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ABSTRACT
Conversational question answering (QA) requires the ability to cor-
rectly interpret a question in the context of previous conversation
turns. We address the conversational QA task by decomposing it
into question rewriting and question answering subtasks. The ques-
tion rewriting (QR) subtask is specifically designed to reformulate
ambiguous questions, which depend on the conversational context,
into unambiguous questions that can be correctly interpreted outside
of the conversational context. We introduce a conversational QA
architecture that sets the new state of the art on the TREC CAsT
2019 passage retrieval dataset. Moreover, we show that the same QR
model improves QA performance on the QuAC dataset with respect
to answer span extraction, which is the next step in QA after passage
retrieval. Our evaluation results indicate that the QR model we pro-
posed achieves near human-level performance on both datasets and
the gap in performance on the end-to-end conversational QA task is
attributed mostly to the errors in QA.
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1 INTRODUCTION
Extending question answering systems to a conversational setting is
an important development towards a more natural human-computer
interaction [9]. In this setting a user is able to ask several follow-up
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questions, which omit but reference information that was already
introduced earlier in the same conversation, for example:

(Q) - Where is Xi’an?
(A) - Shaanxi, China.
(Q) - What is its GDP?
(A) - 95 Billion USD.
(Q) - What is the share (of Xi’an) in the (Shaanxi) province GDP?
(A) - 41.8% of Shaanxi’s total GDP

This example highlights two linguistic phenomena characteristic of
a human dialogue, which include anaphora (words that explicitly
reference previous conversation turns) and ellipsis (words that can
be omitted from the conversation) [35]. Therefore, conversational
QA models require mechanisms capable of resolving contextual de-
pendencies to correctly interpret such follow-up questions. While ex-
isting co-reference resolution tools are designed to handle anaphoras,
they do not provide any support for ellipsis [4]. Previous research
showed that QA models can be directly extended to incorporate
conversation history but a considerable room for improvement still
remains especially when scaling such models beyond a single input
document [2, 26, 31].

In this paper we show how to extend existing state-of-the-art QA
models with a QR component and demonstrate that the proposed ap-
proach improves the performance on the end-to-end conversational
QA task. This QR component is specifically designed to handle ambi-
guity of the follow-up questions by rewriting them such that they can
be processed by existing QA models as stand-alone questions out-
side of the conversation context. This setup also offers a wide range
of practical advantages over the single end-to-end conversational
QA model:

• Traceability: QR component produces the question that the
QA model is actually trying to answer, which allows to sepa-
rate errors that stem from an incorrect question interpretation
from errors in question answering. Our error analysis makes
full use of this feature by investigating different sources of
errors and their correlation.

• Reuse: QR allows to reduce the conversational QA task to the
standard QA task and leverage already existing QA models
and datasets. Any new non-conversational QA model can be
immediately ported into a conversational setting using QR. A
single QR model can be reused across several alternative QA
architectures as we show in our experiments.

• Modularity: In practice, information is distributed across a
network of heterogeneous nodes that do not share internal
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representations. A natural language question can provide an
adequate communication protocol between these distributed
components [30]. Instead of sending the content of the whole
conversation to a 3rd-party API, QR allows for formulating
a concise question that contains only information relevant to
the current information need, which also helps to determine
which of the distributed systems should be used for answering
the question.

Two dimensions on which QA tasks vary are: the type of data
source used to retrieve the answer (e.g., a paragraph, a document
collection, or a knowledge graph); and the expected answer type
(a text span, a ranked list of passages, or an entity). In this paper,
we experiment with two variants of the QA task: retrieval QA, the
task of finding an answer to a given natural-language question as
a ranked list of relevant passages given a document collection; and
extractive QA, the task of finding an answer to a given natural-
language question as a text span within a given passage. Though
the two QA tasks are complementary to each other, in this paper we
focus on the QR task and its ability to enable different types of QA
models within a conversational setting. We experiment with both
retrieval and extractive QA models to examine the effect of the QR
component on the end-to-end QA performance. The contributions
of this work are three-fold:

(1) We introduce a novel approach for the conversational QA task
based on question rewriting that sets the new state-of-the-art
results on the TREC CAsT dataset for passage retrieval.

(2) We show that the same question rewriting model (trained on
the same dataset) boosts the performance of the state-of-the-
art architecture for answer extraction on the QuAC dataset.

(3) We systematically evaluate the proposed approach in both
retrieval and extractive settings, and report the results of our
error analysis.

2 RELATED WORK
Conversational QA is an extension of the standard QA task that
introduces contextual dependencies between the input question and
the previous dialogue turns. Several datasets were recently proposed
extending different QA tasks to a conversational setting including
extractive [2, 31], retrieval [4] and knowledge graph QA [3, 12].
One common approach to conversational QA is to extend the input
of a QA model by appending previous conversation turns [3, 14, 27].
Such approach, however falls short in case of retrieval QA, which
requires a concise query as input to the candidate selection step,
such as BM25 [24]. Results of the recent TREC CAsT track demon-
strated that co-reference models are also not sufficient to resolve
the missing context in the follow-up questions [4]. A considerable
gap between the performance of automated rewriting approaches
and manual human annotations call for new architectures that are
capable of retrieving relevant answers from large text collections
using conversational context.

Query rewriting is a technique that was successfully applied in a
variety of tasks, including data integration, query optimization and
query expansion in sponsored search [11, 25, 33]. More recently
rewriting conditioned on the conversation history was shown to
increase effectiveness of chitchat and task-oriented dialogue mod-
els [30, 34]. QR in the context of the conversational QA task was

first introduced by Elgohary et al. [7], who released the CANARD
dataset that contains human rewrites of questions from QuAC conver-
sational reading comprehension dataset. Their evaluation, however,
was limited to analysing rewriting quality without assessing impact
from rewriting on the end-to-end conversational QA task. Our study
was designed to bridge this gap and extend evaluation of question
rewriting for conversational QA to the passage retrieval task as well.

The field of conversational QA is advancing rapidly due to the
challenges organised by the community, such as the TREC CAsT
challenge [4]. Several recent studies that are concurrent to our work
proposed alternative approaches for the conversational QA task and
evaluated them on the TREC CAsT dataset. Mele et al. [21] intro-
duced an unsupervised approach that relies on a set of heuristics
using part-of-speech tags, dependency parses and co-reference reso-
lution to rewrite questions. Voskarides et al. [37] train a binary clas-
sification model on CANARD dataset that learns to pick the terms
from the conversation history for query expansion. Yu et al. [41]
train a sequence generation model using a set of rules applied to the
MS MARCO search sessions. We demonstrate that our approach
does not only outperform all the results reported on the TREC CAsT
dataset previously but also boosts the performance on the answer
extraction task as demonstrated on the QuAC dataset.

3 QUESTION REWRITING TASK
We assume the standard setting of a conversational (sequential) QA
task, in which a user asks a sequence of questions and the system is
to provide an answer after each of the questions. Every follow-up
question may be ambiguous, i.e., its interpretation depends on the
previous conversation turns (example: “What is its GDP?”). The
task of question rewriting is to translate every ambiguous follow-up
question into a semantically equivalent but unambigous question (for
this example: “What is the GDP of Xi’an?”). Then, every question
is first processed by the QR component before passing it to the QA
component.

More formally, given a conversation context 𝐶 and a potentially
implicit question 𝑄 , a question which may require the conversation
context 𝐶 to be fully interpretable, the task of a question rewriting
(QR) model is to generate an explicit question𝑄 ′ which is equivalent
to 𝑄 under conversation context 𝐶 and has the same correct answer
𝐴. See Figure 1 for an illustrative example that shows how QR can
be combined with any non-conversational QA model.

4 APPROACH
In this section, we describe the model architectures of our QR and
QA components. We use two distinct QA architectures to show that
the same QR model can be successfully applied across several QA
models irrespective of their implementation. One of the QA mod-
els is designed for the task of passage retrieval and the other one
for the task of answer extraction from a passage (reading compre-
hensions). We employ state-of-the-art QA architectures that were
already successfully evaluated for these tasks in non-conversational
settings and show how QR allows to port existing QA models into a
conversational setting.
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Question 
Rewriting

Question 
Answering

- Where is Xi’an? 
- Shaanxi, China

What is the GDP of Xi’an?

- What is its GDP?

95 Billion USD

Explicit 
question

Q’ AnswerA

Implicit 
question

Q

Conversation 
context

C

  Passage collectionP
Xi’an is a capital of Shaanxi … 
… estimated GDP 95 Billion USD 
Xi'an’s GDP reached US$11.3 …

Figure 1: Our approach for end-to-end conversational QA relies on the question rewriting component to handle conversation context
and produce an explicit question that can be fed to standard, non-conversational QA components.

4.1 Question Rewriting Model
We use a model for question rewriting, which employs a unidirec-
tional Transformer decoder [28] for both encoding the input se-
quence and decoding the output sequence. The input to the model
is the question with previous conversation turns (we use 5 previous
turns in our experiments) turned into token sequences separated with
a special [𝑆𝐸𝑃] token.

The training objective is to predict the output tokens provided
in the ground truth question rewrites produced by human annota-
tors. The model is trained via teacher forcing approach, which is
a standard technique for training language generation models, to
predict every next token in the output sequence given all the pre-
ceding tokens. The loss is calculated via negative log-likelihood
(cross-entropy) between the output distribution 𝐷 ′ ∈ R |𝑉 | over the
vocabulary 𝑉 , and the one-hot vector 𝑦𝑄′ ∈ R |𝑉 | for the correct
token from the ground truth: 𝑙𝑜𝑠𝑠 = −𝑦𝑄′ log𝐷 ′.

At training time the output sequence is shifted by one token and
is used as input to predict all next tokens of the output sequence
at once. At inference time, the model uses maximum likelihood
estimation to select the next token from the final distribution 𝐷 ′

(greedy decoding), as shown in Figure 2.
We further increase capacity of our generative model by learning

to combine several individual distributions (𝐷 ′
1 and 𝐷 ′

2 in Figure 2).
The final distribution 𝐷 ′ is then produced as a weighted sum of
the intermediate distributions: 𝐷 ′ =

∑𝑚
𝑖=0 𝛼𝑖𝐷

′
𝑖

(𝑚 = 2 in our ex-
periments). To produce 𝐷 ′

𝑖
∈ R |𝑉 | we pass the last hidden state of

the Transformer Decoder ℎ ∈ R𝑑 through a separate linear layer
for each intermediary distribution: 𝐷 ′

𝑖
= 𝑊𝐻

𝑖
ℎ + 𝑏𝐻 , where 𝑊𝐻

𝑖

is the weight matrix and 𝑏𝐻 is the bias. For the weighting coeffi-
cients 𝛼𝑖 we use the matrix of input embeddings 𝑋 ∈ R𝑛×𝑑 , where
𝑛 is the maximum sequence length and 𝑑 is the embedding dimen-
sion, and the output of the first attention head of the Transformer
Decoder 𝐺 ∈ R𝑛×𝑑 put through a layer normalization function:
𝛼𝑖 =𝑊𝐺

𝑖
𝑛𝑜𝑟𝑚(𝐺) +𝑊𝑋

𝑖
𝑋 +𝑏𝛼

𝑖
, where all𝑊 are the weight matrices

and 𝑏𝛼
𝑖

is the bias.

Xi’an

Layer Norm

Feed Forward

Multi-Head Attention

Where is … <sep> What is its GDP? <go> What is the GDP of

Q’ 

+C Q Q’+

+
0.120.00 0.050.010.24

0.010.04 0.050.04

its GDPis WhatChinaShaanxiXi’anWhere

0.02

α1D′ 1

α2D′ 2

Transformer 
Decoder

0.01 0.06 0.01 0.02

0.03 0.02 0.03

0.11

Figure 2: The question rewriting component uses the Trans-
former Decoder architecture, to recursively generate the tokens
of an "explicit" question. At inference time, the generated out-
put is appended to the input sequence for the next timestep in
the sequence.

4.2 Retrieval QA Model
In the retrieval QA settings, the task is to produce a ranked list of
text passages from a collection, ordered by their relevance to a given
a natural language question [6, 22]. We employ the state-of-the-art
approach to retrieval QA, which consists of two phases: candidate
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selection and passage re-ranking. This architecture holds the state-
of-the-art for the passage retrieval task on the MS MARCO dataset
according to the recent experiments conducted by Xiong et al. [39].

In the first phase, a traditional retrieval algorithm (BM25) is
used to quickly sift through the indexed collection retrieving top-𝑘
passages ranked by relevance to the input question 𝑄 ′. In the second
phase, a more computationally-expensive model is used to re-rank
all question-answer candidate pairs formed using the previously
retrieved set of 𝑘 passages.

For re-ranking, we use a binary classification model that predicts
whether the passage answers a question, i.e., the output of the model
is the relevance score in the interval [0, 1]. The input to the re-ranking
model is the concatenated question and passage with a separation
token in between (see Figure 3 for the model overview). The model
is initialized with weights learned from unsupervised pre-training on
the language modeling (masked token prediction) task (BERT) [5].
During fine-tuning, the training objective is to reduce cross-entropy
loss, using relevant passages and non-relevant passages from the
top-𝑘 candidate passages.

Q’ 

P

What is the GDP of Xi’an? <sep> … estimated GDP 95 Billion USD … <end>

Layer Norm

Feed Forward

Multi-Head Attention

+Q’ P’ 

top-k passages

Candidate 
Selection

 
… estimated GDP 95 Billion USD 
Xi'an’s GDP reached US$11.3 … 
Xi’an is a capital of Shaanxi …

top-k passages

re-ranking

Softmax

0.98Relevance score

Transformer 
Encoder

Figure 3: Retrieval QA component includes two sequential
phases: candidate selection (BM25) followed by passage re-
ranking (Transformer Encoder).

4.3 Extractive QA Model
The task of extractive QA is given a natural language question and
a single passage find an answer as a contiguous text span within
the given passage [29]. Our model for extractive QA consists of a
Transformer-based bidirectional encoder (BERT) [5] and an output
layer predicting the answer span. This type of model architecture
corresponds to the current state-of-the-art setup for several reading
comprehension benchmarks [15, 19].

The input to the model is the sequence of tokens formed by
concatenating a question and a passage separated with a special
[𝑆𝐸𝑃] token. The encoder layers are initialized with the weights of
a Transformer model pre-trained on an unsupervised task (masked
token prediction). The output of the Transformer encoder is a hidden
vector 𝑇𝑖 for each token 𝑖 of the input sequence.

For fine-tuning the model on the extractive QA task, we add
weight matrices𝑊 𝑠 ,𝑊 𝑒 and biases 𝑏𝑠 , 𝑏𝑒 that produce two proba-
bility distributions over all the tokens of the given passage separately
for the start (𝑆) and end position (𝐸) of the answer span. For each
token 𝑖 the output of the Transformer encoder 𝑇𝑖 is passed through
a linear layer, followed by a softmax normalizing the output logits
over all the tokens into probabilities:

𝑆𝑖 =
𝑒𝑊

𝑠 ·𝑇𝑖+𝑏𝑠∑𝑛
𝑗=1 𝑒

𝑊 𝑠 ·𝑇𝑗+𝑏𝑠
𝐸𝑖 =

𝑒𝑊𝑒 ·𝑇𝑖+𝑏𝑒∑𝑛
𝑗=1 𝑒

𝑊 𝑒 ·𝑇𝑗+𝑏𝑒
(1)

The model is then trained to minimize cross-entropy between the
predicted start/end positions (𝑆𝑖 and 𝐸𝑖 ) and the correct ones from
the ground truth (𝑦𝑆 and 𝑦𝐸 are one-hot vectors indicating the correct
start and end tokens of the answer span):

𝑙𝑜𝑠𝑠 = −
𝑛∑︁
𝑖=1

𝑦𝑆 log 𝑆𝑖 −
𝑛∑︁
𝑖=1

𝑦𝐸 log𝐸𝑖 (2)

At inference time all possible answer spans from position 𝑖 to posi-
tion 𝑗 , where 𝑗 ≥ 𝑖, are scored by the sum of end and start positions’
probabilities: 𝑆𝑖 + 𝐸 𝑗 . The output of the model is the maximum
scoring span (see Figure 4 for the model overview).

21% of the CANARD (QuAC) examples are Not Answerable
(NA) by the provided passage. To enable our model to make No
Answer predictions we prepend a special [𝐶𝐿𝑆] token to the begin-
ning of the input sequence. For all No Answer samples we set both
the ground truth start and end span positions to this token’s posi-
tion (0). Likewise, at inference time, predicting this special token is
equivalent to a No Answer prediction for the given example.

0.62

What is the GDP of Xi’an? <sep> … estimated GDP 95 Billion USD … <end>

95 Billion USD

Transformer 
Encoder

…

…0.310.230.040.120.050.01

0.110.03 0.010.04

Layer Norm

Feed Forward

Multi-Head Attention

+Q’ 

A

P’ 

estimated GDP  95 Billion USD

0.01 start span

end spanE

S

Figure 4: Extractive QA component predicts a span of text in
the paragraph P’, given an input sequence with the question Q’
and passage P’.

5 EXPERIMENTAL SETUP
To evaluate the question rewriting approach we perform a range of
experiments with several existing state-of-the-art QA models. In
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Table 1: Datasets used for training and evaluation (with the
number of questions).

Question Retrieval Extractive
Tasks

Rewriting QA QA

MS MARCO +MultiQA (75k)
Train CANARD (35k)

(399k) CANARD (35k)

TREC CAsT (173) TREC CAsT
Test

CANARD (5.5k) (173)
CANARD (5.5k)

the following subsections we describe the datasets used for training
and evaluation, the set of metrics for each of the components, our
baselines and details of the implementation. Our experimental setup
is designed to evaluate gains in performance, reuse and traceability
from introducing the QR component:

RQ1: How does the proposed approach perform against competi-
tive systems (performance)?

RQ2: How does non-conversational pre-training benefit the mod-
els with and without QR (reuse)?

RQ3: What is the proportion of errors contributed by each of the
components (traceability)?

5.1 Datasets
We chose two conversational QA datasets for the evaluation of
our approach: (1) CANARD, derived from Question Answering
in Context (QuAC) for extractive conversational QA [2], and (2)
TREC CAsT for retrieval conversational QA [4]. See Table 1 for the
overview of the datasets. Since TREC CAsT is relatively small we
used only CANARD for training QR. The same QR model trained
on CANARD is evaluated on both CANARD and TREC CAsT.

CANARD [7] contains sequences of questions with answers as
text spans in a given Wikipedia article. It was built upon the QuAC
dataset [2] by employing human annotators to rewrite original ques-
tions from QuAC dialogues into explicit questions. CANARD con-
sists of 40.5k pairs of question rewrites that can be matched to the
original answers in QuAC. We use CANARD splits for training and
evaluation. We use the question rewrites provided in CANARD and
articles with correct answer spans from QuAC. In our experiments,
we refer to this joint dataset as CANARD for brevity.

To further boost performance of the extractive QA model we
reuse the approach from Fisch et al. [8] and pre-train the model on
MultiQA dataset, which contains 75𝑘 QA pairs from six standard
QA benchmarks, and then fine-tune it on CANARD to adapt for the
domain shift. Note that MultiQA is a non-conversational QA dataset.

TREC CAsT contains sequences of questions with answers to be
retrieved as text passages from a large collection of passages: MS
MARCO [22] with 8.6M passages + TREC CAR [6] with 29.8M
passages. The official test set that we used for evaluation contains
relevance judgements for 173 questions across 20 dialogues (topics).
We use the model from Nogueira and Cho [23] for retrieval QA,
which was tuned on a sample from MS MARCO with 12.8M query-
passage pairs and 399k unique queries.

5.2 Metrics
Our evaluation setup corresponds to the one used in TREC CAsT,
which makes our experiments directly comparable to the official
TREC CAsT results. Mean average precision (MAP), mean recipro-
cal rank (MRR), normalized discounted cumulative gain (NDCG@3)
and precision on the top-passage (P@1) evaluate quality of passage
retrieval. Top-1000 documents are considered per query with a rel-
evance judgement value cut-off level of 2 (the range of relevance
grades in TREC CAsT is from 0 to 4).

We use F1 and Exact Match (EM) for extractive QA, which
measure word token overlap between the predicted answer span
and the ground truth. We also report accuracy for questions without
answers in the given passage (NA Acc).

Our analysis showed that ROUGE recall calculated for unigrams
(ROUGE-1 recall) correlates with the human judgement of the ques-
tion rewriting performance (Pearson 0.69), which we adopt for our
experiments as well. ROUGE [18] is a standard metric of lexical
overlap, which is often used in text summarization and other text
generation tasks. We also calculate question similarity scores with
the Universal Sentence Encoder (USE) model [1] (Pearson 0.71).

5.3 QR Baselines
The baselines were designed to challenge the need for a separate QR
component by incorporating previous turns as direct input to custom
QA components. Manual rewrites by human annotators provide
the upper-bound performance for a QR approach and allows for an
ablation study of the down-stream QA components.

Original. Original questions from the conversational QA datasets
without any question rewriting.

Original + 𝑘-DT.. Our baseline approach for extractive QA prepends
the previous 𝑘 questions to the original question to compensate for
the missing context. The questions are separated with a special token
and used as input to the Transformer model. We report the results
for 𝑘 = {1, 2, 3}.

Original + 𝑘-DT*. Since in the first candidate selection phase
we use BM25 retrieval function which operates on a bag-of-words
representation, we modify the baseline approach for retrieval QA as
follows. We select keywords from 𝑘 prior conversation turns (not
including current turn) based on their inverse document frequency
(IDF) scores and append them to the original question of the cur-
rent turn. We use the keyword-augmented query as the search query
for Anserini [40], a Lucene toolkit for replicable information re-
trieval research, and if we use BERT re-ranking we concatenate
the keyword-augmented query with the passages retrieved from the
keyword-augmented query. We use the keywords with IDF scores
above the threshold of 0.0001, which was selected based on a 1
million document sample of the MS MARCO corpus.

Human. To provide an upper bound, we evaluate all our models
on the question rewrites manually produced by human annotators.

5.4 QR Models
In addition to the baselines described above, we chose several alterna-
tive models for question rewriting of the conversational context: (1)



WSDM ’21, March 8–12, 2021, Jerusalem, Israel Svitlana Vakulenko, Shayne Longpre, Zhucheng Tu, and Raviteja Anantha

co-reference resolution as in the TREC CAsT challenge; (2) Pointer-
Generator used for question rewriting on CANARD by Elgohary et al.
[7] but not previously evaluated on the end-to-end conversational
QA task; (3) CopyTransformer extension of the PointerGenerator
model that replaces the bi-LSTM encoder-decoder architecture with
a Transformer Decoder model. All models, except for co-reference,
were trained on the train split of the CANARD dataset. Question
rewrites are generated turn by turn for each dialogue recursively
using already generated rewrites as previous turns. This is the same
setup as in the TREC CAsT evaluation.

Co-reference. Anaphoric expressions in original questions are
replaced with their antecedents from the previous dialogue turns. Co-
reference dependencies are detected using a publicly available neural
co-reference resolution model that was trained on OntoNotes [16].1

PointerGenerator. A sequence-to-sequence model for text gener-
ation with bi-LSTM encoder and a pointer-generator decoder [7].

CopyTransformer. The Transformer decoder, which, similar to
pointer-generator model, uses one of the attention heads as a pointer [10].
The model is initialized with the weights of a pre-trained GPT2
model [28, 38] (Medium-sized GPT-2 English model: 24-layer, 1024-
hidden, 16-heads, 345M parameters) and then fine-tuned on the
question rewriting task.

Transformer++. The Transformer-based model described in Sec-
tion 4.1. Transformer++ is initialized with the weights of the pre-
trained GPT2 model, same as in CopyTransformer.

5.5 QA Models
Our retrieval QA approach is implemented as proposed in [23]
using Anserini for the candidate selection phase with BM25 (top-
1000 passages) and 𝐵𝐸𝑅𝑇𝐿𝐴𝑅𝐺𝐸 for the passage re-ranking phase
(Anserini + BERT). Both components were fine-tuned only on the
MS MARCO dataset (𝑘1 = 0.82, 𝑏 = 0.68).2

We train several models for extractive QA on different variants of
the training set based on the CANARD training set [7]. All models
are first initialized with the weights of the 𝐵𝐸𝑅𝑇𝐿𝐴𝑅𝐺𝐸 model pre-
trained using the whole word masking [5].

CANARD-O.. The baseline models were trained using original
(implicit) questions of the CANARD training set with a dialogue con-
text of varying length (Original and Original + 𝑘-DT). The models
are trained separately for each 𝑘 = {0, 1, 2, 3}, where 𝑘 = 0 corre-
sponds to the model trained only on the original questions without
any previous dialogue turns.

CANARD-H.. To accommodate input of the question rewriting
models, we train a QA model that takes human rewritten question
from the CANARD dataset as input without any additional conver-
sation context, i.e., as in the standard QA task.

MultiQA → CANARD-H.. Since the setup with rewritten ques-
tions does not differ from the standard QA task, we experiment with
pretraining the extractive QA model on the MultiQA dataset with ex-
plicit questions [8], using parameter choices introduced by Longpre
et al. [20]. We further fine-tune this model on the target CANARD
1https://github.com/kentonl/e2e-coref
2https://github.com/nyu-dl/dl4marco-bert

Table 2: Evaluation results of the QR models. *Human perfor-
mance is measured as the difference between two independent
annotators’ rewritten questions, averaged over 100 examples.
This provides an estimate of the upper bound.

Test Set Question ROUGE USE EM

CANARD Original 0.51 0.73 0.12
Co-reference 0.68 0.83 0.48
PointerGenerator 0.75 0.83 0.22
CopyTransformer 0.78 0.87 0.56
Transformer++ 0.81 0.89 0.63

Human* 0.84 0.90 0.33

TREC CAsT Original 0.67 0.80 0.28
Co-reference 0.71 0.80 0.13
PointerGenerator 0.71 0.82 0.17
CopyTransformer 0.82 0.90 0.49
Transformer++ 0.90 0.94 0.58

Human* 1.00 1.00 1.00

dataset to better adopt it for the domain shift in CANARD QA
samples (see Figure 5).

6 RESULTS
RQ1: How does the proposed approach perform against competi-

tive systems (performance)? Our approach, using question rewriting
for conversational QA, consistently outperforms the baselines that
use previous dialogue turns, in both retrieval and extractive QA tasks
(see Tables 3-5). Moreover, it shows considerable improvement over
the latest results reported on the TREC CAsT dataset (see Table 4).

The precision-recall trade-off curve in Figure 6 shows that ques-
tion rewriting performance is close to the performance achieved by
manually rewriting implicit questions. Our results also indicate that
the QR performance metric is able to correctly predict the model
that performs consistently better across both QA tasks (see Table 2).

Passage re-ranking with BERT always improves ranking results
(almost a two-fold increase in MAP, see Table 3). Keyword-based
baselines (Original + 𝑘-DT*) prove to be very strong outperforming
both Co-reference and PointerGenerator models on all three perfor-
mance metrics. Both MRR and NDCG@3 are increasing with the
number of turns used for sampling keywords, while MAP is slightly
decreasing, which indicates that it brings more relevant results at
the very top of the rank but non-relevant results also receive higher
scores. In contrast, the baseline results for Anserini + BERT model
indicate that the re-ranking performance for all metrics decreases
if the keywords from more than 2 previous turns are added to the
original question.

Similarly for extractive QA, the model incorporating previous
turns proved to be a very strong baseline (see Table 5). The per-
formance results also suggest that all models do not discriminate
well the passages that do not have an answer to the question (71%
accuracy on the human rewrites). We notice that the baseline mod-
els, which were trained with the previous conversation turns, tend
to adopt a conservative strategy by answering more questions as

https://github.com/kentonl/e2e-coref
https://github.com/nyu-dl/dl4marco-bert
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Table 3: Retrieval QA results on the TREC CAsT test set.

QA Input QA Model MAP MRR NDCG@3

Original Anserini 0.089 0.245 0.131
Original + 1-DT* 0.133 0.343 0.199
Original + 2-DT* 0.130 0.374 0.213
Original + 3-DT* 0.127 0.396 0.223
Co-reference 0.109 0.298 0.172
PointerGenerator 0.100 0.273 0.159
CopyTransformer 0.148 0.375 0.213
Transformer++ 0.190 0.441 0.265
Human 0.218 0.500 0.315

Original Anserini 0.172 0.403 0.265
Original + 1-DT* +BERT 0.230 0.535 0.378
Original + 2-DT* 0.245 0.576 0.404
Original + 3-DT* 0.238 0.575 0.401
Co-reference 0.201 0.473 0.316
PointerGenerator 0.183 0.451 0.298
CopyTransformer 0.284 0.628 0.440
Transformer++ 0.341 0.716 0.529
Human 0.405 0.879 0.589

Table 4: Comparison with the state-of-the-art results reported
on the TREC CAsT test set.

Approach NDCG@3

Mele et al. [21] 0.397
Voskarides et al. [37] 0.476
Yu et al. [41] 0.492
Ours 0.529

“Unanswerable” (NA). Controlling for this effect, we show that our
QR model gains a higher performance level by actually answering
questions that have answers.

RQ2: How does non-conversational pre-training benefit the mod-
els with and without QR (reuse)? We observe that pre-training on
MultiQA improves performance of all extractive QA model. How-
ever, it is much more prominent for the systems using question
rewrites (7% increase in EM and 6% in F1 when using human-
rewritten questions). The models do not require any additional fine-
tuning, when using QR, since the type of input to the QA model
remains the same (non-conversational). While for Original + 𝑘-DT
models fine-tuning is required also to adopt the model for the new
type of input data (conversational). Note that, in this case, we had to
fine-tune all models but for another reason. The style of questions
in CANARD is rather different from other QA datasets in MultiQA.
Figure 5 demonstrates that a small portion of the training data is suf-
ficient to adopt a QR-based model trained with non-conversational
samples to work well on CANARD.

RQ3: What is the proportion of errors contributed by each of the
components (traceability)? We measure the effect from question
rewriting for each of the questions by comparing the answers pro-
duced for the original, the model-rewritten (Transformer++) and the

Table 5: Extractive QA results on the CANARD test set. F1 and
EM is calculated for both answerable and unanswerable ques-
tions, while NA Acc only for unanswerable questions.

QA Input Training Set EM F1 NA Acc

Original CANARD-O 38.68 53.65 66.55
Original + 1-DT 42.04 56.40 66.72
Original + 2-DT 41.29 56.68 68.11
Original + 3-DT 42.16 56.20 68.72

Original CANARD-H 39.44 54.02 65.42
Human 42.36 57.12 68.20

Original MultiQA → 41.32 54.97 65.84
Original + 1-DT CANARD-H 43.15 57.03 68.64
Original + 2-DT 42.20 57.33 69.42
Original + 3-DT 43.29 57.87 71.50
Co-reference 42.70 57.59 66.20
PointerGenerator 41.93 57.37 63.16
CopyTransformer 42.67 57.62 68.02
Transformer++ 43.39 58.16 68.29
Human 45.40 60.48 70.55
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Figure 5: Effect from fine-tuning the MultiQA model on a por-
tion of the target CANARD-H dataset due to the domain shift
between the datasets.

human-rewritten question (see Tables 6-7). This approach allows
us to pinpoint the cases, in which QR contributes to the QA perfor-
mance, and distinguish them from cases in which the answer can be
found using the original question as well.

Assuming that humans always produce correct question rewrites,
we can attribute all cases in which these rewrites did not result
in a correct answer as errors of the QA component (rows 1-4 in
Tables 6-7). The next two rows 5-6 show the cases, where human
rewrites succeeded but the model rewrites failed, which we consider
to be a likely error of the QR component. The last two rows are true
positives for our model, where the last row combines cases where
the original question was just copied without rewriting (numbers in
brackets) and other cases when rewriting was not required. Since
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Figure 6: Precision-recall curve illustrating model performance
on the TREC CAsT test set for Anserini + BERT.

there is no single binary measure for the answer correctness, we
select different cut-off thresholds for our QA metrics.

The majority of errors stem from the QA model: 29% of the test
samples for retrieval and 55% for extractive estimated for P@1 and
F1, comparing to 11% and 5% for QR respectively. Note that it is a
rough estimate since we cannot automatically distinguish the cases
that failed both QA and QR.

Overall, we observe that the majority of questions in extractive
QA setup can be correctly answered without rewriting or accessing
the conversation history. In other words, the extractive QA model
tends to return an answer even when given an incomplete ambiguous
question. This finding also explains the low NA Acc results reported
in Table 5. Our results provide evidence of the deficiency of the read-
ing comprehension setup, which was also reported in the previous
studies on non-conversational datasets [13, 17, 32].

In contrast, in the retrieval QA setup, only 10% of the questions
in TREC CAsT were rewriten by human annotators that did not
need rewriting to retrieve the correct answer. These results high-
light the difference between the retrieval and extractive QA train-
ing/evaluation setup. More details on our error analysis approach
and results can be found in Vakulenko et al. [36].

7 CONCLUSION
We showed in an end-to-end evaluation that question rewriting is
effective in extending standard QA approaches to a conversational
setting. Our results set the new state-of-the-art on the TREC CAsT
2019 dataset. The same QR model also shows superior performance
on the answer span extraction task evaluated on the CANARD/QuAC
dataset. Based on the results of our analysis, we conclude that QR
is a challenging but also very promising task that can be effectively
implemented into conversational QA approaches.

We also confirmed that the QR metric provides a good indicator
for the end-to-end QA performance. Thereby, it is reliable to be used
for the QR model selection, which would help to avoid more costly
end-to-end evaluation in the future.

The experimental evaluation and the detailed analysis we pro-
vide increases our understanding of the main error sources. QR
performance is sufficiently high on both CANARD and TREC CAsT
datasets, while the QA performance even given human rewritten

Table 6: Break-down analysis of all retrieval QA results for the
TREC CAsT dataset. Each row represents a group of QA sam-
ples that exhibit similar behaviour. ✓ indicates that the answer
produced by the QA model was correct or × – incorrect, accord-
ing to the thresholds provided in the right columns. We consider
three types of input for every QA sample: the question from
the test set (Original), generated by the best QR model (Trans-
former++) or rewritten manually (Human). The numbers cor-
respond to the count of QA samples for each of the groups. The
numbers in parenthesis indicate how many questions do not re-
quire rewriting, i.e., should be copied from the original.

P@1 NDCG@3
Original QR Human = 1 > 0 ≥ 0.5 = 1

× × × 49 (14) 10 (1) 55 (20) 154 (49)
✓ × × 0 0 0 0
× ✓ × 2 0 1 0
✓ ✓ × 0 1 1 0

× × ✓ 19 10 25 4
✓ × ✓ 0 1 0 0
× ✓ ✓ 48 63 47 11
✓ ✓ ✓ 55 (37) 88 (52) 44 (33) 4 (4)

Total 173 (53)

Table 7: Break-down analysis of all extractive QA results for the
CANARD dataset, similar to Table 6.

Original QR Human F1 > 0 F1 ≥ 0.5 F1 = 1

× × × 847 (136) 1855 (235) 2701 (332)
✓ × × 174 193 181
× ✓ × 19 35 (2) 40 (1)
✓ ✓ × 135 153 120

× × ✓ 141 288 232
✓ × ✓ 65 (1) 57 (1) 40
× ✓ ✓ 226 324 269
✓ ✓ ✓ 3964 (529) 2666 (428) 1988 (333)

Total 5571 (666)

questions for both tasks lags behind. This result suggest that the
major improvement in conversational QA will come from improving
the standard QA models.

In future work we would like to evaluate QR performance with
the joint model integrating passage retrieval and answer span extrac-
tion. Recent results reported by Qu et al. [26] indicate that there is
sufficient room for improvement in the history modeling phase.

On the other hand, the QR-QA type of architecture is generic
enough to incorporate other types of context, such as a user model
or an environmental context obtained from multi-modal data (de-
ictic reference). Experimental evaluation of QR-QA performance
augmented with such auxiliary inputs is a promising direction for
future work.
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