
An Element-based Approach to XML Retrieval

Börkur Sigurbjörnsson Jaap Kamps Maarten de Rijke

Language & Inference Technology Group, University of Amsterdam
Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands

E-mail: {borkur, kamps, mdr}@science.uva.nl

ABSTRACT
This paper describes the INEX 2003 participation of the Language
& Inference Technology group of the University of Amsterdam.
We participated in all three of the tasks, content-only, strict content-
and-structure and vague content-and-structure. Our main strategic
lines were to find the appropriate units of retrieval and to mix evi-
dence from several layers in the XML hierarchy.

1. INTRODUCTION
One of the recurring issues in XML retrieval is finding the appro-
priate unit of retrieval. For the content-only (CO) task at INEX
2002, we followed anarticle-basedapproach, i.e. submitted runs
in which whole articles were the unit of retrieval [5]. Much to our
surprise, this turned out to be a competitive strategy. In [6] we
experimented with going below the article level and returning ele-
ments. Our experiments showed that a successful element retrieval
approach should be biased toward retrieving large elements. For
the content-only task this year we followed anelement-basedap-
proach, and our main aim was to experiment further with this size
bias, in order to try to determine what is the appropriate unit of re-
trieval. Additionally, we experimented scoring elements by mixing
evidence from article and element levels.

For the Strict Content-and-Structure (SCAS) task the unit of re-
trieval is usually explicitly mentioned in the query. Our research
question for the content-only task does therefore not carry over to
the strict content-and-structure task. The CAS queries are a mix-
ture of content and structural constraints. We followed anelement-
basedapproach, and our main aim was to investigate how we could
score elements by mixing scores, gained from evaluating the differ-
ent constraints separately.

The Vague Content-and-Structure (VCAS) task is a new task and
we could not base our experiments on previous experience. Since
the definition of the task was underspecified, our aim for this task
was to try to find out what sort of task this was. We experimented
with a content-only approach, strict content-and-structure approach
and article retrieval approach.

All of our runs were created using theFlexIR retrieval system de-
veloped by the Language & Inference Technology group. We use a
multinomial language model for the scoring of retrieval results.

The structure of the remainder of this paper is as follows. In Sec-
tion 2 we describe the setup of our experiments. In Section 3 we
explain our runs for each of the three tasks, CO in 3.1, SCAS in 3.2,
and VCAS in 3.3. Results are presented and discussed in Section 4,
and in Section 5 we draw conclusions from our experiments.

2. EXPERIMENTAL SETUP

2.1 Index
We adopt an IR based approach to XML retrieval. We created our
runs using two types of inverted indexes, one for XML articles only
and another for all XML elements.

Article index
For the article index, the indexing unit is a whole XML document
containing all the terms appearing at any nesting level within the
〈article〉 tag. This is thus a traditional inverted index as used for
standard document retrieval.

Element index
For the element index, the indexing unit can be any XML element
(including 〈article〉). For each element, all text nested inside it
is indexed. Hence the indexing units overlap (see Figure 1). Text
appearing in a particular nested XML element is not only indexed
as part of that element, but also as part of all its ancestor elements.

The article index can be viewed as a restricted version of the el-
ement index, where only elements with tag-name〈article〉 are
indexed.

Both indexes were word-based, no stemming was applied to the
documents, but the text was lower-cased and stop-words were re-
moved using the stop-word list that comes with the English ver-
sion on the Snowball stemmer [10]. Despite the positive effect
of morphological normalization reported in [5], we decided to go
for a word-based approach. Some of our experiments have indi-
cated that high precision settings are desirable for XML element
retrieval [4]. Word-based approaches have proved very suitable for
achieving high precision.

2.2 Query processing
Two different topic formats are used, see Figure 2 for one of the CO
topics, and Figure 3 for one of the CAS topics. Our queries were
created using only the terms in the〈title〉 and〈description〉
parts of the topics. Terms in the〈keywords〉 part of the topics may
significantly improve retrieval effectiveness [4]. The keywords,
which are used to assist during the assessment stage, are often
based on human inspection of relevant documents during the topic
creation. We think that using only the title and description fields is
a more realistic use-case scenario for ad-hoc retrieval. Our system
does not support +, - or phrases in queries. Words and phrases
bound by a minus were removed, together with the minus-sign.
Plus-signs and quotes were simply removed.

Champagne for my real friends
Real pain for my sham friends

Tom Waits

simple.xml /article[1]

Tom Waits

simple.xml /article[1]/au[1]

Champagne for my real friends

simple.xml /article[1]/sec[1]

Real pain for my sham friends

simple.xml /article[1]/sec[2]

<article>
<au>Tom Waits</au>
<sec>Champagne for my real friends</sec>
<sec>Real pain for my sham friends</sec>

</article>

simple.xml

Figure 1: Simplified figure of how XML documents are split up into overlapping indexing units

Like the index, the queries were word-based, no stemming was ap-
plied but the text was lower-cased and stop-words were removed.

Blind feedback
For some of our runs we used queries expanded by blind feedback.
We considered it safer to perform the blind feedback against the ar-
ticle index since we do not know how the overlapping nature of the
element index affects the statistics used in the feedback procedure.
We used a variant of Rocchio feedback [7], where the top 10 docu-
ments were considered relevant; the top 501–1000 were considered
non-relevant; and up to 20 terms were added to the initial topic.
Terms appearing in more that 450 articles were not considered as
feedback terms. The parameters for the feedback were based on
experiments with the INEX 2002 collection. An example of an ex-
panded query can be seen in Figure 2c.

Task specific query handling will be further described as part of the
run descriptions in the following section.

2.3 Retrieval model
All our runs use a multinomial language model with Jelinek-Mercer
smoothing [2]. We estimate a language model for each of the el-
ements. The elements are then ranked according to the likelihood
of the query, given the estimated language model for the element.
That is, we want to estimate the probability

P(E,Q) = P(E) ·P(Q|E). (1)

The two main tasks are thus to estimate the probability of the query,
given the element,P(Q|E); and the prior probability of the element,
P(E).

Probability of the query
Elements contain a relatively small amount of text, too small to
be the sole basis of our element language model estimation. To
account for this data sparseness we estimate the element language
model by a linear interpolation of two language models, one based
on the element data and another based on collection data. Further-
more, we assume that query terms are independent. That is we
estimate the probability of the query, given the element language

model, using the equation

P(Q|E) =
k

∏
i=1

(λ ·Pmle(ti |E)+(1−λ) ·Pmle(ti |C)) , (2)

whereQ is a query made out of the termst1, . . . , tk; E is an element;
andC represents the collection. The parameterλ is the interpola-
tion factor (often called thesmoothing parameter). We estimate the
language models,Pmle(·|·) using maximum likelihood estimation.
For the collection model we use element frequencies. The esti-
mation of this probability can be reduced to the scoring function,
s(Q,E), for an elementE and a queryQ = (t1, . . . , tk) ,

s(E,Q) =
k

∑
i=1

log

(
1+

λ · tf(ti ,E) · (∑t df(t))
(1−λ) ·df(ti) · (∑t tf(t,E))

)
, (3)

where tf(t,E) is the frequency of termt in elementE, df(t) is the
element frequency of termt, andλ is the smoothing parameter.

The smoothing parameterλ played an important role in our submis-
sions. Zhai and Lafferty [13] argue that bigger documents require
less smoothing than smaller ones. In [4] we reported on the effect
of smoothing on the unit of retrieval. The experiments suggested
that there was a correlation between the value of the smoothing pa-
rameter and the size of the retrieved elements. The average size
of retrieved elements increases dramatically as less smoothing (a
higher value for the smoothing parameterλ) is applied. Increas-
ing the value ofλ in the language model causes an occurrence of
a term to have an increasingly bigger impact. As a result, the el-
ements with more matching terms are favored over elements with
fewer matching terms. In the case of our overlapping element in-
dex, a high value forλ gives us an article biased run, whereas a
low value forλ introduces a bias toward smaller elements (such as
sections and paragraphs).

Prior probabilities
The second major task is to estimate the prior probability of an el-
ement. Basing the prior probability of a retrieval component on its
length, has proved useful for several retrieval tasks [3, 9]. Length
priors are particularly useful for XML retrieval. It is most com-
mon to have the prior probability of a component proportional to

its length. That is, we calculate a so-called length prior:

lp(E) = log

(
∑
t

tf(t,E)
)

. (4)

With this length prior, the actual scoring formula becomes the sum
of the length prior (Equation 4) and the score for the query proba-
bility (Equation 3),

slp(E,Q) = lp(E)+s(E,Q). (5)

Although not used here, previous results have indicated that it might
be useful to have the prior proportional to the square or even the
cube of the element length [6]. For an exact description of how
we apply this length prior, see the individual run descriptions in
Section 3.

Mixing evidence
Although we retrieve individual elements from the collection, the
elements are not independent from the surrounding elements. It is
therefore intuitive to judge elements, not only based on their own
merit, but also based on the context in which they appear. In many
of our runs we scored elements by mixing evidence from the el-
ement itself,s(E,Q), and evidence from the surrounding article
s(A,Q), using the scoring formula

scomb(E,Q) = lp(E)+α ·s(A,Q)+(1−α) ·s(E,Q), (6)

wheres(·, ·) is the score function from Equation 3 and lp(·) is the
length prior from Equation 4. This mixing could in principle be
more cleanly implemented inside the language model framework,
using a mixture model.

Index cut-off
Using a length prior and tweaking of the smoothing parameter are
not the only methods applicable to eliminate the small elements
from the retrieval set. One can also simply discard the small el-
ements when building the index. Elements containing text that is
shorter than a certain cut-off value can be ignored when the index
is built. In some of our runs we imitated such index building by re-
stricting our view of the element index to a such a cut-off version.
We also recalculate collection statistics accordingly, making the run
equivalent to Further details will be provided in the description of
individual runs in the next section.

3. RUNS
3.1 Content-Only task
In [6] we tried to answer the question of what is the appropriate unit
of retrieval for XML information retrieval. A general conclusion
was that users have a bias toward large elements. With our runs for
the content-only task we pursued this issue further.

We wanted to experiment with element length bias. Three length
related parameters were introduced in the previous section: value
of the smoothing parameter, length prior and index cut-off. All
our runs used the normal length prior, formula (4). Cut-off value
was set to 20, which is equivalent to having only indexed elements
containing at least 20 terms. Our runs differed only in the value
given to the smoothing parameter.

UAmsI03-CO-lambda=0.9
In this run we set the smoothing parameterλ to 0.9. This value ofλ
means that little smoothing was performed, which resulted in a run
with a bias toward retrieving large elements such as whole articles.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE inex_topic SYSTEM "topic.dtd">
<inex_topic topic_id="103" query_type="CO" ct_no="50">
<title>UML formal logic</title>
<description>Find information on the use of formal logics
to model or reason about UML diagrams.</description>
<narrative>...</narrative>
<keywords>...</keywords>

</inex_topic>
(a) Original topic

uml formal logic find information use formal logics model
reason uml diagrams

(b) Cleaned query (TD)

uml formal logic find information use formal logics model
reason uml diagrams booch longman rumbaugh itu jacobson
wiley guards ocl notations omg statecharts formalism
mappings verlag sdl documenting stereotyped semantically
sons saddle

(c) Expanded query (TD+blind feedback)

Figure 2: Example of a Content-Only topic (Topic 103)

UAmsI03-CO-lambda=0.2
In this run we set the smoothing parameterλ to 0.2 which means
that a considerable amount of smoothing is performed. This re-
sulted in a run with a bias toward retrieving elements such as sec-
tions and paragraphs.

UAmsI03-CO-lambda=0.5
Here we went somewhere in between the two extremes above by
settingλ = 0.5. Furthermore, we required elements to be either
articles, bodies or nested within the body.

All runs used mixed evidence from the article and the element level.
The same combination value,α = 0.4, was used in the scoring
equation (Equation 6). The value was chosen after experimenting
with the INEX 2002 collection.

As described previously, queries were created using the terms from
the title and description; they were not stemmed but stop-words
were removed (See Figure 2b). The queries were expanded using
blind feedback (See Figure 2c). Feedback is a risky business, some
terms might help while other might lead the retrieval astray. For
this particular query one can imagine that it is useful to include the
founding fathers of UML:Booch, JacobsonandRumbaugh; but it
might be misleading to include the publishers:Longman, (John)
Wiley (&) sonsand(Springer) Verlag.

3.2 Strict Content-And-Structure task
The CAS topics have a considerably more complex format than the
CO topics (see Figure 3a for an example). The description part is
the same, but the title has a different format. The CAS title is writ-
ten in a language which is an extension of a subset of XPath [12].
We can view the title part of the CAS topic as a mixture of path
expressions and filters. Our aim with our SCAS runs was to try
to cast light on how these expressions and filters could be used to
assign scores to elements.

More precisely, we consider the topic title of CAS topics to be split

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE inex_topic SYSTEM "topic.dtd">
<inex_topic topic_id="76" query_type="CAS" ct_no="81">
<title>//article[(./fm//yr=’2000’ OR
./fm//yr=’1999’) AND about(.,’"intelligent
transportation system"’)]//sec[about(.,
’automation +vehicle’)]</title>

<description>Automated vehicle applications
in articles from 1999 or 2000 about intelligent
transportation systems.</description>

<narrative>...</narrative>
<keywords>...</keywords>

</inex_topic>
(a) Original topic

intelligent transportation system automation
vehicle automated vehicle applications in
articles from 1999 or 2000 about intelligent
transportation systems

(b) Full content query (TD)

76a intelligent transportation system

76b automation vehicle

(c) Partial content queries(T)

//article[about(., "76a")]//sec[about(.,"76b")]

(d) Fuzzy structure (T)

//article[./fm//yr=’2000’ or ./fm//yr=’1999’]//sec

(e) Strict structure (T)

Figure 3: Example of a Content-and-Structure topic (Topic 76)

into path expressions and filters as follows.

rootPath[Fr ∪Cr ∪Sr]targetPath[Fe∪Ce∪Se], (7)

whererootPath andtargetPath are XPath path-expressions and
Fr , Cr , Sr , Fe, Ce, Se are sets of filters (explained below). We dis-
tinguish between three types of filters.

Element filters (F) F is a set of filters that put content constraints
on the current element, as identified by preceding path ex-
pression (rootPath or targetPath). Element filters have
the formatabout(.,’whatever’)

Nested filters (C) C is a set of filters that put content constraints on
elements that are nested within the current element. Nested
filters have the formatabout(./path, ’whatever’)

Strict filters (S) S is a set of filters of the formatpath op value,
whereop is a comparison operator such as= or >=; and value
is a number or a string.

The filters in the actual topics were connected with a boolean for-
mula. We ignore this formula and only look at sets of filters. How-
ever we treat the filters in quite a strict fashion; the larger the num-
ber of filters that are satisfied, the higher the ranking of an element.
The difference between our three runs lies in the way we decide the
ranking of results that satisfy the same number of filters.

As an example, the title part of Topic 76 in Figure 3a can be broken
up into path expressions and filters such as:

rootPath = //article

Fr = {about(.,‘"intelligent transportation system"’)}
Cr = /0
Sr = {./fm//yr=‘2000’,./fm//yr=‘1999’}
targetPath = //sec

Fe = {about(.,‘automation +vehicle’)

Ce = /0
Se = /0

We calculate the retrieval scores by combining 3 base runs. The
base runs consist of anarticle run, a ranked list of articles answer-
ing the full content query (Figure 3b); an element run, a ranked
list of target elements answering the full content query (Figure 3b);
and afilter run, a ranked list of elements answering each of the par-
tial content queries (Figure 3c). More precisely the base runs were
created as follows.

Article run
We created an article run from the element index by filtering away,
from an element retrieval run, all elements not having the tag-name
〈article〉. We used a valueλ = 0.15 for the smoothing parameter.
This is the traditional parameter settings for document retrieval.
We used the full content query (Figure 3b), expanded using blind
feedback. For each query we retrieved a ranked list of 2000 most
relevant articles.

Element run
We created an element run in a similar fashion as for the CO task.
Additionally, we filtered away all elements that did not have the
same tag-name as the target tag-name (the rightmost part of the
targetPath). For topics where the target was unspecified, a ‘*’,
we considered only elements containing at least 20 terms. We did a
moderate smoothing by choosing a value of 0.5 for λ. We used the
full content queries (Figure 3b), expanded using blind feedback.
For each query we retrieved an exhaustive ranked list of relevant
elements.

Filter run
We created an element run in a similar fashion as for the CO task,
but using the partial content queries (Figure 3c). No blind feedback
was applied to the queries. We filtered away all elements that did
not have the same tag-name as the target tag-name of each filter.
For filters where the target was a ‘*’ we considered only elements
containing at least 20 terms. We did minor smoothing by choosing
the value 0.7 forλ. For each query we retrieved an exhaustive
ranked list of relevant elements.

For all the base runs we used the scoring formula with a length prior
(Equation 5). From the base runs we created three runs which we
submitted: one where scores are based on the element run; another
where scores are based on the article run; and a third which uses
a mixture of the element run, article run and filter run. For all
the runs, the elements are filtered using an XPath-parser and the
strict filters (Figure 3e). Any filtering using tag-names used the tag
equivalence relations defined in the topic development guidelines.
Our three different runs we created as follows.

UAmsI03-SCAS-ElementScore
The articles appearing in the article run were parsed and their ele-
ments that matched any of the element- or nested-filters were kept
aside as candidates for the final retrieval set. In other words, we
kept aside all elements that matched the title fuzzy XPath expres-
sion (Figure 3d), where the about predicate returns the valuetrue
for precisely the elements that appear in the filter run. The candi-
date elements were then assigned a score according to the element
run. Additionally, results that match all filters got 100 extra points.
Elements that match only the target filters got 50 extra points. The
values 100 and 50 were just arbitrary numbers used to guarantee
that the elements matching all the filters were ranked before the
elements only matching a strict subset of the filters. This can be
viewed as a coordination level matching for the filter matching.

UAmsI03-SCAS-DocumentScore
This run is almost identical to the previous run. The only difference
was that the candidate elements were assigned scores according to
the article run instead of according to the element run.

UAmsI03-SCAS-MixedScore
The articles appearing in the article run are parsed in the same way
as for the two previous cases. The candidate elements are assigned
a score which is calculated by combining the RSV scores of the
three base runs. Hence, the score of an element is a mixture of its
own score, the score of the article containing it, and the scores of
all elements that contribute to the XPath expression being matched.
More precisely, the element score was calculated using the formula

RSV(e) = α ·

(
s(r)+ ∑

f∈Fr

s(f)+ ∑
c∈Cr

maxs(c)

)

+(1−α) ·

(
s(e)+ ∑

f∈Fe

s(f)+ ∑
c∈Ce

maxs(c)

)
, (8)

whereFr , Cr , Fe andCe represent sets of elements passing the re-
spective filter mentioned in Equation 7;s(r) is the score of the ar-
ticle from the article run;s(f) ands(c) are scores from the filter
run; ands(e) is the score from the element run. In all cases we set
α = 0.5. We did not have any training data to estimate an optimal
value for this parameter. We did not apply any normalization to the
RSVs before combining them.

3.3 Vague Content-And-Structure task
Since the definition of the task was a bit underspecified, we did not
have a clear idea about what this task was about. With our runs
we tried to cast light on whether this task is actually a content-only
task, a content-and-structure task, or a traditional article retrieval
task.

UAmsI03-VCAS-NoStructure
This is a run that is similar to our CO runs. We chose a value
λ = 0.5 for the smoothing parameter. We used the full content
queries, expanded by blind feedback. We only considered elements
containing at least 20 terms.

UAmsI03-VCAS-TargetFilter
This run is more similar to our SCAS runs. We chose a value
λ = 0.5 for the smoothing parameter. We used the full content
queries, expanded by blind feedback. Furthermore, we only re-
turned elements having the same tag-name as the rightmost part of

targetPath. Where the target element was not explicitly stated (*-
targets), we only considered elements containing at least 20 terms.

UAmsI03-VCAS-Article
This run is a combination of two article runs using unweighted
combSUM [8]. The two runs differ in the way that one is aimed
at recall but the other at high precision. The one that aims at recall
usedλ = 0.15 and the full content queries, expanded by blind feed-
back. The high precision run usedλ = 0.70 and as queries only the
text appearing in the filters of the topic title. The RSV values of the
runs were normalized before they were combined.

For all the VCAS runs, scores were calculated using the length prior
(Equation 5).

4. RESULTS AND DISCUSSION
We evaluate our runs using version 2003.004 of the evaluation soft-
ware provided by the INEX 2003 organizers. We used version 2.4
of the assessments. Below, all runs are evaluated using the strict
quantization; i.e., an element is considered relevant if, and only if,
it is highly exhaustive and highly specific.

4.1 Content-Only task
Table 1 shows the results of the CO runs. Figure 4 shows the
precision-recall plots. The CO runs at INEX 2003 are evaluated us-
ing inex eval, the standard precision-recall measure for INEX. At
present, two other measures are being developed,inex eval ng(s),
a precision recall measure that takes size of retrieved components
into account; andinex eval ng(o), which considers both size and
overlap of retrieved components [1]. At the time of writing, a work-
ing version of the latter two measures had not been released. We
will therefore only report on our results using the inexeval mea-
sure.

0

0.2

0.4

0.6

0.8

1

0 0.5 1

P
re

ci
si

on

Recall

lambda=0.90
lambda=0.20
lambda=0.50

Figure 4: Precision-recall curves for our CO submissions, using
the strict evaluation measure

92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126
0

0.2

0.4

0.6

0.8

1

Topic

Pr
ec

is
io

n
lambda=0.2
lambda=0.5
lambda=0.9

Figure 5: Precision for each of the CO topics. Note that assessments for topics 105, 106, 114, 118, 120, and 122 have not been
completed. Furthermore, topics 92, 100, 102, and 121 have no strict judgments.

MAP p@5 p@10 p@20
λ = 0.2 0.1214 0.3231 0.2923 0.2423
λ = 0.5 0.1143 0.3462 0.2923 0.2346
λ = 0.9 0.1091 0.3308 0.2769 0.2250

Table 1: Results of the CO task

According to the inexeval measure, the run usingλ = 0.2 has over
all highest MAP score. The run that usesλ = 0.5 and filters out el-
ements outside the〈bdy〉 tag, gives slightly higher precision when
5 elements were retrieved. The run usingλ = 0.2 does however
catch up quite quickly. The runs seem to be so similar that any
differences are unlikely to be statistically significant.

Despite the similarity between the runs, let’s take a closer look and
see if there is any difference. Table 2 shows, for each run, the aver-
age length of retrieved elements and average length of the relevant
elements retrieved. The table shows that the runs are indeed differ-
ent. We are using the smoothing parameter to introduce a different
length bias, the higher the value we give to the length prior, the
larger elements we get on average. The difference between aver-
age length of retrieved elements and the average length of relevant
elements retrieved, might indicate that a more length biased length
prior is needed. Figure 5 shows the average precision of our runs
for each topic separately. We see that for a vast majority of the
topics the different runs give more or less the same score.

Average element length
retrieved relevant

λ = 0.2 1,335 2,499
λ = 0.5 1,839 2,965
λ = 0.9 2,166 3,330

Table 2: Some statistics of our submitted runs

From Figure 5 we see that our runs are far from being stable be-
tween topics. For 15 out of 30 assessed topics we score practically
nothing at all. For 9 topics our score lies between 0.05 and 0.2.
For 5 topics we score between 0.2 and 0.4. Finally only one topic
reaches over 0.4. Let’s take a closer look at the 15 topics where we
score practically nothing. For 4 of them there were no strict judg-
ments, i.e. no element was assessed as highly exhaustive and highly
specific. A further 7 topics had 10 or less strict judgments. The re-
maining 4 had 21–90 strict judgments each. For all the 11 topics
where were 10 or fewer strict judgments, we score poorly. For
those topics the task turned out to be a real needle-in-the-haystack
problem.

4.2 Strict Content-And-Structure task
In this section we will refer to our thee different runs as element-
based, document-based and mixed. Table 3 shows the results of the
SCAS runs. Figure 6 shows the precision-recall plots. The mixed

MAP p@5 p@10 p@20
ElementScore 0.2987 0.4160 0.3520 0.2540
DocumentScore 0.2314 0.2960 0.2680 0.2160
MixedScore 0.3182 0.4000 0.3440 0.2860

Table 3: Results of the SCAS task

run has higher MAP than the other two runs. The element-based
run has slightly lower MAP than the mixed run. The document-
based run has the lowest MAP.

The element-based run outperforms the other two at low recall lev-
els. We can see from the table that the element-based run has the
highest precision after only 5 or 10 documents have been retrieved.
The mixed run catches up with the element-based run once 20 doc-
uments have been retrieved. This indicates that coordination level
matching for the filter matching, works well for initial precision,
but is not as useful at higher recall levels.

62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
0

0.2

0.4

0.6

0.8

1

Topic

Pr
ec

is
io

n

Element Score
Document Score
Mixed Score

Figure 7: Precision for each of the SCAS topics. Topics 61, 67, 69, 73, and 76 have no strict judgments.

0

0.2

0.4

0.6

0.8

1

0 0.5 1

P
re

ci
si

on

Recall

Element Score
Document Score

Mixed Score

Figure 6: Precision-recall curves for our SCAS submissions,
using the strict evaluation

Let us now try to analyze individual topics and topic groups. Fig-
ure 7 shows the average precision for our SCAS runs, individually
for each topic. We see that the our performance is topic dependent.
For this task, we do not see as clear correlation between precision
and total number of relevant elements, as we saw for the content-
only task. Since the target element is usually specified, this is less
of a needle-in-the-haystack problem. To try to understand this bet-
ter we look at performance over three different classes of topics.

Table 4 shows mean average precision for three different classes of

target elements. First we look at the class of topics where the target
is 〈article〉, then we look at the class where the target is〈sec〉,
and finally we look at the class of other topics (where the target
is either *, 〈abs〉, 〈p〉, 〈vt〉 or 〈bb〉). The second column in the
table shows how many topics there are in each class. The remain-
ing columns show the performance of each run. The difference of
each run is calculated using the overall performance of that run as
baseline. Before we continue it must be said that the results must
be taken with a grain of salt; they are based on very few topics, the
classes only contain 10, 8 and 7 topics respectively.

Target # elem.-based doc.-based mixed
article 10 0.3298 +10% 0.3142 +36% 0.3526 +11%
sec 8 0.2354 -21% 0.2364 +2.2% 0.2810 -13%
other 7 0.2569 -14% 0.1712 -26% 0.3199 +0.53%

Table 4: Average precision of our runs for the SCAS topics,
clustered by tag name of the target element

For the class of topics where the target is an article, all runs perform
well relative their overall performance. Compared to each other, the
element-based run and document-based run perform similarly. The
only difference is the value chosen for the smoothing parameterλ.
For this class, the mixed run scores better than the other two runs,
giving further evidence of how structure can help improve article
retrieval [11].

For the class of topics where sections are the target, the perfor-
mance of the document-based run is similar to it’s overall perfor-
mance. The element-based run and the mixed run perform poorly
relative to their overall performance. Compared to each other, the
mixed run still performs somewhat better than the other two runs.
Again there is not much difference between the element-based run
and the document-based run. This is surprising since one would
have guessed that the element-based run would perform better.

For the class of the remaining topics, the performance of the mixed

run is similar to it’s overall performance. The other two runs per-
form poorly relative to their overall performance. Compared to
each other, the mixed run is still better than the other two. Now the
element-based run is clearly better than the document-based run.

Overall we can say safely that, our runs perform better on topics
where the target element is an article, compared to the performance
for other target-type classes. When the different runs are compared
to each other, the mixed run performed consistently better than the
other two. The element-based run only differentiated itself from the
document-based run when the task was to find the smaller elements
such as paragraphs and abstracts.

4.3 Vague Content-And-Structure task
At the time of writing the evaluation metric of the Vague Content-
And-Structure task had not been released. Hence there are no re-
sults to discuss for this task.

5. CONCLUSIONS
This paper described our official runs for the INEX 2003 evaluation
campaign. Our main research question was to further investigate
the appropriate unit of retrieval. Although this problem is most vis-
ible for INEX’s CO task, it also plays a role in the element and filter
base runs for the CAS topics. With default adhoc retrieval settings,
small XML elements dominate the ranks of retrieved elements. We
conducted experiments with a number of approaches that aim to
retrieve XML elements similar to those receiving relevance in the
eyes of the human assessors. First, we experimented with a uni-
form length prior, ensuring the retrieval of larger sized XML ele-
ments [6]. Second, we experimented with Rocchio blind feedback,
resulting in longer expanded queries that turn out to favor larger
XML elements than the original queries. Third, we experimented
with size cut-off, only indexing the element that contain at least 20
words. Fourth, we experimented with an element filter, ignoring
elements occurring in the front and back matter of articles. Fifth,
we experimented with smoothing settings, where the increase of
the term importance weight leads to the retrieval of larger elements
[4]. Finally, we combined approaches in various ways to obtain the
official run submission.

Our future research focuses on the question of what is the appro-
priate statistical model for XML retrieval. In principle, we could
estimate language models from the statistics of the article index
similar to standard document retrieval. An alternative is to estimate
them from the statistics of the element index, or from a particu-
lar subset of the full element index. In particular, we smooth our
element language model with collection statistics from the over-
lapping element index. Arguably, this may introduce biases in the
word frequency and document frequency statistics. Each term ap-
pearing in an article usually creates several entries in the index.
The overall collection statistics from the index may not be the best
estimator for the language models. In our current research we in-
vestigate the various statistics from which the language models can
be estimated.

6. ACKNOWLEDGMENTS
Jaap Kamps was supported by the Netherlands Organization for
Scientific Research (NWO) under project numbers 400-20-036 and
612.066.302. Maarten de Rijke was supported by grants from NWO,
under project numbers 612-13-001, 365-20-005, 612.069.006, 612.-
000.106, 220-80-001, 612.000.207, and 612.066.302.

7. REFERENCES
[1] N. Gövert, G. Kazai, N. Fuhr, and M. Lalmas. Evaluating the

effectiveness of content-oriented XML retrieval. Technical
report, University of Dortmund, Computer Science 6, 2003.

[2] D. Hiemstra.Using Language Models for Information
Retrieval. PhD thesis, University of Twente, 2001.

[3] D. Hiemstra and W. Kraaij. Twenty-One at TREC-7: Ad-hoc
and cross-language track. In E.M. Voorhees and D.K.
Harman, editors,The Seventh Text REtrieval Conference
(TREC-7), pages 227–238. National Institute for Standards
and Technology. NIST Special Publication 500-242, 1999.

[4] J. Kamps, M. de Rijke, and B. Sigurbjörnsson. Topic Field
Selection and Smoothing for XML Retrieval. In A. P. de
Vries, editor,Proceedings of the 4th Dutch-Belgian
Information Retrieval Workshop, pages 69–75. Institute for
Logic, Language and Computation, 2003.

[5] J. Kamps, M. Marx, M. de Rijke, and B. Sigurbjörnsson. The
Importance of Morphological Normalization for XML
Retrieval. In N. Fuhr, N. G̈overt, G. Kazai, and M. Lalmas,
editors,Proceedings of the First Workshop of the Initiaitve
for the Evaluation of XML Retrieval (INEX), pages 41–48.
ERCIM Publications, 2003.

[6] J. Kamps, M. Marx, M. de Rijke, and B. Sigurbjörnsson.
XML Retrieval: What to Retrieve? In C. Clarke,
G. Cormack, J. Callan, D. Hawking, and A. Smeaton,
editors,Proceedings of the 26th annual international ACM
SIGIR conference on Research and development in
informaion retrieval, pages 409–410. ACM Press, 2003.

[7] J. Rocchio. Relevance feedback in information retrieval. In
G. Salton, editor,The SMART Retrieval System —
Experiments in Automatic Document Processing. Prentice
Hall, 1971.

[8] J. A. Shaw and E. A. Fox. Combination of multiple searches.
In D.K. Harman, editor,Proceedings TREC-2, pages
243–249. NIST, 1994.

[9] A. Singhal, C. Buckley, and M. Mitra. Pivoted document
length normalization. InProceedings of the 19th Annual
International ACM-SIGIR Conference on Research and
Development in Information Retrieval, pages 21–29. ACM
Press, 1996.

[10] Snowball. The snowball string processing language, 2004.
http://snowball.tartarus.org/.

[11] R. Wilkinson. Effective retrieval of structured documents. In
W. Bruce Croft and C. J. van Rijsbergen, editors,
Proceedings of the 17th Annual International ACM SIGIR
Conference on Research and Development in Information
Retrieval, pages 311–317. Springer-Verlag New York, Inc.,
1994.

[12] XPath. XML Path Language, 1999.
http://www.w3.org/TR/xpath.

[13] C. Zhai and J. Lafferty. A study of smoothing methods for
language models applied to ad hoc information retrieval. In
Proceedings of the 24th Annual International ACM SIGIR
Conference on Research and Development in Information
Retrieval, pages 334–342. ACM Press, 2001.

http://snowball.tartarus.org/
http://www.w3.org/TR/xpath

	1 Introduction
	2 Experimental setup
	2.1 Index
	2.2 Query processing
	2.3 Retrieval model

	3 Runs
	3.1 Content-Only task
	3.2 Strict Content-And-Structure task
	3.3 Vague Content-And-Structure task

	4 Results and Discussion
	4.1 Content-Only task
	4.2 Strict Content-And-Structure task
	4.3 Vague Content-And-Structure task

	5 Conclusions
	6 Acknowledgments
	7 REFERENCES

