that Inequality (7.12) holds, we can combine it with Inequality (7.11)
to get

P
(
E ∧ N i > N̂ i

)
≤ e
− ln

2K

δ =
δ

2K
.

Taking a union over the non-Copeland winning arms, we get

P (E ∧ ∀ i > C, N i > N̂ i) > 1− δ/2.

So, given the fact that we have P (E) < δ/4, we know that with probability 1− δ each
non-Copeland winner is selected as optimistic Copeland winner between Tδ/2 and T no
more than N̂ i times.

92

7.5. Experiments

104 105 106 107 108

time

0

200000

400000

600000

800000

1000000

1200000

cu
m

ul
at

iv
e

re
gr

et

MSLR Informational CM with 5 Rankers

RUCB
RankEl
PBR
SCB
SAVAGE
CCB

Figure 7.6: Small-scale regret results for a 5-armed Copeland dueling bandit problem
arising from ranker evaluation.

7.5 Experiments

To evaluate CCB, we apply it to a Copeland dueling bandit problem arising from ranker
evaluation.

We follow the experimental approach in [73, 78] and use a preference matrix to
simulate comparisons between each pair of arms (ai, aj) by drawing samples from
Bernoulli random variables with mean pij . We compare CCB against five K-armed
dueling bandit algorithms, RUCB [78], Copeland SAVAGE [65], Preference-Based Racing
(PBR) [15] and Rank Elicitation (RankEl) [16] and Scalable Copeland Bandits (SCB) [79].
We include RUCB in order to verify our claim that K-armed dueling bandit algorithms
that assume the existence of a Condorcet winner have linear regret if applied to a Copeland
dueling bandit problem without a Condorcet winner.

More specifically, we consider a 5-armed dueling bandit problem obtained from
comparing five rankers, none of whom beat the other four, i.e. there is no Condorcet
winner.3 Figure 7.6 shows the regret accumulated by CCB, SCB, the Copeland variants of
SAVAGE, PBR, RankEl and RUCB on this problem. The horizontal time axis uses a log
scale, while the vertical axis, which measures cumulative regret, uses a linear scale. CCB
outperforms all other algorithms in this 5-armed experiment.

Note that three of the baseline algorithms under consideration here (i.e., SAVAGE,
PBR and RankEl) require the horizon of the experiment as an input, either directly or
through a failure probability δ, which we set to 1/T (with T being the horizon), in order
to obtain a finite-horizon regret algorithm, as prescribed in [65, 73]. Therefore, we ran

3Sample code and the preference matrices used in the experiments can be found at http://bit.ly/nips15data.

93

http://bit.ly/nips15data

7. Copeland Confidence Bounds

105 106 107

time

0

200000

400000

600000

800000

1000000

1200000

1400000
cu

m
ul

at
iv

e
re

gr
et

Synthetic 500-armed Example

CCB
SCB

Figure 7.7: Large-scale regret results for a synthetic 500-armed Copeland dueling bandit
problem.

independent experiments with varying horizons and recorded the accumulated regret:
the markers on the curves corresponding to these algorithms represent these numbers.
Consequently, the regret curves are not monotonically increasing. For instance, SAVAGE’s
cumulative regret at time 2× 107 is lower than at time 107 because the runs that produced
the former number were not continuations of those that resulted in the latter, but rather
completely independent. Furthermore, RUCB’s cumulative regret grows linearly, which is
why the plot does not contain the entire curve.

Additionally, we carry out a more detailed investigation of our proposed algorithm. In
particular, we conduct both a scalability experiment to understand the behaviours of CCB
as the number of arms grows as well as an experiment on a dueling bandit problem that
satisfies the Condorcet assumption.

Our scalability experiment uses a 500-armed synthetic example created to test the
scalability of CCB in comparison to SCB. In particular, we fix a preference matrix in
which the three Copeland winners are in a cycle, each with a Copeland score of 498, and
the other arms have Copeland scores ranging from 0 to 496.

Figure 7.7, which depicts the results of this experiment, shows that when there are
many arms, SCB can outperform CCB. We omit SAVAGE, PBR and RankEl from this
experiment because they scale poorly in the number of arms [15, 16, 65].

The reason for the sharp transition in the regret curves of CCB and SCB in the synthetic
experiment is as follows. Because there are many arms, as long as one of the two arms

94

7.6. Summary

103 104 105 106 107

time

50

100

150

200

250

cu
m

ul
at

iv
e

re
gr

et

MSLR Condorcet Example with 5 Rankers

RUCB
CCB

Figure 7.8: Regret results for a Condorcet example.

being compared is not a Copeland winner, the comparison can result in substantial regret;
since both algorithms choose the second arm in each round based on some criterion other
than the Copeland score, even if the first chosen arm in a given time-step is a Copeland
winner, the incurred regret may be as high as 0.5. The sudden transition in Figure 7.7
occurs when the algorithm becomes confident enough of its choice for the first arm to
begin comparing it against itself, at which point it stops accumulating regret.

As advertised previously, our next experiment is on an example with a Condorcet
winner in order to show how CCB compares against RUCB when the condition required
by RUCB is satisfied. The regret plots for the remaining algorithms were excluded here
since they both perform substantially worse than either RUCB or CCB, as expected.
This example was extracted in the same fashion as the example used in the above ranker
evaluation experiment, with the sole difference that this time we ensured that one of the
rankers is a Condorcet winner. The results, depicted in Figure 7.8, show that CCB enjoys
a slight advantage over RUCB in this case. We attribute this to the careful process of
identifying and utilizing the weaknesses of non-Copeland winners, as carried out by lines
12 and 18 of Algorithm 5.

7.6 Summary

In the dueling bandit problem, the goal is to use pairwise feedback to find the most
desirable choice from a set of options. Most existing work in this area assumes the

95

7. Copeland Confidence Bounds

existence of a Condorcet winner, i.e., an arm that beats all other arms with probability
greater than 0.5. Even though these results have the advantage that the bounds they
provide scale linearly in the number of arms, their main drawback is that in practice the
Condorcet assumption is too restrictive. By contrast, other results that do not impose the
Condorcet assumption achieve bounds that scale quadratically in the number of arms.

In this chapter, we set out to solve a natural generalization of the problem, where
instead of assuming the existence of a Condorcet winner, we seek to find a Copeland
winner, which is guaranteed to exist. We proposed an algorithm, called CCB, as a solution
for this problem. We provided theoretical results bounding the regret accumulated by our
algorithm: these results improve substantially over existing results in the literature, by
filling the gap that exists in the current results, namely the discrepancy between results that
make the Condorcet assumption and are of the form O(K log T) and the more general
results that are of the form O(K2 log T).

Moreover, we have evaluated the effectiveness of CCB using examples from online
ranker evaluation, and as our results indicate, CCB performs very well for small numbers
of arms. An interesting question raised by our scalability experiments is whether or not
it is possible to devise an algorithm that has the benefits of both CCB and SCB, i.e.,
the scalability of the latter together with the former’s better dependence on the gaps: as
discussed in §7.4.2, the gap that governs the performance of CCB is substantially larger
than ∆min, on which the regret bound for SCB depends.

96

8
Conclusions

In this thesis, we set out to address theK-armed dueling bandit problem, which is designed
to address situations in which we are presented with a number of possibilities (called
“arms” for historical reasons) that can be adopted and we are interested in the “best” option,
but we can only obtain information about the relative qualities of the various choices
through noisy comparisons between pairs of arms. Such a situation arises, for instance, in
the context of online ranker evaluation, where each arm corresponds to a ranker that we
would like to deploy for instance as part of a search engine and where the comparisons
can be carried out through interleaved comparisons.

In the following sections, we provide a summary of the results presented in this thesis
and outline some directions for further research.

8.1 Summary of Results

Let us revisit the research questions that were promised to be addressed in Chapter 1:

RQ1 Can the lower bound for dueling bandits be met without the total ordering assump-
tion?

This question was addressed in Chapter 4 with the introduction of the RUCB algorithm,
which greatly advanced the state of the art by being the first algorithm with regret bound
of the form O(K2 +K log T) under very general assumptions. Furthermore, the experi-
mental results included in Chapter 4 attest to the practicality of RUCB. In particular, in the
case of the examples used in Chapter 4, the regret accumulated by RUCB is less than half
of that of Condorcet SAVAGE, which was the state of the art for small-scale problems.

RQ2 Can we devise an algorithm that is more exploitative than RUCB?

The answer to this question was provided through the introduction of the RCS algorithm
in Chapter 5 and demonstrating experimentally that it does outperform RUCB when the
number of arms is small. In particular, the experiments comparing RUCB and RCS were
carried out on examples whose numbers of arms ranged from 10 to 40 in increments of
10. In the case of the 10-armed example, RCS dominated the RUCB, but in the case of
the examples with larger numbers of arms, we saw that even though RCS outperforms
RUCB asymptotically, this does not hold for all time-steps.

97

8. Conclusions

RQ3 Can the quadratic dependence on the number of arms in the regret bound for RUCB
be eliminated?

We dealt with this research question in Chapter 6 with the introduction and theoretical
analysis of the mergeRUCB algorithm. We established a regret bound for mergeRUCB
that takes the form O(K log T) with no quadratic dependence on K, unlike the bound
for RUCB, whose additive constant is O(K2). It was also shown experimentally that
for large-scale problems mergeRUCB outperforms RUCB significantly. In particular, we
carried out comparisons between mergeRUCB, RUCB and Beat the Mean (BTM), the art
algorithm for large-scale problems. These comparisons were carried out using the feature
rankers of three learning to rank datasets with the numbers of feature rankers being 136,
245 and 700. The experiments demonstrated that as the number of rankers grows, the
advantage obtained from using mergeRUCB, rather than RUCB and BTM, becomes more
and more pronounced.

RQ4 Can the lower bound for the dueling bandit problem be met under practically general
assumptions?

This research question was addressed in Chapter 7, where we introduced the CCB al-
gorithm, whose theoretical guarantee matches the lower bound proven in [74], which
takes the form O(K log T) asymptotically in T , and importantly, the assumptions under
which this result holds do not hinder its applicability in practice. More specifically, the
cumulative regret of CCB was shown to take the form O(K2 +K log T).

From a practical point of view, the most significant accomplishment of the above results
is to provide the first broadly applicable dueling bandit algorithm in the literature, i.e.
CCB. Furthermore, under the more restrictive assumption that the dueling bandit problem
possesses a Condorcet winner, mergeRUCB provides a practical solution for large-scale
problems.

8.2 Future Work

As with any body of work in research, the results presented in this thesis raise more
questions than they answer. Indeed, there are some limitations to the work on which we
have reported in the thesis. For instance, an algorithm that possesses the advantages of
both CCB and mergeRUCB continues to remain elusive: this is discussed below.

In the following, we discuss some directions for further inquiry:

Thompson sampling. It is a meta-theorem (or perhaps a form of superstition) in the field
of bandits that whenever there is a bandit algorithm that uses confidence intervals to obtain
theoretical guarantees, there should be a similar algorithm which instead of confidence
bounds uses samples from a posterior distribution, which we call the “Thompson” version
of the algorithm. Moreover, this Thompson version should work better than the confidence
bound version, although its theoretical analysis is considerably more difficult [2, 44]. In
the case of RUCB, it is very easy to envisage what this Thomson version should be; indeed,
RCS is a partial step in that direction, where half of RUCB has been “Thompsonized,” for

98

8.2. Future Work

lack of a better word. However, even this partial “Thompsonization” proved too difficult
to deal with theoretically using the techniques that exist in the literature at this time.

The main difference between the dueling setting and the K-armed bandit problem
is that, in the case of a latter, if a suboptimal arm has a posterior that is not very well
concentrated, then we can rest easy because that means that the arm has not been pulled
many times. However, in the case of dueling bandits, a suboptimal arm might have been
compared against some arms many times and not so much against others. In other words,
just because the posterior for pij for some suboptimal arm ai is not concentrated, it does
not imply that the regret due to ai is small. Naturally, this is a very interesting problem
that merits further investigation.

Scalability. A major flaw of the mergeRUCB algorithm is its crucial reliance on the
existence of the Condorcet winner. So, a natural question is if this issue can be addressed.
A partial answer to this question is provided by the Scalable Copeland Bandit (SCB)
algorithm proposed in [79], where it was shown that the regret bound for SCB has no
quadratic dependence on K. However, as experimental results show, this algorithm does
not provide a very practical solution to this problem, and the question remains whether
the scalability of SCB can be combined with the practicality of CCB.

Extensions. As with the multi-armed bandit problem, one can formulate and investigate
various extensions of the dueling bandit problem, e.g., adversarial bandits, where an
adversay chooses the preference matrix, or contextual bandits, where the environment
provides some side information that could be used by the algorithm to decide which arms
to choose for comparison, etc. Even though there exist partial solutions to these problems
in the literature [24, 28], the study of such modifications of the dueling bandit problem
remains largely unexplored. Indeed, a very interesting and challenging open problem is to
design a computationally efficient contextual dueling bandit problem with O(

√
T) regret

bound: the best known result so far is O(T 2/3) [24].

99

Bibliography

[1] Y. Abbasi-yadkori, D. Pal, and C. Szepesvari. Improved algorithms for linear stochastic bandits. In NIPS,
2011. (Cited on page 27.)

[2] S. Agrawal and N. Goyal. Analysis of thompson sampling for the multi-armed bandit problem. In
Conference on Learning Theory, pages 1–26, 2012. (Cited on pages 41, 43, and 98.)

[3] N. Ailon, Z. Karnin, and T. Joachims. Reducing dueling bandits to cardinal bandits. In ICML, 2014. (Cited
on pages 4, 17, and 18.)

[4] K. Amin, M. Kearns, and U. Syed. Bandits, query learning, and the haystack dimension. In COLT, 2011.
(Cited on page 57.)

[5] A. Antos, G. Bartók, D. Pál, and C. Szepesvári. Toward a classification of finite partial-monitoring games.
Theoretical Computer Science, 2012. (Cited on page 20.)

[6] J.-Y. Audibert, R. Munos, and C. Szepesvári. Exploration-exploitation tradeoff using variance estimates in
multi-armed bandits. Theor. Comput. Sci., 410(19):1876–1902, 2009. (Cited on page 27.)

[7] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. Gambling in a rigged casino: The adversarial
multi-armed bandit problem. In Symposium on Foundations of Computer Science, pages 322–331, 1995.
(Cited on page 18.)

[8] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed bandit problem. Machine
Learning, 47(2-3):235–256, 2002. (Cited on page 23.)

[9] A. Balsubramani, Z. Karnin, R. Schapire, and M. Zoghi. Instance-dependent regret bounds for dueling
bandits. In Conference on Learning Theory, 2016. (Cited on page 8.)

[10] G. Bartók, N. Zolghadr, and C. Szepesvári. An adaptive algorithm for finite stochastic partial monitoring.
In ICML, 2012. (Cited on page 20.)

[11] E. Brochu, T. Brochu, and N. de Freitas. A Bayesian interactive optimization approach to procedural
animation design. In ACM SIGGRAPH, 2010. (Cited on pages 2 and 52.)

[12] S. Bubeck and N. Cesa-Bianchi. Regret analysis of stochastic and nonstochastic multi-armed bandit
problems. Foundations and Trends in Machine Learning, 5:1–122, 2012. (Cited on page 18.)

[13] S. Bubeck, R. Munos, G. Stoltz, and C. Szepesvari. X-armed bandits. Journal of Machine Learning
Research, 12:1655–1695, 2011. (Cited on pages 41 and 52.)

[14] R. Busa-Fekete and E. Hüllermeier. A survey of preference-based online learning with bandit algorithms.
In Algorithmic Learning Theory, pages 18–39. Springer, 2014. (Cited on pages 13 and 68.)

[15] R. Busa-Fekete, B. Szörényi, P. Weng, W. Cheng, and E. Hüllermeier. Top-k selection based on adaptive
sampling of noisy preferences. In ICML, 2013. (Cited on pages 20, 93, and 94.)

[16] R. Busa-Fekete, B. Szörényi, and E. Hüllermeier. PAC rank elicitation through adaptive sampling of
stochastic pairwise preferences. In National Conference on Artificial Intelligence (AAAI), 2014. (Cited on
pages 20, 93, and 94.)

[17] N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and Games. Cambridge University Press, 2006.
(Cited on page 79.)

[18] O. Chapelle and Y. Chang. Yahoo! learning to rank challenge overview. Journal of Machine Learning
Research-Proceedings Track, 14:1–24, 2011. (Cited on page 21.)

[19] O. Chapelle and L. Li. An empirical evaluation of thompson sampling. In NIPS, 2011. (Cited on page 43.)

[20] O. Chapelle, T. Joachims, F. Radlinski, and Y. Yue. Large-scale validation and analysis of interleaved
search evaluation. ACM Trans. Inf. Syst., 30(1):6:1–6:41, 2012. (Cited on page 2.)

101

8. Bibliography

[21] A. Chuklin, I. Markov, and M. de Rijke. Click Models for Web Search. Morgan & Claypool, 2015. (Cited
on page 22.)

[22] N. Craswell, O. Zoeter, M. Taylor, and B. Ramsey. An experimental comparison of click position-bias
models. In WSDM ’08, pages 87–94, 2008. (Cited on pages 22 and 40.)

[23] N. de Freitas, A. Smola, and M. Zoghi. Exponential regret bounds for Gaussian process bandits with
deterministic observations. In ICML, 2012. (Cited on pages 41 and 52.)

[24] M. Dudı́k, K. Hofmann, R. E. Schapire, A. Slivkins, and M. Zoghi. Contextual dueling bandits. In
Conference on Learning Theory, 2015. (Cited on pages 3, 8, 18, 20, 68, 69, and 99.)

[25] J. Elster and A. Hylland. Foundations of Social Choice Theory. Cambridge University Press, 1989. (Cited
on page 3.)

[26] W. Feller. An Introduction to Probability Theory and Its Applications, volume 1. Wiley, 1968. (Cited on
page 36.)

[27] S. Fox, K. Karnawat, M. Mydland, S. Dumais, and T. White. Evaluating implicit measures to improve
web search. TOIS, 23(2):147–168, 2005. (Cited on page 2.)

[28] P. Gajane, T. Urvoy, and F. Clérot. A relative exponential weighing algorithm for adversarial utility-based
dueling bandits. In ICML, 2015. (Cited on page 99.)

[29] M. Gardner. Mathematical games: The paradox of the nontransitive dice and the elusive principle of
indifference. Scientific American, 223:110–114, 1970. (Cited on pages 3 and 68.)

[30] F. Guo, L. Li, and C. Faloutsos. Tailoring click models to user goals. In WSCD ’09, pages 88–92, 2009.
(Cited on page 22.)

[31] F. Guo, C. Liu, and Y. Wang. Efficient multiple-click models in web search. In WSDM ’09, pages 124–131,
New York, NY, USA, 2009. ACM. (Cited on pages 22 and 40.)

[32] D. K. Harman. Overview of the second text retrieval conference (trec-2). In NIST Special Publication.
Presented at the Second Text Retrieval Conference (TREC 2). Department of Commerce, National Institute
of Standards and Technology, 1993. (Cited on page 1.)

[33] J. He, C. Zhai, and X. Li. Evaluation of methods for relative comparison of retrieval systems based on
clickthroughs. In CIKM ’09, pages 2029–2032, 2009. (Cited on page 22.)

[34] W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the American
Statistical Association, 58(301):13–30, 1963. (Cited on page 11.)

[35] K. Hofmann. Fast and reliable online learning to rank for information retrieval. PhD thesis, University of
Amsterdam, Netherlands, 2013. (Cited on page 21.)

[36] K. Hofmann, S. Whiteson, and M. de Rijke. A probabilistic method for inferring preferences from clicks.
In CIKM ’11, pages 249–258, USA, 2011. ACM. (Cited on pages 21, 22, and 40.)

[37] K. Hofmann, S. Whiteson, and M. de Rijke. Fidelity, soundness, and efficiency of interleaved comparison
methods. ACM Transactions on Information Systems, 31(4), 2013. (Cited on pages 22, 27, 61, and 64.)

[38] K. Hofmann, S. Whiteson, and M. de Rijke. Balancing exploration and exploitation in listwise and pairwise
online learning to rank for information retrieval. Information Retrieval, 16(1):63–90, 2013. (Cited on
pages 22 and 40.)

[39] K. Hofmann, L. Li, and F. Radlinski. Online evaluation. Manuscript, 2016. (Cited on page 1.)

[40] K. Jamieson, R. Nowak, and B. Recht. Query complexity of derivative-free optimization. In NIPS, 2012.
(Cited on page 41.)

102

[41] K. Järvelin and J. Kekäläinen. Cumulated gain-based evaluation of ir techniques. ACM Trans. Inf. Syst.,
20(4):422–446, October 2002. (Cited on page 1.)

[42] T. Joachims. Optimizing search engines using clickthrough data. In KDD, 2002. (Cited on page 22.)

[43] T. Joachims. Evaluating retrieval performance using clickthrough data. In J. Franke, G. Nakhaeizadeh, and
I. Renz, editors, Text Mining, pages 79–96. Springer, Berlin, Germany, 2003. (Cited on pages 2 and 22.)

[44] E. Kauffmann, N. Korda, and R. Munos. Thompson sampling: an asymptotically optimal finite time
analysis. In International Conference on Algorithmic Learning Theory, 2012. (Cited on pages 41, 43,
and 98.)

[45] D. Kelly. Methods for evaluating interactive information retrieval systems with users. Foundations and
Trends in Information Retrieval, 3:1–224, 2009. (Cited on page 1.)

[46] R. Kohavi, R. Longbotham, D. Sommerfield, and R. M. Henne. Controlled experiments on the web:
survey and practical guide. Data Mining and Knowledge Discovery, 18(1), 2008. URL http://www.
springerlink.com/index/10.1007/s10618-008-0114-1. (Cited on page 2.)

[47] R. Kohavi, A. Deng, B. Frasca, T. Walker, Y. Xu, and N. Pohlmann. Online controlled experiments at
large scale. In KDD, 2013. (Cited on page 2.)

[48] R. Kohavi, A. Deng, B. Frasca, T. Walker, Y. Xu, and N. Pohlmann. Online controlled experiments at
large scale. In KDD ’13, pages 1168–1176. ACM, 2013. (Cited on page 53.)

[49] J. Komiyama, J. Honda, H. Kashima, and H. Nakagawa. Regret lower bound and optimal algorithm in
dueling bandit problem. In Conference on Learning Theory, 2015. (Cited on page 19.)

[50] T.-Y. Liu, J. Xu, T. Qin, W. Xiong, and H. Li. Letor: Benchmark dataset for research on learning to rank
for information retrieval. In LR4IR ’07, in conjunction with SIGIR ’07, 2007. (Cited on page 40.)

[51] C. Manning, P. Raghavan, and H. Schütze. Introduction to Information Retrieval. Cambridge University
Press, 2008. (Cited on pages 1 and 38.)

[52] Microsoft Learning to Rank Datasets, 2012. http://research.microsoft.com/en-us/
projects/mslr/default.aspx. (Cited on page 21.)

[53] R. Munos. Optimistic optimization of a deterministic function without the knowledge of its smoothness.
In NIPS, 2011. (Cited on pages 41 and 52.)

[54] S. Negahban, S. Oh, and D. Shah. Iterative ranking from pair-wise comparisons. In NIPS, 2012. (Cited on
page 20.)

[55] G. Owen. Game Theory. Emerald Group Publishing Limited, 3rd edition, 1995. (Cited on page 18.)

[56] A. Piccolboni and C. Schindelhauer. Discrete prediction games with arbitrary feedback and loss. In
Computational Learning Theory, pages 208–223, 2001. (Cited on page 20.)

[57] F. Radlinski, M. Kurup, and T. Joachims. How does clickthrough data reflect retrieval quality? In CIKM,
2008. (Cited on pages 21, 22, and 38.)

[58] R. L. Rivest and E. Shen. An optimal single-winner preferential voting system based on game theory. In
V. Conitzer and J. Rothe, editors, Proceedings Third International Workshop on Computational Social
Choice. Düsseldorf University Press, 2010. (Cited on pages 67 and 68.)

[59] H. Robbins. Some Aspects of the Sequential Design of Experiments. Bulletin of the American Mathematical
Society, 58:527–535, 1952. (Cited on page 2.)

[60] M. Sanderson. Test collection based evaluation of information retrieval systems. Foundations and Trends
in Information Retrieval, 4:247–375, 2010. (Cited on page 1.)

103

http://www.springerlink.com/index/10.1007/s10618-008-0114-1
http://www.springerlink.com/index/10.1007/s10618-008-0114-1
http://research.microsoft.com/en-us/projects/mslr/default.aspx
http://research.microsoft.com/en-us/projects/mslr/default.aspx

8. Bibliography

[61] M. Schulze. A new monotonic, clone-independent, reversal symmetric, and Condorcet-consistent single-
winner election method. Social Choice and Welfare, 36(2):267–303, 2011. (Cited on pages 11, 13,
and 67.)

[62] A. Schuth, K. Hofmann, and F. Radlinski. Predicting search satisfaction metrics with interleaved compar-
isons. In SIGIR 2015. ACM, 2015. (Cited on page 2.)

[63] N. Srinivas, A. Krause, S. M. Kakade, and M. Seeger. Gaussian process optimization in the bandit setting:
No regret and experimental design. In ICML, 2010. (Cited on pages 27, 41, and 52.)

[64] W. R. Thompson. On the likelihood that one unknown probability exceeds another in view of the evidence
of two samples. Biometrika, pages 285–294, 1933. (Cited on pages 9, 41, and 43.)

[65] T. Urvoy, F. Clerot, R. Féraud, and S. Naamane. Generic exploration and k-armed voting bandits. In ICML,
2013. (Cited on pages 4, 12, 13, 16, 20, 27, 46, 63, 93, and 94.)

[66] M. Valko, A. Carpentier, and R. Munos. Stochastic simultaneous optimistic optimization. In ICML, 2013.
(Cited on pages 41 and 52.)

[67] Z. Wang, M. Zoghi, F. Hutter, D. Matheson, and N. De Freitas. Bayesian optimization in high dimensions
via random embeddings. In IJCAI, 2013. (Cited on page 8.)

[68] L. Wasserman. All of Statistics: A Concise Course in Statistical Inference. Springer Publishing Company,
Incorporated, 2010. (Cited on page 10.)

[69] H. Wu, X. Liu, and R. Srikant. Double thompson sampling for dueling bandits. In NIPS, 2016. (Cited on
page 41.)

[70] Yandex Internet Mathematics 2009 Dataset, 2009. http://imat2009.yandex.ru/en/
datasets. (Cited on page 21.)

[71] Y. Yue and T. Joachims. Interactively optimizing information retrieval systems as a dueling bandits
problem. In ICML, 2009. (Cited on pages 14 and 41.)

[72] Y. Yue and T. Joachims. Interactively optimizing information retrieval systems as a dueling bandits
problem. In ICML ’09, pages 1201–1208, New York, NY, USA, 2009. ACM. (Cited on page 52.)

[73] Y. Yue and T. Joachims. Beat the mean bandit. In ICML, 2011. (Cited on pages 4, 14, 15, 27, 40, 61, 63,
and 93.)

[74] Y. Yue, J. Broder, R. Kleinberg, and T. Joachims. The k-armed dueling bandits problem. In Conference on
Learning Theory (COLT), 2009. (Cited on pages 3 and 98.)

[75] Y. Yue, J. Broder, R. Kleinberg, and T. Joachims. The K-armed dueling bandits problem. Journal of
Computer and System Sciences, 78(5):1538–1556, Sept. 2012. (Cited on pages 9, 11, 14, 15, 27, 61,
and 66.)

[76] J.-Y. Zhu, A. Agarwala, A. A. Efros, E. Shechtman, and J. Wang. Mirror mirror: Crowdsourcing better
portraits. ACM Transactions on Graphics (SIGGRAPH Asia 2014), 33(6), 2014. (Cited on page 2.)

[77] M. Zoghi, S. Whiteson, M. de Rijke, and R. Munos. Relative confidence sampling for efficient on-line
ranker evaluation. In WSDM, 2014. (Cited on pages 7, 41, and 61.)

[78] M. Zoghi, S. Whiteson, R. Munos, and M. de Rijke. Relative upper confidence bound for the k-armed
dueling bandits problem. In ICML, 2014. (Cited on pages 3, 7, 19, 23, 48, 49, 61, 66, and 93.)

[79] M. Zoghi, Z. Karnin, S. Whiteson, and M. de Rijke. Copeland dueling bandits. In NIPS, 2015. (Cited on
pages 5, 8, 19, 93, and 99.)

[80] M. Zoghi, S. Whiteson, and M. de Rijke. MergeRUCB: A method for large-scale online ranker evaluation.
In WSDM, 2015. (Cited on page 8.)

[81] M. Zoghi, T. Tunys, L. Li, D. Jose, J. Chen, C. M. Chin, and M. de Rijke. Click-based hot fixes for
underperforming torso queries. In SIGIR, 2016. (Cited on page 8.)

104

http://imat2009.yandex.ru/en/datasets
http://imat2009.yandex.ru/en/datasets

Summary:

In every domain where a service or a product is provided, an important question is
that of evaluation: given a set of possible choices for deployment, what is the best one?
An important example, which is considered in this work, is that of ranker evaluation from
the field of information retrieval (IR). The goal of IR is to satisfy the information need
of a user in response to a query issued by them, where this information need is typically
satisfied by a document (or a small set of documents) contained in what is often a much
larger collection. This goal is often attained by ranking the documents according to their
usefulness to the issued query using an algorithm, called a ranker, a procedure that takes as
input a query and a set of documents and specifies how the documents need to be ordered.

This thesis is concerned with ranker evaluation. The goal of ranker evaluation is to
determine the quality of the rankers under consideration to allow us to choose the best
option: given a finite set of possible rankers, which one of them leads to the highest
level of user satisfaction? There are two main methods for carrying this out: absolute
metrics and relative comparisons. This thesis is concerned with the second, relative form
of ranker evaluation because it is more efficient at distinguishing between rankers of
different quality: for instance interleaved comparisons take a fraction of the time required
by A/B testing, but they produce the same outcome. More precisely, the problem of
online ranker evaluation from relative feedback can be described as follows: given a
finite set of rankers, choose the best using only pairwise comparisons between the rankers
under consideration, while minimizing the number of comparisons involving sub-optimal
rankers. This problem is an instance of what is referred to as the dueling bandit problem
in the literature.

The main contribution of this thesis is devising a dueling bandit algorithm, called
Copeland Confidence Bounds (CCB), that solves this problem under practically general
assumptions and providing theoretical guarantees for its proper functioning. In addition to
that, the thesis contains a number of other algorithms that are better suited for dueling
bandit problems with particular properties.

105

8. Bibliography

Samenvatting:

In elk domein waar een dienst of een product wordt geleverd is een belangrijke vraag
die van de evaluatie: gegeven een verzameling van mogelijke keuzes, wat is de beste? Een
belangrijk voorbeeld, dat wordt beschouwd in dit werk, is die van rankerevaluatie binnen
het vakgebied van de information retrieval (IR). Het doel van IR is te voldoen aan de
informatiebehoefte van een gebruiker in reactie op een zoekvraag, waarbij de informatie
gewoonlijk wordt voldaan door middel van een document (of een kleine verzameling
documenten) te selecteren uit een veel grotere verzameling van documenten. Dit doel
wordt vaak bereikt door het rangschikken van de documenten op basis van hun nut voor de
gegeven zoekvraag met behulp van een algoritme, een zogenaamde ranker, een procedure
die als input een query neemt en als output een geordende reeks documenten oplevert.

Dit proefschrift houdt zich bezig met rankerevaluatie. Het doel van rankerevaluatie is
om de kwaliteit van de rankers in kwestie vast te stellen om zo de beste ranker te kiezen:
gegeven een eindige verzameling van mogelijke rankers, welke leidt tot de grootste
tevredenheid van de gebruikers? Er zijn twee belangrijke methoden voor de uitvoering:
absolute evaluatiematen en relatieve vergelijkingen. Dit proefschrift betreft de tweede,
relatieve, vorm van rankerevaluatie omdat het efficinter onderscheid maakt tussen rankers
van verschillende kwaliteit. Bijvoorbeeld het om-en-om presenteren van resultaten van
rankers kost een fractie van de tijd van een A/B test, maar leidt tot dezelfde uitkomst. Meer
in het bijzonder, kan het probleem van de online ranker evaluatie met behulp van relatieve
feedback als volgt worden omschreven: gegeven een eindige verzameling van rankers, kies
de beste met behulp van slechts paarsgewijze vergelijkingen tussen de rankers in kwestie,
waarbij een minimaal aantal vergelijkingen van suboptimale rankers gebruikt wordt. Dit
probleem is een voorbeeld van wat wordt aangeduid als het duellerend bandietprobleem
(dualing bandit problem) in de literatuur.

De belangrijkste bijdrage van dit proefschrift is het opstellen van een duellerend
bandiet- algoritme, genaamd Copeland Confidence Bounds (CCB), die dit probleem oplost
onder nagenoeg algemene aannames en het verstrekken van theoretische garanties voor de
goede werking ervan. Het proefschrift bevat bovendien een aantal andere algoritmen die
beter geschikt zijn voor duellerende bandietproblemen met bijzondere eigenschappen.

106

	Introduction
	Research Outline and Questions
	Main Contributions
	Thesis Overview
	Origins

	Background
	Problem Setting
	The K-armed bandit problem
	The K-armed dueling bandit problem

	Related Work
	IF and BTM
	SAVAGE
	Doubler
	Sparring
	Assumptions vs. Results
	RMED
	Other solution concepts

	Experimental Setup
	Relative Upper Confidence Bound
	The Algorithm
	Theoretical Results
	Proofs
	Proof of Lemma 4.1
	Proof of Proposition 4.2
	Proof of Theorem 4.4
	Proof of Theorem 4.5

	Experimental Results
	Details of the Experimental Setup

	Summary

	Relative Confidence Sampling
	The Algorithm
	Experiments
	Accuracy Results
	Cumulative Regret Results
	Stability of RUCB and RCS
	Size of the Set of Rankers

	Summary

	MergeRUCB
	The Algorithm
	Theory
	Proofs
	Experiments
	Large scale experiments
	Lerot simulation vs Bernoulli samples
	Dependence on K
	Effect of click models
	Parameter dependence

	Summary

	Copeland Confidence Bounds
	Motivation
	The Condorcet Assumption
	Other Notions of Winners
	The Quantities C and LC

	The CCB Algorithm
	Theory
	Proofs
	An Outline of the Proof of Theorem 7.1
	The Gap
	Background Material
	Proof of Proposition 7.3
	Proof of Lemma 7.6
	Proof of Lemma 7.7

	Experiments
	Summary

	Conclusions
	Summary of Results
	Future Work

	Bibliography

