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1
Introduction

In the early years of information retrieval, reactive search systems that return a ranked
list of results in response to queries issued by users were overwhelmingly prevalent [12,
26, 194]. With the explosive growth of information, users may be unaware of inform-
ation that is potentially useful to them. Systems that passively wait for queries may
no longer be able to fulfill the information need of users [8]. Instead, proactive search
systems [2, 191] that actively push information to users have gained popularity; they
provide a type of functionality known as zero-query ranking [253]. Top-N recom-
mender systems, which are at the heart of such systems, provide effective zero-query
ranking by utilizing either demographic, content or historical information.

Top-N recommendation models have been deployed in various online applica-
tions, ranging from the recommendation of music [117, 252], movies [85], news [59,
131, 132], products [146, 157], articles [229] to the recommendation of points-of-
interest [79, 128, 140, 147, 260] and social links [44, 161, 257, 261]. Over the last
decades, various efforts have been made to apply machine learning methodologies to
provide top-N recommendations. Collaborative filtering (CF)-based methods, which
make use of historical interactions between users and items, have achieved significant
success [199]. Originally proposed by Goldberg et al. [84], the core idea behind CF is
to recommend to one user items that are preferred by other similar minded users; this
idea has been widely implemented into top-N recommender systems.1

Although CF-based methods have achieved great success, they have recently faced
severe challenges due to the fast growth of real-world recommender systems. The
increasing number of users and items involved in the recommendation systems in-
creases the dimensionality of ratings, which challenges the scalability of CF methods.
Normally, the complexity of CF models is at least linear in the number of users and
items [63]. This becomes a bottleneck for practical systems, which may have millions
of users and items. Another issue brought by high-dimensional rating information is
rating sparsity, that is, the number of ratings is extremely small compared to the num-
ber of ratings between users and items. The performance of CF methods can greatly
suffer when ratings are very sparse [170]. In addition, CF methods suffer from the
cold-start problem: they cannot recommend items to new users since they have not
provided any ratings or recommend new items to users since they have never received

1Hereafter, we refer to user-item historical interactions (e.g., rated, clicked, viewed, purchased and etc.) as
rating information.

1



1. Introduction

any ratings.
Due to the wide availability of information associated with users or items, referred

to as side information, researchers have recently been interested in utilizing such in-
formation to compensate for the sparsity of ratings. Unfortunately, in many scenarios,
side information is also high-dimensional [43]. The scalability and sparsity issues
mentioned above are a recurring problem if such information is utilized.

So far, we have described scenarios where the available information, ratings or
side information, is homogeneous. In practice, the available information is often het-
erogeneous, i.e., multi-behaviors of users or multiple types of auxiliary information
associated with users or items [33, 108, 267]. For example, a user can rate, click, view
or purchase an item, each of which reflects a certain aspect of the user’s behavior. Sim-
ilarly, information describing items is not necessarily homogeneous. For example, in
the movie domain, meta information (actor and actress, director or producer), plots,
posters or trailers are all relevant to recommendation. The information that made up
the profile of a user can also be of multiple types, e.g., social networking, user tags,
etc. It remains a challenging task how to effectively fuse heterogeneous information
for top-N recommendation. Besides, the fusion of multiple types of information can
dramatically increase the dimensionality. It is even more challenging to leverage high-
dimensional and heterogeneous information.

In this thesis, we investigate solutions to the top-N recommendation task by lever-
aging high-dimensional and heterogeneous information. (1) To address the high-dimen-
sionality of ratings, we rely on item-based collaborative filtering, by modeling item-
item relations rather than user-item relations, the complexity of which is unaffected by
the number of users. We also categorize items into subgroups to ensure the scalability
when we have a large number of items. (2) We utilize high-dimensional side inform-
ation to enhance top-N recommendations. We investigate dimension reduction for
side information in a supervised way. The dimension reduction technique is embedded
into the training procedure of recommendation models. (3) When high-dimensional
side information also contains noise, we provide a novel method based on a vari-
ational auto-encoder (VAE), where feature embeddings are collectively learned with
user factors via the inference network and the generation network of the VAE. (4) We
further research the problem of recommending top-N new items by combining ratings
of warm-start items and item features. We learn low-dimensional item representations
from item features, based on which we learn item similarity functions. (5) We study
the problem of paper reranking where we have multi-behavioral information and pa-
per content information. We propose a hybrid reranking model that includes multiple
content-based metrics and a joint matrix factorization method. (6) Finally, we invest-
igate personalized feature interaction selection for factorization machines to utilize
high-dimensional and heterogeneous information. We select the personalized feature
interactions by forming a Bayesian variable selection method.

1.1 Research Outline and Questions
We divide the thesis into chapters based on the data sources utilized for top-N re-
commendations. The thesis contains three research themes: top-N recommendation
with (1) high-dimensional information (Chapter 2–4); and (2) heterogeneous informa-

2



1.1. Research Outline and Questions

tion (Chapter 5–7). (3) high-dimensional and heterogeneous information (Chapter 7).
Below, we list the main research question of every chapter.

1.1.1 Leveraging high-dimensional information
In recent years, tremendous growth of customers and products has been witnessed in
many online e-commerce systems, where the rating information is increasingly high-
dimensional. It becomes extremely difficult to produce high-quality recommendations
efficiently for millions of customers and products [196]. Fortunately, the issue of
scalability caused by the number of users can be addressed via item-based collaborat-
ive filtering (ICF). ICF methods use item-item relations, the complexity of which does
not depend on the number of users. State-of-the-art performance for top-N recom-
mendation is achieved by learning a sparse item similarity matrix [169]. The sparsity
also ensures the efficiency of personalization as only a few item-item relations will be
examined during recommendation. Clustering provides a feasible way to handle the
large number of items. By categorizing items into sub-groups, it is possible to feed
ratings within each sub-group to a separate model. However, item clustering has not
yet been studied for ICF methods. A straightforward solution that statically clusters
items based on rating and separately estimates local models for each sub-group is not
ideal. This has motivated us to find a better way to integrate item clustering with ICF
methods, which leads to the following research question:

RQ1 How can we effectively perform item clustering for item-based collaborative
filtering methods?

To answer RQ1, we propose a novel regularization term for ICF methods. The in-
troduced regularization encourages a block-diagonal structure of the item similarity
matrix, where each block captures a latent item group. Through block-diagonal reg-
ularization, the latent item groups can be identified adaptively according to the item
similarities, which is constantly optimized during the training procedure. Item similar-
ities can be optimized globally rather than separately within each item group.

Besides the scalability issue, another negative effect caused by high-dimensionality
is that rating information becomes extremely sparse. The sparsity of ratings impacts
the performance of CF-based methods. To overcome rating sparsity, there is great
interest in taking advantage of side information, i.e., the additional information asso-
ciated with users or items, e.g., product reviews, movie plots, etc. Methods for top-N
recommendation with side information have been studied widely [170, 229, 230]. Side
information is also widely available, especially in multimedia scenarios, which can be
in the form of text [229], images [91] or videos [66]. Therefore, side information is
generally high-dimensional [43]. For example, when side information is the textual
description of items, by regarding each unique term in the corpus as one dimension,
it is indisputably high-dimensional. Nonetheless, existing methods overlook this fact
when utilizing side information, and hence, they are facing problems of efficiency and
accuracy due to the curse of high dimensionality. This has led to the following research
question:

RQ2 Can we reduce the dimension of side information for effective top-N recom-
mendation?

3
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To answer RQ2, we provide a joint learning model that simultaneously performs di-
mension reduction and learns an item similarity model for top-N recommendation. We
introduce a projection matrix that maps side information from high-dimensional fea-
ture space to low-dimensional space. The motivation for using a projection is based on
the assumption that while the original space of side information is high, the intrinsic
dimensionality of it is low [96]. We introduce locality preserving projection (LPP)
to an ICF model, which achieves dimension reduction of side information while pre-
serving locality information (the relations among items in the original space of side
information).

However, the intrinsic low-dimensional space does not necessarily exist for all side
information, especially when side information contains noise. Therefore, effective di-
mension reductions can hardly be expected via the linear projection methods like LPP
and a process of denoising side information will be necessary. Denoising auto-encoder
(DAE) have been proposed to denoise features by recovering clean inputs from manu-
ally corrupted inputs [239]. However, the corruption methods are tailored for inputs of
different types, which has restricted the generalization of DAE. In comparison, vari-
ational auto-encoder (VAE) provides a better way to denoise features, as it automatic-
ally fits the noise based on data [134, 141]. Therefore, we are motivated to raise the
following research question:

RQ3 How can we utilize high-dimensional side information with noise for top-N re-
commendation?

To answer RQ3, we take advantage of VAEs. Unlike existing VAE-based methods [134,
141], we provide a collective VAE, which feeds both ratings and side information into
the same inference and generation network. The dimensions of the side information is
taken as the number of samples rather than the input dimensions of the neural network.
Therefore, the complexity of the model is free from the dimensionality of side inform-
ation. This is similar to the idea drawn from ICF that overcomes the scalability issue
caused by the large number of users. The quality of latent representations encoded by
the VAE when feeding ratings and side information respectively, can be collectively
improved.

1.1.2 Integrating heterogeneous information
One practical problem regarding CF methods for top-N recommendation is that their
recommendations of new items that received no ratings from users is no better than
random. This problem is typically referred to as the cold-start problem. Item features
(content information describing items) are typically utilized to address this problem.
Although utilizing similar information as the above-mentioned problems, cold-start
top-N recommendation will have higher requirements on the quality of item features.
This is because we need to infer ratings directly from item features for the new items.
An effective fusion of ratings and item features will then be called for, which has led
to a research question regarding the integration of heterogeneous information.

RQ4 How can we effectively fuse item features with ratings for the recommendation
of top-N new items?

Solutions for the previous research questions are not an idea answer for RQ4 since
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treating item features as side information fails to build a connection between the two
source of information from different feature spaces. Instead, we formulate it as a
regression problem where we input item features and output ratings. We establish
the connections between ratings and item features by estimating similarity functions.
These functions measure similarity among items based on item features. The learn-
ing of these functions is supervised by rating information. Therefore, the calculated
similarities are domain-specific, which can be utilized for top-N recommendation. We
study both global and local functions to comprehensively measure item similarities.

A typical example in need of heterogeneous information integration can be found
in academic paper recommendations. If we look at the recommender system of Scien-
ceDirect,2 where a weekly email with recommended papers is sent to users, we can see
that the email newsletter displays the title, venue (journal), authors, and publication
date of each recommended paper. On clicking on a recommendation, the user is also
linked to the paper on ScienceDirect. The system then logs on which recommenda-
tion(s) the user clicks. Since the ScienceDirect paper recommender was released, an
increasing number of users have signed up. It is especially challenging to make re-
commendations for these new users due to the lack of ratings, which has led to the
following research question:

RQ5 Can we address the challenge of recommending papers to cold-start users by
effectively utilizing available heterogeneous information?

To answer RQ5, we propose a hybrid reranking model that combines paper content
and user behavior to rerank candidate paper recommendations generated by the Sci-
enceDirect recommender. First, we propose several content-based measures that are
derived from various paper aspects, such as word space similarity, and author sim-
ilarity from an embedding space. Next, we use a joint matrix factorization to learn
a mapping from a user’s browsed articles on the search engine to a user’s clicks on
the recommendations, to alleviate the sparsity of the recommendation click data. We
use a pairwise learning model to rerank the candidate paper recommendation, which
eventually leads to better results in offline evaluations based on real email click data.

1.1.3 High-dimensional and heterogeneous information
While methods have been proposed to integrate heterogeneous information for top-N
recommendation [108, 267], they inevitably face the challenge of high-dimensionality.
Therefore, we seek to answer the following research question:

RQ6 How should we integrate high-dimensional and heterogeneous information for
top-N recommendation?

To answer RQ6, we provide a generic method based on factorization machines (FMs),
which models the interactions between features within one signal or among differ-
ent signals. The model has the capability to capture the complex relationships of the
heterogeneous information. To address the high-dimensionality, we conduct feature
interaction selection (FIS), which selects relevant interactions and filters out irrelev-
ant interactions. We propose to select the personalized feature interactions, which is

2https://www.sciencedirect.com/
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shown to improve the accuracy of top-N recommendation significantly.

1.2 Main Contributions
In this section, we list theoretical, algorithmic and empirical contribution of the thesis.
For each contribution, we list the chapter from which it originates.

1.2.1 Theoretical contributions
The theoretical contributions of this thesis come in the form of five models:
1. Block-aware similarity regularization (BSR): a novel regularization method for ICF

which captures clustering property of items (Chapter 2). The proposed method
- introduces a new type of regularization for ICF models, which theoretically guar-

antees the block-diagonal structure of item similarity matrix; and
- reveals the connections of the block-diagonality constraint on the item similarity

matrix to sparsity and transitivity.
2. Projection regularized item similarity model (Prism): a joint learning model for

top-N recommendation and feature reduction on side information (Chapter 3). The
proposed method
- integrates locality preserving projection into item similarity models.

3. Collective variational auto-encoder (cVAE): a VAE-based recommendation method
that utilizes high-dimensional and noisy side information to overcome rating sparsity
(Chapter 4). The proposed method
- provides a new network structure of VAEs to collectively learn user factors and

feature embeddings.
4. Local variational feature-based similarity model (LVSM): a deep generative model

that learns a global item similarity function and multiple local similarity functions
to comprehensively understand user’s behavior (Chapter 5). The proposed method
- seamlessly integrate item-based collaborative filtering with user clustering and

deep learning.
5. Hybrid reranking model (HRM): a hybrid reranking model that utilizes the metadata

of academic papers and user interactions (Chapter 6). The proposed method encom-
passes
- various measures for comparing paper similarity built on paper metadata; and
- a behavioral model that integrates hybrid user behaviors for recommendation.

6. Bayesian personalized feature interaction selection (BP-FIS): a Bayesian variable
selection (BVS) model to select personalized feature interactions in order to utilize
high-dimensional and heterogeneous features for factorization machines (Chapter 7).
The proposed method includes
- a new prior distribution of Bayesian variable selection (BVS) for personalized

feature interaction selection (P-FIS).

1.2.2 Algorithmic contributions
7. An alternating minimization algorithm to optimize block regularized similarity model

(BSM) with theoretical guarantee of convergence (Chapter 2).
8. An alternating minimization algorithm to optimize projection regularized item sim-

ilarity model (Prism), where each alternation has a closed-form solution (Chapter 3).
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9. An efficient algorithm based on stochastic gradient variational Bayes (SGVB) that
pretrains cVAE by high-dimensional side information and fine-tuning it by rating
information (Chapter 4).

10. A variational expectation maximization (EM)-algorithm to efficiently optimize LVSM
(Chapter 5).

11. An efficient algorithm based on SGVB with novel reparameterization tricks to train
BP-FIS (Chapter 7).

1.2.3 Empirical contributions
12. (1) An empirical comparison of BSM and BFSM with other state-of-the-art top-N

recommendation models. (2) Analysis of the impact of block-diagonal regulariza-
tion on the performance of top-N recommendation. (Chapter 2)

13. An empirical comparison of Prism with other state-of-the-art top-N recommenda-
tion with side infomration models (Chapter 3).

14. (1) An empirical comparison of cVAE with other state-of-the-art VAE-based top-
N recommendation models. (2) Analysis of the recommendation performance
achieved by different methods when the number of recommended items grows
(Chapter 4).

15. (1) An empirical comparison of local variational feature-based similarity model
(LVSM) with other state-of-the-art item cold-start recommendation models. (2) Eval-
uation of the effect of modeling global and local similarities on the performance of
recommendation. (3) Analysis the impact of the fraction of cold-start items and the
sparsity of features on the performance of recommendation (Chapter 5).

16. (1) Evaluating whether Bayesian personalized feature interaction selection (BP-
FIS) can improve the performance of FMs for top-N recommendation. (2) Ana-
lysis of the impact of embedding size and training interactions on the performance
of BP-FIS. (3) A case study to showcase the explainability provided by BP-FIS
(Chapter 7).

1.3 Thesis Overview
The thesis is organized into two parts: high-dimensional side information and hetero-
geneous information for top-N recommendation, as depicted in Figure 1.1.

The first part consists of three chapters. In Chapter 2, we propose to utilize high-
dimensional rating information for top-N recommendation; in Chapter 3, we pro-
pose to utilize high-dimensional rating information for top-N recommendation; in
Chapter 4, we further propose to harness noisy high-dimensional side information to
enhance top-N recommendation.

The second part consists of three chapters. In Chapter 5, we propose a deep gen-
erative model for recommending top-N new items; in Chapter 6, we propose to util-
ize both paper content and user behavior to rerank the paper for recommendation; in
Chapter 7, we propose to select personalized feature interactions for top-N recom-
mendation with heterogeneous features.

Finally, in Chapter 8, we conclude the thesis and discuss limitations and future
directions.
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Figure 1.1: Thesis structure.

1.4 Origins
In this section, we list the publications each chapter is based on and explain the role of
each author.
– Chapter 2 is based on the following paper:

• Yifan Chen, Yang Wang, Xiang Zhao, Jie Zou and Maarten de Rijke. 2019. Block-
aware similarity regularizations for item-based collaborative filtering. ACM Trans.
Inf. Syst. Under review.

YC designed the model, ran the experiments and did most of the writing; JZ helped
with running the experiments; YW, XZ and MdR contributed to the writing.

– Chapter 3 is based on the following paper:
• Yifan Chen, Xiang Zhao and Maarten de Rijke. 2017. Top-n recommendation

with high-dimensional side information via locality preserving projection. In Pro-
ceedings of the 40th International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval (SIGIR ’17). ACM, 985–988.

YC designed the model, ran the experiments and did most of the writing; XZ helped
with model design; XZ and MdR contributed to the writing.

– Chapter 4 is based on the following paper:
• Yifan Chen and Maarten de Rijke. 2018. A collective variational autoencoder for

top-n recommendation with side information. In Proceedings of the 3rd Workshop
on Deep Learning for Recommender Systems (DLRS ’18@RecSys), 3–9.

YC designed the model, ran the experiments and did most of the writing; MdR
contributed to the writing.

– Chapter 5 is based on the following paper:
• Yifan Chen, Yang Wang, Xiang Zhao, Hongzhi Yin, Ilya Markov and Maarten de

Rijke. 2019. Local variational feature-based similarity models for recommending
top-n new items. ACM Trans. Inf. Syst. Under review.

YC designed the model, ran the experiments and did most of the writing; YW and
HY helped with model design; XZ, IM and MdR contributed to the writing.

– Chapter 6 is based on the following paper:
• Xinyi Li, Yifan Chen, Benjamin Pettit and Maarten de Rijke. 2019. Personalised

reranking of paper recommendations using paper content and user behavior. ACM
Trans. Inf. Syst., 37, 3, Article 31.
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YC and XL designed the model, ran the code for the experiments; all authors con-
tributed to the writing.

– Chapter 7 is based on the following paper:
• Yifan Chen, Pengjie Ren, Yang Wang and Maarten de Rijke. 2019. Bayesian per-

sonalized feature interaction selection for factorization machines. In Proceedings
of the 42th International ACM SIGIR Conference on Research and Development
in Information Retrieval (SIGIR ’19), 665–674.

YC designed the model, ran the experiments and did most of the writing; PR helped
with the model design; all authors contributed to the writing.

We also mention publications that contributed to the thesis indirectly.
• Yifan Chen, Xiang Zhao, Junjiao Gan, Junkai Ren and Yanli Hu. 2016. Content-

based top-n recommendation using heterogeneous relations. In Proceedings of the
27th Australasian Database Conference (ADC ’16), 308–320.

• Yifan Chen, Xiang Zhao, Jinyuan Liu, Bin Ge and Weiming Zhang. 2019. Learning
to select user-specific features for top-n recommendation of new items. Journal of
Computer Science and Technology. Under review.

• Jie Zou, Yifan Chen and Evangelos Kanoulas. 2020. Towards question-based re-
commender systems. In Proceedings of the 13th ACM International Conference on
Web Search and Data Mining (WSDM ’20). Under review.

• Yifan Chen, Xiang Zhao, Xuemin Lin, Yang Wang and Deke Guo. 2019. Efficient
mining of frequent patterns on uncertain graphs. IEEE Trans. Knowl. Data Eng.,
31, 2, 287–300.
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2
Clustering Items for Item-based

Collaborative Filtering

In Chapter 1, we have set the scene for the research chapters. In this chapter, we
propose block-aware similarity regularizations to cluster items for item-based collab-
orative filtering, which answers the following question asked in Chapter 1:

RQ1 How can we effectively perform item clustering for item-based collaborative
filtering methods?

2.1 Introduction
Given a user profile with previous purchases or ratings, the top-N recommendation
task is to effectively and efficiently help users identify the services and products that best
fit their taste. A top-N recommendation algorithm should predict the recommendation
scores for each user for each item in the pool of products and recommend the top-N
items with the highest scores.

Collaborative filtering (CF) has been successfully used for top-N recommenda-
tions [192]. CF-based methods include latent space models [57] and neighborhood-
based methods [63]. While latent space models can be utilized to generate lists of
recommendations, they were originally designed for rating prediction tasks and are
sub-optimal for top-N recommendations. Neighborhood-based methods (user-based
or item-based) identify similar users or items; they have been shown to be better for
the top-N recommendation problem [4, 63, 107, 169], and item-based methods out-
perform user-based methods [51].

Early item-based collaborative filtering (ICF) methods use statistical measures,
e.g., Pearson coefficient or cosine similarity, to estimate item similarities [63, 197].
Recommendations by such heuristic-based approaches are fast but sacrifice perform-
ance. Sparse linear method (SLIM) [169] is a later proposal; it makes high-quality
recommendations and ensures efficiency of recommendation by learning a sparse item
similarity matrix from data. An inherent limitation of sparse linear method (SLIM)
is that it can only model relations between items that have been co-rated by at least
some users; their performance suffers when ratings are sparse. To address the issue,
factored item similarity model (FISM) [107] factorizes the similarity matrix into low-

This chapter was published as [38].
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Figure 2.1: Example to show the effect of BSR. Figure 2.1(a) is a rating matrix from the movie
recommendation domain, where rows and columns represent movies and users, respectively.
If a user has rated a movie, the corresponding entry is marked with “X”, otherwise with “?”;
Figure 2.1(b) is the item similarity matrix obtained by an ICF method without BSR, where non-
zero entries are grayed; Figure 2.1(c) is the learned item similarity matrix with BSR when c = 2;
Figure 2.1(d) is the sorted list of recommendations of unrated movies. The item similarity matrix
in Figure 2.1(c) has a block-diagonal structure, with two blocks inside the rectangles with thick
borders. Sparsity is achieved as off-block similarities are penalized. Transitive relations are also
recovered within the block (the blue grids).

rank matrices so that transitive relations between items can be captured. However, the
item similarity matrix generated by FISM is dense.

To ensure sparsity while enforcing low-rankness, the low-rank sparse linear method
(lorSLIM) [47] introduces rank regularization to the item similarity matrix. The learned
similarity matrix by lorSLIM is empirically shown to have a block-diagonal structure.
This block-diagonal structure is important to top-N recommendations: it captures lat-
ent item groups. Latent item groups are subsets of items so that items contained in them
are more similar to each other than to items from other subsets. Latent item groups are
common to a wide spectrum of real-world collaborative filtering applications. For in-
stance, in the movie domain, “Inception” would be similar to “Interstellar” as both
are science fiction and suspense movies, whereas its degree of similarity with “Ti-
tanic” is low as the latter belongs to the categories of romantic and disaster movies.
Low-rankness enforced by lorSLIM is an indirect way of pursuing a block-diagonal
structure. Theoretically, the block-diagonal matrix can only be generated under re-
strictive conditions [151]. Practically, the learned item similarity matrix is far from
being block-diagonal [73, 150]. Even if the similarity matrix is block-diagonal, we
cannot require it to exactly have a pre-specified number of blocks.

An alternative way to capture latent item groups is to cluster items into sub-groups
based on rating information. While clustering is prevalent in the context of CF [51,
238, 246, 249, 255, 268], it has been less studied for ICF. Recent work [6, 51, 52]
studies user clustering for ICF. These authors cluster users into subgroups based on
ratings and estimate a local ICF model for each cluster; they treat clustering and the
estimation of local models as separate procedures.

In this chapter, we propose an approach called block-aware similarity regulariza-
tion (BSR) to capture latent item groups for ICF methods. BSR encourages the learned
item similarity matrix to be, or to be close to, a c-block diagonal, where c is the num-
ber of blocks. BSR integrates item clustering into the learning of item similarities,
where in-block similarities are encouraged and off-block similarities are penalized.

14



2.2. Related Work

The block-diagonal structure achieved by BSR is adaptively optimized during the train-
ing process. Besides, BSR can also encourage sparsity and transitivity in item similar-
ities, which are crucial to the performance of top-N recommendations [107, 169]. BSR
integrates item clustering into the learning of item similarities, where in-block simil-
arities are encouraged and off-block similarities are penalized. The block-diagonal
structure achieved by BSR is adaptively optimized during the training process. Be-
sides, BSR can also encourage sparsity and transitivity in item similarities, which are
crucial to the performance of top-N recommendations [107, 169].

Specifically, (1) we apply BSR to similarity models (SMs) [119, 169] and propose
a block regularized similarity model (BSM); the effectiveness of BSM is theoretically
guaranteed. (2) as SMs do not scale, we resort to feature-based similarity models
(FSMs) [93, 107, 248], which are scalable; we extend BSR to block-aware similarity
dropout (BSD) and use it to regularize feature-based similarity models (FSMs), based
on which we propose a block regularized factored similarity model (BFSM). Figure 2.1
gives an illustrative example of how BSR works for ICF. By comparing BSMs and
BFSMs with state-of-the-art SMs and FSMs we verify the effectiveness of BSR.

Our key technical contributions in this chapter are:
1. we propose BSR to capture the block-diagonal structure behind item similarities so

as to improve ICF methods;
2. we apply BSR to SMs, whose effectiveness is theoretically guaranteed; we then

extend BSR and propose BSD, which is used to regularize FSMs;
3. we conduct extensive experiments to assess BSR for ICF; BSM and BFSM are

shown to outperform the state-of-the-art.

2.2 Related Work

2.2.1 Item-based collaborative filtering
Item-based collaborative filtering (ICF) methods are widely studied for the top-N re-
commendation task. Similarity models (SMs) that learn item similarities from data
demonstrate strong performance. Ning et al. [169] have proposed sparse linear method
(SLIM), which learns a sparse item similarity matrix. Low-rankness has been intro-
duced to SLIM in order to recover transitive relations. To achieve low-rankness while
ensuring sparsity, Cheng et al. [47] proposed low-rank sparse linear method (lorSLIM),
which introduces a rank regularization term to SLIM. Kang et al. [110] improve lorS-
LIM with a better rank approximation.

Due to scalability issues with SMs, which require a quadratic number of parameters
of item similarities, feature-based similarity models (FSMs) have been studied, which
factorize item similarities [119]. Kabbur et al. [107] have proposed factored item sim-
ilarity model (FISM) to factorize the item similarity matrix into two low-dimensional
matrices. He et al. [93] improve FISM by applying the attention mechanism. Xue
et al. [248] provide a more expressive FSM by modeling non-linear and higher-order
relations among items.

A recent trend is to extend ICF by using auto-encoders. Wu et al. [239] learn to
recover the rating matrix through denoising auto-encoder. Liang et al. [141] introduce
variational auto-encoder for top-N recommendations. The auto-encoders are item-
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side: they encode from and decode to user rating vectors of all items, which can be
regarded as a generalization of ICF. However, the recommendations generated by these
models have limited interpretability. Similar to FSMs, they also fail to achieve sparsity.

Other ICF methods consider different aspects to improve top-N recommendations.
Ning et al. [170] and Chen et al. [43] utilize side information to overcome rating
sparsity. Kang et al. [109] and Hu et al. [99] leverage graphs to address rating sparsity
for top-N recommendation. Wang et al. [236] and Zhao et al. [269] investigate ranking
loss functions for top-N recommendation.

2.2.2 Local models
Clustering has been well studied for collaborative filtering models [21, 81, 124, 173,
246, 249, 268]. These methods cluster users or items based on user ratings into sub-
groups and estimate a local model for each cluster. Results from all subgroups are
aggregated to produce recommendations. Christakopoulou et al. [52] propose local
latent factor models, where the assignments of the users to subsets are constantly up-
dated. Wang et al. [232] introduce a probabilistic model to cluster items as topics. Wu
et al. [238] propose a mixture model to infer memberships of users or items to sub-
groups. Lee et al. [123] describe an iterative way for estimation where first the latent
factors representing the anchor points are estimated and then based on the similarities
of observed entries to the anchor points, the latent factors are re-estimated.

A few publications specifically investigate clustering for ICF methods. Christako-
poulou et al. [51] explore user subsets to learn user-specific local SMs, which is com-
bined with a global SM. Al-Ghossein et al. [6] study online recommendation, where a
user’s membership is adaptively updated during incremental learning. However, these
models only investigate user subsets rather than item groups. Clustering and the estim-
ation of local models in these methods are also treated as separate tasks.

Unlike these methods, we propose to cluster items for ICF. We introduce block-
aware similarity regularization (BSR) to encourage a block-diagonal structure to ICF
methods, which embeds the clustering into the learning.

2.2.3 Subspace clustering
Learning block-diagonal representations has originally been studied for subspace clus-
tering [73, 150, 243]. block-diagonal representation (BDR) [150] learns a block-
diagonal representation matrix by utilizing block-diagonal regularization. While BDR
can be utilized to learn a block-diagonal item similarity matrix, it fails to produce de-
sirable item similarities for the top-N recommendation task. In this chapter, we apply
BSR to SMs and propose a block regularized similarity model (BSM). BSM improves
over BDR for top-N recommendations in the following manner: a) BSM adds a sim-
ilarity constraint to overcome the negative effect on top-N recommendation caused by
BSR (discussed in § 2.4.3); b) BDR introduces an intermediate term to facilitate op-
timization; the item similarity matrix generated by BDR has a certain bias due to the
use of the intermediate term; in comparison, we directly penalize the item similarity
matrix by BSR to avoid the bias; c) BSM can capture transitive relations within blocks,
which is crucial to the performance of top-N recommendation (as discussed in § 2.4.4
below).
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2.3 Notation
We first introduce our notation. All vectors are column vectors and represented by
bold lowercase letters (e.g., x). All matrices and constants are represented by up-
percase letters (e.g., X) and Greek letters (e.g., α), respectively. Given a matrix X ,
xij represents the entry at the i-th row and j-th column. ‖X‖1=

∑
i,j |xij | and

‖X‖F= (
∑
i,j x

2
ij)

1/2 are the `1-norm and `F -norm of X , respectively. We write
I to denote the identity matrix.

We use m and n to denote the number of users and items, respectively. We write
R ∈ Rm×n for user ratings, either explicit or implicit; The item similarity matrix is
denoted by S ∈ Rn×n, where sij represents the similarity between item i and j. Given
S, ICF methods predict the score of user u to the target item i by:

r̃ui =
∑
j∈R+

u

sji, (2.1)

whereR+
u indicates the set of items rated by user u.

2.4 Block-Aware Regularizations
In this section, we first propose a regularization to achieve block-diagonality in § 2.4.1.
We then apply it to SMs and introduce BSM in § 2.4.2. We discuss the effect of
the similarity constraint and analyze the theoretical properties of BSM in § 2.4.3 and
§ 2.4.4, respectively.

2.4.1 Block-aware similarity regularization
We recall basic results from spectral graph theory [53]. We define the Laplacian matrix
of S, denoted by LS , as:

LS = Diag(A1)−A, (2.2)

where A = S+ST

2 . Diag(x) forms a diagonal matrix from x with its i-th element on
the diagonal being xi. It is easy to see that LS is positive semidefinite as xTLSx ≥
0,∀x ∈ Rn. We recall the following theorem to capture the connection between the
Laplacian matrix and clusters of items.

Theorem 1 ([164]). Let S be an item similarity matrix. The multiplicity c of the eigen-
value 0 of the Laplacian matrix LS is equal to the number of connected components of
the graph underlying S.

Theorem 1 says that if rank (LS) = n − c, then S provides an ideal assignment for
items by partitioning items into c groups. To capture latent item groups, we can require
the item similarity matrix S learned by ICF methods to follow this rank constraint, in
order to learn S with a c-block structure. However, the rank constraint brings great
difficulty for optimization. Besides, having exactly c blocks is not always desirable
for S, as in many cases, item groups are not non-overlapping. Instead, we introduce
regularization to S, in order to enforce the rank of LS , in place of the rank constraint.
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We first recall Ky Fan’s Theorem [72]:

c∑
i=1

σi = min
F

n∑
i,j

‖fi − fj‖22sij , such that F ∈ Rn×c, FTF = I, (2.3)

where σi denotes the i-th smallest eigenvalue of LS ; F is an auxiliary matrix and fi
is the i-th row of F . As LS is positive semidefinite, e.g., σi ≥ 0, we can enforce∑c
i=1 σi to be zero, so as to achieve the c block-diagonal structure. Thus, the block-

aware similarity regularization (BSR) is given as:

‖S‖B= min
FTF=I

n∑
i,j

‖fi − fj‖22sij , (2.4)

2.4.2 Block regularized similarity model
We regularize SMs by BSR and propose a block regularized similarity model (BSM):

arg min
S,F

1

2
‖R−RS‖2F+α‖S‖1+

β

2
‖S‖2F+λ‖S‖B ,

such that ∀i, j, sij ≥ 0, sii = 0,

n∑
i=1

sij = 1,

F ∈ Rn×c, and FTF = I.

(2.5)

Let us explain BSM. The first term in the objective forms the loss function by ICF, as
given in Eq. (2.1). The constraint sii = 0 is added to Eq. (2.5) to avoid the trivial solu-
tion that S = I . Requiring sij to be non-negative is to learn meaningful similarities.
`1-norm regularization encourages sparsity to S, as suggested by [169]. Together with
the `F -norm regularization leads to an elastic net problem [279].

Additional remarks of Eq. (2.5) are discussed as follows: (1) We introduce BSR to
S. The structure of S is close to c block-diagonal if λ is large enough. (2) As the block-
diagonal structure is already sparse (as discussed in § 2.4.4 below), in practice, we can
fix α to be a small value just to avoid 0’s in the denominator during optimization (see
Eq. (2.13)). (3) We further require the column summation of S to be 1 to overcome
the negative effect caused by BSR, which is crucial to the performance (detailed in
§ 2.4.3).

2.4.3 Overcoming the negative effect
Note that in Eq. (2.5) we include a similarity constraint on S, requiring the column
summation of S to be 1 (

∑n
i=1 sij = 1). This similarity constraint helps to overcome

a negative effect brought by BSR. To be more specific, if c is larger than the intrinsic
number of latent item groups, some lonely items that do not show much affiliation
with any of the groups could be sacrificed. Recall the example rating in Figure 2.1,
without the similarity constraint, if we set c = 3, the third column of S is learned
to be all-zero, as shown in Figure 2.2(a). This is justifiable as the block-diagonal
regularization tries to encourage three blocks, where the third item is itself a block, so
that every off-diagonal entry within the third column is encouraged to be zero. While
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(a) Without similarity constraint (b) With similarity con-
straint

Figure 2.2: Block-aware similarity regularization with c = 3.

this conforms to three blocks, it is not desirable for recommendation purposes as the
movie in gray cannot be recommended. Similarity regularization can avoid all-zero
columns by encouraging the summation of columns to be 1. As shown in Figure 2.2(b),
s13 is preserved to be non-zero.

2.4.4 Connection to sparsity and transitivity

Sparsity. BSM can achieve sparsity as the block-diagonal structure is also sparse.
To see this, we provide Theorem 2 to reveal the connection.

Theorem 2. BSR is a weighted `1-norm regularization if S ≥ 0.

Proof. Suppose x1,x2, . . . ,xn are the eigenvectors for LS , which are in ascending
order of eigenvalues. For all i, j, if i = j, we have: ‖xi − xj‖22= 0, else we have
xTi xj = 0 and xTi xi = 1, and we can derive ‖xi − xj‖22 as:

‖xi − xj‖22= xTi xi + xTj xj − 2 · xTi xj = 2.

As we require S ≥ 0, we can rewrite the block-diagonal regularization as:

‖S‖B=

n∑
i,j

‖fi − fj‖22sij =

n∑
i,j

|dijsij | = ‖D ◦ S‖1,

where D is a Euclidean distance matrix with dij = ‖fi − fj‖22. Therefore, BSR is a
weighted `1-norm regularization and dij can be written as:

dij =

{
2−∑n

l=c+1(xil − xjl)2, i 6= j

0, otherwise.

Theorem 2 shows that BSR can encourage sparsity of S. As dij is non-decreasing with
the growth of c, when c→ n, we have dij → 2, so that the block-diagonal regularizer
has a similar effect as `1-norm regularization.

Transitivity. We further show that BSM can also capture transitive relations by
providing Theorem 3. We focus on the following problem:

S∗ = arg min
S
‖S‖B+

β

2
‖S‖2F , such that

n∑
i=1

sij = 1. (2.6)
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As shown by Nie et al. [168], the closed-form solution for Eq. (2.6) is:

s∗ij = max

{
−dij
β

+ θ, 0

}
, (2.7)

where θ is the Lagrangian multiplier, which is a constant.

Theorem 3. We define the relation∼. We say i ∼ j if s∗ij > 0. Given the optimal solu-
tion S∗ that complies with the similarity constraint w.r.t. block-diagonal regularization
and `F -norm regularization, if i ∼ j, j ∼ k, and s∗ij , s

∗
jk >

3
4θ, then i ∼ k.

Proof. According to Eq. (2.7), as s∗ij , s
∗
jk > 0, we can have qij = β(θ − s∗ij) and

qjk = β(θ − s∗jk). As s∗ij , s
∗
jk >

3
4θ, we have qij , qjk < βθ

4 . As Q is a Euclidean
distance matrix, the triangle inequality holds:

√
qik ≤ √qij +

√
qjk. We have:

s∗ik ≥ −
qik
β

+ θ > θ − 1

β

(
2
√
βθ/4

)2

= 0.

Thus, we have i ∼ k.

As shown by Theorem 3, transitive relations among items can be captured as long as
the original relations are strong (i.e., the similarity is above a certain threshold). If S∗

is sparse, then θ is small, and the similarity threshold is more likely to be met. Thus
the transitivity can hold simultaneously with sparsity.

2.4.5 Optimization
The use of BSR for SMs brings in an additional variable F . Therefore, we introduce
an alternating minimization algorithm to optimize BSM.

Fix S and update F . When fixing S, Eq. (2.5) is reduced to the following problem:

arg min
FTF=I

Tr
(
FTLSF

)
, (2.8)

where LS is the Laplacian matrix of S (see Eq. (2.2)). A closed-form solution for F
can be obtained as the c eigenvectors corresponding to the c smallest eigenvalues of
LS .

Fix F and update S. Note that optimizing Eq. (2.5) is difficult due to the similarity
constraint. We relax the problem in Eq. (2.5) by transforming the similarity constraint
to a similarity regularization. The relaxation of the similarity constraint is not only
necessary for efficiency reasons but also helpful for recommendation (§ 2.7.2).

arg min
S

1

2
‖R−RS‖2F+α‖S‖1+

β

2
‖S‖2F+

λ

n∑
i,j

‖fi − fj‖22sij +
γ

2
‖1TS − 1T ‖22,

such that ∀i, j, sij ≥ 0, sii = 0.

(2.9)

To optimize Eq. (2.9) with fixed F , we write J as shorthand for the objective function
in Eq. (2.9). Due to the non-negative constraint on S, we apply the multiplicative
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update method [122] to efficiently update S. The multiplicative update method is an
iterative updating method, which ensures that during each iteration, the variables to be
updated are non-negative. We can write the objective function of Eq. (2.5) as:

J =
1

2
‖R−RS‖2F+

n∑
i,j

dijsij +
β

2
‖S‖2F+

γ

2
‖1TS − 1T ‖22, (2.10)

where
dij = α+ λ‖fi − fj‖22. (2.11)

Note that we write |sij | = sij as sij is ensured to be non-negative in each iteration.
Then the partial derivative over S is:

∂J

∂S
= RTRS −RTR+D + βS + γ

(
1 · 1TS − 1 · 1T

)
. (2.12)

Applying the Karush-Kuhn-Tucker (KKT) first-order optimality conditions [54] to J ,
we derive

S ≥ 0,
∂J

∂S
≥ 0, S ◦ ∂J

∂S
= 0,

where ◦ is the element-wise multiplication between two matrices of the same dimen-
sion. This leads to the following update rule:

S ← S ◦
[
RTR+ γ1 · 1T

]
[(RTR+ γ1 · 1T )S +D + βS]

, (2.13)

where [·]
[·] denotes the element-wise matrix division operator. We omit the proof of

convergence due to the limit of space.

Complexity of BSM. During training, when optimizing F , we only need the c ei-
genvectors corresponding to the c smallest eigenvalues, the complexity of which is
O(n2c). Packages like ARPACK1 provide additional benefit to calculate the eigen-
vectors when S is sparse. For optimizing S, the biggest source of complexity lies in
the matrix multiplication. Fortunately, as RTR and S are both sparse, the complexity
of multiplying the two matrices can be reduced to O(nz1z2) [200], where z1, z2 are
the average number of non-zeros in the rows of RTR and in the columns of S. The
overall complexity is O(n2c+ nz1z2).

2.5 Scalable Block-Aware Regularization
BSM fails to scale to datasets with large numbers of items, which is unfortunately
common in real-world applications. The scalability issue of BSM comes both from
BSR and SMs. To address the issue, we optimize F offline (§ 2.5.1), rather than learn
adaptively. We also extend the regularization to a dropout (§ 2.5.2), which can be used
to regularize FSMs. We then apply the dropout to FSM and propose a block regularized
factored similarity model (BFSM) in § 2.5.3.

1https://www.caam.rice.edu/software/ARPACK/
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2.5.1 Offline computation of F
In order to compute F offline, we need an initial laplacian matrix L, according to
Eq. (2.8). Rather than calculating L based on S, which is unknown initially, we con-
struct L offline based on the rating matrix R [53]. We take F as the representations of
items. The manifold assumption [20] states that if ri (all ratings of item i) and rj are
close in the intrinsic geometry of rating, the representations of the two items fi and fj
are also close. The manifold assumption, which is widely used to derive graph regu-
larizations [28, 198], plays an essential rule in developing various kinds of algorithms.
In practice, the data manifold is usually unknown. Work on spectral graph theory [53]
and manifold learning theory [19] has demonstrated that the local geometric structure
can be effectively modeled through a nearest neighbor graph on a scatter of data points.

The nearest neighbor graph is defined as follows: consider a graph with n vertices
where each vertex corresponds to an item. By defining the distance between item i and
j as ‖ri − rj‖22, the edge weights, denoted by aij , can be binarized (1 if ri is in the
nearest neighbor of rj or rj in the nearest neighbor of ri, 0 otherwise). Given edge
weightsA of the graph, the laplacian matrix L can be calculated based on Eq. (2.2) and
F can be calculated as the c eigenvectors corresponding to the c smallest eigenvalues
of L.

2.5.2 Block-aware similarity dropout
Compared with SMs, feature-based similarity models (FSMs) that factorize the simil-
arity matrix S into two low-rank matrices P ∈ Rn×k andQ ∈ Rn×k are scalable [119].
However, BSR cannot regularize FSMs directly. Regularizing S = PQT by BSR is
not effective as item similarities are correlated due to the factorization. Instead, we re-
sort to Dropout [213], the regularization technique that widely utilized for deep neural
network (DNN). Dropout works by adding multiplicative noise to the input of layers
of DNN. To regularize S = PQT by dropout, we add the noise to S:

S = (PQT ) ◦ ξ, (2.14)

where ξ ∈ Rn×n stands for the noise and ◦ is the element-wise multiplication between
matrices. Hinton et al. [97] proposed to draw the elements of ξ from a Bernoulli
distribution. Later it was shown that a continuous distribution, such as a Gaussian
with the same mean and variance works as well [213]. As proved in § 2.4.4, BSR is a
weighted version of `1-norm regularization, which can encourage sparsity. Therefore,
we take a Bernoulli distribution for ξ, which is shown to encourage sparsity [213].

To be aware of the block-diagonal structure, we propose a block-aware similarity
dropout (BSD), which assumes ξij to follow the Bernoulli distribution with respective
dropout rates:

ξij ∼ Bernoulli (σ(−λdij)) ,

where dij is calculated by Eq. (2.11) and λ is a parameter to control the effect of block-
aware similarity dropout (BSD); ξij is used to indicate whether the corresponding item
similarity sij is in-block (ξij = 1) or off-block (ξij = 0). The larger the value of dij ,
the less likely sij is within a block and should be zero.
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2.5.3 Block regularized factored similarity model
Given BSD, we formulate a block regularized factored similarity model (BFSM) by
the following generative process:
1. For each item i, draw item factor pi ∼ N (0, β−1I);
2. For each item j, draw item factor qj ∼ N (0, β−1I);
3. For each item pair (i, j),

(a) draw the selection variable ξij ∼ Bernoulli(σ(−λdij));
(b) calculate item similarity sij = ξij · fθ(pi, qj);

4. For each user-item pair (u, i), draw rui ∼ N (r̃ui, 1).
We briefly explain the generative procedure. We use Gaussian priors for pi and qj ;
fθ(·) is a function parameterized by θ. Depending on the definition of fθ(·), different
ICF models can be formulated [93, 107, 248]. For example, FISM defines fθ(·) directly
as the dot product: fθ(pi, qj) = pTi qj . Following the generation procedure, we can
write the block regularized factored similarity model (BFSM) as follows:

arg min
P,Q

1

2

∑
u,i∈R

‖rui − r̃ui‖22+
β

2

(
‖P‖2F+‖Q‖2F

)
, (2.15)

where r̃ui =
∑
j∈R+

u \{i} ξij · fθ(pi, qj). Eq. (2.15) can be optimized via mini-batch
stochastic gradient descent (SGD) [93, 107, 248].

Complexity of BFSM. As we optimize F offline for BFSM, we only analyze the
complexity of optimizing P and Q. BFSM is optimized via SGD. The complexity of
evaluating a prediction r̃ui is O(|R+

u | k), which is scalable.

2.6 Experimental Setup
In this section, we introduce the experimental setups.

2.6.1 Research questions
Our research questions are:
RQ1.1 To what extent can BSR improve the performance of ICF methods for top-N

recommendation?
RQ1.2 How does BSR affect the performance of top-N recommendation?
RQ1.3 What is the impact of BSR on the training procedure of ICF methods?

2.6.2 Datasets
We evaluate the performance of BSR on five benchmark datasets.
– Amazon:2 A dataset based on the Amazon product catalogue [157]; we select one

of the categories, Sports & Outdoors, which contains transactions between different
product items and users indicated with multivariate rating values.

– BookX:3 A subset of the Book-Crossing dataset, which was collected by [277] from
the Book-Crossing community.

2http://jmcauley.ucsd.edu/data/amazon/
3http://www2.informatik.uni-freiburg.de/˜cziegler/BX/

23

http://jmcauley.ucsd.edu/data/amazon/
http://www2.informatik.uni-freiburg.de/~cziegler/BX/
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Table 2.1: Descriptive statistics of the datasets.

Name #User #Item #Rating Density

Amazon 5,653 11,944 86,149 0.13%
BookX 5,671 5,367 86,354 0.28%
Yahoo 7,594 8,641 106,593 0.16%

MovieLens 6,040 3,706 1,000,209 4.47%
Pinterest 55,187 9,916 1,500,809 0.27%

#User, #Item and #Rating denotes the number of users,
items and ratings, respectively. Density is calculated as
#Rating/(#User×#Item).

– Yahoo:4 A small sample of the Yahoo!Movies community’s preferences for various
movies, rated on a scale from A+ to F.

For these three datasets, we filter out users with fewer than 10 ratings and items that
are rated by fewer than 5 users. Following the common setting for implicit feedback,
we binarize the ratings. We also adopt two datasets for a fair comparison against [93].
- MovieLens:5 The MovieLens 1M Dataset released by the GroupLens research pro-

ject;
- Pinterest: One of the largest social curation networks. The implicit feedback data is

constructed by [80] for evaluating content-based image recommendation.
Table 2.1 lists descriptive statistics of the datasets.

2.6.3 Methods used for comparison
To assess the performance of BSR, we apply BSR to three state-of-the-art ICF methods,
including one SM and two FSMs: SLIM [169], FISM [107] and NAIS [93], respect-
ively denoted by SLIM-B, FISM-B and NAIS-B.

Baselines. We compare SLIM-B, FISM-B and NAIS-B with the following baselines:6

– Item-based k-nearest-neighbor (itemkNN) [63]: An early ICF method that heurist-
ically computes item similarities. We choose cosine as the similarity function and
apply shrinkage to the similarities.

– Sparse linear method (SLIM) [169]: A SM that learns a sparse item similarity mat-
rix.

– Factored item similarity model (FISM) [107]: A FSM that factorizes item similarity
matrix into two low-rank matrices.

– Neural attentive item similarity model (NAIS) [93]: A Neural-based FSM that util-
izes an attention mechanism.

– Bayesian personalized ranking (BPR) [188]: A ranking/retrieval criteria-based method.
We train a latent space model with the pair-wise loss function.

4https://webscope.sandbox.yahoo.com/catalog.php
5https://grouplens.org/datasets/movielens/
6We exclude LorSLIM [47], the low-rank sparse linear model, from our experimental comparisons. We failed to generate
a set of reasonable recommendations using LorSLIM on all datasets and we were also unable to reproduce the results
obtained using LorSLIM as reported in [47]. The source code of LorSLIM on MovieLens with 100k ratings (ML-100k)
is evaluated with 336 items, rather than all 1,682 items. For a fair comparison, we evaluate SLIM-B in the same setting,
which provides much better results than reported in their paper, i.e., HR@10 = 0.574, ARHR@10 = 0.265 against
HR@10 = 0.397, ARHR@10 = 0.207. A similar issue exists with the method proposed in [110]. Therefore, we
exclude the two methods from our experiments.
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– Pure singular-value-decomposition (pureSVD) [57]: A latent space model designed
for top-N recommendation.

– Weighted regularized matrix factorization (WRMF) [100]: A latent space model
specially for implicit datasets.

– Multinomial variational auto-encoder (mVAE) [141]: A state-of-the-art non-linear
method for top-N recommendation. It utilizes variational autoencoder and assume
multinomial likelihood function.

– LocalSLIM: SLIM with item clustering. The implementation is similar to [51] but
clustering items instead.

Implementation details. We use LibRec [88] to run the experiments for itemkNN,
SLIM, BPR and WRMF. We use the source code implementation in [93] for FISM
and NAIS and that in [141] for mVAE. As reported in [93], NAIS-concat and NAIS-
prod differ slightly in performance while NAIS-prod shows better convergence; we
compare with NAIS-prod only in the experiments. We implement SLIM-B by altern-
ating minimization of Eq. (2.8) and Eq. (2.13). We implement FISM-B by optimizing
Eq. (2.15) through SGD. We implement NAIS-B on top of NAIS-prod. We optim-
ize FISM, NAIS, FISM-B and NAIS-B with the same point-wise RMSE loss using a
Adagrad learner with a learning rate of 0.01. We also implement PureSVD and loc-
alSLIM.

Parameters. The parameters of all methods are explored within the parameter
space. We select parameters based on the best performance in terms of HR@10 on
the validation set. We use all neighbors for itemkNN, which generally leads to the best
results [93]. We fix α = 0 for FISM and NAIS as it has been empirically shown to
lead to the best result [93]. The number of latent dimensions k of FISM, NAIS, BPR,
PureSVD and WRMF are selected from 8, 16, 32, 64. The regularization parameters
are selected from 0.01, 0.1, 1, 10, 100.

2.6.4 Evaluation methodology

We evaluate the methods using leave-one-out cross-validation (LOOCV): we hold out
the latest interaction of each user as the test data and uses the remaining interactions as
training set. The validation set consists of a randomly drawn interaction for each user
from the training set. This evaluation method is widely utilized for top-N recommend-
ations [17, 92, 188].

We use hit rate (HR) and average reciprocal hit-rank (ARHR) [63, 107] to evaluate
the performance. ARHR is a weighted version of HR, which takes the ranking position
of the test item i in the recommended list into account. Note that HR and ARHR can be
regarded as Recall and mean reciprocal rank (MRR) when evaluating using LOOCV,
respectively. We also use normalized discounted cumulative gain (NDCG) [93] as
evaluation metric for a fair comparison with NAIS.

2.7 Experimental Results

We answer the research questions listed in § 2.6.1 based on the experimental results.
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Table 2.3: Top-N recommendation from 100 candidate items. Embedding size of FSMs is fixed
as 16.

Method MovieLens Pinterest

HR@10 NDCG@10 HR@10 NDCG@10
SLIM [169] 0.6864 0.4247 0.8620 0.5588
FISM [107] 0.6553 0.3851 0.8752 0.5522
NAIS [93] 0.6804 0.4055 0.8790 0.5604
NAISpre [93] 0.6969 0.4194 0.8844 0.5722

SLIM-B ↑0.6964** ↑0.4296** ↑0.8650** ↑0.5604
FISM-B ↑0.6712** ↑0.3983** ↑0.8799** ↑0.5560**
NAIS-B ↑0.6939 ↑0.4183 ↑0.8834 ↑0.5663
NAIS-Bpre ↓0.6949 0.4194 ↑0.8845 ↓0.5701
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Figure 2.3: Top-N recommendation results for different values of N .

2.7.1 RQ1.1: Top-N recommendation performance
To answer RQ1.1, we compare SLIM-B, FISM-B and NAIS-B with SLIM, FISM and
NAIS, respectively. We also compare them with other baselines. We report results for
N = 10 in Table 2.2 and 2.3.

Table 2.2 shows the results on the Amazon, BookX, MovieLens and Yahoo datasets
by all methods,7 where the recommended items to each user are constructed from all
the items unrated by the user. Overall, SMs outperform other methods on all datasets
and SLIM-B significantly improves upon SLIM.

We discuss the results per dataset: a) the Amazon dataset has the largest number
of items, the smallest number of users, and the most sparse implicit feedback. There-
fore, the overall accuracy for the Amazon dataset is low. Besides SLIM and SLIM-B,
WRMF performs best, as it is specifically designed for implicit datasets. However,
the improvement of WRMF over itemkNN is relatively modest. WRMF is outper-
formed by SLIM. Applying BSR improves all the three implemented methods, where
the improvements in SLIM-B w.r.t. HR@10 and ARHR@10, and in NAIS-B w.r.t.
ARHR@10 are significant. The effectiveness of capturing latent item groups is well
confirmed in Amazon dataset. b) On the BookX dataset, results are similar to Amazon

7We do not show the performance on Pinterest here as methods implemented by Librec are not scalable.
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as both datasets are implicit, while the overall results are better. SLIM-B improves over
SLIM, especially w.r.t. HR@10 (by 8.24%), which is the most conspicuous among all
datasets. The grouping effect of SLIM-B is evident. BSR also boosts FISM and NAIS.
The improvement by SLIM-B is significant w.r.t. HR@10 while the improvements by
FISM-B and NAIS-B are significant w.r.t. ARHR@10. Seems that BSR can help FSMs
provide better ranking of items within recommendations. c) The overall performance
on the MovieLens dataset is high since this dataset has the least sparse ratings. While
SLIM-B marginally improves over SLIM, the improvement is significant. While BSR
improves FISM and NAIS w.r.t. ARHR@10, it fails to improve w.r.t. HR@10. d) The
superiority of SMs is clearly visible on the Yahoo dataset. SLIM outperforms mVAE
substantially, and SLIM-B improves over SLIM. The grouping effect on the Yahoo
dataset shows similarity with the MovieLens; for both datasets the best performance is
achieved when λ = 10 for SLIM-B vs. with λ = 100 on Amazon and BookX. The
learned item similarity matrix has a less rigorous c-block structure.

To illustrate the gains achieved by BSR over competing approaches, we show the
HR score of all algorithms for different values of N (i.e., 5, 10, 15, 20) on Amazon,
BookX, MovieLens and Yahoo datasets in Figure 2.3, where similar results have been
revealed as in Table 2.2.

For a fair comparison with NAIS, we follow exactly the same experimental setup
as [93] to construct the candidate items for each user that has 100 items (99 sampled
unrated items together with the held-out test item). We then take the results from their
paper for comparison. We report HR@10 and NDCG@10. To compare with NAIS
with pretraining, denoted by NAISpre, we also add pretraining for NAIS-B, denoted
by NAIS-Bpre. Table 2.3 shows the results. Overall, BSR improves the performance of
SLIM, FISM and NAIS. However, with pretraining BSR fails to show the effectiveness
of grouping. It seems that pretraining by FISM can bias the grouping effect. a) Similar
to the results in Table 2.2, SLIM-B shows competitive results, though been outper-
formed by NAISpre w.r.t. HR@10 on MovieLens. Except for NAIS-Bpre, applying
BSR improves the performance of ICF, where SLIM-B and FISM-B show significant
improvement. b) On Pinterest, the first time FSMs overall performs better than SMs.
FISM-B and NAIS-B outperform FISM and NAIS, respectively. The best and second
best results are both reached by NAIS or NAIS-B with pretraining.

Item groups exist in many real-world applications and BSR is able to capture the
grouping property to improve top-N recommendation. SMs can benefit more from
BSR than FSMs, due to the theoretical guarantees. While BSR boosts the performance
of FISM, it may fail to improve NAIS due to the influence of attention.

2.7.2 RQ1.2: Impact of block-aware similarity regularizations
§ 2.7.1 demonstrated the effectiveness of BSR for improving the performance of top-N
recommendation. In this section, we analyze the impact of BSR in detail. We focus on
the discussion of SLIM-B where BSR has theoretical guarantees. We grid-search the
parameter λ that controls BSR. We also grid-search γ which is essential to overcome
the negative effect of BSR. We vary c from 10, 50, 100 to 500. We visualize the results
with heat maps in Figure 2.4, where λ is shown on the x-axis and γ on the y-axis.

For the Amazon dataset (Figure 2.4, first row), generally larger numbers of item
groups are preferable. The block-structure shows its effectiveness as we need a larger
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Figure 2.4: Impact of block-aware similarity regularizations. The color intensity corresponds to
HR@10.

value for λ to achieve better performance. It is worth noting that similarity regulariza-
tion is also important, as setting 0.1 is the best choice for γ. On the Amazon dataset, the
performance of SLIM-B is sensitive to the parameters of BSR. Although a similar res-
ult is shown on the BookX dataset (Figure 2.4, second row), which also prefers larger
number of latent item groups, SLIM-B is less sensitive to BSR on the BookX dataset.
The similarity regularization is more effective on the BookX dataset as γ = 1 achieves
the best performance. Similar heat map distributions are shown for the MovieLens and
Yahoo datasets in third and fourth rows of Figure 2.4. On both datasets, the negative
impact of block-diagonal regularization is not evident if γ < 10. A trend worth noting
is that the two datasets prefer smaller item groups and less impact from block-diagonal
regularizations.

Generally, block-diagonal regularization can impact the performance of top-N re-
commendation. However, solely applying the block-diagonal regularization has a neg-
ative effect to the performance (SLIM-B with γ = 0.01 generally performs worse).
Similarity regularization provides a good remedy for the negative impact of block-
diagonal regularization. The results also demonstrate the superiority of block-diagonal
regularization over `1-norm regularization. This is because block-diagonal regulariza-
tion is approaching `1-norm regularization when c is approaching n, whereas the best
performance is generally achieved when c ≤ 100.

2.7.3 RQ1.3: Training convergence and stability
We further analyze the impact of BSR on the training procedure to answer RQ3. We
plot the test performance of HR@10 after each epoch by comparing SLIM, FISM
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Figure 2.5: Test performance after each epoch.

and NAIS with/without BSR in Figure 2.5. We train all the compared models for 50
epochs. Clearly lines can be categorized into three groups. a) The first group, SLIM
and SLIM-B (gray and black lines), performs the best and shows the best stability
and convergence. Generally, SLIM grows and converges faster than SLIM-B, but is
outperformed by SLIM-B soon. On Amazon, while SLIM reaches the peak soon,
it experiences a fall later, which is caused by overfitting. In comparison, SLIM-B
stabilizes at the peak due to the effectiveness of BSR. b) The second group, NAIS
and NAIS-B (pink and red lines), shows certain fluctuations. Besides the fluctuations,
NAIS and NAIS-B show similar convergence and stability. Normally, NAIS performs
better in the beginning and is outperformed by NAIS-B with more epochs (On Amazon
and Yahoo, NAIS-B outperforms NAIS after 50 epochs). c) The last group, FISM and
FISM-B (cyan and blue lines), shows the least performance. Different from the first
two groups, except for MovieLens, FISM and FISM-B grow steadily, showing slow
convergence rate and poor stability. On Amazon, FISM-B surpasses the second group
and keeps growing after 50 epochs.

Hence, besides improving performance, BSR also helps with stability at the cost of
a slight slow down of the convergence rate.

2.8 Summary
In this chapter, we have answered RQ1 by studying item clustering for item-based col-
laborative filtering. we have proposed a block-aware similarity regularization (BSR) to
capture the block-diagonal structure behind item similarities for item-based collaborat-
ive filtering (ICF) methods, so as to improve the top-N recommendation performance.
We have applied BSR to similarity models (SMs), which has a theoretical guarantee
of block-diagonality. We can theoretically ensure that the learned item similarities are
sparse and capture transitive relations within blocks. Due to the scalability limitation
of SMs, we have extended the BSR to a block-aware similarity dropout (BSD) and
applied it to feature-based similarity models (FSMs). Experimental evaluations on a
large number of dataset show the effectiveness of BSR for ICF methods.

In this chapter, we have provided a solution to utilize high-dimensional ratings
for top-N recommendation. Next, we utilize additional information for top-N recom-
mendation. We start with a single type of additional information (Chapter 3 and 4),
after which we consider multiple types of additional information (Chapter 5–7).
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3
Top-N Recommendation with

High-dimensional Side Information

In Chapter 2, we have proposed a new regularization term for item-based collaborat-
ive filtering methods. The proposed method captures item clustering, which is able
to provide effective recommendations with high-dimensional ratings. In this chapter,
we propose to utilize high-dimensional side information for top-N recommendation.
We provide a joint learning model that learns item similarities and reduces feature di-
mensions simultaneously. The proposed model provides an answer to the following
research question asked in Chapter 1:

RQ2 Can we reduce the dimension of side information for effective top-N recom-
mendation?

3.1 Introduction
Top-N recommendation has been widely adopted to recommend ranked lists of items
so as to help users identify the items that best fit their personal tastes. Over the
last decades, various efforts have been dedicated to provide top-N recommendations.
Among them, the item-based scheme stands out for its solid performance. Represent-
ative methods include item-based k-nearest-neighbor (itemkNN), sparse linear method
(SLIM) [169], and so forth, which have been shown to outperform user-based scheme.

The recommendation accuracy of such item-based neighborhood methods relies
largely on the item similarities computed or learned. Specifically, item similarities
are usually made available based on user feedback (both explicit and implicit), e.g.,
purchases, ratings, reviews, clicks, and check-ins. Lately, there has been an increase in
the amount of additional information associated with items, referred to as side informa-
tion [170]. Typical examples include descriptions of movies in movie recommendation,
resumes of applicants in job matching, content of emails in spam detection, reviews of
items in online shopping, and so forth. Side information has generated the interest of
many researchers and has led to the development of hybrid algorithms to enhance the
performance of recommendations by taking advantage of such information.

Side information comes with a high dimensionality. For example, side information
can be the text descriptions of items; when regarding each unique term in the corpus

This chapter was published as [43].
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as one dimension, it is indisputably high-dimensional. Moreover, side information
can also be in the form of images or videos where the dimensionality is evidently
much higher. Nonetheless, existing methods overlook this fact when utilizing side
information, and hence, they are facing problems of efficiency and accuracy due to the
curse of high dimensionality. We address the issue in this chapter, and investigate how
to leverage side information to boost the recommendation performance while limiting
the impact from high dimensionality.

While side information is high-dimensional and sparse, it is reasonable to expect
a low dimensionality of intrinsic features, and this suggests that we should incorpor-
ate dimensionality reduction for this task. Among the many available dimensionality
reduction methods, locality preserving projection (LPP) [96] has been shown to pro-
duce a low-dimensional space that well preserves locality. As recommendation quality
largely depends on item similarity, LPP is a natural candidate in this setting.

To summarize, we propose a top-N recommendation method to harness high-
dimensional side information. By introducing a projection matrix, high-dimensional
side information is reduced into a low-dimensional space. We present a joint learning
model to simultaneously perform LPP and learn item similarity. We then conceive an
alternative iterative optimization method to solve the model. Our experimental evalu-
ation shows that the proposed method enjoys a performance gain of up to 21.2% on hit
rate at 10 (HR@10) and 36.8% on average reciprocal hit-rank at 10 (ARHR@10) over
state-of-the-art methods.

3.2 Related Work
We are aware of several recent methods that leverage side information for top-N re-
commendation. On top of SLIM [169], sparse linear method with side information
(SSLIM) [170] utilizes a regularized optimization process to learn a sparse coefficient
matrix. User-specific feature-based similarity model (UFSM) [71] combines item sim-
ilarity model with factor models. Recently, Zhao et al. [270] have proposed a predictive
collaborative filtering approach to utilize side information.

We also summarize recent methods using side information for rating prediction.
Gantner et al. [77] proposed to map side information to latent item factors by learning
the mapping function. Saveski et al. [198] proposed a local collective factorization
method. Lu et al. [153] proposed an interactive model for matrix completion. Distinct
from them, we integrate dimensionality reduction into top-N recommendation.

As to dimensionality reduction, this topic has been investigated extensively, for
sparse feedback via various methods [192], including principal component analysis,
singular value decomposition, non-negative matrix factorization and so on. However,
high-dimensional side information has rarely been addressed in the setting, and this
paper tries to fill in the gap.

3.3 The Proposed Approach

3.3.1 Notation
We first introduce the notations used throughout the paper. Let U and I be the sets of
all users and all items, respectively, each of size m and n. The user feedback (both
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explicit and implicit) shows the items that the users have purchased, viewed or rated,
which is denoted by a matrix R of size m × n. We treat feedback as binary, that is,
if user u provided feedback for item i, then the (u, i)-entry of R (denoted by rui) is
1, otherwise it is 0. The item similarity matrix is represented by S ∈ Rn×n, where
each value of entry sij is within [0, 1]. The feature matrix (side information associated
with items) is denoted by F ∈ Rn×d, where d indicates the dimensionality of side
information. The projection matrix is denoted by W ∈ Rd×k, which is used to map
d-dimensional side information into a k-dimensional space where k � d.

3.3.2 Model description
This section describes the proposed model. We start with introducing the Baseline
method without performing dimensionality reduction, then summarize LPP, and ex-
plain how to incorporate it in a recommender system. Finally, the proposed method is
formed.

Recommendation with side information. Typically, top-N recommender systems
perform matrix completion for R, the core of which is to learn item similarity, which
is directly relevant to recommendation. Side information is utilized to enhance the
learning of item similarity. While various forms of incorporating side information
exist, we incorporate a regularization term on S along with feature matrix F and form
the model as the following problem:

arg min
S

1

2
‖R−RS‖2F+

α

2

n∑
i,j

‖fi − fj‖22sij +
λ

2
‖S‖2F ,

such that sTj 1 = 1, sjj = 0,∀j = 1, · · · , n;

0 ≤ sij ≤ 1,∀i, j = 1, · · · , n,

(3.1)

where sj is the j-th column vector of S, representing how similar item j is to other
items. The constraint sTj 1 = 1 is incorporated to avoid the case when the learned
S is close to 0 especially when R is very sparse. The term 1

2‖R − RS‖2F in the
objective function tries to reconstruct the feedback matrix by learning the coefficient
matrix S, which was first introduced by SLIM [169] for top-N recommendation. As
suggested there, the `2-norm is used to regularize S. While `1-norm is also suggested
to encourage sparsity, it is omitted as it turns out to be constant here (due to sTj 1 = 1).
α is a user-specified parameter to balance the two sources of information. We further
justify the regularization to S by F in detail. Given the feature matrix F , fi represents
the feature vector for item i. A natural way to measure the item distance in terms of
features is to compute the Euclidean distance between them, i.e., ‖fi−fj‖2. Although
the item similarity is unknown, it is reasonable to assume that closer items (in terms of
feature distance) are likely to have higher similarities, and thus, item similarity between
item i and j can be regularized as ‖fi − fj‖2sij .
Locality preserving projection. LPP is a linear approximation of the nonlinear
Laplacian Eigenmap. The algorithmic procedure starts with constructing the adjacency
graph from feature matrix F . The item similarity matrix S learned from Eq. (3.1) can
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be used for this task. Then, we need to solve the generalized eigenvector problem:

FTLFw = σFTDFw, (3.2)

where D is a diagonal matrix, of which the i-th diagonal entry equals
∑n
j=1

sij+sji
2 ; L

is a Laplacian matrix for S, i.e., L = D − S+ST

2 . The projection matrix W is formed
as W = [w1,w2, . . . ,wk], where eigenvectorwi corresponds to eigenvalue σi, which
is in an ascending order as σ1 ≤ · · · ≤ σd. The linear combination FW denotes the
projection of side information in a low-dimensional space.

The proposed model. Putting Eq. (3.1) and (3.2) together forms our proposed
model as follows:

arg min
S,WTW=I

1

2
‖R−RS‖2F+

α

2

n∑
i,j

(
‖WTfi −WTfj‖22sij

)
+
λ

2
‖S‖2F ,

such that sTj 1 = 1, sjj = 0,∀j = 1, . . . , n;

0 ≤ sij ≤ 1,∀i, j = 1, . . . , n.

(3.3)

Rather than impose the constraint WTFTDFW = I on W according to LPP, we
directly assume WTW = I to learn a distinctive feature space. Besides, we regularize
sij by ‖WTfi − WTfj‖22 instead of ‖fi − fj‖22 for two reasons: a) the model is
formulated as a joint learning optimization problem so as to achieve dimensionality
reduction and top-N recommendation simultaneously. We will show later in § 3.3.3
that optimizingW is under the framework of LPP; b) the training of the item similarity
matrix S is enhanced in the projected low-dimensional feature space. We argue that
incorporating LPP is able to not only preserve locality but also improve item similarity,
which is explained below.

Denote the projection matrix asW =
[
pT1 , . . . ,p

T
d

]T
, where pi is a k-dimensional

row vector, representing the embedding of feature i. Though projection, each fea-
ture is represented by k distinctive aspects. We contend that the “synonyms” (differ-
ent but semantically similar features) will have closer embeddings through LPP under
the assumption that the synonyms are likely to appear in items with high similarities.
Therefore, items containing synonyms will get closer in the projected space, which can
further guide the learning of similarity towards more similar.

Once the solution (W ∗, S∗) are obtained, we can recover the item-user recom-
mendation score matrix R̃ by setting R̃ = RS∗. We then rank the scores for unrated
items of each user in a non-increasing order and recommend the first N items.

3.3.3 Solution
The optimization problem defined above is non-convex in terms of S,W together.
Thus, it is unrealistic to expect an algorithm to find the global minimum. In what
follows, we derive an alternative iterative algorithm to solve the problem.

Fix W update S. We first define the Lagrange function:

L(sj ,ϕj , θj , ξj) =
1

2
‖rj −Rsj‖22+

α

2
qTj sj + θjs

T
j 1+

λ

2
sTj sj +ϕTj sj + ξjsjj ,

(3.4)
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where ϕj , θj , ξj ,∀j = 1, . . . , n are the lagrangian multipliers, qij = ‖WTfi −
WTfj‖22 and 1 is the vector with all elements equal 1. The partial derivation of L
w.r.t sj is

∂L
∂sj

= RTRsj −RTrj +
α

2
qj + θj1 + λsj +ϕj + ξjej , (3.5)

where ej is the vector with only the j-th element equal 1 and others 0. A closed-form
solution could be derived as follows:

sij =


[(
RTR+ λI

)−1 (
RTrj − α

2 qj − θj1
)]
i+
, if i 6= j

0, if i = j,
(3.6)

where RTR + λI is positive definite if λ > 0 and θj = sTj R
Trj − sTj RTRsj −

α
2 s

T
j qj − λsTj sj ; [·]i+ is the operator to take the i-th element of the vector if it is not

less than 0, otherwise 0.

Fix S update W . To update W , we first introduce the following equation, which is
based on the theory of spectral analysis:

1

2

∑
i,j

‖WTfi −WTfj‖22sij = Tr
(
WTFTLFW

)
. (3.7)

Hence, the problem is equivalent to solving

arg min
WTW=I

Tr
(
WTFTLFW

)
. (3.8)

Applying the Karush-Kuhn-Tucker (KKT) first-order optimality conditions, we derive

FTLFW = σW, (3.9)

and the solution is formed by the k eigenvectors of FTLF corresponding to the k
smallest eigenvalues. Note that W is updated under the framework of LPP.

3.4 Experiment

3.4.1 Setup
To evaluate the performance of our method on the task of top-N recommendation
with side information, we perform experiments on different real-world datasets. The
statistics of the datasets are summarized in Table 3.1.
– CUL:1 an online service that allows researchers to add scientific articles to their

libraries. For each user, the articles added in his or her library are considered as
preferred articles, from which titles and abstracts are collected and used as side
information.

1CiteULike: http://www.citeulike.org/
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Table 3.1: Statistics of the datasets used in this chapter.

Dataset #Users #Items #Feeds Density #Features

Enron1 663 1,773 1,588 0.14% 25,133
Enron2 953 5,366 3,401 0.07% 32,063
Yahoo 7,594 8,641 19,434 0.03% 7,823
CUL 9,537 8,222 29,352 0.04% 6,860

– Enron1 and Enron2:2 the two largest mailbox extracted from Enron Email. The data
is composed of email messages released during investigation of the Federal Energy
Regulatory Commission against the Enron Corporation. By regarding the email
content as side information, we predict the most likely recipients of new messages.

– Yahoo:3 a small sample of the Yahoo! Movies community’s preferences for various
movies, rated on a scale from A+ to F, binarized to 0 or 1. The dataset also contains
a large amount of side information about many movies.
To comprehensively understand the effectiveness of the methods, we adopt 5-time

leave-one-out cross-validation (LOOCV). The evaluation of the model is conducted
by comparing the recommendation list of each user with the item of that user in the
test set. The recommendation quality is measured using hit rate (HR) and average
reciprocal hit-rank (ARHR).4 We evaluate the performance of our proposed method on
top-N recommendation.

In this set of experiments, we refer to our method as projection regularized item
similarity model (Prism). To evaluate its performance, Prism is first compared with
SLIM to demonstrate the need to utilize side information when feedback is sparse. The
performance of simple cosine-similarity (coSim) [71] is evaluated to show the quality
of side information. To appreciate the effectiveness of dimensionality reduction, the
performance of Baseline, formulated in Eq. (3.1), is also evaluated. We also compare
Prism with state-of-the-art top-N recommendation methods with side information, in-
cluding SSLIM [170], UFSM [71] and the method proposed in [270] (referred to as
PCF). Parameters of all methods are carefully tuned through grid search.

3.4.2 Results and analysis
We vary the size of recommendation list, and find that Prism always achieves the best
results. Table 3.2 shows the result of comparisons over four datasets with top-10 items
recommended. By looking at the results achieved by SLIM and coSim, we characterize
the datasets. Overall speaking, SLIM performs inferiorly to coSim on both Enron1 and
Enron2, whereas the order is reversed on Yahoo and CUL. This shows that while all
datasets are sparse with respect to user feedback information, the side information of
Enron is of high quality and more relevant for recommendation. As the Enron datasets
are of higher dimensionality, a significant performance gain is expected with Prism on
Enron1 and Enron2. To verify, we scrutinize the results of Prism and Baselines, and
find that the improvement of Prism over Baselines is much more evident on Enron1
and Enron2 than that on Yahoo and CUL. These results demonstrate the effectiveness

2Enron Mail Box: https://www.cs.cmu.edu/˜enron/
3Yahoo! Movies: https://webscope.sandbox.yahoo.com/
4For each user, we recommend N items, where N = 5, 10, 15, 20. Due to space limitations, we only
present the result with N = 10.
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3. Top-N Recommendation with High-dimensional Side Information

of incorporating LPP for recommendation with high-dimensional side information.
As for the comparison with other methods, Prism achieves the best results over

all tested datasets, especially on Enron2, which has the highest dimensionality of side
information. The recommendation accuracy of Prism on this dataset enjoys a per-
formance gain up to 21.2% on HR@10 and 36.8% on ARHR@10 over state-of-the-art
methods. On the Yahoo dataset SSLIM and UFSM actually degrade the accuracy com-
pared with SLIM. While PCF increases it, the increment is limited. This should be
attributed to the poor quality of side information. By contrast, Prism improves it, ex-
hibiting the robustness of Prism; that is, even on the dataset where side information is
of limited correlation to recommendation, the preferable result could be expected. This
robustness is also displayed on CUL, which takes good user feedback but poor side in-
formation. It seems that CUL is more suitable to the methods that loosely couple with
side information like SSLIM2. In this case, Prism is still able to achieve quite com-
petitive performance, as the relevance of side information is improved through dimen-
sionality reduction and α is tuned small to emphasize more on feedback information.
The performance on Enron1 is not that distinctive. As the side information is of high
quality, the methods that tightly couple with side information stand out (SSLIM1 and
PCF). On the other hand, as the feature dimensionality is lower than that on Enron2,
dimensionality reduction is not equally effective.

3.5 Summary
In this chapter, we have answered RQ2 by performing dimension reduction on side
information. Specifically, we have shown the problems encountered when utilizing
high-dimensional side information to enhance the performance of recommendation,
which had not been well investigated by existing literature. We have proposed a novel
method to address the challenge, namely projection regularized item similarity model
(Prism). The method integrates locality preserving projection (LPP) and top-N recom-
mendation into a joint learning algorithm. Under the novel framework, LPP not only
resolved the issue brought by high dimensionality, but also improved the relevance of
item similarity. We have conducted extensive experiments and the results demonstrated
the superiority of Prism.

In this chapter, we further exploit high-dimensional side information for top-N
recommendation, in addition to the high-dimensional ratings. Next, in Chapter 4, we
consider a more challenging task: using high-dimensional and noisy side information
for top-N recommendation, after which in the following chapters (Chpater 5–7), we
make use of heterogeneous side information to better understand user’s behavior and
provide more accurate recommendations.
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4
Collective Variational Auto-encoder for

Top-N Recommendation

In the previous chapters, we have investigated how to utilize high-dimensional ratings
(Chapter 2) and high-dimensional side information (Chapter 3) for top-N recommend-
ation. In this chapter, we also leverage high-dimensional side information for top-N
recommendation. We assume side information contains noise and apply denoising
techniques. The proposed method answers the following research question asked in
Chapter 1:

RQ3 How can we utilize high-dimensional side information with noise for top-N re-
commendation?

4.1 Introduction
Recommender systems have become increasingly indispensable. Applications include
top-N recommendations, which are widely adopted to recommend users ranked lists
of items. For e-commerce, typically only a few recommendations are shown to the user
each time and recommender systems are often evaluated based on the performance of
the top-N recommendations.

Collaborative filtering (CF)-based methods are a fundamental building block in
many recommender systems. CF-based recommender systems predict what items a
user will prefer by discovering and exploiting similarity patterns across users and items.
The performance of CF-based methods often drops when ratings are very sparse. With
the increased availability of side information, that is, additional information associated
with items such as product reviews, movie plots, etc., there is great interest in taking
advantage of such information so as to compensate for the sparsity of ratings.

Existing methods utilizing side information are linear models [170], which have a
restricted model capacity. Recent work generalizes linear model by deep learning to
explore non-linearities for large-scale recommendations [94, 203, 239, 273]. State-of-
the-art performance is achieved by applying variational auto-encoders (VAEs) [116]
for CF [125, 134, 141]. These deep models learn item representations from side in-
formation. Thus, the dimension of side information determines the input dimension of
the network, which dominates the overall size of the model. This is problematic since

This chapter was published as [36].
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4. Collective Variational Auto-encoder for Top-N Recommendation
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Figure 4.1: Collective variational auto-encoder.

side information is generally high-dimensional [43]. As we will see, existing deep
models fail to beat linear models due to the high-dimensionality of side information
and an insufficient number of samples.

To avoid the impact from high-dimensionality while exploiting the effectiveness
of VAEs, we learn feature representations from side information. The dimensions of
the side information correspond to the number of samples rather than the input dimen-
sion of the deep network. To instantiate this idea, we propose collective variational
auto-encoder (cVAE), which learns to recover user ratings and side information simul-
taneously through VAE. While user ratings and side information are different sources
of information, both are information associated with items. Thus, we take ratings from
each user and each dimension of side information over all items as the input for VAE,
so that samples from both sources of information have the same dimensionality (num-
ber of items). We can then feed ratings and side information into the same inference
network and generation network. cVAE complements the sparse ratings with side in-
formation, as feeding side information into the same VAE increases the number of
samples for training. The high-dimensionality of side information is not a problem for
cVAE, as it increases the sample size rather than the network scale. To account for
the heterogeneity of user rating and side information, the final layer of the generation
network follows different distributions depending on the type of information. Training
a VAE by feeding it side information as input acts like a pre-training step, which is a
crucial step for developing a robust deep network. Our experiments show that the pro-
posed model, cVAE, achieves state-of-the-art performance for top-N recommendation
with side information.

The remainder of the chapter is organized as follows. We present preliminaries in
§ 4.2. We introduce the cVAE model and optimization in § 4.3. § 4.4 describes the
experimental setup and results. We review related work in § 4.5 and conclude in § 4.6.
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4.2. Preliminaries

Table 4.1: Notation used in the chapter.

Notation Description

C
on

st
an

ts m Number of users
n Number of items
d Dimension of side information
k Dimension of latent item representation
N Number of recommended items

Va
ri

ab
le

s&
pa

ra
m

et
er

s U ∈ Rm×k Matrix of latent user representation
V ∈ Rn×k Matrix of latent item representation
X ∈ Rd×n Matrix of side information
Y ∈ Rm×n Matrix of user rating
Z ∈ Rd×k Matrix of latent feature representation
hinf Hidden layer of inference network
hgen Hidden layer of generation network
µ ∈ Rk The mean of latent input representation
σ ∈ Rk The variance of latent user or feature representation

Fu
nc

tio
ns

fφ(·) Non-linear transformation of inference network
fθ(·) Non-linear transformation of generation network
µ(·) The activation function to get µ
σ(·) The activation function to get σ
ς(·) The sigmoid function

4.2 Preliminaries

4.2.1 Notation
We introduce relevant notation in this section. We usem, n and d to denote the number
of users, items and the dimension of side information, respectively. We study the
problem of top-N recommendation with high-dimensional side information, where
d � n. We write X ∈ Rd×n for the matrix for side information and Y ∈ Rm×n for
user ratings. We summarize our notation in Table 4.1.

4.2.2 Linear models for top-N recommendation
Sparse linear method (SLIM) [169] achieves state-of-the-art performance for top-N
recommendation. SLIM learns to reproduce the user rating matrix Y through:

Y ∼ YW.

Here, W ∈ Rn×n is the coefficient matrix, which is analogous to the item similar-
ity matrix. The performance of SLIM is heavily affected by the rating sparsity [107].
Side information has been utilized to overcome this issue [43, 170, 270]. As a typ-
ical example of a method that uses side information, collective sparse linear method
(cSLIM) learns W from both user rating and side information. Specifically, X,Y are
both reproduced through:

Y ∼ YW, X ∼ XW.
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4. Collective Variational Auto-encoder for Top-N Recommendation

Y Y

U

kn

(a) User-side autoencoder

Y T Y T

V

km

(b) Item-side autoencoder

Figure 4.2: Auto-encoders for collaborative filtering.

cSLIM learns the coefficient matrix W collectively from both side information X and
user rating Y , a strategy that can help to overcome rating sparsity by side information.
However, cSLIM is restricted by the fact that it is a linear model, which has limited
model capacity.

4.2.3 Autoencoders for collaborative filtering
Recently, autoencoders have been used to address CF problems [203, 216, 239, 276].
Autoencoders are neural networks popularized by Kramer [120]. They are unsuper-
vised networks where the output of the network aims to be a reconstruction of the
input.

In the context of CF, the autoencoder is fed with incomplete rows (resp. columns)
of the user rating matrix Y . It then outputs a vector that predicts the missing entries.
These approaches perform a non-linear low-rank approximation of Y in two different
ways, using a user-side autoencoder (UAE) (Figure 4.2(a)) or item-side autoencoder
(IAE) (Figure 4.2(b)), which recover Y respectively through:

U ∼ f(Y ), Y ∼ g(U),

and
V ∼ f(Y T ), Y T ∼ g(V ),

where U ∈ Rm×k is the user representation and V ∈ Rn×k is the item representation.
Moreover, f(·) and g(·) are the encode network and decode network, respectively.
UAEs encode Y to learn a user latent representation U and then recover Y from U . In
contrast, IAEs encode the transpose of Y to learn item latent representation V and then
recover the transpose of Y from V . Note that UAEs work in a similar way as SLIM, as
both can be viewed as reproducing Y through Y ∼ g(f(Y )), which also captures item
similarities.

When side information associated with items is available, the feature-side autoen-
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4.3. Method

coder (FAE) is utilized to learn item representations:

V ′ ∼ f(XT ), XT ∼ g(V ′),

where V ′ ∈ Rn×k is the item representation. Existing hybrid methods incorporate
FAE with IAE as both learn item representations. However, this way of incorporating
side information needs to estimate two separate VAEs, which is not an effective way
to address rating sparsity. They are also vulnerable to the high dimensionality of side
information.

4.3 Method
In this section, we propose a new way to incorporate side information with user ratings
by combining the effectiveness of both cSLIM and autoencoders. We propose to re-
produce X by a FAE and Y by a UAE. In this way, the input for autoencoders of both
X and Y are of the same dimension, i.e., the number of items n. Thus, we can feed X
and Y into the same autoencoder rather than two different autoencoders, which helps
to overcome rating sparsity.

4.3.1 Collective variational auto-encoder
We propose a collective variational auto-encoder (cVAE) to generalize the linear mod-
els for top-N recommendation with side information to non-linear models, by taking
advantage of variational auto-encoders (VAEs). Specifically, we propose to recover
X,Y through

U ∼ fφ(Y ), Y ∼ fθ(U),

Z ∼ fφ(X), X ∼ fθ(Z),

where fφ(·) and fθ(·) correspond to the inference network and generation network
parameterized by φ and θ, respectively. An overview of cVAE is depicted in Figure 4.1.
Unlike previous work utilizing VAEs, the proposed model encodes and decodes user
rating and side information through the same inference and generation networks. Our
model can be viewed as a non-linear generalization of cSLIM, so as to learn item simil-
arities collectively from user ratings and side information. While user ratings and side
information are two different types of information, cSLIM fails to distinguish them.
In contrast, cVAE assumes the output of the generation network to follow different
distributions according to the type of input it has been fed.

Next, we describe the cVAE model in detail. Following common practice for VAEs,
we first assume the latent variables u and z to follow a Gaussian distribution:

u ∼ N (0, I), z ∼ N (0, I),

where I ∈ Rk×k is an identity matrix. While X and Y are fed into the same network,
we would like to distinguish them via different distributions. In this chapter, we assume
that Y is binarized to capture implicit feedback, which is a common setting for top-N
recommendation [169]. Thus we follow Lee et al. [125] and assume that the rating of
user j over all items follows a Bernoulli distribution:

yj | uj ∼ Bernoulli(ς(fθ(uj))),
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4. Collective Variational Auto-encoder for Top-N Recommendation

where ς(·) is the sigmoid function. This defines the loss function when feeding user
rating as input, i.e., the logistic log-likelihood for user j:

log pθ(yj | uj) =

n∑
i=1

yji log ς(fji) + (1− yji) log (1− ς(fji)) , (4.1)

where fji is the i-th element of the vector fθ(uj) and fθ(uj) is normalized through a
sigmoid function so that fji is within [0, 1].

For side information, we study numerical features so that we assume the j-th di-
mension of side information from all items follows a Gaussian distribution:

xj | zj ∼ N (fθ(zj), I).

This defines the loss function when feeding side information as input, i.e., the Gaussian
log-likelihood for dimension j:

log pθ(xj | zj) =

n∑
i=1

−1

2
(xji − fji)2, (4.2)

where fji is the i-th element of vector fθ(zj). Note that although we assume x and y
to be generated from z and u respectively, the generation has shared parameters θ.

The generation procedure is summarized as follows:
1. for each user j = 1, . . . ,m:

(a) draw uj ∼ N (0, I);
(b) draw yj ∼ Bernoulli (ς(fθ(uj)))

2. for each dimension of side information j = 1, . . . , d:
(a) draw zj ∼ N (0, I);
(b) draw xj ∼ N (fθ(zu), I).

Once the cVAE is trained, we can generate recommendations for each user j with items
ranked in descending order of fθ(uj). Here, uj is calculated as uj = µ(fφ(yj)), that
is, we take the mean of uj for prediction.

Next, we discuss how to perform inference for cVAE.

4.3.2 Variational inference
The log-likelihood of cVAE is intractable due to the non-linear transformations of the
generation network. Thus, we resort to variational inference to approximate the distri-
bution. Variational inference approximates the true intractable posterior with a simpler
variational distribution q(U,Z). We follow the mean-field assumption [244] by setting
q(U,Z) to be a fully factorized Gaussian distribution:

q(U,Z) =

m∏
j=1

q(uj)

d∏
j=1

q(zj),

q(uj) = N (µj ,σ
2
j ),

q(zj) = N (µm+j ,σ
2
m+j),

While we can optimize {µj ,σj} by minimizing the kullback-leiber (KL) divergence
KL(qφ ‖ pθ), the number of parameters to learn grows with the number of users and
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4.3. Method

dimensions of side information. This can become a bottleneck for real-world recom-
mender systems with millions of users and high-dimensional side information. The
VAE replaces individual variational parameters with a data-dependent function through
an inference network parameterized by φ, i.e., fφ, where µj and σj are generated as:

µj = µ(fφ(yj)), σj = σ(fφ(yj)), ∀j = 1, . . . ,m

µm+j = µ(fφ(xj)), σm+j = σ(fφ(xj)), ∀j = 1, . . . , d.

Putting together pφ(z | x) and pφ(u | y) with pθ(x | z) and pθ(y | u) forms the
proposed cVAE (Figure 4.1).

Next we derive the evidence lower bound (ELBO):

L(q) = Eqφ [log pθ(X,Y | U,Z)]−KL (qφ ‖ p(U,Z)) . (4.3)

We use a Monte Carlo gradient estimator [174] to infer the expectation in Eq. (4.3).
We draw L samples of uj and zj from qφ and perform stochastic gradient ascent to
optimize the ELBO. In order to take gradients with respect to φ through sampling, we
follow the reparameterization trick [116] to sample uj and zj as:

u
(l)
j = µ(fφ(yj)) + ε

(l)
1 ◦ σ(fφ(yj)),

z
(l)
j = µ(fφ(xj)) + ε

(l)
2 ◦ σ(fφ(xj)),

ε
(l)
1 ∼ N (0, I), ε

(l)
2 ∼ N (0, I).

As the KL-divergence can be analytically derived [116], we can then rewrite L(q) as:

L(q) =
1

L

L∑
l=1

m∑
j=1

log pθ(yj | u(l)
j ) +

1

L

L∑
l=1

d∑
j=1

log pθ(xj | z(l)
j )+

d+m∑
j=1

(
1 + 2 log(σj)− µ2

j − σ2
j

)
.

(4.4)

We then maximize ELBO given in Eq. (4.4) to learn θ and φ.

4.3.3 Implementation details
We discuss the implementation of cVAE in detail. As we feed the user rating matrix
Y and the item side information X through the same input layer with n neurons, we
need to ensure that the input from both types of information are of the same format.
In this chapter, we assume that user ratings are binarized to capture implicit feedback
and that side information is represented as a bag-of-words. We propose to train cVAEs
through a two-phase algorithm. We first feed it side information to train, which works
as pre-training. We then refine the VAE by feeding user ratings. We follow the typical
setting by taking fθ as a multi layer perceptron (MLP); fφ is also taken to be a MLP of
the identical network structure with fθ. We also introduce two parameters, i.e., α and
β, to extend the model and make it more suitable for the recommendation task.

Parameter α. Generally, item feature X and user rating Y can be very sparse,
that is, the positive entry (xji or yji = 1) is much less than the negative entry (xji

45



4. Collective Variational Auto-encoder for Top-N Recommendation

or yji = 0). We introduce a parameter α to balance between positive samples and
negative samples. Specifically, the loss functions in Eq. (4.1) and (4.2) become

log pθ(yj | uj) =

n∑
i=1

α · yji log ς(fji) + (1− yji) log (1− ς(fji))

and

log pθ(xj | zj) =

n∑
i=1

cji
2

(xji − fji)2,

where

cji =

{
α, if xji > 0,

1, otherwise.

Parameter β. We can adopt different perspectives about the ELBO derived in
Eq. (4.3) as: the first term can be interpreted as the reconstruction error, while the
second KL term can be viewed as regularization. The ELBO is often over-regularized
for recommendation tasks [141]. Therefore, a parameter β is introduced to control the
strength of regularization, so that the ELBO becomes:

L(q) = Eqφ [log pθ(X,Y | U,Z)]− β ·KL (qφ ‖ p(U,Z)) .

We propose to train the cVAE in two phases. We first pre-train the cVAE by feeding it
side information only. We then refine the model by feeding it user ratings. While Liang
et al. [141] suggested to set β small to avoid over-regularization, we opt for a larger
value for β during refinement, for two reasons: a) the model is effectively pre-trained
with side information; it would be reasonable to require the posterior to comply more
with this prior; and b) refinement with user ratings can easily overfit due to the sparsity
of ratings; it would be reasonable to regularize heavier so as to avoid overfitting.

4.4 Experiments

4.4.1 Experimental setup

Dataset. We conduct experiments on two datasets, Games and Sports, constructed
from different categories of Amazon products [157]. For each category, the original
dataset contains transactions between users and items, indicating implicit user feed-
back. The statistics of the datasets are presented in Table 4.2. We use the product
reviews as item features. We extract unigram features from the review articles and
remove stopwords. We represent each product item as a bag-of-word feature vector.

Table 4.2: Statistics of the datasets used.

Name #User #Item #Rating #Feature Feature density
Games 5,195 7,163 96,316 20,609 3.49%
Sports 5,653 11,944 86,149 31,282 0.97%
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4.4. Experiments

Methods for comparison. We contrast the performance of cVAE with that of
existing existing VAE-based methods for CF: collaborative variational auto-encoder
(cfVAE) [134] and multinomial variational auto-encoder (mVAE) [141]. Note that the
performance of cfVAE will be affected greatly by the high-dimensionality of side in-
formation. Besides, as cfVAE was designed originally for the rating prediction task,
the recommendations provided by cfVAE are likely be less effective. While mVAE is
effective for top-N recommendation, it suffers from rating sparsity as side information
is not utilized.

We also compare with the state-of-the-art linear model for top-N recommendation
with side information, i.e., cSLIM [170]. By comparing with cSLIM, we can evaluate
the capacity of cVAE as it can be regarded as a deep extension of cSLIM. We also
compare with fVAE, which is the pre-trained model of cVAE with side information
only. cVAE extends fVAE with user ratings.

For all VAE-based methods, we follow [116] to set the batch size as 100 so that we
can set L = 1. We choose a two-layer network architecture for the inference network
and generation network. For cfVAE and mVAE, the scale is 200–100 for inference
network and 100–200 for generation network. For fVAE and cVAE, the scale is 1000–
100 and 100–1000, respectively. The reason that the network scales for cvVAE and
mVAE are smaller is that 1. the input for cfVAE is high-dimensional with relatively
fewer samples; and 2. the input for mVAE is sparse, which easily overfits with larger
networks. In comparison, we can select more hidden neurons for fVAE as it takes each
dimension of the features over all items as input, so that the input for the network has
relatively fewer dimensions and the number of samples is sufficient. This is similar
with cVAE, which uses side information to overcome rating sparsity.

Evaluation method. To evaluate the performance on the top-N recommendation
task, we split the user rating matrix Y into Ytrain , Yvalid and Ytest , respectively, for
training the model, selecting parameters, and testing the recommendation accuracy.
Specifically, for each user, we randomly hold 10% of the ratings in the validation set
and 10% in the test set and put the other ratings in the training set. For each user, the
unrated items are sorted by predicted score in decreasing order and the first N items
are returned as the top-N recommendations for that user.

Given the list of top-N recommended items for user u, precision at N (Pre@N )
and recall at N (Rec@N ) are defined as

Pre@N =
|relevant items ∩ recommended items|

N
,

Rec@N =
|relevant items ∩ recommended items|

|relevant items| .

average precision at N (AP@N ) is a ranked precision metric that gives larger credit to
correctly recommended items in the top-N ranks. AP@N is defined as the average of
precision scores computed at all positions with an adopted item, namely

AP@N =

∑N
k=1 Pre@k × rel(k)

min {N, |relevant items|} ,

where Pre@k is the precision at cut-off k in the top-N recommended list. Here, rel(k)
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Table 4.3: Parameter selection.

Method Parameters

Games Sports

cSLIM α = 10−2, β = 10−3, λ = 1 α = 0, β = 10, λ = 10
cfVAE λu = 10, λv = 0.8 λu = 10, λv = 1
mVAE α = 4, β = 0.1 α = 8, β = 0.1
fVAE α = 6, β = 0.1 α = 5, β = 0.9
cVAE α = 2, β = 2 α = 1, β = 2

Table 4.4: Comparison of top-N recommendation performance.
Rec@5 Rec@10 Rec@15 Rec@20 MAP@5 MAP@10 MAP@15 MAP@20

Method Games

cSLIM 0.0761 0.1162 0.1474 0.1734 0.0590 0.0337 0.0240 0.0188
cfVAE 0.0685 0.1065 0.1359 0.1608 0.0519 0.0298 0.0212 0.0165
mVAE 0.0137 0.0206 0.0270 0.0375 0.0106 0.0060 0.0043 0.0034
fVAE 0.0495 0.0796 0.1072 0.1276 0.0390 0.0230 0.0167 0.0131
cVAE 0.0858* 0.1376** 0.1731** 0.2081** 0.0668* 0.0394** 0.0279** 0.0218**

Sports

cSLIM 0.0419 0.0622 0.0776 0.0911 0.0263 0.0148 0.0104 0.0080
cfVAE 0.0315 0.0512 0.0639 0.0768 0.0206 0.0119 0.0084 0.0065
mVAE 0.0171 0.0249 0.0328 0.0390 0.0109 0.0062 0.0044 0.0034
fVAE 0.0284 0.0437 0.0602 0.0732 0.0190 0.0109 0.0078 0.0061
cVAE 0.0441 0.0655 0.0857* 0.1035* 0.0268 0.0152 0.0107 0.0084

We attach asterisks to the best score if the improvement over the second best score is statistically significant; we conducted
two-sided tests for the null hypothesis that cVAE and the second best have identical average values (* p < 0.1, **
p < 0.05).

is an indicator function

rel(k) =

{
1 if the item ranked at k is relevant,
0 otherwise.

mean average precision at N (MAP@N ) is defined as the mean of the AP scores for
all users. As in [239], the list of recommended items is evaluated with Ytest using
Rec@N and MAP@N .

4.4.2 Experimental results

Parameter selection. To compare the performance of alternative top-N recom-
mendation methods, we first select parameters for all the methods through valida-
tion. Specifically, for cSLIM, we select α, β and λ from 0, 10−4, 10−3, 10−2, 10−1,
1, 10. For cfVAE, we select λu from 0, 10−4, 10−3, 10−2, 10−1, 1, 10 and λv from
0, 0.1, 0.2, . . . , 1. For mVAE and fVAE, we select α from 1, 2, . . . , 10 and β from
0, 0.1, 0.2, . . . , 1. For cVAE, we select α from 1, 2, . . . , 10 and β from 0, 0.5, 1, . . . , 3.
Note that we tune β with larger values to possibly regularize heavier during the refine-
ment. The result of parameter selection is shown in Table 4.3.

Performance comparison. We present the results in terms of Rec@N and MAP@N
in Table 4.4, where N is respectively set as N = 5, 10, 15, 20. We show the best score
in boldface.

As shown in Table 4.4, cVAE outperforms other methods according to all metrics
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Figure 4.3: Performance on the top-N recommendation task.

and on both datasets. The improvement is also significant in many cases. The sig-
nificance of the improvements becomes more evident when N gets larger. The other
three methods utilizing VAE are less effective with high-dimensional side information.
They even fail to beat linear models. In contrast, cVAE improves over cSLIM by using
VAEs for non-linear low-rank approximation. This demonstrates the effectiveness of
our proposed cVAE model.

On the Games dataset, cVAE shows significant improvements over the state-of-
the-art. Apart from cVAE, cfVAE provides the best recommendation among all VAE-
based CF methods, though it fails to beat cSLIM. This is followed by fVAE, which
utilizes side information only. mVAE performs the worst, due to the rating sparsity.
On the Sports dataset, significant improvements can only be observed for Rec@15 and
Rec@20. The results yield an interesting insight. If we look at the parameter selection
for cSLIM, we can see that α is set to 0, which means cSLIM generates the best recom-
mendations when no side information is utilized. This does not necessarily mean that
the side information of Sports is useless for the recommendation task. Actually, fVAE
provides acceptable recommendations by utilizing side information only. Therefore,
the way of incorporating side information by cSLIM is not effective. In comparison,
cVAE improves over cSLIM by utilizing side information.

Effect of the number of recommended items. Table 4.4 reveals a possible trend
that the recommendation improvement becomes more evident when more items are
recommended. We use Figure 4.3 to illustrate this, where N is increased from 5 to
1000. As depicted in Figure 4.3(a), the gaps between cVAE and other methods is
getting larger with as N increases. It is interesting to note that fVAE surpasses cfVAE
when N = 500 and N = 1000. This further demonstrates the effectiveness of a pre-
training phase with side information proposed in this model. In Figure 4.3(c), both
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fVAE and cfVAE outperform cSLIM when N ≥ 200, and fVAE outperforms cfVAE
when N ≥ 100. This shows that deep models are superior to linear models when more
items are recommended. In comparison, the improvement achieved by cVAE is more
evident when N ≥ 100, and the gap between cVAE and the second best method is
always substantial. In contrast, the performance w.r.t. MAP@N does not show big
differences when N grows. Note that on the Games dataset (Figure 4.3(b)), cVAE
performs much better than cSLIM when N is small. The improvement becomes less
evident when N grows.

4.5 Related Work

Related work concerns linear models for top-N recommendation with side information
and deep models for collaborative filtering.

4.5.1 Top-N recommendation with side information

Various methods have been developed to incorporate side information in recommender
systems. Most of these methods have been developed in the context of the rating
prediction problem, whereas the top-N recommendation problem has received less
attention. In the rest of this section we only review methods addressing top-N recom-
mendation problems. Ning et al. [170] propose several methods to incorporate side in-
formation with SLIM [169]. Among these methods, cSLIM generally achieves the best
performance as it can well compensate for sparse ratings with side information. Zhao
et al. [270] propose a joint model to combine self-recovery for user rating and predica-
tion from side information. Side information is also utilized to address cold-start top-N
recommendation. Elbadrawy et al. [71] learn feature weights for calculating item sim-
ilarities. Sharma et al. [207] further improve over [71] by studying feature interactions.
While these methods deliver state-of-the-art performance for top-N recommendation,
they are all linear models, which have a restricted model capacity.

4.5.2 Deep learning for hybrid recommendation

Several authors have attempted to combine deep learning with collaborative filtering.
Wu et al. [239] utilize a denoising autoencoder to encode ratings and recover the score
prediction. Zhuang et al. [276] propose a dual-autoencoder to learn representations
for both users and items. He et al. [94] generalize matrix factorization for collabor-
ative filtering by a neural network. These methods utilize user ratings only, that is,
side information is not utilized. Wang et al. [230] propose stacked denoising autoen-
coders to learn item representations from side information and form a collaborative
deep learning method. Later, Li et al. [133] reduce the computational cost of training
by replacing stacked denoising autoencoders by a marginalized denoising autoencoder.
Rather than manually corrupting the input, variational autoencoders were later utilized
for representation learning [134]. These models achieve state-of-the-art performance
among hybrid recommender systems, but they are less effective when side informa-
tion is high-dimensional. For more discussions on deep learning based recommender
systems, see [263].
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4.6 Summary
In this chapter, we have answered RQ3 by providing a new network structure on top of
VAEs. Specifically, we have proposed a new way to feed side information to a neural
network so as to overcome the high-dimensionality. We have proposed collective vari-
ational auto-encoder (cVAE), which can be regarded as a non-linear generalization of
cSLIM. cVAE overcomes rating sparsity by feeding both ratings and side information
into the same inference network and generation network. To cater for the heterogen-
eity of information, i.e., rating and side information, we have assumed them to follow
different distributions, which is reflected in the use of different loss functions. As for
the implementation, we have introduced a parameter α to balance the positive samples
and negative samples. We also have introduced β as a parameter for regularization,
which controls how much the latent variable should comply with the prior distribu-
tion. We have conducted experiments using two Amazon datasets. The results show
the superiority of cVAE over other methods in scenarios with high-dimensional side
information.

In this chapter, we leverage high-dimensional and noisy side information for top-
N recommendation, which is an even more challenging task than those studied in
previous chapters. Next, we design models to utilize heterogeneous information for
top-N recommendation, i.e., how to effectively integrate different types of information
(Chapter 5–7).
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5
Local Variational Feature-based

Similarity Model

In the previous chapters, we have studied how to utilize high-dimensional information
for top-N recommendations (Chapter 2–4). Next, we study how to leverage heterogen-
eous information for top-N recommendations. In this chapter, we examine the problem
of recommending top-N new items for users. To do so, we design a model to seam-
lessly integrate ratings with side information, which answers the following research
question asked in Chapter 1:

RQ4 How can we effectively fuse item features with ratings for the recommendation
of top-N new items?

5.1 Introduction
Top-N recommendation systems expose users to a limited number of items that re-
flect the most relevant items a user has not yet rated. This helps users cope with
large volumes of information. Existing methods for this task broadly fall into two cat-
egories: latent space methods and neighborhood-based methods. Latent space meth-
ods [57] learn a low-rank factorization of the user-item matrix into user and item
factor matrices, representing both the users and the items in a common latent space.
Neighborhood-based methods [63] (user-based or item-based) focus on identifying
similar users/items, where item-based neighborhood methods demonstrate better per-
formance than user-based ones [51, 52]. Item-based neighborhood methods can be
further categorized into two classes: memory-based [63, 197] and model-based [107,
169]. Memory-based methods compute similarities between items based on statist-
ical measures, such as Pearson coefficient and cosine similarity. However, recom-
mendations based on such heuristic-based approaches are usually inferior. Compared
to memory-based methods, model-based methods, often known as similarity models,
achieve state-of-the-art performance on the top-N recommendation task by learning
similarities from data [107, 169].

It remains a challenging task to recommend top-N cold-start items, that is, recom-
mending N items to users from a set of new items. The problem of recommending
top-N new items is significant because new items are continuously observed: new

This chapter was published as [42].
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products are introduced, new books and articles are written, and news stories break.
Conventional similarity models cannot generate a recommendation in a cold-start set-
ting [1, 14, 15, 77, 198]. The cold-start problem strongly impacts recommendation
performance and the user experience, hence it attracts much attention from the re-
search community [50, 142, 225]. Feature-based similarity models (FSMs) address
the problem by extending similarity models to utilize auxiliary information associated
with items, i.e., item features, where item similarity is calculated using item features.
FSMs have demonstrated their effectiveness for recommending top-N new items [71,
207].

Existing FSMs have the following limitations:
– They estimate global similarity functions only. Existing FSMs exploit information

across all users to estimate the similarity function, thus assuming that items have
the same similarities for all users. In many real-world applications, item similar-
ities should be better identified within subsets of users [51, 208], especially when
a large number of users are involved. In fact, there could be a pair of items that
are extremely similar for a specific subset of users, while they have low similarity
for another subset of users. Existing FSMs fail to capture item similarities w.r.t. a
specific aspect that is only of interest to a subset of like-minded users.

– The estimated similarity functions are linear. Linear similarity functions fail to cap-
ture the complex structure underlying item features. Item similarities measured by
linear functions can also be inaccurate, especially when item features are sparse.

To overcome these limitations of existing FSMs, we propose to model local aspects of
items that are of interest for a subset of users and extend the linear similarity function
to a non-linear one. Specifically, we first identify user subsets via clustering, where
users within the subset share similar preferences. For each user subset, we estimate
a local similarity function. Motivated by the success of deep learning in the context
of collaborative filtering [133, 230], we also estimate a global similarity function that
encodes item features into deep representations to measure item similarity in a latent
space. Local similarity functions capture specific aspects of items and the global sim-
ilarity function encodes more abstract properties of items. The combination of local
and global similarity functions captures feature-based item similarities from different
perspectives.

One challenging task is how to combine deep learning with item collaborative
filtering and user clustering: (1) deep learning requires the inputs to be i.i.d. [230];
therefore, it is difficult for deep models to capture implicit relationships among items,
which is crucial for item collaborative filtering; and (2) deep learning is rarely applied
to clustering problems; typically, deep learning-based methods are used for dimen-
sionality reduction, followed by classical clustering techniques applied to the resulting
low-dimensional space [242].

We address the challenge of combining deep learning with item collaborative fil-
tering and user clustering by introducing a Bayesian generative model [116, 227]. We
propose a local variational feature-based similarity model (LVSM) that integrates deep
learning with user clustering and collaborative filtering for top-N cold-start item re-
commendation. Inference for LVSM is challenging due to the complex entanglement
of variables and the non-linear structure within the deep network. Therefore, we con-
duct variational inference. Existing deep learning for collaborative filtering methods
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introduce offset variables on top of latent item representations, which can facilitate
variational inference [134, 230]. However, for new items, the offset cannot be inferred
due to the absence of ratings. In order to recommend new items, they simply ignore the
offset, which brings bias between the rated items and new items. Unlike these meth-
ods, LVSM assumes that the generation of user ratings depends directly on the latent
item representations. However, this also brings an extra difficulty for inference. We
derive the evidence lower bound (ELBO) with approximations, based on which ELBO
can be efficiently optimized through a variational EM procedure.

The contributions of this chapter can be summarized as follows:
1. We propose a deep generative model, LVSM, to address the item cold-start top-
N recommendation problem. The model can capture local aspects of items and
measure global item similarity based on deep representations extracted from item
features.

2. To address the difficulty of optimizing LVSM, we perform variational inference and
derive the ELBO. Given this approximation, LVSM can be optimized efficiently.

3. We conduct comprehensive experiments to demonstrate the effectiveness of LVSM,
yielding important insights into how it generates robust recommendations with a
large fraction of cold-start items and sparse item features.

The remainder of the chapter is organized as follows. We introduce preliminaries in
§ 5.2. We review related work in § 5.3. We propose our model, LVSM, in § 5.4 and
then conduct variational inference in § 5.5. § 5.6 and § 5.7 describe our experimental
setup and results. We summarize the chapter in § 5.8.

5.2 Problem Definition
In this work, we consider the cold-start top-N recommendation problem, i.e., the prob-
lem of recommending items that have neither been seen nor rated by users. The prob-
lem is defined as follows: given a set of new items (rating information for these items
from users is entirely missing) and their features (characteristics such as genre, product
categories, keywords, etc.), recommend each user with the top-N items selected from
the new items.

To recommend new items, standard cold-start recommender systems work as fol-
lows [71, 207]: (1) for a given user, predict her preference scores for all new items; the
preference scores are predicted using some models; (2) for this user, the new items are
sorted using their predicted scores in non-increasing order; the N items at the top of
the sorted list are recommended to her; and (3) repeat this process for each user in the
system.

Next, we introduce the relevant notation. We write m, n, d for the number of
users, items and item features, respectively. We refer to Y as the preference matrix;
yui represents the rating of user u to item i. In many scenarios, user ratings are in
the form of implicit feedback, such as purchase history, watching habits, browsing
activity, etc. Following the common setting for implicit feedback [65], we assume that
user ratings are binarized [100, 175, 228]. We refer to the item feature matrix as X .
Then, xi represents the feature vector for item i and xij represents the j-th feature
of item i. We assume numerical values for item features; in this way, we are able to
handle various multimedia features [134]. The notation used to describe LVSM as well
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as other models is summarized in Table 5.1.

Table 5.1: Notation used in this chapter.

Notation Description

Se
ts

an
d

nu
m

be
rs

U Set of users
I Set of items
R+

u Set of items rated by user i
R+

u−i Set of items rated by user u excluding item i
m Number of users, i.e., |U|
n Number of items, i.e., |I|
d Number of item features
c Number of user groups
nu Number of items rated by user i, i.e.,

∣∣R+
u

∣∣
nu−i Number of items rated by user i excluding item j, i.e.,

∣∣R+
u−i

∣∣

Va
ri

ab
le

s

Y ∈ Rm×n User rating matrix
X ∈ Rn×d Item feature matrix
V ∈ Rn×h Latent item representation matrix
vi ∈ Rh Latent representation of item i

xi ∈ Rd Feature vector of item i

hinf
i Hidden variables of item i in the inference network
hgen

i Hidden variables of item i in the generation network
yui Rating of user u for item i
sij Similarity between item i and item j
zu Indicator of the group for user u

Pa
ra

m
et

er
s

Θ Parameters of the generative model
Φ Parameters of the inference model
θ Parameters of generation network
ρ Parameters of the inference network
Ω Parameters of feature weights
ωk ∈ Rd Parameters of feature weights for k-th user group
π ∈ Rm×c Variational parameters of Z

5.3 Related Work
The idea of estimating multiple local models together with a global model has pre-
viously been found to be effective for many recommendation tasks, including rating
prediction in both general [119] and cold-start settings [208] and top-N recommenda-
tion [51, 52]. The broader message of this chapter is that we extend the effectiveness
of the idea to top-N recommendation in a cold-start setting.

Local variational feature-based similarity model (LVSM) is specifically designed
for recommending top-N new items. Besides reviewing models specifically designed
for this problem, we review related works concerning a broader scope, e.g., methods
designed for item cold-start recommendation. This is because many item cold-start
recommendation methods can also provide a top-N recommendation from new items,
even though they have originally been designed for rating prediction over new items.

Naively, new items may be recommended to users based on their popularity [177]
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or based on a random selection [149]. The accuracy of these methods is low as
they cannot provide personalized recommendations. Alternative methods have been
proposed to warm-up cold-start items by forcing several representative users to rate
them [55, 149]. In recent years, there has been an increase in interest in utilizing other
rich sources associated with items along with the rating matrix to increase the accur-
acy of the recommendation [7, 76, 235, 256], and in dealing with cold-start challenges.
Although many other hybrid methods [160, 183, 210] also utilize item features, they
are specifically designed to address the data sparsity problem and fail to cope with
cold-start item problems, which is the main focus of this chapter.

Next, we discuss work that utilizes item features, namely so-called feature-based
methods.

5.3.1 Feature-based methods
Based on how the rating of user u for item i, i.e., yui, is generated, different mod-
els have been proposed. Here, we review four common methods, respectively user
modeling (UM), latent factor model (LFM), item feature mapping (IFM) and feature-
based similarity model (FSM). We describe each category of models and depict them
as probabilistic graphical models in Figure 5.1.

bu xi

yui

(a) User modeling.

pu vi qj

xijyui

(b) Latent factor model.

pu

vi

xi

yui

(c) Item feature
mapping.

xu

xi

ω

yui

(d) Feature-based
similarity model.

Figure 5.1: Overview of existing feature-based methods represented as probabilistic graphical
models. bu: a parameter associated with user u. pu,vi, qj : latent factors associated with user
u, item i and feature j. xi,xj : feature vector for item i, j. xu: feature vector for user u, defined
as xu =

∑
j∈R+

u−i
xj . ω: parameters for similarity function.

User modeling (UM). One of the earliest approaches for identifying which of the
new items may be relevant to a user is user modeling [13, 61, 78, 265]. These methods
learn to generate personalized recommendations by formulating the task as a classific-
ation or regression problem. While they provide personalized recommendations, they
are generally regarded as content-based filtering methods, which fail to take advantage
of collaborative filtering. Later, factorization machines [34, 37, 185] have been pro-
posed to capture feature interactions. Factorization machines can utilize item features
and can be categorized as UM in the scenario of item cold-start recommendation.

Latent factor model (LFM). LFMs provide a better way to utilize item features that
does take recent advances in matrix factorization methods into account [1, 172, 184,
198, 209, 275]. Rating and item feature matrices are simultaneously decomposed,
sharing latent item factors. However, LFM requires a large parameter space, especially
when item features are high-dimensional. LFM also shares item factors across different
contexts [102]. This is problematic as item factors that are cold-start in the context of
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user ratings will be learned mainly based on data from the context of item features that
are not cold-start, and therefore the item factors are not properly learned in an item
cold-start setting.

Item feature mapping (IFM). An alternative type of feature-based model is IFM.
Several authors [77, 229, 262] take item features to form a regression model. Unlike
UM, they first learn a mapping function to project item features into a common latent
space as user factor. Wang et al. [229] propose an IFM based on topic modeling. A
recent trend is to extract deep latent item factors for collaborative filtering [82, 226,
234]. Auto-encoders have recently been studied to learn item representations from
content [134, 230]. Item representations are used as regularizations for item factors.

Feature-based similarity model (FSM). FSMs have been shown to achieve state-
of-the-art performance for recommending top-N new items [4, 22, 63, 71, 107, 169,
207]. FSMs learn similarity functions, measuring item similarities based on item fea-
tures. The similarity functions are estimated across all users, exploiting the effective-
ness of item collaborative filtering. Existing FSMs estimate linear or bilinear similarity
functions [71, 207]. As LVSM, our proposed method, follows the general framework
of FSMs, we now discuss FSMs in more detail.

5.3.2 Feature-based similarity models
FSMs attempt to predict a rating score yui of user i for a new item j by defining:

ỹui =
∑

j∈R+
u−i

sim(xi,xj), (5.1)

where R+
u−i is the set of items rated by user i excluding item j; sim(xi,xj) is a

similarity function that measures the similarity between xi and xj . When sim(·) is
linear or bilinear, Eq. (5.1) can be rewritten as:

yui = sim(xu,xi). (5.2)

Here, sim(xu,xi) measures the similarity of xu and xi, where xu =
∑
j∈R+

u−i
xj .

There are several definitions for the similarity function sim(·). One of the most intuitive
ones is to calculate the dot product [63]:

sim(xu,xi) = xTuxi. (5.3)

The similarity function defined in Eq. (5.3) has several drawbacks:
1. learning free: the similarity function is predefined; it does not utilize historical pref-

erences in order to estimate a similarity function that better predicts the observed
preferences;

2. equal weights: the features are treated equally when measuring item similarity; and
3. non-collaborative: the rating score that is computed for a new item w.r.t. user u

relies entirely on the set of items previously liked by u, and as such it does not use
information from other users.

To overcome these drawbacks, personalized feature weighting (PFW) [22] has been
proposed; it introduces personalized weights ωu for item features:

sim(u, i) = ωTu (xu ◦ xi) , (5.4)
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where ◦ is the element-wise product between vectors. PFW introduces learning para-
meters to the model and weighs features to provide personalized recommendations.
However, PFW also fails to take advantage of collaborative filtering as ωu is op-
timized separately for each user. Later, user-specific feature-based similarity model
(UFSM) [71] has been introduced, which defines sim(xu,xi) as:

sim(xu,xi) =

c∑
k=1

πukω
T
k (xu ◦ xi) . (5.5)

Eq. (5.5) defines c global similarity functions (ω1, . . . ,ωc) and user-specific contribu-
tions of each global similarity function (πu1, . . . , πuc). user-specific feature-based sim-
ilarity model (UFSM) exploits item collaborative filtering by estimating {ωk} across
all users. However, UFSM fails to take into consideration interactions among fea-
tures. UFSM considers item features independently. Hence, the similarity measured
this way could be inaccurate especially when features are high-dimensional and sparse,
where two items might share few common features. To capture feature interactions, a
feature-based factorized bilinear similarity model (FBSM) [207] has been proposed,
where sim(xu,xi) is defined as:

sim(xu,xi) = xTuDxi + xTuFF
Txi, (5.6)

where D and FFT approximate the diagonal and off-diagonal of the feature interac-
tion matrix, respectively. While UFSM and FBSM demonstrate superior performance
for item cold-start top-N recommendations, the linearity of both models has restric-
ted their expressiveness. Both methods estimate similarity functions from information
across all users, rather than subsets of like-minded users, thus failing to capture local
aspects.

5.3.3 Local collaborative filtering
Clustering has been widely studied for collaborative filtering [21, 81, 124, 232, 246,
251, 268]. Previous methods cluster users or items based on user ratings into subgroups
and then train a local model separately for each cluster. The results from all subgroups
are aggregated to produce recommendations.

Christakopoulou et al. [52] propose local latent factor models, where the assign-
ments of users to subsets are constantly updated. Wang et al. [232] introduce a prob-
abilistic model to cluster items as topics. Wu et al. [238] propose a mixture model to
infer memberships of users or items to subgroups. Lee et al. [123] describe an iterative
way to estimate latent factors, where, first, latent factors representing the anchor points
are estimated and, then, based on the similarities of the observed entries to the anchor
points, the latent factors are re-estimated. Christakopoulou et al. [51] explore subsets
of users to learn user-specific local item similarity models, which are combined with a
global similarity model.

Unlike these methods, LVSM addresses the problem of recommending new items
by combining user clustering with deep learning.

5.3.4 Review-based recommendation
User reviews are an important source of information for recommendation; they can
help to address the rating sparsity for collaborative filtering methods [16, 32, 48, 87,
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Figure 5.2: An illustrative example of LVSM.

272]. Existing review-based recommenders show their effectiveness by applying sen-
timent analysis [180], topic modeling [157, 218] or aspect extraction [16, 35, 266] to
user reviews. By concatenating all the reviews belonging to an item as item features,
these methods can also help to tackle the item cold-start problem [48, 272]. Unlike
these methods, we propose to utilize generic item features. We only assume to have
similarity information instead of the semantic information behind item features. Tech-
niques applied to user reviews cannot be applied in our setting.

5.4 Local Variational Feature-based Similarity Models

5.4.1 Overview
In this chapter, we study the problem of recommending top-N new items to users.
The solution provided in our work falls into the cold-start recommendation framework
introduced in § 5.2 and we contribute a more effective model for predicting scores
for new items. Specifically, we propose a Bayesian generative model, an addition to
the family of feature-based similarity models (FSMs), namely the local variational
feature-based similarity model (LVSM). LVSM extends linear similarity functions to
non-linear ones by learning a global similarity function via a variational auto-encoder
(VAE) [116]. LVSM also identifies user groups and learns the corresponding local
similarity functions.
Figure 5.2 gives an illustrative example to describe how LVSM works. Figure 5.2(a)
depicts a rating matrix, where rows are users and columns are items. The doted areas
indicate the rated items by users. New items are on the right of the red dashed line.
For the rated items on the left of the red dashed line, some have been rated by all users
(global), some have been rated only by users in group A or group B (local). Given
a user u and her history of rated items, LVSM calculates local and global similarities
between the new item i and user rated items 1, 5, 9 (Figure 5.2(b)). Here, s(1)

ji , s
(2)
ji are

the local similarities between i and j based on users from group A and B; s(0)
ji is the
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global similarity. We assume user u is from group A. Thus we form the prediction as
ỹui = α

(1)
ui + α

(0)
ui =

∑
j∈{1,5,9}(s

(1)
ji + s

(0)
ji ).

5.4.2 Model description

Modeling ratings. We start by modeling ratings. As we assume that user ratings
are binarized, we define the rating yui to follow a Bernoulli distribution:

yui ∼ Bernoulli (σ(ỹui)) , (5.7)

where σ(·) is the sigmoid function and ỹui is the predicted score. We propose to
compute ỹui by:

ỹui = α
(0)
ui + α

(zu)
ui ,

where zu ∈ {1, . . . , c} is a variable that indicates which group user u belongs to.
Furthermore, α(0)

ui and α(zu)
ui are the scores calculated based on the global similarity

function and the zu-th local similarity function. Following FSM, we assume that α(k)
ui

is calculated by aggregating item similarities:

α
(k)
ui =

∑
j∈R+

u−i

s
(k)
ji , ∀k ∈ {0, . . . , c} , (5.8)

where R+
u−i is the set of items that are rated by user u excluding item i, and sij is

the similarity between item i and j. The motivation for excluding item i is based on
the estimation constraint [107] that known rating information for a particular user-item
pair yui is not used when the rating for that item is being estimated. Therefore, ỹui can
be computed by:

ỹui =
∑

j∈R+
u−i

s
(0)
ji + s

(zu)
ji . (5.9)

We combine s(0)
ji and s(zu)

ji , linearly and equally, following [207], where the local and
global similarity functions capture the diagonal and off-diagonal feature interactions
(Eq. (5.6)). The linear combination is especially useful for inference; we can derive
the expectation of α(k)

ui (Eq. (5.26)).

Modeling global similarities. Inspired by Eq. (5.6), we define the global similarity
function to capture feature interactions. Recently, several publications have explored
deep neural networks (DNNs) to learn non-linear feature interactions [46, 94, 95, 206,
264]. However, capturing feature interactions by these methods is not suitable for
the global similarity function as they do not have a Bayesian nature, which complic-
ates combinations with item-based CF. Instead, we utilize a variational auto-encoder
(VAE) [116]. Then, the global similarity function is defined as the inner product of
latent item representations learned by the variational auto-encoder (VAE):

s
(0)
ij = sim0(xi,xj) = fρ(xi)

T fρ(xj) = vTi vj , (5.10)

where vi,vj are the latent representations of item i, j, respectively; fρ(·) stands for the
inference network of VAE, which is parameterized by ρ. As suggested by the VAE, we
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use a unit Gaussian prior for vi:

vi ∼ N (0, I). (5.11)

Note that vi and vj are used directly to calculate the similarity, rather than introducing
offset variables like [134, 230]. This is because the offset cannot be inferred for new
items. However, this complicates inference as the DNN is directly coupled with the
model. Fortunately, we can derive an efficient inference thanks to the linear combina-
tion in Eq. (5.9).

Modeling local similarities. We define the local similarity function with respect to
the k-th user group by:

s
(k)
ij = simk(xi,xj) = ωTk (xi ◦ xj) , (5.12)

where ◦ is the element-wise product between vectors; ωk is the feature weight vector
for the k-th user group, where we use a Gaussian prior:

ωk ∼ N (0, λ−1
ω I), (5.13)

Given user u, the local similarity will be calculated based on which group u belongs
to, denoted by zu. As zu is discrete, we use a multinomial distribution for zu. As we
presume no information about which group users belong to, we assume equal probab-
ilities:

zu ∼ Multi(1/c). (5.14)

Modeling item features. The item feature xi is generated from its latent represent-
ation vi through a DNN. Let Wl and bl the parameters associated with the l-layer of
the DNN. Following [134, 230], we model Wl and bl with a Gaussian distribution:

Wl ∼ N (0, λ−1
W I), bl ∼ N (0, λ−1

b I). (5.15)

The output of each layer hl also follows a Gaussian distribution:

hl ∼ N (φ(hTl−1Wl + bl), I). (5.16)

The feature xi is generated from the last layer output hL. Depending on what type
of data the item feature is, xi can be assumed to be generated from a multivariate
Bernoulli distribution if it is binary, or it can be generated from a Gaussian distribution
if it is a real number:

xi ∼
{

Bernoulli(σ(hL)), if xi is binary,
N (hL, λ

−1
h I), if xi is real.

(5.17)

The overall generation procedure is as follow:
1. For each layer l = 1, . . . , L,

(a) draw the parameter Wl ∼ N (0, λ−1
W I);

(b) draw the bias bl ∼ N (0, λ−1
b I).

2. For each item i ∈ I,
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(a) draw item representation vi ∼ N (0, I);
(b) draw hidden layer h1 ∼ N (φ(vTi Wl+bl), λ

−1
h I), where φ(·) is the activation

function;
(c) for each layer l = 2, . . . , L, draw hidden layerhl ∼ N (φ(hTi−1Wl+bl), λ

−1
h I);

(d) draw item feature xi ∼ Bernoulli(σ(hL)) if xi is binary; xi ∼ N (hL, λ
−1
x I)

if xi is real, where σ(·) is the sigmoid function.
3. For each user u ∈ U , draw zu ∼ Multi(1/c).
4. For each user group k = 1, . . . , c, draw ωk ∼ N (0, λ−1

ω I).
5. For each user-item pair (u, i), u ∈ Y , draw yui ∼ Bernoulli (σ(ỹui)), where ỹui

is calculated based on Eq. (5.9).
Once the model is optimized, we can predict the score of a new item i for user u
throughout the inference of user rating ỹui.

5.5 Model Optimization
In this section, we describe an optimization method for LVSM, i.e., how to optimize
the parameters Ω = {ω1, . . . ,ωc} for the similarity functions and the parameter θ for
the generation network. Let Θ = {Ω, θ}. We perform maximum a posteriori (MAP)
estimation to infer LVSM by optimizing the following posterior:

p(Θ | X,Y ) ' p(Θ, X, Y )

= p(X,Y | Θ)p(Θ)

= p(Θ)

∫
V

∑
Z

p(V,Z,X, Y | Θ)dV.

(5.18)

The posterior in Eq. (5.18) is intractable for exact inference, as the marginalization of
latent variables is extremely difficult, due to the complex entanglement of variables
and the non-linear structure of the deep network. Therefore, we turn to approximate
inference algorithms. Based on the idea of VAE, we perform variational inference for
LVSM. We first write the log-joint likelihood of LVSM:

log p(V,Z,X, Y | Θ) = log p(Y | V,X,Z,Ω) +

log p(X | V, θ) +

log p(V ) +

log p(Z).

(5.19)

We model the variational distribution of latent variables as q(V,Z | Φ), where Φ is the
set of variational parameters. The evidence lower bound (ELBO) [254] is given as:

L(Θ,Φ; q) = Eq [log p(V,Z,X, Y | Θ)− q(V,Z | Φ)] + log p(Θ).

Given the ELBO, we can thus find approximate empirical Bayes estimates for LVSM
via an alternating variational expectation maximization (EM) procedure that maxim-
izes a lower bound w.r.t. the variational parameters Φ, and then, for fixed values of the
variational parameters, maximizes the lower bound w.r.t. the model parameters Θ. We
summarize the variational EM algorithm in Algorithm 1.
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Algorithm 1: Variational EM Algorithm

1 t← 0;
2 Θ(0) ← randomly initialize parameters;
3 while not converge do
4 Φ(t) ← arg maxΦ L(Θ(t),Φ; q), see § 5.5.2 ; /* E-step */

5 Θ(t+1) ← arg maxΘ L(Θ,Φ(t); q), see § 5.5.3 ; /* M-step */
6 t← t+ 1;

5.5.1 Variational inference
We discuss in detail how to derive the ELBO. For the variational distributions, we
assume

zu ∼ Multi(πu), vi ∼ N (µi, ς
2
i ).

Based on the mean-field assumption, we fully factorize q(V, Y, Z | Φ):

q(V, Y, Z | Φ) =

m∏
u=1

q(zu | πu)

n∏
i=1

q(vi | µi, ς2
i ),

where π = {πu}, ρ = {µi, ς2
i } are the free variational parameters. The number of

parameters to optimize grows with the number of users and items, which becomes a
bottleneck for real-world applications with millions of users and items. To address this
issue, we utilize a variational auto-encoder (VAE) [116] to replace individual paramet-
ers {µi, ςi} with a data-dependent function through an inference network parameter-
ized by ρ, i.e., fρ(xi), where ρ is independent of samples and thus the scale of ρ is
free from n; ρ is the parameters of inference network, which is designed to have an
identical neural network structure with the generation network parameterized by θ.

Therefore, the ELBO is given as:

L(q; Θ,Φ) =

m∑
u=1

n∑
i=1

c∑
k=1

πukEqρ [log p(yui | X,V,ωk)] +

n∑
i=1

Eqρ [log p(xi | vi, θ)]−KL (q(vi | xi, ρ) ‖ p(vi)) +

m∑
u=1

c∑
k=1

πuk (log p(zu)− log πuk) + log p(Θ),

(5.20)

where qρ is an abbreviation for q(vi | xi, ρ).
We start from deriving Eqρ [log p(yui | X,V,ωk)], which is in the first line of

Eq. (5.20):

Eqρ [log p(yui | X,V,ωk)] = Eqρ

[
yui log σ(ỹ

(k)
ui ) + (1− yui) log(1− σ(ỹ

(k)
ui ))

]
= yuiEqρ [ỹ

(k)
ui ]− Eqρ

[
log(exp{ỹ(k)ui }+ 1)

]
,

(5.21)

66



5.5. Model Optimization

where ỹ(k)
ui is calculated by Eq. (5.9) with zu = k. It is not easy to infer Eqρ [log(exp{ỹ(k)

ui }
+ 1)]. Therefore, we approximate it as follows:

Eqρ
[
log(exp{ỹ(k)

ui }+ 1)
]
≈ Eqρ

[
log(exp{ỹ(k)

ui })
]

= Eqρ [ỹ
(k)
ui ] = log exp

{
Eqρ [ỹ

(k)
ui ]
}

≈ log
(

exp
{
Eqρ [ỹ

(k)
ui ]
}

+ 1
)
.

(5.22)

We then derive the expectation Eqρ [log p (xi | vi, θ)], which is the first term in the
second line of Eq. (5.20). It is problematic to derive Eqρ [log p (xi | vi, θ)] due to the
non-linear transformation within the inference network parameterized by ρ. While we
can obtain an unbiased estimate of it by sampling vi ∼ qρ and perform stochastic gradi-
ent ascent to optimize it, the challenge is that we cannot trivially take gradients with re-
spect to ρ through this sampling process. Therefore, we apply the re-parameterization
trick [116], which works as follows in this setting: we first draw a sample ε(l), which
is independent from ϕ and xi, and then re-parameterize vi as follows:

ε(l) ∼ N (0, I),

v
(l)
i = µi + ε(l) ◦ ς2

i .
(5.23)

The KL (q(vi | xi, ρ) ‖ p(vi)), which is the second term in the second line of Eq. (5.20),
has an analytical solution:

KL (q(vi | xi, ρ) ‖ p(vi)) =
1

2

(
2 log(ςi)− µ2

i − ς2
i

)
. (5.24)

Putting Eq. (5.21), (5.22), (5.23) and (5.24) together, we can rewrite the ELBO in
Eq. (5.20) as:

L(q; Θ,Φ) '
m∑

u=1

n∑
i=1

c∑
k=1

πuk

[
yuiEqρ [ỹ

(k)
ui ]− log

(
exp

{
Eqρ [ỹ

(k)
ui ]
}

+ 1
)]

+

1

L

L∑
l=1

n∑
i=1

log p(xi | v(l)
i , θ)− 1

2

n∑
i=1

(
2 log(ςi)− µ2

i − ς2i
)

+

log p(Θ)−
m∑

u=1

c∑
k=1

πuk log πuk,

(5.25)

where
Eqρ [ỹ

(k)
ui ] = ωTk (xu ◦ xi) + Eqρ [vi]

T
∑

k∈R+
u−i

Eqρ [vj ] . (5.26)

The reason that we can write Eqρ [ỹ
(k)
ui ] as Eq. (5.26) is that vi and vj are i.i.d. samples

generated form the inference network. It is worth noting that Eqρ [vi] = µi,Eqρ [vj ] =
µj .

Based on the variational inference in this section, we can detail the variational E-
step and M-step, respectively in § 5.5.2 and § 5.5.3.
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5.5.2 Variational E-step
We update the variational parameter π = {πu} in the E-step. We isolate the optimiza-
tion problem for πu as:

min
πu

c∑
k=1

πukγuk − πuk log πuk,

where
∑c
k=1 πuk = 1 and

γuk =

n∑
i=1

πuk

[
yuiEqρ [ỹ

(k)
ui ]− log

(
exp

{
Eqρ [ỹ

(k)
ui ]
}

+ 1
)]
. (5.27)

By introducing the Lagrange multiplier λu, we have:

L =

c∑
k=1

(πukγuk − πuk log πuk)− λu(

c∑
k=1

πuk − 1).

The derivative of L over πuk is

∇πukL = γuk − log πuk − λu − 1.

Applying the Karush-Kuhn-Tucker (KKT) first-order optimality conditions, we have:

πuk =
exp(γuk − 1)∑c
k=1 exp(γuk − 1)

,

which provides the desired closed-form.

5.5.3 Variational M-step
We update the parameters of VAE (ρ and θ) and the parameters of local similarity
functions (Ω = {ωk}) in the M-step. We propose to optimize these parameters through
stochastic gradient ascent. At each time we select a user u and an item i. We write Lui
to denote the loss of ELBO regarding u, i:

Lui =

c∑
k=1

πuk

[
yuiEqρ [ỹ

(k)
ui ]− log

(
exp

{
Eqρ [ỹ

(k)
ui ]
}

+ 1
)]

+

∑
j∈R+

u

[
Eqϕ [log p(xj | vj , θ)]−

1

2

(
2 log(ςj)− µ2

j − ς2
j

)]
.

(5.28)

The gradient of Lui w.r.t. µj ,∀j ∈ R+
u is

∂Lui
∂µj

=

c∑
k=1

πuk

[
yui − σ(Eqρ [ỹ

(k)
ui ])

] ∂Eqρ [ỹ(k)
ui ]

∂µj
+

1

L

L∑
l=1

∂ log p(xj | fθ(v(l)
j ))

∂v
(l)
j

+ µj ,

(5.29)
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where

∂Eqρ [ỹ
(k)
ui ]

∂µi
=

∑
j∈R+

u−i

µj ,

∂Eqρ [ỹ
(k)
ui ]

∂µj
= µi, j ∈ R+

u−i.

The gradient of Lui w.r.t. ςj ,∀j ∈ R+
u is:

∂Lui
∂ςj

=
1

L

L∑
l=1

∂ log p(xj | fθ(v(l)
j ))

∂v
(l)
j

◦ ε(l) − 1

ςi
+ ςi. (5.30)

The parameters of the generation network (θ) and the inference network (ρ) can be
updated through backpropagation, once µj and ςj have been updated. The gradient of
Lui w.r.t. ωk is:

∂Lui
∂ωk

= −πuk
[
yui − σ(Eqρ [ỹ

(k)
ui ])

]
(xu ◦ xi) . (5.31)

Algorithm 2 summarizes the variational M-step.

Algorithm 2: Variational M-step

1 while not converged do
2 for user u ∈ U do
3 i← randomly select item fromR+

u ∪R−u ;
4 for item j ∈ R+

u do
5 µj ,σj ← generate through inference network;
6 for l = 1 to L do
7 v

(l)
j ← sample according to Eq. (5.23);

8 ∂Lui
∂µj
← calculate according to Eq. (5.29);

9
∂Lij
∂ςj
← calculate according to Eq. (5.30);

10 µj ← µj + η ∂Lui∂µj
;

11 σj ← σj + η ∂Lui∂σj
;

12 for k = 1 to c do
13

∂Lij
∂ωk
← calculate according to Eq. (5.31);

14 ωk ← ωk + η
(
∂Lui
∂ωk
− λωωk

)
;

5.5.4 Computational analysis
We analyze the complexity of optimizing LVSM. In the variational E-step (§ 5.5.2), we
calculate πu based on Eq. (5.27), before which we calculate αu based on Eq. (5.26).
Since the calculation of πu1

and πu2
are independent, ∀u1 6= u2 ∈ U , we can optimize
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the variational parameter πu in parallel. Therefore, we only analyze the complexity of
computing πu for one user, which is O(n(d + h|R+

u−i|)), where h is the size of item
representations.

As the variational M-step (§ 5.5.3) is optimized via stochastic optimization, we ana-
lyze the complexity of evaluating a single sample, a user-item pair (u, i), i.e., the com-
plexity of calculating Eq. (5.28), which is O(c(d+h|R+

u−i|) + 2|R+
u |
∑L
l=1(hl−1hl)).

Here, hl denotes the size of l-th layer, where h0 = d and hL = h, and the term
2
∑L
l=1(hl−1dl) is included for the complexity of VAE, which has an inference net-

work and a generation network with an identical network structure.

5.6 Experimental Setup

5.6.1 Research questions
We seek to answer the following research questions:
RQ4.1 How does LVSM perform on the item cold-start top-N recommendation task?
RQ4.2 Does modeling local and global similarities help to improve performance?
RQ4.3 What is the impact of feature sparsity on the recommendation performance?
RQ4.4 What is the effect of the fraction of cold-start items on the recommendation

performance?
RQ4.5 How well can LVSM perform on large-scale datasets?

5.6.2 Datasets
To answer our research questions we conduct experiments on five datasets, respectively
Beauty, Games, Sports, Kindle, CiteULike article (CUL-a) and CiteULike tag (CUL-t).
Beauty, Games, Sports and Kindle are constructed from different categories of Amazon
products [157]. For each category, the original dataset contains transactions between
users and items, indicating implicit user feedback. We convert the multivariate rating
values to 1s and filtered out less popular product items and users that appeared less
than three transactions to construct the implicit rating matrix. For each dataset, we use
the product reviews as the feature of the product items. We extract unigram features
from the review articles and remove stopwords. For Beauty, Games, Sports, we select
the most frequent 8,000 features as the item features and represent each product item as
a bag-of-words feature vector, where feature value is binarized. We retain the original
features of Kindle as we evaluate scalability of LVSM on Kindle.

CUL-a and CUL-t are datasets of user libraries of articles with different scales
and degrees of sparsity obtained from CiteULike.1 The first dataset, CUL-a, has been
collected by Wang et al. [229]. The second dataset, CUL-t, has been independently
collected by Wang et al. [231] and is even larger and sparser. Each article in the two
datasets has a title and abstract. The content information of the articles is the con-
catenation of the titles and abstracts. We follow the same procedure as in [229] to
preprocess the text content information. After removing stop words, the vocabulary
for each dataset is selected according to the tf-idf value of each word.

The statistics of the datasets are presented in Table 5.2. #User , #Item and
#Feature denote the number of users, items and features, respectively. The rating

1http://www.citeulike.org
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density is calculated as:

Rating density =
#Rating

#User ×#Item
,

where #Rating is the number of interactions between user and item. It is common
that values of item features are missing, especially when an item feature is high-
dimensional, e.g., the bag-of-words representation from a text. We write 0 for missing
feature values. Therefore, we can also measure the density of features:

Feature sparsity =
#Nonzero

#Item ×#Feature
,

where #Nonzero is the number of non-zero feature values.

Table 5.2: Statistics of the datasets used.

Dataset #User #Item #Feature Rating density Feature density Feature type

Beauty 5,083 11,909 8,000 0.150% 0.528% binary
Games 6,255 10,672 8,000 0.180% 0.324% binary
Sports 6,174 13,257 8,000 0.116% 0.665% binary
Kindle 26,555 22,203 11,308 0.085% 2.011% binary

CUL-a 5,480 11,564 7,988 0.276% 0.838% tf-idf
CUL-t 7,947 7,582 7,715 0.162% 0.224% tf-idf

Note that we binarize feature values for the Amazon datasets and calculate tf-idf for
CiteULike. The reason is that user reviews are generally noisy in terms of how they de-
scribe items, which might harm the performance of recommendation. We binarize item
features for the Amazon datasets to overcome noise. On the other hand, the features
for CiteULike are extracted from scientific papers, which we assume to be qualified
and relevant as item features. Tf-idf values could well benefit the recommendations. It
is also worth noting that tf-idf values are only suitable for text features, where binary
values are applicable for other features, e.g., item attributes, image pixels, etc. Experi-
menting with binary values can demonstrate the generality of the proposed model.

5.6.3 Evaluation protocol
We follow the evaluation methodology of [71, 207] to evaluate the performance of item
cold-start top-N recommendation. Specifically, we split the user rating matrix Y into
Ytrain , Yvalid and Ytest , respectively, for training, validating and testing. We assume
that each subset of ratings contains non-overlapping items (columns) of Y , so that we
can evaluate the performance of recommending new items as users in Ytrain do not
have any preferences for items in Yvalid and Ytest . In this chapter, we randomly select
80%, 10% and 10% items for Ytrain , Yvalid and Ytest , respectively. For each user, the
cold-start items are sorted in decreasing order and the first N items are returned as
the top-N recommendations for that user. The list of recommended items is validated
with Yvalid and evaluated with Ytest using two metrics: recall at N (Rec@N ) and
discounted cumulative gain at N (DCG@N ). Given the list of top-N recommended
items for user u, Rec@N measures how many of the items liked by u appeared in that
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list, whereas the DCG@N measures how high the relevant items were placed in the
list. Rec@N and DCG@N are defined as follows:

Rec@N =
|relevant items ∩ recommended items|

|relevant items| ,

DCG@N = imp1 +
N∑
i=2

impi
log2(i)

,

where the importance score impi of the items with rank i in the top-N list is:

impi =

{
1
N , if the item at rank i is relevant,
0, otherwise.

The main difference between Rec@N and DCG@N is that DCG@N is sensitive to
the rank of the items in the top-N list. Both Rec@N and the DCG@N are computed
for each user and then averaged over all users.

5.6.4 Methods used for comparison
We evaluate LVSM by comparing it against eight other feature-based models for re-
commending new items. We use the categories of models introduced in § 5.3.1 to
characterize the methods we consider.
– Feature-based singular value decomposition (SVDFeature) [34]: A feature-based

matrix factorization method. For item cold-start recommendation, the rating score
yui is estimated as:

ỹui = bu + bTi xi + pTu

d∑
j=1

xijwj =

d∑
j=0

b′jxij , (5.32)

where b′0 = bu, b
′
t = pTuwj , j ≥ 1. Thus, feature-based singular value decom-

position (SVDFeature) can be categorized as user modeling (UM). We utilize the
ranking method of SVDFeature for our experiments.

– Simple cosine-similarity (coSim) [22]: A memory-based neighborhood method that
estimates item similarities by cosine similarity based on item features. The prefer-
ence score yui is estimated as:

ỹui =
∑
j∈R+

u

xTi xj
|xi| |xj |

. (5.33)

– Personalized feature weighting (PFW) [22]: A non-collaborative technique that learns
user models independently. A feature weighting vector ωu of length d is estimated
for each user u to reflect the importance of the different item features for each user.
The preference score yui of user u for item i is estimated as:

ỹui =
∑
j∈R+

u

ωTu (xi ◦ xj).
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Table 5.3: Methods used for comparison.

Method Multi-model Collaborative Neural Category

SVDFeature [34] – X – UM
LCE [198] – X – LFM
NSPR [69] – X X IFM
cfVAE [134] – X X IFM

coSim [22] – – –

FSM
PFW [22] – – –
FBSM [207] – X –
UFSM [71] X X –
LVSM X X X

– Local collective embeddings (LCE) [198]: A typical latent factor model (LFM) that
collectively factorizes a user rating matrix and an item feature matrix. For a new
item i with feature xi, the item factor vi is first inferred by solving xi = viW

T ,
where W ∈ Rd×h is the feature factor.

– Neural semantic personalized ranking (NSPR) [69]: A typical item feature mapping
(IFM) that maps item feature via a DNN. During recommendation, the expectation
of item representation vi is inferred from item feature xi via the DNN.

– Collaborative variational auto-encoder (cfVAE) [134]: A state-of-the-art IFM. The
difference between neural semantic personalized ranking (NSPR) and collaborative
variational auto-encoder (cfVAE) is that cfVAE learns item representations from
item features via a VAE.

– User-specific feature-based similarity model (UFSM) [71]: A feature-based simil-
arity model (FSM) that models global aspects by learning multiple global similarity
functions; the user-specific similarity function is calculated by aggregating global
similarities with personalized weights.

– Feature-based factorized bilinear similarity model (FBSM) [207]: A FSM that mod-
els the interaction between features. The interaction matrix is further factorized to
reduce the complexity. The similarity function is defined by Eq. (5.6).

We summarize these methods in Table 5.3. Note that while all methods can generate
personalized recommendations, simple cosine-similarity (coSim) and PFW fail to take
advantage of collaborative filtering. For PFW, UFSM and FBSM, we train both a
point-wise loss function and a pair-wise loss function, where the model with the pair-
wise loss function is subscripted with pair , i.e., PFWpair , UFSMpair and FBSMpair .
We train NSPR with two types of pairwise probability, respectively, logistic probability
and probit probability, as proposed in [69]; we refer to the respective models as NSPR-
L and NSPR-P.

5.6.5 Parameter settings
For LVSM we fix λW = λb = λh = λω = 0.1 for the prior of parameters p(Θ).
We choose a two-layer multi layer perceptron (MLP) network architecture (50–10 for
the inference network and 10–50 for the generation newtork) with a ReLU activation
function [83]. We select a smaller network scale for CUL-t (10–5 for the inference
network and 5–10 for the generation newtork) as the item feature of the dataset is
extremely sparse so that algorithms easily overfit. For the number of local aspects, we
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Table 5.4: Parameter settings.

Dataset NSPR-L [69] NSPR-P [69] LCE [198] cfVAE [134]
λv λu λv λu α β λ k λv λu

Beauty 0.1 1 0.5 0.01 0.9 1 0.1 200 0.5 1
Games 0.9 10 0.9 1 0.5 10 1 200 0.5 1
Sports 0.9 0.1 0.5 1 0.5 1 1 500 0.9 1
CUL-a 0.5 0.1 0.5 0.01 0.9 1 0.1 500 0.5 1
CUL-t 0.9 0.01 0.1 0.01 0.9 1 1 500 0.9 1

Dataset UFSM [71] UFSMpair [71] SVDFeature [34]
µ1 µ2 λ c µ1 µ2 λ c α β k

Beauty 0.01 1 0.1 3 1 1 0.1 2 0.01 1 50
Games 1 0.01 1 1 0.1 1 0.1 2 0.1 0.1 50
Sports 1 1 0.01 4 0.1 0.01 1 6 0.01 0.01 50
CUL-a 1 0.01 1 6 0.1 1 0.01 6 0.01 0.01 500
CUL-t 1 0.01 1 5 0.1 0.01 0.1 5 0.01 0.01 500

Dataset FBSM [207] FBSMpair [69] PFW [22] PFWpair [22]
β λ k β λ k µ µ

Beauty 0.1 0.01 1 0.1 0.01 5 10 1
Games 0.01 1 10 0.1 0.01 5 10 0.01
Sports 0.01 0.1 5 1 0.01 10 0.1 10
CUL-a 0.01 1 1 0.1 0.1 1 0.1 0.01
CUL-t 0.01 1 1 0.1 0.1 1 1 1

try c = 1, 2, 3, respectively, and denote the corresponding model as LVSM1, LVSM2

and LVSM3.
We select the same network structure for cfVAE as it also utilizes a VAE. We select

a larger scale for the network of VAE for cfVAE as it is used for learning item factors
(100–50 for the inference network and 50–100 for the generation network). We also try
to find a smaller network scale for cfVAE on CUL-t, but find out that it is not possible
to improve the performance. Therefore, we keep the same network scale for cfVAE
over all datasets. Similarly, we also select a two-layer perceptron (100–50) for NSPR.

For the methods used for comparison, we select the hyper-parameters by Rec@10
on the validation set Yvalid . A detailed list of parameter settings is included in Table 5.4;
there, we tune the `2-norm regularization parameter µ for PFW, which is selected from
{0.01, 0.1, 1, 10}. We tune µ1, µ2, λ and l for UFSM, where µ1, µ2, λ are selected
from {0.01, 0.1, 1, 10} and l from {1, 2, 3, 4, 5, 6}. We tune β, λ and k for FBSM,
where β, λ are selected from {0.01, 0.1, 1, 10} and k from {1, 5, 10, 20}. We tune λ1

and λ2 for SVDFeature, which, respectively, stand for the regularization parameter of
the user factor and the item factor; both λ1 and λ2 are selected from {0.01, 0.1, 1, 10}.
We also tune the latent dimension k for SVDFeature, which is selected from {50, 100,
200, 500}. We tune α, β, λ for local collective embeddings (LCE), where α balances
the importance of user rating and item feature, which is within [0, 1]; we select α from
{0.1, 0.2, . . . , 0.9} and β, λ from {0.01, 0.1, 1, 10}. We also tune the latent dimen-
sion k for LCE, which is selected from {50, 100, 200, 500}. We tune λv and λu for
cfVAE; λv controls the contribution of latent item representation to item factor, which
we select from {0.1, 0.2, . . . , 0.9}; λu is the regularization for user factor, which we
selected from {0.01, 0.1, 1, 10}. Similarly, we also tune λv and λu for cfVAE, which
are selected from {0.1, 0.2, . . . , 0.9} and {0.01, 0.1, 1, 10} respectively.
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5. Local Variational Feature-based Similarity Model

5.6.6 Experiments
To answer our research questions, we conduct different set of experiments:
– To answer RQ4.1, we generate the top-N recommendations of new items by com-

paring all baselines with LVSM on the Beauty, Games, Sports, CUL-a and CUL-t
datasets (§ 5.7.1).

– To answer RQ4.2, we run incremental experiments on the Beauty, Games, CUL-a
and CUL-t datasets to evaluate the modeling of local and global similarity functions
of FSMs. We also show how user sub-groups learned by LVSM look like through a
qualitative example on Games (§ 5.7.2).

– To answer RQ4.3, we manually sparsify the Beauty dataset and evaluate the per-
formance on the Beauty dataset with different feature densities (§ 5.7.3).

– To answer RQ4.4, we vary the number of new items and run experiments on the
Sports dataset (§ 5.7.4).

– To answer RQ4.5, we compare both efficiency and accuracy of LVSM with other
FSMs on the Kindle dataset (§ 5.7.5).

5.7 Results and Analysis
In this section we report on the results of our experiments and answer our research
questions.

5.7.1 Performance comparison
To address RQ4.1, we present an overall comparison of the top-N recommenders that
we consider. We report the recommendation results in terms of Rec@N and DCG@N
in Table 5.5, where respectively 5, 10, 15, 20 items are recommended.

We organize the discussion of the results by dataset. We first look at the Beauty
dataset. We note that LVSM3 dominates the performance on all metrics. The second
best results are achieved by coSim, PFW and UFSM. The improvement of LVSM3

over the second best is significant in terms of Rec@10, DCG@5, DCG@10, DCG@15
and DCG@20. This demonstrates the superiority of FSMs for item cold-start top-N
recommendation. This also shows the power of LVSM as it significantly improves over
the state-of-the-art FSMs.

Next, we look at the Games dataset, which shows similar results. The difference
is that FBSM performs the second best for this task and FBSM achieves a comparable
performance as LVSM2 on Rec@5. The Games dataset has the sparsest item feature
but least sparse ratings of all Amazon datasets. This characteristic of the Games dataset
benefits FBSM as it models the interaction among features to overcome feature sparsity
while the least sparse rating helps it to learn feature interactions. LVSM can also benefit
from the characteristics of the Games dataset as the modeling of global item similarities
captures the feature interaction in a more advanced way. The improvement of LVSM
over FBSM is significant on Rec@10, Rec@20, DCG@10, DCG@15 and DCG@20.

We turn to the Sports dataset. LVSM generally has an advantage, but is outper-
formed by cfVAE in terms of Rec@5 and DCG@5. As shown in Table 5.2, the ratings
of the Sports dataset are the sparsest among all the datasets that we consider. LVSM
and cfVAE show their advantage of utilizing a VAE by benefiting from the automatic
denoising property of the VAE. While cfVAE shows promising results when N = 5,
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5.7. Results and Analysis

Table 5.6: Different ways of modeling item similarity functions.

Method LVSM LSM UFSM

Global similarity 1 0 c
Lobal similarity c c 0

the effectiveness of cfVAE drops as N increases. Also, a comparison between cfVAE
and NSPR reveals that a VAE is a better tool for extracting information from raw fea-
tures than DNN. The superiority of LVSM is well demonstrated on Sports when N
is getting larger. The improvement of LVSM over the second best approach is signi-
ficant in terms of Rec@10, Rec@15, Rec@20 and DCG@20. With insufficient label
information, methods that better extract information from item feature will show their
advancement on Sports.

Next, we consider CUL-a. As CiteULike has better formatted features than the
Amazon datasets to measure item similarity, we can expect a better performance achiev-
ed by FSMs. Surprisingly, although FSMs perform better than other methods, it actu-
ally fails to beat the non-collaborative filtering method coSim. A possible explanation
is that the features of CUL-a are well-qualified to capture item similarities, where exist-
ing FSMs reached a bottleneck to further improve the performance, due to the sparsity
of ratings. However, LVSM has the ability to improve the performance over coSim
by a large margin. LVSM2 is significantly better than coSim in terms of Rec@5 and
Rec@10, and LVSM3 is significantly better than coSim in terms of every DCG metric.

Finally, we look at CUL-t. While the performance of LVSM is very promising on
CUL-a, it cannot significantly improve the performance on CUL-t. LVSM is outper-
formed by coSim in terms of Recall@5 and DCG@5, and achieves a tie with coSim
in terms of DCG@10. The improvements of LVSM over coSim in terms of Rec@10,
Rec@15, Rec@20, DCG@10, DCG@15 and DCG@20 is not significant. CUL-t has
the sparsest features among all datasets. All methods except coSim all include learn-
ing, which is heavily impacted by the sparsity of features. Although the performance of
LVSM is not exceptional, it actually shows a good denoising ability as the performance
generally is at least as good as that of coSim. In comparison, other methods, especially
FBSM, perform much worse.

To summarize, LVSM has generally shown its superiority over other methods on
all datasets. Except on CUL-a, the improvement of LVSM over the second best method
is usually significant. On the other hand, FSMs shows a better performance than other
types of method (in other categories), for the task of item cold-start top-N recommend-
ation. cfVAE enjoys the benefits of VAE for denoising with sparse features, compared
with NSPR. However, as it belongs to IFM, which is not designed for top-N recom-
mendation task, it fails to perform well, especially on CUL-a and CUL-t. LVSM takes
advantage of both FSM and VAE to yield overall better performance.

5.7.2 Effect of modeling global and local similarities
We seek to answer RQ4.2, whether modeling global and local item similarities helps to
improve performance. We form another baseline local feature-based similarity model
(LSM) from LVSM, which calculates local similarities only. We also compare LVSM
with UFSM, which calculates global similarities only. We summarize LVSM, LSM
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5. Local Variational Feature-based Similarity Model

(a) Rec@10, Beauty. (b) Rec@10, Games.

(c) Rec@10, CUL-a. (d) Rec@10, CUL-t.

Figure 5.3: Effect of the number of similarity functions.

and UFSM in Table 5.6. We vary the number of user groups c and plot the Rec@10
scores obtained by LVSM, LSM, UFSM and UFSMpair ; see Figure 5.3.
Figure 5.3(a) displays the results on the Beauty dataset. UFSM, UFSMpair reach their
peak performance when learning 3 global similarity functions. LVSM and LSM gener-
ally decrease their performance when modeling more local similarity functions. LSM
is outperformed by UFSM, UFSMpair when c ≥ 2 and LVSM is outperformed by
UFSMpair when c = 4. In short, modeling global similarity functions only achieves
the best performance, which shows that there may not exist user subgroups on the
Beauty dataset. LVSM also shows better modeling capacity of global item similarities
than UFSM.

Figure 5.3(b) shows a converse result. LVSM and LSM increase their perform-
ance by modeling local similarity functions. When c = 5, LVSM achieves its best
performance, although the figure of LSM drops slightly. LSM outperforms UFSM and
UFSMpair when c ≥ 2 and LVSM further evidently improves over LSM. In short,
learning local item similarity functions well captures user subsets in the Games data-
set. The advantage of LVSM over UFSM is better illustrated as UFSM fails to model
local similarities.

Figure 5.3(c) further demonstrates the suitability of learning item similarities with
LVSM. Although LSM is outperformed by UFSM and UFSMpair , LVSM outperforms
UFSM and UFSMpair , and the best performance is achieved when c = 2. We can
conclude from Figure 5.3(c) that while solely modeling of local similarities is sub-
optimal, the integration of modeling local and global similarities well captures the
essence of the application on CUL-a.

The results in Figure 5.3(d) are similar. LVSM shows better results when c ≤ 3.
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Figure 5.4: Effect of feature sparsity.

UFSM and UFSMpair catch up when c is increased. Note that while LSM achieves
the best performance at c = 4, that setting is where LVSM actually generates its worst
recommendation performance. This further confirms the effectiveness of jointly mod-
eling local and global similarities, which is the advantage of bayesian graphical mod-
eling.

The estimation of local models is essential to the performance of LVSM. As each
local model corresponds to a user group, it will be interesting to see what the learned
user group looks like. Therefore, we provide a qualitative example in Figure 5.5, using
the Games dataset. For the sake of obtaining a clear visualization, we consider two
user groups only. We visualize the predicted scores ỹui of users over new items. This
is because users in the same group have similar behaviors, whereas users from different
groups have different behaviors. We randomly select 30 items from all new items. For
each group, we randomly select 20 users.

We visualize the predicted ratings for the 20 items in Figure 5.5(a). Clearly, users
from different groups show different behaviors, illustrated by the different ratings given
to the same items. Users from groupA generally give lower ratings to items, compared
with users from group B. Besides, similarities are clearly visible for users in group A,
whereas behaviors of users from group B show some difference. We can also see the
commonality in behaviors from both groups, which reflects the effect of the global
similarity function.

We also visualize the spatial proximity by conducting t-distributed stochastic neigh-
bor embedding (t-SNE) [155] on the predicted rating scores. t-SNE identifies 2 and 3
main components, depicted in Figure 5.5(b) and Figure 5.5(c), respectively. Users from
the two groups can be clustered with clear and different centroids.
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5. Local Variational Feature-based Similarity Model

(a) Example of predicted scores. Above the green line are the predicted rat-
ings for users in group A and the ratings below the green line are for group
B.

(b) t-SNE with 2 components. (c) t-SNE with 3 components.

Figure 5.5: Qualitative example of user groups.

5.7.3 Effect of feature sparsity
We proceed to answer RQ4.3. We evaluate the effect of feature sparsity on the perform-
ance of recommenders. We manually sparsify item features, by randomly selecting di-
mensions in the feature to be excluded, where the feature density is roughly controlled
as 0.27%, 0.32%, 0.37%, 0.42%, 0.48%. As we have already demonstrated the superi-
ority of models in the FSM category over models in the UM, LFM and IFM categories,
we only care about the impact of feature sparsity on FSMs, i.e., coSim, PFW, UFSM
and LVSM. Note that we also exclude FBSM for comparison as it generates very poor
recommendations when item features are even sparser. For illustration, we depict the
results of a comparison in terms of Rec@10, Rec@20, DCG@10 and DCG@20 on the
Beauty dataset in Figure 5.4.

As shown in Figure 5.4(a), coSim and PFW outperform LVSM when feature dens-
ity = 0.27%. This is understandable: when item feature is extremely sparse, we have
less information from data so that the simple models generally perform better, e.g.,
coSim. LVSM performs better when the item feature sparsity is 0.32%, 0.37%, 0.42%,
0.48%, respectively, where other models also surpass coSim and PFW. This shows that
LVSM can overcome feature sparsity to a certain degree. When it is extremely sparse,
we should turn to simpler models.

Similar results are shown for Rec@20 in Figure 5.4(b), where the superiority of
LVSM is shown when item features are not extremely sparse. It is also interesting to
see that while LVSM2 generally shows less effective results than LVSM1 and LVSM3,
LVSM2 outperforms LVSM1 and LVSM3 when feature sparsity = 0.42%. It seems
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5.7. Results and Analysis

(a) Rec@10, Sports. (b) Rec@20, Sports.

(c) DCG@10, Sports. (d) DCG@20, Sports.

Figure 5.6: Effect of item cold-start.

that feature sparsity can also affect the number of local similarity functions in the data.
Next we look at the results in terms of DCG. While LVSM loses out to simple mod-

els when feature sparsity = 0.27% in terms of Rec@10 and Rec@20; it wins back
in terms of DCG@10, as shown in Figure 5.4(c). LVSM outperforms other methods
with other degrees of feature sparsity. Interestingly, LVSM1 and LVSM2 perform even
better when feature sparsity = 0.37% than that when feature sparsity = 0.48% and
when feature sparsity = 0.42%, the performance actually degrades. We think that the
dataset formed by controlling sparsity at 0.42% ignores some important features. The
0.37%-sparsity dataset might preserve these important feature and ignore some noisy
features, which works similarly as feature selection.

While Figure 5.4(d) shows similar results for DCG@20; LVSM is again outper-
formed by simple models when feature sparsity = 0.27%. Similar to Figure (5.4(b)),
LVSM2 also outperforms LVSM1 and LVSM3 when feature sparsity = 0.42%, which
further demonstrate the impact of feature sparsity on the number of local similarity
functions to model.

5.7.4 Effect of item cold-start
Next, we turn to RQ4.4. We evaluate the effect of the fraction of cold-start items on the
performance of top-N recommenders. As before, we only consider the effect on FSMs.
We set different fractions of items to be cold-start items: we split Y into Ytrain , Ytest ,
where Ytrain contains 5/7 items and Ytest contains 2/7 items. By training the different
methods on Ytrain given the tuned parameters (Table 5.4), we test the performance
of the trained model over different test set, with respectively 25%, 50%, 75% and
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5. Local Variational Feature-based Similarity Model

Table 5.7: Performance of recommending top-N new items on the Kindle dataset.

Method Rec@10 DCG@10 E-step M-step/ Train Evaluation #Params
(secs.) (secs.) (secs.)

coSim 0.0305 0.0047 – – 51.3917 –
PFW 0.0339 0.0060 – 2386.0205 48.6667 298,915,672
UFSM 0.0387 0.0053 – 101.9565 48.4056 188,710
FBSM 0.0323 0.0047 – 115.8321 76.6828 576,708
LVSM1 0.0762** 0.0120** 703.7169 176.7171 46.6535 1,181,470
LVSM2 0.0758** 0.0120** 889.5421 168.3204 46.9567 1,219,212
LVSM3 0.0853** 0.0135** 1071.7346 165.2351 46.4882 1,256,954

100% columns of Ytest , e.g., 1/14, 1/7, 3/14 and 2/7 items. We report the result of
Rec@10, Rec@20, DCG@10, DCG@20, respectively in Figure 5.6(a)–5.6(d).

A general trend revealed by Figure 5.6 is that the performance in terms of Recall
decreases with the growth of the number of cold-start items. If we increase the number
of cold-start items, the number of relevant items also increases, causing further diffi-
culty for recommenders to identify all the relevant items. Inversely, DCG shows an
increasing trend; when the number of relevant items increases, it is more likely that the
relevant items appear in the recommendation list.

As shown by Figure 5.6(a) and 5.6(b), based on their performance in terms of
Recall, the methods are generally categorized into three clusters. The first cluster con-
sists of LVSM2 and LVSM3. The second cluster contains LVSM1, coSim, UFSM,
UFSMpair , PFW and PFWpair , which are inferior to the first cluster, but also provide
good recommendations. The third cluster includes only FBSM and FBSMpair , which
is far behind the performance of the second cluster.

Unlike the performance in terms of Recall, over DCG the methods naturally cluster
into two clusters, as shown by Figure 5.6(c) and 5.6(d). Besides LVSM2 and LVSM3

in the first cluster, other methods are all contained in the second cluster.
In short, LVSM beats other methods on all occasions of cold-start items. The

superiority of LVSM is demonstrated by jointly modeling local and global similarity
functions of items (LVSM1 models only global similarities).

5.7.5 Performance on a large-scale dataset
And, finally, we turn to RQ4.5. To show the scalability of LVSM, we run experiments
on the Kindle dataset. As training on the Kindle dataset is time-consuming, we do
not grid-search the best parameters. Instead, we take the parameters tuned for Sports
dataset as parameters for Kindle as rating sparsity of Sports is similar to Kindle. We
exclude the comparison with other baselines since FSMs already show superior per-
formance (§ 5.7.1). For the efficiency of training, we train PFW, UFSM and FBSM
with a point-wise loss function. As the derived loss function for LVSM is point-wise,
the comparison will be fair.

We report Rec@10 and DCG@10 in Table 5.7. As shown in the table, LVSM1,
LVSM2 and LVSM3 significantly and substantially outperform other FSMs. LVSM1

and LVSM2 show similar performances while LVSM3 further improves over LVSM1

and LVSM2.2 The effectiveness of LVSM is further confirmed on large-scale datasets,

2We can expect even better performances by estimating more local models. We leave further investigations
for future work.
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Figure 5.7: Comparison of training performance after each epoch.

showing a bigger improvement than on other datasets. The potential reason is that
users’ behaviors are highly diversified on the large-scale dataset, where estimating
local models benefit more from the diversity. The large-scale dataset also contains
more noise in item features, where the de-noising property of VAE is especially useful.

Besides, we also report the number of parameters and the time for training and eval-
uation for each epoch in Table 5.7. LVSM is efficient to train during M-step, which is
comparable to UFSM and FBSM. E-step is a bit time-consuming. While the training
time for M-step remains the same, it grows linearly with c for E-step. LVSM is also
the most efficient method for evaluation. The last column shows the number of para-
meters of each model. coSim is a heuristic method that requires no parameters. PFW
requires the most parameters as it estimates a personalized model for each user. UFSM
has the least parameters, followed by FBSM. While LVSM has more parameters than
UFSM and FBSM, it has far fewer parameters than PFW. Most parameters of LVSM
are coming from VAE. Although the number of parameters increases linearly with c,
the increase is marginally. It is noteworthy that the number of parameters of LVSM is
roughly two times the number of FBSM. This is because VAE has two identical net-
works (inference network and generation network) and the first-layer contains most of
the parameters.

Figure 5.7 depicts the performance of Rec@10 of the compared methods after each
epoch. LVSM shows rapid growth in the beginning, reaching the peak around 10 to 20
epochs. After that, LVSM suffers a slight and steady drop. While LVSM2 (blue line)
performs better than LVSM1 (cyan line) in the beginning, it is outperformed by LVSM1

after around 15 epochs. This indicates that LVSM may be overfitting on the large-scale
and sparse dataset and that it is necessary to apply an early stopping strategy both for
efficiency and efficacy. In comparison, other FSMs converge shortly and stabilized
quickly. However, they show limited potential to provide better recommendations.
Although PFW shows a steady growth, we only report it for 20 epochs (green line).
This is because we train each method for at most 24 hours and training PFW is very
time-consuming.

In short, LVSM shows good performance also on large-scale datasets, both in terms
of effectiveness and efficiency.
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5.8 Summary
In this chapter, We have answered RQ4 by studying a feature-based similarity model to
recommend top-N new items. We have revisited the task of recommending top-N new
items. We have proposed a local variational feature-based similarity model (LVSM) to
address this problem by exploiting high-dimensional and sparse item features. Our
method is a Bayesian generative model that jointly unifies item representation learn-
ing, user clustering, and item collaborative filtering. LVSM can learn deep represent-
ations from item features to facilitate similarity measurement. LVSM captures local
aspects of items and clusters users into subsets, where a separate similarity function is
learned for each subset. To achieve efficiency, we have conducted variational inference
based on a variational auto-encoder, and optimized the model through the variational
expectation maximization (EM)-algorithm.

Through a broad set of experiments, we have evaluated the efficacy of LVSM.
LVSM outperforms state-of-the-art feature-based methods for recommending top-N
new items. It provides robust recommendations independent of the quality of item
features. It also generates good performance in extreme cases, e.g., with a large frac-
tion of new items or with extremely sparse features. Besides, we have also found that
(1) feature-based similarity models (FSMs) generally show good performance, espe-
cially when item features are of high quality as in the CiteULike article (CUL-a) and
CiteULike tag (CUL-t) datasets; (2) the integration of local and global similarity func-
tions measures item similarities more comprehensively than global similarity by itself
and provides better top-N recommendation for new items than by only modeling the
global similarity; and (3) the item representations learned by variational auto-encoder
(VAE) denoise the original features and encode more information than learned via pure
deep neural networks (DNNs).

Different from previous chapters, we study the problem of recommending top-N
new items in this chapter by integrating item features and ratings. Next, we continue
to utilize heterogeneous information for recommendations. We first combine user be-
havior and content information for scientific paper reranking (Chapter 6). We then
provide a generic method for recommendation to overcome the high-dimensionality
when integrating various information (Chapter 7).
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In the previous chapters, we have studied how to utilize high-dimensional information
for top-N recommendations (Chapter 2–4). We have also studied how to recommend
top-N new items by a feature-based similarity model (Chapter 5). In this chapter,
we combine user behavior and content information to rerank scientific papers. We
propose a hybrid model that includes several content-based measures and a behavior-
based method to address the challenge of recommending papers to cold-start users,
which answers the following research question asked in Chapter 1:

RQ5 Can we address the challenge of recommending papers to cold-start users by
effectively utilizing available heterogeneous information?

6.1 Introduction
Along with the digitization of academic resources and the increasing popularity of aca-
demic information platforms, online access to academic papers has become a widely
used service. Various online academic service providers have given users access to pa-
pers through their search engines, such as Google Scholar [86], Aminer [219] and Sci-
enceDirect [201], where users can enter queries to seek relevant papers in their data-
base. In this scenario, users need to have an idea of what they are looking for, and the
information needs can be formalized as queries. The search system takes a query as
input, and returns a ranking of relevant papers for users to examine and interact with.

While such academic search engines can often fulfill user requests by catering to
specific information needs represented as queries, there are cases when users’ informa-
tion needs are not explicitly specified. For instance, users may want to learn about new
developments in their domain by looking at emerging papers that are relevant. In this
case the user may not have an idea of what queries to enter on the search engine. This
is a situation where paper recommender systems can step in and recommend relevant
papers without the need for a user query.

Paper recommender systems have a role that is complementary to the search en-
gine. The possible recommendation scenarios fall into three categories based on the
recommendation timing:

This chapter was published as [139].
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1. displaying paper recommendations before users start a new search session, based
on their paper library or previously accessed papers [see, e.g., Google Scholar, 86];

2. during a search session, displaying related recommendations beside the content that
the user is currently browsing [see, e.g., ScienceDirect, 201]; and

3. after a search session, sending emails of paper recommendations in the form of a
newsletter [see, e.g., ScienceDirect, 201].

The first and third scenario fill the gap between user search sessions, while the second
scenario is related to within-session recommendations.

In this study we focus on the third scenario. We look at the ScienceDirect paper
recommender which sends a weekly email of paper recommendations to users. First,
we provide a recommendation example from the system in Figure 6.1 to show how
it works.1 The recommender of ScienceDirect generates a ranked list of 5 paper re-
commendations based on the user’s browsed papers. The email newsletter displays the
title, venue (journal), authors, and publication date of each recommended paper. On
clicking a recommendation, the user is linked to the paper on ScienceDirect. The sys-
tem then logs on which recommendation(s) the user clicks. As a short summary, this
system aims to recommend interesting papers to users based on their browsing history.
A good recommendation list will place more relevant papers higher in the list.

Since the ScienceDirect paper recommender was released, an increasing number of
users have signed up. It is especially challenging to make recommendations for these
new users due to the lack of historical interactions with the recommender system. In
this chapter, we address the challenge and try to come up with better recommendations
for these new users. Specifically, we study the task of reranking the paper candidates
generated by the current production system. Ranking is a very common module of
the workflow in production recommendation systems, which usually include at least
a candidate-generation phase and a ranking module [56, 60, 195]. The output of the
system is generated by a multi-step process. We address this reranking task so that our
model can easily be integrated into paper recommender systems (e.g., the ScienceDir-
ect recommender). A direct application is to use our model to rerank the recommended
papers generated by the ScienceDirect recommender system.

Over 14 million papers are indexed on ScienceDirect [202]. Picking the few papers
that may appeal to the user is not a trivial task. Collaborative filtering techniques are
often used in recommender systems to generate a candidate pool of papers based on
user-paper interactions. Even though there was initially no data on user interaction
with the recommender system, there was still a wealth of data on user interactions
with papers on ScienceDirect. Apart from this behavioral aspect, paper metadata may
also assist the recommendation task by providing similarity measures that are based
on paper contents, e.g., to recommend semantically similar papers, or papers that are
authored by the same or similar authors.

In this chapter, we propose a hybrid model that combines content and behavior
to rerank the candidate paper recommendations generated by the ScienceDirect re-
commender. First, we propose several content-based measures that are derived from
various paper aspects, such as word space similarity, and author similarity from an

1https://www.elsevier.com/connect/suffering-from-information-overload-
personalized-recommendations-can-help
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Figure 6.1: An excerpt from a sample recommendation email sent to a ScienceDirect user based
on his recent activity. The email contains 5 papers linked to ScienceDirect.

embedding space. Next, we use joint matrix factorization to learn a mapping from a
user’s browsed articles on the search engine to a user’s clicks on the recommendations,
to alleviate the sparsity of the recommendation click data. We use a pairwise learning
model to rerank the candidate paper recommendation, which eventually leads to better
results in offline evaluations based on real email click data.

The contribution of this chapter mainly lies in: (1) “task transfer” for the academic
setting: data collected for one task (search) is used to help optimize performance on
another (recommendation), and (2) how to combine content and user behavior to gen-
erate high-quality academic recommendations. The framework captures user interests
on different paper aspects, as well as alleviating the sparsity problem in click data.
The recommendation framework for ScienceDirect has implications for academic re-
commendation settings that share similar inputs. The framework relies on two kinds of
input: paper properties and user interactions. The paper properties that we have utilized
can be found on many popular academic search engines such as Google Scholar [86],
Semantic Scholar [204] and CiteseerX [127]; the user interactions, i.e., how users in-
teract with the search engine and the recommender respectively, are also available. For
instance, in Google Scholar’s search interface, there is a snippet showing recommen-
ded papers below the search bar for users to click on, even when users have not entered
a search query; Semantic Scholar also has its proprietary email alert service that can
send relevant paper recommendations.

The chapter is structured as follows. We describe the models that we propose in
§ 6.2, the experimental setup in § 6.3, and the results and analysis in § 6.4. We present
related work in § 6.5 and conclude in § 6.6.
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6.2 Models

In this section we introduce the models for the paper recommendation task. First, we
introduce the production baseline, because it provides the candidates for our proposed
reranking model. Then we introduce our hybrid reranking model (HRM) that considers
both behavior and content, and reranks the candidates. Here, “hybrid” refers to using
both content and behavior.

6.2.1 Production baseline

The production system takes the paper browsing history of a user as input, and pro-
duces a ranked list of 5 paper recommendations. While we are not able to elaborate
on the exact details of the production system, we can describe the core part of the al-
gorithm: the 5 candidates are generated and ranked by an algorithm that uses an item-
item neighborhood-based collaborative filtering method [145, 197], based on usage
similarity from ScienceDirect browsing logs. We refer to this paper-paper similarity as
browsing similarity in the remainder of the chapter.

In this study, we apply the reranking model to the top five candidates from the
production system, and compare the model’s ranking to the production baseline. The
top five candidates were chosen because for these recommendations, there is email
click feedback that enables offline evaluation; if successful, the model could be applied
to a longer list of candidates.

6.2.2 Proposed model

In this section we introduce the hybrid reranking model (HRM) by first providing an
overview of the model architecture and then delving into the details. The model scores
paper recommendation candidates generated by the production system, using both con-
tent and behavior components which will be explained shortly. The candidates are then
reranked by the score.

Model architecture overview. An overview of the model is shown in Figure 6.2.
A 2-layer feedforward neural network is used as the scoring function, where the input
layer takes features from each candidate paper, and the output layer contains one node
that yields the score.

We explain what the input feature representations are in Figure 6.2 from left to
right: Srecent and Shistory are the similarity between recommendation candidates and
users’ browsed papers. They contain the average similarity scores of each paper as-
pect by comparing the candidate paper against the recent papers and historic papers,
respectively; the attention features on different fields of papers and on recent/historical
papers are derived from a user’s browsed papers.

The browsing similarity features used by the production system are based on Scien-
ceDirect browsing data: we use the mean and maximum similarity scores of each paper
recommendation candidate compared against papers in the browsing history. The be-
havior features are the predicted click scores from the behavior model. Together these
features determine the inputs for HRM.

Training is done by optimizing a pairwise hinge loss from the preferences of clicked
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Figure 6.2: Architecture of the HRM that shows how a candidate paper recommendation for a
user is scored.

papersR+
u over the non-clicked papersR−u for each user u, shown below:

L(R+
u ,R−u ) =

∑
pi∈R+

u

∑
pj∈R−u

[
1− f(xpi) + f(xpj )

]
+
, (6.1)

where f(·) denotes the scoring function (neural network), and xpi and xpj denote the
feature representations for clicked paper pi and non-clicked paper pj , respectively.

We apply rectified linear unit (ReLU) activations on the hidden layer for efficient
learning. We apply linear activations on the output layer, because this ensures an un-
bounded value for the pairwise loss function and also performs best in our experiments.
We use the Adam optimizer [115] and mini batches during training.

Next, we introduce how we consider paper metadata to measure different types of
similarity. Below, we provide formal representations of various paper aspects, of users,
and then the similarity functions for them.

Before continuing, let us briefly introduce the main notation that we will be using
in the remainder of the chapter; see Table 6.1.

Paper representations. Each paper p is represented as a collection of different as-
pects, grouped as follows: (1) metadata from papers: author A, venue V , freshness
F , word space W , entity space E; (2) metadata from user interactions: impact I and
popularity P . These aspects are available for all papers and users in our scenario and
considered to be potentially useful for the recommender system. The reason for con-
sidering authors and venues is that users may be interested in papers from the same or
similar authors, and those published in the same or similar venues. The word space and
entity space measure content similarity and are thus also potentially useful. Besides,
academic searchers may seek papers with high impact when they are learning about
a domain, or popular papers (e.g., those with many downloads) that their community
is discussing, or newly published papers that track the latest developments, hence the
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Table 6.1: Notations used in the chapter.

Notation Description
C

on
te

nt
-b

as
ed

m
es

ur
es

p, pi, pj Papers
A(p) Set of authors of paper p
V (p) Venue where paper p is published
F (p) Freshness score of paper p
I(p) Impact score of paper p
P (p) Popularity score of paper p
W (p) Word space representation of paper p
E(p) Entity space representation of paper p
SimX Similarity of field X for 7 choices of X (V , A, F , I , P , W , E)
αfieldi Attention feature for field i from 7 fields (V , A, F , I , P , W , E)
αrecent Attention score on the user’s recent papers
αhistory Attention score on the user’s historic papers

B
eh

av
io

r-
ba

se
d

m
od

el

m Number of users
n Number of papers
k Number of latent dimensions
B ∈ Rm×n Paper browsing history matrix
R ∈ Rm×n Paper click history matrix
S ∈ Rn×n Paper-paper browsing similarity matrix
D ∈ Rn×n A diagonal matrix whose entries are the row sums of S
M ∈ Rn×n Matrix to map browse to click
Q ∈ Rn×k Paper factor matrix
sij ∈ Rn×n Browsing similarity between paper pi and pj
qi Latent factor for paper pi
bi Bias of paper pi
rui Predicted score of click of user u to paper pi
B+

u Set of papers browsed by user u
R+

u Set of papers clicked by user u
R−u Set of papers shown to but not clicked by user u
Ru Set of papers in the candidate, i.e.,Ru = R+

u ∪R−u

inclusion of impact, popularity and freshness.
Formally, we can think of every paper p as a tuple p = 〈A(p), V (p), F (p),W (p),

E(p), I(p), P (p)〉, where each aspect is defined as follows:

Authors:
A(p) = [a1, a2, . . . , an], (6.2)

where ai is an author of the paper p.

Venue:
V (p) = vi, (6.3)

meaning that paper p is published in venue (journal) vi.

Freshness score: We also model how “fresh” a paper p is, defined as:

F (p) =
1

etcurrent−tpublish(p)
, (6.4)
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where tcurrent is the current time, and tpublish(p) is the time of the paper p being
published online. F (p) ∈ (0, 1]. The more recently a paper has been published, the
higher the freshness score is.

Impact score: We use citations as a measure of impact for papers, which is defined
as:

I(p) =
log(c(p) + 1)

log (cmax + 1)
, (6.5)

where c(p) is the citation count of paper p, and cmax is the maximum number of
citations in the dataset.

Popularity score: The popularity of a paper p reflects how often users interact with
the paper. We use the number of downloads to represent popularity:

P (p) =
log(d(p) + 1)

log (dmax + 1)
, (6.6)

where d(p) is the number of downloads of paper p, and dmax is the maximum number
of downloads of a paper in the dataset.

Word space: To represent a paper p in a word spaceW (p) we use tf-idf vectors, with
values for words and bigrams in the article title, abstract and keywords. We remove
English stop words, very common words and very rare words before calculating the
tf-idf values. In the end, each paper is represented as a sparse vector of size of 221,
with hashing to determine token indices in the vector.

Entity space: While word space measures such as tf-idf similarities can be used to
directly compare the contents of papers, an entity space representation E(p) is able to
provide us with additional information that incorporates both structure and semantics
through graph embeddings [25, 144].

We first build a knowledge graph by using important aspects of a paper including
keyword, author and venue. The graph contains 4 node types, paper, author, keyword
and venue nodes, and 3 relations (predicates) between a paper and an aspect as listed
below: (1) hasAuthor: the paper has this author; (2) hasKeyword: the paper contains
this keyword; and (3) publishedInVenue: the paper is published in this venue (journal).

Next, to compute the entity space we use the TransE model [25] to derive embed-
dings based on knowledge graphs. As input the model takes the triplets in the graph;
these have the form (h, r, t), with a head entity h, a relation (predicate) r, and a tail
entity t. The objective of the model is to learn embeddings so that h + r lies in the
proximate neighborhood of t if such a triplet (h, r, t) exists in the training set, and
h + r will be far away from t if the triplet is not valid. The model learns embeddings
by minimizing a pairwise hinge loss:∑

(h,r,t)∈T

∑
(h′,r,t′)/∈T

[1 + ‖h+ r − t‖2−‖h′ + r − t′‖2]+, (6.7)

where T denotes the training set of triples. Negative triplets (h′, r, t′) are sampled by
replacing either the head or the tail entity with another random entity. After training,
the cosine distance of the node embeddings reflects their proximity in the knowledge
graph.
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Due to the relatively high computational costs of working with knowledge graphs [25],
we derive the embeddings on a subgraph instead of on the complete graph. We choose
a reasonable size for the subgraph so that it is computationally feasible and also alle-
viates the sparsity problem in the node connections. The subgraph is comprised of the
union of the browsed papers and recommended papers from 65,994 users, a superset
that is about 15 times the size of the set of users that we will study in our experiments.
In total we have 609,716 paper nodes, 1,650,470 author nodes, 3,961 venue nodes and
808,845 keyword nodes, plus 6,103,728 relation edges.

The graph is then used as input for the TransE model to derive embeddings of the
nodes in the graph. In the end, we obtain embeddings for papers, authors and venues.
These embeddings will be used later in content similarity measures.

User representations. The user representations are straightforward: each user u is
represented as a collection of papers in their browsing history:

u = [Precent , Phistory ] (6.8)
Precent = [p1, p2, . . . , pk] (6.9)
Phistory = [pk+1, pk+2, . . . , pn]. (6.10)

We segment a user’s browsed papers into two sets, the recent ones, Precent , and the
historical ones, Phistory . We write pi to refer to the i-th paper in each of the segment-
ations, in the order of occurrence in the user’s timeline starting from the most recent
one. In academic search, users’ topic interests may shift over time [137]. We make this
segmentation so that it may help us compare the user’s recent interests against their
historical interests, and see whether and to which extent there is a deviation.

In case of a large deviation, Precent should provide more support to generate paper
recommendations. Specifically, the clicked papers in the most recent session are put
into Precent if it contains at least clicks on 2 different papers, and the rest into Phistory .
Otherwise, we select the most recent θ papers from u into Precent and put the rest into
Phistory . Papers in Precent and Phistory are deduplicated.

Content similarities. Based on the user and paper representations, in this section we
describe similarity functions to measure different types of content similarity. Specific-
ally, the content component measures the similarity between candidate recommend-
ations and users’ browsed papers using information from the paper metadata. The
output consists of similarity scores to feed into the reranking model.

Field-level similarities and attention features: First, we introduce similarity meas-
ures for individual fields, which are used to compare paper similarities in each field.
When comparing two papers pi and pj , the similarity of each field is defined as follows.

For the word space and entity space, we use the cosine similarity of the vectors that
represent each paper. The cosine similarity between two vectors v and v′ is defined as:

cos(v, v′) =
v · v′
‖v‖·‖v′‖ , (6.11)

where the similarity value cos(v, v′) ranges between −1 and 1.
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Then, the similarities for word and entity space are:

SimW (pi, pj) = cos(Wpi ,Wpj ) (6.12)
SimE(pi, pj) = cos(Epi , Epj ), (6.13)

where Wpi is the tf-idf vector and Epi is the paper entity vector for paper pi obtained
from the output of the TransE model [25].

Similarly, a venue entity vector Evpi for paper pi and an author entity vector Eam
for author am of pi are obtained from the output of the TransE model [25]. We apply
a “soft match” approach when comparing venue and author similarities. Compared
to an “exact match” approach where the similarity ends up being either 1 (same) or
0 (different), the “soft match” approach outputs a continuous similarity score. For
instance, “Accident Analysis & Prevention” and “Safety Science” being two different
journals (with no overlapping terms in the journal title), they would have a similarity
score of 0 in the “exact match” approach. However, in the embedding space they would
have a similarity score of 0.48, representing a more precise estimate of the inherent
similarity.

Then, venue and author based similarity measures, SimV (·, ·) and SimA(·, ·) are
defined as follows:

SimV (pi, pj) = cos(Evpi , Evpj ) (6.14)

SimA(pi, pj) =



∑
am∈Api

max
an∈Apj

cos(Eam , Ean)

|Api |
, if |Api |≤

∣∣Apj ∣∣∑
an∈Apj

max
am∈Api

cos(Ean , Eam)∣∣Apj ∣∣ , otherwise,

(6.15)

where vpi is the venue of paper pi, Evpi is the corresponding paper entity vector; Api
is the set of authors of paper pi, and Eam is the entity vector for author am. Note
that in the author similarity function, we examine each author from the smaller author
set and find the most similar one in the other set and then calculate the average of the
similarities. This ensures that SimA(pi, pj) is symmetrical.

For freshness, impact and popularity, these three measures are single value features.
We use L1 distance with an adjusted weighting to obtain their similarities:

SimF (pi, pj) = (1− ‖F (pi)− F (pj)‖1)×max(F (pi), F (pj)) (6.16)
SimI(pi, pj) = (1− ‖I(pi)− I(pj)‖1)×max(I(pi), I(pj)) (6.17)
SimP (pi, pj) = (1− ‖P (pi)− P (pj)‖1)×max(P (pi), P (pj)). (6.18)

We define the weighting in order to capture the similarities only when two papers both
have a high value in this field. In cases where both have a low value, the similarity
value will be “down-weighted,” representing a weaker level of evidence for similarity.
For instance, given 2 paper pairs with low impact values (0.1, 0.2) and high impact
values (0.8, 0.9), the similarity score would be 0.09 and 0.81 respectively. Although
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the absolute difference of impact is the same for both pairs (0.1), the pair with relatively
high values has a much larger similarity score.

Field level attention: Now that we know how to obtain the similarity scores SimX
for 7 choices of X (V , A, F , I , P , W , E), we would like to further know which
specific fields the user may be focusing on while browsing papers. This is to tailor
the recommendations for those fields, be it the semantic similarity, venues or authors.
These “attention features” are implicit. However, we can derive the attention features
through past user interactions. In particular, we assume that they can be inferred from
Precent (users’ recently browsed papers). We hypothesize that for a set of papers,
if the average pairwise similarities of certain aspects are higher than other fields, it
is probably because users are paying attention to these aspects. For instance, high
word space similarity indicates that users are sticking to a specific topic. Likewise,
if the venue and freshness similarity scores are high, this could be that the user is
mostly checking papers that are both recent and are from a specific journal. We use
the averaged pairwise similarities calculated by each field as the field-level attention
feature.

The attention feature for field i is the sum of its pairwise similarities divided by the
number of paper pairs in Precent :

αfieldi
=

∑
pi,pj∈Precent,i6=j Simfieldi

(pi, pj)

C2
|Precent |

, (6.19)

where C2
|Precent | refers to the number of paper pairs.

Recent and history attention: The users’ recent and historical paper interactions
may both provide evidence to surface good recommendations. We make the distinc-
tion between recent and historical papers because users’ interests may evolve over
time. When the users’ recent interests are significantly different from their historical
interests, the recommender should be aware of this deviation. Therefore, we define
attention features for this situation, where αrecent and αhistory represent the two atten-
tion scores on the user’s recent and historic papers.

αrecent and αhistory are calculated using the browsed papers (Precent and Phistory ).
The more the user’s recent interests deviate from the historic interests, the higher the
value of αrecent , hence providing a bias feature to consider the more recent user activ-
ities. It is calculated as follows:

αrecent = Distance(Precent , Phistory) (6.20)
αhistory = 1− αrecent . (6.21)

The distance Distance(Precent , Phistory) is calculated by averaging over the distance
of each paper in Precent to its closest match in Phistory . The idea of finding each
paper’s closest match instead of averaging over all papers in Phistory is because the
history may be diversified: a recent paper may be very similar to one paper in the
history but different to the rest. In case there is at least one similar paper in Phistory ,
we consider that the current paper being examined does not deviate far from the history.

96



6.2. Models

Formally, the distance is defined as follows:

Distance(Precent , Phistory) =

∑
pi∈Precent

min
pj∈Phistory

(1− cos(Wpi ,Wpj ))

|Precent |
, (6.22)

where 1− cos(Wpi ,Wpj ) is the cosine distance between two papers’ tf-idf vectors.
So far, we have explained how we exploit the content aspects for recommendation

that are based on the paper metadata. Next we introduce the behavior aspect where
user-paper interactions are concerned.

Behavior. Paper metadata provides evidence for recommendations from the con-
tent perspective. User interactions, i.e., users’ browsing behavior on the search engine
and clicks on recommendation emails, also provide signals for generating good recom-
mendations. In our scenario, the users have past browsing behavior but no clicks prior
to their first interaction with the recommender system.

Nevertheless, the paper-paper browsing similarities are available to us (as used by
the production system). They provide a measure of behavior-based similarity based on
readership of all users on ScienceDirect.2 Naturally, we can incorporate this external
similarity information into our model.

We devise a behavioral model, that utilizes both browsing and click behavior in the
interaction log. The motivations of our model are given below:
1. For new users, there are no prior email clicks for predicting their interactions with

the recommender. To address the issue, we complement the absence of click ratings
by using the browsing history. Obviously, browsing papers on the search engine and
clicking a paper in the email are two different user interactions with papers. Thus a
mapping function is required to transform browsed papers to email clicks. It is not
possible to learn the mapping for every user as there may be no click at the time of
recommendation, but it is possible to utilize the browsed papers and email clicks of
other users (and this data quantity will grow over time). Essentially, we try to infer
the clicks of new users from other users’ mappings, using supervised learning.

2. As paper recommendations are shown in a relatively compact email, we assume that
users have noticed all the papers. Therefore, a user’s clicks on the 5 shown papers
in the email entail implicit pairwise preferences. For instance, given 5 papers p1,
p2, p3, p4 and p5, if the user clicks paper p2 and p3 in the list of 5 papers, then it is
reasonable to assume that they prefer paper p2 and p3 over paper p1, p4 and p5.

3. The paper-paper similarity based on a user’s browsing history is available. It is
likely more accurate than the similarity from user clicks in emails, because it is
based on the complete set of ScienceDirect users, which is several orders of mag-
nitudes larger. Moreover, it captures transitive similarities from a global perspect-
ive. Therefore, it is important for our model to preserve this similarity.

Recall that our notation was introduced in Table 6.1; it is used in the following model
descriptions. We propose to learn a mapping function from user browsed papers to
user clicks on the email, denoted as:

R ∼ BM, (6.23)

2The involved users are larger than the users we study in our experiments by several orders of magnitude.
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where B,R ∈ Rm×n are the matrices for browses and clicks respectively and M ∈
Rn×n is a mapping matrix. In practice, n is generally very large so that it could pose a
great burden to learn M . Thus we propose to factorize M into the multiplication of a
low-dimensional paper factor Q ∈ Rn×k, shown below:

M ∼ QQT , (6.24)

where T is the transpose operator of a matrix.
Based on the assumptions given in Eq. (6.23) and (6.24), we can predict the click

of user u on paper pi by the equation below:

r̃ui = bi + qTi
∑
t∈B+

u

qt, (6.25)

where bi is a scalar for the bias of paper pi. B+
u is the set of papers browsed by user u.

Here, we ignore the user bias in Eq. (6.25) since it is unknown for new users. Note that
we do not exclude pi from B+

u , as suggested by the item-based collaborative filtering
methods. This is because the set of candidate papers does not overlap with the set of
browsed papers, i.e., B+

u ∩ Cu = ∅. Each time we draw a pair of papers (pi, pj) for
each user to learn Q and bi, bj , where pi ∈ R+

u and pj ∈ R−u , and optimize a pairwise
loss function given by Bayesian personalized ranking [188]:

L(u, pi, pj) = − log σ (r̃ui − r̃uj) , (6.26)

where σ(·) stands for the sigmoid function. To preserve paper-paper similarities from
the browsing history, we follow the assumption that the distance between qi and qj is
small when sij is large. Without loss of generality, we adopt the Euclidean distance,
e.g., ‖qi − qj‖22. We can then define the following similarity regularization terms:

1

2

n∑
i,j

‖qi − qj‖22sij =

n∑
i=1

qTi qidii −
n∑
i,j

qTi qjsij

= Tr
(
QTDQ

)
− Tr

(
QTSQ

)
= Tr

(
QTLQ

)
,

(6.27)

where Tr (·) is the trace operator of a matrix, D is a diagonal matrix whose entries
are the row sums of the browsing similarity matrix S (S is symmetric), i.e., dii =∑n
j=1 sij , and L = D−S is the Laplacian matrix of the graph [53]. Putting Eq. (6.26)

and (6.27) together, the model is given as follows:

min
Q,{bi}

m∑
u=1

∑
pi∈R+

u ,

pj∈R−u

− log σ (r̃ui − r̃uj) + αTr
(
QTLQ

)
+
λ

2
‖Q‖2F . (6.28)

The first term in the objective function captures the pairwise preferences of every user
over the papers shown in the emails. The second term preserves the paper-paper sim-
ilarities in the browsing history through graph regularization. Graph regularization is
widely used to preserve similarities, e.g., social regularization [154] and locality reg-
ularization [198]. The third term regularizes Q so as to avoid overfitting. α and λ are
hyper-parameters.
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We optimize Eq. (6.28) via Stochastic Gradient Descent. The optimizing procedure
is similar to [71], i.e., for each user u, we sample a positive item i ∈ R+

u and a negative
item j ∈ R−u , and optimize Eq. (6.28) w.r.t. (u, i, j). Note that we train Eq. (6.28) first,
and then train HRM (Eq. (6.1)) given the output scores generated by the behavior-based
model. While we can devise an end-to-end model to train the behavior-based model
jointly with HRM, the optimization procedure can be very complex and inefficient.
This is because the training procedures of Eq. (6.28) and HRM are very different.
The behavior-based model is trained via sampling to capture the implicit relationships
between items, whereas HRM assumes the independency among inputs to perform
mini-batch training.

6.3 Experiments
In this section we describe the experiments, including research questions, data prepar-
ation, and experimental setup.

6.3.1 Research questions
We aim to find out how to utilize both content and behavior to rerank paper recom-
mendations. We are interested in whether HRM which utilizes content and behavior
can beat the production baseline, and how useful the different input features are. Spe-
cifically, we answer the following research questions.
RQ5.1 Does HRM, which utilizes content and behavior, provide improvements in

reranking over the production baseline?
RQ5.2 What is the utility of the content features and behavior features in reranking,

respectively?
RQ5.3 Within the content features, for paper similarity based on various paper aspects,

which paper aspects contribute to good reranking performance and which do
not?

6.3.2 Dataset
We use a dataset provided by ScienceDirect,3 a popular academic search engine that
offers access to millions of academic papers. Users can gain access either by a sub-
scription service, or by individual purchases of papers. The dataset contains anonym-
ized user activity logs from signed in users. We look at newly signed up users and
their interactions on the first paper recommendation email. The paper recommenda-
tions emails were sent between December 12, 2017 and January 21, 2018. For each
user, browsed papers on ScienceDirect prior to receiving the email were also obtained.
A browsing action is characterized by any form of a click on a paper, such as a click on
the search engine result page, or a click on related papers shown on the detailed paper
content page. For email recommendation data, each email contains 5 candidate pa-
per recommendations where users’ responses to each one of them are logged (clicked
or not clicked). To obtain paper metadata, we use the paper metadata from Scopus,4

which can be obtained by querying paper IDs from papers in the ScienceDirect data-
base.

3https://www.sciencedirect.com/
4https://www.scopus.com
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Since we want to study how content contributes to better reranking, we need users
that have at least a few papers in their browsing history in order to utilize the content
information. The content data of the browsed papers should be clean and complete.
Also, we need users who have at least one click on the recommendation email so that
we can perform offline evaluations for reranking and calculate the metrics. Corres-
pondingly, we apply the following filtering steps prior to obtaining the data: (1) we
filter out cold start users with fewer than 5 browsed papers prior to the recommend-
ation; (2) we remove users whose browsed papers have incomplete or corrupt fields
of data; and (3) we remove the recommendation emails without any clicks. In total
we have obtained 4,392 recommendation sessions for our experiments. Each session
contains one recommendation email with a field that indicates whether each paper has
a click, and also the user’s browsing history prior to the recommendation’s timestamp.

Also readily available are the item-item collaborative filtering scores based on read-
ership of papers from ScienceDirect users. The scores of paper pairs are symmetrical
so that sij = sji.

6.3.3 Experimental setup
The experiments on our dataset are conducted through 5-fold cross validation. For each
run, 4 folds are used for training and 1 fold is used for testing. There are one or more
clicks on the candidate paper recommendations for each email. We code relevance as
a binary label, which is 1 for clicked papers and 0 for the rest. We compute the mean
average precision (MAP) and Precision at k (k = 1, 2, 3, denoted as Pre@k for short)
as the evaluation metrics.

Significance tests are applied when comparing the results of different models. Spe-
cifically, we apply the two-tailed student t test to MAP and Wilcoxon signed rank test
to Pre@k, according to assumptions underlying the significance tests.

We select the optimal hyper-parameters for HRM by iterating over possible para-
meter combinations. For the content component of HRM, we have θ = 3 chosen
from {1, 2, 3, 4, 5}; for the behavior component of HRM, we have α = λ = 0.01 and
k = 100; for the scoring function of HRM, the hidden layer contains 32 nodes (more
nodes may lead to overfitting and worse performances in the experiments), and the
learning rate is set as 0.001.

What are appropriate baselines to consider? The first and obvious baseline is the
production system that we seek to improve over; this baseline mainly uses item-item
similarity based user browsing data on ScienceDirect. In addition, two families of ap-
proaches appear to be natural candidates: learning to rerank methods and collaborative
filtering methods.

As to learning to rerank models, to the best of our knowledge, approaches to
learning to rerank a production system published in the literature focus on learning
from interaction data (see § 6.5.5). We, however, focus on similarity-based models.
Thus, we consider an (offline) pointwise learning to rerank model based on logistic
regression with Adagrad optimization [67], which has achieved state-of-the art per-
formance [211]. We also use the state-of-the-art pairwise model RankSVM [104] and
listwise model LambdaMART [27]. The hyperparameter crank of RankSVM is selec-
ted from {0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000}. We use the default para-
meters of LambdaMART in the Ranklib [58] implementation and tune the trees and
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leaves parameters. We also consider an (offline) linear pairwise learning model that is
trained using pairwise hinge loss, which differs from HRM by using a linear scoring
function instead of the neural structure. These baselines use the same inputs as HRM.

As to collaborative filtering methods as possible baselines against which to com-
pare the approaches in this chapter, we compare with libFM [186] and SVDFeature [34].
libFM and SVDFeature construct the feature matrix from user ratings; both can provide
effective recommendations even if the ratings are sparse [95, 176].5

We describe how to construct the feature matrix for libFM and SVDFeature. 1. The
first m values represent the users; 2. the following n values represent the candidate
paper recommendations for the user; 3. the next n values represent the browsed papers
on the search engine; 4. the final value indicates whether the user clicked the paper
from the candidate recommendations. An example is given as follows. Suppose we
have 3 users and 10 papers. Suppose for user 1, papers 1, 3, 4, 6, 9 are presented to
them as candidate recommendations, among which they clicked paper 1, 3. Besides,
the user also browsed papers 2, 5 on the search engine. We use red, blue, green and
black color to represent the users, recommended papers, browsed papers and clicks
respectively in the feature matrix constructed for user 1, as shown below:

1 0 0 1 0 0 0 0 0 0 0 0 0 0 0.7 0 0 0.7 0 0 0 0 0 1
1 0 0 0 0 1 0 0 0 0 0 0 0 0 0.7 0 0 0.7 0 0 0 0 0 1
1 0 0 0 0 0 1 0 0 0 0 0 0 0 0.7 0 0 0.7 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0.7 0 0 0.7 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 1 0 0 0.7 0 0 0.7 0 0 0 0 0 0︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸

users recommended papers browsed papers clicks

For SVDFeature, we tune the regularization parameters for user factor λ1 and
item factor λ2. We tune parameter for user bias b1 and item bias b2. We also tune
the dimension of latent factors k. The parameters λ1, λ2, b1, b2 are explored from
{0.01, 0.1, 1, 10}; k is explored from {5, 10, 15, 20}.

We use stochastic gradient descent (SGD) to optimize libFM. We tune the reg-
ularization parameters for bias α, 1-way interaction β, 2-way interaction λ and the
dimension of latent factors k. Similarly, α, β, λ are tuned from {0.01, 0.1, 1, 10} and
k from {5, 10, 15, 20}.

Note that when answering the second and third research questions (examining the
feature utility), certain components’ feature size is very small. For instance, the beha-
vior component consists of a feature size of two: one from our proposed behavioral
model, one from the browsing similarity. Such a small feature vector is not suitable as
input for the neural structure in HRM. Therefore, we use the pairwise linear model in
this case.

6.4 Results and Analyses
In this section we present the experimental results, including the results of different
models, and break-down analyses on different components of the model.

5The rating density is less than 0.02% even if we consider both browses and clicks as ratings on papers,
which is significantly less than common recommendation datasets (Movielens 100K: 6.30%, Movielens
1M: 4.47%, FilmTrust: 1.14%).
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Table 6.2: Results of reranking candidate paper recommendations across models. Win/Tie/Loss
are the number of users for which a model performs better than, the same as, or worse than the
production baseline.

Model MAP Pre@1 Pre@2 Pre@3 W/T/L

Production baseline 0.588 0.392 0.350 0.323 -/-/-

libFM 0.525 0.302 0.295 0.293 1854/ 999/1539
SVDFeature 0.525 0.305 0.296 0.292 1837/1004/1551

Linear pointwise l2r 0.534 0.330 0.296 0.280 1595/ 753/2044
Linear pairwise l2r 0.620 0.432 0.378 0.343 1822/1254/1316
RankSVM 0.615 0.423 0.376 0.341 1924/1220/1248
LambdaMART 0.627 0.443 0.383 0.345 2006/1102/1284

HRM 0.663 0.502 0.453 0.421 2005/1171/1216

6.4.1 RQ5.1: Overall comparison
To address our first research question (Does HRM, which utilizes content and behavior,
provide improvements in reranking over the production baseline?), we compare HRM
against the production baseline, as well as the other baselines, see Table 6.2.
Compared with all baselines, significant improvements are made in the hybrid rerank-
ing model HRM that combines content and behavior (p < 0.01). Compared with the
production baseline, HRM performs better or the same for 72.3% of the users. There
is a relative 13% increase in MAP and a relative 28% increase in Prec@1 for HRM,
meaning that users are more likely to click the top candidates in the reranked list. This
answers the first research question.

Besides, when given the same input features, HRM also performs better than all
four reranking baselines, although leading LambdaMART only by a small margin.
LambdaMART is a strong baseline and it has more users that perform better than
the production baseline, compared with HRM. Interestingly, the pointwise learning
to rerank method is beaten by the production baseline on all metrics. This shows
that learning absolute user preferences of papers based on clicks is not optimal in
our scenario. Models based on pairwise and listiwise learning (HRM, LambdaMART,
RankSVM and the linear pairwise model) have produced better results by learning
relative user preferences.

The behavioral baselines, i.e., libFM and SVDFeature demonstrate worse perform-
ance than HRM. A possible explanation is that libFM and SVDFeature cannot utilize
paper browsing similarity which contains useful information to recover user behavior
patterns, and they also do not capture content similarities.

We have also attempted to replace our behavior model in HRM by libFM and SVD-
Feature to see how they work with content similarities, which yields worse results than
the original HRM. The scores are neglected for brevity.

6.4.2 RQ5.2: Utility of content and behavior features
To answer the second research question (What is the utility of the content features
and behavior features in reranking, respectively?), we analyze the utility of the input
features of individual components in HRM, shown in Figure 6.2. Specifically, we look
at the reranking performance using the following input features separately.
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– Proposed behavior feature.
– All behavior features: browsing similarity features and proposed behavior feature.
– Only recent content similarity: Srecent .
– Only historical content similarity: Shistory .
– All content features without attention features: Srecent , Shistory .
– All content features: Srecent , Shistory , attention features.
The behavior features have small sizes (a single feature from our behavioral model
and the production system, respectively). Therefore we opt for the linear pairwise
model, because the small input feature vector is not suitable for the neural structure in
HRM. For other features that have larger sizes we use the neural structure of HRM for
reranking; see Table 6.3 for the results.

Table 6.3: The performance of reranking candidate paper recommendations using different input
features of HRM shown in Figure 6.2.

Model MAP Pre@1 Pre@2 Pre@3

Proposed behavior feature 0.540 0.332 0.302 0.288
All behavior 0.602 0.411 0.358 0.327

Only recent content 0.590 0.384 0.354 0.333
Only historical content 0.582 0.374 0.343 0.327
all content without attention 0.598 0.398 0.359 0.337
All content 0.601 0.402 0.365 0.338

Using behavior and content separately for reranking, the results (MAP score of 0.602
and 0.601, respectively) already outperform the production baseline (0.588) that mainly
uses item-item collaborative filtering. The proposed behavior feature provides a boost
for the behavior component in addition to using the browsing similarity features from
the production system (p < 0.01). On the other hand, the content component has
a performance quite close to the behavior component. The attention features lead to
a slight improvement over the model without them. We also find that using the re-
cently browsed papers is better for reranking paper candidates than to using historic-
ally browsed papers, and even better is to use both recently and historically browsed
papers. This answers the second research question.

6.4.3 RQ5.3: Utility of paper aspects
To answer the third research question (Within the content features, for paper similarity
based on various paper aspects, which paper aspects contribute to good reranking per-
formance and which do not?), we continue to delve into the content similarity in HRM,
which contains similarity measures for different aspects of papers. We are interested
to see the reranking performance of features based on a single paper aspect. For each
paper aspect, we take the recent/historic similarity and the recent/historical attention
scores as the input features for reranking. Similar to § 6.4.2, we use the pairwise linear
model due to the small input feature size. The results are shown in Table 6.4.
The reranking performance of the paper candidates differs among the paper aspects.
In general, the similarity measures based on semantics or entities perform better than
those that do not. The two entity space measures: the author and paper entity sim-
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Table 6.4: Reranking candidate paper recommendations by restricting the pairwise linear learn-
ing rerank model to using only one paper aspect.

Field MAP Pre@1 Pre@2 Prec@3

Freshness 0.426 0.153 0.248 0.242
Popularity 0.453 0.154 0.276 0.284
Venue 0.468 0.203 0.272 0.276
Impact 0.489 0.257 0.283 0.267
Word 0.526 0.312 0.291 0.284
Author 0.549 0.327 0.320 0.311
Paper entity 0.550 0.330 0.319 0.311

ilarities perform better than other measures, also beating the word-space similarity.
Comparing three entity based measures, the author similarity performs similarly to the
paper entity similarity, this is due to the high correlation between them (Pearson cor-
relation coefficient being 0.88); the author similarity performs much better than the
venue similarity (0.549 vs 0.468 for MAP scores). This may suggest that users pay
attention to the authorship of the paper more than the venue. Using freshness, popular-
ity, or impact similarity alone does not generate good performance, understandably, as
these measures do not consider semantic relevance or entity relationships. Combining
all paper aspects produces the best performance. The third research question is hence
answered by the above comparisons of paper aspects’ utility in reranking.

6.5 Related work
In this section we discuss the related work to our study. The related work spans several
topics: academic search, paper recommendation, citation recommendation, top-N re-
commendation, and learning to rerank the output of a production system. We introduce
them below and explain how they are related to our work.

6.5.1 Academic search
Our work is relevant to academic search because we are examining the recommend-
ation service attached to an academic search engine. Academic search engines [10,
86, 127, 201, 219] have given users convenient access to academic resources such as
papers, journals, and authors. Mitra et al. [163] found that different academic search
engines have their own coverage of literature and ranking strategy, and the overlap
among search results is low. Compared to general web search, there is far less research
on user behavior in academic search, possibly due to a lack of public datasets. Research
on academic search has examined user behavior through surveys [171, 181, 182] and
aggregated usage statistics such as query frequencies [112]. Khabsa et al. [113] studied
user queries on Microsoft Academic Search and proposed a query classifier.

Recently, more studies have been conducted on user behavior within and across
search sessions, based on a large-scale user transaction log. Li et al. [138] have stud-
ied the null query phenomenon in academic search and proposed a query suggestion
method as a remedy. Li et al. [137] have revealed correlations of query reformulation
and topic shift in academic search. Li et al. [135] have studied characteristics of user
queries in academic search following major scientific events. Li et al. [136] have also
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studied download behavior in academic search and proposed a download prediction
model. There has also been research aimed to improve the search experience. Tang et
al. [220] combined topic modeling with random walks to improve academic search re-
trieval performance. Khazaei et al. [114] proposed a visual search interface via citation
links to help users better navigate through search results. Xiong et al. [245] proposed
improving paper rankings in academic search using entity embeddings.

Our work in this chapter differs from previous work in academic search in that
we do not directly deal with search. We utilize the browsing history on the academic
search engine to make improvements to a paper recommender.

6.5.2 Academic paper recommendation
Our recommendation task falls in the broad category of academic paper recommend-
ations. Generally, based on the system inputs, paper recommendation tasks can be
classified into the following scenarios: the system generates a list of paper recom-
mendations given a single paper as input [18, 103, 166]; the system generates a list
of paper recommendations given a set of papers as input (without ordering) [121, 205,
224]; the system generates recommendations given a time-ordered set of papers as in-
put [98, 241]. The first and second scenarios include cases where a user is browsing a
paper, or a list of relevant papers is available (e.g., through a set of papers selected by
the user). The system assumes the input to be representative of a user’s interests, then
provides related papers as recommendations. These are the most common scenarios
that are being studied. The third scenario is rarely studied because: a) it is relatively
difficult to acquire user data that spans a long period, for instance, users’ paper brows-
ing history; b) it is more difficult to model user interests based on a sequence of inputs,
compared to static inputs in the first two scenarios.

Common methods involved in making recommendations can be classified as: col-
laborative filtering (CF), content-based filtering (CBF) and hybrid models that com-
bine the two. CBF involves using various parts of the paper contents, such as titles,
abstracts, and keywords, to suggest related papers based on their similarity with input
paper(s) [74, 103, 217]. While they are able to expose related papers that are similar
by content, CBF models do not take into account user-paper interactions. CF mod-
els, on the other hand, utilize the user-paper interactions to generate recommendations,
and can result in strong performance [30, 98, 179]. However, a common drawback
of CF models is the cold start problem, which is severe in our academic recommend-
ations when using real user-paper interaction data. Finally, there are hybrid models
that combine CBF and CF models for paper recommendations [70, 224, 229]. The
hybridization process is usually rule-based instead of learned: either the system first
runs CBF models and then uses its output as input to run CF models to generate recom-
mendations (cascade hybrid); or it simply mixes results that are separately generated
from CBF and CF models (mixed hybrid).

Our work in this chapter differs from previous work on academic paper recom-
mendation in that we study a rarely examined, but real scenario: generating paper
recommendations given an ordered sequence as input. Specifically, we make recom-
mendations for new users that sign up for the recommendations based on their browse
history on the search engine. Compared to [241], which uses a simulated and artificial
recommendation setting, our scenario concerns real user interactions with a recom-
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mender system. We have proposed a hybrid model that combines content similarities,
that draws distinction between multiple aspects of paper contents, and behavior-based
similarities. We have applied pointwise and pairwise learning approach to train the
model, unlike the rule based approaches to generate paper recommendation that do not
apply learning techniques [70, 224].

6.5.3 Citation recommendation
Citation recommendation is sometimes mixed with paper recommendation. Hence, we
draw the distinction between our paper recommendation task and citation recommend-
ation. We consider citation recommendation to be the task of recommending papers to
an author who is writing a manuscript. A citation recommender may take a complete
or incomplete manuscript as input, identify places where citations are needed, and re-
commend relevant citations [90, 215]. It may also take a piece of “context” as input,
which is represented as a few sentences, and generate relevant citation suggestions [68,
101]. It is obvious that the citation recommendation task is mainly focused on similar-
ity. Even when collaborative filtering is applied, it is using the citation relation matrix
as a paper similarity measure [148], instead of using the user-paper rating matrix. The
evaluation setup is also confined to predicting the cited papers of an input paper or
paragraph.

Our work in this chapter differs from previous work on citation recommendations
in terms of the methods we propose, the recommendation goal, and the evaluation
setup.

6.5.4 Top-N recommendation
In the context of more general recommendation problems, our scenario is related
to top-N recommendation [63]. Top-N recommender systems provide users with a
ranked list of items based on predicted scores of individual items, where the relative
ranking matters more than the absolute item scores. This is similar to our problem as
we aim to produce a ranking of papers according to the predicted scores. However, the
candidate set from which we make recommendations is different: we pick the papers
from a recommendation email, while a typical top-N recommender selects from all
items that have not been rated by users.

Top-N recommenders have been intensively studied [192]. In general, there are ap-
proaches that use latent space models [57] and approaches that rely on neighborhood-
based models (whether user-based or item-based) [63]. While latent factor models can
also generate top-N recommendation, they are originally designed for rating prediction
tasks. Therefore, they are sub-optimal for top-N recommendation. Neighborhood-
based methods identify similar users or items, and have been shown to be more suit-
able for the top-N recommendation problem [4, 63, 107, 169]. Item-based meth-
ods have been shown to outperform user-based methods for the top-N recommenda-
tion task [51]. Similarity models have recently been proposed to improve item-based
neighborhood models. They learn a coefficient matrix that is analogous to the item-
item similarities [47, 107, 110, 169] directly from the data. A novel similarity model,
sparse linear method (SLIM), has been proposed by [169]. Several authors have pro-
posed improvements to SLIM. Low-rankness has been investigated to capture transit-
ive relations [47, 107, 110]. Kabbur et al. [107] proposed a factored item similarity
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model (FISM), which factorizes the coefficient matrix into two low-dimensional factor
matrices. Cheng et al. [47] proposed the low-rank sparse linear method (lorSLIM),
which introduces a rank regularization to SLIM. Kang et al. [110] made improvements
over lorSLIM by providing a better proxy to approximate the rank of the coefficient
matrix. Instead of estimating a single model for all users, Christakopoulou et al. [51]
clustered users and estimated several local models. Zhao et al. [269] minimized a
combined heterogeneous loss function, which is a combination of pair-wise ranking
loss and point-wise recovery loss. Wu et al. [239] generalized FISM from linear to
non-linear by incorporating a denoising auto-encoder.

Our work in this chapter differs from previous work on top-N recommendation in
important ways. First, directly applying top-N recommendation models to our task
will lead to two problems: new users have no clicks on the recommendation emails, a
situation that cannot be handled by existing top-N recommenders. Also, we have two
types of interaction between users and items: user browses and user clicks. Existing
top-N recommenders focus only on homogeneous interactions.

6.5.5 Reranking the output of a production system
Like us, Lefortier et al. [126], Moon et al. [165] and Zoghi et al. [278] use a commer-
cial search engine as their main baseline that they learn to improve. Lefortier et al.
[126] and Moon et al. [165]’s methods directly use click-through rates, with a focus
on documents that appear in the first position; both also focus on recency ranking and
queries with shifting intent. Zoghi et al. [278] learn from a pairwise signal – out of
order clicks in the top 5 produced by the production ranker.

Our work in this chapter differs from previous work on reranking the output of a
production search engine or recommender system in that we do not restrict ourselves
to recency ranking. Moreover, we do not work in an online setting and we do include
content-based signals, not just behavior-based ones.

6.6 Summary
In this chapter, we have answered RQ5 by proposing a hybrid approach that combines
a content component and a behavior component to rerank papers. The content compon-
ent measures similarities of various paper aspects between users’ browsed articles and
candidate recommendations, and also considers the user’s attention on paper aspects
and on recent/historical browsing. The behavior component learns a mapping from
browsed articles to user clicks in the recommendations. The model combines content
and behavior through a pairwise learning approach that is based on user interaction
data.

We have found that our hybrid reranking model HRM significantly improves over
the production baseline. We have dug into the components of our model to see what
works and what does not. In the content component, the graph embeddings work the
best, especially the author similarity based on soft matching; users’ recently browsed
articles can lead to better recommendations compared to historical browsing; on the
other hand, popularity and impact similarities are not sufficient to bring up good re-
commendations alone. In the behavior component, our learned scores combined with
browsing similarity scores have led to better performance than the production baseline.
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The best performance is achieved when combining content and behavior through learn-
ing. Our hybrid reranking model HRM can be seen as a module that can be plugged
into a recommendation system. Besides, we also have generalizable insights for other
paper recommenders. For instance, we have revealed how each paper aspect contrib-
utes to the reranking performance.

Different from previous chapters that studied general methodologies, we study re-
commendation with heterogeneous information on a real application. Next, we study
a generic method for top-N recommendation, which can overcome come the issue
brought by the high-dimensionality when combining multiple types of information
(Chapter 7).

108



7
Personalized Interaction Selection for

Factorization Machines

In the previous chapters, we have studied how to utilize high-dimensional information
for top-N recommendation (Chapter 2–4). Later, we have researched on integrating
heterogeneous information for recommending top-N new items (Chapter 5). We have
also investigated scientific paper reranking by combining content information and user
behavior (Chapter 6). In this chapter, we study personalized feature interaction selec-
tion for factorization machines. The proposed method provides a generic way to utilize
high-dimensional and heterogeneous information for top-N recommendations, which
answers the following research question proposed in Chapter 1:

RQ6 How should we integrate high-dimensional and heterogeneous information for
top-N recommendation?

7.1 Introduction
Factorization machines (FMs) [185, 186] are a generic supervised learning approach
that combines the advantage of support vector machines (SVMs) [214] with factoriza-
tion models [119]. factorization machines (FMs) account for interactions between fea-
tures with factorized parameters [24, 206]. Feature interactions are crafted as combina-
tions of individual features [46]. For example, in the movie recommendation scenario,
the features for the movie “Spider-Man” can be “comics”, “marvel” and “avengers”.
Accordingly, feature interactions can be combinations such as, e.g., “(comics, mar-
vel)”, “(comics, avengers)”, etc.

FMs are widely applied in predictive analytics, ranging from recommendation [187],
computational advertising [106], to search ranking [152] and toxicogenomics predic-
tion [250]. FMs have been well studied for recommendations, due to their effective use
of historical interactions between users and items [185]. FMs can incorporate addi-
tional information associated with users or items, including content descriptions [258],
context information [189], social networks [31, 40], sequential dependencies [129].
While the wide availability of auxiliary data provides rich sources that may help reveal
user preferences, they also increase the dimensionality of the feature space [43]. The
problem of high-dimensionality is particularly severe for FMs, because FMs consider

This chapter was published as [37].
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Figure 7.1: Comparison between feature interaction selection and personalized feature interac-
tion selection. x1, . . . , x4 are features and x1 ·x2, . . . , x3 ·x4 are feature interactions. The 4×4
matrices indicate masks for the selection of feature interactions. xi · xj will pass through the
grid in the i-th row and j-th column or the j-th row and i-th column. The white grids of the
matrices filter out feature interactions. FIS selects identical feature interactions for u1 and u2

while P-FIS selects feature interactions for u1 and u2 separately.

feature interactions. Hence, the complexity of FM models grows exponentially with the
order of feature interactions. But not all feature interactions are helpful [45]; incorpor-
ating unnecessary feature interactions may bring in noise, which adversely impacts the
recommendation accuracy and increases the difficulty of interpreting outcomes [247].

Feature interaction selection (FIS) has been proposed to select useful feature inter-
actions and filter out useless feature interactions. Existing feature interaction selection
(FIS) methods can be divided into two classes: wrapper methods [156] and embed-
ded methods [45, 247]. Wrapper methods evaluate subsets of feature interactions by
training a model with each subset and scoring on a held-out set. Although wrapper
methods are more flexible as they do not depend on the recommendation model to
use, they suffer from poor scalability. Embedded methods perform interaction selec-
tion during model training, which is more efficient and effective. Sparse factoriza-
tion machines (SFMs) [176, 247, 271] are an example of embedded methods; they
utilize sparsity regularization [221, 233] to achieve FIS. Existing FIS-based methods,
including SFMs, overwhelmingly select a common set of interactions for all users non-
personally, on the assumption that the same feature interactions are equally powerful
to predict user’s behavior. This assumption may not be valid, as it overlooks the indi-
viduality and personality of user’s behavior, especially for recommendation tasks.
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We introduce and study personalized feature interaction selection (P-FIS). As shown
in Figure 7.1, unlike FIS, personalized feature interaction selection (P-FIS) aims to
achieve adaptive FIS for each individual user. P-FIS is a more challenging task than
non-personalized FIS since we have a limited number of instances associated with
each user to select user-specific feature interactions. Although we can train a partic-
ular sparse factorization machine for each user, this is problematic for at least two
reasons. First, it is both time and storage inefficient since we would need to maintain a
model for each user. Second, it is less effective because estimating a model separately
for each user fails to take advantage of collaborative filtering. To this end, we propose
a Bayesian personalized feature interaction selection (BP-FIS) mechanism for FMs.
First, instead of learning expensive and less effective personalized feature embeddings
for each user, we estimate a single set of feature embeddings shared by all users to
preserve the advantage of collaborative filtering. We achieve P-FIS by introducing per-
sonalized interaction selection variables and employ Bayesian variable selection (BVS)
to estimate the selection variables, which allows us to avoid expensive cross-validation
required by sparsity regularizations [221]. The widely used sparsity priors [11] for
BVS are not ideal since they assign zero probability mass to events associated with
weights having zero value [222]. Instead, we propose a hereditary spike-and-slab prior
(HSSP), a variant of the commonly used spike-and-slab prior in BVS [9, 75, 162]. We
formulate the BP-FIS as a probabilistic hierarchical generation procedure and derive
an evidence lower bound (ELBO). Inspired by variational auto-encoders (VAEs) [116,
141], we use a stochastic gradient variational Bayes (SGVB) estimator to approxim-
ate posteriors of the latent variables and propose an efficient algorithm to optimize the
model. BP-FIS can be seamlessly integrated into both traditional FMs (linear) and
neural FMs (nonlinear).

We summarize the contributions of this chapter as follows:
1. To the best of our knowledge, we are the first to study P-FIS for FMs to improve

recommendation performance.
2. We propose hereditary spike-and-slab priors to assign non-zero probabilities to zero

values while preserving hereditary relations.
3. We formulate the P-FIS task as a probabilistic hierarchical generation procedure

and conduct variational inference to derive the ELBO for optimization.
4. We implement two FM variants under our proposed Bayesian personalized feature

interaction selection mechanism and verify their effectiveness through extensive
experiments.

7.2 Preliminaries

7.2.1 Factorization machines
In the recommendation scenario, FMs try to predict the rating of an item based on its
feature vector x ∈ Rd. A general formulation is shown in Eq. (7.1):

r̂(x) = b0 +

d∑
i=1

wixi +

d∑
i=1

d∑
j=i+1

wijxixj , (7.1)
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Table 7.1: Summary of symbols and notation.

Notation Description
Se

ts
an

d
nu

m
be

rs
U Set of users
F Set of features
X Set of feature vectors
R Set of ratings
m Number of users, i.e., m = |U|
d Number of features, i.e., d = |F|
n Number of ratings, i.e., n = |X | = |R|
k Dimension of feature embedding

B
ay

es
ia

n
va

ri
ab

le
s

x ∈ Rd Feature vector
r(x) ∈ R Rating associated with feature x

wui
Personalized first-order feature interaction weight of user
u for feature i

wuij
Personalized second-order feature interaction weight of
user u between feature i and j

W Set of interaction weights, i.e., W = {wui} ∪ {wuij}
sui, w̃i Variables to reformulate wui, i.e., wui = suiw̃i
suij , w̃ij Variables to reformulate wuij , i.e., wuij = suijw̃ij

S, W̃
Set of variables for reformulation, i.e., S = {sui} ∪
{suij} and W̃ = {w̃i} ∪ {w̃ij}

Pa
ra

m
et

er
s vi ∈ Rk Embedding for feature i

V ∈ Rd×k Embeddings of all features
bu Parameter for user bias of user u
π Variational parameters for S
ρ Variational parameters for W̃

where r̂(x) is the predicted rating for x; xi ∈ x is the i-th feature of x; b0, wi, wij are
the parameters, where b0 models the global bias, wi models the first-order interaction,
i.e., the interaction between the feature i and the target, and wij models the second-
order interaction, i.e., the interaction between feature i and j. Instead of learning a
fixed interaction parameter wij , FMs factorize it as wij = vTi vj , where vi ∈ Rk is the
embedding of feature i and k is the dimension of the latent space.

7.2.2 Bayesian variable selection
Variable selection is an important problem in statistical analysis, which selects a subset
of variables that should be taken into consideration [221]. Bayesian variable selection
(BVS) attempts to estimate the marginal posterior of a variable as the probability that
the variable should be selected. Depending on the definition of priors, various BVS
methods have been proposed [62]; spike-and-slab priors (SSPs) [237] have been widely
studied.

A variable w following spike-and-slab prior (SSP) is sampled from a linear com-
bination of two distributions:

w ∼ πN (µ, σ2) + (1− π)δ0,
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where N (µ, σ2) is the slab prior, which is modeled using a Gaussian distribution with
mean µ and variance σ2; δ0 is the spike prior, which is modeled using a Dirac delta
mass function centered at zero. The Dirac delta function is a generalized distribution
that is used to model the density of an idealized point mass as a function equal to
zero everywhere except for zero and whose integral over the entire real line is equal to
one. SSP can assign non-zero probability for the event w = 0 (p(w = 0) = 1 − π).
Therefore, SSP is the ideal distribution for variable selection. However, the presence
of the Dirac delta function δ0 in the SSP complicates inference. Titsias et al. [222]
reformulate SSP as follows:

s ∼ Bernoulli(π), w̃ ∼ N (0, 1), w = w̃ · s. (7.2)

This brings two additional variables, w̃ and s, where w̃ represents the weight of the
variable and s indicates whether to select the variable. The SSP in Eq. (7.2) is amenable
to approximate inference [222].

7.3 Model Description
We first present a personalized FM framework. Then, we propose a Bayesian person-
alized feature interaction selection (BP-FIS) method within this framework. To incor-
porate collaborative filtering into BP-FIS, we propose hereditary spike-and-slab priors
(HSSPs). Finally, we present the loss function of BP-FIS by conducting variational
inference.

7.3.1 Personalized factorization machines
To incorporate P-FIS for FMs, we reformulate Eq. (7.1) as a personalized FM by in-
troducing personalized feature interaction parameters, as indicated in Eq. (7.3):

r̂(x) = bu +

d∑
i=1

wuixi +

d∑
i=1

d∑
j=i+1

wuijxixj . (7.3)

Here, bu, {wui} , {wuij} are the personalized coefficients of user u, and wui and wuij
reflect the preferences of user u over first- and second-order feature interactions. While
the FM in Eq. (7.1) can also account for personalization by taking user ID as features,
it fails to personalize every interactions, which is required by FIS.

7.3.2 Bayesian personalized feature interaction selection
We formulate a Bayesian generation model, BP-FIS, for Eq. (7.3). The graphical
model of BP-FIS is depicted in Figure 7.2. According to BP-FIS, each rating in
Eq. (7.3) is generated with the procedure detailed in Algorithm 3. Note that we treat
{wui} , {wuij} as variables and bu as the parameter.

In the first part of the generation (line 1–10), we generate personalized feature
interaction weights wui and wuij for all users. We reformulate wui by sui · w̃i and
wuij by suij · w̃ij as suggested by [222]. Through the reformulation, we can take ad-
vantage of collaborative filtering by learning a single set of feature interaction weights
W̃ = {w̃i}∪{w̃ij} for all users and operationalize P-FIS by learning the personalized
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n

Figure 7.2: Graphical model of BP-FIS. Nodes represent random variables and edges represent
dependencies between variables.

interaction selection variable S = {sui} ∪ {suij}. The generation of suij is condi-
tioned on sui and suj , which captures the hereditary relation between the first- and
second-order interactions; see §7.3.3 for details on sui and suij .

In the second part (line 11–13), we calculate the rating prediction by Eq. (7.3) and
generate the rating r(x), following p(r | r̂(x)). The distribution of r(x) determines
the likelihood function for optimization. For example, if we assume r(x) to follow a
Gaussian distribution N (r̂(x), 1), we can derive the Gaussian log-likelihood:∑

x∈X

1

2
(r(x)− r̂(x))2. (7.4)

If r(x) follows a Bernoulli distribution Bernoulli(σ(r̂(x))), the logistic log-likelihood
can be derived:∑

x∈X
r(x) log σ (r̂(x)) + (1− r(x)) log (1− σ(r̂(x))) . (7.5)

The likelihood functions in Eq. (7.4) and (7.5) correspond to the squared loss and cross
entropy loss, which are widely used by collaborative filtering methods [141]. Besides,
ranking loss can also be derived, e.g., pairwise ranking loss [188] or listwise ranking
loss [258]. However, deriving the proper likelihood function for optimization is beyond
the scope of this chapter. In this work, we employ the Gaussian likelihood of Eq. (7.4)
for optimization.

7.3.3 Hereditary spike-and-slab prior
Although we can learn the personalized parameters in Eq. (7.3) for each user separ-
ately, there are two disadvantages to this. First, selecting interactions directly based
on Eq. (7.3) fails to take advantage of collaborative filtering. Second, Eq. (7.3) raises
some challenges for optimization due to the large number of parameters (O(md2)).

Therefore, we reformulate wui by sui ·w̃i (line 5) and wuij by suij ·w̃ij (line 10) in
the generation procedure in §7.3.2. In order to model sui, suij , we propose the hered-
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Algorithm 3: Generation procedure

1 for each feature i ∈ F do
2 draw first-order interaction weight w̃i ∼ N (0, 1);
3 for each user u ∈ U do
4 draw first-order interaction selection variable sui ∼ Bernoulli(π1);
5 wui = sui · w̃i;
6 for each feature pair i, j ∈ F do
7 draw second-order interaction weight w̃ij ∼ N (0, 1);
8 for each user u ∈ U do
9 draw second-order interaction selection variable

suij ∼ p(suij | sui, suj , π2);
10 wuij = suij · w̃ij ;
11 for each feature vector x ∈ X do
12 calculate the rating prediction r̂(x) by Eq. (7.3);
13 draw r(x) ∼ p(r | r̂(x));

itary spike-and-slab prior (HSSP), which optimizes over SSP by capturing heredity
constraints [49] between first- and second-order interactions. The intuition is that there
are natural hereditary constraints among the first- and second-order interactions [158],
i.e., feature i and feature j are the “parents” of feature interaction (i, j). The hereditary
constraints help to dramatically reduce the number of candidate interactions.

The hereditary spike-and-slab prior (HSSP) is based on two hereditary constraints:
strong heredity and weak heredity, where we define as follows based on FMs.

Definition 1 (Strong heredity). Given a FM, strong heredity is the constraint that if the
first-order interactions xi and xj are selected for the FM, the second-order interaction
of their combination, i.e., (xi, xj) will also be selected.

According to strong heredity, we have:

if sui = 1 or suj = 1 then suij = 1.

Definition 2 (Weak heredity). Given a FM, weak heredity is the constraint that if
one of the first-order interactions xi or xj is selected for the FM, then the second-
order interaction of their combination (xi, xj) will have a non-zero probability to be
selected.

According to weak heredity, we have:

if sui = 1 or suj = 1 then p(suij = 1) > 0.

Based on the definitions of strong heredity and weak heredity, we derive the HSSP by
modifying the priors for suij of SSP:

p(sui = 1) = p(suj = 1) = π1

p(suij = 1 | suisuj = 1) = 1 (Strong heredity)
p(suij = 1 | sui + suj = 1) = π2 (Weak heredity)
p(suij = 1 | sui + suj = 0) = 0,
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where π1, π2 ∈ [0, 1] are constant values.

7.3.4 Variational inference

To optimize BP-FIS, we need to maximize the posterior p(W̃ , S | R,X ), where S =
{sui} ∪ {suij} and W̃ = {w̃i} ∪ {w̃ij}. However, exact inference for p(W̃ , S |
R,X ) requires an infeasible combinatorial search over O(2md

2

) possible models. To
speed up the process, we conduct variational inference to approximate the posterior
p(W̃ , S | R,X ) by a variational distribution q(W̃ , S). The closeness of the posterior
and the variational distribution is measured by the kullback-leiber (KL)-divergence,
i.e., KL(q(W̃ , S) ‖ p(W̃ , S | R,X )). The KL-divergence can be derived as follows:

KL(q(W̃ , S) ‖ p(W̃ , S | R,X ))

=− Eq
[
log p(W̃ , S,R,X )− log q(W̃ , S)

]
+ log p(R,X ),

(7.6)

whereL = Eq
[
log p(W̃ , S,R,X )− log q(W̃ , S)

]
is the evidence lower bound (ELBO);

log p(R,X ) is the marginal likelihood which does not depend on q(W̃ , S). Eq. (7.6)
states that minimizing the KL-divergence is the same as maximizing the ELBO. To
maximize the ELBO, we first discuss the variational distribution q(W̃ , S).

Variational distribution. To ensure the quality of approximation, we assume the
hereditary constraints also hold in the variational distributions. Therefore, q(W̃ , S)
can be factorized as follows:

q(W̃ , S) =

d∏
i=1

d∏
j=i+1

q(w̃i)q(w̃ij)

m∏
u=1

q(sui)q(suij | sui, suj). (7.7)

The factorized distributions are modeled as follows:

q(wi | µi, σi) = N (µi, σi)

q(wij | µij , σij) = N (µij , σij)

q(sui | πui) = Bernoulli(πui)

q(suij | suisuj = 1) = suij

q(suij | sui + suj = 1, πuij) = Bernoulli(πuij)

q(suij | sui + suj = 0) = 1− suij ,

where ρ = {µi, σi}∪{µij , σij} and π = {πui}∪{πuij} are the variational parameters.

Evidence lower bound. Given the variational distribution q(W̃ , S | ρ, π), the ELBO
can be derived as follows:

L = Eq
[
log p(W̃ , S,R,X )− log q(W̃ , S | ρ, π)

]
=
∑
x∈X

Eq [log p(r(x) | r̂(x))]−KL
(
q(W̃ , S | ρ, π) ‖ p(W̃ , S)

)
,
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where Eq [·] stands for the expectation w.r.t. q(W̃ , S | ρ, π). In the ELBO, KL(q(W̃ , S |
ρ, π) ‖ p(W̃ , S)) can be analytically derived:

KL
(
q(W̃ , S | ρ, π) ‖ p(W̃ , S)

)
=

d∑
i=1

KL (q(w̃i) ‖ q(w̃i))
d∑

u=1

KL (q(sui) ‖ p(sui)) +

d∑
i=1

d∑
j=i+1

KL (q(w̃ij) ‖ q(w̃ij))
m∑
u=1

KL (q(suij | sui, suj) ‖ p(suij | sui, suj)) ,

where

KL (q(w̃i) ‖ p(w̃i)) =
1

2

(
1 + log σ2

i − µ2
i − σ2

i

)
,

KL (q(w̃ij) ‖ p(w̃ij)) =
1

2

(
1 + log σ2

ij − µ2
ij − σ2

ij

)
,

KL (q(sui) ‖ p(sui)) = πui log
πui
π1

+ (1− πui) log
1− πui
1− π1

,

KL (q(suij | sui, suj) ‖ p(suij | sui, suj)) =

(πui + πuj − 2πuij)

(
πuij log

πuij
π2

+ (1− πuij) log
1− πuij
1− π2

)
.

However, it is problematic to derive Eq [log p(r(x) | r̂(x))]. Therefore, we approx-
imate the expectation with Monte Carlo estimation as follows:

∑
x∈X

Eq [log p(r(x) | r̂(x))] ≈ 1

L

L∑
l=1

∑
x∈X

1

2

(
r(x)− r̂(x)(l)

)2

, (7.8)

where r̂(x)(l) is calculated by Eq. (7.3) with the l-th samplingW (l). We write log p(r(x) |
r̂(x)(l)) as a Gaussian log-likelihood as we assume r(x) to followN (r̂(x), 1) (Eq. (7.4)
in §7.3.2).

Reparameterization. When sampling wui and wuij , we apply the reparameteriza-
tion trick [116]:

ε1, ε2 ∼ Uniform(0, 1), ε1, ε2 ∼ N (0, 1)

sui = Jε1 ≥ πuiK
suij = suisuj + (1− suisuj)(sui + suj)Jε2 ≥ πuijK
w̃i = µi + ε1σi

w̃ij = µij + ε2σij

wui = w̃i · sui, wuij = w̃ij · suij .

(7.9)

By doing so, the stochasticity in the sampling process is isolated and the gradient with
respect to ρ = {µi, σi} ∪ {µij , σij} can be back-propagated through the sampled
wui and wuij . Unfortunately, the above procedure fails to take the gradient of π =
{πui} ∪ {πuij} due to the discrete nature of S = {sui} ∪ {suij}. We follow [223] by
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marginalizing out the variable of interest:

Eq [log p(r(x) | r̂(x))] = πuiEq\{sui} [log p(r(x) | r̂(x), sui = 1)] +

(1− πui)Eq\{sui} [log p(r(x) | r̂(x), sui = 0)] .

The gradient of log p(r(x) | r̂(x)(l) \ {πui}) over πui is:

∇πui = Eq\{sui} [log p(r(x) | r̂(x), sui = 1)]−
Eq\{sui} [log p(r(x) | r̂(x), sui = 0)]

=
1

L

L∑
l=1

log p(r(x) | r̂(x)(l), sui = 1)− log p(r(x) | r̂(x)(l), sui = 0).

The gradient of πuij can be computed in a similarly way.

Faster inference. To further speed up the variational inference, we factorize the
variational parameter πuij as πui · πuj . In this way, we only need to preserve {πui}
for each user, decreasing the learning parameters from O(md2) to O(md). For {w̃ij},
we introduce feature embeddings V ∈ Rd×k and replace the variational parameters for
w̃ij as follows:

µij = µ(vi,vj), σij = σ(vi,vj),

where µ(·) and σ(·) are the transformation functions, and vi,vj ∈ Rk are the embed-
dings for feature i, j, respectively. Note that we can have different definitions for µ(·)
and σ(·). Inspired by [95, 240], we define the transformations as follows:

µ(vi,vj) = µT fφ(vi ◦ vj), σ(vi,vj) = σT fφ(vi ◦ vj), (7.10)

where ◦ is the element-wise product operation and fφ(·) is the transformation para-
meterized by φ, which transforms a vector from Rk to Rh; µ and σ are the vectors in
Rh. Note that µ(·) and σ(·) can be either linear transformations, e.g., fφ(v) = v, or
non-linear transformations, e.g., fφ(·) is a neural network. The variational parameter
for W̃ is ρ = {φ,µ,σ, V }.
Learning. We propose to learn BP-FIS via stochastic gradient variational Bayes
(SGVB). As the reparameterization procedures for estimating gradients of ρ and π
are different, we propose to optimize the variational parameter π and ρ alternatively.
Specifically, at iteration t, by fixing ρ(t−1), we train π(t) to update the probabilities
that a user will select the specific feature interactions. Then by fixing π(t), rather than
training ρ(t) based on ρ(t−1), we train ρ(t) from scratch. This is because when π is
updated, we will have different user preferences of feature interactions, where ρ should
be optimized accordingly. As we have experimented, adapting ρ fitting for π(t−1) to
π(t) could adversely bias the learning.

Prediction. Once the model has been trained, we can generate predictions via point
estimation in Eq. (7.11):

E [r̂(x)] = bu +

d∑
i=1

E [wui]xi +

d∑
i=1

d∑
j=i+1

E [wuij ]xixj , (7.11)

where E [wui] = πuiµi and E [wuij ] = [πuiπuj +(1−πuiπuj)(πui+πuj)πuiπuj ]µij .
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Table 7.2: Statistics of the datasets.

Dataset #User #Item #Feature #Rating

MLHt 2,112 5,682 11,945 731,215
LastFM 1,892 17,632 29,200 341,104
Delicious 1,867 69,223 77,735 372,609

7.4 Experimental Setup
We evaluate BP-FIS using the top-N recommendation task.

7.4.1 Research questions
We seek to answer the following research questions:
RQ6.1 Does P-FIS help to improve the performance of FMs on the top-N recommend-

ation task? Specifically, how well does BP-FIS perform against state-of-the-art
FMs?

RQ6.2 How does the embedding size impact the ability of BP-FIS to improve the
performance of FMs?

RQ6.3 How does the alternating optimization procedure affect the performance of BP-
FIS?

RQ6.4 How can BP-FIS provide explainability for the recommendations generated by
the FMs?

7.4.2 Dataset
We use three benchmark recommendation datasets from HetRec [29] in our experi-
ments. Summary statistics are provided in Table 7.2.
– Movielens hetrec (MLHt): Extends the MovieLens10M [89] dataset.1 It links the

movies of the MovieLens dataset with their corresponding web pages at the Internet
Movie Database (IMDb)2 and Rotten Tomatoes movie review systems.3 MLHt only
contains users with both rating and tagging information.

– LastFM: Contains social networking, tagging, and music artist listening information
from the Last.fm online music system.4 Each user has a list of most listened music
artists, tag assignments, and friend relations within the social network.

– Delicious: Contains social networking, bookmarking, and tagging information from
the Delicious social bookmarking system.5 Each user has bookmarks, tag assign-
ments, and contact relations within the social network.

For MLHt, users rate each movie with stars, on a scale from 1 to 5. We treat ratings
of at least 3 as positive (r = 1 if rating ≥ 3) and treat all other ratings as missing
(r = 0) [107, 239]. For LastFM, we regard user’s listening history of artists as implicit
ratings, i.e., r = 1 if the user listened to a song by the artist. Similarly for Delicious, we
regard the bookmarks added by the users as implicit ratings. The side information of
these datasets is utilized as additional features, i.e., user tags, movie genres and social

1http://www.grouplens.org
2http://www.imdb.com
3http://www.rottentomatoes.com
4http://www.last.fm
5http://www.delicious.com
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networks. Ratings with less than 10 non-zero feature values are discarded. Therefore,
our statistics may slightly differ from the original datasets.

7.4.3 Baselines
To evaluate the effectiveness of BP-FIS, we provide two implementations, namely BP-
FM and BP-NFM. They differ in the definition of fφ(·) in Eq. (7.10): fφ(·) is an
identify transformation for BP-FM and a stack of fully connected network layers for
BP-NFM. We implement BP-FM and BP-NFM using PyTorch.6 We compare BP-FM
and BP-NFM with the following baseline methods:
– Factorization machine (FM) [185]: The FM originally proposed by Rendle. The of-

ficial implementation is specifically optimized for the rating prediction task, whereas
we evaluate the performance with top-N recommendation metrics. Therefore, we
provide a PyTorch implementation of FM for a fair comparison.

– Sparse factorization machine (SFM) [176, 247, 271]: The FM that learns sparse
first- and second-order interactions. We implement SFM, on top of the implementa-
tion of FM, to utilize general features for top-N recommendation, where all feature
embeddings are penalized by group Lasso regularizations.

– Attentional factorization machine (AFM) [240]: The FM that learns the importance
of each feature interaction from data via an attention network. We utilize the tensor-
flow implementation7 of AFM released by the authors in our experiments.

– Neural factorization machines (NFM) [95]: The FM that models higher-order in-
teractions through neural networks, which is the state-of-the-art neural extension of
factorization machines. We utilize the tensorflow implementation8 of neural factor-
ization machines (NFM) released by the authors.

7.4.4 Evaluation
We adopt the leave-one-out evaluation, which has been widely used in the literat-
ure [111, 169]. For each user, we randomly hold-out one of her interactions as the
test set and utilize the remaining data for training. Since it is too time-consuming to
rank all items for every user during evaluation, we follow the common strategy [119,
141] which randomly samples items that are not interacted with by the user, ranking
the test item among 100 items. The recommendation quality is measured using hit rate
(HR) and average reciprocal hit-rank (ARHR). HR is defined as follows:

HR =
#Hit

#User
, ARHR =

1

#User

#Hit∑
i=1

1

pi
,

where #User is the total number of users, and #Hit is the number of users whose
item in the test set is recommended (i.e., a hit) in the size-N recommendation list. pi
is the position of the item in the ranked recommendation list, if an item of a user is
among the list. ARHR is a weighted version of HR and it measures how strongly an
item is recommended, in which the weight is the reciprocal of the hit position in the
recommendation list.
6https://pytorch.org/
7https://github.com/hexiangnan/attentional_factorization_machine
8https://github.com/hexiangnan/neural_factorization_machine
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7.4.5 Implementation details
For a fair comparison, we have the following identical experimental settings for all
compared methods. (1) All models are optimized using Adam [115]. Adam computes
individual adaptive learning rates for different parameters. Therefore, we do not need
to tune the learning rate. In practice, setting the initial learning rate as 0.001 provides a
good default value. (2) All models are optimized by the mean square loss, accounting
for the fairness of comparison and efficiency of training. (3) We hold-out ratings from
the training set for validation. We tune parameters of all methods and select the ones
with the best performance. (4) We set the maximum training epochs to 50. We apply
early-stop for all methods, where we stop training if no further performance gain is
observed for 4 successive epochs. (5) Feature embeddings are randomly initialized
according to N (0, 0.01). (6) We tune the parameter k (the latent dimension of feature
embeddings) from 64, 128, 256.

For BP-FIS, we set π1 = π2 = 0.5 as we presume no prior knowledge about the se-
lection. For the baselines, we follow the experimental settings in [95, 240] to tune para-
meters. We tune the `2-norm regularization parameter for FM in 1e−6, 5e−6, . . . , 1e−1.
Similarly, we tune the `2,1-norm regularization parameter for SFM in 1e−6, 5e−6, . . . ,
1e−1. We use dropout for NFM and AFM. For NFM, we fix the dropout rate of the hid-
den layers as 0.8 and tune the dropout rate for bi-interaction layer in 0.1, 0.2, . . . , 1.0.
For AFM, we use dropout for the embedding layer, which is searched from 0.1, 0.2, . . . ,
1.0. As suggested by the author, we tune the `2-norm regularization parameter for the
attention layer in 0, 0.5, 1, 2, 4, 8, 16.

For the network structure of NFM and BP-NFM, we follow [95] and set identical
dimensions for hidden layers. According to [95], NFM with one hidden layer generates
the best performance. Therefore, we also use one hidden layer for NFM and BP-NFM
in our experiments. We use ReLU as the activation function.

7.5 Experimental Result and Analysis
We answer the research questions listed in §7.4.1 in four subsections.

7.5.1 RQ6.1: Results
We report the recommendation performance of all models in Table 7.3, in terms of
HR@1, HR@10 and ARHR@10. Table 7.3 shows that BP-FM and BP-NFM con-
sistently outperform the other methods. This proves the effectiveness of BP-FIS for
improving the performance of both linear and non-linear FMs for top-N recommend-
ation.

To answer RQ6.1, we analyze the results by separating the comparison between
linear and non-linear models. Among linear models, SFM outperforms FM and AFM
on the LastFM and Delicious datasets. This supports the need for conducting FIS for
FMs. However, SFM cannot always improve over FMs. It fails to beat FM on MLHt. In
contrast, BP-FM achieves improvements over FM on the same dataset. This shows that
selecting or weighing a single set of feature interactions for all users might overlook the
personalization over features, and conducting P-FIS is required. Except for HR@1 on
LastFM and Delicious, the improvement achieved by BP-FM is significant, especially
HR@10 on MLHt, where BP-FM improves FM by 17.286%. This demonstrates the
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Table 7.3: Comparison of top-N recommendation methods.

Method λ drop k HR@1 HR@10 ARHR@10

M
L

H
t

FM 0.1 – 64 0.2371 0.6028 0.3398
SFM 0.01 – 64 0.2294 0.6052 0.3351
AFM 2 0.1 64 0.1138 0.4273 0.1969
BP-FM – – 128 0.2401* 0.7070** 0.3932**

NFM – 0.2 256 0.2180 0.6257 0.3389
BP-NFM – – 128 0.2519**0.6831** 0.3814**

L
as

tF
M

FM 0.1 – 64 0.1894 0.6403 0.3215
SFM 0.05 – 256 0.2118 0.6542 0.3449
AFM 8 0.7 256 0.2166 0.6126 0.3332
BP-FM – – 256 0.2209 0.6798** 0.3581**

NFM – 0.6 64 0.2150 0.6798 0.3563
BP-NFM – – 256 0.2257 0.6910 0.3660

D
el

ic
io

us

FM 0.1 – 64 0.0202 0.1147 0.0440
SFM 0.1 – 128 0.0229 0.1212 0.0465
AFM 2 0.1 64 0.0274 0.1169 0.0494
BP-FM – – 128 0.0278 0.1240** 0.0509*

NFM – 0.1 64 0.0229 0.1065 0.0426
BP-NFM – – 128 0.0268 0.1289** 0.0504**

Boldface scores indicate best results for linear and non-linear FMs on each
metric. We conducted two-sided tests for the null hypothesis that the best
and the second best have identical average values. ∗ and ∗∗ indicate that
the best score is significantly better than the second best score with p <
0.1 and p < 0.05, respectively.

efficacy of BP-FIS.
The comparison between non-linear models, i.e., NFM and BP-NFM, shows sim-

ilar results. BP-NFM steadily achieves better performance than NFM on all datasets
and all metrics, which shows that the improvement achieved by P-FIS is orthogonal to
the non-linear modeling of interactions.

7.5.2 RQ6.2: Impact of embedding size
To answer RQ6.2, we analyze the performance of all models with different embedding
sizes. Specifically, we plot figures to show results w.r.t. HR@1, HR@5, HR@10,
ARHR@5 and ARHR@10 of all models on the MLHt dataset, as shown in Figure 7.3.
Generally, we can see that BP-FM and BP-NFM achieve better a performance than the
other models. This demonstrates the robustness of BP-FIS as it constantly improves
the performance of FMs, regardless of the embedding size and evaluation metric.

Specifically, for the setting k = 64, almost all models show a competitive per-
formance. This is because the space for the performance improvement is limited when
k = 64 on the MLHt dataset. P-FIS has insignificant effect on FMs due to the restric-
ted embedding size. In contrast, for the setting k = 128, while FM, SFM and NFM
achieve comparable results, BP-FM and BP-NFM significantly outperform them. This
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Figure 7.3: Performance comparison w.r.t. different embedding sizes. ARHR@1 is actually
HR@1.

means that the effect of P-FIS can be better expressed by increasing the embedding size
for FMs. Interestingly, while BP-FM performs better than BP-NFM for most metrics,
the performance gain achieved by BP-NFM is more remarkable on HR@1. Similar
performance levels are seen when k = 256, except that BP-NFM does not outperform
BP-FM. This might be because BP-NFM has far more parameters than BP-FM when
the embedding size is large, which brings extra difficulty to avoid overfitting.

7.5.3 RQ6.3: Impact of training
To analyze alternative training procedure of BP-FIS, we show the performance of BP-
FM and BP-NFM after each iteration in Figure 7.4. A general trend could be revealed
by Figure 7.4 that the recommendation performance of both BP-FM and BP-NFM
grows initially and fluctuate successively. Although BP-NFM can mostly achieve bet-
ter performance than BP-FM, it also shows higher variation.

When k = 64, BP-FM outperforms BP-NFM w.r.t. HR@1 and performs compet-
itively with BP-NFM w.r.t. HR@5 and HR@10. When k = 128, we can witness a
relatively stable growth in BP-FM, especially for HR@5 and HR@10. While a certain
level of convergence can be witnessed for HR@5 and HR@10, BP-NFM still fluctu-
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Figure 7.4: Training procedure of BP-FM and BP-NFM on LastFM dataset.

ates more than BP-FM during the training procedure. These observations might sug-
gest that the training of BP-FIS shows better robustness for linear FMs than non-linear
ones. BP-NFM is more unstable in terms of HR@5 and HR@10 when k = 256, the
performance of which drops sharpely during the 9-th iteration. Thus, more iterations
do not help a lot for improving the performance but might adversely harm the perform-
ance. Another observation is that the training procedure of BP-FM and BP-NFM varies
with different embedding sizes. Training BP-FM and BP-NFM with k = 128 provides
the most stable procedure. This shows that a proper selection of embedding size can
further extend the potential of BP-FIS.

7.5.4 RQ6.4: Explainability for recommendation

Table 7.4: Case study.

48 Hrs. Spider-Man Lethal Weapon True Lies

action (a) X X X
buddy (b) X X X
clever (cl) X X
comedy (co) X X X
funny (f) X X
sequel (se) X X
special effects (sp) X X
user 1 – top-5 top-1 top-10
user 2 – top-5 top-5 top-10
user 3 – – – –

Ticks indicate whether a movie has the feature. We also indicate for each user
whether the movie is within the top-1, top-5 or top-10 recommendation.

To answer RQ6.4, we provide a case study based on the experiments on the MLHt
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Figure 7.5: Visualization of second-order feature interaction selection w.r.t. the case studies
in Table 7.4. The color depth corresponds to the probability of selecting the corresponding
interaction. (a, b, cl, co, f, se, sp) are the abbreviations of the features listed in Table 7.4.

dataset. We select four movies (“48 Hrs.”, “Spider-Man”, “Lethal Weapon” and “True
Lies”) with seven shared features (“action”, “buddy”, “clever”, “comedy”, “funny”,
“sequel” and “special effects”). We generate the recommendation results with BP-FM
for three users (“user 1”, “user 2” and “user 3”) and check if the four movies are in the
top-1, top-5 or top-10 list. The results are shown in Table 7.4.

We also visualize the selection probability of second-order feature interactions
(p(suij = 1)) in Figure 7.5. The color depth indicates how likely the corresponding
feature interaction will be selected for the user. The probability indicates the predictive
power of the feature interaction for the specific user.

Figure 7.5 shows the diverse selections of feature interactions for the three users.
All interactions are unlikely to be selected for user 3. Therefore, the four movies shar-
ing these features are not recommended to her. In comparison, several interactions have
high probabilities to be selected for user 1 and user 2. Some interactions are predictive
for both users, e.g., (sequel, special effects), (comedy, sequel), (buddy, comedy), and
some are useful only for a specific user, e.g., (action, buddy), (action, comedy), (action,
sequel) for user 1 and (buddy, clever), (buddy, comedy) for user 2.

The commonality of feature interactions for user 1 and user 2 explains the recom-
mendation of “Spider-Man” and “True-Lies”. “Spider-Man” has (sequel, special ef-
fects) and “True-Lies” has (buddy, commedy), which have been selected for both users.
The personalization of feature interactions explains the recommendation of “Lethal
Weapon”. While the movie has the interaction (buddy, comedy) that was selected for
both users, it also has the specific interaction (action, comedy) that is only selected for
user 1. Therefore, “Lethal Weapon” is the top-1 item for user 1 and the top-5 item for
user 2. On the other hand, “48Hrs.” is not recommended to any user. Although the
movie has (action, buddy) and (action, comedy) selected for user 1 or (buddy, clever)
and (buddy, comedy) selected for user 2, it has no interactions like (comedy, sequel) or
(sequel, special effects), which might account largely for the recommendation.

7.6 Related Work

In this section, we survey related work on factorization machines and feature (interac-
tion) selection, respectively.
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7.6.1 Factorization machines
FMs have been widely studied and are commonly used in practical systems for their
effectiveness and flexibility. Early studies [185, 189] show the generality of FMs. In
contrast to matrix factorization (MF) [212] or tensor factorization (TF) [190], which
model interactions between categorical variables only, FMs provides a generic way to
model interactions between any real valued features. Rendle [185] show that FMs can
mimic many of the most successful factorization models (including MF, parallel factor
analysis, and SVD++ [119]).

Recently, successive variants of FMs have been developed [3, 23, 24, 105, 143,
152]. They have achieved promising performance in different recommendation scen-
arios [95, 167, 176, 178, 258]. Juan et al. [105] propose the field-aware factorization
machine (FFM) to factorize the interactions of fields (the category of features). Blondel
et al. [23] present the higher-order factorization machine (HOFM), which provides an
efficient algorithm to train FMs with higher-order interactions. Besides rating pre-
diction, FMs have also been optimized for the top-N recommendation task. Yuan et
al. [258] introduce boosted factorization machiness (boostFMs) to incorporate contex-
tual information into FMs for context-aware recommendation (CAR) [159, 167, 189].
Xiao et al. [240] propose the attentional factorization machine (AFM), which uses an
attention network to learn the importance of each feature interaction. To investigate
the linear expressiveness limitation of FMs, He et al. [95] propose neural factorization
machiness (NFMs), which perform non-linear transformations on the latent space of
second-order feature interactions.

Despite the effectiveness of modeling various feature interactions, existing FM
variants suffer from the high-dimensionality issue which limits their application in
high-dimensional scenarios.

7.6.2 Feature selection
An effective approach to alleviate the high-dimensionality issue of FMs is feature se-
lection. Cheng et al. [45] propose to select feature interactions though a greedy inter-
action feature selection algorithm based on gradient boosting. Xu et al. [247] apply
group Lasso [259] to user and item feature embeddings to select interactions between
user and item features. Zhao et al. [271] propose to select meta-graph based features.
Similarly, they also apply group Lasso for feature selection. Mao et al. [156] propose to
select context features for FMs. They first choose features based on predictive power.
Then, they subsample the set of features selected in the first step.

Feature selection has also been well investigated for feature-based recommender
systems (FRSs), which often utilize high-dimensional auxiliary information. Ronen et
al. [193] propose to select content features. Their algorithm selects the most informat-
ive features by computing relevance scores based on pluggable feature similarity func-
tions. Koenigstein et al. [118] propose to select content features for Xbox movies by
incorporating sparsity priors on feature parameters. Different feature weighing meth-
ods have also been proposed to select context features [274]. Li et al. [130] study
personalized feature selection for unsupervised learning; they learn a specific model
for each user, which is only applicable with a limited number of users.

The differences between our method and the above methods are at least three-fold.
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First, we target personalized feature interaction selection, which better captures a user’s
personalized preferences over different features. Second, we provide a generic way to
achieve feature selection, which can be seamlessly integrated to different FM variants.
Third, we opt for Bayesian variable selection with spike-and-slab priors, rather than
the sparsity induced regularizations that have previously been considered.

7.7 Summary
In this chapter, we have answered RQ6 by studying a generic method to utilize high-
dimensional and heterogeneous information for top-N recommendations. We have
proposed a Bayesian personalized feature interaction selection (BP-FIS) method to ad-
dress the personalized feature interaction selection (P-FIS) task for factorization ma-
chines (FMs). BP-FIS fuses hereditary spike-and-slab prior (HSSP) to achieve P-FIS
while taking advantage of collaborative filtering. We have conducted variational infer-
ence and proposed a stochastic gradient variational Bayes (SGVB) method to optimize
BP-FIS. Experimental results show that BP-FIS significantly improves the perform-
ance of both linear and non-linear FMs. Further analytical experiments show that:
(1) BP-FIS is effective for both linear and non-linear FMs; (2) BP-FIS is robust for
performance gain, regardless of the embedding size; and (3) it is preferable to train
BP-FIS with a limited number of iterations.

Unlike previous chapters that works on top-N recommendation with high-dimensio-
nal information or heterogeneous information only, we provide a generic method to
utilize both high-dimensional and heterogeneous information in this chapter. Next, in
Chapter 8, we conclude the thesis by harvesting the answers to our research question
and formulating ideas for future work.
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8
Conclusions

In the previous chapters, we have introduced how we proposed methods to address the
research questions raised in Chapter 1. In this chapter, we first revisit our research
questions introduced in Chapter 1 and summarize the main findings and implications
of our research in § 8.1. Then, in § 8.2, we describe the main limitations of our work
and possible future directions.

8.1 Main Findings

8.1.1 Item clustering for top-N recommendation
We started with clustering items for top-N recommendation and asked:

RQ1 How can we effectively perform item clustering for item-based collaborative
filtering methods?

To answer this question, we proposed a method called Block-aware similarity regu-
larization (BSR) for item-based collaborative filtering (ICF) in Chapter 2. BSR is a
regularization term for ICF methods that encourages the learned item similarity matrix
to be, or to be close to, a c-block diagonal, where c is the number of blocks. Unlike
existing clustering-based methods that intrinsically treat clustering and model estim-
ation as separate procedures, BSR integrates item clustering into the learning of item
similarities, where in-block similarities are encouraged and off-block similarities are
penalized. We applied BSR to Similarity models (SMs) and proposed a block regular-
ized similarity model (BSM). We proved several theoretical properties of BSM, namely
block-diagonality, sparsity and transitivity. We further extended BSR to block-aware
similarity dropout (BSD). We regularized feature-based similarity models (FSMs) by
BSR and proposed a block regularized factored similarity model (BFSM).

We empirically evaluated the effectiveness of BSR by extensive experiments. Our
analysis indicates that: a) item groups exist in many real-world applications and BSR
is able to capture grouping property to improve top-N recommendation. SMs gen-
erally outperform FSMs for top-N recommendations and BSM further improves the
performance of SMs significantly; b) BSR can positively impact the performance of
top-N recommendation. Although solely applying it has a negative effect on the per-
formance, the similarity constraint provides an excellent remedy; and c) besides im-
proving performance, BSR also helps with stability at the cost of a slight slow down of
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the convergence rate.

8.1.2 Leveraging high-dimensional side information
To utilize high-dimensional side information to overcome the sparsity of ratings, we
resorted to feature reduction techniques and asked:

RQ2 Can we reduce the dimensions of side information for an effective top-N recom-
mendation?

To answer RQ2, we performed feature reduction via Locality preserving projection
(LPP) based on the manifold assumption that we can expect an intrinsic low-dimension-
al feature behind the high-dimensional side information. We presented a joint learn-
ing model to simultaneously perform LPP and learn item similarities. An alternating
optimization method has conceived to solve the model. We experimented with the
proposed projection regularized item similarity model (Prism) on four datasets with
high-dimensional side information and compared it with state-of-the-art baselines. The
experimental evaluation shows that the proposed method enjoys a performance gain of
up to 21.2% on hit rate at 10 (HR@10) and 36.8% on average reciprocal hit-rank at 10
(ARHR@10).

However, the effectiveness of Prism can be ensured only if the side information is
noise-free. Unfortunately, in many real-world applications, side information contains
noise where we can hardly expect the intrinsic low-dimensional features. In order to
utilize noisy side information, we sought to answer RQ3:

RQ3 How can we utilize high-dimensional side information with noise for top-N re-
commendation?

To utilize high-dimensional and noisy side information, we took advantage of vari-
ational auto-encoders (VAEs), which has shown a strong property of denoising. In-
stead of learning item representations via VAE as existing methods, we learned fea-
ture embeddings. By learning feature embeddings from side information, the model
is no longer affected by high-dimensionality, because the dimension of side informa-
tion is the number of inputs to VAE rather than the input scale. Inspired by collective
sparse linear method (cSLIM) [170], we proposed a collective variational auto-encoder
(cVAE), which can be regarded as a neural extension to cSLIM. Since user factors and
feature embeddings are both encoded from and decoded to information with respect
to items, we proposed to learn them collectively by sharing network parameters. We
evaluated cVAE on two datasets from Amazon, both of which are extremely high-
dimensional. On the datasets, state-of-the-art VAE-based methods show poor perform-
ance, being outperformed by the linear method cSLIM. In comparison, cVAE improves
over cSLIM significantly.

8.1.3 Cold-start recommendation
We then focused on another task, recommending new items (Chapter 5), and asked:

RQ4 How can we effectively fuse item features with ratings for the recommendation
of top-N new items?

To recommend new items, item features is utilized to represent items. Therefore, even
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for new items, we can still generate recommendations since item features can char-
acterize items. We provided an ICF method, local variational feature-based similarity
model (LVSM), to learn item similarities based on item features. We estimated multiple
local similarity functions based on user groups and a single global similarity function
to understand item similarities comprehensively. LVSM learns local similarities dir-
ectly from item features and learns global similarities based on the item representation
encoded by VAE. LVSM is a Bayesian generative model that seamlessly integrates ICF
with deep learning and user clustering. To efficiently optimize LVSM, we conducted
variational inference, based on which we proposed a variational expectation maximiz-
ation (EM) algorithm.

Empirically, while FSMs are superior amongest feature-based methods, LVSM out-
performs other FSMs significantly. LVSM can also provide robust recommendations
even when ratings or item features are extremely sparse. An evaluation on scalability
showed that LVSM can scale to large-scale datasets and it is even more powerful com-
pared with other baselines. The only limitation of LVSM is that it is mathematically
more difficult than other feature-based methods.

Besides cold-start items, we also studied cold-start users in recommendation. We
worked on scientific paper recommendations and asked:

RQ5 Can we address the challenge of recommending papers to cold-start users by
effectively utilizing the available heterogeneous information?

We examined an interesting recommendation scenario for an academic search engine,
namely, to rerank paper recommendations in email newsletters for newly signed up
users. To answer RQ5, we proposed an approach to rerank candidate recommenda-
tions that utilizes both paper content and user behavior. To handle cold-start users, we
proposed a model to learn a mapping from users’ browsed articles to user clicks on
the recommendations. We combine both content and behavior into a hybrid rerank-
ing model (HRM). HRM is trained using a pairwise learning approach based on real
user interaction data. The outputs are reranked paper recommendations that are signi-
ficantly better than the production system in terms of yielding user clicks. We found
that both content and behavior contribute to better recommendations. We also detailed
individual contributions from different paper aspects and components of the model.
Our reranking model can be applied to production recommender systems as a separate
module.

A limitation of the study is that we have not performed online evaluations, such as
A/B testing, to validate the model’s effect on user engagement. Another limitation is
due to the production dataset: our reranking is limited to the candidate articles gener-
ated by the production system. Therefore, if the inputs are not of high quality, it will
impact our final recommendation performance.

8.1.4 Personalized feature interaction selection
Finally, we worked on factorization machines (FMs), which provide a way to utilize
heterogeneous information for recommendations. FMs are effective for recommenda-
tion due to the modeling of feature interactions with factored parameters. We studied
feature interaction selection (FIS) for FMs and raised the following question:
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RQ6 How can we integrate high-dimensional heterogeneous information for top-N
recommendation?

To answer RQ6, we provided a model based on Bayesian variable selection (BVS) to
select first- and second-order feature interactions for FMs. In the scenario of recom-
mendation, where features or feature interactions are not necessarily equally powerful
to predictions for all users, we proposed the problem of personalized feature inter-
action selection (P-FIS). To complete the task, we provided Bayesian personalized
feature interaction selection (BP-FIS), a plug-and-play framework for FMs. Based on
the spike-and-slab prior (SSP), we proposed a hereditary spike-and-slab prior (HSSP),
which also captures hierarchical relations among first- and second-order feature inter-
actions. To evaluate BP-FIS, we implemented two methods following the framework,
both linear and non-linear. The empirical evaluation validated the need for personalized
feature interaction selection (P-FIS) when utilizing high-dimensional and heterogen-
eous information for FMs and the effectiveness of BP-FIS to achieve the task.

8.2 Future work
We list possible directions for future work grouped by our main research questions.

8.2.1 RQ1: Scalability and online grouping
The principal shortcoming of BSR we proposed for RQ1 is that the theoretical prop-
erties of BSM do not hold for BFSM. BSR is also less empirically effective for FSMs
than for SMs. Unfortunately, BSM cannot scale to datasets with a large number of
items. It is interesting to find a better way to balance scalability and theoretical prop-
erties. A possible solution is to design a regularization to regularize factored item
representations directly.

The effectiveness of BSR has been demonstrated in offline recommendations, the-
oretically and empirically. In an online recommendation scenario, clustering items
on-the-fly has been less studied. Existing work periodically updates clusters in on-
line settings, which actually reduces the problem to offline. In comparison, utilizing
BSR to investigate online ICF helps to capture the dynamicity of item groups in real-
time. The problem can be even more interesting if new items are arriving in real-time.
Recent work has raised this new issue, referred to as “online cold-start recommenda-
tion” [5]. Assigning new items to the proper groups in real-time can find its application
in news recommendation. Therefore, extending BSR to online clustering opens up a
new perspective to solve this challenging yet significant problem.

8.2.2 RQ2 & RQ3: Fine-designed neural extension
To answer RQ2 and RQ3, we studied a linear and a neural method, respectively, for
the sake of leveraging high-dimensional side information for top-N recommendation.
Similar to the situation we studied for item grouping, we faced the dilemma that the
linear method has good theoretical properties while the neural method enjoys better
scalability and empirical performance with a sacrifice on the theoretical guarantees. A
possible break to this dilemma is to extend the linear model with good theoretical prop-
erties to neural methods. Although neural methods do not have rigorous theories, they
can capture the intuition of linear methods with rigorous theories, where improvements
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achieved through neural methods are easier to interpret. Note that cVAE is regarded as
an extension of the linear model cSLIM. It will also be interesting to extend Prism to
neural methods.

cVAE also has limitations. cVAE is designed to encode from and decode to both
ratings and side information via networks with shared parameters. This implies an
underlying assumption that item similarity information encoded by side information
should be similar to the same information contained in ratings. Unfortunately, this
assumption is not always true in real applications. A better design of the network
structure is needed, in order to share parameters of networks while also accounting for
the information difference between ratings and side information.

8.2.3 RQ4 & RQ5: Incorporating semantic information
We answered RQ4 by proposing the local variational feature-based similarity model.
LVSM shows strong and robust performance for recommending top-N new items. Im-
provement in performance can be further expected if we can also utilize the semantic
information behind item features. In our experiments, although we utilized text fea-
tures, we ignored semantic information as LVSM is designed to utilize generic content
features. Potentially valuable semantic information is ignored in order to ensure the
generalization of LVSM. The model we studied for RQ5 also reveals the advantage
of combining semantic information with user behavior. In practice, text features are
widely available. In future, we can optimize LVSM specifically for semantic informa-
tion. The straightforward way is to replace or initialize the latent item representations
by the summation or concatenation of word embeddings. A better way is to design a
sequential VAE to capture the sequential information behind text features. It is also
possible to extend LVSM to integrate semantic analysis, e.g., sentiment analysis [64],
topic modeling [229] and etc.

8.2.4 RQ6: Group-level personalized selection
While BP-FIS provides promising results to answer RQ6, it is time-consuming to
train. One way to speed up is to conduct feature interaction selection in group-level,
i.e., select a set of feature interactions for each user group rather than for individuals.
The group-level personalized selection is expected to be much more efficient, with a
little reduction in performance. A straightforward implementation is to pre-define user
groups. However, it will be more interesting to integrate user clustering with BP-FIS.
We can design a Bayesian generative model, where user clustering and feature interac-
tion selection are simultaneously learned and mutually enhanced.

Currently, BP-FIS is specially designed for FMs with first- and second-order fea-
ture interactions. Higher-order factorization machine (HOFM) [23] provides an effi-
cient way to infer higher-order feature interactions. Higher-order feature interactions
are more powerful to capture the complex relations behind features. The problem
brought by high-dimensionality can be even more severe in the HOFM. Studying P-
FIS for HOFM can address the issue of high-dimensionality and further boost the per-
formance of HOFM. Besides the performance gain, it also provides a way to explain
higher-order relations, which are extremely difficult to explain for deep neural network
(DNN).

BP-FIS also reveals a certain connection with dropout [213]. This also explains
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why BP-FIS improves the performance of FMs. BP-FIS shares a certain level of simil-
arity with the adaptive dropout, where the dropout rates are adaptively adjusted during
training. It is interesting to further study the connection and difference between BP-
FIS and dropout in theory. The power of BP-FIS should not be restricted to FMs but
also be generalized to broader machine learning methods.
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Acronyms

Short Full

AFM attentional factorization machine (see pp. 120, 126)
AP@N average precision at N (see p. 47)
ARHR average reciprocal hit-rank (see pp. 25, 36, 120)
ARHR@10 average reciprocal hit-rank at 10 (see pp. 32, 130)
BDR block-diagonal representation (see p. 16)
BFSM block regularized factored similarity model (see pp. 7, 15, 21, 23, 129)
boostFM boosted factorization machines (see p. 126)

BP-FIS
Bayesian personalized feature interaction selection (see pp. 6, 7, 111,
127, 132, 153)

BPR bayesian personalized ranking (see p. 24)
BSD block-aware similarity dropout (see pp. 15, 22, 30, 129)
BSM block regularized similarity model (see pp. 6, 15, 16, 129)
BSR block-aware similarity regularization (see pp. 6, 13, 14, 16, 30, 129)
BVS Bayesian variable selection (see pp. 6, 111, 132, 153)
CAR context-aware recommendation (see p. 126)
CBF content-based filtering (see p. 105)
CF collaborative filtering (see pp. 1, 13, 16, 39, 105, 153)
cfVAE collaborative variational auto-encoder (see pp. 47, 73)
coSim simple cosine-similarity (see pp. 36, 72, 73)
cSLIM collective sparse linear method (see pp. 41, 130)
CUL-a CiteULike article (see pp. 70, 86)
CUL-t CiteULike tag (see pp. 70, 86)
cVAE collective variational auto-encoder (see pp. vi, 6, 7, 40, 130)
DAE denoising auto-encoder (see pp. 4, 15)
DCG@N discounted cumulative gain at N (see p. 71)
DNN deep neural network (see pp. 22, 63, 86, 133)
ELBO evidence lower bound (see pp. 45, 57, 111)
EM expectation maximization (see pp. 7, 65, 86, 131)
FAE feature-side autoencoder (see p. 42)
FBSM feature-based factorized bilinear similarity model (see p. 61)
FFM field-aware factorization machine (see p. 126)
FIS feature interaction selection (see pp. 5, 110, 131)
FISM factored item similarity model (see pp. 13, 15, 106)
FM factorization machine (see pp. viii, 5, 109, 127, 131, 153)
FRS feature-based recommender system (see p. 126)
FSM feature-based similarity model (see pp. 15, 30, 56, 86, 87, 129)
HOFM higher-order factorization machine (see pp. 126, 133)
HR hit rate (see pp. 25, 36, 120)
HR@10 hit rate at 10 (see pp. 32, 130)
HRM hybrid reranking model (see pp. 2, 5, 6, 90, 131, 153)
HSSP hereditary spike-and-slab prior (see pp. 111, 113–115, 127, 132)
IAE item-side autoencoder (see p. 42)
ICF item-based collaborative filtering (see pp. 2, 3, 13, 15, 30, 31, 129, 153)
IFM item feature mapping (see p. 59)
itemkNN item-based k-nearest-neighbor (see pp. 24, 26, 31)
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Acronyms

KKT Karush-Kuhn-Tucker (see p. 21)
KL kullback-leiber (see pp. 44, 116)
LCE local collective embeddings (see pp. 73, 74)
LFM latent factor model (see p. 59)
LOOCV leave-one-out cross-validation (see pp. 25, 36)
lorSLIM low-rank sparse linear method (see pp. 14, 15, 107)
LPP locality preserving projection (see pp. 4, 32, 130)
LSM local feature-based similarity model (see p. 79)

LVSM
local variational feature-based similarity model (see pp. 6, 7, 56, 86,
131)

MAP maximum a posteriori (see p. 65)
MAP@N mean average precision at N (see p. 48)
MF matrix factorization (see p. 126)
MLHt movielens hetrec (see p. 119)
MLP multi layer perceptron (see pp. 45, 73)
MRR mean reciprocal rank (see p. 25)
mVAE multinomial variational auto-encoder (see pp. 25, 47)
NAIS neural attentive item similarity model (see p. 24)
NDCG normalized discounted cumulative gain (see p. 25)
NFM neural factorization machines (see p. 120)
NSPR neural semantic personalized ranking (see p. 73)
P-FIS personalized feature interaction selection (see pp. 6, 109–111, 127, 132)
PFW personalized feature weighting (see p. 60)
Pre@N precision at N (see p. 47)
Prism projection regularized item similarity model (see pp. 6, 36, 130)
pureSVD pure singular-value-decomposition (see p. 25)
Rec@N recall at N (see pp. 47, 71)
ReLU rectified linear unit (see p. 91)
SFM sparse factorization machine (see p. 110)
SGD stochastic gradient descent (see pp. 23, 101)
SGVB stochastic gradient variational Bayes (see pp. 7, 111, 127)
SLIM sparse linear method (see pp. 13, 15, 31, 41, 106)
SM similarity model (see pp. 15, 30, 129)
SSLIM sparse linear method with side information (see p. 32)
SSP spike-and-slab prior (see pp. 111, 112, 132)
SVDFeature feature-based singular value decomposition (see p. 72)
SVM support vector machine (see p. 109)
t-SNE t-distributed stochastic neighbor embedding (see p. 81)
TF tensor factorization (see p. 126)
UAE user-side autoencoder (see p. 42)
UFSM user-specific feature-based similarity model (see pp. 32, 61)
UM user modeling (see p. 59)
VAE variational auto-encoder (see pp. 2, 15, 39, 62, 63, 86, 111, 130, 153)
WRMF weighted regularized matrix factorization (see p. 25)
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[180] Stefan Pero and Tomás Horváth. 2013. Opinion-driven matrix factorization for rating prediction.
In Proceedings of the 21th International Conference on User Modeling, Adaptation, and Person-
alization (UMAP ’13), 1–13 (cited on page 62).

[181] Sheila Pontis, Ann Blandford, Elke Greifeneder, Hesham Attalla and David Neal. 2015. Keeping
up to date: an academic researcher’s information journey. Journal of the American Society for
Information Science and Technology, 68, 1, 22–35 (cited on page 104).

[182] Sheila Pontis and Ann Blandford. 2015. Understanding “influence:” an exploratory study of aca-
demics’ processes of knowledge construction through iterative and interactive information seek-
ing. Journal of the Association for Information Science and Technology, 66, 8, 1576–1593 (cited
on page 104).

[183] Alexandrin Popescul, Lyle H. Ungar, David M. Pennock and Steve Lawrence. 2001. Probabilistic
models for unified collaborative and content-based recommendation in sparse-data environments.
In Proceedings of the 17th Conference in Uncertainty in Artificial Intelligence (UAI ’01), 437–444
(cited on page 59).

[184] Ian Porteous, Arthur U. Asuncion and Max Welling. 2010. Bayesian matrix factorization with
side information and dirichlet process mixtures. In Proceedings of the 24th AAAI Conference on
Artificial Intelligence (AAAI ’10) (cited on page 59).

[185] Steffen Rendle. 2010. Factorization machines. In Proceedings of the 10th IEEE International Con-
ference on Data Mining (ICDM ’10), 995–1000 (cited on pages 59, 109, 120, 126).

[186] Steffen Rendle. 2012. Factorization machines with libfm. ACM Trans. Intell. Syst. & Tech., 3, 3,
57:1–57:22 (cited on pages 101, 109).

[187] Steffen Rendle. 2012. Learning recommender systems with adaptive regularization. In Proceedings
of the 15th International Conference on Web Search and Web Data Mining (WSDM ’12), 133–142
(cited on page 109).

[188] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner and Lars Schmidt-Thieme. 2009. BPR:
bayesian personalized ranking from implicit feedback. In Proceedings of the 25th Conference on
Uncertainty in Artificial Intelligence (UAI ’09), 452–461 (cited on pages 24–26, 98, 114).

[189] Steffen Rendle, Zeno Gantner, Christoph Freudenthaler and Lars Schmidt-Thieme. 2011. Fast
context-aware recommendations with factorization machines. In Proceeding of the 34th Interna-
tional ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR
’11), 635–644 (cited on pages 109, 126).

146



BIBLIOGRAPHY

[190] Steffen Rendle and Lars Schmidt-Thieme. 2010. Pairwise interaction tensor factorization for per-
sonalized tag recommendation. In Proceedings of the 3rd International Conference on Web Search
and Web Data Mining (WSDM ’10), 81–90 (cited on page 126).

[191] Bradley J. Rhodes and Pattie Maes. 2000. Just-in-time information retrieval agents. IBM Systems
Journal, 39, 3&4, 685–704 (cited on page 1).

[192] Francesco Ricci, Lior Rokach and Bracha Shapira, editors. 2015. Recommender Systems Hand-
book. Springer (cited on pages 13, 32, 106).

[193] Royi Ronen, Noam Koenigstein, Elad Ziklik and Nir Nice. 2013. Selecting content-based features
for collaborative filtering recommenders. In Proceedings of the 7th ACM Conference on Recom-
mender Systems (RecSys ’13), 407–410 (cited on page 126).

[194] Gerard Salton and Michael McGill. 1984. Introduction to Modern Information Retrieval. McGraw-
Hill Book Company (cited on page 1).

[195] Badrul Sarwar, George Karypis, Joseph Konstan and John Riedl. 2000. Analysis of recommenda-
tion algorithms for e-commerce. In Proceedings of the 2nd ACM Conference on Electronic Com-
merce (EC ’00), 158–167 (cited on page 88).

[196] Badrul M Sarwar, George Karypis, Joseph Konstan and John Riedl. 2002. Recommender systems
for large-scale e-commerce: scalable neighborhood formation using clustering. In Proceedings of
the 5th International Conference on Computer and Information Technology (ICCIT ’02), 291–324
(cited on page 3).

[197] Badrul Munir Sarwar, George Karypis, Joseph A. Konstan and John Riedl. 2001. Item-based col-
laborative filtering recommendation algorithms. In Proceedings of the Tenth International World
Wide Web Conference (WWW ’01), 285–295 (cited on pages 13, 55, 90).

[198] Martin Saveski and Amin Mantrach. 2014. Item cold-start recommendations: learning local col-
lective embeddings. In Proceedings of the 8th ACM Conference on Recommender Systems (RecSys
’14), 89–96 (cited on pages 22, 32, 56, 59, 73–77, 98).

[199] J. Ben Schafer, Dan Frankowski, Jonathan L. Herlocker and Shilad Sen. 2007. Collaborative fil-
tering recommender systems. In Proceedings of the Adaptive Web, Methods and Strategies of Web
Personalization, 291–324 (cited on page 1).

[200] Amir Schorr. 1982. Fast algorithm for sparse matrix multiplication. Inf. Process. Lett., 15, 2, 87–
89 (cited on page 21).

[201] ScienceDirect. 2015. https://sciencedirect.com. Last accessed September 14, 2015.
(2015) (cited on pages 87, 88, 104).

[202] ScienceDirect. 2016. https://www.elsevier.com/solutions/sciencedirect/
features. Last accessed April 26, 2018. (2016) (cited on page 88).

[203] Suvash Sedhain, Aditya Krishna Menon, Scott Sanner and Lexing Xie. 2015. Autorec: autoen-
coders meet collaborative filtering. In Proceedings of the 24th International Conference on World
Wide Web Companion (WWW ’15), 111–112 (cited on pages 39, 42).

[204] Semantic Scholar. 2018. https://www.semanticscholar.org/. Last accessed Decem-
ber 1, 2018. (2018) (cited on page 89).

[205] Aravind Sesagiri Raamkumar, Schubert Foo and Natalie Pang. 2018. Can i have more of these
please? assisting researchers in finding similar research papers from a seed basket of papers. The
Electronic Library (cited on page 105).

[206] Ying Shan, T. Ryan Hoens, Jian Jiao, Haijing Wang, Dong Yu and J. C. Mao. 2016. Deep crossing:
web-scale modeling without manually crafted combinatorial features. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (SIGKDD
’16), 255–262 (cited on pages 63, 109).

[207] Mohit Sharma, Jiayu Zhou, Junling Hu and George Karypis. 2015. Feature-based factorized bilin-
ear similarity model for cold-start top-n item recommendation. In Proceedings of the 2015 SIAM
International Conference on Data Mining (SDM ’15), 190–198 (cited on pages 50, 56, 57, 60, 61,
63, 71, 73–77).

[208] Lei Shi, Wayne Xin Zhao and Yi-Dong Shen. 2017. Local representative-based matrix factorization
for cold-start recommendation. ACM Trans. Inf. Syst., 36, 2, 22:1–22:28 (cited on pages 56, 58).

[209] Ajit Paul Singh and Geoffrey J. Gordon. 2008. Relational learning via collective matrix factoriza-
tion. In Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (SIGKDD ’08), 650–658 (cited on page 59).

[210] Ian Soboroff and Charles Nicholas. 1999. Combining content and collaboration in text filtering. In
Proceedings of the IJCAI. Volume 99, 86–91 (cited on page 59).

147

https://sciencedirect.com
https://www.elsevier.com/solutions/sciencedirect/features
https://www.elsevier.com/solutions/sciencedirect/features
https://www.semanticscholar.org/


BIBLIOGRAPHY

[211] Guocong Song. 2014. Point-wise approach for yandex personalized web search challenge. In Pro-
ceedings of the WSDM Workshop on Web Search Click Data (WSCD@WSDM ’14) (cited on
page 100).

[212] Nathan Srebro, Jason D. M. Rennie and Tommi S. Jaakkola. 2004. Maximum-margin matrix fac-
torization. In Proceedings of the 18th Neural Information Processing Systems (NIPS ’04), 1329–
1336 (cited on page 126).

[213] Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever and Ruslan Salakhutdinov.
2014. Dropout: a simple way to prevent neural networks from overfitting. Journal of Machine
Learning Research, 15, 1, 1929–1958 (cited on pages 22, 133).

[214] Ingo Steinwart and Andreas Christmann. 2008. Support Vector Machines. Springer Science &
Business Media (cited on page 109).

[215] Trevor Strohman, W Bruce Croft and David Jensen. 2007. Recommending citations for academic
papers. In Proceedings of the 30th International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval (SIGIR ’07), 705–706 (cited on page 106).

[216] Florian Strub, Romaric Gaudel and Jérémie Mary. 2016. Hybrid recommender system based on
autoencoders. In Proceedings of the 1st Workshop on Deep Learning for Recommender Systems
(DLRS@RecSys ’16), 11–16 (cited on page 42).

[217] Kazunari Sugiyama and Min-Yen Kan. 2010. Scholarly paper recommendation via user’s recent
research interests. In Proceedings of the 10th Joint International Conference on Digital Libraries
(JCDL ’10), 29–38 (cited on page 105).

[218] Yunzhi Tan, Min Zhang, Yiqun Liu and Shaoping Ma. 2016. Rating-boosted latent topics: under-
standing users and items with ratings and reviews. In Proceedings of the 25th International Joint
Conference on Artificial Intelligence (IJCAI ’16), 2640–2646 (cited on page 62).

[219] Jie Tang. 2016. Aminer: toward understanding big scholar data. In Proceedings of the 9th ACM In-
ternational Conference on Web Search and Data Mining (WSDM ’16), 467–467 (cited on pages 87,
104).

[220] Jie Tang, Ruoming Jin and Jing Zhang. 2008. A topic modeling approach and its integration into
the random walk framework for academic search. In Proceedings of the 8th IEEE International
Conference on Data Mining (ICDM ’08), 1055–1060 (cited on page 105).

[221] Robert Tibshirani. 1996. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society, 267–288 (cited on pages 110–112).

[222] Michalis K. Titsias and Miguel Lázaro-Gredilla. 2011. Spike and slab variational inference for
multi-task and multiple kernel learning. In Proceedings of the 25th Neural Information Processing
Systems (NIPS ’11), 2339–2347 (cited on pages 111, 113).

[223] Seiya Tokui and Issei Sato. 2016. Reparameterization trick for discrete variables. CoRR. arXiv:
1611.01239 (cited on page 117).

[224] Roberto Torres, Sean M McNee, Mara Abel, Joseph A Konstan and John Riedl. 2004. Enhancing
digital libraries with techlens+. In Proceedings of the 4th ACM/IEEE Joint Conference on Digital
Libraries (JCDL ’04), 228–236 (cited on pages 105, 106).

[225] Michele Trevisiol, Luca Maria Aiello, Rossano Schifanella and Alejandro Jaimes. 2014. Cold-
start news recommendation with domain-dependent browse graph. In Proceedings of the 8th ACM
Conference on Recommender Systems (RecSys ’14), 81–88 (cited on page 56).
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Summary

Top-N recommendations have been widely adopted to recommend ranked lists of items
so as to help users identify the items that best fit their personal tastes. Collaborative
filtering (CF) has been widely studied to generate recommendations by utilizing the in-
formation of user’s historical interactions with items (a.k.a. ratings). However, due to
the high-dimensionality of ratings in practical applications with a large number of users
and items, existing CF-based methods are facing severe challenges in terms of scalab-
ility. The sparsity of ratings caused by the high-dimensionality further challenges the
performance of recommendation. Typically, additional auxiliary information associ-
ated with users or items (a.k.a. side information) is exploited to overcome the rating
sparsity. Unfortunately, in recent multimedia scenarios, such information is also high-
dimensional. Besides ratings and side information, other information that is relevant
for recommendation is also collected from different data sources. How to effectively
integrate such heterogeneous information while preserving the effectiveness of CF is
also a challenge. In this thesis, we research on top-N recommendations by learning
from high-dimensional information and heterogeneous information, based on which
we divide the thesis into two parts.

In the first part of the thesis, we focus on leveraging high-dimensional information
for top-N recommendations. The first part contains three research chapters, where we
respectively utilize high-dimensional ratings (Chapter 2) and high-dimensional side
information (Chapter 3 and 4). In Chapter 2, we propose a new regularization term
for item-based collaborative filtering (ICF) to overcome issues brought by the high-
dimensionality of ratings. In Chapter 3, we propose a joint learning method that sim-
ultaneously performs dimension reduction on high-dimensional side information and
estimates parameters of an ICF model. In Chapter 4, we propose a new network struc-
ture on top of variational auto-encoder to denoise and harness high-dimensional side
information.

In the second part of the thesis, we focus on integrating heterogeneous information
for top-N recommendations. The second part also contains three chapters, where we
respectively combine ratings with item features (Chapter 5), user behavior with con-
tent features (Chapter 6) and generic heterogeneous features (Chapter 7). In Chapter 5,
we study the problem of recommending top-N new items by estimating local and
global similarity functions that calculate item similarities based on item features. We
form a Bayesian generative model to seamlessly integrate item-based collaborative
filtering with user clustering and deep learning. In Chapter 6, we work on the prob-
lem of reranking research paper recommendations by designing a hybrid reranking
model. The proposed method combines information behind user multiple behaviors
(click, browse, download and etc.) and paper content features (author, venue, entity
and etc.). In Chapter 7, we take the effectiveness of factorization machines (FMs)
to utilize heterogeneous information for top-N recommendations. We address the
high-dimensionality of feature interactions by designing a Bayesian variable selection
model. We propose Bayesian personalized feature interaction selection (BP-FIS) as a
framework to select personalized feature interactions for FMs.
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Samenvatting

Top-N-aanbevelingssystemen worden vaak toegepast om geordende lijsten van aanbe-
volen artikelen aan gebruikers te tonen, zodat ze artikelen kunnen vinden die het best
bij hun persoonlijke smaak passen. Collaborative Filtering (CF) is een veel bestudeerde
manier om aanbevelingen te genereren aan de hand van interacties met de gebruiker
in het verleden (i.e., recensiescores). Echter, door de hoge dimensionaliteit van re-
censiescores in praktische toepassingen met een groot aantal gebruikers en artikelen,
ervaren bestaande CF-methoden grote moeilijkheden met schaalbaarheid. De schaarste
van recensiescores veroorzaakt door de hoge dimensionaliteit zorgt voor nog meer uit-
dagingen. De traditionele aanpak om met schaarste om te gaan is door extra informatie
over de gebruiker en artikelen te gebruiken. Helaas heeft deze extra informatie ook
een hoge dimensionaliteit in moderne multimedia-scenarios. Naast recensiescores en
standaard extra informatie, is er nog veel meer relevante informatie beschikbaar van
verschillende databronnen. De integratie van zulke ongelijksoortige informatie in een
effectieve toepassing van CF is een grote uitdaging. In dit proefschrift onderzoeken we
top-N-aanbevelingssystemen die leren van informatie met hoge dimensionaliteit en uit
heterogene databronnen; aan de hand van deze twee onderwerpen is het proefschrift in
twee delen verdeeld.

In het eerste deel van het proefschrift concentreren we ons op manieren waarmee
informatie met een hoge dimensionaliteit kan worden gebruikt door top-N aanbevel-
ingssystemen. Dit deel bestaat uit drie onderzoekshoofdstukken, waar we eerst re-
censiescores met een hoge dimensionaliteit gebruiken (hoofdstuk 2), en vervolgens
gebruik maken van extra informatie met een hoge dimensionaliteit (hoofdstuk 3 en 4).
In hoofdstuk 2 introduceren we een nieuwe regularisatie-term voor artikel-gebaseerd
CF (ICF), als oplossing voor de problemen met de hoge dimensionaliteit van recen-
siescores. In hoofdstuk 3 stellen we een nieuwe gezamenlijke leermethode voor, die
tegelijkertijd de dimensionaliteit van extra informatie reduceert en de parameters van
een ICF-model afleidt. In hoofdstuk 4 introduceren we een nieuwe netwerkstructuur
voor variational auto-encoders om ruis te verminderen en extra informatie met hoge
dimensionaliteit te benutten.

In het tweede deel van het proefschrift richten we ons op het integreren van on-
gelijksoortige informatie voor top-N-aanbevelingssystemen. Dit tweede deel van het
proefschrift is ook opgedeeld in drie hoofdstukken: Eerst kijken we naar het com-
bineren van artikeleigenschappen met recensiescores (hoofdstuk 5). Dan naar gebruik-
ersgedrag en artikeleigenschappen (hoofdstuk 6) en generieke heterogene informatie
(hoofdstuk 7). In hoofdstuk 5 bestuderen we het probleem van nieuwe artikelen voor
top-N-aanbevelingen door lokale en globale similariteitsfuncties af te leiden; hiermee
kan de similariteit tussen artikelen worden afgeleid van hun eigenschappen. We vor-
men een Bayesiaans generatief-model dat artikel-gebaseerde CF met het clusteren van
gebruikers en deep learning combineert. In hoofdstuk 6 werken we aan het herordenen
van onderzoeksartikel aanbevelingen door een hybride systeem te ontwikkelen. De
voorgestelde methode combineert informatie van meerdere soorten gebruikersgedrag
(klikken, doorbladeren, downloaden, etc.) en artikelinformatie (auteur, conferentie,
entiteiten, etc.). In hoofdstuk 7 gebruiken we de effectiviteit van Factorisatie Ma-
chines (FMs) om heterogene informatie in top-N-aanbevelingssystemen te benutten.
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8. Samenvatting

We pakken de hoge dimensionaliteit van eigenschap interacties aan via een nieuw
Bayesiaans variabel selecteringsmodel. Verder stellen we een Bayesiaans gepersonal-
iseerde eigenschaps-interactie-selectering-methode (BP-FIS) voor, dit vormt een meth-
odologie voor het selecteren van gepersonaliseerde eigenschaps-interacties voor FMs.
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