
Type Checking in Open-Domain Question Answering
Stefan Schlobach and Marius Olsthoorn and Maarten de Rijke

�

Abstract. Open domain question answering (QA) systems have to
bridge the potential vocabulary mismatch between a question and its
candidate answers. One can view this as a recall problem and ad-
dress it accordingly. Recall oriented strategies to QA may generate
considerable amounts of noise. To combat this, many open domain
QA systems contain an explicit filtering or re-ranking component,
which often check whether the answer is of the correct semantic
type. Particular classes of questions expect specific answer types to
which all of their answers should belong. We compare two kinds
of strategies for answer type checking for open domain QA. One
is redundancy-based and builds on the intuition that the amount of
implicit knowledge which connects an answer to a question can be
estimated by exploiting the redundancy of information available on
the web. The other is knowledge-intensive, and exploits structured
and semi-structured data sources to determine, with high confidence,
the semantic type of suggested answers.

1 INTRODUCTION
Question answering (QA) is one of several recent attempts to realize
information pinpointing as a refinement of the traditional document
retrieval task. In response to a user’s question, a QA system has to
return an answer instead of a ranked list of relevant documents from
which the user has to extract an answer herself. The way in which
QA is currently evaluated at the Text REtrieval Conference (TREC,
[22]) requires a high degree of precision on the systems’ part [22].
Systems have to return exact answers: strings of one or more words,
usually describing a named entity, that form the complete and non-
redundant answer to a given question. This requirement gives QA a
strong “high-precision” character. At the same time, however, open
domain QA systems have to bridge the potential vocabulary mis-
match between a question and its candidate answers. Because of this,
recall is a serious issue for most QA systems. Now, the typical QA
system architecture is a single processing stream that performs four
steps in a sequential fashion: question analysis, search, extraction of
answer candidates, and answer selection [8, 15, 17, 18]. The early
steps are usually “non-exact” steps, aimed at maintaining recall at an
acceptable level. The underlying assumption is that much of the noise
picked up in the early steps will be filtered out in the final step. Thus,
many systems contain a filtering or re-ranking component aimed at
promoting correct answers and demoting incorrect ones.

We focus on one particular kind of filtering: answer type check-
ing, that is, checking whether a given answer candidate belongs to
the expected semantic type (or set of types). To many of the factoid
questions used in the TREC QA track, a small number of semantic
types can be associated that all reasonable answers to those ques-
tions can be expected to belong to. On top of the usually coarse-
grained expected answer types used for extracting answer candidates
(such as PERSON, LOCATION, DATE or ORGANIZATION), it is
often possible (and necessary) to identify more precisely whether
we are looking for, e.g., an ACTOR, a CAPITAL, a YEAR, or an
�

Informatics Institute, University of Amsterdam, Kruislaan 403, 1098 SJ
Amsterdam, The Netherlands. Email: � schlobac, olstrn,
mdr � @science.uva.nl

NGO (Non-Governmental Organization). Today’s named entity ex-
traction technology is able to recognize the course-grained types with
high accuracy, but recognizing fine-grained semantic types is not a
solved problem. Moreover, many open domain QA systems work
with noisy, incomplete, and often ungrammatical text snippets re-
turned by search engines; on such input it is hard to obtain accurate
recognition of semantic types. In this setting answer type checking
can provide an important sanity check to weed out incorrect answers.

How can we operationalize answer type checking? We discuss
two strategies, both using freely available on-line resources. First,
for an increasing number of domains, such as geography, movies,
and medicine, reliable wide-coverage structured or semi-structured
data sources are available that can be used for answer type check-
ing. Moreover, assuming these sources are available locally, access to
them is efficient and answer type checking can be decomposed into
shallow taxonomical reasoning steps combined with look-ups. For
domains without such resources, or to make up for gaps in existing
resources, redundancy-based approaches, bootstrapped with patterns
capturing the expected answer types, can be used instead.

The aim of this paper is to study the potential impact of answer
type checking on the performance of open domain QA systems.
We break this general issue up into more manageable issues, each
of which we aim to address in this paper: (1) Does type checking
(generally) improve the performance of open domain QA systems?
(2) How do knowledge-intensive and redundancy-base type check-
ing compare? Are they complementary? Both questions have to be
answered while keeping in mind that the external knowledge sources
that we employ are usually domain-specific. Can our results be trans-
ferred from one knowledge source and domain to others?

We describe algorithms for knowledge-intensive and redundancy-
based answer type checking (in Sections 3 and 4). To be able to assess
knowledge-intensive answer type checking, we need access to fairly
rich knowledge sources. For this reason, we carried out an experi-
mental evaluation and comparison of the two methods on location
questions. We report on our experiments in Section 5 and conclude
in Section 6. We start out by discussing related work, in Section 2.

2 RELATED WORK
As with any information access task, recall oriented strategies to QA
may generate considerable amounts of noise. To combat this, many
systems participating in the TREC QA track contain an explicit filter-
ing or re-ranking component, and in some cases this involves answer
type checking. In their TREC 2002 system, BBN used a number of
constraints to re-rank candidate answers [24]; one of these is check-
ing whether the answer is of the correct location sub-type. LCC’s
QA system has an answer selection process that is very knowledge-
intensive [16]. It incorporates lots of AI-like technology, by attempt-
ing to prove candidate answers from text, with feedback loops and
sanity-checking, using extensive lexical resources. Other systems us-
ing knowledge-intensive type checking include IBM’s (that uses the
CYC knowledge base [2, 19]), and the University of Edinburgh’s
(that uses subtle reasoning mechanisms [4]). Some systems take the
use of external knowledge sources a step further by relying almost

exclusively on such sources for answers, and, as a final step, finding
justification for the externally found answers in the text collection
used as part of the TREC QA track [11]. While systems that find
their answers externally use many of the same resources as systems
that use knowledge-intensive answer type checking, they obviously
use them in a different way, not as a filtering mechanism.

In contrast to these knowledge-intensive methods, we mention a
redundancy-based approach due to Magnini et al. [12]. They employ
the redundancy of the Web to re-rank (rather than filter out) candi-
date answers found in the collection, by using web search engine hit
counts for question and answer terms. The idea is to quantitatively
estimate the amount of implicit knowledge connecting an answer to
a question by comparison of the number of co-occurrences of answer
and keywords in the question. Our redundancy-based type-checking
method refines this method by bootstrapping co-occurrence statistics
with admissible answer types (Section 3 and 4).

Recently, several QA teams adopted complex architectures in-
volving multiple streams that implement different answering strate-
gies [2, 3, 5, 10, 9]. Here, one can exploit the idea that similar an-
swers coming from different sources are more reliable, so the answer
selection module should favor candidate answers found by multiple
streams. In this paper we do not exploit this type of redundancy as a
means of filtering or re-ranking, but refer to [5, 10, 1, 9].

3 ONTOLOGY-BASED TYPE CHECKING
Many QA-systems attempt to answer questions as follows: a ques-
tion type is determined and relevant documents are retrieved from
which a list of candidate answers is extracted. An answer selection
process then orders the candidate answers and the top one is returned.
The expected answer type(s) (or EAT(S)) of a question restrict(s) the
admissible answers within a particular domain, such as geography,
to more specific semantic classes, such as river, country or tourist
attraction. These semantic classes are often organized in ontologies,
which are, in the simplest case, just sets of concepts equipped with
hierarchical relations. If we take the semantic concepts as our answer
types, these ontologies provide the structure and the reasoning which
is necessary to automate answer type checking.

If a candidate answer is known not to be an instance of any EAT
associated with a question, it can immediately be excluded from the
answer selection process. We will refer to this use of EATs as an-
swer type checking by filtering. For filtering, a knowledge-intensive
approach seems ideally suited: for each candidate answer we try to
extract a found answer type (FAT) from knowledge and data sources,
i.e., a most specific semantic type of which it is an instance. Be-
cause of the inherent incompleteness of knowledge and data sources
in open domain applications, it may be impossible to determine a
FAT for every candidate answer. Instead, we propose to determine the
likelihood that the expected answer type is indeed a correct semantic
type for a candidate answer and to re-rank the candidate answers ac-
cording to this measure. For re-ranking, redundancy-based strategies
are an obvious choice, the assumption being that the number of co-
occurrences of answers and answer types allows us to quantify the
relation between a question’s EAT and a candidate answer.

Filtering. From various information sources we can often reliably
determine a most specific concept of which a particular answer is
an instance. In our case we use the GNS [7] and GNIS [6] databases
and WORDNET [14] to relate geographical answers with one or more
semantic types (its found answer type (FAT)). As answers may be
ambiguous, we often need to associate a number of FATs to each
candidate answer. Then, a candidate answer � is correctly typed for a

question � if one of the found answer types of � is compatible to one
of the expected answer types of � . The notion of compatibility need
not be symmetric. Given the found and expected answer types and
a notion of compatibility of two types � and � , the basic algorithm
for filtering is as follows:

Extract the expected answer types of each question � ;
for each candidate answer �

extract the found answer types for � ;
if there is an EAT � of � and a FAT � of � , such that
� and � are compatible
then � is correctly typed;

return the correctly typed candidate answer in the original order;

Figure 1 shows an ontology with concepts thing, city, state, capi-
tal and river, where capital is more specific than city. Furthermore,
let the question Which is the biggest city in the world? have the ex-
pected answer type city. Assume we find in an external data-source

thing

state rivercity

capital

Which is the biggest

city in the world?

Question:

Answers:
Tokyo
Liffey

� 	

Figure 1. Filtering

that Tokyo is of type capital. To establish that Tokyo is a correctly
typed answer we simply have to check that the type capital is com-
patible with, e.g., more specific as, type city. A different candidate
answer Liffey, however, which is classified as a river, is incorrectly
typed.

Re-ranking. Re-ranking does not depend on a found answer type
of a candidate answer � but on the likelihood that � is both correct
and has an answer type � . More precisely, any implementation has
to define a measure for the correctness of the type � for � which
needs to be merged with the confidence or the ranking of � (or both)
determined in the answer selection process. Our measure of correct
typing is defined by co-occurrence of a description of the EAT and
the candidate answers on the web. The general strategy for re-ranking
is then:

for each candidate answer � of a question �
for each expected answer type ��
�����������

calcalculate the likelihood that � is
correct and that � is the correct type,
based on the

probability that � is a correct type for � , and the
original confidence and/or the rank of �

return the candidate answers reordered by this likelihood

Requirements. The strategies for type checking outlined above re-
quire some basic ingredients: an ontology of answer types has to be
formalized, and each question has to be mapped to an expected an-
swer type (EAT); furthermore, every implementation of filtering has
to provide mechanisms to determine FATs and a notion of compat-
ibility of FATs and EATs. Finally, an implementation of re-ranking
must define measures for the likelihood of correct typing.

4 BUILDING A TYPE CHECKER
To assess the effectiveness of type checking we implemented filter-
ing and re-ranking for the geography domain and added it to our own
QA system, QUARTZ [20]. We take our (expected) answer types from
the set of synsets in WORDNET [14]. Synsets are sets of words with
the same intended meaning (in some context). They are hierarchi-
cally ordered by the hypernym (more general) and hyponym (more
specific) relations. A sibling of a type � is a hyponym of a hyper-
nym which is different from � . Finally, the ancestor (descendant)
relation is the transitive closure of the hypernym relation (the hy-
ponym relation, respectively). WORDNET contains many synsets in
the geography domain. There are general concepts describing admin-
istrative units (e.g., cities or counties) or geological formations (e.g.,
volcanoes or beaches), but also instances such as particular states
or countries. WORDNET provides an easy-to-use ontology of types
for answer type checking in the geography domain. We will benefit
two-fold: first, we can make use of the relative size of the geogra-
phy fragment of WORDNET, and secondly, we get simple mappings
from the questions and the candidate answers almost for free. Let us
describe first how we map questions to expected answer types.

Expected Answer Type Extraction. We determine EATs of a
question by a simple pattern-based analysis of the questions. Using
WORDNET, we created a list � of about 300 geographical features
describing elements of nature, structures, or administrative units. A
simple strategy is to study the first feature � out of the list � which oc-
curs in a question � . In most cases the synsets containing � are rea-
sonable EATs for � . Note, that there could be more than one EAT for
one feature � as we do not do any Word-Sense Disambiguation. Only
few EATs are not found by this simple strategy. Take, for example,
questions such as “Dublin is the capital of which country?”, where
the EAT is the synset containing the feature “country” (and not “cap-
ital”). Answer type extraction with hand-crafted patterns achieves
a reasonable accuracy for most of our location questions (� 90%).
However, more robust EAT extraction methods need to be investi-
gated to make the approach portable to other domains.

Knowledge-Intensive Filtering. Our implementation of
knowledge-intensive filtering uses WORDNET and two pub-
licly available “Name Information Systems.” The Geographic
Names Information System (GNIS) contains information “about
almost 2 million physical and cultural features throughout the
United States and its Territories” [6]. Sorted by state, GNIS contains
information about geographic names, including the county, a feature
type, geographical location etc. The GEOnet Names Server (GNS)
“is the official repository of foreign place-name decisions . . . and
contains 3.95 million features with 5.42 million names” [7].

Some candidate answers, such as “Germany” to TREC question
1496, What country is Berlin in? occur directly in WORDNET. Given
our use of WORDNET as ontology of types we choose all the synsets
containing the word “Germany” as found answer types (FATs). Un-
fortunately, this case is an exception: most names are not contained
in WORDNET. The GNS and GNIS databases, however, associate
almost every possible geographical name with a geographic feature
type. Both GNIS and GNS provide mappings from feature types to
natural language descriptions. The FATs determined by the data-base
entries are therefore simply those synsets containing precisely these
descriptions. In very few cases we had to adapt the coding by hand to
ensure getting the intended WORDNET synsets. A simple example is
the GNS type PPL, referring to a populated place, which we map to
the synsets containing the word “city”. In the case of complex candi-
date answers, i.e., answers containing more than one word, the FATs

are separately determined for the complex answer string as well as
for its constituent given the methods we described above.

We also need a notion of compatibility between answer types. Our
definition is based on the WORDNET hierarchy: a FAT � is compati-
ble with an EAT � , abbreviated by ����������� ����� if it is more specific
than or equal to the EAT.2 Formally, this means that �����!�"���#�$�%�
holds if, and only, if � is an ancestor of � , or if � equals � .

Redundancy-Based Re-ranking. No data source can be complete;
in the previous section we presented a strategy for re-ranking based
on the likelihood that the EAT of the question is the semantic type
for a candidate answer. We implemented a purely redundancy-based
method that is based on the assumption that co-occurrences of words
in a large corpus (such as the web) can provide significant statis-
tical information about the relation between words. We define two
simple measures for the correctness of an EAT with respect to a can-
didate answer � based on the probability that a description � of the
EAT and � occur together in the same documents. Remember that
��&�%����� is a set of synsets, which were chosen in the EAT extrac-
tion process, because the question � contains a particular feature � .
For our algorithm we simply choose this feature � as the canonical
description � of the synset. The number of web-pages a term � oc-
curs in will be called the hit-count of � and abbreviated as '(�)�*�!� .+-,/.10325476

is the total number of web pages indexed by our search
engine. The two measures are then defined as follows.

1. Conditional type probability: 8&9;:<���=�$�3�?> @=���BA �3�C>DFEHGJILK;M;NDFEOGPM;N is the probability that the expected answer type � oc-
curs in a document given that it contains the candidate answer � .
The assumption is that the EAT is often used to describe the most
important properties of an instance. CTP is very similar to Point-
wise Mutual Information (PMI) [13]. As long as there is only one
EAT for a question, it produces the same ranking because the hit-
counts for the EAT remain constant.

2. Normalized conditional type probability: QSR���@=���=���3�T>U GPIWV M;NU GPIWV XYM;N > D/EOGJIZK[M;N\GJ]�M[^ _a`�bdcfe[DFEHGPM;N*ND/EOGPM;N\GJDFEHGPIZN\edD/EOGJIZK[M;N*N . A drawback of con-
ditional type probability is that it only works if (as we expect) the
answer implies the type. It may happen that the answer itself oc-
curs very often in a different context and does not always imply
the answer type. E.g., this occurs if a particular string refers to
several different answers. The normalized conditional type proba-
bility compensates for this.3

With CTP and normalized CTP we implemented two measures which
are natural in the context of linking an expected answer type and
a candidate answer. To re-order the set of candidate answers we
also need strategies to combine the new measures with the confi-
dence �O�hg/i"���3� and ranking j , glk;���!� that the answer selection pro-
cess gave to a candidate answer � . Let �Bm ,�6 ���=���3� be one of the
previous methods 8&9;:����n�$�3� or o<8&9;:%���=���3� . We implemented
several strategies of which the following proved to be the most ef-
fective. Equal merging combines the measure for � and � and the
confidence of � : �Bm ,�6 ���=�$�3�"p�����g/i"���!� . And Reciprocal merging
combines the reciprocal original rank with the new measure of con-
fidence of the typing: �Bm ,�6 ���n�$�3�Lp �q5rtsHu GPM;N .
v

The notion of compatibility can be more complex depending on the on-
tology, the reasoning and the available data sources. If we consider more
complex answer types, such as conjunctive ones, we may have to relax the
definition. E.g., assume we have a complex EAT river & German & muddy.
In this case an answer with a FAT German & river could be compatible to
the EAT even though the FAT is not more specific than the EAT.w
We implemented additional, more complex measures such as the ones intro-
duced in [12], but none of them improved over NCTP in our experiments.

5 EXPERIMENTAL EVALUATION
One of the main goals of our type checker was a proof of concept,
i.e., to evaluate whether type checking could actually be successfully
integrated in a QA system, at least for a particular domain. How-
ever, because the specialization to a particular domain is very much
against the spirit of open domain QA, we had to address the issue
of incompleteness of knowledge sources by introducing both redun-
dancy based and knowledge-intensive strategies for type checking. In
this section we discuss our experience with filtering and re-ranking
given a number of experiments we conducted. Particular focus was
put on the following issues: What are the advantages of each of the
two strategies? And: What helps and what hinders each method?

Experiments We evaluated the output of our QA system on 261
location questions from previous TREC QA topics and on 578 lo-
cation questions from an on-line trivia collection [21], both without
and with type-checking. These were fed to our own QUARTZ sys-
tem, and the list of candidate answers returned by it was subjected to
answer type checking. We used two evaluation measures: the Mean
Reciprocal Rank (MRR: the mean over all questions of “1 over the
rank of the first correct answer, if any”) [23], and the number (and
percentage) of correct answers. For 594 of the 839 questions we de-
termined over 40 different expected answer types. The types country,
city, capital, state, and river were the most common and assigned to
over 60% of the questions. We evaluated the EAT extraction process
by hand and found an accuracy of over 90%.

To establish a realistic upperbound on the performance of answer
type checking, we went through all the questions and their candi-
date answers by hand and checked how much human type-checking
improves the results. Then we compared the performance of knowl-
edge intensive filtering and redundancy based re-ranking (RBRR). To
study the influence of the use of databases on filtering, we ran both
the algorithm described in the previous section and a version using
only WORDNET to find the FATs. This latter method will be denoted
by KIF-WN below, the full version simply as KIF. For re-ranking we
combined the two measures CTP and NCTP with equal and recipro-
cal merging to get the 4 runs: RBRR-CTP-Equal, RBRR-CTP-Recip,
RBRR-NCTP-Equal and RBRR-NCTP-Recip.

Results Table 1 summarizes the main empirical results of our ex-
periments. For each of the strategies and implementations we give
the total number and the average of correct answers, as well as the
MRR. The results show that type checking is useful, and that it can

correct % of correct Average
Strategy answers answers MRR
No type-checking 244 29% 0.33
Human type-checking 331 (+36%) 36.4% n/a
KIF 271 (+11%) 32.3% 0.37
KIF-WN 292 (+20%) 34.8% 0.38
RBRR-CTP-Equal 248 (+2%) 30% 0.34
RBRR-CTP-Recip 229 (-6%) 27% 0.31
RBRR-NCTP-Equal 249 (+2%) 30% 0.34
RBRR-NCTP-Recip 230 (-6%) 27% 0.31

Table 1. Overview of experimental results.

successfully be applied. Knowledge intensive filtering can signifi-
cantly improve the overall performance of a QA system for geog-
raphy questions, but even the best available strategy performs sig-
nificantly worse than a human expert. What surprised us was that

adding the GNIS and GNS database to the filtering lead to a sub-
stantial drop in performance compared to the filtering method based
on WORDNET alone. Finally, redundancy based re-ranking failed to
make a significant positive difference on the overall performance,
which even dropped for the reciprocal merging strategy.

Error Analysis To obtain a better understanding of our results we
look at them in more detail.

In which cases does knowledge intensive filtering fail? Knowl-
edge intensive filtering does not achieve the potential improvement
of 36% obtained with human type-checking, both because we do not
exclude enough answers and because we incorrectly exclude correct
answers. There are three conceptually interesting reasons for these
errors. First, incompleteness: there are rare question types, such as
tourist attraction or motorway, where the candidate answer (and its
type) is simply unknown to the knowledge sources. In other cases
insufficient information is available about a specific instance. E.g.,
neither WORDNET, nor GNS and GNIS, contain the information
that “Rotterdam” is a port, or “Palermo” a regional capital. Second,
representation: some errors are directly due to the way information
is represented in WORDNET. E.g., the synset x Quito y , which has
a synset containing “country” as ancestor (via hypernyms capital,
seat and center). This is due to the ambiguity of the term “country”
which denotes both a political entity and a region. And third, linguis-
tics: we sometimes fail to map answers to the correct synset. E.g.,
the answer “Indian” to the question In which ocean are the group
of islands called the Seychelles? is not mapped to the correct synset
x Indian Ocean y . Finally, the answer “African” to the question What
is the second largest continent in the world? is mistakenly excluded
because we do not map the adjective to the corresponding noun.

Where does it harm to use databases? A surprising result
was that the inclusion of information from the GNS and the GNIS
database decreased the accuracy of filtering. There are two main rea-
sons. First, WORDNET is sufficiently ignorant: consider the ques-
tion What province is Montreal in? where the candidate answer
“Shanghai” was originally higher ranked that the correct answer
“Quebec”. The database GNIS knows that Shanghai is a province
whereas WORDNET does not, and (incorrectly) excludes “Shanghai”
as falsely typed. Second, data is highly ambiguous: knowledge in-
tensive filtering with the GNIS and GNS database may fail because
countries are usually not filtered from questions with EAT containing
the word “city”. The reason is that almost every country name, such
as “France, China, Island” or “Scotland”, is also a name of a city.

The examples show that filtering with WORDNET alone combines
type-checking and sanity checking. This works fine because both our
question set and WORDNET are biased toward questions about Eu-
rope or America. However, for more specific questions we will need
more information as a fall-back because we cannot use the incom-
pleteness WORDNET as a “sanity check” any more. In this case our
primary task is to reduce the ambiguity of the data in the databases.

Why does re-ranking fail to make a positive impact? Re-
ranking with our best re-ranking strategy RBRR-NCTP-Equal brings
the correct answer to the top in 29 cases. But there are almost as
many questions (25) for which the correct answer is mistakenly
ranked lower. Here are two examples. First, semantics versus word-
usage: for knowledge intensive filtering with databases, candidate
answers are often semantically ambiguous. An example is the cor-
rect answer M6 to the question Which motorway links Birmingham
and Lancaster?. The term M6 has many readings, of which the one
referring to the motorway is only a very special one (that simply

drowns amidst other readings). Second, complex answers produce
non-representative hit-counts: the previous observation can be gen-
eralized. The more specific a candidate answer the more likely it is
to co-occur with the expected answer type. This is because it gets se-
mantically more constrained and the natural semantic ambiguity of
the candidate answer is reduced. A number of errors of our re-ranking
strategy can be traced back to this problem: whenever a name is con-
strained in any way, such as in Eastern Afghanistan, the likelihood
that it is correctly typed increases. The effect of this problem is mag-
nified in our experiments, because our QA system has a tendency to
produce very specific candidate answers (which have low hit-counts).

Lessons learned There is little we can do about the incompleteness
of the knowledge sources and the way the information is represented.
To improve knowledge intensive filtering we will therefore have to
focus on more linguistically informed methods to improve the qual-
ity of the mappings from questions to EATs, and from candidate an-
swers to FATs. A more technical problem is to counterbalance the
effect that complex answers produce non-representative hit-counts.
A closer look at the experimental results show that the NCTP scores
for the correct answer are usually better than for CTP. But although
we introduced NCTP for this purpose the results are not good enough
yet. There are two things we can do: to define a new measure which
gives a stronger impetus to more common candidate answers, and to
avoid the negative effect of the tiling to the type-checking. Conceptu-
ally more interesting is the problem of reducing semantic ambiguity.

Combining methods to reduce semantic ambiguity. Both
knowledge intensive filtering with databases and redundancy-based
re-ranking suffer from semantic ambiguity: candidate answers can
be interpreted in many ways. Prospective solutions could use the
question’s EAT to provide context for restricting the possible in-
terpretations of candidate answers. In both cases knowledge inten-
sive and redundancy-based methods have to be combined: to dis-
ambiguate FATs for filtering we propose to use hit-counts to estab-
lish the confidence in the FATs, and disambiguation for redundancy-
based type-checking makes use of sets of types that are ‘near’ the
EAT in WORDNET. We omit the details due to lack of space.

6 CONCLUSION
Many open domain QA systems answer questions by first extract-
ing a huge number of candidate answers from a document collection,
and then picking the most promising one from the list. One criteria
for this answer selection is whether the candidate answer is of the
semantic type which is expected by the question. We presented two
strategies for answer type checking, filtering and re-ranking, which
we implemented using knowledge intensive methods for the former,
and a redundancy-based approach for the latter. Our experimental
findings clearly show the merits of answer type checking in general,
but there is a mixed message about the two approaches. Knowledge
intensive filtering substantially improves the number of correct an-
swers, but redundancy-based re-ranking does not. Interestingly, the
inclusion of two enormous data-sources actually leads to a decrease
in performance. Both problems can be explained by the semantic
ambiguity of the candidate answer, in both cases the types of can-
didate answers are determined incorrectly because no use is made
of the context provided by the question. In current research we com-
bined knowledge intensive and redundancy-based approaches, where
an implementation of one of them showed first promising results.

Our evaluation is very specific for the large class of questions
about geography that we considered — this is an ideal domain for
knowledge intensive approaches. Nevertheless, we believe that our

approach can be ported to other domains. As we made explicit in the
paper, what is required is an ontology of types, mechanisms to ex-
tract the EATs and mappings from candidate answers to FATs. For-
tunately, the redundancy-based approach is domain independent, so
that we expect to be able to apply substantial parts of our general
strategy in other domains.

ACKNOWLEDGEMENTS
We thank Gilad Mishne for help and advice. This research was
supported by the Netherlands Organization for Scientific Research
(NWO) under project number 220-80-001. Maarten de Rijke was
also supported by NWO under project numbers 612-13-001, 365-
20-005, 612.069.006, 612.000.106, 612.000.207, and 612.066.302.

REFERENCES
[1] J.-B. Berthelin et al., ‘Getting reliable answers by exploiting results

from several sources of information’, in Questions and Answers: The-
oretical and Applied Perspectives, eds., R. Bernardi and M. Moortgat,
(2003).

[2] J. Chu-Carrol et al., ‘A multi-strategy and multi-source approach to
question answering’, in Proceedings of TREC 2002, (2003).

[3] C.L.A. Clarke et al., ‘Statistical selection of exact answers’, in Proceed-
ings of TREC 2002, (2003).

[4] T. Dalmas and B. Webber, ‘Information fusion for answering factoid
questions’, in Questions and Answers: Theoretical and Applied Per-
spectives, eds., R. Bernardi and M. Moortgat, (2003).

[5] G. de Chalendar et al., ‘The question answering system QALC at
LIMSI: experiments in using Web and WordNet’, in Proceedings of
TREC 2002, (2003).

[6] Geographic Names Information System. http://geonames.
usgs.gov/stategaz/index.html.

[7] GEOnet Names Server. http://gnswww.nima.mil/
geonames/GNS/index.jsp.

[8] E. Hovy, H. Hermjakob, M. Junk, and C.-Y. Lin, ‘Question answering
in Webclopedia’, in Proceedings TREC-9, (2000).

[9] V. Jijkoun and M. De Rijke, ‘Answer selection in a multi-stream
open domain question answering system’, in Proceedings ECIR 2004,
LNCS. Springer, (2004).

[10] V. Jijkoun et al., ‘The University of Amsterdam at TREC 2003’, in
TREC 2003 Notebook Papers, (2003).

[11] J. Lin and B. Katz, ‘Question answering from the web using knowledge
annotation and knowledge mining techniques’, in Proceedings CIKM
2003, (2003).

[12] B. Magnini et al., ‘Is it the right answer? Exploiting web redundancy for
answer validation’, in Proceedings ACL 2002, pp. 425–432, Philadel-
phia, (2002).

[13] C. Manning and H. Schütze, Foundations of Statistical Natural Lan-
guage Processing, MIT Press, Cambridge, MA, 1999.

[14] G.A. Miller, ‘WordNet: A lexical database’, Communications of the
ACM, 38(11), 39–41, (1995).

[15] D. Moldovan et al., ‘The structure and performance of an open domain
question answering system’, in Proceedings ACL 2000, pp. 563–570,
(2000).

[16] D. Moldovan et al., ‘Performance issues and error analysis in an open-
domain question answering system’, ACM Transactions on Information
Systems, 21, 133–154, (2003).

[17] C. Monz and M. de Rijke, ‘Tequesta: The University of Amsterdam’s
textual question answering system’, in Proceedings TREC 2001, pp.
519–528, (2002).

[18] J. Prager et al., ‘Question-answering by predicitive annotation’, in Pro-
ceedings SIGIR 2000, pp. 184–191, (2000).

[19] J. Prager et al., ‘IBM’s PIQUANT in TREC 2003’, in TREC 2003 Con-
ference Notebook, pp. 36–45, (2003).

[20] QUARTZ. http://ilps.science.uva.nl/˜qa.
[21] http://www.quiz-zone.co.uk/.
[22] Text REtrieval Conference (TREC). http://trec.nist.gov.
[23] E.M. Voorhees and D.K. Harman, ‘Appendix: Common Evaluation

Measures’, in Proceedings of TREC 2002, (2003).
[24] J. Xu et al., ‘TREC 2002 QA at BBN: Answer Selection and Confidence

Estimation’, in Proceedings of TREC 2002, (2003).

