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Abstract

In this paper we describe our TRECVID 2009 video re-
trieval experiments. The MediaMill team participated in
three tasks: concept detection, automatic search, and inter-
active search. Starting point for the MediaMill concept de-
tection approach is our top-performing bag-of-words system
of last year, which uses multiple color descriptors, codebooks
with soft-assignment, and kernel-based supervised learning.
We improve upon this baseline system by exploring two novel
research directions. Firstly, we study a multi-modal exten-
sion by the inclusion of 20 audio concepts and fusing using
two novel multi-kernel supervised learning methods. Sec-
ondly, with the help of recently proposed algorithmic refine-
ments of bag-of-words, a bag-of-words GPU implementation,
and compute clusters, we scale-up the amount of visual in-
formation analyzed by an order of magnitude, to a total of
1,000,000 i-frames. QOur experiments evaluate the merit of
these new components, ultimately leading to 64 robust con-
cept detectors for video retrieval. For retrieval, a robust but
limited set of concept detectors necessitates the need to rely
on as many auxiliary information channels as possible. For
automatic search we therefore explore how we can learn to
rank various information channels simultaneously to maxi-
mize video search results for a given topic. To improve the
video retrieval results further, our interactive search experi-
ments investigate the roles of visualizing preview results for
a certain browse-dimension and relevance feedback mecha-
nisms that learn to solve complex search topics by analy-
sis from user browsing behavior. The 2009 edition of the
TRECVID benchmark has again been a fruitful participa-
tion for the MediaMill team, resulting in the top ranking for
both concept detection and interactive search.

1 Introduction

Robust video retrieval is highly relevant in a world that is
adapting swiftly to visual communication. Online services
like YouTube and Truveo show that video is no longer the
domain of broadcast television only. Video has become the

medium of choice for many people communicating via In-
ternet. Most commercial video search engines provide ac-
cess to video based on text, as this is still the easiest way
for a user to describe an information need. The indices of
these search engines are based on the filename, surrounding
text, social tagging, closed captions, or a speech transcript.
This results in disappointing retrieval performance when
the visual content is not mentioned, or properly reflected in
the associated text. In addition, when the videos originate
from non-English speaking countries, such as China, or the
Netherlands, querying the content becomes much harder as
robust automatic speech recognition results and their accu-
rate machine translations are difficult to achieve.

To cater for robust video retrieval, the promising solutions
from literature are in majority concept-based [33], where de-
tectors are related to objects, like an airplane flying, scenes,
like a classroom, and people, like female human face closeup.
Any one of those brings an understanding of the current
content. The elements in such a lexicon of concept detec-
tors offer users a semantic entry to video by allowing them
to query on presence or absence of visual content elements.
Last year we presented the MediaMill 2008 semantic video
search engine [31], which aimed for more robustness of con-
cept detectors in the lexicon rather than extending the num-
ber of detectors. Our TRECVID 2009 experiments continue
this emphasis on robustness for a relatively small set of con-
cept detectors. A robust but limited set of concept detectors
necessitates the need to rely on as many multimedia infor-
mation channels as possible for retrieval. To that end, we
explore how we can learn to rank various information chan-
nels simultaneously to maximize video search results for a
given topic. To improve the retrieval results further, we ex-
tend our interactive browsers by supplementing them with
visualizations for swift inspection, and a relevance feedback
mechanism based on passive sampling of user browsing be-
havior. Taken together, the MediaMill 2009 semantic video
search engine provides users with robust semantic access to
video archives.

The remainder of the paper is organized as follows. We
first define our semantic concept detection scheme in Sec-
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Figure 2: MediaMill TRECVID 2009 concept detection scheme, using the conventions of Figure 1. The scheme serves as the blueprint

for the organization of Section 2.
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Figure 1: Data flow conventions as used in Section 2. Different
arrows indicate difference in data flows.

tion 2. Then we highlight our video retrieval framework for
automatic search in Section 3. We present the browser in-
novations of our semantic video search engine in Section 4.
We wrap up in Section 5, where we highlight the most im-
portant lessons learned.

2 Detecting Concepts in Video

We perceive concept detection in video as a combined mul-
timedia analysis and machine learning problem. Given an
n-dimensional multimedia feature vector x;, part of a shot
i [25], the aim is to obtain a measure, which indicates
whether semantic concept w; is present in shot i. We may
choose from various audiovisual feature extraction meth-
ods to obtain x;, and from a variety of supervised machine
learning approaches to learn the relation between w; and
x;. The supervised machine learning process is composed of
two phases: training and testing. In the first phase, the op-
timal configuration of features is learned from the training

data. In the second phase, the classifier assigns a probabil-
ity p(wj|z;) to each input feature vector for each semantic
concept.

Our TRECVID 2009 concept detection approach builds
on previous editions of the MediaMill semantic video search
engine [31, 35], which draws inspiration from the bag-
of-words approach propagated by Schmid and her asso-
ciates [18,23,50], as well as recent advances in keypoint-
based color features [43] and codebook representations
[44, 46]. We improve upon this baseline system by ex-
ploring two novel research directions. Firstly, we study a
multi-modal extension by the inclusion of 20 audio con-
cepts [3,27,39] and fusing using two novel multi-kernel
supervised learning methods [37,48]. Secondly, with the
help of recently proposed algorithmic refinements of bag-of-
words [41], a bag-of-words GPU implementation [42], and
compute clusters, we scale-up the amount of visual infor-
mation analyzed by an order of magnitude, to a total of
1,000,000 i-frames. We detail our generic concept detec-
tion scheme by presenting a component-wise decomposi-
tion. The components exploit a common architecture, with
a standardized input-output model, to allow for semantic
integration. The graphical conventions to describe the sys-
tem architecture are indicated in Figure 1. Based on these
conventions we follow the video data as they flow through
the computational process, as summarized in the general
scheme of our TRECVID 2009 concept detection approach
in Figure 2, and detailed per component next.

2.1 Spatio-Temporal Sampling

The visual appearance of a semantic concept in video has
a strong dependency on the spatio-temporal viewpoint un-
der which it is recorded. Salient point methods [40] in-
troduce robustness against viewpoint changes by selecting
points, which can be recovered under different perspectives.
Another solution is to simply use many points, which is
achieved by dense sampling. Appearance variations caused
by temporal effects are addressed by analyzing video beyond
the key frame level. By taking more frames into account
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Figure 3: General scheme for spatio-temporal sampling of image re-
gions, including temporal multi-frame selection, Harris-Laplace and
dense point selection, and a spatial pyramid. Detail of Figure 2,
using the conventions of Figure 1.

during analysis, it becomes possible to recognize concepts
that are visible during the shot, but not necessarily in a sin-
gle key frame. We summarize our spatio-temporal sampling
approach in Figure 3.

Temporal multi-frame selection We demonstrated in [31,
34] that a concept detection method that considers more
video content obtains higher performance over key frame-
based methods. We attribute this to the fact that the con-
tent of a shot changes due to object motion, camera motion,
and imperfect shot segmentation results. Therefore, we em-
ploy a multi-frame sampling strategy. To be precise, we
sample up to 10 additional i-frames distributed around the
(middle) key frame of each shot.

Harris-Laplace point detector In order to determine
salient points, Harris-Laplace relies on a Harris corner de-
tector. By applying it on multiple scales, it is possible to
select the characteristic scale of a local corner using the
Laplacian operator [40]. Hence, for each corner, the Harris-
Laplace detector selects a scale-invariant point if the local
image structure under a Laplacian operator has a stable
maximum.

Dense point detector For concepts with many homoge-
nous areas, like scenes, corners are often rare. Hence, for
these concepts relying on a Harris-Laplace detector can be
suboptimal. To counter the shortcoming of Harris-Laplace,
random and dense sampling strategies have been proposed
[9,16]. We employ dense sampling, which samples an image
grid in a uniform fashion using a fixed pixel interval between
regions. In our experiments we use an interval distance of
6 pixels and sample at multiple scales.

Spatial pyramid weighting Both Harris-Laplace and dense
sampling give an equal weight to all keypoints, irrespective
of their spatial location in the image frame. In order to
overcome this limitation, Lazebnik et al. [18] suggest to
repeatedly sample fixed subregions of an image, e.g. 1x1,
2x2, 4x4, etc., and to aggregate the different resolutions
into a so called spatial pyramid, which allows for region-
specific weighting. Since every region is an image in itself,
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Figure 4: General scheme of the visual feature extraction methods
used in our TRECVID 2008 experiments.

the spatial pyramid can be used in combination with both
the Harris-Laplace point detector and dense point sampling.
Similar to [23,31] we use a spatial pyramid of 1x1, 2x2, and
1x3 regions in our experiments.

2.2 Visual Feature Extraction

In the previous section, we addressed the dependency of the
visual appearance of semantic concepts in a video on the
spatio-temporal viewpoint under which they are recorded.
However, the lighting conditions during filming also play an
important role. Burghouts and Geusebroek [4] analyzed the
properties of color features under classes of illumination and
viewing changes, such as viewpoint changes, light intensity
changes, light direction changes, and light color changes.
Van de Sande et al. [43] analyzed the properties of color
features under classes of illumination changes within the
diagonal model of illumination change, and specifically for
data sets as considered within TRECVID. To speed up the
feature extraction process we adopt the algorithmic refine-
ments of dense sampled bag-of-words proposed by Uijlings
et al. We present an overview of the visual features used in
Figure 4.

SIFT The SIFT feature proposed by Lowe [22] describes
the local shape of a region using edge orientation his-
tograms. The gradient of an image is shift-invariant: taking
the derivative cancels out offsets [43]. Under light intensity
changes, i.e. a scaling of the intensity channel, the gradient
direction and the relative gradient magnitude remain the
same. Because the SIFT feature is normalized, the gradi-
ent magnitude changes have no effect on the final feature.
To compute SIFT features, we use the version described by
Lowe [22].



OpponentSIFT  OpponentSIFT describes all the channels
in the opponent color space using SIFT features. The infor-
mation in the O3 channel is equal to the intensity informa-
tion, while the other channels describe the color informa-
tion in the image. The feature normalization, as effective in
SIFT, cancels out any local changes in light intensity.

C-SIFT In the opponent color space, the O; and Os chan-
nels still contain some intensity information. To add in-
variance to shadow and shading effects, we have proposed
the C-invariant [11] which eliminates the remaining inten-
sity information from these channels. The C-SIFT feature
uses the C invariant, which can be intuitively seen as the
gradient (or derivative) for the normalized opponent color
space O1/1 and O2/I. The I intensity channel remains
unchanged. C-SIFT is known to be scale-invariant with re-
spect to light intensity.

rgSIFT For rgSIFT, features are added for the r and
g chromaticity components of the normalized RGB color
model, which is already scale-invariant [43]. In addition
to the r and g channel, this feature also includes intensity.
However, the color part of the feature is not invariant to
changes in illumination color.

RGB-SIFT For the RGB-SIFT, the SIFT feature is com-
puted for each RGB channel independently. Due to the
normalizations performed within SIFT, it is equal to trans-
formed color SIFT [43]. The feature is scale-invariant, shift-
invariant, and invariant to light color changes and shift.

Fast Dense SIFT/SURF We accelerate the calculation of
densely sampled SIFT [22] and SURF [2] in two ways, de-
scribed in detail in [41]. First of all we observe that both
descriptors are spatial. Both are constructed of 4 x 4 sub-
regions which are in turn described by the summation of
pixel-wise responses over an area. For SIFT the pixel-wise
responses are oriented gradient responses, for SURF these
are Haar-wavelet responses. By reusing subregions in de-
scriptor creation, we obtain a speed-improvement of a factor
16. To enable this for SIFT we have to make a slight ad-
justment by removing the Gaussian Weighting around the
origin. Experiments showed that this does not influence the
final classification accuracy. For the second speed improve-
ment we devised a fast way to do summations of pixel-wise
responses over a subregion. Instead of a nested for-loop,
we do the summations over a subregion using two matrix
multiplications [41]. The use of existing, highly optimized
matrix multiplication libraries give us a speed-improvement
of a factor 2 over a naive C++ implementation.

We compute the SIFT [22] and ColorSIFT [43] features
around salient points obtained from the Harris-Laplace de-
tector and dense sampling. In addition, we compute SURF
[2] features around fast dense sampled points [41]. For all
visual features we employ a spatial pyramid of 1x1, 2x2, and
1x3 regions.
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Figure 5: General scheme for transforming visual features into a
codebook, where we distinguish between codebook construction us-
ing clustering and codeword assignment using soft and hard variants.
We combine various codeword frequency distributions into a kernel
library.
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2.3 Codebook Transform

To avoid using all visual features in an image, while incor-
porating translation invariance and a robustness to noise,
we follow the well known codebook approach, see e.g.
[16,19,29,44,46]. First, we assign visual features to dis-
crete codewords predefined in a codebook. Then, we use
the frequency distribution of the codewords as a compact
feature vector representing an image frame. By using a vec-
torized GPU implementation [42], our codebook transform
process is an order of magnitude faster for the most ex-
pensive feature compared to the standard implementation.
Two important variables in the codebook representation are
codebook construction and codeword assignment. Based on
last year’s experiments we employ codebook construction
using k-means clustering in combination with soft codeword
assignment and a maximum of 4000 codewords, following
the scheme in Figure 5.

Soft-assignment Given a codebook of codewords, ob-
tained from clustering, the traditional codebook approach
describes each feature by the single best representative code-
word in the codebook, i.e. hard-assignment. However, in a
recent paper [46], we show that the traditional codebook ap-
proach may be improved by using soft-assignment through
kernel codebooks. A kernel codebook uses a kernel function
to smooth the hard-assignment of image features to code-
words. Out of the various forms of kernel-codebooks, we
selected codeword uncertainty based on its empirical perfor-
mance [46].

Kernel library Each of the possible sampling methods
from Section 2.1 coupled with each visual feature extrac-
tion method from Section 2.2, a clustering method, and
an assignment approach results in a separate visual code-
book. An example is a codebook based on dense sampling
of rgSIFT features in combination with k-means cluster-
ing and soft-assignment. We collect all possible codebook
combinations in a (visual) kernel library. By using a GPU
implementation [42], this kernel library can be computed



efficiently. Naturally, the codebooks can be combined us-
ing various configurations. Depending on the kernel-based
learning scheme used, we simply employ equal weights in
our experiments or learn the optimal weight using cross-
validation.

2.4 Audio Concept Detection

The work on extracting audio-related concepts from the au-
diovisual signal was done by INESC-ID, emphasizing in par-
ticular audio segmentation and audio event detection meth-
ods [3,27,39].

Audio segmentation The audio segmentation module in-
cludes six separate components: one for Acoustic Change
Detection, four components for classification (Speech/Non-
speech, Background, Gender and Speaker Identification) and
one for Speaker Clustering. These components are mostly
model-based, making extensive use of feed-forward fully
connected Multi-Layer Perceptrons trained with the back-
propagation algorithm. All the classifiers share a similar
architecture: a Multi-Layer Perceptron with 9 input con-
text frames of 26 coefficients (12th order Perceptual Lin-
ear Prediction plus energy and deltas), two hidden layers
with 250 sigmoidal units each and the appropriate number
of softmax output units (one for each class), which can be
viewed as giving a probabilistic estimate of the input frame
belonging to that class. The Speaker Clustering component
tries to group all segments uttered by the same speaker.
The first frames of a new segment are compared with all
the same gender clusters found so far. A new speech seg-
ment is merged with the cluster with the lowest distance,
provided it falls below a predefined threshold. The dis-
tance measure for merging clusters is a modified version of
the Bayesian Information Criterion. The 4 audio concepts
female-voice, child-voice, music, and dialogue could poten-
tially be used for detecting the TRECVID video concepts
Infant, Classroom, Female-close-up, Two-People, People-
Dancing, Person-Playing-Music-Instrument, and Singing.

Audio event detection The audio event detection mod-
ule currently includes more than 70 one-against-all seman-
tic concept classifiers. For each audio event, world and
concept examples were chosen from a corpus of sound ef-
fects, in order to train models, using a radial basis func-
tion support vector machine classifier. Audio features were
retrieved using 500 ms window, with 50% overlap: mel-
frequency cepstral coefficients and derivatives, zero crossing
rate, brightness, and bandwidth. The latter are, respec-
tively, the first and second order statistics of the spectro-
gram, and they roughly measure the timbre quality. The F-
measure results on a separate test corpus of isolated sound
effects were generally very good (above 0.8), but the results
in real life TRECVID data show the degradation that can
be expected from the fact that audio events almost never
occur separately, being corrupted by music, speech, back-
ground noise and/or other audio events. More sophisticated

support vector machine detectors have been built, using
new features, different window sizes, different ways of incor-
porating context, and dimensionality reduction techniques.
The time constraints of this evaluation campaign, how-
ever, motivated the use of the described baseline approach.
The list of 16 audio event adopted in TRECVID includes:
Child-laughter, Baby-crying, Airplane-propeller, Airplane-
jet, Sirens, Traffic-noise, Car-engine, Bus-engine, Dog-
barking, Telephone-digital, Telephone-analog, Door-open-
close, Applause, Bite-eat, Water and Wind.

2.5 Kernel-based Learning

Learning robust concept detectors from multimedia features
is typically achieved by kernel-based learning methods. Sim-
ilar to previous years, we rely predominantly on the support
vector machine framework [47] for supervised learning of
semantic concepts. Here we use the LIBSVM implementa-
tion [6] with probabilistic output [20,26]. In order to handle
imbalance in the number of positive versus negative train-
ing examples, we fix the weights of the positive and negative
class by estimation from the class priors on training data.
While the radial basis kernel function usually perform better
than other kernels, it was recently shown by Zhang et al. [50]
that in a codebook-approach to concept detection the earth
movers distance [28] and x? kernel are to be preferred. In
general, we obtain good parameter settings for a support
vector machine, by using an iterative search on both C' and
kernel function K (-) on cross validation data [45]. In addi-
tion to the support vector machine framework, we also study
the suitability of two novel kernel-based learning methods
for concept detection: Kernel Discriminant Analysis using
Spectral Regression and Non-Sparse Multiple Kernel Fisher
Discriminant Analysis.

Kernel Discriminant Analysis using Spectral Regression
Linear Discriminant Analysis [10], which is one of the most
widely used statistical methods, has been proven success-
ful in many classification problems. Recently, Spectral Re-
gression combined with Kernel Discriminant Analysis (SR-
KDA) introduced by Cai et al [5] has been successful in
many classification tasks such as multi-class face, text and
spoken letter recognition. The method combines the spec-
tral graph analysis and regression for an efficient large ma-
trix decomposition in Kernel Discriminant Analysis. It has
been demonstrated in [5] that it can achieve an order of
magnitude speedup over the eigen-decomposition while pro-
ducing smaller error rate compared to state-of-the-art clas-
sifiers. In [37], we have shown the effectiveness of SR-KDA
for large scale concept detection problem. In addition to su-
perior classification results when compared to existing ap-
proaches, it can provide an order of magnitude speed-up
over support vector machine. The main computationally
intensive operation is Cholesky decomposition, which is ac-
tually independent of the number of labels. For more details
please refer to [37].
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Figure 6: General scheme for kernel-based learning using support
vector machines and episode-constrained cross-validation for param-
eters selection.

Non-Sparse Multiple Kernel Fisher Discriminant Analy-
sis Kernel Fisher discriminant analysis has proven a very
successful classification method in various applications. In
many real-world problems, multiple kernels capturing differ-
ent “views” of the problem are available. In such a situation,
one naturally wants to use an “optimal” combination of the
kernels. In [49], the authors proposed multiple kernel Fisher
discriminant analysis (MK-FDA), where the key idea is to
learn the optimal linear combination of kernels by maximiz-
ing the ratio of the projected between-class and within-class
scatters with respect to the kernel weights. In [49], the ker-
nel weights are regularized with an ¢; norm, which enforces
sparsity but may lead to a loss of information. To remedy
this, we propose to use an ¢ norm regularization instead.
We formulate fo MK-FDA as a semi-infinite program, which
can be solved efficiently. Experiments show that f5 regular-
ization tends to produce non-sparse solutions. As a result,
less information is lost during the kernel learning process,
and the performance is improved over £; MK-FDA as well
as the uniform weighting scheme. For more details on non-
sparse MK-FDA please refer to [48].

Episode-constrained cross-validation From all parame-
ters g we select the combination that yields the best av-
erage precision performance, yielding ¢*. We measure
performance of all parameter combinations and select the
combination that yields the best performance. We use a
3-fold cross validation to prevent over-fitting of parame-
ters. Rather than using regular cross-validation for sup-
port vector machine parameter optimization, we employ an
episode-constrained cross-validation method, as this method
is known to yield a less biased estimate of classifier perfor-
mance [45].

The result of the parameter search over ¢ is the improved
model p(w;j|z;, ¢*), contracted to p*(w;|z;), which we use to
fuse and to rank concept detection results.

2.6 Submitted Concept Detection Results

We investigated the contribution of each component dis-
cussed in Sections 2.1-2.5, emphasizing in particular the
role of audio, multi-kernel learning, and scalability by pro-
cessing 1,000,000 i-frames. In our experimental setup we
used the TRECVID 2007 development set as a training set,
and the TRECVID 2007 test set as a validation set. The
ground truth used for learning and evaluation are a combi-
nation of the common annotation effort [1] and the ground
truth provided by ICT-CAS [38]. An overview of our sub-
mitted concept detection runs is depicted in Figure 7, and
detailed next.

Run: Joe The Joe run is our single key frame baseline. It
applies the standard sequential forward selection feature se-
lection method on all (visual) kernel libraries computed over
key frames only. It obtained a mean infAP of 0.175. This
run tends to lag behind our other (multi-frame) runs, espe-
cially for dynamic concepts such as airplane flying, people
dancing, person riding bicycle, person playing soccer, and
person eating.

Run: William The William run is a cooperation between
the University of Amsterdam and the University of Surrey.
In this run, each (visual) kernel is trained using SR-KDA
with regularization parameter ¢ [37] is tuned for each con-
cept using the validation set. Further, instead of using equal
weights for each classifier during fusion, weights for individ-
ual kernels are learnt for each concept using the classifica-
tion accuracy i.e. average precision on the validation set.
The weighted output from each classifier is then combined
using SUM rule [17]. This run has achieved a mean in-
fAP of 0.190. For some concepts (cityscape, people dancing,
boat/ship), results are comparable to our top run methods
despite the fact that only 1 key frame is processed for every
shot in this run while multi-frames per shot are processed
in our top runs.

Run: Jack The Jack run is a cooperation between the
University of Amsterdam, INESC-ID, and the University
of Surrey. In addition to the visual kernels, we also gener-
ated an audio kernel using INESC’s audio concept detectors.
More specifically, the 20 output scores of the 20 audio con-
cept detectors were used as 20 features, and an RBF kernel
was build from these features. This audio kernel together
with the visual kernels were then used as input to Non-
Sparse Multiple Kernel Fisher Discriminant Analysis (MK-
FDA) [48], where the optimal kernel weights were learned
for each semantic concept. Experiments on the validation
set show that by introducing the audio kernel to the kernel
set, the mean average precision is improved by 0.01. On the
TRECVID 2009 test set this run obtains a mean infAP of
0.193. The concepts that benefit most from the audio kernel
are: person playing musical instrument, female human face
closeup, infant, singing, and airplane flying.
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Figure 7: Comparison of MediaMill video concept detection experiments with present-day concept detection approaches in the TRECVID

2009 High-level Feature Task benchmark.

Run: Averell The Averell run is based on a (visual) kernel
library based on SIFT, OpponentSIFT, C-SIFT, and RGB-
SIFT only, which have been applied spatio-temporally with
up to 5 additional i-frames per shot in combination with
a M AX rule combination. This run achieved a mean in-
fAP of 0.219, with the overall highest infAP for 3 concepts:
doorway, person playing soccer, and person eating.

Run: Rantanplan The Rantanplan run selects from all
the (visual) kernel libraries, all of which have been applied
spatio-temporally with up to 10 additional i-frames per shot
in combination with AV G and M AX rule combination, the
best performer per concept. This run achieved a mean in-
fAP of 0.224, with the overall highest infAP for 4 concepts:
traffic intersection, airplane flying, demonstration/protest,
and female human face closeup.

Run: Luke The Luke run extends upon the Rantanplan
run, by applying the standard sequential forward selection
feature selection method on all (visual) kernel libraries com-
puted over 1,000,000 i-frames. This run achieved the over-
all highest mean infAP in the TRECVID2009 benchmark
(0.228), with the overall highest infAP for 4 concepts: class-
room, nighttime, hand, and female human face closeup.

2.7 64 Robust Concept Detectors

Similar to our TRECVID 2008 participation, we again aim
for a small but robust lexicon of concept detectors this
year. To that end we have employed our Averell run
setting on the concept sets of TRECVID 2008 (20 con-
cepts), TRECVID2007 (36 concepts) and an additional

black/white detector. All 64 detectors have been donated
to the TRECVID community and are included in the 2009
MediaMill semantic video search engine for the retrieval ex-
periments.

3 Automatic Video Retrieval

The MediaMill team continued its effort on automatic
search, this year submitting 8 automatic runs. The overall
architecture of the search system was based on 3 fundamen-
tal search types — transcript-based retrieval, detector-based
retrieval, and feature-based retrieval — each of which was
submitted individually as a run. In addition we submit-
ted 5 combination runs, consisting of query-dependent and
query-independent approaches to video automatic search.

3.1 Baseline Retrieval Approaches

Our baselines correspond to the three information sources
of: transcripts, detectors, and low-level features. These are
implemented as follows:

Pippin: Transcript-based search Our transcript-based
search approach is similar to that of last year, incorpo-
rating both the original Dutch automatic speech recogni-
tion transcripts donated by the University of Twente [12],
and the automatic machine translation provided by Queen
Mary, University of London. In addition we included ad-
ditional Dutch speech recognition transcripts donated by
LIMSI [8]. At retrieval time, each topic statement was auto-
matically translated into Dutch using the online translation



tool http://translate.google.com, allowing a search on
the machine-translated transcripts with the original (En-
glish) topic text, and a search on transcripts from auto-
matic speech recognition using the translated Dutch topic
text. The two resulting ranked lists were then combined
to form a single list of transcript-based search results. To
compensate for the temporal mismatch between the audio
and the visual channels, we used our temporal redundancy
approach [13]. To summarize this approach, the transcript
of each shot is expanded with the transcripts from tempo-
rally adjacent shots, where the words of the transcripts are
weighted according to their distance from the central shot.

Sam: Detector-based search The detector-based search,
using our lexicon of 64 robust concept detectors, consisted
of two main steps: 1) concept selection and 2) detector com-
bination. We evaluated a number of concept selection ap-
proaches using a benchmark set of query-to-concept map-
pings, adapted from [14] to the new lexicon. The final
concept selection method used for automatic search was to
average the score for a concept detector on the provided
topic video examples, and select concepts that scored over
a threshold. In addition, any detectors with high informa-
tion content, that were also WordNet synonyms of terms
in the topic text, were also selected. As for the combina-
tion of multiple selected concepts for a topic, this was done
by simply taking the product of the raw selected detector
scores for each shot as its retrieval score. No extra nor-
malization or parametrization was done, nor were concepts
weighted according to their computed score for the exam-
ples. Rather, we used the triangulation of concept detector
scores to provide information as to the relevance of a shot
to a query.

Merry: Feature-based search As we did last year, we
treat feature-based search as an on-the-fly concept learning
problem, with the provided topic video examples as positive
examples, and randomly selected shots from the test col-
lection as pseudo-negative examples. Spatio-temporal sam-
pling of interest regions, visual feature extraction, codebook
transform, and kernel-based learning were done as described
in Section 2.6. The resulting model was applied to the shots
in the test collection, shots were ranked according to the
probabilistic output score of the support vector machine.

3.2 Query-Independent and Query-

Dependent Multimodal Fusion

The final step in our retrieval pipeline is multimodal fu-
sion. Our aim here was to (1) compare query-dependent vs
query-independent methods, and (2) investigate the use of
the learning to rank framework [21] for video retrieval. In
all cases weights and/or models were developed using the
TRECVID 2007 and 2008 topics for training. Learning to
rank was done according to the SVM-Rank implementation
for learning to rank [15].

Gimli: Query-independent fusion Linear combination of
the three baseline approaches using weighted combsum fu-
sion.

Legolas: Query-independent learning to rank Learning
to rank-based combination of the three baseline approaches.

Aragorn: Query-class based fusion Query-class depen-
dent linear combination of the three baseline approaches us-
ing weighted combsum fusion. We utilize the query classes
and classification methodology employed by Mei et al. [24].

Gandalf: Predictive reranking Similarly to last year, pre-
dict which baseline approach will give the best performance,
using various query and result-based features for prediction.
Rerank the results of the predicted best baseline with results
from the other two baselines.

Frodo: Query-dependent Learning to Rank Learning to
rank-based combination of all 6 aforementioned automatic
search runs.

3.2.1 Automatic Search Results

Once again this year, the transcript baseline had the lowest
overall MAP of all runs with a score of 0.009. At 0.068,
detector-based search is the best performing baseline, while
feature-based search also does relatively well with a score
0.053. Of the combination approaches, query-dependent
learning to rank gives the best retrieval performance of
0.089. Surprisingly, query-independent learning to rank
gives the lowest performance over all combination strate-
gies. In these experiments, the learning to rank-method is
more effective when given both query-dependent and query-
independent results as input features.

Figure 8 provides a topic-level summary of the perfor-
mance of the MediaMill automatic search runs. Consider-
ing the baselines, we see that transcript-based search had
consistently low performance, though it did achieve a high
AP score relative to other runs for an airplane or helicopter
on the ground, seen from outside. Feature-based search gave
higher performance, doing well for visually distinctive scenes
such as a building entrance and printed, typed, or handwrit-
ten text, filling more than half of the frame area. Detector-
based search performed best for topics where one or more
closely related detectors where available, for instance some-
thing burning with flames visible, where the explosion/fire
detector was selected, and street scene at night where the
street and night detectors were selected for search. Some-
times results were disappointing: performance for the query
for one or more dogs, walking, running, or jumping, where
the dog detectors was selected, was severely degraded by
inclusion of scores from the people walking detector.

The performance of the query-dependent learning to rank
run is 0.089. If we were to select the best performing of the
three baselines for each topic, the performance would also
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Figure 8: Topic-level comparison of MediaMill automatic video search experiments with present-day automatic search approaches in the

TRECVID 2009 benchmark.

be 0.089. This indicates that the fusion approach is capable
of performing at least as well as a “best of” approach, at
least on an overall level. Performance over individual topics
varies, a large boost in performance is obtained for topics
where more than one baseline does well, for example for a a
building entrance AP is increased by 0.098, and for one or
more people, each at a table or desk with a computer visible,
performance more than doubles compared to the highest
performing baseline run. Conversely, when a single baseline
outperforms the others to a great degree, fusion tends to
reduce performance as compared to the best baseline. This
is the case for example with the topics a street scene at night
and something burning with flames visible.

4 Interactive Video Retrieval

The performance of interactive video search engines depends
on many factors, such as the chosen query method, the used
browsing interface with its implied interaction scheme, and
the level of expertise of the user. Moreover, when search

topics are generic and diverse, it is hard to predict which
combination of factors yields optimal performance. There-
fore, current video search engines have traditionally offered
multiple query methods in an integrated browse environ-
ment. This allows the user to choose what is needed. How-
ever, while this does offer the user complete control over
which strategy to use for which topic, it also allows the user
to inadvertently select a sub-optimal strategy.

4.1 Thread-Based Browsing

The basis for our TRECVID 2009 experiments is the Me-
diaMill Semantic Video Search Engine, see Figure 9. The
basic building block behind the browsing interface is the
thread; a linked sequence of shots in a specified order, based
upon an aspect of their content [?]. These threads span the
video archive in several ways. For example, time threads
span the temporal similarity between shots, visual threads
span the visual similarity between shots, a query thread
spans the similarity between a shot and a user-imposed
query, and history threads span the navigation path the



Figure 9: Screenshots of the MediaMill semantic video search engine with its query interface (left), its ForkBrowser [7] (right), and its

CrossBrowser [36] (inset).
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Figure 10: Comparison of MediaMill interactive video search experiments with present-day interactive video search engines in the

TRECVID 2009 benchmark.

user follows.

The MediaMill Semantic Video Search Engine allows user
to choose between two modes for thread visualization. The
first visualization, the CrossBrowser shows the query thread
and the time thread in a cross formation. This visualiza-
tion is most efficient for topics where a single concept query

is sufficient for solving a topic [32,36]. The second visual-
ization, the ForkBrowser, provides the user with two extra
diagonal threads, and a history thread. The ForkBrowser is
more efficient in handling complex queries where no direct
mapping between available concept detectors is possible [7].
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4.2 Guiding The User to Results

Our TRECVID Interactive Retrieval experiments focus on
helping users to determine the utility of a given retrieval
strategy, and on guiding them to a correct set of results. To
this end we investigate the benefit of two strategies within
the MediaMill Semantic Video Search Engine.

To help users determine the utility of a given retrieval
strategy we introduce Active Zooming. This aids users both
by helping determine that a subset of visible results is not
relevant, and by helping to find a starting point within the
selected results. Active Zooming enables the user to quickly
and seamlessly visualize a large set of results from a single
thread at once. This allows users to make blink-of-an-eye
decisions about the contents of a single thread, or, in the
case of many relevant results, to quickly select large batches
of relevant results at once. The user is then able to ei-
ther continue browsing the thread, or go back to any other
thread.

To help guide users to correct results we introduce a Rel-
evance Feedback strategy based on passive sampling of user
browsing behavior in order to guide users to more relevant
results. For this, the system continuously monitors user be-
havior and uses this information on-demand to generate a

new set of results. It does so by training a support vector
machine model based on positive examples obtained from
the user, and negative examples obtained by passive moni-
toring. By using a pre-computed kernel matrix of inter-shot
distances this can be done interactively. The end result is a
reranking of the entire collection, which is then available as
a thread for visualization.

4.3

We submitted two runs for interactive search. The Sauron
run was performed by a single expert user. The user was
instructed to use the ForkBrowser with Gabor and Wic-
cest [44] similarity threads. The user was allowed to use
Active Zooming and Relevance Feedback techniques on de-
mand. The Saruman run was performed by another sin-
gle expert user. The user was instructed to use the Cross-
Browser together with Active Zooming and Relevance Feed-
back. The logging data and final obtained results of both
runs are currently being analyzed, and only a limited anal-
ysis of results is presented for the moment.

In Figure 10 we show a per-topic overview of interactive
video retrieval results. The log-analysis indicates that the
users employed a variety of strategies to retrieve results. We

Interactive Search Results



highlight a few typical cases. When relevant concept detec-
tors are available for a topic, these are taken as the entry
point for search by both users. For example, the users se-
lected the Hand detector for the topic a closeup of a hand,
writing, drawing, coloring, or painting. We found the capa-
bility to analyze and view multiple frames from individual
shots to be a significant benefit. For example, the results
for one or more dogs... were largely found by selecting the
opening credits of a single television program, in which a
dog can be seen running. This was however not apparent
in the key frames of these shots. For other topics, such as
train in motion or camera zooming in on a face, we found
that showing motion enabled the users to correctly answer
the topics. One user further increased the result for the lat-
ter topic by a creative use of Active Zooming: the zoom-in
motion was visually easily distinguishable which allowed the
user to select relevant shots rapidly. Furthermore we found
that almost all topics benefited from Relevance Feedback,
though the specific per-topic benefits are still being investi-
gated. In most cases the users also chose to auto-extend the
set of interactively selected results with relevance feedback
results.

Overall our approaches are the two best performing meth-
ods in the interactive video search task (Saruman: 0.246;
Sauron: 0.241), yielding the highest infAP scores for 18 out
of 24 topic. This indicates that our thread-based browsing
approach combined with robust concept detectors and rele-
vance feedback based on passive observation yields excellent
search results.

5 Lessons Learned

TRECVID continues to be a rewarding experience in gain-
ing insight in the difficult problem of concept-based video
retrieval [30]. The 2009 edition has again been a very suc-
cessful participation for the MediaMill team resulting in top
ranking for both concept detection and interactive search,
see Figure 11 for an overview. In the final version of this
manuscript we will highlight our most important lessons
learned to conclude the paper.
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