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1
Introduction

People use search engines and recommender systems for multiple purposes in daily life
– they may search for some specific information with queries, or they may just want to
watch movies and do online shopping for entertainment. In many cases it is not clear
what exactly users want: what information they are looking for or what items they are
interested in. Thus, search engines and recommender systems need to become pro-
active and provide users with auxiliary information so as to gain a better understanding
of users’ goals. E.g., search engines could suggest queries and recommender systems
could offer lists of options that may address the users’ needs. Since users are diverse
and they may have different purposes due to their current situation or personal prefer-
ence, providing such recommendations to satisfy a certain user’s information need can
be a challenging task for search engines and recommender system. To this end, col-
lecting and analyzing user interactions can be an effective way to learn their long-term
preferences or their short-term intents.

Regarding search engines, query suggestions help users to refine their queries and
thus improve the efficiency of expressing their information needs. We can generate
query suggestions by mining different users’ search behavior saved in query logs. Tra-
ditional methods relying on query co-occurrence are not able to satisfy all users in all
contexts as they always provide the same list of suggestions to different users [13, 21].
However, previously submitted queries of a user may provide a useful search con-
text to reduce ambiguity of the current query and to produce more focused sugges-
tions [16, 41, 60]. Since a query log can be partitioned into query sessions, i.e., se-
quences of queries issued by a unique user within a short time interval, users’ long-
term preferences as well as their short-term intents can be learned from those interac-
tions. Neural networks, such as Recurrent Neural Networks (RNNs), provide us with
effective ways to model the complex relationship between those interactions within a
session and between sessions.

Recommender systems collect user-item interactions, such as whether a user rated,
clicked, or bought an item. Such signals are then used for learning user preferences and
providing recommendations. Collaborative Filtering (CF) is a widely used approach
that makes use of long-term historical user-item interactions for so-called top-N rec-
ommendation. This is the task of finding a few specific items that are supposed to
be most appealing to the user. Many traditional CF techniques are based on Matrix
Factorization (MF) [148]. They characterize users and items by latent factors that are
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1. Introduction

extracted from the user-item rating matrix and then a user’s preference towards an item
is modeled as an inner product of these latent factors. The main idea behind CF is that
users with similar interactions may have similar preferences, thus we can recommend
a user items that are preferred by like-minded people. However, a linear projection,
i.e., a dot product, may not be able to give an accurate description of the characteristics
of users (items) and user-item interactions: previous work has pointed out that non-
linearities have potential advantages for improving the performance of recommender
systems with extensive experiments [76, 110, 140].

General recommender systems often discard sequential information and focus on
mining the static relevancy of an item for a user from interactions [47, 119, 149].
For instance, MF may be effective at modeling a user’s general preferences by learn-
ing from their entire interaction history but it does not model the order of the user’s
interactions. To this end, session-based recommender systems have been proposed
to model the evolution of a user’s short-term preferences reflected by sequential in-
teractions. Today’s session-based recommender systems successfully capture users’
short-term decision making process with RNN- or Markov chain (MC)-based meth-
ods. But they do not capture variations in the relative importance of a user’s long-term
vs. short-term interests for session-based recommendation. Users with different shop-
ping preferences may prefer different next items even under the same session context.
Also, in practice users interactions are heterogeneous, which may indicate different
motivations of the user and hence trigger different follow-up actions. Capturing users’
dynamic preferences with implicit preference data can help to improve the sequential
recommendation performance.

So far, we have discussed personalized recommendations based on learning from
user interactions, which focuses on improving recommendation accuracy only. How-
ever, in real scenarios, users may prefer more diverse lists of recommended items [147].
This is especially true in Sequential Recommendation (SR) as users may have multiple
intents, e.g., different topics or categories of items. In addition, user intents are occa-
sionally exploratory which means they do not have a specific goal in mind. A homoge-
neous list of recommendations cannot satisfy such users, leading to a boring user expe-
rience [111]. It is challenging to design an optimal solution for diversified sequential
recommendation mainly due to two facts. First, some of the current approaches assume
that user intents are static and they require that user intents are prepared beforehand,
which is unrealistic in most SR scenarios [5, 20]. Second, most current approaches to
diversified recommendation belong to the post-processing paradigm, where the recom-
mendation models are not aware of diversity during training and it is hard to design
ideal diversity strategies for different recommendation models.

In this thesis, we investigate how to learn from user interaction data and thus make
satisfactory recommendations for both search engines and recommender systems.

1.1 Research Outline and Questions
How to improve the recommendation performance by learning from user interactions
is a very broad question. In this thesis, we investigate the following four themes:

(1) learning users’ search intents and recommending personalized queries based on

2



1.1. Research Outline and Questions

user historical submitted queries in search engines;

(2) learning users’ general preferences and recommending personalized items using
their historical interactions;

(3) learning users’ dynamic preferences and recommending personalized items con-
sidering users’ long-term as well as short-term behavior; and

(4) learning users’ multiple intents from their sequential behavior and recommend-
ing personalized as well as diversified items.

1.1.1 Learning users’ search intent and recommending person-
alized queries

Search engines and recommender system are solutions to help users cope with an in-
creasingly complex information landscape [91]. Regarding search engines, users sub-
mit queries related to their intent [128]. However, most of the users may not have a
clear idea about their information needs, thus the submitted queries may be ambiguous
which leads to unsatisfactory search results [4]. Modern search engines offer query
suggestions to help users formulate a good query and thus get the intended search re-
sults to address their information needs [4]. In most commercial search engines such as
Baidu, Bing, Google, Yahoo! and Yandex provide query suggestions to improve their
system’s usability [21]. By predicting a user’s search intent, a search engine recom-
mends queries that reflect the user’s information needs based on his input. A significant
amount of work has gone into methods for formulating a better understandable query
submitted by users [11, 12, 15, 114, 128].

Previous work on query suggestion has mainly focused on incorporating directly
observable features such as query co-occurrence and semantic similarity. The struc-
ture of such features is often set manually, as a result of which hidden dependencies
between queries and users may be ignored. This has motivated us to find a better way
to learn such dependencies, which leads to the following research question:

(RQ1) How to capture users’ search intent by learning from their historical submitted
queries?

To answer RQ1, we develop a neural query suggestion model that is able to capture the
user’s search intent by capturing both their short-term interests, as manifested during
an ongoing search session, and their long-term interests, as manifested during earlier
sessions. The model combines a session-level neural network and a user-level neural
network into a hierarchical structure to model the short- and long-term search history
of a user. We also apply an attention mechanism inside the hierarchical structure that
is meant to capture a user’s preference towards different queries in a session.

Based on experimental results on the AOL query log dataset [94], we find that:
(1) the proposed Attention-based Hierarchical Neural Query Suggestion (AHNQS)
model helps to boost query suggestion performance in terms of MRR and Recall across
sessions with various lengths; (2) using the combined session state in the AHNQS
model achieves better performance than only using the local session state; and (3) the
AHNQS model yields better performance than the best baseline for inactive, active, as
well has highly active users.

3



1. Introduction

1.1.2 Learning users’ general preferences and recommending
personalized items

Besides search engines, recommender systems also play an important role in fulfill-
ing the information needs of users without submitting any queries. Over the past
years, various approaches have been proposed to predict users’ general preferences
based on long-term user-item interactions. Collaborative Filtering (CF) approaches
have been widely investigated and used for personalized recommendation [3, 148].
Traditional CF methods, such as the Latent Factor Model (LFM) [68], often predict a
user’s preference for an item with a linear kernel, i.e., a dot product of their latent fac-
tors, which may not be able to capture the complex structure of user-item interactions
well. Recently introduced Deep Learning (DL)-based approaches to recommender sys-
tems overcome shortcomings of conventional approaches and are able to achieve high
recommendation quality.

We hypothesize that DL should be able to effectively capture both non-linear and
non-trivial user-item relationships as well as users’ (items’) characteristics with multi-
layer projections [148]. Hence, this has led to the following research question:

RQ2 Can we learn users general preference by modeling non-linear user-item rela-
tionships as well as characteristics based on their interactions?

To answer RQ2, we propose a Joint Neural Collaborative Filtering (J-NCF) model
that enables two processes–feature extraction and user-item interaction modeling–to
be trained jointly in a unified DL structure. The J-NCF model contains two main
networks for recommendation. The first network uses the rating information of a user
(an item) as the network input, and outputs a vector representation for the user (the
item). Then, using the connection between a user’s and an item’s vector as input, the
second neural network models the user-item interactions and outputs the prediction of
the corresponding rating of the user and item. Thus, these two networks can be coupled
tightly and trained jointly in a unified structure. Besides, we take both implicit and
explicit feedback, point-wise and pair-wise loss into account to enhance the prediction
performance.

We analyze the recommendation performance of J-NCF as well as baseline mod-
els on several datatsets and find that J-NCF consistently yields the best performance.
J-NCF also shows competitive improvements over the best baseline model when ap-
plied with inactive users and different degrees of data sparsity.

1.1.3 Learning users’ dynamic preferences for sequential rec-
ommendation

Conventional recommender systems often ignore sequential information behind user-
item interactions and assume the user preferences to be static [47, 119, 149]. For in-
stance, a typical conventional recommender system based on matrix factorization [67]
may be effective at modeling a user’s general preferences by learning from their entire
interaction history but it does not model the order of the user’s interactions. Unlike
conventional recommender systems, session-based recommender systems model the
evolution of a user’s short-term preference implied by sequential interactions in a ses-

4
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sion with the aim of recommending the next item a user may be interested in [138].
An effective session-based recommender should be able to exploit a user’s evolving
preferences, which we assume to be a mixture of her short- and long-term interests.

Existing session-based recommendation methods often embed a user’s long-term
preference into a static representation, which plays a fixed role when dealing with the
user’s current short-term interests. This is problematic because long-term preferences
may be more or less important for predicting the next conversion depending on the
user’s short-term interests. Therefore, we are motivated to address the following re-
search question:

RQ3 How can we incorporate users’ long- and short-term interaction behavior for
session-based recommendation?

To answer RQ3, we propose a Dynamic Co-attention Network for Session-based Rec-
ommendation (DCN-SR). DCN-SR applies a co-attention network to capture the dy-
namic interactions between the user’s long- and short-term interaction behavior and
generates co-dependent representations of the user’s long- and short-term interests.
For modeling a user’s short-term interaction behavior, we design a Contextual Gated
Recurrent Unit (CGRU) network to take actions like “click,” “collect” and “buy” into
account.

We analyze the performance of our model with experiments on two e-commerce
datasets. The results confirm the effectiveness and robustness of DCN-SR with dif-
ferent session lengths and varying numbers of users’ historical interactions. DCN-SR
outperforms the best performing state-of-the-art model Short-Term Attention/Memory
Priority Model (STAMP) across different session lengths, especially for short sessions.
As to users with different numbers of historical interactions, DCN-SR shows more
competitive recommendation performance on all users than the state-of-the-art base-
line model STAMP. In addition, the improvements of DCN-SR are higher for users
with more historical interactions.

1.1.4 Learning users’ multiple intents for diversified sequential
recommendation

Previous studies on Sequential Recommendation (SR) mostly focus on optimizing the
recommendation accuracy while ignoring the diversity of recommended items. This
strategy risks over-specialization, i.e., the set of recommended items may become very
homogeneous [139]. However, it has been shown that diversity is an important met-
ric to consider in recommender systems, as users prefer more diverse lists of recom-
mended items [147]. This is especially true in SR as users may have multiple intents.
For example, a user may want to buy various categories of items for a festival, including
food, clothes or decorations at the same time. In addition, user intents are occasionally
exploratory, which means they do not have a specific goal in mind. A homogeneous
list of recommendations cannot satisfy such users with an exploratory intent and often
leads to a boring user experience [111].

Many existing methods for improving the diversity of recommended items are not
applicable to SR because they assume that user intents are static and rely on post-
processing the list of recommended items to promote diversity. An effective solution
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for sequential recommendation that considers personalization as well as diversification
is called for. This leads to the following research question:

RQ4 How can we address the challenge of diversified sequential recommendation in
an end-to-end framework?

To answer RQ4, we consider both accuracy and diversity by reformulating SR as a list
generation task, and propose an integrated approach with an end-to-end neural model,
called intent-aware diversified sequential recommendation (IDSR). Specifically, we
introduce an implicit intent mining (IIM) module to capture multiple user intents as
reflected in sequences of user behavior. The IIM module employs multiple attention
areas to mine user’s multiple intents, with each attention area capturing a particular
latent user intent. Then, we apply an intent-aware recommendation decoder to generate
a list of recommendations by selecting one item at a time. In order to supervise the
learning of the IIM module and force the model to take recommendation diversity
into account during training, we design an intent-aware diversity promoting (IDP) loss
function that evaluates recommendation accuracy and diversity based on the generated
lists of recommended items.

For this new task of sequential recommendation, we conduct experiments on four
datatsets. The results demonstrate that IDSR significantly outperforms the state-of-
the-art baselines in terms of recommendation diversity while maintaining competitive
accuracy scores.

1.2 Main Contributions
In this section, the main contributions of this thesis are summarized as follows.

1.2.1 Algorithmic contributions
The algorithmic contributions of this thesis come in the form of four models:

(1) An attention-based hierarchical neural architecture: a new approach to query
suggestion, Attention-based Hierarchical Neural Query Suggestion (AHNQS)
(Chapter 2). It adopts a hierarchical structure containing an attention mechanism
to better capture the user’s search intent. The hierarchical structure contains two
parts: a session-level RNN and a user-level RNN. The first captures queries in
the current session and is used to model the user’s short-term search context to
predict their next query. The second captures the past search sessions for a given
user and is applied to model their long-term search behavior to output a user state
vector representing their preferences. We apply an attention mechanism inside
the hierarchical structure of AHNQS that is used to capture a user’s preference
towards different queries in a session.

(2) A joint neural collaborative filtering approach: a neural approach for recom-
mender systems, named Joint Neural Collaborative Filtering (J-NCF) (Chap-
ter 3). It enables deep feature learning and deep user-item interaction model-
ing to be coupled tightly and jointly optimized in a single neural network. As
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for objective functions, point-wise objectives aim at obtaining accurate ratings,
which is more applicable in rating prediction tasks [61]. Pair-wise objectives
are usually focused on users’ preferences towards pairs of items and are usu-
ally considered more suitable for top-N recommendation [103]. We design a
new loss function that explores the information contained in both point-wise and
pair-wise loss as well as implicit and explicit feedback.

(3) A dynamic co-attention network model: a model for session-based recommen-
dation named Dynamic Co-attention Network for Session-based Recommenda-
tion (DCN-SR) (Chapter 4). It is able to integrate users’ long-term and short-
term preferences. Specifically, we apply a co-attention network to capture inter-
actions between actions in a user’s long-term and short-term interaction histo-
ries and generate co-dependent representations of his long-term and short-term
preferences. Thus, DCN-SR cannot only exploit the benefits of incorporating
long-term and short-term knowledge, but also consider the dynamic properties
in the relations between a user’s long-term and short-term preferences. We also
design a Contextual Gated Recurrent Unit (CGRU) to incorporate different types
of short-term user actions so as to better estimate a user’s next consumption in-
terests.

(4) An intent-aware end-to-end neural approach: a novel framework for diversi-
fied sequential recommendation named intent-aware diversified sequential rec-
ommendation (IDSR) (Chapter 5). It reformulates SR as a list generation task
so as to model the relationship among recommended items. To the best of our
knowledge, this is the first end-to-end list generation based neural framework
that considers diversification for SRs. IDSR employs an implicit intent min-
ing (IIM) module to automatically capture multiple latent user intents reflected
in sequences of user behavior, and an intent-aware diversity promoting (IDP)
decoder to directly generate accurate and diverse lists of recommendations for
the latent user intents. In order to supervise the learning of the IIM module and
force the model to take recommendation diversity into account during training,
we also design an IDP loss function that evaluates recommendation accuracy
and diversity based on the generated lists of recommended items.

1.2.2 Experimental contributions
(1) The experimental contributions made in Chapter 2 are: (a) An empirical compar-

ison of AHNQS with other state-of-the-art question suggestion models. (b) An
analysis of the impact of the number of users’ sessions on the performance of
query suggestion. (c) An analysis of the impact of lengths of users’ sessions on
the performance of query suggestion.

(2) In Chapter 3 our experimental contributions are: (a) An empirical comparison
of J-NCF with other state-of-the-art recommendation models. (b) An analysis
of the impact of the number of users’ interactions on the performance of recom-
mendation. (c) An analysis of the impact of different loss functions as well as
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the number of layers on the performance of the proposed model. (d) An analysis
of the impact of data sparsity on the performance of recommendation.

(3) The experimental contributions made in Chapter 4 are: (a) An empirical compar-
ison of DCN-SR with its variants as well as other state-of-the-art session-based
recommendation models. (b) An analysis of the impact of the number of users’
historical interactions on the performance of recommendation. (c) An analysis
of the impact of the length of users’ sessions on the performance of recommen-
dation.

(4) And, finally, in Chapter 5 the experimental contributions are: (a) An empirical
comparison of DCN-SR with other state-of-the-art session-based recommenda-
tion models as well as diversified recommendation models. (b) An analysis of
the impact of some hyper-parameters in the proposed model on the performance
of recommendation. (c) A case study to show that the proposed model can rec-
ommend a list that contains accurate as well as diversified items.

1.3 Thesis Overview

We give a brief overview of the content of each chapter in this thesis. In this thesis,
we investigate how to understand user goals and provide suitable recommendations by
learning from user interactions.

First, in Chapter 2 we consider the task of query suggestion for search engines.
Here we work with logs that record queries and clicks that a user submitted. We pro-
pose an attention-based hierarchical neural approach to improve the performance for
personalized query suggestion.

Then, in Chapter 3 we consider the general item recommendation task for recom-
mender systems. Here the data we work with consists of interactions of users with
items such as watched movies, bought or clicked products. We analyze users’ long-
term behavior with the recommender system and propose a joint neural collaborative
filtering method for personalized recommendations.

Next, in Chapter 4 we deal with the task of personalized session-based recom-
mendation in which we consider users’ sequential behavior. We design a dynamic
co-attention network model combining user’s long- as well as short-term behavior to
help improve the performance of personalized session-based recommendation.

In Chapter 5 we consider both personalization and diversification for sequential
recommendation by proposing an end-to-end neural model, i.e., an intent-aware diver-
sified sequential recommendation model.

Finally, in Chapter 6: we give a brief summary of the whole thesis, discuss limita-
tions, and provide insights to some future directions.

1.4 Origins

The following publications form the basis of the chapters in this thesis.
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• Chapter 2 is based on W. Chen, F. Cai, H. Chen, and M. de Rijke. Attention-
based hierarchical neural query suggestion. In SIGIR ’18, pages 1093–1096,
2018 [22], and its extension W. Chen, F. Cai, H. Chen, and M. de Rijke. Hi-
erarchical neural query suggestion with an attention mechanism. Information
Processing and Management, page 102040, 2019 [24]. All authors contributed
to the design of the algorithms and of the experiments. WC did most of the
model design, experiments and writing; FC, MdR and HC contributed to the
writing.

• Chapter 3 is based on W. Chen, F. Cai, H. Chen, and M. de Rijke. Joint neural
collaborative filtering for recommender systems. ACM Transactions on Infor-
mation Systems, 37(4), 2019 [25]. All authors contributed to the design of the
algorithms and of the experiments. WC did most of the model design, experi-
ments and writing; FC, MdR and HC contributed to the writing.

• Chapter 4 is based on W. Chen, F. Cai, H. Chen, and M. de Rijke. A dynamic
co-attention network for session-based recommendation. In CIKM ’19, pages
1461–1470, 2019 [23]. All authors contributed to the design of the algorithms
and of the experiments. WC did most of the model design, experiments and
writing; FC, MdR and HC contributed to the writing.

• Chapter 5 is based on W. Chen, P. Ren, F. Cai, F. Sun, and M. de Rijke. Improv-
ing end-to-end sequential recommendations with intent-aware diversification. In
CIKM ’20, page 175–184, 2020 [27]. All authors contributed to the design of
the algorithms and of the experiments. WC did most of the model design, exper-
iments and writing; PR, FC and FS helped with the model design; PR, FC, FS,
and MdR contributed to the writing.

The writing of the thesis also benefited from work based on the following papers:

• W. Chen, F. Cai, H. Chen, and M. de Rijke. Personalized query suggestion
diversification. In SIGIR ’17, pages 817–820, 2017 [21].

• W. Chen, F. Cai, H. Chen, and M. de Rijke. Personalized query suggestion
diversification in information retrieval. Frontiers of Computer Science, 14(3):
143602, 2020 [26].
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2
Attention-based Hierarchical Neural

Query Suggestion

In this chapter, we address RQ1: How to capture users’ search intent by learning from
their historical submitted queries? We propose an attention-based hierarchical neural
approach for query suggestion, which learns users’ search intent from their submitted
queries.

2.1 Introduction
Query suggestion has been an effective way offered by modern search engines which
aims to help users express their information needs effectively. Previous work on
query suggestion mainly relies on features indicating dependencies between queries
and users, such as clicks, co-occurrence and dwell time with some probabilistic meth-
ods [21]. However, the structure of those dependencies is usually modeled manually,
while some hidden relationship between those queries cannot be captured. A query log
can be treated as sequential data that can be modeled to predict the next input query
with Recurrent Neural Network (RNN)-based approaches, which have been proposed
to deal with the aforementioned challenges. However, existing neural based methods
only consider so-called current sessions (in which a query suggestion is being gener-
ated) as the search context for query suggestion [91]. Our research goal is to develop a
neural query suggestion method that is able to capture the user’s search intent by cap-
turing both their short-term interests, as manifested during an ongoing search session,
and their long-term interests, as manifested during earlier sessions. To this end we
propose an Attention-based Hierarchical Neural Query Suggestion (AHNQS) model
that applies a user attention mechanism inside a hierarchical neural structure for query
suggestion. The hierarchical structure contains two parts: a session-level Recurrent
Neural Network (RNN) and a user-level RNN. The first captures queries in the current
session and is used to model the user’s short-term search context to predict their next
query. The second captures the past search sessions for a given user and is applied to
model their long-term search behavior to output a user state vector representing their
preferences. We use the hidden state of the session-level RNN as the input to the user-

This chapter was published as [24].
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level RNN; the user state of the latter is then used to initialize the first hidden state of
the next session-level RNN.

In addition, we apply an attention mechanism inside the hierarchical structure of
AHNQS that is meant to capture a user’s preferences towards different queries in a ses-
sion. This addition is based on the assumption that different queries in the same session
may express different aspects of the user’s search intent [6]. For example, queries with
subsequent click behavior are more likely to represent the user’s information need than
those without. An attention mechanism can automatically assign different weights to
hidden states of queries in the session-level RNN. The attentive hidden states together
compose the session state, which we regard as a local session state. The local session
state has the advantage of adaptively focusing on more important queries to capture a
user’s main purpose in the current session. Besides, we also consider the final hidden
state of the session-level RNN as a global session state, which acts as a vertical sum-
mary of the full sequence behavior. Then we use a combination of the global and local
session state as the input for the user-level RNN.

We compare the performance of AHNQS against a state-of-the-art query sugges-
tion baseline and variants of RNN-based query suggestion methods using the AOL
query log [94]. In terms of query suggestion ranking accuracy, we establish improve-
ments of AHNQS over the best baseline model of up to 9.66% and 12.51% in terms
of Recall@10 and MRR@10, respectively. In addition, we investigate the impact on
query suggestion performance of different session states, i.e., global vs. local vs. com-
bined. The results show the effectiveness of the AHNQS model with the combined
session state. Furthermore, we test the scalability of the AHNQS model across users
with different numbers of sessions in their interaction history. Our experimental results
show that the performance of AHNQS is better than the best baseline model for users
with varying degrees of activity.

Our contributions in this chapter are:

(1) We tackle the challenge of query suggestion in a novel way by proposing an
Attention-based Hierarchical Neural Query Suggestion model, i.e., AHNQS,
which adopts a hierarchical structure containing a user attention mechanism to
better capture the user’s search intent.

(2) We analyse the impact of session length on query suggestion performance and
find that AHNQS consistently yields the best performance, especially with short
search contexts.

(3) We examine the performance of AHNQS with different numbers of users’ ses-
sions. We find that AHNQS always yields better performance over the best
baseline model, especially for users with few search sessions.

We describe related work in Section 2.2. Details of the attention-based hierarchical
query suggestion model are described in Section 2.3. Section 2.4 presents our experi-
mental setup. In Section 2.5, we report and discuss our results. Finally, we conclude
in Section 2.6, where we also suggest future research directions.
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2.2 Related Work
Query suggestion can support users of search engines during their search tasks. A sig-
nificant amount of work has gone into methods for formulating a better understandable
query submitted by users [11, 12, 15, 114, 128, 128]. In recent years, deep learning
techniques have been applied to a range of information retrieval tasks, often leading
to a better understanding of users’ search behavior [10, 91]. In this section, we sum-
marize traditional query suggestion methods in Section 2.2.1 and neural methods for
query suggestion in Section 2.2.2.

2.2.1 Traditional query suggestion methods
Query suggestion methods that only rely on query co-occurrence are not able to satisfy
all users in different conditions since they always provide the same list of suggestions
to different users [13, 21]. Thus, search query logs are an important resource to mine
different users’ search behavior. A query log can be partitioned into query sessions,
i.e., sequences of queries issued by a unique user within a short time interval. Previ-
ously submitted queries may provide a useful search context to reduce ambiguity of
the current query and to produce more focused suggestions [60]. He et al. [41] propose
a context-aware method that uses a Variable Memory Markov model (QVMM) and
builds a suffix tree to model the user query sequence. The method proposed by Cao
et al. [16] is similar but they build a suffix tree on clusters of queries and model tran-
sitions between clusters. However, for both methods, the number of parameters in-
creases with the depth of the tree, which naturally leads to sparsity. Instead, our model
can consider a flexible length of contexts with a fixed number of parameters. In addi-
tion, Santos et al. [107] and Ozertem et al. [92] focus on learning to rank approaches
for query suggestion. However, those approaches are trained with pairwise features,
which cannot consider previous queries effectively.

Other work mainly focuses on personalized query suggestion methods based on a
query-URL bipartite graph, which is constructed from click data with one type of ver-
tex corresponding to queries and another type corresponding to URLs. Such query sug-
gestion methods typically use a click graph representing the information flow in query
logs with a Markov random walk model [33, 122]. For instance, Ma et al. [85] de-
velop a two-level query recommendation method based on two bipartite graphs (user-
query and query-URL bipartite graphs) extracted from click data. Li et al. [75] use the
connectivity of a query-URL bipartite graph through a novel two-phrase algorithm to
recommend relevant queries that can improve the effectiveness of personalized query
recommendation. Mei et al. [88] propose a personalized query suggestion method by
employing hitting time and creating pseudo query nodes in a click graph. Click graph-
based approaches cannot extract features of users’ long-term and short-term search
histories, and thus fail to combine different types of user behavior effectively.

Unlike the work listed above, our method uses a session-level RNN and a user-level
RNN to model a user’s short-term and long-term search history, respectively, thereby
extracting sequential behavior features in an effective way. In addition, we integrate
this two level RNN structure into a hierarchical architecture to combine short-term and
long-term search behavior simultaneously. An attention mechanism is applied inside
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the hierarchical structure to capture the user’s search intent.

2.2.2 Neural networks in query suggestion

Neural networks have been applied in a variety of tasks in Information Retrieval, rang-
ing from document ranking, and query understanding to user modeling [9, 57, 91, 112].
To some extent, we share similar targets with [9], who use distributed representations
to model user browsing behavior in web search with a neural click model. We repre-
sent a user’s short-term and long-term search behavior as a sequence of vector states
that can describe a user’s search intent. This kind of representation is richer than tradi-
tional methods and thereby enables us to capture more complex patterns of user search
behavior.

Similar work has been done on neural query auto completion (QAC), i.e., a spe-
cial type of query suggestion that suggests queries according to the input query pre-
fix. Deep learning-based QAC models can be categorized into two groups: semantic
models with convolutional neural networks and language models with recurrent neural
networks [90, 93]. For RNN-based models, the probability for predicting the com-
pleted query is related to the length of the query, consequently favoring short query
predictions [36]. Using the RNN and CNN-based features developed in the work men-
tioned, a learning to rank-based method has been shown to achieve state-of-the-art
performance on the neural query auto completion task, but with high computational
costs [36].

In addition, Sordoni et al. [115] propose a hierarchical recurrent encoder-decoder
model for generative query suggestion. The authors formulate a novel hierarchical
neural network architecture and use it to produce query suggestions. It differs from
our work in two important ways. On the one hand, it incorporates the neural query
suggestion model as a feature into a learning to rank approach and thus belongs to
the feature engineering approaches. On the other hand, their approach only considers
users’ short-term search history and, hence, it ignores long-term search behavior.

Another line of work similar to ours is due to [98], where a neural hierarchical
session-based approach for recommender systems is proposed. In particular, the au-
thors extend previous RNN-based session modeling with an additional RNN level that
models the user activity across sessions and the evolution of their interests over time.
We apply an attention mechanism inside the hierarchical structure that can capture a
user’s preference towards certain queries over others in a session. In addition, we pro-
pose a combined session state to capture both the user’s sequential behavior and their
main purpose in the current session, which we show to be useful in improving the
query suggestion performance.

2.3 Approach

Before introducing the AHNQS model, we introduce a neural query suggestion (NQS)
model with session-level RNNs, and a hierarchical neural query suggestion (HNQS)
model with hierarchical user-session RNNs.
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Figure 2.1: Structure of the NQS model.

2.3.1 Session-level RNN for query suggestion
As in [115], session-level RNNs are our starting point. In the neural-based query
suggestion model (NQS), queries in the current session are taken as sequential input
and used to output the probability of being the next query for the query suggestion
candidates.

Formally, we assume that a query session sessiont contains Nt queries, denoted as
sessiont = (q1,t, q2,t, q3,t, . . . , qNt,t). As shown in Figure 2.1, for generating the input
vector of the network, we use a 1-of-N encoding of qi, i.e., the vector length equals the
number of unique queries V and only the coordinate corresponding to the i-th query is
one, the others are zero. We choose to use the Gated Recurrent Unit (GRU) [31] as our
non-linear transformation. The hidden state hn can be calculated by using the previous
hidden state hn�1 and the candidate update state bhn:

hn = (1� un)hn�1 + un
bhn, (2.1)

where the update gate un can be generated by:

un = �(Iuqn,t +Huhn�1). (2.2)

The candidate update state bhn is calculated by:

bhn = tanh(Iqn,t +H(rn · hn�1)), (2.3)

where the reset gate rn is:

rn = �(Irqn,t +Hrhn�1), (2.4)

where I , Iu, Ir 2 Rdh⇥V , H , Hu, Hr 2 Rdh⇥dh , and dh is the number of dimensions
of the hidden state; �(·) denotes the sigmoid function. The H matrices are used to
keep or forget the information in hn�1. Finally, qn,t is the representation of the n-th
query in sessiont.

We use RNNsession and RNNuser to denote the GRU function. The final hidden state
of a session-level RNN is used to indicate the session state, St = hNt,t. The output of
the session-level RNN are the scores of query suggestion candidates being predicted
as the next query:

sn,t = g(Wihn,t), (2.5)
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Figure 2.2: Structure of the HNQS model.

where g(·) is the activation function of the output layer, which can be either a softmax
or a tanh, depending on the loss function of the neural network. In addition, Wi 2
RV⇥dh is a parameter that can keep the dimension of the output equal to the number
of queries. Thus we can generate a list of query suggestions in the test set according to
the scores of query candidates.

We choose a pairwise loss function that forces positive query suggestion samples to
be ranked higher than negative ones. There are several pairwise ranking loss functions,
including cross-entropy and TOP1 [51]. In the field of recommender systems, TOP1
has proved to outperform others, so we set:

Loss =
1

NS
·
NSX

j=1

�(sj,t � si,t) + �(s2j,t), (2.6)

where sj,t and si,t denote the score of a negative query candidate and a ground truth
query, respectively, and NS is the number of negative sampled query candidates, which
are the queries that a user does not submit or input; as before �(·) denotes the sigmoid
function.

2.3.2 Hierarchical user-session RNN for query suggestion
Clearly, the NQS model only models the short-term search context. Next, we model the
long-term search behavior of a given user with a user-level RNN, thereby producing
the hierarchical NQS model (HNQS).

We assume that a user u has Nu query sessions, which is denoted as: u(session) =
(session1,u, session2,u, . . . , sessionNu,u). In a user-level RNN, the input is the session
state St and the hidden state in user-level RNN can be calculated as:

hn,u = RNNuser(hn�1,u, Sn,u), (2.7)
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Figure 2.3: The attention mechanism in the AHNQS model.

where Sn,u is the session state of the n-th query session of user u, which is equal to
the last hidden state of the session-level RNN.

As shown in Figure 2.2, we use the final hidden state of the user-level RNN to
denote the user state, Ut = ht,u, that contains the information about the search behav-
ior from a user’s past sessions and thus can be applied in the session-level RNN. In
HNQS, the session-level RNN is initialized with a user state as follows:

h0,t = tanh(W · Ut�1 + b0). (2.8)

Updating:
hn,t = RNNsession(hn�1,t, qn,t). (2.9)

Output:
sn,t = g(Wihn,t). (2.10)

With this initialization strategy, the user’s short-term search intent can be incorpo-
rated with his general preference. We choose to use only the initialization strategy for
session-level RNN with user state Ut�1, instead of transporting the user information
from Ut�1 throughout the whole session-level RNN including initialization, updating
and output. The GRU unit has both long and short term memory [53] and can automat-
ically transport the user state information within the network, which leads to a better
performance when combined with our initialization strategy. If we choose to transport
the user state throughout the whole session-level RNN, the user state information will
be overloaded, which limits the performance of the model.

2.3.3 Attention-based hierarchical RNN for query suggestion
We assume that submitted queries that trigger subsequent click behavior have a better
expression of the user’s search intent. We hypothesize that queries in a session should
have different weights to reflect the user’s information need and employ an attention
mechanism on top of the HNQS model to capture the user’s preference for different
queries in a session and then aggregate the representations of informative queries.
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Figure 2.4: Structure of the AHNQS model with combined session state.

Figure 2.3 shows how we update the user-level RNN in AHNQS with an attention
mechanism as follows:

ht,u = RNNuser(ht�1,u, Ct), (2.11)

where Ct is the attentive representation of the session state, a weighted sum of the
hidden states hj,t from the session-level RNN, which is generated as:

Ct =
NtX

j=1

↵jthj,t, (2.12)

where ↵jt is the normalized attention score for the j-th query in session sessiont, which
is interpreted as the contribution of the query to the preference of the user:

↵jt =
exp(ejt)PNt

k=1 exp(ekt)
, (2.13)

where ejt = h
T
t�1,uWahjt is the initial attention score computed with user state ht�1,u

and hidden state hjt in a session-level RNN. The parameters Wa can be jointly trained
with the other components of AHNQS as the attention mechanism allows the gradient
of the loss function to be back propagated.

For the task of session-based query suggestion, the final hidden state of the session-
level RNN can express a summary of the whole sequence behavior, which is called the
global session state. As the attentive representation of the session state can adaptively
select the important items in the current session to capture the user’s main purpose,
we regard Ct in Eq. (2.11) as the local session state. While the global session state
indicates users’ current search intents explicitly, the local session state denotes users’
general preferences towards the queries in the current session. Thus, we combine the
global and local session state by concatenating them to form an extended representation
of a session as shown in Figure 2.4. We denote the global session state as S

global
t =

hNt,t and the local session state as Slocal
t = Ct. Then, the combined session state can
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be generated by

S
comb
t =

h
S
global
t ;Slocal

t

i
W

T
b =

2

4hNt,t;
NtX

j=1

↵jthj,t

3

5W
T
b , (2.14)

where Wb is used to keep the dimension of S
comb
t the same as S

global
t and S

local
t .

Then, the hidden states in the user-level RNN in Eq. (2.11) can be updated with the
combined session state as:

ht,u = RNNuser(ht�1,u, S
comb
t ), (2.15)

So far, we have developed the AHNQS model, which combines a hierarchical user-
session RNN and an attention mechanism for query suggestion; the hierarchical struc-
ture models the user’s short- and long-term search behavior, while the attention mech-
anism captures the user’s search preference.

The training process of AHNQS with combined session states is outlined in Algo-
rithm 1. We first initialize the parameters in the session-level RNN and user-level RNN
in step 1. Then, for a session-level RNN, we initialize the first hidden state in sessiont

with the former user state Ut�1 in step 6 and produce the hidden states in step 7. The
prediction score for the next query is generated in step 9 and the loss of the whole net-
work is calculated in step 10, which can be used during backpropagation to optimize
the parameters. As for the user-level RNN, we calculate the attention weights with
step 12 and step 13. Then we generate the combined session state S

comb
t for sessiont

from step 14 and step 16. Finally, the t-th hidden state ht,u and user state Ut in the
user-level RNN are calculated in step 17 and step 18.

2.4 Experiments
We conduct our experiments on the AOL dataset to examine the effectiveness of AHNQS.
We first list the research questions and the models used for comparison. After that, the
datasets and experimental setup are described.

2.4.1 Research questions
To answer RQ1, we decompose it in four more fine-grained questions:

(RQ1.1) Do the hierarchical structure and attention mechanism incorporated in AHNQS
help to improve the performance of the neural query suggestion model and
outperform the state-of-the-art?

(RQ1.2) What is the impact on query suggestion performance of session length, i.e.,
short vs. medium length vs. long sessions?

(RQ1.3) What is the impact on query suggestion performance of different session
states, i.e., global vs. local vs. combined?

(RQ1.4) How does the performance of AHNQS vary across users with different num-
bers of search sessions?
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Algorithm 1 Attention-based Hierarchical Neural Query Suggestion
Input: Epoches: training iterations;

U : user set;
u(session): the session set of user u;
sessiont:the t-th session in u(session);
queryi,t: the i-th query in sessiont;
Nt: the number of queries in sessiont;
NS : the number of negative sampled query candidates;

Output: the optimized parameters in session-level RNN and user-level RNN.
1: randomly initialize the parameters and the hidden states in session-level RNN and

user-level RNN.
2: for epoch in range(Epoches) do
3: for u 2 U do
4: for sessiont 2 u(session) do
5: for queryi,t 2 sessiont do
6: h0,t = tanh(W · Ut�1 + b0); %% initialization strategy for session-

level RNN
7: hi,t = RNNsession(hi�1,t, qi,t);
8: si,t = g(Wihi,t); %% prediction score of next query
9: Loss = 1

NS
·
PNS

j=1 �(sj,t � si,t) + �(s2j,t); %% loss calculation
10: use back propagation to optimize the parameters.
11: end for
12: ejt = h

T
t�1,uWahjt;

13: ↵jt =
exp(ejt)PNt

k=1 exp(ekt)
; %% attention mechanism

14: S
local
t =

PNt

j=1 ↵jthj,t;
15: S

global
t = hNt,t;

16: S
comb
t = [Sglobal

t , S
local
t ]WT

b ;
17: ht,u = RNNuser(ht�1,u, S

comb
t );

18: Ut = ht,u;
19: end for
20: end for
21: end for
22: return the parameters in session-level RNN and user-level RNN.

2.4.2 Model summary
As AHNQS is based on a neural network to capture the dependencies between queries
and users, we compare it with the state-of-the-art neural models for query suggestion.
As an aside, Sordoni et al. [115] incorporate a neural query suggestion model as a
feature into a learning to rank approach and, hence, their approach belongs to the
feature engineering approaches we do not compare with. We consider the following
baselines for comparison:

ADJ original co-occurrence-based query suggestion method [56];
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Table 2.1: An overview of models discussed in this chapter.
Model Description Source

ADJ An original co-occurrence-based
query suggestion method.

[56]

NQS A simple session-based RNN
method for query suggestion.

[51], Section 2.3.1

HNQS A hierarchical structure with
user-session-level RNN for query
suggestion.

[98], Section 2.3.2

AHNQSlocal An attention-based hierarchical
RNN model for query suggestion,
using the local session state
S
local
t .

This chapter, Section 2.3.3

AHNQScombined An attention-based hierarchical
RNN model for query suggestion,
using the combined session state
S
combined
t .

This chapter, Section 2.3.3

NQS a simple session-based RNN method for query suggestion [51], see Section 2.3.1;

HNQS a hierarchical structure with user-session-level RNN for query suggestion, see
Section 2.3.2.

In addition, we consider two variants of our attention-based hierarchical neural query
suggestion model:

AHNQSlocal an attention-based hierarchical RNN model for query suggestion, using
the local session state S

local
t , see Section 2.3.3;

AHNQScombined an attention-based hierarchical RNN model for query suggestion,
using the combined session state S

combined
t , see Section 2.3.3.

We list all the models used for comparison in Table 2.1. It should be noticed that if we
only use a global session state to update the user-level RNN, AHNQS is the same as
the HNQS model. Thus, in the experiments on which we report below, we use HNQS
to denote the model that only has a global session state.

2.4.3 Datasets and experimental setup

Dataset

We use the AOL query log and preprocess the dataset following [40]. Queries are
separated into sessions by 30 minutes of inactivity. We remove queries with less than
20 occurrences and keep sessions whose length is larger than 5 as well as users with at
least 5 sessions to provide sufficient user-session information. The training set consists
all but the last 30 days in the search history; the test set consists of the last 30 days in
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Table 2.2: Dataset statistics.
Variable Training Test

# Queries 1,545,543 576,817
# Unique queries 61,641 33,519
# Sessions 166,414 67,716
# Users 23,308 19,255
Average # queries per session 9.28 8.52
Average # sessions per user 7.14 3.52

Table 2.3: Parameters used for each model.
Model Batch Dropout Learning rate Momentum

NQS 50 0.5 0.01 0.0
HNQS 50 0.1 0.1 0.0
AHNQS 50 0.1 0.1 0.0

the log after filtering out queries that do not exist in the training set. Table 2.2 details
the statistics of the dataset used.

Parameter settings

We use GRUs as the RNN units and optimize the neural models using the TOP1 loss
function and AdaGrad with momentum for 20 epochs. The number of hidden units is
set to 100 in all cases and we use dropout regularization. We optimize the hyperparam-
eters by running 100 experiments at randomly selected points of the parameter space.
Optimization is done on a validation set, which is partitioned from the training set with
the same procedure as the test set. We summarize the best performing parameters in
Table 2.3.

In addition, in order to answer RQ1.4, we plot distributions of users with different
numbers of sessions in the AOL dataset in Figure 2.5. The x-axis denotes the number of
sessions while the y-axis indicates the number of users corresponding to the sessions.
We see that although the maximum number of sessions that a user has is more than
150, the majority of users in the dataset only have a small number of sessions, which
we regard as “inactive users.” In detail, 60.49% of the users have fewer than 8 sessions,
32.33% from 8 to 20 sessions, and only 7.18% of the users have more than 20 sessions.
Thus, it is meaningful to investigate how the performance of the AHNQS models varies
with different numbers of users’ sessions.

Training and evaluation

Research in natural language processing tasks often uses a fixed number of sequential
words in a sentence to form a session and then put those sessions next to each other to
form mini-batches. However, in query suggestion, the lengths of sessions are different
and our goal is to capture how a session evolves over time, thus it is not suitable to
set a fixed length for sessions. Besides, different users also have different numbers of
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Figure 2.5: Distribution of users with varying numbers of sessions in the AOL
dataset.

sessions and we need to deal with sessions of the same user in order. Hence, we use
parallel mini-batches with the identification of users and sessions following [51]. We
first group sessions by users and then sort sessions within each group by time. Then
we order the users at random. Next, the first item of the first session of the first N users
constitutes the first mini-batch. The second item in each session serves as the output
for the first mini-batch and also constitutes the next mini-batch. When a session ends,
its next session of the user comes for training. When the sessions of a user have been
processed completely, the next user is put in its place in the next mini-batch.

During training, we apply dropout in three ways: the calculation of the hidden
states in the session-level RNN, the calculation of the hidden states in the user-level
RNN, and the initialization for the first hidden state in the session-level RNN with a
user state.

We evaluate the models by providing queries in a session one by one and measure
the ranking performance of query suggestions with MRR and Recall on the test set.
The source codes for our model are available on our public repository.1

2.5 Results and Discussion

2.5.1 Performance of query suggestion models
To answer RQ1.1, we examine the query suggestion performance of the baselines as
well as the AHNQSlocal and AHNQScombined models. Table 2.4 presents the results.
As shown in Table 2.4, amongst the baselines, ADJ outperforms NQS, with 9.74%
and 12.58% improvements in terms of Recall@10 and MRR@10, respectively. This
may be due to the fact that the NQS model (without knowing about individual users)
fails to capture information from the past search history. HNQS shows improvements

1https://bitbucket.org/WanyuChen/ahnqs/

23

https://bitbucket.org/WanyuChen/ahnqs/


2. Attention-based Hierarchical Neural Query Suggestion

Table 2.4: Performance of query suggestion models. The results by the best
baseline and the best performer in each column are underlined and in boldface,
respectively. Statistical significance of pairwise differences of AHNQSlocal and
AHNQScombined vs. the best baseline) is determined by a t-test (N/H for ↵ = .01).

Model Recall@10 MRR@10

ADJ .7072 .6922
NQS .6444 .6148
HNQS .8138 .7874

AHNQSlocal .8618N .8514N
AHNQScombined .8924N .8859N

over ADJ of up to 15.07% and 13.75% in terms of Recall@10 and MRR@10, respec-
tively. This demonstrates that the hierarchical structure can effectively incorporate a
given user’s previous search behavior and then improve the accuracy. Thus, in general,
HNQS performs best among the baselines we consider and, hence, it is used as the
baseline of choice in our later experiments.

Regarding our newly introduced models, the AHNQS models display a competi-
tive performance compared to HNQS and ADJ. In particular, AHNQSlocal outperforms
ADJ by 21.86% in terms of Recall@10 and 22.99% in terms of MRR@10, and beats
HNQS by 5.9% in terms of Recall@10 and 8.13% in terms of MRR@10, respectively.
The improvements are significant when tested with a t-test at the ↵ = .01 level. These
findings indicate that attention can strengthen the model’s ability to rank query sugges-
tion candidates effectively. The best performance is obtained by AHNQScombined ; its
improvements over AHNQSlocal are 3.55% in terms of Recall@10 and 4.05% in terms
of MRR@10, respectively. This can be attributed to the utility of the combined session
state.

Interestingly, we see that the improvements of our AHNQS models against the
baselines in terms of MRR@10 are more obvious than those in terms of Recall@10.
For example, AHNQScombined shows an improvement over HNQS by 12.51% in terms
of MRR@10 and 9.66% in terms of Recall@10. This means that the attention mecha-
nism cannot only help to suggest the right query, but has a competitive performance in
ranking it at the top position in the list of query suggestion.

2.5.2 Visualization of the hierarchical structure and attention mech-
anism

To determine the impact of the hierarchical structure and attention mechanism, we
consider a sample session and user, and compare the hidden states of an RNN in NQS
and HNQS, respectively in Figure 2.6a and 2.6b, as well as the hidden states of an
RNN in HNQS and AHNQSlocal , respectively in Figure 2.6c and 2.6d. The lighter the
area in the plot, the more important the information is.

In Figure 2.6a and 2.6b, the session contains 102 queries (x-axis); the number of
hidden units is 100 (y-axis). Compared with Figure 2.6a, we can see that the hier-
archical structure modifies the user’s search intent especially at the first positions in
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(a) Session-level RNN in NQS. (b) Session-level RNN in HNQS.

(c) User-level RNN in HNQS. (d) User-level RNN in AHNQSlocal .

Figure 2.6: Visualizing the hierarchical structure ((a) and (b)) and attention
mechanism ((c) and (d)). The lighter the area in the plot, the more important
the information is.

a session in Figure 2.6b. This is because we initialize the session-level RNN with a
user state Ut in HNQS. There is a fluctuation around the 36-th to 40-th queries in Fig-
ure 2.6b, which may be due to the fact that we use a GRU unit inside the session-level
RNN to transport the user state information within the network.

Turning to the attention mechanism (Figure 2.6c and 2.6d), we select a user with
105 sessions (x-axis) and the number of hidden units in the user-level RNN is set to
100 (y-axis). Compared with Figure 2.6c, the user’s preference towards different infor-
mation is more equally distributed inside the user-level RNN in Figure 2.6d. Moreover,
going from left to right there are fewer abrupt shifts form high interest (light) to low
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Figure 2.7: Effect on performance of five models in terms of Recall@10 and
MRR@10 with different session lengths, tested on the AOL log.

interest (dark) areas, or vice versa, in Figure 2.6d than in Figure 2.6c: the attention
mechanism can help to describe a user’s long-term search preferences towards differ-
ent topics.

2.5.3 Impact of the current session length
For RQ1.2, we expect the current session length to have an impact on the performance
of query suggestion models. We report separate results for short (2 queries), medium (3
or 4 queries), and long current sessions (at least 5 queries) on the test set in Figure 2.7.

Clearly, as the session length increases, the performance in terms of Recall@10 of
all query suggestion models improves and our AHNQScombined model always achieves
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the highest scores. As for the baselines, ADJ outperforms NQS; the margin between
them goes down as the session length increases. HNQS performs better than both ADJ
and NQS across all session lengths. The improvements of HNQS and AHNQS against
ADJ (as well as NQS) are more obvious for short sessions than for long sessions. This
is due to the fact that when predicting a user’s search intent at the first position of a
session, the hierarchical structure within RNN models can provide effective informa-
tion from a user’s past search history and thus can improve the accuracy for query
suggestion.

For MRR@10, a similar trend is shown in Figure 2.7b. Compared with the re-
sults in Figure 2.7a, the AHNQS models show a larger improvement over HNQS. For
AHNQSlocal , the improvements are 11.23%, 7.13% and 8.74% in terms of MRR@10,
for short, medium and long sessions, respectively, vs. improvements of 5.88%, 5.97%
and 3.61% for Recall@10. As for AHNQScombined , the improvements are 18.77%,
10.61% and 11.15% in terms of MRR@10, for short, medium and long sessions,
respectively, vs. improvements of 12.31%, 9.12% and 5.53% for Recall@10. This
confirms our intuition about attention mechanisms, i.e., that they help to improve the
precision for query suggestion.

2.5.4 Impact of different session states
For RQ1.3, in order to investigate the impact of different session states used in our
hierarchical structure, i.e., the global session state, the local session state, and the
combined session state, we compare the performance of HNQS, AHNQSlocal and
AHNQScombined by varying the hidden state dimension in the session-level RNN from
50 to 100. Here, we should remind the reader that HNQS can be regarded as the model
that only has a global session state, as we have explained in Section 2.4.2. We present
the Recall and MRR scores when the cutoff N is set to 5, 10 and 15 in Table 2.5 as
tested on the AOL log.

As shown in Table 2.5, we find that the HNQS and AHNQSlocal models, which
only use a single way to represent the session state, do not perform well in terms of
the two metrics. However, AHNQScombined yields the best performance under all
experimental settings and its improvements over HNQS are significant when tested
with a t-test at ↵ = .05. This indicates that merely considering the final hidden state
or the sequential behavior in the current session may not allow the network to learn a
good query suggestion model. In particular, AHNQSlocal performs better than HNQS
on different hidden state dimensions over the three cutoff settings. This demonstrates
that the local session state can give a better description of a user’s search intent than
the global session state.

Regarding the impact of different hidden state dimensions, we can see that the
query suggestion performance of the three models improves when the hidden state
dimension increases from 50 to 100. However, the AHNQScombined model shows
less improvements than the other two models. For example, the improvements of
D = 100 over D = 50 are 1.97%, 1.21% and 0.98% of HNQS, AHNQSlocal and
AHNQScombined in terms of Recall@10, and 2.98%, 2.56% and 2.33% in terms of
MRR@10, respectively. This can be explained by the fact that AHNQScombined takes
advantage both of the local and global session state, and thus can generate a better
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Table 2.5: Performance comparison among query suggestion models with differ-
ent session states when the cutoff N is 5, 10 and 15, respectively. D denotes the
hidden state dimension in session-level RNN. The results by the best performer
in each column are in boldface. Statistical significance of pairwise differences of
AHNQScombined vs. HNQS is determined by a t-test (N/H for ↵ = .05).

(a) Performance comparison at N = 5

D = 50 D = 100

Model Recall@5 MRR@5 Recall@5 MRR@5

HNQS .7819 .7537 .7977 .7816
AHNQSlocal .8279 .8208 .8421 .8499
AHNQScombined .8701N .8629N .8790N .8837N

(b) Performance comparison at N = 10

D = 50 D = 100

Model Recall@10 MRR@10 Recall@10 MRR@10

HNQS .7981 .7646 .8138 .7874
AHNQSlocal .8515 .8301 .8618 .8514
AHNQScombined .8837N .8657N .8924N .8859N

(c) Performance comparison at N = 15

D = 50 D = 100

Model Recall@15 MRR@15 Recall@15 MRR@15

HNQS .8036 .7673 .8178 .7882
AHNQSlocal .8524 .8336 .8653 .8537
AHNQScombined .8866N .8671N .8978N .8864N

performance with a smaller hidden state dimension. In addition, comparing different
cutoff settings, the performances of all models get improved with N increasing from
5 to 15. In addition, the improvements of N = 15 over N = 5 of our AHNQS mod-
els are smaller than of HNQS in terms of both metrics. This can be explained by the
fact that the AHNQS models can rank the right query at the top position of the query
suggestion list and thus the performance is affected little by an increase in the cutoff.

2.5.5 Scalability with different numbers of users’ sessions
In Figure 2.5, we have shown that most users have a very limited number of sessions
( 17) while there are some that have a particularly large number of sessions (� 150),
which we regard as “inactive users” and “most active users,” respectively. It is mean-
ingful to investigate how the performance of AHNQS and HNQS varies across users
with different numbers of sessions (RQ1.4). Following [96], we look at the perfor-
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Figure 2.8: Performance of three models across users with different numbers of
search sessions, tested on the AOL log.

mance for users of varying degrees of activity, measured by percentile. In Figure 2.8,
we first rank the users according to their number of sessions. The “inactive users” mark
shows the mean performance across the bottom 10% of users, who are least active but
constitute the majority of the dataset; the “active users” mark shows the mean perfor-
mance for the remaining users except the top 10% most active users; the “most active
users” mark shows the mean performance of the top 10% most active users, which
form the smallest subset of the dataset.

As shown in in Figure 2.8, the AHNQS models outperform the best baseline model
HNQS for users across all activity levels, i.e., inactive users, active users as well as
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most active users. In addition, the AHNQScombined model always achieves the best
performance in terms of Recall@10 and MRR@10. In particular, AHNQScombined

shows larger improvements over the HNQS model for the “inactive users” than for the
“active users” as well as the “most active users.” For example, when the number of user
sessions increases, i.e., testing on the group of “inactive users” to “active users” and
“most active users” accordingly, the improvements decrease from 10.22% to 9.95%
and 9.23% in terms of Recall@10, and from 13.01% to 12.04% and 11.81% in terms of
MRR@10 on the AOL dataset, respectively. This demonstrates that AHNQScombined

can effectively model a user’s search intent even with a small number of user sessions.
We zoom in on the scores in terms of two metrics. In Figure 2.8a, the performance

of the three models in terms of Recall@10 monotonically improves when the number
of user sessions goes up. However, as shown in Figure 2.8b, the performance in terms
of MRR@10 decreases when the number of user sessions increases, cf. “active users”
vs. “most active users.” That may be due to the fact that users with lots of search
sessions may have very diverse search intents and thus it is difficult to improve the
ranking accuracy of the models for such users. This naturally suggests that in future
work we should consider extending the AHNQScombined model by integrating other
strong signals for personalized query suggestion, such as dwell time or user profiles.

2.6 Conclusion

We propose an attention-based hierarchical neural query suggestion model (AHNQS)
that combines a hierarchical user-session RNN with an attention mechanism. The hier-
archical structure, which incorporates a session-level and a user-level RNN, can model
both the user’s short-term and long-term search behavior effectively, while the atten-
tion mechanism captures a user’s preference towards certain queries over others. For
the session-level RNN, a combined session state is applied to capture both the user’s
sequential behavior and their main purpose in the current session, which is then used
as the input for the user-level RNN. For the user-level RNN, we use the final hidden
state to initialize the next session-level RNN, which can automatically transport the
user information within the network.

Our experimental results show that: (1) the proposed AHNQS model helps to boost
query suggestion performance in terms of MRR and Recall across sessions with various
lengths; (2) using the combined session state in the AHNQS model achieves better
performance than only using the local session state; (3) the AHNQS model yields
better performance than the best baseline for inactive, active, as well has highly active
users. In summary, our answer to RQ1 is that learning from a user’s submitted queries
in a hierarchical structure with an attention mechanism can help to capture his current
search intent.

The theoretical implication of our research is that a hierarchical model that is
combined with an attention mechanism for query suggestion can capture the dynamic
search intent of a user. The practical implication of our research is that the improve-
ments of AHNQS over the best baseline model are significant; they are especially
prominent for short sessions and for inactive users with few search sessions, which is
a realistic setup that online services are always confronted with [101]. Compared to
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the state-of-the-art, AHNQS achieves improvements of 9.66% and 12.51% in terms of
Recall@10 and MRR@10, respectively, on average over all users, and of 10.22% and
13.01% for inactive users.

As to future work, we plan to evaluate our model on other datasets so as to verify its
robustness. We also want to investigate the performance of AHNQS when combining
semantic similarity within the hierarchical structure [89], e.g., with different encoding
methods for input queries [63, 71, 72]. As for attention strategies, we plan to apply
different attention mechanisms to explore users’ search intents, e.g., self-attention. In
addition, signals for personalized query suggestion that we do not consider in this
chapter, such as user profiles and dwell time, could also be incorporated in our AHNQS
model.

Next in Chapter 3, we consider recommendation instead of search and focus on
items instead of queries.
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3
Joint Neural Collaborative Filtering for

Recommendation

In Chapter 2, we have learned users’ search intent through their interaction logs and
thus make query suggestions in search engines. In this chapter, we investigate how
to learn users’ preferences from user-item interactions in recommender systems. We
aim to make general recommendations by analyzing users’ long-term behavior. The
proposed method helps us to provide a positive answer to the following research ques-
tion asked in Chapter 1: RQ2: Can we learn users’ general preferences by modeling
non-linear user-item relationships as well as characteristics based on their interactions?

3.1 Introduction
Recommender systems are an effective solution to help people cope with an increas-
ingly complex information landscape. Collaborative Filtering (CF) approaches have
been widely investigated and used for personalized recommendation [3, 148]. Many
traditional CF techniques are based on Matrix Factorization (MF) [148]. They char-
acterize users and items by latent factors that are extracted from the user-item rat-
ing matrix. In the latent space, traditional CF methods, such as the Latent Factor
Model (LFM) [68], often predict a user’s preference for an item with a linear kernel,
i.e., a dot product of their latent factors, which may not be able to capture the complex
structure of user-item interactions well.

Recently introduced Deep Learning (DL)-based approaches to recommender sys-
tems overcome shortcomings of conventional approaches to recommender systems,
such as dynamic user preferences and intricate relationships within the data itself, and
are able to achieve high recommendation quality. Today’s DL-based approaches to
recommender systems mostly use DL to explore auxiliary information, e.g., textual
descriptions of items or audio features of music, which is then used to model item fea-
tures [64, 130, 131]. For the user-item rating matrix, recent work mostly continues to
use traditional MF-based approaches. Restricted Boltzmann Machines (RBMs) [106]
seem to have been the first model to use neural networks to model the user-item rat-
ing matrix and obtain competitive results over traditional methods; it is a two-layer

This chapter was published as [25].
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network rather than a deep learning structure. Another recent approach, Collaborative
Denoising Auto-Encoder (CDAE) [140], is mainly designed for rating prediction with
a one-hidden layer neural network. Neural Collaborative Filtering (NCF) [46] uses
deep neural networks for learning the interaction function from data with multi-layer
perceptrons, yet it does not explore users’ and items’ features that are known to be
helpful in improving CF recommendation performance. CDAE and NCF only exploit
implicit feedback for recommendations instead of explicit rating feedback. Deep Ma-
trix Factorization (DMF) [55] models the user-item rating matrix with a neural network
that maps the users’ and items’ features into a low-dimensional space with non-linear
projections; it uses an inner product to compute interactions between users and items,
and applies the same linear kernel (i.e., dot product) as LFM [68].

We hypothesize that DL should be able to effectively capture both non-linear and
non-trivial user-item relationships as well as users’ (items’) characteristics [148]. We
propose a Joint Neural Collaborative Filtering (J-NCF) model that enables two pro-
cesses, i.e., feature extraction and user-item interaction modeling, to be trained jointly
in a unified DL framework. The J-NCF model contains two main networks for rec-
ommendation. The first network uses the rating information of a user (an item) as the
network input, and outputs a vector representation for the user (the item). Then, using
the connection of a user’s and an item’s vectors as input, the second neural network
models the user-item interactions and outputs the prediction of the corresponding rat-
ing of the user and item. Thus, these two networks can be coupled tightly and trained
jointly in a unified structure. Interaction modeling can optimize the feature learning
process and more accurate feature representations can, in turn, improve the user-item
interaction prediction. We take both implicit and explicit feedback, point-wise and
pair-wise loss into account to enhance the prediction performance. In contrast, pre-
vious neural approaches such as CDAE, NCF and DMF are all optimized only with
point-wise loss functions and leave dealing with pair-wise loss as future work.

To the best of our knowledge, in the area of recommender systems ours is the first
attempt to use a joint neural network to tightly couple feature learning and interaction
modeling with the rating matrix. J-NCF allows these two processes to optimize each
other through joint training and thereby improve the recommendation performance.

Our experiments on real-world datasets, including the MovieLens dataset and the
Amazon Movies dataset, show that J-NCF outperforms the state-of-the-art baselines
in prediction accuracy, with improvements of up to 8.24% on the MovieLens 100K
dataset, 10.81% on the MovieLens 1M dataset, and 10.21% on the Amazon Movies
dataset in terms of HR@10. NDCG@10 improvements are 12.42% on the MovieLens
100K dataset, 14.24% on the MovieLens 1M dataset, and 15.06% on the Amazon
Movies dataset, respectively, over the best baseline model. In addition, we investigate
the scalability and sensitivity of J-NCF with different degrees of sparsity and differ-
ent numbers of users’ ratings. Our experimental results indicate that J-NCF achieves
competitive recommendation performance when compared to the best state-of-the-art
model.

Our contributions in this chapter are:

(1) We design a Joint Neural Collaborative Filtering model (J-NCF) for recommen-
dation, which enables deep feature learning and deep user-item interaction mod-
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eling to be coupled tightly and jointly optimized in a single neural network.

(2) We design a new loss function that explores the information contained in both
point-wise and pair-wise loss as well as implicit and explicit feedback.

(3) We analyse the recommendation performance of J-NCF as well as baseline mod-
els and find that J-NCF consistently yields the best performance. J-NCF also
shows competitive improvements over the best baseline model when applied
with inactive users and different degrees of data sparsity.

We summarize related work in Section 3.2. Our approach, J-NCF, is described in
Section 3.3. Section 3.4 presents our experimental setup. In Section 3.5, we report our
results to demonstrate the recommendation performance of J-NCF. We also investigate
the scalability and sensitivity of our model as well as other baselines in Section 3.6.
Finally, we conclude our work in Section 3.7, where we also suggest future research
directions.

3.2 Related Work
We first look back to traditional approaches to recommender systems in Section 3.2.1,
that focus on modeling the similarity between users (items) for recommendation. Then,
as applying deep learning techniques into recommender systems is gaining momentum
due to its state-of-the-art performance and high-quality recommendations, we summa-
rize recent work on deep learning-based recommender systems in Section 3.2.2 that
can provide a better understanding of user’s demands, item’s characteristics as well as
historical interactions between them by extracting the features of items with auxiliary
information, e.g., the content of movies.

3.2.1 Traditional recommender systems
In many commercial systems, “best bet” recommendations are shown, but the predicted
rating values are not. This is usually referred to as a top-N recommendation task, where
the goal of the recommender system is to find a few specific items that are supposed
to be most appealing to the user. A similar prediction schema, denoted as Top Popular
(Item-pop), recommends the top-N items with the highest popularity (largest number
of ratings).

Most top-N recommender systems are based on collaborative filtering [3], where
recommendations rely on past behavior (ratings) from users, regardless of domain
knowledge [116]. We group these CF approaches into two categories, i.e., neighborhood-
based methods [79, 108] and latent factor-based models [61, 68]. Neighborhood-based
models share the typical merits of CF, which concentrate on exploring the similarity
among either users or items. For instance, two users are similar because they have
rated similarly the same set of items. A dual concept of similarity can be defined
among items. Latent factor-based approaches generally model users and items as vec-
tors in the same “latent factor” space by means of a reduced number of hidden factors.
In such a space, users and items are directly comparable: the rating of a user u on
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an item i is predicted by the proximity (e.g., inner-product) between the related latent
factor vectors.

For neighborhood-based models, algorithms that are centered around user-user
similarity typically predict the rating by a user based on the ratings expressed by other
users similar to her about such item. On the other hand, algorithms centered around
item-item similarity compute the user preference to an item based on her own ratings
to similar items. The similarity between item i and item j is measured as the tendency
of users to rate items i and j similarly. It is typically based either on the cosine, the
adjusted cosine, or (most commonly) the Pearson correlation coefficient [108]. The
kNN (k-nearest-neighborhood) approach is a representative enhanced neighborhood
model [2], which considers only the k items rated by user u that are the most similar to
the item i when predicting the rating rui. kNN-based approaches discard items that are
poorly correlated to the target item, thus decreasing noise for improving the quality of
recommendations. Neighborhood-baesd approaches are similar to the item-item model
for user personalization, which is different from our approach based on the user-item
model [108]. Thus, we focus on the latent factor modeling approach.

Most research on latent factor modeling is based on factoring the user-item rating
matrix, which is known as Singular Value Decomposition (SVD) [68]. SVD factorizes
the user-item rating matrix to a product of two lower rank matrices, one containing the
“user factors,” the other containing the “item-factors.” Then, with an inner product and
biases (bui), the user’s preference towards an item can be generated, i.e.,

ŷui = bui + zuzi
T
, (3.1)

where zu and zi denote the “user factors” and “item-factors,” respectively.
Since the conventional SVD is undefined in the presence of unknown values, i.e.,

missing ratings, several solutions have been proposed. Earlier work addresses this issue
by filling the missing ratings with a baseline estimation [109]. However, this leads to
a very large, dense user rating matrix, where the factorization process becomes com-
putationally infeasible. Recent work learns factor vectors directly on known ratings
through a suitable objective function that minimizes a prediction error. The proposed
objective functions are usually regularized in order to avoid overfitting [95]. Typi-
cally, gradient descent is applied to minimize the objective function. An advantage of
SVD-based approaches is that they can provide recommendations for new users after
given their ratings towards some items without reconstructing the parameters of the
models. Thus for a new user, SVD-based approaches can provide recommendations
immediately according to his current ratings.

Another model based on SVD, SVD++ [67], incorporates both explicit and implicit
feedback, and shows improved performance over many MF models. This is consistent
with our motivation of combining explicit and implicit feedback in J-NCF. However,
applying traditional MF methods to sparse ratings matrices can be a non-trivial chal-
lenge with high computational costs for decomposing the rating matrix.

Many traditional recommender systems apply a linear kernel with an inner product
of user and item vectors to model user-item interactions. Linear functions may not
be able to give an accurate description of the characteristics of users (items) and user-
item interactions: previous work has pointed out that non-linearities have potential
advantages for improving the performance of recommender systems with extensive
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experiments [76, 110, 140].

3.2.2 Deep learning-based recommender system
DL-based recommender systems can be divided into two categories, i.e., single neural
network models and deep integration models, depending on whether they rely solely
on deep learning techniques or integrate traditional recommendation models with deep
learning [7, 43, 57, 80, 91, 116, 137, 148, 152].

For the first category, RBM [83, 106, 124] is an early neural recommender sys-
tem. It uses a two-layer undirected graph to model tabular data, such as users’ explicit
ratings of movies. RBM targets rating prediction, not top-N recommendation, and
its loss function considers only the observed ratings. It is technically challenging to
incorporate negative sampling into the training of RBMs [140], which would be re-
quired for top-N recommendation. AutoRec [110] uses an Auto-Encoder for rating
prediction. It only considers the observed ratings in the loss function, which does not
guarantee good performance for top-N recommendation. To prevent the Auto-Encoder
from learning an identity function and failing to generalize to unseen data, Denoising
Auto-Encoders (DAEs) [76] have been applied to learn from intentionally corrupted
inputs. Most of the publications listed so far focus on explicit feedback and, hence,
fail to learn users’ preference from implicit feedback. CDAE [140] extends DAEs; its
input is a user’s partially observed implicit feedback. Unlike our work, both DAEs
and CDAE use an item-item model for personalization that represents a user with their
rated items [108] and the outputs are the item scores decoded from the learned user’s
representation. Our work is a kind of user-item model, which learns users’ as well
as items’ representations first and then calculates the relevance between them. The
proposed J-NCF model is a user-item model that personalizes by modeling user-item
interactions. Also, CDAE applies a linear kernel to model the relationship between
users and items, whereas a J-NCF applies a non-linear kernel.

Several Convolution Neural Network (CNN)-based recommendation models have
been proposed [64, 125, 130]. They primarily use CNNs to extract item features with
auxiliary information, e.g., review text or contextual information, which we will in-
corporate in our future work. As for Recurrent Neural Networks, they are used in
recommender systems that address the temporal dynamics of ratings and sequential
features [51, 123].

Most closely related to our model is Neural Collaborative Filtering (NCF) [46].
It uses multi-layer perceptrons to model the two-way interaction between users and
items, which is meant to capture the non-linear relationship between users and items.
Let vuseru and v

item
u denote the side information (e.g., the feature information), then,

the prediction rule of NCF is formulated as follows:

ŷui = f(UT · vuseru , V
T · vitemu | U, V, ✓), (3.2)

where the function f(·) defines the multilayer perceptron, and ✓ are the parameters of
the network. However, NCF randomly initializes the representation of users and items,
with just a one-hot identifier of user u and item i respectively, which only explores
the users’ and items’ features in a limited manner. J-NCF adopts a joint neural net-
work structure to capture both user and item features, and user-item relationships, as
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we hypothesize that the two parts can be optimized through tight coupling and joint
training. In addition, NCF only exploits implicit feedback for item recommendations
and ignores explicit feedback.

An extension based on NCF is CCCFNet (Cross-domain Content-boosted Collab-
orative Filtering neural Network) [77]. The basic building block of CCCFNet is also
a dual network (for users and items, respectively). It models the user-item interactions
in the last layer with the dot product. Unlike our work, it applies content information
with a neural network to capture the user’s preferences and item features. In addition,
DeepFM (Deep Factorization Machine) [39] is an end-to-end model that seamlessly
integrates factorization machine and MLP. However, it also applies content informa-
tion and thus models higher-order feature interactions via a deep neural network and
low-order interactions via a factorization machine. In contrast, J-NCF adopts the rating
information to explore both user and item features, which are easier to collect.

As to deep integration models, Collaborative Deep Learning (CDL) [131] is a hi-
erarchical Bayesian model that integrates stacked DAEs into traditional probabilistic
MF. It differs from our work in two ways: First, it extracts deep feature representations
of items from the content information which we do not explore, and then it uses a lin-
ear kernel to model relations between users and items with the dot product of user and
item vectors. A well-known integration model is DeepCoNN (Deep Cooperative Neu-
ral Network) [151], which adopts two parallel convolutional neural networks to model
user behavior and item properties from review texts. In the final layer, a factorization
machine is applied to capture their interactions from rating predictions. It alleviates
the sparsity problem and enhances model interpretability by exploiting a rich semantic
representation of the reviews, which could be investigated in J-NCF as future work.

Wide & Deep learning [29] and DeepFM [39] are two state-of-the-art recommen-
dation approaches with deep learning techniques. While they focus on incorporating
various features of users and items, we aim at exploring deep learning methods for
pure collaborative filtering systems. Another integration model that is directly relevant
to our work is Deep Matrix Factorization (DMF) [55]. It uses a deep MF model with
a neural network that maps users and items into a common low-dimensional space. It
follows the LFM, which uses the inner product to compute interactions between users
and items. This may partially explain why using deep layers does not help to improve
the performance of DMF. Unlike DMF, we apply multi-layer perceptrons to model
user-item interactions using a combination of user and item feature vectors as input.
This does not only help our model to be more expressive in modeling user-item inter-
actions than linear products, but it also helps to improve the accuracy of user and item
feature extraction.

On top of the previous work discussed above, our proposed model J-NCF combines
feature learning and interaction modeling into an end-to-end trainable neural network,
which enables the two processes to be optimized jointly. Besides this, we design a new
loss function that combines point-wise and pair-wise losses to explore the integration
of different types of information, i.e., both implicit and explicit feedback.
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Table 3.1: Main notation used in the chapter.
Notation Description
U the set of users
I the set of items
Rui an explicit rating of user u to item i

vu a vector containing a user’s ratings; serves as input to Netuser
vi a vector containing an item’s ratings; serves as input to Netitem
M the number of unique users
N the number of unique items
W

x
u the weight matrix for the x-th layer in Netuser

b
x
u the bias for the x-th layer in Netuser

f
x
u the activation function for the x-th layer in Netuser
X the number of layers in DF network
W

y
ui the weight matrix for the y-th layer in the DI network

aui a combination of user and item vectors; serves as input to the DI network
b
y
ui the bias for the y-th layer in the DI network

f
y
ui the activation function for the y-th layer in the DI network
Y the number of layers in the DI network
ŷui the predicted score of the interaction between user u and item i

V
+ the set of items that a user rates

V
� the set of items that are not rated by a user

↵
a tradeoff parameter controlling the contributions of the point-wise loss
and pair-wise loss

3.3 Approach

The proposed model, J-NCF, has a joint structure with a layer used for modeling users’
and items’ features (the DF network) and a higher layer used for modeling user-item
interactions (the DI network). These two layers can be trained in a joint manner to give
a predicted score of a user’s interactions with an item with minimum prediction error.
We first describe the notation used and then detail J-NCF. We also describe the loss
function that we use for optimization.

3.3.1 Problem formulation and notation

First we describe the task of top-N recommendation that we study in this chapter.
Suppose that there are M users and N items, denoted as U = {user1, . . . , userM}
and I = {item1, . . . , itemN}. R 2 RM⇥N denotes the rating information, where Rui

is the rating given by user useru to item itemi. The task for top-N recommendation is
to return a list containing a set of items for an individual user to maximize the user’s
satisfaction.

The main notation we use in this chapter is listed in Table 3.1.
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Figure 3.1: Structure of the J-NCF model. Black arrows indicate the forward
propagation for calculating the predictions. Red arrows indicate the back propa-
gation for optimizing the parameters. (Best viewed in color.)

3.3.2 Joint neural collaborative filtering
The joint architecture of the proposed J-NCF model is shown in Figure 3.1. The model
contains two main networks: a DF network for modeling features and a DI network for
modeling interactions between items and users, where the output of the first network
serves as the input of the second.

The DF network is used for modeling users’ and items’ features. It contains two
parallel neural networks coupled in the last layer, one network for users (Netuser ) and
another for items (Netitem ). We give the ratings of a user and an item as inputs to
Netuser and Netitem , respectively, which are defined as vu = hyu1, . . . , yuN i and
vi = hy1i, . . . , yMii, where

yui =

⇢
0, for unknown ratings,
Rui, when explicit feedback is available. (3.3)

We think of ratings as non-trivial explicit feedback from users as different ratings in-
dicate different levels of users preference towards items. Obviously, there are many
unknown ratings between users and items indicating non-preference of a user towards
an item. Following [46, 55], we regard these unknown ratings as a kind of implicit
feedback and mark them as zeroes. When pursuing a top-N recommendation task,
we are interested only in a correct item ranking and care less about the exact rating
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scores. This grants us some flexibility, like considering all missing values in the user
rating matrix as zeros [32]. Thus we can take both explicit and implicit feedback into
consideration with Eq. (3.3).

Then, with multi-layer perceptrons (MLP), the initial high-dimensional rating vec-
tors of users and items are mapped to lower-dimensional vectors. Since Netuser and
Netitem only differ in their inputs, we focus on illustrating the process for Netuser ; the
same process is applied for Netitem with similar layers. The MLP model in the DF
network is defined as:

z
1
u = f

1
u(W

1
uvu + b

1
u)

z
2
u = f

2
u(W

2
uz

1
u + b

2
u)

...

zu = f
X
u (WX

u z
X�1
u + b

X
u ),

(3.4)

where W
x
u, bx

u and f
x
u denote the weight matrix, the bias vector and the activation

function for the x-th layer. Here, we use a ReLU as the activation function, as it
has been shown to be more expressive than others and can effectively deal with the
vanishing gradient problem [46, 55]. X indicates the number of layers used in the DF
network. The output of the final layer zu is a deep representation of the user features;
likewise, zi is the deep representation for the item features.

As to modeling user-item interactions, traditional LFM methods have been widely
used. Such methods are based on the dot product of user and item vectors, which
models a user’s preference with a linear kernel. In order to investigate the differences
between non-linear and linear functions in modeling user-item interactions, we propose
two ways to obtain fused users’ and items’ feature vectors aui as the input of the DI
network:

aui =

8
<

:


zu

zi

�
, concatenation, or

zu � zi, multiplication.
(3.5)

The first way is to concatenate the two input vectors zu and zi, which we regard as
a non-linear fusion. The second way is to use the element-wise product of vectors,
which uses a linear kernel to generate user-item interactions. Based on these two ways
of fusing the input vectors zu and zi, we propose two versions of J-NCF, which we
discuss in detail in our experiments.

Generating aui is the first step for modeling user-item interactions. However, it
is insufficient for modeling the complex relationship between users and items. Thus,
we adopt intermediate hidden layers to which aui is fed so as to obtain a multi-layer
non-linear projection of user-item interactions:

z
1
ui = f

1
ui(W

1
uiaui + b

1
ui)

z
2
ui = f

2
ui(W

2
uiz

1
ui + b

2
ui)

...

zui = f
Y
ui(W

Y
uiz

Y�1
ui + b

Y
ui),

(3.6)

where W
y
ui, b

y
ui and f

y
ui denote the weight matrix, the bias vector and the activation

function for the y-th layer in the DI network. A ReLU is applied again as the activation
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function. Y indicates the number of layers used in the network. The output of the
network is the predicted score of the interaction between user u and item i:

ŷui = �(hT
zui), (3.7)

where the sigmoid function � can restrict the output in (0,1). h can be learnt through
the training process with back propagation to control the weight of each dimension in
zui.

3.3.3 Loss function
Objective functions for training recommender systems can be divided into three groups:
point-wise, pair-wise and list-wise. Point-wise objectives aim at obtaining accurate rat-
ings, which is more applicable in rating prediction tasks [61]. Pair-wise objectives are
usually focused on users’ preferences towards pairs of items and are usually consid-
ered more suitable for top-N recommendation [45, 46, 61, 103]. List-wise objectives
are focused on users’ interests towards a list of items, which are also used in some deep
learning algorithms. We briefly summarize the three groups of loss functions.

We use `(·) to denote a loss function and ⌦(✓) to represent a regularization term
that controls the model complexity and encodes prior information such as sparsity,
non-negativity, or graph regularization.

For a point-wise loss function, the general calculation is:

L =
X

u2U

X

i2I

`point-wise(yui, ŷui) + �⌦(✓), (3.8)

There are several types of point-wise loss function. E.g., squared loss is more suitable
for explicit feedback than implicit feedback, as it is calculated with:

`squ =
X

u2U

X

i2I

wui(yui � ŷui)
2
, (3.9)

where wui is a hyper-parameter denoting the weight of training instance (u, i). The
use of squared loss is based on the assumption that observations are generated from a
Gaussian distribution, however, it may not tally well with implicit data [105]. For im-
plicit feedback, there is a point-wise loss function that is mainly used for classification
tasks [46, 55], named log loss [61], which can perform better with implicit feedback
than squared loss:

`log = �
X

u2U

X

i2I

yui log ŷui + (1� yui) log(1� ŷui). (3.10)

Pair-wise loss considers the relative order of the prediction for pairs of items, which
is a more reliable kind of information for top-N recommendation. Hidasi and Karat-
zoglou [50] investigate several popular pair-wise loss functions, i.e., TOP1, BPR-max
and TOP1-max. We give a brief introduction of them. TOP1 is the regularized approx-
imation of the relative rank of the relevant item, which can be calculated as:

`TOP1 =
1

|NS |
X

j2NS

�(ŷuj � ŷui) + �(ŷ2uj), (3.11)
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where ŷuj and ŷui denote the prediction scores for a negative item j and a positive
item i, respectively; NS is the set of negative samples. The first part of TOP1 aims
to ensure that the target score is higher than the score of the negative samples, while
the second part pushes the score of the negative samples down. As for BPR-max and
TOP1-max, they have been proposed by Hidasi and Karatzoglou [50] to overcome the
vanishing gradients as the number of negative samples increases. The idea is to have
the target score compared with the most relevant sample score, which is the maximum
score amongst the samples. As the maximum operation is non-differentiable, softmax
scores are used to preserve differentiability. By summing over the individual losses
weighted by the corresponding softmax scores sj , TOP1-max can be calculated as:

`TOP1-max =
X

j2NS

sj(�(ŷuj � ŷui) + �(ŷ2uj)). (3.12)

And the BPR-max loss function can be calculated as:

`BPR-max = � log
X

j2NS

sj�(ŷui � ŷuj). (3.13)

For list-wise loss, some approaches combine cross-entropy loss with softmax, which
introduces list-wise properties into the loss. We refer to it as softmax+cross-entropy
(XE) loss, which can be calculated with the following function:

`XE = � log si = � log
e
ŷui

P
j2NS

eŷuj
(3.14)

Most deep learning-based models only use the point-wise loss function for optimiza-
tion and leave the pair-wise loss function for future work [46, 55]. Point-wise loss
only uses the rating information and ignores the information contained in the relative
order of pairs of items. Pair-wise loss, in contrast, ignores the information of a user’s
individual preference for a certain item. Thus, unlike previous work, NCF and DMF,
our proposed J-NCF model considers both point-wise and pair-wise loss for the top-N
recommendation task and combines them into a new loss function:

L = ↵Lpair-wise + (1� ↵)Lpoint-wise, (3.15)

where ↵ is used to control the weights of the two parts.
For point-wise loss, we adopt the log loss (Eq. (3.10)), which can integrate both im-

plicit and explicit feedback. As to pair-wise loss, combining with different pair-wise
losses yields different new loss functions, i.e., point-wise+TOP1, point-wise+BPR-
max, and point-wise+TOP1-max. We analyze the performance of these different com-
bined loss functions with experiments in Section 3.5.

Acknowledging that explicit and implicit feedback both contain information about
a user’s preference towards items, we combine both kinds of feedback in our loss
function for optimization and rewrite Eq. (3.15) in detail as

L = ↵Lpair-wise + (1� ↵)(�Yui log ŷui � (1� Yui) log(1� ŷui)), (3.16)
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Algorithm 2 Joint Neural Collaborative Filtering.
Input: Epochs: training iterations;

R: the original rating matrix;
U : user set;
I: item set;

Output: W
x
u (x = 1, . . . , X): Weight matrix of Netuser ;

b
x
u (x = 1, . . . , X): Bias of Netuser ;

W
x
i (x = 1, . . . , X): Weight matrix of Netitem ;

b
x
i (x = 1, . . . , X): Bias of Netitem ;

W
y
ui (y = 1, . . . , Y ): Weight matrix of DI network;

b
y
ui (y = 1, . . . , Y ): Bias of DI network.

1: randomly initialize Wu, Wi,Wui, bu, bi and bui;
2: yui  use Eq. (3.3) with R;
3: V

+ all none zero interactions pairs;
4: for epoch in range(Epochs) do
5: random shuffle of V +

6: for hu, ii 2 V
+ do

7: sample the set of negative samples NS

8: for j 2 NS do
9: vu, vi, vj  yui with Eq. (3.3);

10: zu, zi, zj  use Eq. (3.4) with vu, vi, vj as inputs;
11: aui, auj  use Eq. (3.5) with zu, zi, zj;
12: ŷui, ŷuj  use Eq. (3.6) and Eq. (3.7);
13: L use Eq. (3.16) with yui, ŷui and ŷuj as inputs;
14: use back propagation to optimize the parameters;
15: end for
16: end for
17: end for
18: return Wu, Wi, Wui, bu, bi and bui.

where Yui =
yui

Max(Ru)
, and Max(Ru) denotes the largest rating score of user u given

to items, so that different values of yui have a different influence on the loss. For
example, if the largest rating score of a user u given to items is 4, when he rates an
item i with 2, we can generate Yui = yui

Max(Ru)
= 2

4 . We refer to our loss function
Eq. (3.16) as a “hybrid” loss function.

We have developed the joint neural network structure of the J-NCF model. The
training process of J-NCF is shown in Algorithm 2. We first initialize the parameters
in the network and modify the rating matrix from step 1 to 3. Then, in step 9 and 10, we
generate deep feature representations for both users and items with the DF network. In
step 11 and 12, we calculate the predicted scores for the user-item interactions with the
DI network. Finally, we use the hybrid loss function in Eq. (3.16) and back propagation
to optimize the network parameters with step 13 and 14.
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3.4 Experiments
We design experiments on a variety of datasets to examine the effectiveness of J-NCF.
We first explain the research questions and the models we use for comparison in Sec-
tion 3.4.1. The datasets and experiments are described in Section 3.4.2.

3.4.1 Model summary and research questions
We decompose RQ2 into a number of more fine-grained research questions that guide
our experiments:

(RQ2.1) Does our proposed J-NCF method outperform state-of-art collaborative fil-
tering baselines for recommender systems?

(RQ2.2) How is the performance of J-NCF impacted by different choices for the pair-
wise loss in Eq. (3.16)?

(RQ2.3) Does the hybrid loss function Eq. (3.15), which combines point-wise and
pair-wise loss, help to improve the performance of J-NCF?

(RQ2.4) Are deeper layers of hidden units in the DF network and DI network helpful
for the recommendation performance of J-NCF?

(RQ2.5) Does the combination of explicit and implicit feedback help to improve the
performance of J-NCF?

(RQ2.6) How does the performance of J-NCF vary across users with different numbers
of interactions?

(RQ2.7) Is J-NCF sensitive to different degrees of data sparsity?

(RQ2.8) How does J-NCF perform on a large and sparse dataset?

(RQ2.9) How do the training and inference times of J-NCF compare against those of
other neural models?

We compare J-NCF against a number of traditional collaborative filtering baselines and
against state-of-the-art deep learning based models:

Item-pop This method ranks items based on the number of interactions, which is a
non-personalized approach to determine recommendation scores [3].

BPR This method uses a pairwise loss function to optimize a MF model based on
implicit feedback. We use it as a strong baseline for traditional collaborative
filtering method [103].

NCF This is a state-of-the-art neural network-based method for recommender sys-
tems. It aims to capture the non-linear relationship between users and items.
Unlike J-NCF, it simply uses one-hot vectors representing users and items as the
input for modeling user-item interactions. And it only uses implicit feedback
and a point-wise loss function [46].
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Table 3.2: An overview of the models discussed in the chapter.
Model Description Source

Item-pop A typical recommendation approach, which ranks
items based on the number of interactions.

[3]

BPR A recommendation method using a pairwise loss
function to optimize an MF model based on implicit
feedback.

[103]

NCF A state-of-the-art neural based method for
recommender systems.

[46]

DMF A method using multi-layer perceptrons for rating
matrix factorization.

[55]

J-NCFm A J-NCF model using element-wise multiplication for
combining a user and an item feature vector as the
input for the DI layer.

This chapter

J-NCFc A J-NCF model using concatenation for combining a
user and an item feature vector as the input for the DI
layer.

This chapter

J-NCFpoint A J-NCF model with only point-wise loss based on
Eq. (3.10).

This chapter

J-NCFpair A J-NCF model with only pair-wise loss based in
Eq. (3.11).

This chapter

J-NCFhybrid A J-NCF model with our designed loss function in
Eq. (3.16).

This chapter

J-NCFex A J-NCF model with both explicit and implicit
feedback in the input and the loss function.

This chapter

J-NCFim A J-NCF model with only implicit feedback in the
input and the loss function.

This chapter

DMF This method uses multi-layer perceptrons for rating matrix factorization. Unlike
our work, after projecting users and items into low dimensional vectors, it applies
an inner product to calculate interactions between users and items, which is a
linear kernel. It uses a point-wise loss function for optimization [55].

In addition, following the choices that we identified in Eq. (3.5), we consider two
versions of J-NCF:

J-NCFm This is J-NCF using element-wise multiplication for combining a user and
an item feature vector as the input for the DI layer, which has a linear kernel
inside.

J-NCFc This is J-NCF using concatenation for combining a user and an item feature
vector as the input for the DI layer, which is a non-linear way.

We list all the models to be discussed in Table 3.2.
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Table 3.3: Dataset statistics. “Density” is the density of each dataset (i.e.,
#Density = #Ratings/(#Uses⇥#Items)).

Dataset #Users #Items #Ratings #Density(%)

ML100K 943 1,682 100,000 6.3047
ML1M 6,040 3,706 1,000,209 4.4685
AMovies 15,067 69,629 877,736 0.0837
AEle 1,221,341 157,003 4,486,501 0.00234

3.4.2 Datasets and experimental setup

Dateset

We use three publicly available datasets to evaluate our models and the baselines:

(1) MovieLens, which contains several rating datasets from the MovieLens web
site. The datasets are collected over various periods of time, depending on the
size of the set [46, 55]. We use two sets for our experiments, i.e., MovieLens
100K (ML100K) containing 100,000 ratings from 943 users on 1,682 movies,
and MovienLens 1M (ML1M) containing more than 1 million ratings from 6,040
users on 3,706 movies.1

(2) Amazon Movies (AMovies), which contains 4,607,047 ratings for movies from
Amazon, which is bigger and sparser than the MovieLens datasets and used
widely in the recommender systems literture for evaluation [55, 148].2

(3) Amazon Electronics (AEle), which is a larger and sparser dataset than the other
datasets used in this chapter. It contains 7,824,482 ratings of users on different
electronics. We use it to test the performance of our model when applied on a
large and sparse dataset.3

For the two MovieLens datasets, we do not process them because they are already
filtered. For the AMovies dataset, following [46, 55], we filter the dataset so that,
similar to the MovieLens data, only users with at least 20 interactions and items with
at least 5 interactions are retained. For the larger dataset AEle, we only do minor
filtering on the data, i.e., filtering out users with less than 2 interactions and items with
less than 5 interactions. To answer RQ2.1 to RQ2.7, we use the ML100K, ML1M, and
AMovies datasets to evaluate our models and baselines. As for RQ2.8 to RQ2.9, we test
the models on all of the datasets. The characteristics of the datasets after preprocessing
are summarized in Table 3.3.

In order to answer RQ2.6, we plot distributions of users with different numbers
of interactions in the ML100K, ML1M, and AMovies datasets in Figure 3.2. The
x-axis denotes the number of ratings while the y-axis indicates the number of users
corresponding to the ratings. We see that the majority of users in the three datasets
only have a few ratings, which we regard as “inactive users,” and few “active users”

1https://grouplens.org/datasets/movielens/
2http://jmcauley.ucsd.edu/data/amazon/
3http://jmcauley.ucsd.edu/data/amazon/
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Figure 3.2: Distribution of users with varying numbers of interactions in the
ML100K, ML1M, and AMovies datasets, respectively.

have far more ratings. E.g., in the ML100K dataset, 61.72% of the users have fewer
than 100 ratings, 32.66% have between 100 and 300 ratings, and only 5.6% of the users
have more than 300 ratings.

As we will see below, the models being considered in this chapter achieve different
scores when used on datasets with different characteristics, i.e., number of users and
number of items (see Section 3.5). Thus, for RQ2.7, in order to evaluate the perfor-
mance of our model on datasets with different degrees of sparsity, we keep the number
of users and items the same. Namely, following [61], for each of the three datasets, i.e.,
ML100K, ML1M, and AMovies, we create three versions at different sparsity levels
with the the following steps:

(Step 1) We start by randomly choosing a subset of users and items from the original
dataset. This dataset is represented with a ‘-1’ suffix.

(Step 2) We randomly choose a rating record and make a judgment if the numbers of
users as well as items are unchanged of the sub-dataset after removing this
record. If unchanged, we remove this record; otherwise repeat Step 2.

(Step 3) After several repetitions of Step 2, the first sparser version of the dataset with
the ‘-2’ suffix is created.

(Step 4) Repeat Step 2 and Step 3 based on the dataset with a ‘-2’ suffix, the second
sparser version of the dataset with the ‘-3’ suffix is created in the same way.

The characteristics of the datasets are summarized in Table 3.4.

Experimental setup

For evaluation, we use a leave-one-out strategy, which has been used widely in DL-
based recommender systems [45, 46, 55]. The training set consists of all but the last
interaction of every user; the test set contains the latest interaction of every user. When
testing, it is time-consuming to give ranking predictions to all items for every user.
Thus, following He et al. [46], Hong-Jian et al. [55], we randomly sample 100 items
with which the user has not interacted and then give the test item ranking predictions
among the 100 samples. Although using this sampling strategy during evaluation may
overestimate the performance of all algorithms, Bellogin et al. [8], Hidasi and Karat-
zoglou [50] have pointed out that the comparison among algorithms still remains fair.
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Table 3.4: Dataset statistics with different degrees of sparsity.
Dataset #Users #Items #Ratings #Density(%)

ML100K-1 943 1,682 69,999 4.4132
ML100K-2 943 1,682 39,999 2.2522
ML100K-3 943 1,682 9,999 0.6304
ML1M-1 3,706 6,040 850,208 3.7982
ML1M-2 3,706 6,040 350,207 1.5645
ML1M-3 3,706 6,040 167,870 0.7499
AMovies-1 7,402 12,080 87,807 0.0982
AMovies-2 7,402 12,080 37,823 0.0423
AMovies-3 7,402 12,080 18,867 0.0211

The majority of the recommender system literature applies error metrics for eval-
uation, i.e., Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE).
Such classical error criteria do not really measure the top-N recommendation perfor-
mance [32]. An extensive evaluation of several state-of-the-art recommender algo-
rithms suggests that algorithms optimized for minimizing RMSE do not necessarily
perform as expected in terms of the top-N recommendation task [32, 49]. Experimen-
tal results also show that improvements in terms of RMSE often do not translate into
accuracy improvements [49]. Thus, here we choose to use accuracy metrics to examine
the recommendation performance [46]. Specifically, we use HR and NDCG to evalu-
ate the performance of our models. Hit Ratio (HR) is used to evaluate the precision of
the recommender system, i.e., whether the test item is contained in the top-N list. The
Normalized Discount Cumulative Gain (NDCG) measures the ranking accuracy of the
recommender system, i.e., whether the test item is ranked at the top of the list.

As for parameters, we optimize the hyperparameters by running 100 experiments at
randomly selected points of the parameter space. Optimization is done on a validation
set, which is partitioned from the training set with the same procedure as the test set.
As for the loss function, we test the parameter ↵ from 0 to 1 with step size of 0.1 in our
experiment. For the neural networks, we randomly initialize model parameters with a
Gaussian distribution (mean of 0 and standard deviation of 0.01), optimizing the model
with mini-batch Adam [66]. The batch size and learning rate are set to 256 and 0.0001.
For the baselines, we set the parameters of DMF as well as NCF following [46, 55],
respectively. For DMF and NCF, we set the batch size to 256, and the learning rate to
0.0001 and 0.001. For the DF network in DMF model, we apply two layers and the
sizes of them are [128, 64]. For the DI network in the NCF model, we employ three
hidden layers with size [128, 64, 8]. For the DF and DI networks in J-NCF, without
special mention, we employ three layers in DF network with the size of [256, 128,
64] and two layers in DI network with size of [128, 8]. Thus the embedding sizes
of users as well as items are the same in all baseline models as well as J-NCF. We
also keep the size of the last hidden layer of the DI network in J-NCF the same as
NCF, which may determine the model capability. We also test our model as well as the
baseline models with different numbers of layers to see if deep layers are beneficial to
the overall performance of these models. Unless specified, for all the results presented
in this chapter, the number of recommendations (N ) is equal to 10 [46, 55]. The source
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Table 3.5: Performance of recommendation models. The results produced by the
best baseline and the best performer in each column are underlined and bold-
faced, respectively. Statistical significance of pairwise differences of J-NCFm and
J-NCFc vs. the best baseline) is determined by a t-test (N/H for ↵ = .01, or M/O for
↵ = .05).

ML100K ML1M AMovies

Model HR@10 NDCG@10 HR@10 NDCG@10 HR@10 NDCG@10

Item-pop .3832 .2018 .4513 .2315 .5925 .3493
BPR .5762 .3021 .6097 .3711 .6288 .3903
NCF .6066 .3488 .6498 .3951 .6782 .4135
DMF .6309 .3616 .6748 .4221 .7151 .4616

J-NCFm .6627M .3877M .7127N .4485N .7666N .5098N
J-NCFc .6829N .4065N .7377N .4822N .7881N .5311N

codes for our model are available on our public repository.4

3.5 Results and Discussion

3.5.1 Overall performance
To answer RQ2.1, we examine the recommendation performance of the baselines and
the J-NCFm and J-NCFc models. See Table 3.5.

Let us first consider the baselines. From Table 3.5, we see that DMF achieves a bet-
ter performance than the other baselines in terms of HR@10 and NDCG@10. Hence,
we only use DMF as the best baseline for comparisons in later experiments. Bayesian
Personalized Ranking (BPR) clearly shows higher improvements over the Item-pop
baseline in terms of NDCG@10 than in terms of HR@10, which shows that pairwise
loss has a strong performance for ranking prediction. The NCF and DMF models both
show better performance than the two traditional CF models, which indicates the utility
of DL techniques in improving recommendation performance.

Next, we compare the baselines against the J-NCF models. NCF and DMF both
lose against the J-NCF models in terms of HR@10 and NDCG@10. This shows that
a joint neural network structure that tightly couples deep feature learning and deep in-
teraction modeling helps to improve the recommendation performance. Regarding the
J-NCF models, independent of the choice of combining the users’ and items’ vectors,
J-NCF achieves a better performance than the DMF baseline, resulting in HR@10 im-
provements ranging from 5.04% to 8.24% on the ML100K dataset, 5.62% to 10.81%
on the ML1M dataset, and 7.21% to 10.21% on the AMovies dataset. NDCG@10 im-
provements range from 7.22% to 12.42% on the ML100K dataset, 6.25% to 14.24%
on the ML1M dataset, and 10.44% to 15.06% on the AMovies dataset. Significant im-
provements against the baseline in terms of HR@10 and NDCG@10 are observed for
both J-NCFc and J-NCFm at the ↵ = .01 level, except for J-NCFm on the ML100K

4https://bitbucket.org/WanyuChen/jncf/

50

https://bitbucket.org/WanyuChen/jncf/


3.5. Results and Discussion

dataset, for which we observe significant improvements at the ↵ = .05 level in terms
of HR@10 and NDCG@10. The higher improvements in NDCG@10 over HR@10
may be due to the fact that we incorporate pair-wise loss in our loss function, which
motivates us to conduct a further investigation to answer RQ2.3.

Comparing J-NCFc and J-NCFm , we see that J-NCFc achieves the best perfor-
mance, with improvements of 3.05%, 3.51% and 2.81% in terms of HR@10, and
4.85%, 7.51% and 4.18% in terms of NDCG@10 over J-NCFm on the three datasets,
respectively. The complex relationship between users and items can be described bet-
ter with a non-linear kernel than linear kernel, which is consistent with the findings
in [46, 83].

3.5.2 Impact of different loss functions
As we have mentioned in Section 3.3.3, there are several kinds of pair-wise loss func-
tions that can be incorporated in Eq. (3.16). When J-NCF combines the point-wise
loss, i.e., log loss, with TOP1, TOP1-max, and BPR-max pair-wise losses, it gives
rise to the J-NCFTP , J-NCFTMP and J-NCFBMP models, respectively. Addition-
ally, list-wise loss, i.e., softmax+cross-entropy (XE), can also be applied with J-NCF,
which gives rise to the J-NCFXE model. In order to investigate the impact of various
loss functions on J-NCF (RQ2.2), we examine the recommendation performance of
J-NCFTP , J-NCFTMP , J-NCFBMP as well as J-NCFXE models where the parameter
↵ in Eq. (3.16) ranges from 0 to 1 with a step size of 0.1. Figure 3.3 shows the results.

As for the overall performance, we can see that when applied with a list-wise loss
function, J-NCFXE has the worst performance among the four models. The other three
models, which combine pair-wise and point-wise losses, show relatively similar results
in terms of HR@10 and NDCG@10. When ↵ = 0, it results in J-NCFpoint . When
↵ = 1, it leads to J-NCF, a model with only corresponding pair-wise loss functions. It
is obvious that solely based on point-wise loss, J-NCF has better performance in terms
of HR@10 while worse performance regarding NDCG@10 than J-NCF with only pair-
wise loss. This can be explained by the fact that pair-wise loss can help J-NCF learn to
rank items in right positions.

In Figure 3.3a, the performance of all models increases from ↵ = 0.2 to ↵ =
0.7 before a short-term decrease and then a dramatic drop after reaching the peak at
↵ = 0.7. The performance of J-NCFTP , J-NCFTMP and J-NCFBMP is comparable in
terms of HR@10. As for NDCG@10, shown in Figure 3.3b, J-NCFTP shows better
performance than the other two models and achieves the highest point at ↵ = 0.9.

Regarding the performance on the ML1M dataset, similar trends can be found in
Figure 3.3c and Figure 3.3d as in Figure 3.3a and Figure 3.3b, respectively. For the
AMovies dataset shown in Figure 3.3e and Figure 3.3f, J-NCFBMP shows slightly
better performance than both J-NCFTP and J-NCFTMP in terms of HR@10, while the
performance of J-NCFBMP and J-NCFTP is similar in terms of NDCG@10, which is
a little better than that of J-NCFTMP .

As discussed in [50], the BPR-max and TOP1-max loss functions have been pro-
posed to overcome vanishing gradients as the number of negative samples increases.
Since we use a small number of negative samples in this chapter, the performance is rel-
atively similar between the three models, J-NCFTP , J-NCFTMP and J-NCFBMP . As
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(a) Performance in terms of HR@10 on the
ML100K dataset.

(b) Performance in terms of NDCG@10 on
the ML100K dataset.

(c) Performance in terms of HR@10 on the
ML1M dataset.

(d) Performance in terms of NDCG@10 on
the ML1M dataset.

(e) Performance in terms of HR@10 on the
AMovies dataset.

(f) Performance in terms of NDCG@10 on
the AMovies dataset.

Figure 3.3: Performance of the J-NCF models applied with different loss functions
where the parameter ↵ in Eq. (3.16) ranges from 0 to 1 with a step size of 0.1.

BPR-max and TOP1-max losses need additional softmax calculations for all negative
samples, we apply the TOP1 pair-wise loss in Eq. (3.16) for J-NCF in the experiments
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on which we report below.

3.5.3 Utility of hybrid loss function
For RQ2.3, in order to investigate the utility of the hybrid loss function (Eq. (3.16)),
we examine the recommendation performance of the J-NCFc models under different
settings, i.e., J-NCFpoint with only point-wise loss based on Eq. (3.10) (we incorporate
explicit feedback in the same way as Eq. (3.16)), J-NCFpair with only pair-wise loss
based on Eq. (3.11), and J-NCFhybrid with our designed loss function from Eq. (3.16).
Figure 3.4 shows the results.

The overall performance in terms of HR and NDCG increases when the size of the
top-N recommended list ranges from 1 to 10, as a large value of N increases the prob-
ability of including a user’s preferred item in the recommendation list. J-NCFhybrid

consistently achieves improvements over DMF as well as the two models with a single
loss function across positions, which demonstrates the utility of our newly designed
loss function. Based on the ML100K dataset, J-NCFhybrid improves by 2.68% and
7.61%, respectively, over J-NCFpoint and J-NCFpair in terms of HR@10; improve-
ments of NDCG@10 over J-NCFpoint and J-NCFpair are 3.99% and 2.36%, respec-
tively.

Comparing J-NCFpoint and J-NCFpair , we find that J-NCFpoint beats J-NCFpair in
terms of HR, while J-NCFpair shows more competitive performance in terms of NDCG
than J-NCFpoint . This confirms the findings in [45, 103] that a pair-wise ranking-
aware learner has a strong performance for ranking prediction. This finding motivates
us to incorporate both point-wise loss and pair-wise loss into the hybrid loss function.
Clearly, J-NCFc based models, i.e., J-NCFpoint , J-NCFpair and J-NCFhybrid , show
a better performance than DMF, which also proves that the joint neural structure is
effective, i.e., deep interaction modeling can optimize neural matrix factorization and
thus improve the recommendation performance.

Comparing the left and right hand sides of Figure 3.4, we see that the improve-
ments of J-NCFhybrid in terms of NDCG are more significant than those in terms of
HR, as indicated by the relative improvements over DMF with different sizes of the
recommendation list. In Figure 3.4a, J-NCFhybrid shows a 8.78% improvement over
DMF in terms of HR at cutoff N = 6, a 5.91% improvement at N = 8 and a 8.24%
improvement at N = 10 on the ML100K dataset. In Figure 3.4b, the improvements
in terms of NDCG at cutoff N = 6, N = 8 and N = 10 are 19.01%, 15.72% and
12.42%, respectively. J-NCFc with the hybrid loss function cannot only recommend
the correct item to a user, but is also competitive in terms of ranking it at the top of the
list.

3.5.4 Number of layers in the networks
In J-NCFc , we not only learn features of users and items through the DF neural network
with multiple hidden layers, but also model user-item interactions with multi-layer per-
ceptrons in the DI network. Thus it is crucial to see whether DL is helpful in our model.
We conduct experiments to examine the performance of J-NCFc with various numbers
of layers in the DF and DI networks, respectively (RQ2.4). In addition, we also test the
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(a) Performance in terms of HR@N on the
ML100K dataset.

(b) Performance in terms of NDCG@N on
the ML100K dataset.

(c) Performance in terms of HR@N on the
ML1M dataset.

(d) Performance in terms of NDCG@N on
the ML1M dataset.

(e) Performance in terms of HR@N on the
AMovies dataset.

(f) Performance in terms of NDCG@N on
the AMovies dataset.

Figure 3.4: Performance of Top-N item recommendation where N ranges from
1 to 10. The left and right plots show the performance in terms of HR@N and
NDCG@N, respectively.
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performance of the best baseline model, i.e., DMF, with different DF networks. The
results are shown in Table 3.6. The i in DF-i and DI-i in Table 3.6 denotes the number
of layers in the DF network and DI network of J-NCFc , respectively.

As shown in Table 3.6, in terms of HR@10, we can see that with the number
of layers increasing, the recommendation performance of J-NCF is improved, which
verifies the effectiveness of DL techniques for recommender systems.

Comparing the number of layers in the DI and DF networks, we can find that
stacking more layers in the DF network of J-NCFc seems more helpful than in the DI
network in enhancing the recommendation performance. For example, based on the
ML100K dataset, the improvements of the configuration (DF-3, DI-2) over (DF-2, DI-
2) are 2.82% and 4.31% in terms of HR@10 and NDCG@10, while the improvements
are 1.05% and 2.62% for (DF-2, DI-3) over (DF-2, DI-2). When we stack more than 4
layers in the DI network (e.g., DI-5), the performance of J-NCFc no longer increases.
However, stacking more layers in the DF network (e.g., DF-5) still seems helpful and
the best results produced for each dataset are all based on J-NCFc with the (DF-5, DI-
4) configuration. This may be because deep layers are more helpful in extracting users’
as well as items’ features and thus enhancing the user-item interactions predictions. It
motivates us to incorporate more auxiliary information for exploring users’ and items’
features with deep learning techniques in future work.

As for NDCG@10, a similar phenomenon can be found. However, when compar-
ing the scores of HR@10 and NDCG@10 under the same configurations, we can find
that deeper layers can lead to more obvious improvements in terms of NDCG@10 than
HR@10 on all of the three datasets. The best performance of J-NCF with (DF-5, DI-4)
outperforms the worst performance of J-NCF with (DF-1, DI-1) by 20.52%, 25.37%
and 34.52% in terms of HR@10 on the three datasets, respectively. However, the
improvements are 28.96%, 63.05% and 53.37% in terms of NDCG@10 on the three
datasets.

As for the baseline model DMF shown in the bottom rows in Table 3.6, when
applied with DF-1, J-NCFc with DI-1 loses to DMF on all datasets. Similar results can
be found with DF-2, except on ML100K dataset. This can be explained by the fact that
the simple concatenation of user’s and item’s embeddings with only one MLP layer in
J-NCFc is not efficient for modeling user-item interactions. When applied with more
DI layers, J-NCFc has better performance than DMF with the same number of DF
layers. Additionally, we can find that DMF achieves the best performance with DF-2
and deeper layers do not seem useful for DMF model, which corresponds to the results
in [55]. However, J-NCFc achieves further improvements when stacking more layers
in either the DI or DF network, or both.

3.5.5 Impact of feedback
In J-NCF, we consider different kinds of user feedback. On the one hand, we use
the interaction matrix as the input of the network with Eq. (3.3), which contains not
only implicit feedback but also explicit feedback. On the other hand, our loss function
in Eq. (3.16) employs a normalized strategy in the form of Yui = yui

Max(Ru)
, where

Max (Ru) denotes the largest rating score of user u given to items, to incorporate the
explicit feedback. In order to answer RQ2.5, we conduct experiments to investigate
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whether the combination of explicit and implicit feedback works for J-NCF with dif-
ferent settings, i.e., J-NCFex with both kinds of feedback in the input and the loss
function as well as J-NCFim with only implicit feedback by labeling 1 for the interac-
tions and 0 for unknown ratings in the input and the loss function. Figure 3.5 shows the
recommendation performance of J-NCFex , J-NCFim , DMF and NCF across different
numbers of training iterations, respectively.

First, from Figure 3.5 we can see that J-NCFex with both kinds of feedback achieves
a competitive performance across all iterations in terms of HR and NDCG on the three
datasets. It indicates that the combination of explicit and implicit feedback in the
input and the specially designed loss function of J-NCF does help to improve the rec-
ommendation performance. Second, as the number of training iterations increases, the
recommendation performance of all models is improved and then degraded after reach-
ing a peak. More iterations may lead to overfitting, which hurts the recommendation
performance. However, comparing J-NCF model with the baselines, i.e., DMF and
NCF, we find that J-NCF converges to the best performance faster than other models.
For example, on the ML100K dataset, the best result of J-NCF is generated after the
first 9 effective iterations, while DMF and NCF need more training iterations to obtain
the best results, i.e., 16 and 14 iterations respectively. The same phenomenon can be
observed on the other two datasets. The optimal number of updates needed for J-NCF,
DMF and NCF are around 10, 17 and 19 on the ML1M dataset, and 14, 18 and 19 on the
AMovies dataset, respectively. Third, comparing the performance in terms of HR@10
and NDCG@10, we find that J-NCFex shows larger improvements over J-NCFim in
terms of NDCG@10 than HR@10. For example, the improvements are 3.72%, 5.22%
and 4.89% in terms of HR@10, on the ML100K, ML1M and AMovies datasets, re-
spectively, vs. improvements of 4.61%, 5.58% and 5.31% in terms of NDCG@10.
This confirms our hypothesis that incorporating both explicit and implicit feedback
can improve the ranking precision for recommendation.

3.6 Scalability and Sensitivity
In order to answer RQ2.6 to RQ2.9, we study the scalability and sensitivity of J-NCF
as well as the best baseline DMF when applied in different settings, i.e., with users with
various numbers of ratings in Section 3.6.1, and with datasets with different levels of
sparsity in Section 3.6.2. In addition, we also investigate the performance of the deep
learning-based approaches, i.e., J-NCF, DMF and NCF, when applied with a large and
sparse dataset in Section 3.6.3. Moreover, the training and inference time needed for
these models on all datasets is discussed in Section 3.6.4.

3.6.1 Model scalability with user ratings
In Figure 3.2, we have shown that in every dataset most users only have a few ratings,
thus it is meaningful to investigate how the performance of J-NCF and DMF varies
with different numbers of user ratings. Following [96], we look at the performance for
users of varying degrees of activity, measured by percentile. For example, in Table 3.7,
we first rank the users according to their numbers of their activities. 10% shows the
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(a) Performance in terms of HR@10 on the
ML100K datasets.

(b) Performance in terms of NDCG@10 on
the ML100K datasets.

(c) Performance in terms of HR@10 on the
ML1M datasets.

(d) Performance in terms of NDCG@10 on
the ML1M datasets.

(e) Performance in terms of HR@10 on the
AMovies datasets.

(f) Performance in terms of NDCG@10 on
the AMovies datasets.

Figure 3.5: Recommendation performance across different numbers of itera-
tions. The left and right plots show the performance in terms of HR@10 and
NDCG@10, respectively.

mean performance across the bottom 10% of users, who are least active; the 90% mark
shows the mean performance for all but the top 10% most active users.
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3.6. Scalability and Sensitivity

Table 3.7: Recommendation performance across users who are ranked by the
number of activities. The results produced by the best performing recommender
system in each row are boldfaced. Statistical significance of pairwise differences
of J-NCFm and J-NCFc vs. DMF is determined by a t-test (N/H for ↵ = .01, or M/O
for ↵ = .05).

HR@10 NDCG@10

DMF J-NCFm J-NCFc DMF J-NCFm J-NCFc

ML100K
10% .7001 .7400N .8015N .4358 .4786N .5001N
50% .6813 .7349M .7568N .4200 .4379M .4602N
90% .6279 .6585M .6772N .3813 .3897M .4092N

ML1M
10% .7548 .7927N .8511N .5111 .5417N .5952N
50% .7211 .7532N .7982N .4855 .5266N .5587N
90% .6601 .6981N .7277N .4217 .4432N .4751N

AMovies
10% .7851 .8611N .9191N .5349 .5998N .6611N
50% .7519 .7855N .8411N .5033 .5466N .5821N
90% .7013 .7411N .7732N .4597 .5038N .5301N

As shown in Table 3.7, J-NCFc outperforms the best baseline model DMF for users
across all activity levels, i.e., both the “inactive” users who constitute the majority, and
the relatively few “very active” users who give more ratings. In addition, J-NCFc al-
ways achieves the best performance in terms of HR@10 and NDCG@10. In order to
test the robustness of J-NCF under different settings, i.e., J-NCFc and J-NCFm , we
conduct t-tests between the two versions of J-NCF with DMF, respectively. Signifi-
cant improvements against the baseline DMF in terms of HR@10 and NDCG@10 are
observed for both J-NCFm and J-NCFc at the ↵ = .01 level across all activity lev-
els, except for J-NCFm on the ML100K dataset with 50% and 90% users, for which
we observe significant improvements at the ↵ = .05 level in terms of HR@10 and
NDCG@10.

Specifically, J-NCF shows larger improvements over the DMF model for “inactive”
users than for “very active” users. For example, when incorporating users with more
interactions, i.e., from 50% to 90%, the improvements change from 11.08% to 7.85%
in terms of HR@10, and 9.57% to 7.32% in terms of NDCG@10 on the ML100K
dataset. This may be because the “very active” users have many interactions with
the items that have few ratings and collaborative filtering lacks information for rec-
ommending items based only on the rating matrix. This naturally suggest a line of
future work in which one would extend J-NCF with more auxiliary information, such
as content information, to explore more accurate relationships between items.

To conclude and answer RQ2.6, the J-NCF models can beat the best baseline model
for users across all activity levels. J-NCFc shows the best performance in all datasets.
In addition, for “inactive” users, J-NCF shows larger improvements over DMF than for
“very active” users.
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3.6.2 Sensitivity to data sparsity
To investigate the sensitivity of J-NCF to different levels of data sparsity, we exam-
ine the recommendation performance on datasets with different levels of sparsity, as
presented in Table 3.4. Figure 3.6 shows the results. The overall performance of all

(a) Performance in terms of HR@10 on the
ML100K datasets.

(b) Performance in terms of NDCG@10 on
the ML100K datasets.

(c) Performance in terms of HR@10 on the
ML1M datasets.

(d) Performance in terms of NDCG@10 on
the ML1M datasets.

(e) Performance in terms of HR@10 on the
AMovies datasets.

(f) Performance in terms of NDCG@10 on
the AMovies datasets.

Figure 3.6: Recommendation performance across datasets with different levels of
sparsity. The left and right plots show the performance in terms of HR@10 and
NDCG@10, respectively.
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models on the AMovies dataset is better than that on the other two datasets. That is
to say, the recommendation performance may be influenced by the size of a dataset.
Thus, in order to investigate the model sensitivity across datasets with different degrees
of sparsity, it is essential to keep the number of users and items in the same scale for
the datasets.

From Figure 3.6, in particular, for the ML100K dataset, the ML1M dataset and
the AMovies dataset respectively, we see that the J-NCF models outperform the base-
line model DMF across all sub datasets with different degrees of sparsity in terms
of HR@10 and NDCG@10. In addition, we find that when the density of those
datasets goes down, the performance of all models decreases. Thus it is interesting
to investigate the robustness of J-NCF when it is applied to sparse datasets. We find
that when applied on small datasets, e.g., subsets of ML100K, our best model, i.e.,
J-NCFc , shows higher improvements against DMF on sparser datasets. For example,
J-NCFc achieves 4.91% and 9.12% improvements over DMF in terms of HR@10 and
NDCG@10 on the ML100K-1 subset (Density = 4.413%), while the improvements
on the ML100K-3 subset (Density = 0.630%) are 7.77% and 12.02% in terms of
HR@10 and NDCG@10, respectively. However, when applied on larger datasets with
more users and items, i.e., subsets of ML1M and AMovies, J-NCFc shows higher im-
provements against DMF on denser datasets. For instance, J-NCFc achieves 11.13%
improvements over DMF in terms of HR@10 on the ML1M-1 subset (Density =
3.7982%), while the improvements on the ML1M-3 subset (Density = 0.7499%) are
6.53% in terms of HR@10. These results may indicate that when the dataset becomes
larger and sparser, it will be more difficult for models to improve their recommendation
performances, which motivates us to conduct a further investigation to answer RQ2.8;
see Section 3.6.3 below.

In addition, comparing the left and right-hand side plots in Figure 3.6, we find
that J-NCFc shows a better performance in terms of NDCG@10 than HR@10. For
example, the improvements of J-NCFc over DMF are 9.19%, 8.28% and 15.11% in
terms of HR@10 on ML100K-1, ML100K-2 and ML100K-3 datasets, respectively,
while the improvements are 10.11%, 10.65% and 20.55% in terms of NDCG@10.
This result is consistent with our findings in Section 3.5.3.

Thus in answer to RQ2.7, the J-NCF models outperform the best baseline model
DMF across all datasets with different degrees of sparsity in terms of both metrics.
Specifically, when applied on large datasets, i.e., ML1M and AMovies, J-NCFc shows
higher improvements against DMF on denser datasets. In addition, the improvements
of J-NCFc over DMF in terms of NDCG@10 are larger than in terms of HR@10.

3.6.3 Performance with a large and sparse dataset
For RQ2.8, in order to see if our model is able to work well on a large and sparse
dataset, we examine our model as well as two baseline models, i.e., NCF and DMF, on
the Amazon Electronic (AEle) dataset, which is larger and sparser than the MovieLens
and Amazon Movies datasets. Figure 3.7 shows the performance of the three models
with different sizes of top-N recommended lists.

It is clear that J-NCF outperforms DMF as well as NCF in terms of HR and NDCG
across different numbers of recommendations. With the size of top-N recommended
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(a) Performance in terms of HR@N on
AEle dataset.

(b) Performance in terms of NDCG@N on
AEle dataset.

Figure 3.7: Performance of Top-N item recommendation where N ranges from 1
to 10, tested on AEle dataset.

lists ranging from 1 to 10, the overall performances of all models increase, which
is consistent with the conclusion in Section 3.5.3. Comparing the results shown in
Figure 3.7a and Figure 3.7b, the improvements of J-NCF over DMF in terms of NDCG
are more significant than those in terms of HR. For example, when N = 5 and N = 10,
the improvements of J-NCF over DMF in terms of HR are 5.88% and 4.62%, while the
improvements are 6.12% and 5.82% in terms of NDCG, respectively. To conclude and
answer RQ2.8, J-NCF can also work well with large and sparse datasets, especially in
ranking items correctly.

3.6.4 Training and inference time
To answer RQ2.9, we investigate the scalability of J-NCF regarding training and in-
ference time in Table 3.8. As shown in Table 3.8, in the “Training” part, “Total time”
denotes the time needed for training the model to the best performance. And the “Aver-
age epoch” means the average training time for a single epoch in the training process.
In the “Prediction” part, “Total time” denotes the prediction time needed for the whole
test set. Since the test set contains the latest interaction of every user, the “Average
ranking” indicates the time needed for providing a ranked list containing top 10 rec-
ommendations for a single user.

As we can see in Table 3.8, when the size of the dataset becomes larger, the time
needed for both training and prediction increases significantly for all models. NCF
consistently costs the least time among the three models for both training and predic-
tion processes on all datasets. For the training process, the average training time for
one epoch of J-NCF is slightly higher than DMF. However, the total training time for
J-NCF is less than for DMF. It can be explained by the fact that J-NCF needs fewer
iterations to obtain the best results than DMF, as indicated in Section 3.5.5. Thus,
J-NCF costs less time for training to the best performance than DMF. For the predic-
tion process, although the total time needed for J-NCF and DMF is more than NCF,
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Table 3.8: Training and prediction time needed for baseline models as well as
J-NCF on all datasets.

Training Prediction

Avg. Avg.
Total time (s) epoch (s) Total time (s) ranking (s)

ML100K
NCF 46.344 1.943 1.389 0.00147
DMF 180.017 9.587 1.558 0.00165
J-NCF 116.023 10.925 1.607 0.00170

ML1M
NCF 494.038 17.751 8.251 0.00137
DMF 5,451.671 320.687 12.376 0.00205
J-NCF 3,539.059 340.048 13.858 0.00229

AMovies
NCF 977.265 25.836 25.599 0.00170
DMF 39,249.657 2,180.537 34.955 0.00232
J-NCF 31,414.628 2,206.084 37.818 0.00251

AEle
NCF 61,812.187 326.828 2,919.005 0.00239
DMF 788,138.604 43,785.478 4,360.187 0.00357
J-NCF 723,586.192 45,224.137 4,775.443 0.00391

the three models cost roughly similar amounts of time for providing a top 10 ranked
list for a single user, which is around a few milliseconds.

3.7 Conclusion

We have proposed a joint neural collaborative filtering model, J-NCF, for recommender
systems. J-NCF uses a unified deep neural network to tightly couple two important
parts in a recommender system, i.e., deep feature learning of users and items, and
deep modeling of user-item interactions. For the user and item feature extraction, we
use a deep neural network with matrix factorization and a combination of explicit and
implicit feedback as input. Then we adopt another neural network for modeling user-
item interactions using the feature vectors as inputs. Thus, J-NCF enables the two
parts to be optimized with each other through a joint training process. In order to
make J-NCF fit the top-N recommendation task, we design a new loss function that
incorporates information from both pair-wise and point-wise loss.

The experimental results confirm the effectiveness of J-NCF. In addition, we have
also experimentally investigated the performance of J-NCF under various settings, e.g.,
with different loss functions, with varying numbers of layers in the networks, and
with using different feedback as inputs. The results confirm the effectiveness of our
hybrid loss function and demonstrate that J-NCF performs better with more layers in
the networks and using the combination of implicit and explicit feedback as input.

In addition, we have investigated the robustness of J-NCF with different degrees
of data sparsity and different numbers of user ratings. J-NCF outperforms the best
baseline model DMF for users across all activity levels, especially for “inactive users”
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who constitute the majority of users in the datasets. As for datasets with different levels
of sparsity, in general, J-NCF shows more competitive recommendation performance
on all datasets than the state-of-the-art baseline model DMF. Moreover, we have also
tested J-NCF model with a large and sparse dataset, i.e., AEle, and the results show that
J-NCF also outperforms state-of-the-art baseline models on the dataset. Thus in answer
to RQ2, our proposed J-NCF modeling non-linear user-item relationships as well as
characteristics in a unified structure can help to learn users’ general preferences.

As to future work, first, we plan to extend J-NCF with more auxiliary informa-
tion [11, 12, 134, 151], such as the content information of items as well as reviews,
to get a more informed expression of users as well as items. As collaborative filter-
ing usually suffers from limited performance due to the sparsity of user-item interac-
tions [113], auxiliary information could be used to boost the performance. It would
also be interesting to explore heterogeneous information in a knowledge base to im-
prove the quality of recommender systems with deep learning [146]. Second, we plan
to explore the context information of a user in a session with recurrent neural networks
to deal with dynamic aspects recommender systems [14, 15, 18, 52]. In addition, an
attention mechanism could be applied to J-NCF, which can filter out uninformative
content and select the most representative items while providing good interpretabil-
ity [19]. Finally, as we have found that J-NCF is computationally more expensive than
NCF, we plan to optimize the structure and implementation details of our model to
make it more efficient.

Next, we will investigate how to learn users’ dynamic preferences from their se-
quential behavior and make session-based recommendations in Chapter 4.
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4
Session-based Recommendation with a

Dynamic Co-attention Network

In Chapter 3, we have proposed a collaborative filtering approach to learn users’ gen-
eral preferences while ignoring the time orders of their interactions. In this chapter,
we aim to learn users’ dynamic preferences from their sequential behavior. We pro-
pose a dynamic co-attention network approach which incorporates users’ long- and
short-term preferences for session-based recommendation. The proposed model pro-
vides an answer to the following research question asked in Chapter 1: RQ3: How
can we incorporate users’ long- and short-term interaction behavior for session-based
recommendation?

4.1 Introduction
Conventional recommender systems often discard sequential information and focus on
mining the static relevancy between users and items from interactions [47, 119, 149].
For instance, a typical conventional recommender system based on matrix factoriza-
tion [67] may be effective at modeling a user’s general preferences by learning from
their entire interaction history but it does not model the order of the user’s interac-
tions. Unlike conventional recommender systems, session-based recommender sys-
tems model the evolution of a user’s short-term preference implied by sequential in-
teractions in a session with the aim of recommending the next item a user may be
interested in [138]. Popular modeling choices for session-based recommender sys-
tems include Markov chains and Recurrent Neural Networks (RNNs) [42]. For in-
stance, the Factorizing Personalized Markov Chain (FPMC) model combines Markov
chains with matrix factorization to achieve good recommendation performance [104].
Wang et al. [133] propose a Hierarchical Representation Model (HRM) model that
extends FPMC by employing a two-layer structure to construct a hybrid representa-
tion. Markov chain-based methods only model local sequential patterns between adja-
cent interactions. RNN-based models can model multi-step sequential behaviors: the
Hierarchical Recurrent Neural Network (HRNN) model [98] and Dynamic REcurrent
bAsket Model (DREAM) [144] model embed all of a user’s historical interactions into

This chapter was published as [23].
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the final hidden state of an RNN to represent their current preferences; both achieve
significant improvements over HRM and FPMC.

Today’s session-based recommender systems successfully capture users’ short-
term decision making process. But they do not capture variations in the relative impor-
tance of a user’s long-term vs. short-term interests for session-based recommendation.
Users with different shopping preferences may prefer different next items even un-
der the same session context. Thus, how to better capture individual users’ dynamic
consumption motivations is critical [58, 135].

Our working hypothesis is that the relative importance of events in a user’s long-
term interaction history depends on events in their short-term interaction history, and
vice versa. Let us consider an example. Take a user who has searched for a camera
in the current session; her long-term interactions related to electronic products should
probably be given a higher weight than her interactions related to clothing when de-
ciding what to recommend next. Conversely, if the user’s past interactions indicate a
strong interest in the Sony brand, then, during the current session, interactions related
to this brand may be more important than others when predicting the next item. But
there is more that should be modeled than the relation between past and present inter-
actions. Different user actions, e.g., clicks, add-to-cart, or buy, provide different types
of information about the user’s interest and, hence, should trigger different follow-up
actions. For example, a click on a camera may indicate that the current recommen-
dation is not satisfactory so that substitute offerings should be recommended; adding
an item to the cart may show a strong consumption motivation of a user for the item;
and while repeat purchases are important [102], a purchase action involving a camera
should probably be followed by a recommendation of complementary items [126].

In summary, the main challenges facing session-based recommendation are [58,
135]:

• How to incorporate user’s long-term as well as short -term preferences for
session-based recommendation? and

• How to capture users’ dynamic preferences with implicit preference data?

To address these questions, we propose a Dynamic Co-attention Network for Session-
based Recommendation (DCN-SR). Dynamic Co-attention Network for Session-
based Recommendation (DCN-SR) has three main components:

(1) The first is a Contextual Gated Recurrent Unit (CGRU) network to model a user’s
short-term preferences, which we represent as a combination of hidden states of
interactions in the current session.

(2) The second is a Multi-Layer Perceptron (MLP) to deal with a user’s historical
interactions and infer long-term preferences.

(3) The third is a co-attention network that uses the outputs of the first two compo-
nents to capture interactions between actions in a user’s long-term and short-term
interaction histories and generate co-dependent representations of their long-
term and short-term preferences.
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To the best of our knowledge, in the field of session-based recommender systems,
ours is the first attempt to use a co-attention network to exploit the relation between
a user’s long-term and short-term preferences learned from their long-term and short-
term interaction history.

Experiments on two e-commerce datasets, the Tmall dataset and the Tianchi dataset,
show that DCN-SR outperforms state-of-the-art baselines in prediction accuracy. In ad-
dition, we investigate the scalability and sensitivity of DCN-SR with different lengths
of search sessions and different numbers of user historical interactions.

In summary, our key technical contributions in this chapter are:

(1) We design a dynamic co-attention network model for session-based recommen-
dation (DCN-SR) that is able to integrate users’ long-term and short-term pref-
erences.

(2) We design a contextual gated recurrent unit CGRU to incorporate different types
of short-term user actions so as to better estimate a user’s next consumption
interests.

(3) We analyze the recommendation performance of DCN-SR and find that DCN-SR
consistently meets or beats the state-of-the-art, especially with short sessions and
active users.

4.2 Related Work
We summarize related work in two areas – sequential recommender systems and attention-
based models.

4.2.1 Sequential recommendation models
Interactive systems log users’ behavior along with the associated timestamps [54].
Many models have been proposed to leverage this kind of sequential data for mod-
eling users’ dynamic preferences and for sequential recommendation. Markov chains
have been a popular choice. Following the Factorizing Personalized Markov Chain
(FPMC) [104] model, Feng et al. [35] apply metric embeddings with a low dimensional
vector for playlist and successive location recommendation. He and McAuley [42] fuse
similarity models with Markov chains for sequential recommendation to solve sparse
recommendation problems. In order to better capture both users’ general taste and se-
quential behavior, Wang et al. [133] extend FPMC by using a hierarchical structure to
learn user representations (HRM). Those Markov chain-based methods only model the
local sequential patterns between adjacent interaction events.

Deep neural networks have improved the performance on the sequential recom-
mendation task. Hidasi et al. [51] propose an RNN-based model for session-based
recommendation that consists of Gated Recurrent Unit (GRU) units and uses a session-
parallel mini-batch training process. With user profiles available, Quadrana et al. [98]
develop hierarchical RNNs with cross-session information transfer and Yu et al. [144]
propose a dynamic recurrent basket model (DREAM) to capture global sequential pat-
terns for learning a user’s dynamic interest representations based on RNNs, which
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outperforms HRM and FPMC. DREAM embeds all of a users’ historical interactions
into the final hidden state of an RNN to represent their current preferences. To improve
the performance of RNN-based approaches to sequential recommendation, Tan et al.
[118] adopt data augmentation and a method to account for shifts in the input data dis-
tribution. The RNN-based approaches listed above usually implicitly encode a user’s
long-term and short-term interactions into a latent factor or hidden state without distin-
guishing between the roles that each event may play when making recommendations.

Memory-based approaches leverage user memory networks to store and manipulate
a user’s previous interactions. Chen et al. [28] propose a Recommendation with User
Memory Network (RUM) model to leverage external memory networks integrated with
collaborative filtering. It uses a static latent vector to represent users’ general prefer-
ences and the memory can only store and distinguish users’ short-term interactions
with a fixed size, which ignores the possibility that different historical interactions
may have different degrees of importance.

Our approach to sequential recommendation differs from the work listed above
because we do not only exploit the benefits of incorporating long-term and short-term
interests, but also consider dynamic aspects of the relation between a user’s long-term
and short-term preferences. In addition, unlike the work listed above, we explore the
information contained in users’ different actions.

4.2.2 Neural attention based models
Attention mechanisms have been applied to recommendation tasks to help models
exploit users’ preferences [48, 84, 120]. Li et al. [73] propose a neural attentive
session-based recommendation machine (Neural Attentive Recommendation Machine
(NARM)) that takes the last hidden state from the session-based RNN as the sequential
behavior, and uses the other hidden states of previous clicks for computing attention
to capture users’ current preferences in a given session. Although NARM achieves
significant improvements over traditional RNN-based approaches, it does not consider
users’ long-term preferences based on their historical interactions. Ying et al. [143]
adopt a hierarchical attention network for sequential recommendation (SHAN). The
first attention layer in SHAN learns users’ long-term preferences based on the histor-
ical purchased item representations, while the second one outputs the final user rep-
resentation as a combination of the user’s long-term and short-term preferences. It is
worth pointing out that SHAN generates its attentive representation of user’s long-term
and short-term preferences independently and thus ignores the relations between them.
As to memory-based models, Liu et al. [82] propose a short-term attention memory pri-
ority model (STAMP), in which the attention weights are calculated from the session
context and enhanced with the final records in the current session.

Our approach to sequential recommendation differs from the aforementioned mod-
els in two ways. First, the attention mechanism used in recent sequential recommenda-
tion models deals with users’ historical and recent interactions separately. In contrast,
DCN-SR applies a co-attention network to calculate the correlated importance of ac-
tions in both a user’s historical and recent interactions, and generates co-dependent
representations for their long-term and short-term preferences. Second, previous work
considers a user’s long-term preferences to be a static vector when dealing with the
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user’s different short-term interests. In contrast, in DCN-SR, an event in a user’s his-
torical interactions may have different degrees of importance when combined with
different recent sessions.

4.3 Approach
The DCN-SR model we propose has three main components: a short-term preference
generator, a long-term preference generator, and a co-attention network with short-
term and long-term preferences. As shown in Figure 4.1, these three components can
be trained in a joint manner and give a predicted score of a user’s preference for an item
through a trilinear composition. We first describe the notation used and then detail the
three components in DCN-SR.

4.3.1 Problem formulation and notation
Given a user and their sequential interactions, we aim to recommend their next pur-
chase based on her long-term and short-term preferences learned from those interac-
tions.

For a user u, we denote her current session as Sessionu = {(x1, a1), (x2, a2),
. . . , (xT , aT )}, where xi is the i-th item in the session and ai denotes an action (e.g.,
click, cart or purchase) along with the item; T denotes the number of events in the
current session. In addition, we consider the items that u interacts with in her historical
sessions and denote them as Historyu = {x1, x2, . . . , xN}. Here, N denotes the
number of events in the user’s historical interactions. For exploring the user’s long-
term preferences, not all actions necessarily depict the user’s preference. Therefore,
we only retain items with actions that can clearly reveal the user’s preference, such as
buy or collect. As shown in Figure 4.1, there is an embedding layer at the bottom of
the network used for generating the item embeddings as well as the action embeddings.
We use xi and ai to indicate the embeddings of xi and ai.

4.3.2 Short-term preference generator
A user’s discriminative actions, such as click, collect or purchase, can help to explore
sequential interactions as prior knowledge to predict the items that the user is mostly
like to access. Since different actions may imply different consumption motivations in
a short session, we take all types of actions in the current session into account when
learning a user’s short-term preferences.

As shown in Figure 4.2, we model a user’s sequential interactions in a session with
a Contextual GRU network (CGRU) considering the action along with each item as
a contextual feature. We modify the operations in a traditional GRU cell and add the
action embedding ai to the input gate, forget gate and update gate, respectively, shown
as the purple arrows in Figure 4.2. The hidden state ht in CGRU can be a linear
interpolation between the previous hidden state ht�1 and the candidate hidden state
ĥt:

ht = ztht�1 + (1� zt)ĥt, (4.1)
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Figure 4.1: Structure of the DCN-SR model.

where the update gate zt is given by:

zt = �(Wzxt +Vzat +Uzht�1), (4.2)

where Wz , Vz and Uz are update parameters for xt, at and ht�1, respectively. The
candidate hidden state can be computed as:

ĥt = tanh(Wxt +Vat + rt �Uht�1), (4.3)

where the reset gate rt can be calculated by:

rt = �(Wrxt +Vrat +Urht�1), (4.4)

where Wr, Vr and Ur are reset parameters for xt, at and ht�1, respectively.
As each hidden state contains the information of a user’s search intent in the cur-

rent session, we use a collection of hidden states to represent a user’s initial short-term
preference as Us = {hs,1, hs,2, . . . , hs,T } and Us 2 RD⇥T , where D is the dimen-
sion of each hidden state in Us. We will future explore the user’s interest drift across
these hidden states with a co-attention network in Section 4.3.4.

4.3.3 Long-term preference generator
As we discussed above, when exploring a user’s long-term preference with their his-
torical interactions, we only retain the items with actions that could depict users’ pref-
erences (e.g., buy or collect). We feed the dense low-dimensional embedding of each
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item in a user’s historical interactions Historyu = {x1, x2, . . . , xN} through a multi-
layer perceptron (MLP) to generate hidden representations of those events:

z1,i = �(W1xi + b1)

z2,i = �(W2z1,i + b2)

...
zM,i = tanh(WMzM�1,i + bM )

Xi = zM,i,

(4.5)

where Wm, bm and � denote the weight matrix, the bias vector and the activation
function in the m-th layer. Here, we use a ReLU as the activation function, as it has
been shown to be more expressive than others and can deal with the vanishing gradient
problem effectively [46, 55]. M indicates the number of layers used in MLP network.
The output of the final layer Xi is the hidden representation of the i-th event. We also
apply a collection of these event representations to indicate a user’s initial long-term
preference as Ul = {X1, X2, . . . , XN} and Ul 2 RD⇥N . We use a MLP network
because of its non-linear modeling capability, which has been applied in many neural
collaborative filtering works and shows reliable performance [46].

4.3.4 Co-attention network
It is beneficial to incorporate the short-term and long-term preference of a user when
making recommendations. However, traditional methods treat these two types of pref-
erence as independent [143], which ignores the (potential) mutual dependence between
them.

In addition, conventional attention mechanisms assign weights for the events in a
user’s historical and recent interactions separately. We argue that historical interactions
and recent interactions can provide context for each other when calculating the impor-
tance of each event. Thus, we design a co-attention network to explore correlations
between historical and current interactions of a user.
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Figure 4.3: Structure of the co-attention network.

As shown in Figure 4.3, after generating a user’s initial short-term and long-term
preferences, we use them as the inputs of the co-attention network and calculate the
affinity matrix C:

C = tanh(UT
l WcUs), (4.6)

where Wc 2 RD⇥D contains the weights. After computing the affinity matrix, we
consider it as a feature and use it to transform the short-term attention space into the
long-term attention space with:

H
l = tanh(WlUl + (WsUs +Wths,T )C

T) (4.7)

↵l = softmax(wT
hlH

l) (4.8)

and vice versa:

H
s = tanh(WsUs +Wths,T + (WlUl)C) (4.9)

↵s = softmax(wT
hsH

s), (4.10)

where Wl, Ws, Wt 2 RK⇥D, whl, whs 2 RK are weight parameters for long-term
and short-term preferences, respectively. Here, ↵l 2 RN and ↵s 2 RT are the attention
probabilities for the events in historical and current interactions, respectively.

It should be noted in Eq. (4.7) and Eq. (4.9) that besides the collection of the hidden
states in current session, i.e., Us, we explicitly consider the final hidden state in the
current session, i.e., hs,T , shown as the red arrows in Figure 4.3. Importantly, hs,T

summarizes the complete sequential behavior, which contains different information
from Us when exploring user’s short-term preferences [73, 82]. Both NARM [73] and
STAMP [82] have shown that the explicit use of hs,T improves the performance of
session-based recommendations.

Based on the attention weights, the co-dependent representations of a user’s long-
term and short-term preferences can be calculated as the weighted sum of their inter-
actions representations:

Uco�l =
PN

n=1 ↵
n
l Xn, (4.11)
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and
Uco�s =

PT
t=1 ↵

t
shs,t. (4.12)

In order to take hs,T into consideration, we use Ulong = Uco�l , Ushort = [Uco�s ;hs,T ]
to represent the final representations of a user’s long-term and short-term preference.
And then, for a given candidate item xi, the scoring function that produces a prediction
can be a trilinear combination:

ẑ
l
ui = v

T
i BlUlong ẑ

s
ui = v

T
i BsUshort ẑui = �(< ẑ

l
ui, ẑ

s
ui >), (4.13)

where Bl 2 RE⇥D, and Bs 2 RE⇥2D, E is the dimension of each item embedding.
The trilinear combination incorporates the user’s long-term preferences as well as their
short-term preferences towards an item. Moreover, ẑui represents the unnormalized
cosine similarity between the user’s preference and the i-th candidate item. We use
ẑu 2 RV to denote the vector that consists of ẑui(i 2 [1, . . . , V ]), where V is the
number of candidate items. It is then processed by a softmax function:

ŷu = softmax(ẑu), (4.14)

where ŷu denotes the output vector of our model, which represents a probability dis-
tribution over the candidate items, and each element ŷui denotes the probability of the
item vi being the next purchase.

We adopt the cross-entropy loss as our loss function:

L(ŷu) = �
PV

i=1 yu log(ŷu), (4.15)

where yu is the true distribution.
Finally, a Back-Propagation Through Time (BPTT) method with a fixed number of

time steps is adopted to train our DCN-SR model based on Eq. (4.15).

4.4 Model Analysis
To provide insights into DCN-SR, we discuss its connection to previous work on
session-based recommendation. By choosing appropriate settings, DCN-SR can sub-
sume several existing methods, including session-based recommendations with recur-
rent neural networks (GRU4Rec) and an attention-based model, i.e., the Neural Atten-
tive Recommendation Machine (NARM).

4.4.1 DCN-SR vs. GRU4Rec
GRU4Rec is an RNN-based approach that uses the final hidden state to represent a
user’s preference:

hT = GRUsess(vT ,hT�1), (4.16)

and predict the score for a candidate item vi as:

ẑui = �(vT
i hT ). (4.17)
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As shown in Figure 4.1, when we do not consider the user’s historical interactions
and different actions, DCN-SR will reduce to an RNN-based approach. To show how
our model degenerates to GRU4Rec, we set the historical interactions empty and the
weight parameter whs = 0; then, in the co-attention component, the affinity matrix C,
Uco�l and Uco�s will be 0. The user’s preferences will be equal to the final hidden
state of the session, i.e., Ushort = [Uco�s ;hs,T ] = hs,T . And the prediction score is
calculated as:

ẑui = �(ẑsui) = �(vT
i Ushort) = �(vT

i hs,T ). (4.18)

This is the same as the prediction function (Eq. (4.17)) of GRU4Rec. However, by en-
abling a user’s historical interactions, DCN-SR is able to collect valuable information
for her long-term preference. In addition, with the weight parameter whs, DCN-SR can
adaptively select important items in the current session to capture the user’s short-term
interest, which can bring improved performance in the task of sequential recommen-
dation as shown in our experiments.

4.4.2 DCN-SR vs. NARM
Both DCN-SR and NARM apply an attention mechanism to capture a user’s main in-
terest. In NARM, the attention mechanism takes the last hidden state hT from the RNN
as the sequential behavior, which denotes the global encoder of the current session:

cg = hT . (4.19)

It then uses the hidden states of previous clicks in the current session for computing
attention scores, which is a local encoder combining different parts of the sequence:

cl =
PT

i=1 ↵ihi, (4.20)

where ↵ is the weighted factor calculated by:

↵i = v
T
�(A1hi +A2hT ), (4.21)

where � is an activation function, and A1 and A2 are used to transform hi and hT into
a latent space.

By concatenating the global and local encoder, NARM adopts a unified represen-
tation c to model the user’s short-term preference:

c = [cg; cl] = [hT ;
PT

i=1 ↵ihi]. (4.22)

The prediction score for a candidate item vi is calculated as:

ẑui = v
T
i Bc, (4.23)

where B is a latent parameter.
To see the connection between DCN-SR and NARM, we set the user’s historical

interactions empty and ignore different actions in RNN. Thus DCN-SR can be reduced
to:

C = tanh(UT
l WcUs) = 0, (4.24)
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and
H

s = tanh(WsUs +Wths,T +WlUlC)

= tanh(WsUs +Wths,T ).
(4.25)

Because Us is a set of hidden states in RNN, i.e., Us = {hs,1, hs,2, . . . , hs,T }, we
divide Eq. (4.25) for each hidden state as:

H
s
i = tanh(Wshs,i +Wths,T ). (4.26)

Then, the attention weight for each event in the current interactions is calculated by:

↵
i
s = softmax(wT

hsH
s
i )

= softmax(wT
hs tanh(Wshs,i +Wths,T )).

(4.27)

We can see that the attention weights calculated in our model are the same as NARM.
Based on these attention weights, we can rewrite a user’s final short-term preference
as:

Ushort = [Uco�s ;hs,T ] =

"
TX

i=1

↵
i
shs,i;hs,T

#
. (4.28)

The prediction score is generated by:

ẑui = �(ẑsui) = �(vT
i BsUshort). (4.29)

According to these derivations, we see that by choosing proper activation functions in
Eq. (4.27) and (4.29), DCN-SR and NARM have the same representations of users’
preferences and prediction function.

Based on our analysis, we see that DCN-SR is a very general model for session-
based recommendation. On the one hand, by introducing different settings (i.e., pa-
rameters and activation functions) DCN-SR can be seen as a generalization of many
existing models. On the other hand, DCN-SR enables us to explore more information
from users’ historical interactions and the dynamic correlations between long-term and
short-term preferences.

4.5 Experiments
We refine RQ4 into the following more fine-grained questions:

(RQ3.1) Does DCN-SR outperform state-of-the-art baselines for session-based rec-
ommendation?

(RQ3.2) Does the Contextual GRU, which incorporates different user actions, con-
tribute to the performance of DCN-SR?

(RQ3.3) How is the performance of DCN-SR impacted by sessions of different lengths?

(RQ3.4) How does the performance of DCN-SR vary across users with different num-
bers of historical interactions?

(RQ3.5) How can we visualize the co-attention mechanism?
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4.5.1 Model summary
As DCN-SR considers users’ long-term and short-term preferences, we mainly com-
pare our method with personalized session-based recommendation models, i.e., HRNN
and SHAN. In addition, we also consider some traditional models, i.e., FPMC and
Item-pop, as well as neural models with or without an attention mechanism, i.e.,
NARM, STAMP and GRU4Rec. These are our baselines:

Item-pop A method that ranks items based on the number of interactions, which is a
non-personalized approach [3].

FPMC A state-of-the-art hybrid model for sequential recommendation, based on Markov
chains and collaborative filtering. Both sequential behaviors and general taste are
taken into account [104].

GRU4Rec An RNN-based model for session-based recommendation, which contains
GRUs and utilizes session-parallel mini-batches as well as a pair-wise loss func-
tion for training [51].

NARM An RNN-based model that applies an attention mechanism to capture users’
main purposes from the hidden states and combines it with sequential behavior
as final representations of users’ current preferences [55].

STAMP A memory-based model with attention mechanism that explicitly considers
correlations between each click and the last click in a session. It combines the
weighted events and the last click to model users’ current preferences [82].

HRNN A hierarchical RNN for personalized session-based recommendation which
uses a session- and a user-level RNN to model users’ short- and long-term pref-
erences [98].

SHAN A personalized session-based recommendation method that adopts a hierarchi-
cal attention network, in which the first attention layer learns users’ long-term
preferences while the second one outputs the final user representation as a com-
bination of the user’s long-term and short-term preferences [143].

4.5.2 Datasets and experimental setup
Datasets. We use two publicly available real-world datasets to evaluate our models
and the baselines. Tmall is a dataset released by Taobao.1 It contains records of on-
line transactions, with 884 users, 9,531 brands and 182,880 interactions. Customer
action types include click, collect, cart, and purchase. Tianchi is a dataset provided
by Alibaba.2 It is based on user-commodity behavior data of Alibaba’s M-Commerce
platforms. It contains 23,291,027 interactions of 20,000 customers on 4,758,484 items
within a month plus category information of each item. Customer actions include click,
collect, cart, and purchase.

1http://102.alibaba.com/competition/addDiscovery/index.htm
2https://tianchi.aliyun.com/getStart/information.htm?spm=

5176.100067.5678.2.30a8b6d933N6Rr&raceId=231522
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Table 4.1: Dataset statistics.
Dataset Tmall Tianchi

#of users 822 14,080
#of items 5,823 40,886
#of interactions 157,709 3,782,379
#of action types 4 4
Average interactions per user 192.13 272.03
Average interactions per item 27.03 93.68
# interactions in training set 147,735 2,897,330
# interactions in test set 9,974 885,049

For the Tmall dataset, we filter out users with fewer than 3 interactions and items
that appear less than 3 times [144]. For the Tianchi dataset, we filter out users with
fewer than 20 interactions and items with fewer than 50 interactions. The characteris-
tics of the datasets after preprocessing are summarized in Table 4.1.

Settings and parameters. For evaluation, we divide the Tmall and Tianchi datasets
into training and test sets according to the users’ search time. The training set consists
of all but the last 7 days of interactions; the test set contains the remaining 7 days of
interactions. As collaborative filtering methods cannot recommend an item that has
not appeared before, we filter out interactions from the test set with items that do not
appear in the training set.

For the Tmall and Tianchi datasets, we treat user records in one day as a session
to model short-term preferences, following [81, 143]. For the Tmall dataset, although
there is no detailed time information beyond one day, the sequential information of
user behaviors on items still exists, so we can also model it with an RNN [81].

Unless specified differently, for all the results that we presented, the number of rec-
ommendations (N ) equals 10 [46, 55]. We use Recall@10 and MRR@10 to evaluate
the performance of models [73, 82]. Recall@10 is used to evaluate the recall of the rec-
ommender system, i.e., whether the test item is contained in the top 10 list. MRR@10
measures the ranking accuracy of the recommender system, i.e., whether the test item
is ranked at the top of the list.

We optimize the hyperparameters using Adam [66] with the initial learning rate set
to 0.01, and the mini-batch size fixed at 512. The dimension of the item embeddings
is set to 50 and we use one GRU layer with 100 hidden units. Optimization is done on
a validation set, which is partitioned from the training set with the same procedure as
the test set. The source codes for our model are available on our public repository.3

3https://bitbucket.org/WanyuChen/dsr/
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4.6 Results and Discussion

4.6.1 Overall performance
To answer RQ3.1, we examine the recommendation performance of the baselines and
DCN-SR. See Table 4.2.

Table 4.2: Performance of recommendation models. The results produced by the
best baseline and the best performer in each column are underlined and bold-
faced, respectively. Statistical significance of pairwise differences of DCN-SR vs.
the best baseline is determined by a t-test (N for ↵ = .01, or M for ↵ = .05).

Tmall Tianchi

Model Recall@10 MRR@10 Recall@10 MRR@10

Item-pop .1058 .0455 .0022 .0011
FPMC .1813 .1227 .0594 .0377

GRU4Rec .5852 .5613 .1117 .0875
NARM .7237 .6781 .3155 .1909
STAMP .7246 .6872 .3185 .1955

HRNN .6894 .6617 .1971 .1801
SHAN .7101 .6687 .2208 .1843

DCN-SR .7433M .7132N .3283M .2034N

Let us first consider the baselines. From Table 4.2, we see that neural-based
approaches outperform traditional methods, i.e., Item-pop and FPMC. As to non-
personalized session-based approaches, i.e., GRU4Rec, NARM and STAMP, we see
that NARM and STAMP both improve over GRU4Rec, which indicates the utility of
using an attention mechanism. This result can also be proved by comparing the results
of the personalized models, i.e., HRNN and SHAN, where SHAN with a hierarchical
attention structure shows better performance than HRNN. The results of HRNN are
higher than of a simple RNN-based approach such as GRU4Rec, which means that
incorporating users’ historical and recent interactions together can help to boost the
recommendation performance. STAMP and NARM show better results than SHAN.
The explicit use of the last hidden state seems to improve the performance for session-
based recommendations, as the last behavior in a short session can reveal users’ current
consumption motivations better. STAMP outperforms other baselines in terms of Re-
call@10 and MRR@10. Hence, we use STAMP as our baseline in later experiments.

Next, we compare the baselines against the DCN-SR model. Personalized and non-
personalized models, i.e., SHAN and STAMP, both lose against DCN-SR in terms of
Recall@10 and MRR@10. This shows that using the co-attention network helps to
improve the recommendation performance. This may be due to two factors: one is that
with the co-attention network, DCN-SR can capture the mutual dependence between
users’ historical and recent interactions and learn dynamic representations of users’
long- and short-term preferences; the other is that DCN-SR integrates both a user’s
long- and short-term preferences to predict their next interactions.
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The improvements of DCN-SR over the best baseline model in terms of Recall@10
are 2.58% on the Tmall dataset and 3.08% on the Tianchi dataset. MRR@10 improve-
ments are 3.78% on the Tmall dataset and 4.05% on the Tianchi dataset. Significant im-
provements against the best performing baseline are observed for the DCN-SR model
at the ↵ = .01 level in terms of MRR@10 on both datasets. For Recall@10, we ob-
serve significant improvements at the ↵ = .05 level on both datasets. The fact that
improvements in terms of MRR@10 are bigger than in terms of Recall@10 suggests
that the main effect of DCN-SR’s architecture is to boost the ranking of relevant items
rather than the number of relevant items found.

4.6.2 The Contextual GRU network
For RQ3.2, in order to demonstrate the utility of the CGRU network, which considers
users’ actions as search context in a short session, we examine the recommendation
performance of DCN-SR under different settings, i.e., DCN-SRGRU (with a simple
GRU network) vs. DCN-SRCGRU (with the Contextual GRU network). Table 4.3
contrasts their performance against the best baseline model (STAMP), with different
numbers of recommended items N .

Table 4.3: Recommendation performance with different numbers of recom-
mended items N . The results produced by the best performer in each column
with a certain N are boldfaced. Statistical significance of pairwise differences
is determined by a t-test (N for ↵ = .01 and M for ↵ = .05 when comparing
DCN-SRCGRU or DCN-SRGRU vs. STAMP; • for ↵ = 0.01 and � for ↵ = 0.05
when comparing DCN-SRCGRU vs. DCN-SRGRU ).

Tmall Tianchi

N MRR Recall MRR Recall

5
STAMP .6859 .7148 .1895 .2685
DCN-SRGRU .6964M .7256M .1939M .2744M
DCN-SRCGRU .6999N• .7272M� .1955N• .2752M�

10
STAMP .6872 .7246 .1955 .3184
DCN-SRGRU .7016M .7395M .2016M .3278M
DCN-SRCGRU .7132N• .7433M� .2034N• .3283M�

15
STAMP .6878 .7314 .1985 .3473
DCN-SRGRU .7032M .7470M .2046M .3575M
DCN-SRCGRU .7147N• .7501M� .2067N• .3581M�

DCN-SRGRU , which lacks users’ action information, still beats the best baseline
model, i.e., STAMP, which indicates that the dynamic co-attention network helps to
improve the performance of sequential recommendations. DCN-SRCGRU consistently
achieves improvements over DCN-SRGRU , which demonstrates the utility of the Con-
textual GRU network. Improvements of DCN-SRGRU over STAMP are significant at
the ↵ = .05 level in terms of MRR and Recall, on both datasets. For DCN-SRCGRU ,
we observe significant improvements at the ↵ = .05 level in terms of Recall, and at the
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↵ = .01 level in terms of MRR on the two datasets.
Regarding different numbers of recommendations, we see that the overall perfor-

mance in terms of Recall and MRR increases when N ranges from 5 to 15, as a large
value of N increases the probability of including a user’s preferred item in the list.

The improvements of DCN-SRCGRU in terms of MRR are more significant than
those in terms of Recall, as indicated by the relative improvements over DCN-SRGRU

with different numbers of recommendations. We further conduct paired t-tests, verify-
ing that these improvements are statistically significant for ↵ = .05 in terms of Recall
and ↵ = .01 in terms of MRR. These improvements can prove that incorporating the
information contained in users’ different actions helps to learn more accurate represen-
tations of users’ short-term preferences.

4.6.3 Session length
In order to understand the scalability of sequential recommendation models when ap-
plied with sessions of different lengths (RQ3.3), we divide the sessions in the datasets
into short (no more than 5 items), medium (6 to 15 items) and long sessions (more
than 15 items) on the test set and report separate results in Figure 4.4. We do not
Item-pop and FPMC in the comparison, as their performance is worse than that of the
RNN-based models, especially with short sessions.

From Figure 4.4 we can see that as the session length increases, the performance of
all models improves on the Tmall dataset while it decreases on the Tianchi dataset. The
DCN-SR model always achieves the highest scores, on both datasets, across different
session lengths. Specifically, for Recall@10, as shown in Figure 4.4a and Figure 4.4c,
among the baselines, NARM and STAMP perform better than the model without at-
tention mechanism, i.e., GRU4Rec, across all three session lengths. As for the per-
sonalized methods, although both have a hierarchical structure, SHAN shows better
performance than HRNN across all session lengths, which demonstrates the utility of
an attention mechanism that combines long- and short-term preferences. STAMP out-
performs NARM except when applied with short sessions; this may be due to the fact
that short sessions contain less information than long sessions, thus RNN-based model,
i.e., NARM, can provide positional and sequential information as a supplementary for
recommendation, while STAMP lacks information for predicting users’ preferences
with few interactions.

For MRR@10, a similar trend is shown in Figure 4.4b and 4.4d. Particularly,
DCN-SR shows larger improvements over STAMP in terms of MRR@10 than Re-
call@10, which is consistent with our findings in Table 4.2. For the Tmall dataset, the
improvements are 9.03%, 4.54% and 1.83% in terms of MRR@10, for short, medium
and long sessions, respectively, vs. improvements of 8.02%, 3.21% and 1.72% in terms
of Recall@10. For Tianchi dataset, the improvements are 7.33%, 6.42% and 3.82%
in terms of MRR@10, for short, medium and long sessions, respectively, vs. 5.02%,
3.69% and 1.74% for Recall@10.

The improvements of DCN-SR over STAMP are more obvious for short sessions
than for long sessions. This may be because (1) we consider the users’ historical in-
teractions with the co-attention network, which can provide us with users’ long-term
preferences when making recommendations for short sessions; (2) the CGRU network
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(a) Performance in terms of Recall@10 on
Tmall.

(b) Performance in terms of MRR@10 on
Tmall.

(c) Performance in terms of Recall@10 on
Tianchi.

(d) Performance in terms of MRR@10 on
Tianchi.

Figure 4.4: Effect on the performance of six models in terms of Recall@10 and
MRR@10 of different session lengths.

incorporates users’ action information, which supplies additional information on users’
consumption motivations.

4.6.4 The length of historical interactions
To answer RQ3.4, we evaluate the sequential recommendation models that we consider
with different volumes of users’ historical interactions. This time, we group results by
the length of users’ historical interactions, which is denoted as H . That is, we use
both datasets and partition the users into eight groups: H < 100, H 2 [100, 200),
H 2 [200, 300), H 2 [300, 400), H 2 [400, 500), H 2 [500, 600), H 2 [600, 700],
and H > 700. In order to see the impact of the length of a user’s historical interactions
on the recommendation performance, we compare the performance of DCN-SR with
five baseline models except Item-pop and FPMC; see Figure 4.5.

DCN-SR achieves the best performance for all of the eight groups on both datasets.
For the Tmall dataset, when the number of users’ historical interactions increases, the
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(a) Performance in terms of Recall@10 on
Tmall.

(b) Performance in terms of MRR@10 on
Tmall.

(c) Performance in terms of Recall@10 on
Tianchi.

(d) Performance in terms of MRR@10 on
Tianchi.

Figure 4.5: Effect on the performance of six models in terms of Recall@10 and
MRR@10 with different numbers of historical interactions, tested on the Tmall
and Tianchi datasets.

performance of all models begins to fluctuate at first but shows an upward trend over-
all. In particular, as the number of interactions increases, the performance of DCN-SR,
SHAN and HRNN improves more noticeably than of STAMP and NARM. For exam-
ple, SHAN shows better performance than STAMP and NARM in terms of Recall@10
and MRR@10 when the number of interactions is more than 700. The performance
gap between DCN-SR and STAMP in terms of MRR@10 increases when the num-
ber of interactions increases from the seventh group ([600, 700]) to the eighth group
(> 700).

For the Tianchi dataset, the performance of all models decreases in terms of both
metrics as we consider longer histories. The results for DCN-SR, SHAN and HRNN
decline more slowly than for the STAMP and NARM model, which is consistent with
our findings in Figure 4.5a and 4.5b. E.g., the improvements of DCN-SR over STAMP
are 9.03%, 14.27%, 18.19% and 32.51% under the fifth (H 2 [400, 500)), sixth (H 2
[500, 600)), seventh (H 2 [600, 700]), and eighth (H > 700) groups in terms of
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User A
Historical 

interactions

Session1

120    130   130    130   130   130     90     90      90      90      77      77     77      77

100     100      100        100        100     100      100    90    

120    130   130    130   130   130     90     90      90      90      77      77     77      77

56        56    56      56        56      90     90     84       84

Historical 
interactions

Session2

User B

Historical 
interactions

Session1

10       16       16     10      10      10    2       2      9

3       9       9      10     10     10        10  

10     16      16     10      10     10     2        2     9

24        16     10     16     16     10    

Historical 
interactions

Session2

Figure 4.6: Co-attention visualization. The depth of color indicates the impor-
tance of an event. The red number above the bar is the category of the corre-
sponding item.

Recall@10. This shows the effectiveness of using personalization strategies, i.e., users’
long-term preferences, to improve the recommendation performance.

4.6.5 Co-attention visualization

To illustrate the role of the co-attention mechanism (RQ3.5), we present examples of
two users in Figure 4.6. For each, we randomly choose two sessions from the test set
on the Tianchi dataset, as the Tianchi dataset contains category information for items,
which helps us assess the association between interactions. In Figure 4.6, the depth of
the color indicates the importance of an event, the darker the color the more important
an event is. The red numbers above the bar are the categories of the corresponding
items.

DCN-SR is capable of highlighting a number of factors in predicting a user’s next
interaction as shown in Figure 4.6. First, although the two sessions of a single user
share the same historical interactions, the weights of these historical interactions differ.
For example, for User A, the first event in the historical interactions plays a more
important role in Session1 than in Session2. Also, items that have the same category
as the target item have larger attention weights than others. The category of an item can
partially reflect the interest of the user, thus it indicates that the co-attention mechanism
captures the user’s dynamic interests to some extent.

Second, the interactions in a session also have different weights for predicting a
user’s preference, which proves that DCN-SR can select important events and ignore
unintended interactions. In addition, interactions close to the end of the session often
have larger importance, which is especially clear in Session1 for User B. This confirms
our intuition that incorporating a user’s last interaction in the co-attention mechanism
can help to improve the performance.

Third, there are some important interactions in a session that are not near the user’s
last click. For example, in Session2 for User A, the sixth event is more important than
the last event. This may be due to the user’s interests drift. However, DCN-SR can
also pick them up and give them high weights.

Therefore, based on the visualization results, we claim that the co-attention mech-
anism is able to capture important events both in users’ historical interactions as well
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as their current interactions.

4.7 Conclusion
In this capter, we propose a dynamic co-attention network for session-based recom-
mendation, DCN-SR. DCN-SR applies a co-attention network to capture the dy-
namic relations between a user’s long-term and short-term interactions and generate
co-dependent representations of the user’s long-term and short-term preferences. It
not only exploits the combination of long-term and short-term knowledge, but also
considers dynamic aspects of the relation between a user’s long-term and short-term
preferences. For modeling a user’s short-term interests, we design a Contextual GRU
network to take a user’s actions into account, as different types of action, e.g., “click,”
“collect” and “buy,” can help to reflect users’ next consumption motivations.

Our experimental results confirm the effectiveness and robustness of DCN-SR
with different session lengths and varying numbers of users’ historical interactions.
DCN-SR outperforms the best performing state-of-the-art model STAMP across dif-
ferent session lengths, especially for short sessions. As to users with different numbers
of historical interactions, DCN-SR shows more competitive recommendation perfor-
mance on all users than the state-of-the-art baseline model STAMP. In addition, the
improvements of DCN-SR are higher on users with more historical interactions. To
conclude and answer RQ3, our proposed DCN-SR model that applies a co-attention
network and a CGRU network can help to capture the dynamic interactions between a
user’s long- and short-term behavior for session-based recommendation.

As to future work, on the one hand, we plan to investigate the use of information
contained in different action sequences, e.g., click-click-buy, and click-click-collect,
as sequential actions can provide more context information than single actions [10, 37,
129]. On the other hand, we plan to extend the DCN-SR model with more auxiliary
information, such as content information, to generate more informative representations
of items [44, 121, 151].

Next in Chapter 5, we consider users’ multiple intents revealed in their sequential
behavior instead of only one main intent, and provide a recommendation list containing
accurate as well as diverse items.
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5
Intent-aware Diversified Sequential

Recommendation

In previous chapters, we have studied how to recommend personalized queries as well
as items, and we have mainly focused on improving the recommendation accuracy.
In this chapter, we study how to learn users’ multiple interests from their sequential
behavior and recommend a list containing accurate as well as diverse items. To do
so, we propose an intent-aware end-to-end neural approach for diversified sequential
recommendation, which answers the following research question asked in Chapter 1:
RQ4: How can we address the challenge of diversified sequential recommendation in
an end-to-end framework?

5.1 Introduction
Conventional recommendation methods, e.g., Collaborative Filtering (CF) based meth-
ods [108] or Matrix Factorization (MF) based models [68], assume that user intents are
static. They ignore the dynamic and evolving characteristics of user behavior [86].
Sequential Recommendations (SRs) have been introduced to address these character-
istics with the aim of predicting the next item(s) by modeling the sequence of a user’s
previous behavior [99].

Early studies on SRs are mainly based on Markov chains (MCs) [104], which can-
not handle long sequences [51, 58]. Recurrent Neural Network (RNN) and Trans-
former based neural models have attracted a lot of attentions [50, 62]. Over the years,
many factors have been considered that influence the performance of SR performance,
e.g., personalization [98], repeat consumption [102], context [100], and collabora-
tion [132]. Previous work that focuses on these factors usually aims to improve rec-
ommendation accuracy only. However, it has been shown that diversity is also an
important metric to consider in recommender systems, as users prefer more diverse
lists of recommended items [147].

This is especially true in SR as users may have multiple intents, e.g., different topics
or categories of items. For example, as shown in Figure 5.1, although the user shows
most interest in cartoon movies from her historic watching behavior, occasionally she

This chapter was published as [27].
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Figure 5.1: An example showing sequential recommendations with (bottom) and
without (top) diversification.

also watches family and action movies. A better recommendation strategy should pro-
vide a diverse list of recommended items so as to satisfy all these intents. Concretely,
in the case of Figure 5.1, we would like to recommend a list of cartoons and action
as well as family movies simultaneously instead of cartoons only. In addition, user
intents are occasionally exploratory which means that they do not have a specific goal
in mind. A homogeneous list of recommendations cannot satisfy such users, leading
to a boring user experience [111].

Diversification has been well studied in some conventional recommendation sce-
narios [139] as well as in web search [1, 78, 87]. Current approaches to diversified
recommendation mainly focus on how to re-rank the items in a list of recommenda-
tions based on a given diversity metric with general recommendation models. Such
approaches do not constitute an optimal solution for SRs. First, some assume that user
intents are static and they require that user intents are prepared beforehand, which is
unrealistic in most SR scenarios [5, 20]. Second, most belong to the post-processing
paradigm and achieve recommendation accuracy and diversity in two separate steps,
i.e., (1) scoring items and generating a candidate item set with a recommendation
model; and (2) selecting a diverse list of recommendations based on both the item
scores and some implicit/explicit diversity metrics [70, 139]. Because the recommen-
dation models are not aware of diversity during training and it is hard to design ideal
diversity strategies for different recommendation models, their performance is unsatis-
factory.

In this chapter, we address the task of SR by taking into account both recommen-
dation accuracy and diversity. Previous methods focusing on accuracy adopt a strategy
where items are ranked by a score, which cannot capture the relationship among the
recommended items. Instead, we reformulate SR as a list generation task so as to model
the relationship among recommended items and propose an end-to-end intent-aware di-
versified sequential recommendation (IDSR) model. IDSR employs an implicit intent
mining (IIM) module to automatically capture multiple latent user intents reflected in
sequences of user behavior, and an intent-aware diversity promoting (IDP) decoder
to directly generate accurate and diverse lists of recommendations for the latent user
intents. In order to supervise the learning of the implicit intent mining (IIM) module
and force the model to take recommendation diversity into account during training, we
design an intent-aware diversity promoting (IDP) loss function that evaluates recom-
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mendation accuracy and diversity based on the generated lists of recommended items.
More specifically, a sequence encoder is first used to encode user behavior into

representations. Then, the IIM module employs multiple attention areas to mine user’s
multiple intents with each attention area capturing a particular latent user intent. Fi-
nally, an intent-aware recommendation decoder is used to generate a recommendation
list by selecting one item at a time. When selecting the next item, IDSR also takes
the items already selected as input so that it can track to what extent each latent user
intent is satisfied. During training, we fuse the IDP loss function to learn to mine and
track user intents, and recommend diversified items. In order to supervise the learning
of diversity, ideally we have a ground truth diverse list of recommended items. How-
ever, in practice, we only have the next one ground truth item, which is not enough
to define diversity supervision. To address this, we devise a self-critic strategy for the
IDP loss. The idea is that, under the premise that the ground truth item can be recom-
mended correctly, we reward our list generation strategy whenever it generates a more
diverse recommendation list than the baseline strategy (i.e., the conventional rank-by-
score strategy) evaluated by some diversity metrics. All parameters are learned in an
end-to-end back-propagation training paradigm within a unified framework.

We conduct extensive experiments on four benchmark datasets. IDSR outperforms
the state-of-the-art baselines on those datasets in terms of both accuracy metrics, i.e.,
Recall and MRR, and a diversity metric, i.e., intra-list distance (ILD).

Our contributions in this chapter can be summarized as follows:

• We propose an intent-aware diversified sequential recommendation (IDSR) method.
To the best of our knowledge, this is the first end-to-end list generation based
neural framework that considers diversification for SRs.

• We devise an implicit intent mining (IIM) module to automatically mine latent
user intents from user behavior and an intent-aware recommendation decoder to
generate diverse lists of recommendations.

• We present an IDP loss function to supervise IDSR in terms of both accuracy
and diversity.

• We carry out extensive experiments and analyses on four publicly available
benchmark datasets to verify the effectiveness of the proposed IDSR.

5.2 Related Work
We discuss two types of work that is closely related to ours: sequential recommenda-
tion and diversified recommendation.

5.2.1 Sequential recommendation
Traditional methods for SRs are often based on Markov chains (MCs) [153]. Previ-
ous work introducing such methods investigates how to extract sequential patterns to
learn users’ next preferences with probabilistic decision-tree models. Following this
idea, He and McAuley [42] fuse similarity models with MCs to address the problem
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of sparse recommendations. MC-based methods only model local sequential patterns
with adjacent interactions, which fails to take the whole sequence into account.

Hidasi et al. [51] introduce an RNN-based model for SRs that consists of Gated Re-
current Units (GRUs) and uses a session-parallel mini-batch training process. Quad-
rana et al. [98] develop a hierarchical RNN structure that takes users’ profiles into
account by considering cross-session information. Attention mechanisms have been
applied to SRs to help models explore users’ preferences [48]. Li et al. [73] propose a
neural attentive session-based recommendation machine that takes the last hidden state
from the session-based RNN as the sequential behavior, and uses the other hidden
states for computing attention to capture users’ current preferences in a given session.
Xu et al. [141] propose a recurrent convolutional neural network to capture both long-
term and short-term dependencies for SR. Kang and McAuley [62] apply a two-layer
Transformer model [127] to SRs to capture users’ sequential behavior. Sun et al. [117]
use a bidirectional encoder representations from Transformers for SRs. Chen et al. [28]
propose to apply a user memory network with attention mechanism to store and update
a user’s historical records for SRs.

Previous studies on SRs, e.g., [7, 18, 23, 143, 144], mostly focus on improv-
ing the recommendation accuracy. The studies mentioned above ignore the fact that
users might have multiple intents reflected in their sequential behavior. Wang et al.
[136] have proposed a mixture-channel purpose routing networks (MCPRNs) to cap-
ture users’ different intents in a given session. MCPRN first applies a purpose routing
network to detect multiple purpose of a user and then models the sequential items with
a mixture-channel RNN, where each channel RNN models the item dependencies for
a specific purpose. Finally, MCPRN integrates all channel embeddings to predict the
next item. During training, MCPRN only applies the cross-entropy loss to supervise
the model in terms of recommendation accuracy, which means there is no supervision
for the model to learn to distinguish multiple intents or generate diversified recommen-
dations.

Unlike the studies listed above, we propose to address recommendation accuracy
and diversification in a unified framework, where we propose an implicit intent mining
(IIM) module to capture multiple intents and an intent-aware diversity promoting (IDP)
decoder to generate the list of recommended items to satisfy those intents gradually.
We devise an IDP loss function to supervise the model to learn different intents and
generate diversified recommendations.

5.2.2 Diversified recommendation
Promoting diversity of recommendation or search results has long been an important
research topic. A lot of works have been proposed to tackle the task of diversified
recommendation, mainly including determinantal point process (DPP) [69] and sub-
modular optimization [97]. The most representative implicit approach is maximal
marginal relevance (MMR) [17]. MMR represents relevance and diversity by inde-
pendent metrics and uses the notion of marginal relevance to combine the two metrics
with a trade-off parameter. Qin and Zhu [97] propose an entropy regularizer to promote
recommendation diversity. It satisfies monotonicity and submodularity so that the ob-
jective function can be maximized approximately by greedy algorithm. Chen et al. [20]
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propose to improve recommendation diversification through a DPP [69] with a greedy
maximum a posterior inference algorithm. Sha et al. [111] introduce a submodular
objective function to combine relevance, coverage of user’s intents, and the diversity
between items. Learning to rank (LTR) has also been exploited to address diversifica-
tion. Cheng et al. [30] first label each user by a set of diverse as well as relevant items
with a heuristic method and then propose a diversified collaborative filtering algorithm
to learn to optimize the performance of accuracy and diversity for recommendation.
The main issue of LTR based methods is that they all need diversified ranked lists as
ground truth for learning [139]; these are usually unavailable in recommendations.

The methods listed above achieve accuracy and diversity of recommendation in
two separate steps, i.e., training an offline recommendation model to score items in
terms of accuracy and then re-ranking items by taking diversity into account. We
show through experiments that our end-to-end model can achieve significantly better
performance. Besides, none of the methods listed is suitable for SRs, where users’
sequential behavior needs to be considered. In contrast, we consider users’ temporal
preferences and optimize for accuracy and diversity in one go.

5.3 Approach

5.3.1 Overview
Given a user u and her/his behavior sequence Su = {x1, x2, . . . , xT } where every xi

is an item that u interacted with, e.g., watched movie, the goal of SRs is to provide u

with a list of recommended items RL for predicting her/his next interaction; the items
are expected to be both relevant and diverse.

Unlike existing SR methods, we assume there are M latent intents behind each
behavior sequence, i.e., A = {a1, . . . , aM}. Then, we seek to generate a list of recom-
mended items RL by maximizing the degree of satisfaction for all intents:

P (RL | u, Su) =
MX

m=1

P (am | u)P (RL | am, u, Su), (5.1)

where P (am | u) denotes the importance of intent am to user u; P (RL | am, u, Su) is
the probability of satisfaction of RL to am.

It is hard to directly optimize P (RL | u, Su) due to the huge search space. There-
fore, we propose to generate RL greedily, i.e., selecting one item at a time with the
maximum score S(v):

vt  argmax
v2V \Rt�1

S(v), (5.2)

where vt is the item to be selected at step t; V is the set of all items; Rt�1 is the list
of recommended items generated until step t-1; V \ Rt�1 guarantees that the selected
item is different from previous generated recommendations in Rt�1 at step t; and S(v)
returns the score of item v by

S(v) �P (v | u, Su) + (1� �)
MX

m=1

P (v | am)W (Rt�1, am). (5.3)
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The score S(v) is a combination of the relevance score and the diversification score,
balanced by a hyper-parameter �; P (v | u, Su) is the relevance score reflecting the
importance of v for u; P (v | am) is the degree of satisfaction of v to am; W (Rt�1, am)
denotes the likelihood that the already generated recommendation list Rt�1 does not
satisfy am.

Then, we propose an end-to-end intent-aware diversified sequential recommenda-
tion (IDSR) model to directly generate a diversified list of recommended items accord-
ing to Eq. (5.3). The main framework of IDSR is shown in Figure 5.2.
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Figure 5.2: Overview of IDSR. The blue, purple and green colors denote different
user intents.

As shown in Figure 5.2, IDSR consists of three modules: a sequence encoder, an
implicit intent mining (IIM) module, and an intent-aware diversity promoting (IDP)
decoder. First, the sequence encoder projects users’ sequential behavior into latent
representations. Then, the IIM module is used to capture users’ multiple latent intents
reflected in their sequential behavior. Finally, the IDP decoder is employed to generate
a list of recommended items according to Eq. (5.3). We devise an IDP loss to train
IDSR; it evaluates the whole list of recommended items in terms of both accuracy and
diversity. Note that there is no re-ranking involved in IDSR. That is, both recom-
mendation accuracy and diversity are jointly learned in an end-to-end way. Next, we
introduce the separate modules.

5.3.2 Sequence encoder
Since the encoder module is not the focus of this chapter, we simply adapt the com-
monly used GRUs to verify the validity of our proposed method [51]:

zt = �
�
Wz[xt,ht�1]

�

rt = �
�
Wr[xt,ht�1]

�

ĥt = tanh(Wh[xt, rt � ht�1])

ht = (1� zt)� ht�1 + zt � ĥt,

(5.4)

where xt denotes the embedding of item xt; Wz , Wr and Wh are weight parameters;
� denotes the sigmoid function. The input of the encoder is the behavior sequence
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Su = {x1, x2, . . . , xT } and the outputs are hidden representations {h1,h2, . . . ,hT },
where hi 2 Rde . We stack those representations into a matrix HS 2 RT⇥de . Like [73],
we consider the last representation hT to be the user’s global representation, which
summarizes the whole sequence:

Fu = hT . (5.5)

5.3.3 IIM module
The IIM module is meant to mine users’ multiple intents behind the sequence. In-
tuitively, a user’s multiple intents can be reflected by different interactions in their se-
quential behavior. Some interactions are more representative for a particular intent than
others, e.g., the last two actions in Figure 5.1 reflect the user’s intent of watching car-
toon movies. Motivated by this, we fuse a multi-intent attention mechanism where each
attention captures one particular intent. Specifically, IIM first projects HS and Fu into
M spaces w.r.t. the latent intents, respectively. Then, M attention functions are em-
ployed in parallel to produce user’s intent-specific representations {S1

u, S
2
u, . . . , S

M
u }:

S
i
u = Attention

�
FuW

Q
i ,HSW

K
i ,HSW

V
i

�
, (5.6)

where the projection matrices for intent i, i.e., WQ
i 2 Rde⇥d, WK

i 2 Rde⇥d and
W

V
i 2 Rde⇥d, are learnable parameters. We use the scaled dot-product attention in

this work [127] as:

Attention(Q,K,V ) = AV = softmax
✓
QK

>
p
d

◆
V , (5.7)

where A denotes the attention distribution produced by each intent. We finally apply a
two-layer feed-forward network to each S

i
u to introduce nonlinearity:

F
i
u = FFN(Si

u) = ReLU
�
S
i
uW

(1) + b
(1)

�
W

(2) + b
(2)

, (5.8)

where W
(1) 2 Rd⇥d, W (2) 2 Rd⇥d, b(1) 2 Rd, and b

(2) 2 Rd are trainable parame-
ters.

5.3.4 IDP decoder
The IDP decoder is used to generate RL based on the intents mined with the IIM
module. To begin with, we model the relevance score of v to user u (i.e., P (v | u, Su)
in Eq. (5.3)) with a bilinear decoding scheme as follows:

P (vn | u, Su) =
SvnP|V |
j=1 Svj

Svn =
MX

m=1

S
m
vn

S
m
vn

= P (am | u)P (vn | am, u)

P (vn | am, u) = softmax(v>
nB[Fu, F

m
u ]),

(5.9)
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where B is a bilinear parameter; vn is the item embedding which can be trained within
the network; and S

m
vn

means the relevance score of item vn to intent am, weighted by
the importance of intent am, i.e., P (am | u). We can calculate P (am | u) by:

P (am | u) = exp(FuW
w
F

m
u

>)
PM

j=1 exp(FuW
wF

j
u
>
)
, (5.10)

where W
w 2 Rde⇥d is used to transform the intent-specific representations back to

the same space with Fu, so that we can generate the weight of each intent.
To track the already selected items to date, we use another GRU to encode Rt�1 =

{y1, y2, . . . , yt�1} into {hy
1,h

y
2, . . . ,h

y
t�1}. Then we estimate the degree of “unsatis-

factoriness” of Rt�1 to each intent (i.e., W (Rt�1, am) in Eq. (5.3)) by calculating the
matching between h

y
t�1 and F

m
u as:

W (Rt�1, am) = 1�
P (am | u) exp(wm

t�1)PM
j=1 P (aj | u) exp(wj

t�1)

w
i
t�1 = W

>
y �(WAF

i
u +WBh

y
t�1),

(5.11)

where w
i
t�1 denotes the matching between already generated recommendations and

F
i
u. Thus W (Rt�1, am) indicates to what extent intent am is unsatisfied and should

be paid more attention to when generating the next recommendation. Here, we also
incorporate the initial weight of each intent P (a | u). We calculate P (v | am) in
Eq. (5.3) with:

P (vn | am) = softmax(v>
nF

m
u ). (5.12)

Finally, we can calculate the score S(v) of each item (Eq. (5.3)), select the item with
the highest probability, and append it to the list of recommended items.

5.3.5 IDP loss
Since our goal is to generate a list of recommended items that is both relevant and
diverse, we design our loss function to evaluate the whole generated list RL based on
the accuracy as well as the diversity of RL:

LossRL = �eLRL
rel + LRL

div , (5.13)

where �e is a weight parameter to balance the relative contributions of accuracy and
diversification.

Given the output list of recommended items from IDSR, i.e., RL = {y1, y2, . . . , yN}
and the ground truth item y

⇤ (i.e., the next consumed item), LRL
rel is defined as:

LRL
rel = �

|V |X

i=1

pi log
�
q
0
i

�
, (5.14)

where pi indicates the ground truth probability distribution and q
0
i is the prediction

probability of the first item in RL. When generating the first item, IDSR only con-
siders the relevance score without diversification, thus we use this part to optimize the
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prediction accuracy of IDSR. With this relevance loss, we can also take the position of
the ground truth item y

⇤ in the ranked list into consideration.
To promote diversity, we apply a self-critic strategy. Specifically, at each step, we

select an item based on S(v) and output a list of recommended items RL. Meanwhile,
we also select an item only based on the maximum relevance score P (vi | u, Su) and
output a list of recommended items Rrel

L . Thus we propose a pair-wise diversity loss:

LRL
div = w log

1

1 + exp(Pr(Rrel
L )� Pr(RL))

Pr(RL) =
X

vi2RL

logS(vi)

Pr(Rrel
L ) =

X

vi2Rrel
L

logS(vi)

w = M(Rrel
L )�M(RL),

(5.15)

where S(vi) is the final score of item vi calculated by Eq. (5.3); Pr(RL) indicates the
log likelihood of generating recommendation list RL, so as R

rel
L ; w is the diversity

evaluation metric score gap of the two recommendation list Rrel
L and RL, e.g., ILD in

this chapter. We use Rrel
L as a baseline to compare with, so that we can evaluate the di-

versity of the generated list of recommended items RL. If the diversity of Rrel
L is larger

than RL, we would punish the decoder to decrease the probability for generating RL

with the weight of w. Otherwise, we would reward the decoder to increase probability
of RL, which is larger than the probability of generating R

rel
L .

Besides the relevance and diversity losses, we also add two regularization terms
to our loss function. One is a disagreement regularization, which is meant to enlarge
the distance among multiple intents. Specifically, the differences among multiple in-
tent representations are reflected by different attention distributions produced by each
intent, thus we apply a strategy to disperse the attended positions predicted by each
intent. We use an alignment disagreement regularization [74] as:

LRL
Dis =

1

M2

MX

i=1

MX

j=1

��Ai �A
j
��, (5.16)

where A
i denotes the attention distribution produced by intent i in Eq. (5.7). We

employ the sum of element-wise multiplication of vector cells.
The other regularization term that we add is the maximum entropy regularization,

which helps to avoid the situation that one of the intents dominates [142, 150]:

LRL
ME =

MX

m=1

P (am | u) logP (am | u). (5.17)

Thus, our final IDP loss is:

IDPRL
loss = �eLRL

rel + LRL
div + LRL

Dis + LRL
ME . (5.18)

All parameters of IDSR as well as the item embeddings can be learned in an end-to-end
back-propagation training paradigm.
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Table 5.1: Dataset statistics.
Dataset ML100K ML1M Tafeng Tmall

Number of users 943 6,022 1,703 25,958
Number of items 1,349 3,043 2,461 57,677
Number of interactions 93,629 959,022 42,921 623,124
Number of item categories 19 18 469 70
Avg. number of genres per item 1.7 1.6 1.0 1.0

5.4 Experiments
We design experiments to answer the following questions, both of which refine RQ4:

(RQ4.1) What is the performance of IDSR compared with state-of-the-art baselines in
terms of accuracy?

(RQ4.2) Does IDSR outperform state-of-the-art baselines in terms of diversity?

5.4.1 Datasets
We use four public benchmark datasets for our experiments, two of them are based on
movies and the others are e-commerce datasets. Table 5.1 lists the statistics of these
four datasets:

• ML100K1 is collected from the MovieLens web site. It contains 100,000 ratings
from 943 users on 1,682 movies.

• ML1M1 is a larger and sparser version of ML100K, which contains 1,000,209
ratings for movies.

• Tafeng2 is collected from a grocery store and released by Kaggle, which contains
one month log data.

• Tmall3 is released by a competition that records user online shopping behavior
on an e-commerce platform Tmall.

Note that each item/movie from both ML1M and ML100K belongs to multiple movie
genres at the same time. Each item from Tafeng and Tmall only belongs to a single
category.

We follow Li et al. [73] to process the data. First, we filter out users who have less
than 5 interactions and items that are rated less than 5 times in ML100K. For the other
datasets, we only keep users as well as items with more than 20 interactions. Then, we
sort the interactions according to the “timestamp” field to get a behavioral sequence for
each user. Finally, we prepare each data sample using a sliding-window approach by

1https://grouplens.org/datasets/movielens/
2https://www.kaggle.com/chiranjivdas09/ta-feng-grocery-dataset
3https://tianchi.aliyun.com/dataset/dataDetail?dataId=42
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regarding the previous 9 actions as input and the next action as output. We use the first
90% interactions for model training, the last 10% for model testing. The validation set
is split from the training set in the same way as the test set.

Since we do not target cold-start items so that we make sure that all items in the
test set have been rated by at least one user in the training set and the test set contains
the most recent actions which happened later than those in the training and validation
sets.

5.4.2 Methods used for comparison
There have been a number of SR methods proposed in the last few years. Our model
focus on combining recommendation accuracy and diversity in a unified framework,
thus we do not make comparisons with those works aiming to improve recommenda-
tion accuracy, e.g., BERT4Rec [117] and SASRec [62], as they can be incorporated
into our encoder part to help improve the accuracy performance of our model. There
is another work, i.e., S-DIV [65], which proposes a sequential and diverse recommen-
dation model. Since in S-DIV the term ”diverse” means to incorporate more rare or
tail items which is different from our work, we do not compare with it in this paper.
For a fair comparison, we select state-of-the-art neural SR methods that adapt a similar
architecture as ours as baselines:

GRU4Rec An RNN-based model for SR. GRU4Rec utilizes session-parallel mini-
batches as well as a ranking-based loss function in the training process [51].

NARM An RNN-based model that applies an attention mechanism to capture users’
main purposes from the hidden states and combines it with sequential behavior
as final representations of users’ current preferences [73], which shares a similar
spirits as IDSR when calculating the relevance scores for items.

MCPRN The most recently proposed method that models users’ multiple purposes in
a session. They claim that they can improve the performance over the state-of-
the-art methods in terms of both accuracy and diversity [136]. Thus, we consider
it as a state-of-the-art baseline model.

We also report results of a popularity based method, POP, which ranks items based on
the number of interactions, because the performance of POP can reflect some charac-
teristics of the datasets and is quite effective in some scenarios [3].

Because there is no previous work specific for diversified SR, we construct a base-
line, NARM+MMR, ourselves. With carefully tuned hyperparameters, NARM can
achieve state-of-the-art performance most of the time. MMR is a simple yet effective
approach, which is still commonly used in web search and recommendation. Specifi-
cally, we first get the relevance scores S(v) for each item with NARM. Then, we rerank
the items using the MMR criteria:

v  argmaxvi2Rc\RL
✓S(vi) + (1� ✓)minvk2RL dki,

where Rc is a candidate item set and ✓ 2 [0, 1] is a trade-off parameter to balance
the relevance and the minimal dissimilarity dki between item vk and item vi. MMR
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first initializes RL = ; and then iteratively selects the item into RL, until |RL| =
N . When ✓ = 0, MMR returns diversified recommendations without considering
relevance; when ✓ = 1, it returns the same results as the original baseline models.
Unless specified otherwise, for all the results that we presented in this chapter, the
number of recommendations (N ) equals 10.

5.4.3 Evaluation metrics
For accuracy evaluation, we use Recall and MRR as most previous studies [73, 82];
for diversity evaluation, we choose ILD [147], which is commonly used to evaluate the
recommendation diversity.

Recall Whether the test item is contained in the list of recommendations.

MRR Whether the test item is ranked at the top of the list.

ILD Measures the diversity of a list of recommendations as the average distance be-
tween pairs of recommended items:

ILD =
2

|RL|(|RL|� 1)

X

(i,j)2RL

dij . (5.19)

We calculate the dissimilarity dij between two items based on the Euclidean
distance between the item genre vectors [5].

5.4.4 Implementation details
We set the item embedding size and GRU hidden state sizes to 128. We use dropout
with drop ratio p = 0.5. We initialize the model parameters randomly using the Xavier
method [38]. We optimize the model using Adam [66] with the initial learning rate
↵ = 0.001, two momentum parameters �1 = 0.9 and �2 = 0.999, and ✏ = 10�8.
The mini-batch size is set to 512. We set the parameter �e = 1.0 for the ML100K,
ML1M and Tmall datasets and �e = 0.1 for Tafeng after fine-tuning the parameter
on the validation set. We test the model performance on the validation sets for every
epoch and select the best model to report results on the test sets accordingly. The code
used to run our experiments is available online4.

5.5 Results and Discussion

5.5.1 Performance in terms of accuracy
To answer RQ4.1, we compare IDSR with the baselines in terms of Recall and MRR;
see Table 5.2.

First, note that Neural Attentive Recommendation Machine (NARM) has a similar
encoding architecture as IDSR, thus we can see that NARM and IDSR are comparable

4https://bitbucket.org/WanyuChen/idsr/
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Table 5.2: Performance of recommendation models. The results from the best
baseline and the best performer in each row are underlined and boldfaced, respec-
tively. Statistical significance of pairwise differences of IDSR vs. the best baseline
is determined by a paired t-test (M for p-value  .05).

Dataset Metric POP GRU4Rec NARM MCPRN NARM+MMR IDSR

ML100K
Recall (%) 4.02 6.23 9.68 9.27 9.53 9.79
MRR (%) 1.21 2.09 3.18 2.99 2.77 3.22
ILD 1.501 1.527 1.518 1.561 1.583 1.666M

ML1M
Recall (%) 9.11 11.67 15.02 14.89 14.72 14.89
MRR (%) 2.02 4.02 5.39 5.26 4.89 5.30
ILD 1.233 1.307 1.289 1.301 1.325 1.383M

Tafeng
Recall (%) 2.01 4.11 4.71 4.57 4.33 4.97M
MRR (%) 1.09 1.42 1.69 1.60 1.41 1.96M
ILD 1.233 1.267 1.214 1.248 1.263 1.318M

Tmall
Recall (%) 9.56 12.11 14.41 14.19 14.00 14.32
MRR (%) 4.11 5.41 7.51 7.27 6.28 7.43
ILD .8817 .8789 .8343 .8864 .8917 .9468M

in terms of recommendation accuracy (Recall and MRR). However, IDSR can help to
improve the diversity (see Section 5.5.2) of recommendation list without much sac-
rifice of accuracy, i.e., a 0.87% and 1.70% decrease in terms of Recall and MRR on
the ML1M dataset, and of 0.65% and 1.01% on the Tmall dataset, respectively, none
of which are significant. That is because although IDSR tries to diversify the recom-
mendations, IDSR still assigns high probability to those most relevant items without
considering much of the diversification in the first few decoding steps. In addition, the
IDP loss also considers recommendation accuracy, which can help the model to capture
users’ main intents. When users have multiple intents, NARM shows bias towards the
main intent, which will lead to unsatisfactory recommendations. For example, IDSR
shows better performance than NARM on the Tafeng dataset. The improvements of
IDSR over NARM in terms of Recall and MRR are 5.61% and 16.23% on the Tafeng
dataset, respectively. We believe that this is due to the fact that Tafeng records users’
behavior in a grocery store, where users tend to have multiple intents, and buy items
with different categories when they are shopping. Compared with MCPRN, we can see
that IDSR shows better performance in terms of both Recall and MRR on all datasets
than MCPRN. The IIM module considers not only users’ multiple intents but the im-
portance of each intent, which can help improve the recommendation accuracy.

Second, we note that after re-ranking with MMR, the accuracy of NARM drops
dramatically, especially in terms of MRR. This indicates that although post-processing
with MMR can improve the diversity of recommendation list, it hurts the accuracy
a lot. Because most of the candidate items generated by NARM have similar gen-
res/characteristics. When the diversity scores for the relevant items are lower than the
irrelevant ones, the irrelevant items will get higher final scores than the relevant items,
which results in a worse performance in terms of accuracy. Besides, we found that the
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re-ranking process is time-consuming, while our model is much more efficient.
In summary, IDSR can achieve comparable or superior performance compared with

state-of-the-art methods in terms of recommendation accuracy. It is also worth to note
that we can incorporate any other effective mechanisms into our framework to further
improve the recommendation accuracy such as SASRec [62]. However, this is beyond
the scope of this work.

5.5.2 Performance in terms of diversity
To answer RQ4.2, we report the diversity scores, i.e., ILD, on all datasets in Table 5.2.
We can see that IDSR consistently outperforms all baselines. The improvements of
IDSR over MCPRN are 6.71% and 6.33% in terms of ILD on ML100K and ML1M,
respectively. As to the e-commerce datasets, the improvements are 5.58% and 6.81%
on the Tafeng and Tmall datasets, respectively. Although MCPRN models users’ mul-
tiple intents, there is no supervision signal for the model to learn to distinguish different
intents in order to generate diverse recommendations. However, in IDSR, we have the
diversity loss and disagreement regularization term in our designed IDP loss, which
can help the model to learn to distinguish different intents and satisfy each of them
during the recommendation list generation process.

Clearly, IDSR significantly outperforms NARM+MMR. For example, the improve-
ments of IDSR over NARM+MMR are 4.34% and 6.18% on Tafeng and Tmall, re-
spectively. Since MMR is heuristically defined, we find that MMR relies heavily on
the performance of NARM. When the candidate items from NARM all have similar
genres, the performance of MMR method is limited. In contrast, IDSR avoids this is-
sue by learning to diversify the recommendation list through optimizing the IDP loss
in Eq. (5.18).

5.6 Analysis
In this section, we perform a number of analyses of the factors that impact the perfor-
mance of IDSR:

• What is the impact of the number of latent intents on IDSR, i.e, IDSR with single
head or multiple heads?

• How does the trade-off parameter � affect the performance of IDSR?

• What is the effect of the disagreement regularization loss LRL
Dis in Eq. (5.18)?

• Does the IIM module in IDSR capture users’ multiple intents?

5.6.1 Impact of the number of latent intents
We examine the performance of IDSR with different numbers of latent intents/attention
heads in Table 5.3. We can see that when the number of heads is set to one, the
performance is inferior in terms of diversity on all datasets. The reason is that the
model will only focus on the main intent when generating recommendations.
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Table 5.3: Performance of IDSR with different numbers of intents.
Dataset Metric 1-head 2-head 3-head 4-head

ML100K
Recall (%) 9.99 9.83 9.79 9.41
MRR (%) 3.29 3.19 3.22 2.99
ILD 1.57 1.62 1.67 1.67

ML1M
Recall (%) 15.26 14.93 14.89 14.01
MRR (%) 5.55 5.36 5.30 5.02
ILD 1.29 1.29 1.38 1.40

Tafeng
Recall (%) 5.35 5.16 4.97 4.97
MRR (%) 1.79 2.02 1.96 1.84
ILD 1.26 1.26 1.32 1.34

Tmall
Recall (%) 14.51 14.36 14.32 14.21
MRR (%) 7.49 7.38 7.43 7.23
ILD 0.82 0.90 0.95 0.95

As for accuracy, we can see that with the number of heads increasing, the perfor-
mance in terms of MRR and Recall is getting worse in general. On the e-commerce
dataset, i.e., Tmall, the differences in terms of Recall and MRR when we change our
model from single head to multiple heads are smaller than those on the MovieLens
dataset, e.g., ML1M. The improvement of IDSR with 4-heads over 1-head in terms of
ILD on Tmall is larger than that on ML1M. This may be because users are more likely
to have multiple intents when they do online shopping than when choosing movies
to watch next. Another reason is that the time gap between adjacent interactions in
the MovieLens datasets is larger than that in the e-commerce datasets, so historical
behavior and multiple intents do not have much impact on users’ current behavior.

Table 5.3 shows that adding more heads will hurt the accuracy much and also in-
creases the number of parameters for training, thus we choose to use three heads in our
experiments which are tuned on the validation set.

5.6.2 Influence of the trade-off parameter �
In order to investigate the impact of the trade-off parameter � on IDSR, we test the
performance of IDSR on all datasets by ranging it from 0 to 1 with a step size of 0.1.
The results are shown in Figure 5.3.

The accuracy metrics, i.e., Recall and MRR, show upward trends when � increases
from 0 to 1. When � = 0, IDSR shows the worst performance. However, a noticeable
increase is observed when � changes from 0 to 0.1: the setting with � = 0 means that
we only consider diversity without accuracy, thus the model cannot be trained well
to recommend relevant items. IDSR shows its best performance in terms of accuracy
metrics with � at around 0.2 and 0.5 on the ML100K and ML1M datasets. Similar
trends can be found on e-commerce datasets in terms of MRR and Recall.

Regarding recommendation diversity, IDSR achieves the best performance in terms
of ILD when � = 0.0 on all datasets since we maximize diversity only in this case.
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(a) Performance in terms of
Recall.

(b) Performance in terms of
MRR.

(c) Performance in terms of
ILD.

(d) Performance in terms of
Recall.

(e) Performance in terms of
MRR.

(f) Performance in terms of
ILD.

Figure 5.3: Performance of IDSR on four datasets with the parameter � in
Eq. (5.3) changing from 0 to 1.

When � changes from 0 to 1, ILD naturally decreases on all datasets. On the e-
commerce datasets, there are more fluctuations than on the MovieLens datasets, es-
pecially on Tmall. The performance of IDSR in terms of ILD decreases sharply from
0 to 0.1.

5.6.3 Effect of disagreement regularization

In order to look into the effect of the disagreement regularization loss LRL
Dis is IDSR,

we modify the IDP loss as:

IDPRL
loss = �eLRL

rel + LRL
div + �DisLRL

Dis + LRL
ME , (5.20)

where LRL
Dis is weighted by the parameter �Dis . We test the performance of IDSR with

�Dis = 0.0, 0.5 and 1.0, respectively. The results are shown in Table 5.4.
We can see that LRL

Dis can help to boost the performance of IDSR in terms of di-
versity when �Dis changes from 0.0 to 1.0. This indicates that the IIM module can
effectively capture different latent intents by applying LRL

Dis . To further show the effect
of the IIM module with different weights of LRL

Dis , we randomly select one sequence
from the test set of ML100K and visualize the attention weights of different positions
with multiple intents when �Dis = 0.0, 0.5 and 1.0 in Figure 5.4.

From Figure 5.4, it is obvious when �Dis = 0.0, the three intents share similar
attention weights distributions, which fails to extract this user’s different intents and
thus leads to worse performance in terms of diversity than that when �Dis = 0.5. As
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Table 5.4: Performance of IDSR with different weights of disagreement regular-
ization.

Dataset Metric �Dis = 0.0 �Dis = 0.5 �Dis = 1.0

ML100K
Recall (%) 9.95 9.78 9.79
MRR (%) 3.23 3.13 3.21
ILD 1.58 1.61 1.67

ML1M
Recall (%) 15.14 14.97 14.89
MRR (%) 5.48 5.32 5.30
ILD 1.29 1.30 1.38

Tafeng
Recall (%) 5.71 5.19 4.97
MRR (%) 2.15 1.93 1.96
ILD 1.24 1.28 1.32

Tmall
Recall (%) 14.57 14.43 14.32
MRR (%) 7.50 7.45 7.43
ILD 0.84 0.91 0.95

(a) �Dis = 0.0. (b) �Dis = 0.5 (c) �Dis = 1.0

Figure 5.4: Weight distributions of multiple intents with different values of �Dis .

�Dis changes from 0.0 to 1.0, the differences between the three intents become more
distinct. To sum up, the IIM module can effectively capture different latent intents
with a disagreement regularization loss, as indicated by various weights for items in a
sequence.

5.6.4 Case study
In this subsection, we show an example from the test set of ML100K to illustrate the
different recommendation results by IDSR and NARM in Figure 5.5.

Figure 5.5 (top) shows 7 movies that the user watched recently and the top 5 rec-
ommendations generated by IDSR and NARM, respectively. The ground truth item is
marked with a red box. According to the user’s historical views, we see that the user
likes Children and Comedy recently. But the user also shows interest in Adventure,
Animation, Action, Crime, Drama, Romance and Thriller. The list of items recom-
mended by NARM is mainly about the Children genre, e.g., cartoon movies, which
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Figure 5.5: An example of recommendation results generated by IDSR and
NARM.

is close to the recent intents of this user. Differently, IDSR accommodates multiple
intents and diversifies the list of recommended movies with Drama, Crime, Romance
and Thriller. IDSR also recognizes the most important intent and gives a high rank
to the ground truth movie. This confirms that IDSR cannot only mine users’ multiple
intents, but generate a diversified list of recommended items to cover those intents.

5.7 Conclusion
In this chapter, we propose the IDSR model to improve diversification for sequential
recommendation (SR). We devise an implicit intent mining (IIM) module to capture
users’ multiple intents and an intent-aware diversity promoting (IDP) decoder to gen-
erate a diverse recommendation list covering those intents. We also design an IDP
loss to supervise the model to simultaneously consider accuracy and diversification
during training. We have conducted experiments on four datasets and have found that
IDSR significantly outperforms the state-of-the-art baselines in terms of recommenda-
tion diversity while maintaining competitive accuracy scores. In addition, we discuss
the impact of the trade-off parameter and the number of intents as well as the dis-
agreement regularization in our model, and include a case study to compare the items
recommended by IDSR vs. those recommended by the baseline model. In summary,
we answer RQ4 by reformulating SR as a list generation task and proposing IDSR to
capture users’ multiple intents as well as recommend diversified items.

As to future work, we plan to apply IDSR to other recommendation scenarios,
e.g., shared-account recommendations, where the observed behavior may be generated
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by multiple users with more distinct intents [59, 86]. We also hope to improve the
recommendation accuracy by incorporating other useful SR models into IDSR [119,
141]. In IDSR, there is a trade-off parameter controlling the balance between accuracy
and diversity, i.e., �, which needs to be pre-defined. This is a one-size-fits-all method
that provides recommendations to all users with a constant accuracy-diversity balance.
However, individuals have different needs for diversity, thus it is important to provide
recommendations with an adaptive degree of diversity [34, 145]. We aim to investigate
how to learn the trade-off parameter from users’ behavior so as to address this need.
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6
Conclusions

In previous chapters, we have described how we addressed the research questions
raised in Chapter 1 as well as the answers that we have obtained. In this chapter,
we first look back to our research questions and summarize the main findings and im-
plications of our work in Section 6.1. We then describe some future research directions
that follow the work in this thesis in Section 6.2.

6.1 Main Findings

6.1.1 Learning users’ search intent and recommending person-
alized queries

We first considerd the recommendation task in search engines, i.e., recommending
queries, and raised the following question:

(RQ1) How to capture users’ search intent by learning from their historical submitted
queries?

To answer this question, we have proposed an attention-based hierarchical neural query
suggestion model (Attention-based Hierarchical Neural Query Suggestion (AHNQS))
that combines a hierarchical user-session Recurrent Neural Network (RNN) with an at-
tention mechanism. The hierarchical structure, which incorporates a session-level and
a user-level RNN, can model both the user’s short-term and long-term search behavior
effectively. The attention mechanism aims to capture a user’s preference towards cer-
tain queries over others. For the session-level RNN, a combined session state is applied
to capture both of the user’s sequential behavior and his main purpose in the current
session, which is then used as the input for the user-level RNN. For the user-level
RNN, we used its final hidden state to initialize the next session-level RNN, which can
automatically transport the user information within the network.

We evaluated the effectiveness of our proposed model by extensive experiments.
The experimental results show that: (1) the proposed AHNQS model helps to boost
query suggestion performance in terms of MRR and Recall across sessions with vari-
ous lengths; (2) using the combined session state in the AHNQS model achieves better
performance than only using the local session state; and (3) the AHNQS model yields
better performance than the best baseline for inactive, active, as well has highly active
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users. The theoretical implication of this research is that a hierarchical model that is
combined with an attention mechanism for query suggestion can capture the dynamic
search intents of a user. The practical implication of our research is that the improve-
ments of AHNQS over the best baseline model are significant; they are especially
prominent for short sessions and for inactive users with few search sessions, which is
a realistic setup that online services are always confronted with [101]. Compared to
the state-of-the-art, AHNQS achieves improvements of 9.66% and 12.51% in terms of
Recall@10 and MRR@10, respectively, on average over all users, and of 10.22% and
13.01% for inactive users.

6.1.2 Learning users’ general preferences and recommending
personalized items

Next, we focused on recommender system and investigated how to learn users’ general
preferences and asked:

RQ2 Can we learn users general preference by modeling non-linear user-item rela-
tionships as well as characteristics based on their interactions?

We have proposed a joint neural collaborative filtering model, Joint Neural Collabo-
rative Filtering (J-NCF), to answer this research question. J-NCF uses a unified deep
neural network to tightly couple two important parts in a recommender system, i.e.,
deep feature learning of users and items, and deep modeling of user-item interactions.
For the user and item feature extraction, we used a deep neural network with matrix
factorization and a combination of explicit and implicit feedback as inputs. Then we
adopted another neural network for modeling user-item interactions using the feature
vectors as inputs. Thus, J-NCF enables the two parts to be optimized with each other
through a joint training process. In order to make J-NCF fit the top-N recommenda-
tion task, we designed a new loss function that incorporates information from both
pair-wise and point-wise loss.

The experimental results confirm the effectiveness of J-NCF. In addition, we have
also experimentally investigated the performance of J-NCF under various settings, e.g.,
with different loss functions, with varying numbers of layers in the networks, and with
different types of feedback as inputs. The results confirm the effectiveness of our hy-
brid loss function and demonstrate that J-NCF performs better with more layers in the
networks and using the combination of implicit and explicit feedback as inputs. In
addition, we have investigated the robustness of J-NCF with different degrees of data
sparsity and different numbers of user ratings. J-NCF outperforms the best baseline
model Deep Matrix Factorization (DMF) for users across all activity levels, especially
for “inactive users” who constitute the majority of users in the datasets. As for datasets
with different levels of sparsity, in general, J-NCF shows a more competitive recom-
mendation performance on all datasets than the state-of-the-art baseline model DMF.
Moreover, we have also tested J-NCF model with a large and sparse dataset, i.e., AEle,
and the results show that J-NCF also outperforms state-of-the-art baseline models on
the dataset.
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6.1.3 Learning users’ dynamic preferences for sequential rec-
ommendation

For recommender systems, we further investigated another task, namely learning users’
dynamic preferences for sequential recommendation and asked:

RQ3 How can we incorporate users’ long- and short-term interaction behavior for
session-based recommendation?

To address this research question, we proposed a dynamic co-attention network for
session-based recommendation, Dynamic Co-attention Network for Session-based Rec-
ommendation (DCN-SR). DCN-SR applies a co-attention network to capture the dy-
namic relations between a user’s long-term and short-term interactions and generate
co-dependent representations of the user’s long-term and short-term preferences. It
not only exploits the combination of long-term and short-term knowledge, but also
considers dynamic aspects of the relations between a user’s long-term and short-term
preferences. For modeling a user’s short-term interests, we designed a Contextual GRU
network to take a user’s actions into account, as different types of actions, e.g., “click,”
“collect” and “buy,” can help to reflect the user’s next consumption motivation.

Our experimental results confirm the effectiveness and robustness of DCN-SR
with different session lengths and varying numbers of users’ historical interactions.
DCN-SR outperforms the best performing state-of-the-art model Short-Term Atten-
tion/Memory Priority Model (STAMP) across different session lengths, especially for
short sessions. As to users with different numbers of historical interactions, DCN-SR
shows more competitive recommendation performance on all users than the state-of-
the-art baseline model STAMP. In addition, the improvements of DCN-SR are higher
on users with more historical interactions.

6.1.4 Learning users’ multiple intents for diversified sequential
recommendation

Finally, we took a step towards diversified sequential recommendation and answered
the following research question:

RQ4 How can we address the challenge of diversified sequential recommendation in
an end-to-end framework?

We proposed an intent-aware diversified sequential recommendation (IDSR) model to
improve diversification for sequential recommendation (SR). We devised an implicit
intent mining (IIM) module to capture users’ multiple intents and an intent-aware diver-
sity promoting (IDP) decoder to generate a diverse recommendation list covering those
intents. We also designed an intent-aware diversity promoting (IDP) loss to supervise
the model to simultaneously consider accuracy and diversification during training. We
have conducted experiments on four datasets and have found that IDSR significantly
outperforms the state-of-the-art baselines in terms of recommendation diversity while
maintaining competitive accuracy scores. In addition, we discussed the impact of the
trade-off parameter and the number of intents as well as the disagreement regulariza-
tion in our model. We also included a case study to compare the items recommended
by IDSR vs. those recommended by the baseline model.

107



6. Conclusions

6.2 Future Work
In this section, we list several possible directions for future work according to our main
research questions:

6.2.1 Incorporating semantic information
We have answered RQ1 by proposing an Attention-based Hierarchical Neural Query
Suggestion (AHNQS) model. This model mainly considers the sequential relations
among queries while ignoring semantic similarity within the hierarchical structure, as
we only use the one-hot embeddings when encoding the input queries. Semantic infor-
mation can help to improve the model performance as well as ensure the generalization
of AHNQS. In future, we can optimize AHNQS by combining semantic similarity
within the hierarchical structure [89]. One possible way is to use different encoding
methods for input queries [63, 71, 72], e.g., concatenating with word embeddings. Be-
sides, we can also leverage topic modeling [130] to incorporate semantic analysis for
sequential queries.

6.2.2 Incorporating content and context information
As collaborative filtering usually suffers from limited performance due to the sparsity
of user-item interactions [113], auxiliary information could be used to boost the perfor-
mance. In our proposed model J-NCF, we only use the id information of items as well
as users, which can be extended with more auxiliary information [11, 12, 134, 151].

On the one hand, content information of items and reviews can help to get a more
informed expression of users as well as items. It would also be interesting to explore
heterogeneous information in a knowledge base to improve the quality of recommender
systems with deep learning [146].

On the other hand, we also plan to explore context information to provide some
background/situation information when doing recommendation. The difference be-
tween user/item content and context is that content information, such as attributes, is
only attached to either an item or user, whereas context is attached to the interaction
event itself, e.g., the time when a user buys an item. A direct way might be using
pre-filtering or post filtering to filter out irrelevant items according to explicit context
information. Besides this, we can also use latent variable models to automatically
characterize implicit context as well as their relationships to items or users. In addi-
tion, contextual cues can also be derived from interaction data and used to predict user
preferences.

6.2.3 Heterogeneous behavior modeling
We answered RQ3 by proposing a Dynamic Co-attention Network for Session-based
Recommendation (DCN-SR), which models sequential items accompanied with user
actions towards items. In real scenarios, there is an abundance of implicit feedback
such as “click” and “add to cart” actions, especially in e-commerce platforms. Al-
though these actions are heterogeneous in terms of both representation and data distri-
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butions, they can be aligned on sequential behaviors. For example, an action sequence
could be click-add to cart-buy-review. As to future work, we plan to investigate the use
of information contained in different action sequences, e.g., click-click-buy, and click-
click-collect, as sequential actions can provide more context information than single
actions [10, 37, 129].

6.2.4 Adaptive diversification for sequential recommendation
In intent-aware diversified sequential recommendation (IDSR) model, there is a trade-
off parameter controlling the balance between accuracy and diversity, i.e., �, which
needs to be pre-defined. This is a one-size-fits-all method that provides recommen-
dations to all users with a constant accuracy-diversity balance. However, different in-
dividuals have different needs for diversity, especially in sequential recommendation.
For example, some users may have focused interests in the current session, thus pro-
viding a highly diversified recommendation list may hurt the accuracy and dissatisfy
the user. Meanwhile, there are also users who do not have clear preferences in mind
at the beginning of the session, and providing diversified recommendations can help
such users to do more explorations and avoid a boring user experience. Hence, it is
important to provide recommendations with an adaptive degree of diversity [34, 145],
which means to learn a personalized trade-off parameter when doing sequential rec-
ommendation. One possible way is to understand a user’s current diversity needs from
his or her past sequential behavior, since if a user always clicks items with the same
genre in the current session, she may not prefer a diversified recommendation list.
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Summary

How to learn from users’ interactions is a topic that has been widely investigated by
search engines as well as recommender systems. The main purpose is to predict users’
search intents or preferences and to produce satisfactory recommendations accord-
ingly. However, this can be a challenging task since (1) the relation between users’
interactions are complex; (2) users’ preferences are dynamic thus recommendation
should be up-to-date; and (3) users may have multiple interests in a short session, thus
recommendations should not only be personalized but also diverse.

In this thesis, we focus on recommending queries and items in search engines and
recommender systems based on learning from user interactions, respectively. We start
from analyzing user interactions in search engines and providing personalized query
suggestions. We propose a model that applies a hierarchical structure to incorporate
users’ historical as well as current preferences. An attention mechanism inside the
hierarchical structure is meant to capture the varying importance of queries in a session
for a certain user. We show the effectiveness of the proposed model in Chapter 2.

Next we investigate user behavior in recommender systems and propose a joint
neural collaborative filtering method to capture complex relations in user-item interac-
tions in Chapter 3. This model enables two processes: feature extraction and user-item
interaction modeling, to be trained jointly in a unified framework. Interaction model-
ing can optimize the feature learning process and more accurate feature representations
can, in turn, improve the user-item interaction prediction. We also conduct several ex-
periments and show the scalability and sensitivity of our proposed model with different
degrees of data sparsity and varying numbers of users’ interactions.

We then continue our research on learning users’ dynamic preferences for sequen-
tial recommendation and mainly consider two aspects: personalization and diversifi-
cation. In Chapter 4, we focus on personalization and design a dynamic co-attention
network model for session-based recommendation that is able to integrate users’ long-
term and short-term preferences. To further improve the recommendation accuracy, we
design a contextual gated recurrent unit to incorporate different types of user actions
so as to better estimate users’ next consumption motivations. We show that this model
can obtain better performance than state-of-the-art methods.

We further take diversification into consideration and propose an intent-aware end-
to-end neural approach for diversified sequential recommendation in Chapter 5. We
reformulate sequential recommendation as a list generation task in order to model the
relationship among recommended items. This model can learn users’ multiple inter-
ests from their sequential behavior and recommend a preferred as well as diverse set of
items. We conduct extensive experiments and the results show that our model outper-
forms the state-of-the-art baselines in terms of both accuracy and diversity metrics.

Finally, in Chapter 6, we conclude the thesis by summarizing the aforementioned
methods and additionally list several possible directions for future work based on the
research in this thesis, i.e., incorporating semantic information, content and context in-
formation, heterogeneous behavior modeling, and adaptive diversification for sequen-
tial recommendation.
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Samenvatting

Het leren van gebruikersinteracties is een onderwerp dat zowel door zoekmachines
als door aanbevelingssystemen op grote schaal is onderzocht. Het belangrijkste doel
hiervan is om de zoekintenties of voorkeuren van gebruikers te voorspellen en daarmee
passende aanbevelingen te doen.

Dit kan echter een uitdagende taak zijn, aangezien (1) de relaties tussen de interac-
ties van gebruikers complex zijn; (2) de voorkeuren van gebruikers zijn dynamisch, dus
de aanbeveling moet up-to-date blijven; en (3) gebruikers kunnen in een korte sessie
meerdere interesses hebben, dus aanbevelingen moeten niet alleen persoonlijk maar
ook divers zijn.

In dit proefschrift richten we ons op het leren aanbevelen van zoekopdrachten
in zoekmachines en items in aanbevelingssystemen op basis van gebruikersinterac-
ties. We beginnen met het analyseren van gebruikersinteracties in zoekmachines en
het geven van gepersonaliseerde zoeksuggesties. We stellen een model voor dat een
hiërarchische structuur toepast om de historische en huidige voorkeuren van gebruikers
op te nemen. Een attention-mechanisme binnen de hiërarchische structuur is bedoeld
om de verschillende maten van belangrijkheid van zoekopdrachten in een sessie voor
een bepaalde gebruiker vast te leggen. In Hoofdstuk 2 laten we de effectiviteit van het
voorgestelde model zien.

Vervolgens onderzoeken we gebruikersgedrag in aanbevelingssystemen en stellen
we een gezamenlijke, neurale, collaboratieve filtermethode voor om complexe relaties
vast te leggen in user-item interacties in Hoofdstuk 3. Dit model maakt twee pro-
cessen mogelijk: feature extractie en user-item interactiemodellering, om gezamenlijk
getraind te worden in een verenigd kader. Interactiemodellering kan het leerproces van
functies optimaliseren en nauwkeurigere representaties van functies kunnen op hun
beurt de voorspelling van interactie tussen gebruikersitems verbeteren. We voeren ook
verschillende experimenten uit en tonen hiermee de schaalbaarheid en gevoeligheid
van ons voorgestelde model met verschillende mate van data-sparsity en een wisselend
aantal interacties van gebruikers.

Vervolgens zetten we ons onderzoek voort naar het leren van dynamische voorkeur-
en van gebruikers voor opeenvolgende aanbevelingen en houden we voornamelijk
rekening met twee aspecten: personalisatie en diversificatie. In Hoofdstuk 4 richten
we ons op personalisatie en ontwerpen we een dynamisch co-attention netwerkmodel
voor sessiegebaseerde aanbevelingen die de voorkeuren van gebruikers op lange en
korte termijn kunnen integreren. Om de nauwkeurigheid van de aanbevelingen verder
te verbeteren, ontwerpen we een contextuele gated recurrent unit om verschillende
soorten gebruikersacties op te nemen om de volgende consumptiemotivaties van ge-
bruikers beter in te schatten. We laten zien dat dit model betere prestaties kan behalen
dan state-of-the-art methoden.

We houden verder rekening met diversificatie en stellen een intentiebewuste end-to-
end neurale benadering voor voor gediversifieerde sequentiële aanbeveling in Hoofd-
stuk 5. We herformuleren sequentiële aanbeveling als een lijstgenererende taak om de
relatie tussen aanbevolen items te modelleren. Dit model kan de verschillende inter-
esses van gebruikers leren van hun sequentiële gedrag en een set items aanbevelen die
zowel divers is en bij de gebruikersvoorkeuren passen. We voeren uitgebreide exper-
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6. Samenvatting

imenten uit en de resultaten tonen aan dat ons model beter presteert dan de state-of-
the-art baselines in termen van zowel nauwkeurigheidsstatistieken als diversiteitsme-
trieken. Tenslotte, in Hoofdstuk 6, sluiten we het proefschrift af door de bovenge-
noemde methoden samen te vatten en daarnaast een aantal mogelijke richtingen op te
sommen voor toekomstig werk gebaseerd op het onderzoek in dit proefschrift: seman-
tische informatie, inhouds- en contextinformatie, heterogene gedragsmodellering en
adaptieve diversificatie voor opeenvolgende aanbevelingen.
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