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Parallel Split-Join Networks for Shared Account Cross-domain
Sequential Recommendations

Wenchao Sun?, Muyang Mal, Pengjie Ren*, Yujie Lin, Zhumin Chen, Zhaochun Ren, Jun Ma, Maarten de Rijke

Sequential recommendation is a task in which one models and uses sequential information about user behavior for recommendation
purposes. We study sequential recommendation in a context in which multiple individual users share a single account (i.e., they have
a shared account) and in which user behavior is available in multiple domains (i.e., recommendations are cross-domain). These two
characteristics bring new challenges on top of those of the traditional sequential recommendation task. First, we need to identify
the behavior associated with different users and different user roles under the same account in order to recommend the right item
to the right user role at the right time. Second, we need to identify behavior in one domain that might be helpful to improve
recommendations in other domains.

We study shared account cross-domain sequential recommendation and propose a parallel split-join Network (PSJNet), a parallel
modeling network to address the two challenges above. We use “split” to address the challenge raised by shared accounts; PSJNet
learns role-specific representations and uses a gating mechanism to filter out, from mixed user behavior, information of user roles that
might be useful for another domain. In addition, “join” is used to address the challenge raised by the cross-domain setting; PSJNet
learns cross-domain representations by combining the information from “split” and then transforms it to another domain. We present
two variants of PSJNet: PSJNet-I and PSJNet-II. PSJNet-I is a “split-by-join” framework that splits the mixed representations to
get role-specific representations and joins them to obtain cross-domain representations at each timestamp simultaneously. PSJNet-I1
is a “split-and-join” framework that first splits role-specific representations at each timestamp, and then the representations from
all timestamps and all roles are joined to obtain cross-domain representations. We concatenate the in-domain and cross-domain
representations to compute a recommendation score for each item. Both PSJNet-I and PSJNet-II can simultaneously generate
recommendations for two domains where user behavior in two domains is synchronously shared at each timestamp.

We use two datasets to assess the effectiveness of PSJNet. The first dataset is a simulated shared account cross-domain sequential
recommendation dataset obtained by randomly merging the Amazon logs from different users in the movie and book domains. The
second dataset is a real-world shared account cross-domain sequential recommendation dataset built from smart TV watching logs of a
commercial organization. Our experimental results demonstrate that PSJNet outperforms state-of-the-art sequential recommendation
baselines in terms of MRR and Recall.

Index Terms—Parallel modeling, Shared account recommendation, Cross-domain recommendation, Sequential recommendation

I. INTRODUCTION

It is hard to apply traditional recommendation methods such
as, e.g., collaborative filtering (CF)-based methods [55] or
matrix factorization (MF)-based models [32} (78], in recom-
mendation scenarios in which user profiles may be absent. This
happens when users are not logged in or the recommender
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This paper is a substantially extended version of [42]]. The additions are
three-fold. First, we unify the parallel modeling framework introduced in [42]]
into the PSJNet architecture introduced in this paper and propose a new model
PSJNet-II that improves the performance over previous proposals (7-Net
in [42] corresponds to PSJNet-I in this paper). Second, we build a new dataset
for shared account cross-domain sequential recommendation by simulating
shared account characteristics on a public dataset. Third, we carry out more
experiments to test PSJNet-I and PSINet-1I. More than half of the experiments
reported in this paper were not in [42] and all relevant result tables and figures
are either new additions to the article or report new results.

system does not track user-ids. For this reason, sequential
recommendation (SR) has been proposed for session-based
recommendations [26]. Compared with traditional recommen-
dations, SR has natural advantages when it comes to sequential
dynamics [23], i.e., SR methods may generate different lists of
recommended items at different timestamps. The goal of SR
is to generate recommendations based on a sequence of user
behavior (e.g., a sequence of songs listened to, videos watched,
or products clicked), where interactions are usually grouped by
same time frame [11]. SRs have a wide range of applications
in many domains such as e-commerce, job websites, music and
video recommendations [56]. And users usually have specific
goals during the process, such as finding a good restaurant in
a city, or listening to a song of a certain style or mood [50].

Early studies into SR are mostly based on Markov chains
(MCs) [85] or Markov decision processes (MDPs) [S6]. Se-
quences of items are considered as states and a state-transition
matrix or function is learned to generate recommendations.
In this way, the dynamic characteristics of SR are taken into
account. However, because the states in a MC- or MDP-
based method correspond to sequences of items, the state-
transition matrix or function quickly becomes unmanageable
in realistic scenarios [51]]. Recurrent neural networks have
demonstrated their effectiveness in sequence modeling in the
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field of natural language processing. Motivated by this, recent
studies have introduced recurrent neural networks (RNNs)
into SR [26, 44, 9] and today RNN-based models have
been widely adopted in the context of SR. Various RNN
architectures have been proposed to enhance SR, e.g., to make
SRs context-aware [37], personalized [50], or deal with repeat
behavior [52]. However, so far RNN-based methods focus on
a single domain and none simultaneously considers the shared
account and cross-domain scenarios.

In this paper, we study SR in a particularly challenging
context, shared account cross-domain sequential recommen-
dation (SAC-SR). In this context multiple individual users
share a single account (i.e., they have a shared account) and
user behavior is recorded in multiple domains (i.e., recom-
mendations should be cross-domain). In the shared account
setting multiple users take on multiple ‘user roles’ under the
same account, where user roles do not necessarily represent
specific users. For example, in the smart TV recommendation
scenario depicted in Figure |1} members of a family correspond
to different user roles, e.g., “parents”, “children”, and they
share a single account to watch videos.

The existence of shared accounts makes it harder to generate
relevant recommendations, because the behavior of multiple
user roles is mixed together. Since, user roles are latent, they
do not have to be consistent with the real number of people in
a family. We consider user roles instead of users because we
assume that relevance of a recommendation depends on user’s
role, not on their individual identity as a user.

We consider the cross-domain task because it is a common
phenomenon in practice: users use different platforms to
access domain-specific services in daily life. For example,
many smart TV platforms use different channels to provide
different services, e.g., a video channel (domain) that offers
movies or TV series and an educational channel that offers
educational material, as depicted in Figure [I| User behavior
in one domain may be helpful for improving recommendations
in another domain [70, 28|] because user behavior in different
domains may reflect similar user interests. For example, as
illustrated in Figure [T} videos like “Mickey Mouse” in the
video domain might help to predict the next item “School
House Fun” in the educational domain because they reflect the
same interest in the Disney cartoon character “Mickey Mouse”
presumably by a child in this family. Although leveraging user
behavior information from another domain may provide useful
information to help improve the recommendation performance,
this type of transfer is non-trivial because the behavior of
multiple user roles is mixed and this may introduce noise.
This raises an interesting challenge, namely how to identify
behavior from one domain that might be helpful to improve
recommendations in other domains while minimizing the
impact of noisy information?

In prior work that focuses on shared accounts, a common
approach is to capture user interests by extracting latent fea-
tures from high-dimensional spaces that describe the relation-
ships among user roles under the same account [65] [83]]. And
in prior work on the cross-domain task, one common solution
is to aggregate information from two domains [24, [27], while
another is to transfer knowledge from the source domain to
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the target domain [84]]. These methods cannot be directly
applied to SAC-SR: either important sequential characteristics
of SR are largely ignored or they rely on explicit user ratings,
which are usually unavailable in SR. We have introduced
an architecture (7-Net) that addresses the above issues by
simultaneously generating recommendations for two domains
where user behavior from two domains is synchronously
shared at each timestamp [42]].

In this work, we generalize over m-Net with a more general
framework, the Parallel Split-Join Network (Parallel Split-
Join Network (PSJNet)), that introduces the “split” and “join”
concepts to address the shared account and cross-domain char-
acteristics in SAC-SR. “Split” is used to identify behavior of
different user roles, where we employ a gating mechanism to
extract, from mixed user behavior, role-specific representations
containing information of user roles that might be useful for
another domain. “Join” is used to discriminate and combine
useful user behavior; we learn cross-domain representations
by combining the information from “split” and then adopting
it to another domain.

Specifically, PSJNet is organized in four main modules,
a sequence encoder, a split unit, a join unit, and a hybrid
recommendation decoder. The sequence encoder module en-
codes the current sequence of mixed user behavior from
each domain into a sequence of in-domain representations.
Then, depending on how “split” and “join” are implemented,
we present two PSJNet variants, PSINet-I and PSJNet-II.
PSJNet-I, which corresponds to 7-Net, employs a “Split-by-
Join” scheme where it splits the mixed representations to
get role-specific representations and joins them to get cross-
domain representations at each timestamp simultaneously. We
reformulate the shared account filter unit (SFU) and the cross-
domain transfer unit (CFU) in 7w-Net as a split-by-join unit in
PSJNet-1. The split-by-join unit does exactly the same thing as
SFU and CFU. PSJNet-II employs a “Split-and-Join” scheme,
where it first splits role-specific representations at each times-
tamp, and then the representations from all timestamps and
all roles are joined to obtain cross-domain representations.
For both variants, “split” and “join” are operated in a parallel
recurrent way, which means that they can synchronously share
information across both domains at each timestamp. Finally,
the hybrid recommendation decoder module estimates the
recommendation scores for each item based on the information
from both domains, i.e., the in-domain representations from
the target domain and the cross-domain representations from
the complementary domain. During learning, PSJNet is jointly
trained on two domains in an end-to-end fashion.

To assess the effectiveness of PSINet, we need datasets that
exhibit both shared account and cross-domain characteristics.
To the best of our knowledge, there is no such real-world
dataset that is publicly available. We construct two datasets
for SAC-SR. The first dataset is a simulated SAC-SR dataset
obtained by randomly merging the logs from different users
in the movie and book domains from a well-known Amazon
dataset[l] Although the dataset satisfies our experimental re-
quirements, merged user behavior is not realistic. Therefore,

Thttp://jmcauley.ucsd.edu/data/amazon/
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Fig. 1: The smart TV scenario provides a natural example of shared account cross-domain sequential recommendation
(SAC-SR). Here, members of a family (the “user roles”) share the same account. The video domain contains various movies,
TV series, cartoons, etc. The education domain contains educational programs and technical tutorials, etc. items
reflect similar user interests. Red lines show the interactions and connections between user behavior in the two domains.

we build a second dataset from smart TV watching logs of a
commercial company, which is a real-world SAC-SR scenario.
We release both datasets to facilitate future research. We carry
out extensive experiments on both datasets. The experimental
results show that PSJNet outperforms state-of-the-art baselines
in terms of MRR and Recall. We also conduct ablation studies
to show that the proposed parallel “split” and “join” schemes
are effective and useful for SAC-SR.

The additional contributions of this paper compared to our
previous work [42] are:
We present the PSINet framework, which introduces the
“split” and “join” concepts to address the shared account
and cross-domain characteristics of SAC-SR.
We reformulate the previous proposal m-Net as PSJNet-I
within the PSJNet framework, and propose a variant PSJNet-
II that further improves the performance.
We carry out experiments on two datasets for SAC-SR. One
is constructed by simulating shared account characteristics
on a public dataset, the other is a real-world dataset. We
conduct additional experiments on these two datasets to
show the effectiveness of the two PSJNet variants.

II. RELATED WORK

We consider three types of related work: sequential rec-
ommendations, shared account recommendations, and cross-
domain recommendations.

A. Sequential recommendation

It is hard to capture sequential dynamics in recommendation
scenarios with classical recommendation methods such as MF-
or CF-based methods. Instead, dedicated methods have been
developed for SR or next basket recommendation.

1) Traditional methods

The traditional approaches for SR are mostly based on
MC:s [85] or MDPs [56] to predict a user’s next action given
their last action [69]. Zimdars et al. [85] are the first to
propose MCs for web page recommendation. They investigate
how to extract sequential patterns to learn the next state
using probabilistic decision-tree models. To further improve
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the performance, Shani et al. [56]] propose an MDP-based
recommendation method, where the next recommendation can
be computed through the transition probabilities among items.
To combine the advantages of MF and MC-based methods,
Rendle et al. [54] propose a method based on personal-
ized transition graphs over an underlying MC. The proposed
method subsumes both a common MC and the normal MF
model. Chen et al. [8]] take playlists as an MC, and propose
logistic Markov embeddings to learn representations of songs
for playlist prediction. Lu et al. [39] argue that source domain
data is not always consistent with the observations in the target
domain, which may misguide the target domain recommenda-
tion. They propose a criterion based on empirical prediction
error and its variance to better capture the consistency across
domains in CF settings.

All of the MC or MDP-based sequential recommendation
methods mentioned above show improvements by modeling
sequential dynamics. A major limitation they share is that they
can only consider a very short sequence (e.g., the most recent
five items in [S6]), because the state space quickly becomes
unmanageable when taking long sequences into account [S1].

2) Deep learning-based methods

Recently, RNNs have been devised to model variable-length
sequential data [[79} [16} 168} 159} 15 1501 [76| [73]]. Hidasi et al.
[26] are the first to apply RNNs to sequential recommendation
and achieve significant improvements over traditional methods.
They utilize session-parallel mini-batch training and employ
ranking-based loss functions to train the recommendation
model. In later work, they propose data augmentation tech-
niques to improve the performance of RNNs [62].

Contextual information has proved to be very important for
behavior modeling in traditional recommendations [13]. Liu
et al. [37] incorporate contextual information into SR and
propose a context-aware RNN model. Instead of using the
constant input matrix and transition matrix from conventional
RNN models, their CA-RNN employs adaptive matrices. The
authors use context-specific input matrices to capture external
conditions under which user behavior happens, such as time,
location, and weather. They also use context-specific transition
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matrices to capture how the length of time intervals between
adjacent behavior in historical sequences affects the transition
of global sequential features. Tang and Wang [63] propose a
convolutional sequence embedding recommendation model for
personalized top-n sequential recommendation to address the
more recent items where they argue that more recent items
in a sequence have a larger impact on the next item. Kang
and Mcauley [31] propose a self-attention based sequential
model to capture both the long-term semantics and relatively
few actions. Li et al. [35] explicitly model the timestamps
of interactions to explore the influence of time intervals on
next item prediction. Luo et al. [41] predict the intent of the
current session by investigating neighborhood sessions. Wang
et al. [66] develop a next-item recommendation framework
empowered by sequential hypergraphs.

More recently, Li et al. [34] propose a transformer-based
structured intent-aware model that first extracts intents from
sequential contexts, and then adopts an intent graph to capture
the correlations among user intents. Wang et al. [71]] consider
user-item relationships at the finer granularity of user intents
and generate disentangled representations. Zhang et al. [82]]
highlight the importance of recommender retraining research
and formulate the sequential retraining process as an optimiz-
able problem. Wu et al. [75] explore self-supervised learning
on a user-item graph to improve the accuracy and robustness
for recommendation. Wang et al. [[72]] explore intents behind
a user-item interaction by using auxiliary item knowledge.

Memory enhanced RNNs have been well studied for SR
recently [10]. Wang et al. [67] propose a RNN model with
two parallel memory modules: one to model a user’s own
information in the current sequence and the other to exploit
collaborative information in neighborhood sequences [29]].

B. Shared account recommendation

Most recommender systems assume that an account in the
data represents a single user. However, multiple users often
share a single account. A typical example is a smart TV
account for the whole family.

Previous approaches to shared account recommendations
typically first identify users and then make personalized rec-
ommendations [65] [83]. Zhang et al. [80] are the first to
study user identification, in which they use linear subspace
clustering algorithms; they recommend the union of items
that are most likely to be rated highly by each user. Bajaj
and Shekhar [3] propose a similarity-based channel clustering
method to group similar channels for IPTV accounts, and they
use the Apriori algorithm to separate users that are merged
under a single account. After that, they use personal profiles
to recommend additional channels to the account. Wang et al.
[[74] assume that different users consume services in different
periods. They decompose users based on mining different
interests over different time periods from consumption logs.
Finally, they use a standard User-KNN method to generate
recommendations for each identified user. Jiang et al. [30]
propose an unsupervised learning-based framework to identify
users and differentiate the interests of users and group sessions
by users. They construct a heterogeneous graph to represent
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items and use a normalized random walk to create item-based
session embeddings. A hybrid recommender is then proposed
that linearly combines the account-level and user-level item
recommendation by employing Bayesian personalized ranking
matrix factorization [53]].

C. Cross-domain recommendation

Cross-domain recommendation concerns data from multiple
domains, which has proven to be helpful for alleviating the
cold start problem [2l 4] and data sparsity issues [33) i48].
There is an assumption that there exists overlap in information
between users and/or items across different domains [17].

1) Traditional methods

There are two main ways for dealing with cross-domain
recommendations [[18]]. One is to aggregate knowledge be-
tween two domains. Tang et al. [64] propose a cross-domain
topic learning model to address three challenges in cross-
domain collaboration recommendation: sparse connections
(cross-domain collaborations are rare); complementary exper-
tise (cross-domain collaborators often have different expertise
and interest) and topic skewness (cross-domain collaboration
topics are focused on a subset of topics). Do et al. [[14] propose
to discover both explicit and implicit similarities from latent
factors across domains based on matrix tri-factorization. Chen
et al. [7] exploit the users and items shared between domains
as a bridge to link different domains by embedding all users
and items into a low-dimensional latent space between differ-
ent domains. Liu et al. [38]] utilize both MF and an attention
mechanism for fine-grained modeling of user preferences; the
overlapping cross-domain user features are combined through
feature fusion.

The other approach to cross-domain recommendation is
to transfer knowledge from the source domain to the target
domain. Hu et al. [28] propose tensor-based factorization to
share latent features between different domains. Doan and
Sahebi [15] propose a transition-based cross-domain collab-
orative filtering method to capture both within- and between-
domain transitions of user feedback sequences. Zhang et al.
[81] propose a method that not only transfers an item’s learned
latent factors, but also selectively transfers user’s latent factors.

2) Deep learning-based methods

Deep learning is well suited to transfer learning as it can
learn high-level abstractions among different domains [47, 19}
43]]. Hu et al. [27] propose a model using a cross-stitch net-
work [46] to learn complex user-item interaction relationships
based on neural collaborative filtering [24]. Zhuang et al. [84]
propose a novelty-seeking model to fully characterize users’
novelty-seeking trait so as to obtain a better performance
across domains. Wang et al. [70] are the first to introduce
the problem of cross-domain social recommendations; they
combine user-item interactions in information domains (such
as online travel planning) and user-user connections in social
network services (such as Facebook or Twitter) to recommend
relevant items of information domains to target users of social
domains; user and item attributes are leveraged to strengthen
the embedding learning. Chen et al. [6] apply multi-level
graph convolutions to a cross-platform account matching task.

ermission. See htg;)://www.ieeeoz%publicationsﬁstandards/publications/rights/indexhtml for more
ed.on July 02,2022 at 06:46:40 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TKDE.2021.3130927, IEEE Transactions on Knowledge and Data Engineering

Xia et al. [77] model session-based data as a hypergraph
and propose a hypergraph convolutional network to improve
the performance of session-based recommendation. Guo et al.
[21] also propose a graph-based solution to model multiple
associations and structure-aware domain knowledge.

Although the methods proposed in the studies listed above
have been proven to be effective in many applications, they
either cannot be applied to sequential recommendations or do
not consider the shared account or cross-domain characteris-
tics. In our previous work, we have proposed m-Net in order
to address shared account and cross-domain characteristics
in sequential recommendations by extracting information of
different user roles under the same account and transferring
it to a complementary domain at each timestamp [42]]. In this
work, we present a more general framework called PSJNet:
m-Net can be viewed as a particular instantiation of PSJNet
and we propose another instantiation that further improves the
recommendation performance over 7-Net.

III. METHOD

In this section, we first provide a formulation of the SAC-SR
problem. Then, we introduce PSJNet and describe two instan-
tiations of the framework. For each variant, we first give a
high-level introduction and describe each component in detail.

A. Shared account cross-domain sequential recommendation

We represent a cross-domain behavior sequence (e.g.,
watching videos, reading books) from a shared account as
S = <A1,Bl,B2,...7AZ',...,Bj,...>, where A; € A (1 <
1 < N) is the index of a single consumed item in domain A;
A is the set of all items in domain A; B; € B (1 < j < M)
is the index of a single consumed item in domain B; B is the
set of all items in domain B; N and M are the number of
items in the sequences from domain A and B, respectively.
Given S, SAC-SR tries to predict the next item by computing
the recommendation probabilities for all candidates in two
domains respectively, as shown in Eq.

P(Ai1 | S) ~ fa(9)
P(Bjt1|8S) ~ fB(9),

where P(A;41 | S) denotes the probability of recommending
the item A;;; that will be consumed next in domain A. Also,
fa(S) is the model or function used to estimate P(A4;41 | .S).
Similar definitions apply to P(Bj4+1 | S) and fg(S).

The main differences between SAC-SR and traditional SR
are two-fold. First, in SAC-SR, S is generated by multiple
users (e.g., family members) while it is usually generated by
a single user in SR. Second, SAC-SR considers information
from both domains for the particular recommendations in one
domain, i.e., S is a mixture of behavior from multiple domains.
In this paper, we only consider two domains but the ideas
easily generalize to multiple domains.

Next, we will describe two PSJNet variants in detail. The
key idea of PSJNet is to learn a recommendation model that
can first extract the information of some specific user roles
from domain A, and then transfer the information to domain
B, and combine it with the original information from domain
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B to improve the recommendation performance for domain
B, and vice versa. This process is achieved in a parallel way,
which means that the information from both domains is shared
recurrently.

B. Sequence encoder

Both variants of PSJNet that we consider use the same
sequence encoder. Like previous studies [26, 162, |50], we use a
RNN to encode a sequence S. Here, we employ two separate
gated recurrent units (GRUs) as the recurrent units to encode
the items from domain A and domain B respectively. And the
GRU is given as follows:

zt = o(W[lemb(zy), hi—1])

ry = o(W,[emb(zy), he—1])

hy = tanh (W3 [emb(x), ¢ © he_1])
he=(1—2) ®hi_1 +2 6 hy,

2

where W, W;., and W5 are weight matrices; emb(x;) is the
item embedding of item z at timestamp ¢; and o denotes the
sigmoid function. The initial states of the GRUs are set to
zero vectors, i.e., hg = 0. Through the sequence encoder we
obtain Hy = (ha,, hay, ..., ha,, ..., ha,) for domain A,
and Hg = (hp,,hB,,...,hB,,...,hB,,) for domain B. We
consider the last state as the in-domain representation, i.e.,
ha = ha, for domain A and hg = hp,, for domain B.
The in-domain representations are combined with the cross-
domain representations (i.e., h(4_,g) or h(p_, 4)) to compute
the final recommendation score. In the next two subsections,
we describe two PSJNet instantiations that adopt different
frameworks to learn the cross-domain representations.

C. PSJNet-1

In this subsection, we describe PSINet-I in detail. PSJNet-I
is a reformulation of 7-Net [42] within the PSJNet framework,
where we reformulate the shared account filter unit (SFU)
and the cross-domain transfer unit (CTU) as a split-by-join
unit. Figure [2] provides an overview of PSJNet-I. PSINet-I is
a “Split-by-Join” framework; it gets the role-specific represen-
tations from the mixed user behavior and simultaneously joins
them at each timestamp. Then the representations are trans-
formed to another domain as cross-domain representations.
PSJNet-1I consists of three main components: (1) a sequence
encoder (see Section [[II-B), (2) a split-by-join unit (see this
subsection), and (3) a hybrid recommendation decoder (see
Section [II-E)). The sequence encoder encodes the behavior
sequences of each domain into high-dimensional hidden rep-
resentations. The split-by-join unit takes each domain’s repre-
sentations as input and tries to first split the representations
of specific user roles, and then joins and transforms them to
another domain at each timestamp ¢. The matching decoder
combines the information from both domains and generates a
list of recommended items.

Under the shared account scenario, the behavior recorded
under the same account is generated by different user roles. In
practice, not all user roles that share the account are active in
all domains. Besides, even though some user roles are active

ermission. See htg;)://www.ieeeoz%publicationsﬁstandards/publications/rights/indexhtml for more
ed.on July 02,2022 at 06:46:40 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TKDE.2021.3130927, IEEE Transactions on Knowledge and Data Engineering

S A1 Bl B2 A2

B, A,

Fig. 2: An overview of PSJNet-I. The orange and blue colors represent different domains. Red, purple and green represent
different user roles. Section contains a walkthrough of the model.

in the same domain, they may have different interests. For
example, in the smart TV scenario, children may occupy the
majority of the educational channel, while adults dominate the
video TV channel.

The outputs H4 or Hp of the sequence encoder are the
mixed representations of all user roles sharing the same ac-
count. To learn role-specific representations from these mixed
representations, we propose a split-by-join unit, as shown in
Figure [3] The split-by-join unit can be applied bidirectionally
from “domain A to domain B” and “domain B to domain A,”
meaning that the information is extracted from one domain and
transferred to the other domain. Here, we take the “domain A
to domain B” direction and achieving recommendations in
domain B as an example. To learn role-specific representa-
tions, we need to know the number of user roles under each
account, which is, unfortunately, unavailable in most cases.
In this work, we assume that there are K latent roles (rq,
r9, ..., Tk, ..., ') under each account. For example, in a
family account, the user roles may correspond to child, male
parent, female parent, etc. We first embed each latent role
into emb(ry) (1 < k < K), which represents and encodes
the latent interests of each role. Then, we split the specific
representation for role rj at timestamp 4 in domain A with

Eq. B}

hiﬁ = :X]: © h;ﬂ + (1 - Qj) © hAi—1—>Ba (3)
where © denotes element-wise multiplication. Mathematically,
the representation hg’fi is a combination of two representations
hi{”‘i and hy, ,_,p balanced by f;;k A higher value of f:"“
means that item A; is more likely generated by r, and we
should pay more attention to r’s related representation hfq’fi.
A lower value of lower f)* means that item A; might not
be related to r; and we should inherit more information from
previous time steps.
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Next, we introduce the definitions of the three parts of Eq.[3]
one by one.

(a) We propose a gating mechanism to implement f;"z in

Eq. @

2: = U(WfA : hAi + WfB ’ th + Uf . h‘Aiq%B

+ Vi -emb(ry) + by), X
where - means matrix multiplication; Wy,, Wy, Uy and
Vy are the parameters; by is the bias term; h4, and h B;
are the mixed representations of domain A and B at
timestamp ¢ and j, respectively. Note that B; is the last
item from domain B before A; in the mixed sequence.
ha, ,—p is the previous output, which will be explained
later (under item [(c)). After the sigmoid function o, each
value of f}* falls into (0,1). Thus, the gating score f}"
controls the amount of information of rj, to transfer from
domain A to domain B. It should be noted that each latent
representation emb(ry,) indicates the distribution of user
roles with similar interests under each account, and it does
not explicitly represents a specific user.

h;’“i is the candidate representation for rj, at timestamp
7 in domain A, which is computed based on the mixed
representation h 4,, the filtered previous output h 4, ,_ 5,
and the user role r;’s latent interest emb(ry), as shown

in Eq. B}

(b)

B = tanh(Wy, - ha, + Up - ha,_,—5 + )
Vi, - emb(ry) + bp),

where Wy, Uy, and V}, are the parameters; by, is the bias

term.

ha,—p is the final output of the cross-domain represen-

tation at timestamp ¢ from domain A to domain B, which

()
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Fig. 3: The split-by-join unit illustrated while transforming information from domain A to domain B.

is calculated by joining each role-specific representation
Rg:
hasp = — ©6)
k=1

Note that h4,_,p is recurrently updated with Eq. |3 and

6
Using Eq. 3] and [6] we obtain a sequence of representations
(ha,—»Bs---shay—p). We need to combine and transfer
(ha,—B,---,hay—p) to domain B. We achieve this by
employing another GRU to recurrently encode h 4,_, 5 at each
timestep to obtain h(4_, y,, as shown in Eq.

)

where ha,_,p is the representation filtered from domain
A; haspy,_, is the previous transformed representation at
timestamp ¢ — 1. The initial state is also set to zero vectors, i.e.,
h(a-p), = 0. We set the cross-domain representation from
domain A to domain B (i.e., h(a_,p)) as the last timestamp
representation h(4_.py,, where N is sequence length of
domain A.

h(A_>B)i = GRU(hAi,HB7 h(A—)B)ifl)a

D. PSJNet-1I

In this subsection, we describe PSINet-II, our second solu-
tion for SAC-SR. Unlike PSJNet-I, PSINet-1I is a “Split-and-
Join” framework, which means that it first splits role-specific
representations from the mixed user behavior at each times-
tamp. Then the role-specific representations are transformed
to another domain. Finally, it joins the role-specific represen-
tations as cross-domain representations. Figure [4] provides an
overview of PSJNet-II. PSJNet-II consists of four main com-
ponents: (1) a sequence encoder (see Section [[II-B), (2) a split
unit, (3) a join unit, and (4) a hybrid recommendation decoder
(see Section [[II-E). PSINet-II uses the same sequence encoder
and matching decoder architectures as PSINet-1. Please refer
to Section and for details of the sequence encoder
and the hybrid recommendation decoder. In this subsection,
we focus on the core modules (i.e., the split unit and join
unit) of PSINet-II.
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1) Split unit

The split unit is shown in Figure [5] The differences with
the split-by-join unit of PSJNet-1 are marked in yellow. As
with PSINet-I, PSJNet-1I also assumes that there are K latent
roles under each account. We split the specific representation
for role 7, at timestamp 4 in domain A with Eq. [§}

®)

is a special gate that handles the case when none

T R Tre none T
Wi g = Fa, OhL + FAT"C O g

where f3"¢

of the information from r; at 7 (i.e., h;{i) is useful and we
should inherit more information from previous time steps, see

Eq. Bt

farme =0 (Wey-ha, + Wpy - hp, +Up -ha,_, 5 +by).
€))
We add a normalization constraint to force the sum of f;’“ and
Jaome o 1
K
PR+ f =1 (10)
k=1
We use similar definitions of f}* (Eq. ) and ﬁ:} (Eq.[5) as in
PSINet-I, except that h 4, , g is replaced with A’ 5. The
differences from split-by-join unit are two-fold. First, h'{ _ p
is not joined with respect to all roles. Second, instead of
learning independent gates for different roles, we require that
all gate values from all roles (and fﬁf”e) are summed to 1.
After Eq. [§] we get a sequence of representations
(K% L p»--- hf ) for each user role rj.. We combine and
transfer (h)f' ,p,...,h)f _p) to domain B by employing
another GRU, as shown in Eq.

BT = GRU(W . My, ) (11)

(A—B);

where h{* _,  is the representation filtered from domain A for
role ry,.

2) Join unit

The join unit is shown in Figure [0] After the split
unit, we obtain K sequences of transformed representations
<h€f4HB)1’ . '7hZZ%B)N> from domain A to domain B. To
join them, we first compute a similarity matrix ST ¢ RM*N
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Fig. 4: An overview of PSJNet-II. As before, the orange and blue colors represent different domains. Red, purple and green
represent different user roles. Section [[II-D| contains a walkthrough of the model.

Tk
A,‘_l —

h

T1
A

TK

VA

| fnone
)

| fnone ,

T1
A0
T

@

Fig. 5: The split unit for ry, illustrated while transforming information from domain A to domain B.

between the transformed representations and the in-domain

representations (hpg,,...,hp,,) from domain B. Each simi-
. I . .

larity S(i, ) 18 computed with Eq.

1

Sy =vsT - (Wi hi_ gy, +Wj-hg,),  (12)
where vg”, W; and W; are parameters.

Then we pick the maximum similarity S/ between each
hii g, and all hp,. S! signifies that h(i_p), is more
representative for role r, in domain B because it has the
closest similarity to a representation hp; in domain B:

S} = max S{, . (13)
j 5]
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We normalize S! with softmax afterwards. Then we obtain
representations for each role 7 in Eq. [T4

N

= (S p)-

i=1

I (14)

(A%B)

Finally, we get the cross-domain representation h(4_,p)
by joining (h’{j4 By - h(}Af _}B)> again with similar op-
erations as in [12] and but with a different similarity
matrix ST/ € RM*K Note that S! is computed between
(h(A_>B) haf_)B)> and {(hp,,...,hp,,) this time.

There are two strengths of PSJNet-II compared to PSJNet-I.
First, the normalization (see Eq. @) reduces the influence of
some large gate values, thereby making the prediction more

ermission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
.on July 02,2022 at 06:46:40 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TKDE.2021.3130927, IEEE Transactions on Knowledge and Data Engineering

@’@

Fig. 6: The join unit 111ustrated whlle transforming information from domain A to domain B.

accurate. Second, the split-by-join unit of PSJNet-I uses the
output of the last time step of GRU as the cross-domain
representation from domain A to domain B. Information in
the intermediate step is lost to some degree. However, in the
join unit of PSJNet-II, the cross-domain representation from
A to B undergoes more fine-grained calculations.

E. Hybrid recommendation decoder

The hybrid recommendation decoder integrates hybrid in-
formation from both domains A and B to evaluate the recom-
mendation probabilities of the candidate items. Specifically,
it first gets the hybrid representation by concatenating the
representation hp from domain B and the transformed rep-
resentation h(4_,p) from domain A to domain B. Then, it
evaluates the recommendation probability for each candidate
item by calculating the matching of between the hybrid
representation and the item-embedding matrix followed by a
softmax function, as shown in Eq. @

-
P(Bj+1|S) = softmax (W[ . [h37 h(A—)B)] + b[) , (15)
where W7 is the embedding matrix of all items of domain B;

by is the bias term.

F. Objective function

We employ the negative log-likelihood loss function to train
PSJNet in each domain as follows:

La Z Z log P(Ai1 | 5)

S'GSA es (16)
Lp Z Z log P(Bj11 | 5),

SGSB es

where 6 are all the parameters of our model PSINet and S are
the sequence instances in the training set. In the case of joint
learning, the final loss is a linear combination of both losses:

L(0) = La(6) + Lp(0). a7

All parameters as well as the item embeddings are learned in
an end-to-end back-propagation training way.

IV. EXPERIMENTAL SETUP
A. Research questions

We seek to answer the following research questions in our
experiments:
(RQ1) What is the performance of PSJNet-I and PSJNet-II
on the SAC-SR task? Do they outperform the state-of-
the-art methods in terms of Recall and MRR?
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(RQ2) Which PSJNet variant is more effective in the SAC-SR
task? PSINet-I or PSINet-II? What are the perfor-
mances of different groups of methods, e.g., sequential
and non-sequential recommendation methods?

(RQ3) What is the performance of PSJNet-I and PSJNet-
II on different domains and different datasets? Do
they improve the performance of both domains and
datasets? Are the improvements equivalent?

B. Datasets

We need datasets that exhibit both shared-account and cross-
domain characteristics to conduct experiments. To demon-
strate the effectiveness of the proposed PSJNet model, we
build and release two new datasets, HAmazon and HVIDEO,
respectively. We build the HAmazon dataset by simulating
shared account characteristics using previously released Ama-
zon datasets. HVIDEO has previously been used in [42] but
we release it with this paper. Details of the two datasets are
as follows.

« HAmazon: He and McAuley [22] have released an Amazon
product dataset that contains product reviews (ratings, text,
helpfulness votes) and metadata (descriptions, category in-
formation, price, brand, and image features) from Amazon;
it includes 142.8 million reviews spanning the period May
1996-July 2014. The data contains user behavior from
multiple domains. In this paper, we use data from two
Amazon domains. The M-domain contains movie watching
and rating behavior of Amazon users. The B-domain covers
book reading and rating behavior of Amazon users. We
collect user-id, item-id, rating, and timestamp from the data
and conduct some preprocessing. We first order the items
by time under each account. Then, we merge records of the
same item watched/read by the same user with an adjacent
timestamp. The number of items in M-domain is less than
that in B-domain. To balance the number of items in the
hybrid interaction sequence, we only keep items whose
frequency is larger than 5 in the M-domain and 10 in the
B-domain.

To satisfy cross-domain characteristics, we first find users
whose behavior can be found in both the Amazon movie
and book domains and then only keep users who have more
than 10 records.

To simulate shared account characteristics, we first split
the data into 6 consecutive intervals, 1996-2000, 2001—
2003, 2004-2006, 2007-2009, 2010-2012, and 2013-2015.
We split the data in this way because we assume that the
interaction behavior under the same account should be in
the same time period. This is also a routine operation of
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many other works [1]. Then, we combine data from both
domains by randomly merging 2, 3, or 4 users and their
behavior in each interval as one shared account. Because
each sequence has a lot of user behavior recorded over
a long period of time, we split the sequences from each
account into several small sequences with each containing
watching/reading records within a year. We also require that
each sequence contains at least 5 items from the M-domain
and 2 items from the B-domain. The length of each sequence
is between 4 and 60 with an average length of 31.29.

For evaluation, we use the last watched/read item in each
sequence for each domain as the ground truth respectively.
We randomly select 75% of all data as the training set, 15%
as the validation set, and the remaining 10% as the test set.
The statistics of the final dataset are shown in Table
Note that although HAmazon can be used for experiments,
it is not a SAC-SR dataset by nature. There are two
shortcomings. First, the merged users do not naturally have
the shared account characteristic. Second, the two domains
are quite different and are not well correlated in content,
which means that the items in different domains have little
chance to reflect similar interests.

HVIDEO: To facilitate future research for SAC-SR, we
also release another dataset, HVIDEQO, which exhibits
shared-account and cross-domain characteristics by nature.
HVIDEO is a smart TV dataset that contains watching logs
of 260k users from October 1st 2016 to June 30th 2017. The
logs are collected on two platforms (the V-domain and the
E-domain) from a well-known smart TV service provider.
The V-domain contains family video watching behavior
including TV series, movies, cartoons, talent shows and
other programs. The E-domain covers online educational
videos based on textbooks from elementary to high school,
as well as instructional videos on sports, food, medical, etc.

as the validation set, and the remaining 10% as the test set.
The statistics of the final dataset are shown in Table [1

C. Baseline methods

For our contrastive experiments, we consider baselines from

four categories: traditional, sequential, shared account, and
cross-domain recommendations.

1) Traditional recommendations.
As traditional recommendation methods, we consider the

following:
e POP: This method ranks items in the training set based on

their popularity, and always recommends the most popular
items. It is a very simple baseline, but it can perform well in
certain domains and is frequently used as a baseline because
of its simplicity [24]].

Item-KNN: The method computes a degree of item-to-item
similarity that is defined as the number of co-occurrences
of two items within sequences divided by the square root
of the product of the number of sequences in which either
item occurs. Items that are similar to the actual item will
be recommended by this baseline. Regularization is included
to avoid coincidental high similarities between rarely visited
items [36].

BPR-MF: This model is a commonly used matrix factoriza-
tion method. This model cannot be applied directly to SRs,
because new sequences do not have pre-computed feature
vectors. Like [26], we apply it for sequential recommen-
dations by representing a new sequence with the average
latent factors of items that appeared in this sequence, i.e.,
we average the similarities of the feature vectors between a
recommendable item and the items of the session so far.
2) Shared account recommendations.

There are some studies that explore shared account rec-

ommendations by first achieving user identification [30, 3].
However, they need extra information for user identification,
e.g., some explicit ratings for movies or descriptions for some
songs, even some textual descriptions for flight tickets, which
is not available in our datasets. Therefore, we select a method
that works on the IP-TV recommendation task that is similar
to ours.

o VUI-KNN: This model encompasses an algorithm to decom-

On the two platforms, we gather user behavior, including
which video is played, when a smart TV starts to play
a video, and when it stops playing the video, and how
long the video has been watched. Compared with previous
datasets, HVIDEO contains rich and natural family behavior
data generated in a natural shared account and cross-domain
context. Therefore, it is very suitable for SAC-SR research.
We conduct some preprocessing on the dataset. We first

filter out users who have less than 10 watching records
and whose watching time is less than 300 seconds. Then,
we merge records of the same item watched by the same
user with an adjacent time less than 10 minutes. After
that, we combine data from different domains together in
chronological order which is grouped by the same account.
Because each account has a lot of logs recorded in a long
time, we split the logs from each account into several small
sequences with each containing 30 watching records. This is
a common preprocessing operation in SR tasks [31} [35] [57]]
And we require that the number of items in both domains
must be greater than 5 in each sequence, which can ensure
the sequences mix is high enough.

pose members in a composite account by mining different
user interests over different time periods from logs [74].
The method first divides a day into time periods, so the
logs of each account fall into the corresponding time period;
logs in each time period are assumed to be generated
by a virtual user that is represented by a 3-dimensional
{account xitem x time} vector. After that, cosine similarity
is used to calculate similarity among virtual users, some of
which are merged into a latent user. VUI deploys the User-
KNN method to produce recommendations for these latent
users.

3) Cross-domain recommendations.

For cross-domain recommendations, we choose two base-

line methods.
o NCF-MLP++: This model uses a deep learning-based pro-
cess to learn the inner product of the traditional collaborative

For evaluation, we use the last watched item in each
sequence for each domain as the ground truth, respectively.
We randomly select 75% of all data as the training set, 15%
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TABLE I: Statistics of the datasets.

HAmazon HVIDEO

M-domain V-domain

#Items 67,161 #Items 16,407
#Logs 4,406,924 #Logs 227,390
B-domain E-domain

#Items 126,547 #Items 3,380
#Logs 4,287,240 #Logs 177,758
#Overlapped-users 13,724 #Overlapped-users 13,714
#Sequences 289,160 #Sequences 134,349
#Training-sequences 204,477 #Training-sequences 102,182
#Validation-sequences 49,814 #Validation-sequences 18,966
#Test-sequences 34,869 #Test-sequences 13,201

filtering by using a multilayer perceptron (MLP) [24]. We

improve NCF-MLP by sharing the collaborative filtering in

different domains. It is too time-consuming to rank all items
with this method, because it needs to compute a score for
each item one by one. We randomly sample four negative
instances for each positive instance in the training process,
and sample 3,000 negatives for each predicted target item in
the test process, thus simplifying the task for this method.

o Conet: This is a neural transfer model across domains on
the basis of a cross-stitch network [27, 46|, where a neural
collaborative filtering model [24] is employed to share
information between domains.

4) Sequential recommendations.

Recently, a number of sequential recommendations methods

have been proposed; RNN-based neural methods have out-
performed traditional MC- or MDP-based methods. There are
many RNN-based methods. In this paper, we consider two
methods with somewhat similar architectures as PSJNet.
GRU4REC: This model uses a GRU to encode sequential
information. It uses a session-parallel mini-batch training
process and employs ranking-based loss functions for learn-
ing the model [26].
HGRU4REC: Quadrana et al. [50] propose this model
based on RNNs which can deal with two cases: (1) user
identifiers are present and propagate information from the
previous sequence (user session) to the next, thus improving
the recommendation accuracy, and (2) there are no past
sessions (i.e., no user identifiers). The model is based on
a hierarchical RNN, where the hidden state of a lower-
level RNN at the end of one sequence is passed as input
to a higher-level RNN, which is meant to predict a good
initialization for the hidden state of the lower RNN for the
next sequence.

D. Evaluation metrics

Recommender systems can only recommend a limited num-
ber of items at a time. The item a user might pick should be
amongst the first few in the ranked list [50, |12} [25]]. Commonly
used metrics are MRR @20 and Recall@20 [52} 145]]. We also
report MRR@5, Recall@5 and MRR@10, Recall@10.

e Recall: The primary evaluation metric is Recall, which
measures the proportion of cases when the relevant item
is amongst the top ranked items in all test cases. Recall
does not consider the actual rank of the item as long as
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it is amongst the recommendation list. This accords with
certain real-world scenarios where there is no highlighting
of recommendations and the absolute order does not matter
[26]].

MRR: Another used metric is MRR (Mean Reciprocal
Rank), which is the average of reciprocal ranks of the
relevant items. And the reciprocal rank is set to zero if the
ground truth item is not in the list of recommendations.
MRR takes the rank of the items into consideration, which
is vital in settings where the order of recommendations
matters. We choose MRR instead of other ranking metrics,
because there is only one ground truth item for each
recommendation; no ratings or grade levels are available.
For significance testing we use a paired t-test with p < 0.05.
Significance testing is calculated against the results of the
PSJNet-1.

E. Implementation details

We set the item embedding size and GRU hidden state size
to 90. We use dropout [58] with drop ratio p = 0.8. These
settings are chosen with grid search on the validation set. For
the latent user size K, we try different settings, an analysis of
which can be found in Section We initialize the model
parameters randomly using the Xavier method [20]. We take
Adam as our optimizing algorithm. For the hyper-parameters
of the Adam optimizer, we set the learning rate o = 0.001.
We also apply gradient clipping [49] with range [—5, 5] during
training. To speed up the training and converge quickly, we
use mini-batch size 64. We test the model performance on the
validation set for every epoch. Both PSJNet-I and PSJNet-II
are implemented in Tensorflow and trained on a GeForce GTX
TitanX GPU.

V. EXPERIMENTAL RESULTS

To answer RQ1, RQ2 and RQ3, we report the results of
PSJNet compared with the baseline methods on the HAma-
zon and HVIDEO datasets, as shown in Table [[I] and
respectively. From the tables, we can see that both PSJNet-
I and PSJNet-II outperform all baselines in terms of MRR
and Recall for all reported values. Below, we discuss several
insights we obtain from Table |lI| and SO as to answer our
research questions.
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TABLE II: Experimental results (%) on the HAmazon dataset.

M-domain recommendation

B-domain recommendation

Methods MRR Recall MRR Recall

@5 @10 @20 @5 @10 @20 @5 @10 @20 @5 @10 @20
POP 036 044 049 073 132 202 014 019 022 042 078 122
Item-KNN 128 157 186 258 483 9.00 323 394 455 665 1211 2094
BPR-MF 290 300 306 390 465 550 088 092 096 123 150 215
VUI-KNN - - - - - - - - - - - -
NCF-MLP++ 13.68 1396 1421 1844 2058 2431 13.67 1390 1405 18.14 19.92 22.08
Conet 1464 1490 1512 1925 2125 2446 1585 1609 1628 2098 22.83 2556
GRU4REC 8201 82.08 8211 83.10 83.61 8406 81.34 8141 8144 8277 83.32 83.76
HGRU4REC  83.07 83.12 83.14 8424 8465 8491 8215 8226 8231 8346 8430 8491
PSINet-I 8391 8394 8395 8491 8513 8533 8493 8493 8493 8533 8536 8538
PSINet-II 84.017 84.047 84.057 8488 8510 8528 85107 85107 85117 8532 8537 85.38

Bold face indicates the best result in terms of the corresponding metric. Significant improvements over the best
baseline PSJNet-I results are marked with T (t-test, p < .05). To ensure a fair comparison, we re-implemented
GRUE4REC and HGRU4REC in Tensorflow, just like PSINet; the final results may be slightly different from
the Theano version released by the authors. To obtain the results of NCF-MLP++ and Conet, we run the code
released by Hu et al. [27]. VUI-KNN does not work on this dataset because it needs specific time in a day which

is not available on the HAmazon dataset.

TABLE III: Experimental results (%) on the HVIDEO dataset.

V-domain recommendation

E-domain recommendation

Methods MRR Recall MRR Recall

@5 @10 @20 @5 @10 @20 @5 @10 @20 @5 @10 @20
POP 266 307 327 50l 777 1049 171 196 224 221 361 658
Item-KNN 443 416 293 1048 1649 2393 211 239 290 301 577 1211
BPR-MF 1.21 131 1.36 1.88 256 338 134 152 1.64 274 405 583
VUI-KNN 344 353 287 1646 2485 3476 203 251 348 636 1155 2427
NCE-MLP++ 1625 1725 1790 26.10 33.61 43.04 392 457 514 736 1227 20.84
Conet 2125 22,61 2328 3294 43.07 5272  5.01 563 621 926 14.07 2271
GRU4REC 7827 7846 7827 80.15 81.63 83.04 1227 13.00 1370 1624 21.89 32.16
HGRU4REC  80.37 80.53 80.62 81.92 8321 8443 1447 1537 1611 1979 2672 37.52
PSINet-I 80.51 80.80 80.95 83.22 8534 8748 1463 1583 16.88 2041 2961 45.19
PSINet-11 81977 82207 82.327 84.327 86.117 87.757 16.637 17.627 18.467 22.127 29.64 42.20

The same conventions are used as in Table [[l

A. Overall performance on the SAC-SR task (RQI)

Both PSJNet variants significantly outperform all baselines
and achieve the best results on all metrics, including strong
baselines, i.e., GRU4REC and HGRU4REC. It is worth noting
that although recent studies on SR propose many neural net-
work models, we choose GRU4REC and HGRU4REC because
GRU4REC and HGRU4REC have very similar architectures
as PSINet. And to obtain a fair comparison, we re-implement
them within the same TensorFlow framework as we use for
PSJNet.

Specifically, on the HVIDEO dataset, the largest increase
of PSJNet-II over GRU4REC is 4.04% in terms of MRR @20,
and 4.48% in terms of Recall@10 on the V-domain. On the
E-domain, the increase is even larger with a 4.70% increase of
PSJNet-II over GRU4REC in terms of MRR@20 and 13.03%
increase of PSJNet-I over GRU4REC in terms of Recall@20.
And the increase over HGRU4REC on the V-domain is 1.69%
and 3.45% (at most) in terms of MRR and Recall, respectively.
On the E-domain, the increase is 2.29% and 7.67%, respec-
tively. We believe that those performance improvements are

due to the fact that PSJINet considers two important factors
(shared-account and cross-domain) with its parallel modeling
architecture and two main components for as part of its
end-to-end recommendation model, namely the “split” and
“join”. With these three modules, PSINet is able to model
user interests more accurately by leveraging complementary
information from both domains and improve recommendation
performance in both domains. We will analyze the effects of
the three modules in more depth in Section [VI-A]

B. Comparing two versions of PSJNet with different groups
of methods (RQ2)

Generally, PSINet-1I outperforms PSJINet-I on both datasets.
Specifically, PSINet-II outperforms PSINet-I in terms of most
metrics on both domains on the HVIDEO dataset, especially
for MRR@5 and Recall@5. Since both PSINet-I and PSJNet-
IT adopt the parallel modeling architecture, we can conclude
that the superiority of PSJNet-II over PSJINet-I mainly comes
from the separate modeling of “split” and “join”. We will
show this in more depth in Section [VI-A] However, the MRR
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values of PSJNet-II are the best but the Recall values are lower
than those of PSINet-I on the HAmazon. This is because we
simulate the shared-account characteristic by merging 2, 3 or
4 users, in which the users under the same account do not
have shared interests in most cases. Therefore, PSINet-II does
not have advantages over PSJNet-1 on the HAmazon dataset,
improving the recall value is difficult for PSJNet-II.

We can also see that RNN-based methods (e.g., GRU4REC,
HGRU4REC, and our PSJNet) perform much better than tradi-
tional methods, which demonstrates that RNN-based methods
are good at dealing with sequential information. They are able
to learn better dense representations of the data through non-
linear modeling, which we assume is able to provide a higher
level of abstraction. The shared account and cross-domain
baselines (e.g., VUI-KNN, NCF-MLP++ and Conet) perform
much worse than PSJNet. They also perform substantially
worse than HGRU4REC. This is because these shared account
and cross-domain baselines ignore sequential information;
VUI-KNN only considers the length of watching time, and
NCF-MLP++ and Conet do not use any time information.
Another reason is that NCF-MLP++ and Conet just map each
overlapped account in both domains to the same latent space
to calculate the user-item similarity. However, the existence of
shared accounts makes it difficult to find the same latent space
for different latent user roles under one account. Besides, VUI-
KNN is not a deep learning method and it simply distinguishes
user roles based on the fixed divided time periods in a day,
which means it assumes there is only one family member in
each time period. However, in the smart TV scenario, many
people usually watch programs together [74]. This situation
cannot be captured very well by VUI-KNN. And it requires the
specific time of user behavior in a day in order to distinguish
different user roles. That is why we cannot use it to obtain
results on the HAmazon dataset because there is no such
information. In contrast, PSINet can extract components of
each hidden user role according to their viewing records in
another domain with the “split” module. The results of BPR-
MF are lower than of POP, which indicates that most items
users watched are very popular, which is in line with the
phenomenon that people like to pursue popular items in the
video and book recommendation scenarios.

C. Contrasting the performance on different domains and
different datasets (RQ3)

The Recall values of PSINet on the HAmazon dataset are
comparable on the two domains while the Recall values on
the V-domain are higher than those on the E-domain on the
HVIDEO dataset. This is also true for the other methods.
We believe that this is because of data balance issues. On
the HAmazon dataset, the data is generally balanced on two
domains. Most accounts have an equal amount of data on both
domains. This means that the models can learn pretty well
with data from just one domain. Cross-domain information is
not that important: the increase of PSINet on the HAmazon
dataset is relatively small. However, the situation is different
on the HVIDEO dataset. Most accounts have much more data
on the V-domain due to its content diversity; because of this,
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models can better learn user’s viewing characteristics on the
V-domain. Therefore, on the HAmazon dataset, the space for
improvement on both domains is smaller than on the HVIDEO
dataset.

Additionally, comparing PSJNet with the best baseline,
HGRU4REC, we find that the largest increase on the E-domain
is larger than on the V-domain. The largest increase in MRR
is 1.69% on the V-domain and 2.29% on the E-domain. And
for the Recall values, the largest increase is 3.45% on the
V-domain, and 7.67% on the E-domain. This shows that the
space for potential improvements on the V-domain is smaller
than on the E-domain after considering shared account and
cross-domain information.

Also, the increases in MRR and Recall are different on the
two datasets. On the HAmazon dataset, there is no significant
difference for both MRR and Recall from @5 to @20. This
means that PSINet can already predict the ground truth item
within the top-5 for most cases. This is not true on the
HVIDEO dataset, especially on the E-domain. Specifically, the
largest increase is 2.25% for MRR from the top-5 to the top-
20, and 24.78% for Recall.

VI. ANALYSIS
A. Ablation study

In this subsection, we report on an ablation study to verify
how well the parallel modeling schema, with the “split” and
“join” units, improves the recommendation performance. The
results are shown in Table [[V] and [V} PSJNet (-PSJ) is the
PSJNet-I or PSINet-II without all three parts, which degen-
erates into GRU4REC except that PSINet (-PSJ) is jointly
trained on two domains. PSJNet-I (-SJ) is PSJNet-I without
“split-by-join” unit. PSINet-II (-S) is PSJNet-II without the
“split” unit and PSJNet-II (-J) is PSINet-II without the “join”
unit (i.e., replacing the “join” unit by summing up the outputs
from the “split” unit). We can draw the following conclusions
from the results.

First, almost all the best results are almost all from PSJNet-
I and PSJNet-II, which demonstrates the effectiveness of
combining all three parts. The three parts bring around 7%
(MRR) and 1%-3% (Recall) improvements on the M-domain
of HAmazon, and around 4% (MRR) and 4%—-10% (Recall) on
both domains of HVIDEO. Additionally, we see that PSINet
(-PSJ) gets the lowest performance amongst these methods,
while it still outperforms most of the baselines listed in
Table [ and In summary, then, combining information
from an auxiliary domain is useful. The MRR improvements
are larger on HAmazon while the Recall improvements are
larger on HVIDEO. This is due to the different characteristics
of different domains. Take the two domains in HVIDEO
for example. Almost all members have viewing records in
the V-domain. However, items on the E-domain are mostly
educational programs, so children take up a large proportion,
and their educational interests are relatively fixed. As a result,
the information extracted from the V-domain mostly belongs
to children, which is less helpful because we already have
enough data on the E-domain to learn such features in most
cases.
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TABLE IV: Analysis of the contribution of the parallel modeling, split unit and join unit on the HAmazon dataset.

M-domain recommendation

B-domain recommendation

Methods MRR Recall MRR Recall

@5 @10 @0 @5 @0 @0 @5 @0 @0 @5 @0 @20
PSINet (-PSJ) 7726 7744 7751 8222 8352 8439 81.69 8172 8173 8503 8527 8534
PSINet-1 (-SJ) 8330 8332 8333 8403 8420 8431 8404 8404 8404 8531 8535 8538
PSINet-I1 (-S) 8355 8359 83.60 84.61 8490 8514 8487 8488 8488 8526 8531 8535
PSINet-Il (-]) 8228 8235 8238 8402 8452 8492 8342 8345 8346 8479 8496 85.08
PSINet-I 8391 8394 8395 8491 8513 8533 8493 8493 8493 8533 8536 85.38
PSINet-1I 84.01 84.04 8405 8488 8510 8528 8510 85.10 8511 8532 8537 8538

PSJNet (-PSJ) is PSINet without parallel modeling, i.e., no cross-domain representations are used for recom-
mendations. Without parallel modeling, both PSJNet-I and PSJNet-II become the same PSJNet (-PSJ). PSJNet-I
(-SJ) is PSJNet-I without “split-by-join” unit. Because “split-by-join” is an indivisible unit, there is no PSJNet-I
(-S) or PSJNet-I (-J). PSINet-II (-S) is PSINet-II without the “split” unit and PSINet-II (-J) is PSINet-1I without

the “join” unit.

TABLE V: Analysis of the contribution of the parallel modeling, split unit and join unit on the HVIDEO dataset.

V-domain recommendation

E-domain recommendation

Methods MRR Recall MRR Recall

@5 @10 @0 @5 @0 @0 @5 @0 @0 @5 @0 @20
PSINet (-PSJ) 78.02 78.17 7828 80.13 8134 8293 12.69 1343 1405 1654 2229 3145
PSINet-I (-SJ) 7859 78.85 7897 8171 8358 8533 1635 17.04 17.59 2097 2629 34.44
PSINet-I1 (-S) 81.61 81.85 81.99 8393 8573 8771 1594 1701 17.84 2096 29.18 41.38
PSINet-Il (-]) 8176 8198 8212 8420 8580 8777 1643 1748 1846 21.92 2996 44.30
PSINet-I 80.51 80.80 80.95 8322 8534 8748 1463 1583 1688 2041 2961 45.19
PSINet-II 8197 8220 8232 8432 8611 8775 1663 17.62 1846 2212 29.64 4220

We use the same conventions as in Table

Second, generally parallel modeling brings the most im-
provements followed by the “split” and “join” units. Specifi-
cally, PSINet-I achieves around 5% (MRR) and 2% (Recall)
improvements on the M-domain of HAmazon with the parallel
modeling while further improvements with the “split-by-join”
unit are just around 0.6% (MRR) and 1% (Recall). Similar
results can be found on the B-domain of HAmazon and E-
domain of HVIDEO. We believe this is because the model
is already able to leverage information from both domains to
achieve recommendations with the parallel modeling schema.
It is further improved by taking other factors, e.g., shared-
account characteristics, into account in order to better leverage
the cross-domain information. This is why the “split” and
“join” units are able to further improve the results over the
parallel modeling schema. An exception is that the “split”
and “join” units achieve more improvements than the parallel
modeling on the V-domain of HVIDEO for PSJNet-I. We
think the reason is that PSJNet-I (-SJ) cannot effectively use
the cross-domain information without the “split-by-join” unit,
while PSINet-II (-S) is better because the function of “split”
unit is replaced by the “join” unit to some extent. The same is
true for PSJINet-II (-J). This could be verified by the fact that
both PSJNet-I and PSJNet-II get big improvements with both
units than with neither, but the improvements are smaller than
with one unit for PSJNet-II.

Third, the “split” unit is generally more effective than the
“join” unit for PSINet-II as we find that the gap between
PSJNet-II and PSJNet-II (-J) is smaller than between PSJNet-II
and PSJNet-II (-S). On the one hand, this shows that the “split”
unit plays a more important role which addresses the challenge
raised by shared accounts, i.e., filtering out information of
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some user roles that might be useful for another domain from
the mixed user behaviors. On the other hand, the results also
show that the current “join” unit is not effective enough as
directly summing up the outputs from the “split” unit also
achieves competitive performance, and/or the improvement
space of the “join” unit is limited.

B. Influence of the hyperparameter K

Both PSJNet-I and PSJNet-II introduce a hyperparameter
K in the “split” unit which corresponds to the number of
latent user roles. We carry out experiments to study how
setting K affects the recommendation performance of PSJNet
on both datasets, and whether the best K is the same under
all situations and accords with reality. Taking into account
common sizes of families, we consider K = 1,...,5, and
compare different values of K while keeping other settings
unchanged. The results are shown in Table [VI] and

First, we see that the best values in terms of MRR and
Recall are achieved when K = 4,5 for PSJNet-Iand K = 1,3
for PSJNet-II. We believe that this is because PSJNet-1I models
different user roles separately. Similar users may have the
similar user role, thus PSJNet-II performs better when the
number of k is lower, which demonstrates the different trends
of PSJNet-I and PSJNet-II. This is consistent with the size
of modern families on HVIDEO and the simulation settings
on HAmazon. For PSJNet-I, the lowest MRR and Recall
values are achieved when K = 1. But for PSJNet-II, the gap
between the best and worst performances is much smaller,
which indicates that PSJNet-II is less sensitive to K than
PSJNet-1.
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TABLE VI: Analysis of the hyperparameter K on the HAmazon dataset.

M-domain recommendation

B-domain recommendation

K values MRR Recall MRR Recall
@5 @10 @20 @5 @10 @20 @5 @10 @20 @5 @10 @20
PSJNet-1
1 8245 8252 8254 8423 84.69 85.07 84.72 84773 84.73 8529 8535 85.38
2 83.35 8340 83.41 84.66 85.02 85.18 84.74 8475 84.75 8530 85.25 8537
3 83.65 83.68 83.70 84.81 85.08 8530 84.89 84.89 84.89 8532 8535 85.38
4 8391 8394 8395 8491 8513 8533 8493 8493 8493 8533 8540 8538
5 83.73 8376 83.78 84.82 85.08 8532 8494 8494 8494 8533 8538 8539
PSJNet-IT
1 8433 8436 8437 85.01 8519 8532 8509 8510 85.10 8532 8536 85.39
2 84.08 84.12 84.13 8492 85.15 8530 85.13 85.13 85.13 8533 8536 8540
3 84.03 84.06 84.07 8492 8512 8529 8516 85.16 8516 8533 8535 85.37
4 84.01 84.04 84.05 8488 85.10 8528 85.10 85.10 85.11 8532 85.37 85.38
5 82.34 8242 8244 84.06 84.63 8499 84.67 84.68 84.69 8523 8530 8537
TABLE VII: Analysis of the hyperparameter K on the HVIDEO dataset.
V-domain recommendation E-domain recommendation
K values MRR Recall MRR Recall
@5 @10 @20 @5 @10 @20 @5 @10 @20 @5 @10 @20
PSJNet-1
1 80.19 80.50 80.66 82.85 85.15 87.40 13.92 15.06 16.10 19.76  28.74 4398
2 80.48 80.75 8091 83.08 85.06 87.31 14.29 15.47 16.54 19.83 2896 44.77
3 80.53 80.79 8093 83.34 85.31 87.31 14.45 15.54 16.64 20.23 28.61 44.64
4 80.51 80.80 80.95 8322 8534 8748 14.63 1583 16.88 2041 29.61 45.19
5 80.60 80.86 81.02 8325 85.19 8747 14.59 15.71 16.75 20.42 2897 4438
PSJNet-II
1 8193 82.18 8232 8433 86.17 88.21 16.17 17.18 18.13 21.42 2923 43.29
2 81.80 82.04 82.17 8426 86.05 87.90 16.62 17.67 1855 21.60 29.60 42.63
3 81.86 82.08 8220 84.14 85.80 87.53 16,90 1794 18.77 2242 30.36 42.51
4 81.97 8220 8232 8432 86.11 87.75 16.63 17.62 1846 22.12 29.64 42.20
5 81.78 82.02 82.14 8399 8567 87.68 16.78 17.84 18.66 22.01 30.07 42.13

Second, the distribution of the best results of PSJNet-I on
two different datasets is consistent, i.e., the best K values are
basically the same, and so is PSJNet-Il. But PSJNet-I and
PSJNet-II have different best results on the same dataset. On
the one hand, this demonstrates the performance stability of
both PSJNet-I and PSINet-II. On the other hand, this is also
a clue that both models identify K as the potential user roles
under each account, which verifies our assumption.

Third, although K can affect the recommendation perfor-
mance, the influence is limited. As we can see that the largest
gaps between the best and worst performances are 1.94%
(MRR) and 0.56% (Recall) on HAmazon, 0.78% (MRR) and
1.21% (Recall) on HVIDEO. This is because even if K =1, 2,
our models still consider the information of all members
except that some members are modeled as a single latent user
role.

VII. CONCLUSION AND FUTURE WORK

We have studied the task of SAC-SR and proposed an exten-
sion to our previous work [42]]. We have generalized over the
previous proposal (7-Net) with a more general framework that
allows us to come up with a better performing model. Under
this framework, we have reformulated 7-Net as PSJNet-I and
proposed a new instantiation, PSJNet-1I, with different split-
join schemes. Experimental results demonstrate that PSJNet
outperforms state-of-the-art methods in terms of MRR and
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Recall. We have also conducted extensive analysis experiments
to show the effectiveness of the two PSJNet variants.

A limitation of PSJNet is that it works better only when
we have shared information in two domains that are comple-
mentary to each other. Otherwise, PSINet only achieves com-
parable performance with state-of-the-art methods for shared
account and/or cross-domain recommendations.

As to future work, PSJNet can be advanced in several
directions. First, we assume the same number of latent user
roles under each account in this study. This can be further
improved by automatically detecting the number of user roles,
e.g., adaptively setting the number of family members in smart
TV scenarios. Second, we have focused on the architecture of
PSJNet and have not explored alternative choices for some
of its main ingredients (e.g., encoders, decoders and loss
functions). It would be interesting to see whether alternative
choices will further improve the performance of PSINet. Third,
it is interesting to see whether it will further improve the
performance by explicitly modeling the number of users under
the same account. Unfortunately, we cannot find any datasets
that exhibit such characteristics, so we leave this for future
work. Fourth, explainability is seen as an important challenge
for deep learning at present [61, 60]. It is interesting to
see how effective explanations can be produced for different
stakeholders in the complex domain of SAC-SR [40]. Fifth,
we consider two domains in this work. However, we think
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it is completely practicable to extend this work to multiple
domains by adjusting the “split” and “join” units slightly, e.g.,
one “split” for each pair of domains.

ACKNOWLEDGEMENTS

This work is supported by the Natural Science Founda-
tion of China (62102234, 61972234, 61902219, 62072279),
the Natural Science Foundation of Shandong Province
(ZR2021QF129, ZR202102230192), the Key Scientific and
Technological Innovation Program of Shandong Province
(2019JZ272Y010129), the National Key R&D Program of
China with grant No. 2020YFB1406704, the Hybrid Intel-
ligence Center, a 10-year program funded by the Dutch
Ministry of Education, Culture and Science through the
Netherlands Organisation for Scientific Research, |https://
hybrid-intelligence-centre.nl, the Tencent WeChat Rhino-Bird
Focused Research Program (JR-WXG-2021411), and the Fun-
damental Research Funds of Shandong University. All content
represents the opinion of the authors, which is not necessar-
ily shared or endorsed by their respective employers and/or
Sponsors.

CODE AND DATA

The code used to run the experiments in this paper is avail-
able at https://bitbucket.org/Catherine_Ma/sequentialrec/src/
master/tois-PsiNet/code/. The datasets released in this paper
are shared at https://bitbucket.org/Catherine_Ma/sequentialrec/
src/master/tois-PsiNet/datasets/.
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