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ABSTRACT
The visual appearance of a webpage carries valuable information
about the page’s quality and can be used to improve the perfor-
mance of learning to rank (LTR). We introduce the Visual learning
TO Rank (ViTOR) model that integrates state-of-the-art visual fea-
tures extraction methods: (i) transfer learning from a pre-trained
image classification model, and (ii) synthetic saliency heat maps
generated from webpage snapshots. Since there is currently no pub-
lic dataset for the task of LTRwith visual features, we also introduce
and release the ViTOR dataset, containing visually rich and diverse
webpages. The ViTOR dataset consists of visual snapshots, non-
visual features and relevance judgments for ClueWeb12 webpages
and TREC Web Track queries. We experiment with the proposed
ViTOR model on the ViTOR dataset and show that it significantly
improves the performance of LTR with visual features.
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1 INTRODUCTION
The design and appearance of a webpage are determining factors for
a user to examine the page or to divert to another page [8, 9, 11, 17].
However, relatively little is known about the potential of visual
appearance to help determine the perceived relevance of a webpage.
Recently, visual features, extracted from snapshots of webpages
and search engine results pages (SERPs), have been introduced
into learning to rank (LTR) and have been shown to significantly
improve the LTR performance [4, 18].

In this paper we continue studying LTR with visual features
and propose the Visual learning TO Rank (ViTOR) model that in-
tegrates state-of-the-art visual features extraction methods. We
present two implementations of the ViTOR model. First, we extract
visual features from webpage snapshots using transfer learning
and, in particular, by adopting the VGG-16 [16] and ResNet-152 [5]
models pre-trained on ImageNet. Second, we introduce a novel
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set of visual features extracted from synthetic saliency heatmaps,
which explicitly model how users view webpages [14].

Currently, there is no dataset available to support research on
LTRwith visual features. Fan et al. [4] experimented with webpages
from the GOV2 collection.1 However, GOV2 solely contains web-
pages within the .gov domain, i.e., pages with a relatively narrow
scope, and, more importantly, these webpages do not contain their
original images and styles. Hence, the GOV2 collection cannot fully
support research on LTR with visual features, as it does not reflect
visually rich and diverse webpages found on the internet today.

To overcome this issue, we release the ViTOR dataset that con-
tains webpages from the ClueWeb12 collection2 and queries from
the TREC Web Tracks 2013 & 2014 [1, 2]. For each webpage of
ClueWeb12 that also appears in the web tracks, the ViTOR dataset
contains a snapshot and a set of content features, such as BM25
and PageRank. The introduced dataset is made publicly available.3

To assess the performance of the proposed ViTOR model, we run
experiments on the introduced ViTOR dataset. Our experiments
confirm that visual features significantly improve the LTR perfor-
mance, which is inline with previous findings [4]. We also show that
both implementations of the ViTOR model, namely transfer learn-
ing (with VGG-16 and ResNet-152) and synthetic saliency heatmaps,
significantly outperform other LTR methods with visual features.

In summary, the main contributions of this work are: (i) We
introduce transfer learning to extract visual features for LTR. (ii) We
introduce synthetic saliency heatmaps as a novel set of LTR features.
(iii) We introduce and publish ViTOR, an out-of-the-box dataset for
LTR with visual features.

2 RELATEDWORK
In this section, we discuss related research on the usage of visual
information in LTR and the relation between visual appearance
and user perception of webpages.

Using eye-tracking, Nielsen [9] and Pernice [11] demonstrate
that webpage design and content placement influences the ability
of users to find information they are looking for. Both studies show
that by organizing the content in certain shapes (e.g., an F-shape),
information can be navigatedmore efficiently.Wang et al. [17] show
that the size of the fixation areas measured using eye-tracking
is larger on webpages with more content, which increases the
likelihood that the attention of a user is distracted. Such studies
highlight the importance of the visual appearance of a webpage and
its effect on how users perceive pages, demonstrating that visual
information has to be taken into account when ranking webpages.

1http://ir.dcs.gla.ac.uk/test_collections/gov2-summary.htm
2https://lemurproject.org/clueweb12/
3https://github.com/Braamling/learning-to-rank-webpages-based-on-visual-features/
blob/master/dataset.md
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Zhang et al. [18] consider using visual features for LTR and,
specifically, for learning to re-rank. The authors propose a multi-
modal architecture for re-ranking snippets on a SERP by learning
their visual patterns. This work demonstrates that combining both
visual and non-visual features can improve re-ranking performance.

The closest work to ours is the study by Fan et al. [4], which
uses visual information to rank webpages instead of re-ranking
snippets within an existing ranking. The authors use snapshots of
webpages to extract visual features for LTR and show that such
visual features significantly improve retrieval performance. They
feed snapshots through a neural network that attempts to model the
previously mentioned F-shape. The output of this neural network
is then concatenated with more traditional ranking signals, such
as BM25 and PageRank. Finally, the proposed model (called ViP) is
trained end-to-end using a pairwise loss. In our paper, we continue
this line of research and propose the ViTOR model for LTR with
visual features that makes use of the state-of-the-art visual feature
extraction techniques and shows superior performance compared to
ViP. Also, we develop and publish the ViTOR dataset that contains
visually diversewebpages compared to the GOV2 dataset used in [4],
which lacks visual diversity and, importantly, does not contain
images and style information together with webpages.

3 ViTOR MODEL
In this section, we introduce the ViTOR model for LTR with visual
features. The proposed model consists of three parts. First, we
introduce the model architecture in Section 3.1. Then, in Section 3.2
we describe two visual feature extractors used by ViTOR: VGG-
16 [16] and ResNet-152 [5], both pre-trained on ImageNet. Finally, in
Section 3.3 we propose to enhance ViTOR by generating synthetic
saliency heatmaps for each of the input images. The implementation
of the proposed ViTOR model is available online.4

3.1 Architecture
The ViTOR architecture is visualized in Figure 1. The process starts
by taking an image xi (1) as an input to the visual feature extraction
layer (2) in order to create a generic visual feature vector xv f . These
features are considered generic because they can be extracted using
convolutional filters trained on a different dataset and task. In order
to transform generic visual features into LTR specific visual features,
we use xv f as an input to the visual feature transformation layer (3).
This visual feature transformation layer outputs a visual feature
vector xvl that can be used in combination with other LTR features.

Separating the visual feature extraction and transformation lay-
ers allows us to significantly reduce the computational requirements
when using a pre-trained model for visual feature extraction. In
Section 7.1 we further elaborate on how the computational require-
ments can be reduced. In Section 3.2 below, we demonstrate how
transfer learning can be applied to use pre-trained visual feature
extraction methods in combination with the ViTOR architecture.

The ViTOR architecture also makes use of content features
xc (4), e.g., BM25, PageRank, etc. The final feature vector xl is
constructed by concatenating the visual features xvl with the con-
tent features xc . This final feature vector is then used as an input
to the scoring component (5), which transforms the features into a
4https://github.com/Braamling/learning-to-rank-webpages-based-on-visual-features
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Figure 1: ViTOR architecture.

single score xs for each query-document pair. The resulting model
is trained end-to-end using a pairwise hinge loss with L2 regular-
ization similarly to [4]. The scoring component uses a single fully
connected layer with a hidden size of 10 and dropout set to 10%,
which showed good performance in preliminary experiments.

3.2 Visual feature extractors
In order to use webpage snapshots in LTR, the snapshots have
to be converted to a vector representation that can then be used
in combination with existing content features. Since preparing
training data for LTR is costly and its amount is usually low, it is
beneficial to use a visual feature extraction method that is already
pre-trained. In this workwe use the VGG-16 [16] and ResNet-152 [5]
models, two well-explored image classification models which both
have an implementation with ImageNet pre-trained parameters.
Below, we describe how these two models are implemented within
the ViTOR architecture.

VGG-16 [16] is commonly used for training transfer-learned
models, because it provides a reasonable trade-off between effec-
tiveness and simplicity [14]. Its architecture consists of a set of
convolutional layers and fully connected layers. The convolutional
layers extract features from an input image, which are then used by
the fully connected layers to classify the image. The convolutional
layers of VGG-16 are generic with respect to an input and task [3]
and, thus, can be used as a visual feature extractor within the ViTOR
architecture to create generic visual features xv f . Hence, we use
the convolutional layers as is, by freezing all the parameters during
training. Because we do not alter any of the convolutional layers,
the size of xv f is determined by the output of the convolutional
layers in the original VGG-16 model, being 1 × 25088.

The fully connected layers of VGG-16, instead, can be altered
and retrained in order to be used with new inputs and tasks. Due
to this, we utilize them as a visual feature transformation layer
within the ViTOR architecture to produce LTR specific features xvl .
In particular, we replace the last fully connected layer of VGG-16
by a newly initialized fully connected layer. Then we optimize the
parameters of all fully connected layers of VGG-16 during training.
The size of xvl is set to 30, as this size showed good performance
in preliminary experiments.

The ResNet-152 [5] architecture was shown to outperform VGG-
16 in ImageNet classification. The residual connections between
convolutional layers of ResNet-152 allow for deeper networks to

https://github.com/Braamling/learning-to-rank-webpages-based-on-visual-features
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be trained without suffering from vanishing gradients. Similarly to
VGG-16, ResNet-152 has convolutional layers that extract features
from an input image, which are in turn used by a fully connected
layer to classify each image. We use these convolutional layers as
the visual feature extraction layer, which transforms xi to xv f . All
parameters of these convolutional layers are frozen during training.
As with VGG-16, the size of xv f is determined by the output size of
the original convolutional layers in the ResNet-152 model, 1× 2048.

Additionally, the original ResNet-152 architecture only has a
single fully connected layer, which empirically showed to not be
enough to successfully train the ViTOR model. Instead, we trans-
form xv f to xvl by training a fully connected network from scratch.
The transformation layer is constructed using three layers with
each having 4096 hidden units and a final layer resulting in xvl
with a size of 30, which was empirically found to provide good
performance in preliminary experiments.

3.3 Saliency heatmaps
In order to increase the ability to learn the visual quality of a web-
page, we propose to explicitly model the user viewing pattern
through synthetic saliency heatmaps. The use of saliency heatmaps
could be advantageous compared to the use of raw snapshots for
the following reasons. First, synthetic saliency heatmaps explic-
itly learn to predict how users perceive webpages by training an
end-to-end model on actual eye-tracking data. We expect this in-
formation to better correlate with webpage relevance compared
to raw snapshots. Second, saliency heatmaps reduce the average
storage requirements by up to 90%, because they are gray-scale
images and have large areas of the same color, which can be stored
efficiently. This makes the use of saliency heatmaps attractive for
practical applications. Figure 2 shows example snapshots with their
corresponding heatmaps (first and third columns respectively).

Following [14], we use a two-stage transfer learning model that
learns how to predict saliency heatmaps on webpages. Similarly
to the visual feature extraction approaches above, [14] takes a pre-
trained image recognition model and finetunes the output layers on
the following two datasets in order respectively: (i) SALICON [6],
a large dataset containing saliency heatmaps created with eye-
tracking hardware on natural images, and (ii) the webpage saliency
dataset from [15], a smaller dataset containing saliency heatmaps
created with eye-tracking hardware on webpages.

The trained model is used to convert a raw snapshot into a
synthetic saliency heatmap. This heatmap is then used as an input
image xi for the ViTOR model (see Figure 1).

4 ViTOR DATASET
In this section, we introduce the ViTOR dataset for LTR with visual
features. Section 4.1 contains information about the underlying
ClueWeb12 collection and TREC Web Track topics. Section 4.2
explains how the snapshots for ClueWeb12 are acquired. Section 4.3
discusses content features, such as BM25 and TF-IDF, included in
the ViTOR dataset. Finally, Section 4.4 gives an overview of the
structure in which the ViTOR dataset is presented and published.

Figure 2: Examples of a vanilla snapshot, a red highlighted
snapshot, and a saliency heatmap from left to right, respec-
tively.

4.1 ClueWeb12 & TRECWeb Track
For the ViTOR dataset we choose to use a combination of the
ClueWeb12 document collection and the topics from the TREC
Web Tracks 2013 & 2014 [1, 2], because this is currently the most
recent combination of a large-scale webpage collection together
with judged queries (with graded relevance).

ClueWeb12 is a highly diverse collection of webpages scraped
in the first half of 2012. The total collection contains over 700
million webpages. We only use ClueWeb12 webpages that have
judgements for any of the 100 queries in the TREC Web Tracks
2013 & 2014. In total, there are 28,906 judged webpages. Table 1
shows the breakdown of the total number of webpages and different
relevance labels in the combined set of topics from 2013 and 2014.

Table 1: Number of webpages per source and the correspond-
ing breakdown of TRECWeb Track relevance grades.

Count/Label TREC Web Wayback ClueWeb12 No image

Total 28,906 23,249 5,392 265
Nav grade (4) 40 36 4 0
Key grade (3) 409 347 62 0
Hrel grade (2) 2,534 2,222 295 17
Rel grade (1) 6,832 5,679 1,123 30
Non grade (0) 18,301 14,395 3,701 205
Junk grade (-2) 790 570 207 13

4.2 Snapshots
Although each entry in the ClueWeb12 collection contains the
webpage’s HTML source, many pages lack styling and images files
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in order to render the full page. To overcome this issue, we use
the Wayback Machine,5 which offers various archived versions of
webpages with styling and images since 2005. For each page in
ClueWeb12, that is also judged in the TREC Web Tracks 2013 &
2014, we scrape an entry on the Wayback Machine that is closest to
the original page scrape date as recorded in ClueWeb12. A snapshot
is then taken using a headless instance of the Firefox browser. To
reproduce [4], we also create a separate query-dependent dataset
with the same snapshots where all query words are highlighted
in red (HEX value: #ff0000). Examples of snapshots and snapshots
with highlights are shown in Figure 2 (first two columns).

Since the Wayback Machine does not contain an archived or
working version of each webpage in the ClueWeb12 collection, a
filtering process is introduced to maximize the quality of each snap-
shot. Using the following criteria, a snapshot is selected for each
available webpage: (1) Eachwebpage is requested from theWayback
Machine. (2) A webpage that is not on the Wayback Machine, times
out, throws a JavaScript error, or results in a PNG snapshot smaller
than 100KB is marked as broken. Such webpages are rendered again
using the online rendering service provided by ClueWeb12.6 (3) A
manual selection is made between all webpages that are rendered
from both sources. The Wayback version is used if it contains more
styling elements and if the content is the same as in the rendering
service. Otherwise, the rendering service version is used.

As a result, most of the 28,906 judged webpages have a corre-
sponding snapshot from either theWaybackMachine or ClueWeb12
rendering service. Only 265 documents did not pass the filtering
and were discarded. Table 1, row one, summarizes the results of the
ViTOR dataset acquisition process. The table also shows the distri-
bution of judgment scores among the snapshots that were taken
from the Wayback Machine and ClueWeb12 rendering service.

4.3 Non-visual features
In LTR, documents are ranked based on various types of features,
such as content features (e.g., BM25), quality indicators (e.g., PageR-
ank) and behavioral features (e.g., CTR). In order to use the ViTOR
dataset to measure the effect of visual features, we also add a set of
content features and quality indicators, listed in Table 2. These 11
features are chosen so that they resemble most informative features
of the most recent LETOR 4.0 dataset [12] and are easy to compute
(see Section 7.2 for a detailed comparison of different feature sets).
Also note that behavioral features, such as CTR, are not available
for the TREC Web Tracks.

The content features, such as TF-IDF and BM25, are computed
by doing a full pass over the complete ClueWeb12 collection. The
PageRank scores are taken from the ClueWeb12 Related Data sec-
tion.7 The following modifications based on the feature transfor-
mations described in LETOR are made to stabilize training: (1) Free
parameters k1, k3 and b for BM25 were set to 2.5, 0 and 0.8, re-
spectively. (2) Since the PageRank scores are usually an order of
magnitude smaller than all other scores, we multiply them by 105.
(3) The log transformation is applied to each feature. (4) The log-
transformed features are normalized per query.

5http://archive.org/web/
6http://boston.lti.cs.cmu.edu/Services/
7https://lemurproject.org/clueweb12/related-data.php

Table 2: Non-visual features provided with the ViTOR
dataset.

Id Description Id Description Id Description

1 Pagerank 5 Content TF-IDF 9 Title IDF
2 Content length 6 Content BM25 10 Title TF-IDF
3 Content TF 7 Title length 11 Title BM25
4 Content IDF 8 Title TF

4.4 Final collection
In summary, the ViTOR dataset contains: (i) a directory with web-
page snapshots (Section 4.2), and (ii) a set of files with content
features divided into folds (Section 4.3). Each snapshot is stored as
a PNG file that can be identified by its corresponding ClueWeb12
document id. The non-visual features are stored in LETOR format-
ted files containing the raw, logged and query normalized values.
The query normalized values are randomly split per query into
five equal partitions. These partitions are then used to create five
folds, where each fold contains three partitions for training and the
remaining two partitions for validation and testing.

5 EXPERIMENTAL SETUP
In this section, we discuss the configurations of the ViTOR archi-
tecture, baselines and metrics used during our experiments.

ViTOR configurations.. We experiment with four configurations
of the ViTOR architecture. ViTOR baseline refers to the ViTORmodel
with only content features. This configuration is trained by feed-
ing content features into the scoring component directly, without
adding any visual features. ViTOR snapshots and ViTOR highlights
use visual features extracted from vanilla snapshots of webpages
and from snapshots of webpages with highlighted query terms,
respectively. Finally, ViTOR saliency uses visual features extracted
from synthetic saliency heatmaps. The snapshots, highlights and
saliency heatmaps for each model respectively are used as the
input image (component (1) of Figure 1. For the ViTOR configura-
tions with visual features, we experiment with both VGG-16 and
ResNet-152 visual feature extraction methods. The learning rates
for VGG-16 and ResNet-152 are set to and 0.0001 and 0.00005, re-
spectively. Each experimental run is generated using the Adam
optimizer [7] with a batch size of 100.

Baselines. We compare our proposed ViTOR model to the ViP
model by Fan et al. [4], the only existing LTR method that uses
visual features. We train ViP on both vanilla and highlighted snap-
shots with the resulting configurations being ViP snapshots and
ViP highlights, respectively. Following [4], we also compare the
ViTORmodel to a number of content-based rankingmethods, namely
BM25 and state-of-the-art LTR techniques, such as RankBoost,
AdaRank, and LambdaMart.8

Metrics. To measure the retrieval performance, we use precision
and ndcg at {1, 10} and MAP. Statistical significance is determined
using a two-tailed paired t-test (p-value ≤ 0.05).

6 RESULTS
In this section, we present experiments that are set out to test the
following: (1) the ViTOR model improves the LTR performance
8The LTR methods are taken from https://sourceforge.net/p/lemur/wiki/RankLib.
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Table 3: Results for the ViTORmodel using only content fea-
tures (baseline), vanilla snapshots, highlighted snapshots,
and saliency heatmaps. All results significantly improve
over the ViTOR baseline. Best results are shown in bold.

p@1 p@10 ndcg@1 ndcg@10 MAP

ViTOR baseline 0.338 0.370 0.189 0.233 0.415

VGG snapshots 0.514 0.484 0.292 0.324 0.442
ResNet snapshots 0.550 0.452 0.310 0.301 0.437
VGG highlights 0.560 0.520 0.323 0.346 0.456
ResNet highlights 0.530 0.463 0.305 0.312 0.440

VGG saliency 0.554 0.453 0.310 0.302 0.422
ResNet saliency 0.560 0.476 0.333 0.321 0.442

when introducing visual features, (2) synthetic saliency heatmaps
improve the LTR performance when used as an input the ViTOR
model, and (3) the ViTOR model improves both visual and non-
visual state-of-the-art ranking methods.

6.1 ViTOR model with VGG-16 and ResNet-152
In Table 3, we compare the performance of the ViTOR model when
used with and without visual features. The first row shows the
ViTOR baseline, when using only the content features as an input
to the scoring component. The second to fifth rows show the per-
formance of using VGG-16 and ResNet-152 with both vanilla and
highlighted snapshots. These results clearly show that both VGG-
16 and ResNet-152 visual feature extraction methods significantly
improve the performance compared to the ViTOR baseline.

When comparing the results of the ViTOR model with visual
features, we observe the following: (i) The highest ranking perfor-
mance is achieved by using VGG-16 on the highlighted snapshots.
(ii) For VGG-16, the values of all metrics are consistently better
for highlighted snapshots compared to vanilla snapshots, which is
in line with the findings of [4] and is to be expected: highlighted
snapshots carry more information compared to vanilla snapshots.
Based on these results, we conclude that the use of visual features
in LTR significantly improves performance and that highlighted
snapshots should on average be preferred over vanilla snapshots.

6.2 ViTOR model with saliency heat maps
The last two rows of Table 3 show the performance of the ViTOR
model when using synthetic saliency heat maps as an input. The
visual features are learned using both VGG-16 and ResNet-152. In
this case, ResNet-152 consistently outperforms VGG-16. Although
the highlighted snapshots with VGG-16 still outperform ResNet-152
with saliency heat maps on p@10, ndcg@10 and MAP, the saliency
heat maps with ResNet-152 match and outperform VGG-16 with
highlighted snapshots when looking at p@1 and ndcg@1. Hence,
saliency heat maps should be preferred in applications where early
precision is important, while highlighted snapshots should be used
when a high overall performance is needed.

6.3 Baseline comparison
Table 4 compares the performance of the ViTOR model to BM25,
non-visual LTR methods and the ViP model by Fan et al. [4]. Specif-
ically, the table shows the performance of VGG-16 with highlighted

Table 4: Results for the VGG-16 with highlighted snapshots,
ResNet-152 with saliency heatmaps, and baselines. † indi-
cates a significant decrease in performance compared to
VGG highlights and ‡ indicates a significant decrease in per-
formance compared to both ViTOR implementations. Best
results are shown in bold.

p@1 p@10 ndcg@1 ndcg@10 MAP

BM25 0.300‡ 0.316‡ 0.153‡ 0.188‡ 0.350‡

RankBoost 0.450 0.444 0.258 0.288† 0.427
AdaRank 0.290‡ 0.357‡ 0.149‡ 0.227‡ 0.398
LambdaMart 0.470 0.420† 0.256 0.275† 0.418

ViP snapshots 0.392‡ 0.398‡ 0.217‡ 0.254‡ 0.421‡

ViP highlights 0.418‡ 0.416‡ 0.239‡ 0.269‡ 0.422‡

VGG highlights 0.560 0.520 0.323 0.346 0.456
ResNet saliency 0.560 0.476 0.333 0.321 0.442

snapshots and of ResNet-152 with synthetic saliency heatmaps,
as these are the best-performing variants of the ViTOR model ac-
cording to Table 3. Both methods have a significant performance
increase compared to BM25, almost doubling the metrics values in
many cases.

When comparing to non-visual LTRmethods, both ViTOR imple-
mentations show consistently better performance. However, not all
metrics are improved significantly. We attribute this to the fact that,
similarly to [4], the LTR component of the ViTOR model is based
on pairwise hinge loss, which is a relatively simple loss function.

Finally, we compare the ViTOR implementations to ViP, the only
existing LTR method with visual features. Here, we clearly see
that both our implementations significantly outperform ViP on all
metrics. Also note, that ViP loses to two out of three non-visual
LTR baselines, namely RankBoost and LambdaMart. We believe
this is due to the reason discussed above: ViP uses pairwise hinge
loss as the LTR component [4], which may be suboptimal.

The above results show that the proposed ViTOR model outper-
forms baselines, whether they are supervised or unsupervised, use
visual features or not. However, to achieve consistent significant im-
provements compared to the state-of-the-art LTRmethods, different
loss functions within the ViTOR model have to be investigated.

7 DISCUSSION
In this section, we address two practical aspects of the proposed
ViTOR model and dataset: (i) the number of parameters of the
ViTOR model and corresponding optimizations, and (ii) the perfor-
mance of content features included in the ViTOR dataset.

7.1 Training and inference optimization
Both training and inference using deep convolutional networks are
generally computationally expensive. By separating the feature ex-
traction and transformation layers in the proposed ViTOR architec-
ture (see Figure 1) we allow powerful computational optimizations
for both training and inference.

Training optimization. Although we freeze the parameters in the
visual feature extraction layer (component (2) of Figure 1) when
using a pre-trained model, we still need to compute the output
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from all the frozen parameters during the forward propagation.
We can avoid the computational cost associated with the forward
propagation on the frozen layers by storing the output of the visual
feature extraction layer to disk prior to training. By storing these
vectors to disk, we leave only the parameters of the fully connected
layers (component (3) of Figure 1) to be calculated and stored in
memory during the forward propagation.

By applying the above procedure, we can reduce the number of
parameters of the ViTOR model. When using VGG-16, the visual
feature extraction layer consists of 14, 714, 688 parameters, which is
12.3% of the parameters in the ViTOR model. When using ResNet-
152, the visual feature extraction layer consists of 58, 144, 239 pa-
rameters, which is 49.5% of the parameters in the ViTOR model.

By using the stored output of the visual feature extraction layer
xv f instead of an actual image xi as the input of the ViTOR model,
we reduce the size of each input by 84.7% and 98.6% for VGG-16
and ResNet-152 respectively. This reduction in input size further
reduces the memory required for training the model.

Real-time inference optimization. When using LTR in a large-
scale production environment, the impact of newly introduced LTR
features (visual features, in our case) on real-time computational
requirements is of major concern.

Since both the vanilla snapshots and synthetic saliency heatmaps
are query independent, the output of the visual feature transforma-
tion layer (component (3) of Figure 1) does not change for different
document/query pairs. This enables offline inference, leaving only
the scoring component to be inferred in real-time. Since a visual
feature vector is has 1 × 30, using the offline inferred feature vec-
tor would result in a LTR model with 30 + 11 = 41 features. This
increase in parameters is negligible in terms of computational costs.

7.2 Benchmarking content features
In LTR research, both the amount and type of considered features
vary widely per dataset and study. The most recent LETOR 4.0
dataset [12] contains 46 features extracted for webpages from the
GOV2 dataset and queries from the million query tracks 2007 and
2008 (MQ2007 and MQ2008). In the ViTOR dataset, we use 11 fea-
tures that are a subset of the 46 features of LETOR (see Table 2).
These 11 features are chosen to be both informative and easy to
compute. Here, we compare our subset of 11 features to the full set
of 46 features. The experiments are run on the GOV2 dataset and
MQ2007 queries. The LTR methods considered are the same as in
Section 6, namely RankBoost, AdaRank, and LambdaMart.

The results of running the considered LTR methods using both
46 and 11 features are shown in Table 5. From these results, we see
that the number of features has a significant effect on the perfor-
mance of AdaRank. However, for the best-performing RankBoost
and LambdaRank methods the drop in performance is minor when
using 11 features instead of 46 features. This indicates that the
chosen 11 features included in the ViTOR dataset form a reasonable
trade-off between effectiveness and computation cost.

8 CONCLUSION
In this paper, we considered the problem of LTR with visual fea-
tures. We proposed the ViTOR model that extracts visual features

Table 5: Comparison of 46 LETOR features and 11 LETOR
features that are also used in ViTOR.

p@1 p@10 ndcg@1 ndcg@10 MAP

RankBoost - 46 0.453 0.371 0.391 0.430 0.457
RankBoost - 11 0.448 0.372 0.381 0.431 0.453

AdaRank - 46 0.420 0.360 0.367 0.424 0.449
AdaRank - 11 0.385 0.287 0.364 0.394 0.386

LambdaMart - 46 0.452 0.384 0.405 0.444 0.463
LambdaMart - 11 0.448 0.380 0.397 0.443 0.455

from webpage snapshots using transfer learning (specifically, pre-
trained VGG-16 and ResNet-152 models) and synthetic saliency
heatmaps. In both cases the extracted visual features significantly
improved the LTR performance. We also showed that the proposed
ViTOR model significantly outperformed the visual LTR baselines.

In addition to the model, we released the ViTOR dataset, con-
taining visually rich and diverse webpages with corresponding
snapshots. With the ViTOR dataset it is now possible to compre-
hensively study LTR with visual features.

One direction for future work is the study of state-of-the-art LTR
methods, such as RankBoost and LambdaMart, within the scoring
components of the ViTOR model. This could improve performance
without changing the visual feature extraction and transformation
components. Another promising direction is to combine multiple
visual features, i.e., visual features extracted from vanilla snapshots,
snapshots with highlights and saliency heatmaps. Other visual fea-
ture extractors, such as the CapsuleNet [13] model, which is able to
learn spatial relations in images, might also provide additional per-
formance. Other methods of combining visual and textual features
might also be worth exploring. Future work could also investigate
the robustness of this method when using various rendering varia-
tions, e.g., different browser, resolutions. Finally, performing a more
qualitative analysis on which elements cause improvements in LTR
with visual features would be interesting, e.g., by interpreting the
filters in the feature extractor [10].

Code and data
Both the ViTOR dataset9 and the code used to run the experiments
in this paper10 are available online.
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