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ABSTRACT
This article investigates under which video watch conditions 
YouTube’s recommender system tends to develop a preference for 
conspiracy-classified videos. Whereas existing research on so-called 
filter bubbles and rabbit holes tends to rely on non-personalized 
recommendations and on standard watch patterns, this study puts 
personalization and diversified user strategies at the center of its 
design. 20 authenticated bots have been instructed to watch 
YouTube content based on four distinct watch strategies. In a 
baseline strategy, bots watched non-conspiracy videos only. 
Treatment strategies involved watching conspiracy-classified con-
tent, selected based on either non-personalized, partly-personalized, 
or fully-personalized input. Bots watched a total of 15 videos, and 
after each video their top 20 homepage recommendations were 
collected and classified as either conspiracy-related or not. This 
allowed us to measure the impact of each video watched and of 
each watch strategy on the proportion of conspiracy-classified 
content recommended at each step. The same experiment has 
been reverted, exposing the treatment groups to non-conspiracy 
videos only, to assess the persistence of this pattern. Our results 
show that users primed with conspiracy-classified content tend to 
quickly receive a much larger proportion of conspiracy-classified 
recommendations. Inverting this pattern proves significantly more 
difficult than generating it. There are also indications that watch 
strategies relying on personalized content as input might produce 
stronger effects. This article contributes evidence to the argument 
that YouTube’s recommendation system is prone to generating 
strong, potentially pernicious recommendation patterns. Moreover, 
it contributes a replicable methodology that puts personalization 
at the center of the stage in the study of content personalization 
algorithms.

© 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
CONTACT Roan Schellingerhout  roan.schellingerhout@maastrichtuniversity.nl

https://doi.org/10.1080/21670811.2023.2209153

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.
org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is 
properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository 
by the author(s) or with their consent.

KEYWORDS
Filter bubbles; 
recommender systems; 
personalization; YouTube; 
machine learning

ORIGINAL ARTICLE

http://orcid.org/0000-0002-7388-309X
mailto:roan.schellingerhout@maastrichtuniversity.nl
https://doi.org/10.1080/21670811.2023.2209153
http://crossmark.crossref.org/dialog/?doi=10.1080/21670811.2023.2209153&domain=pdf&date_stamp=2023-6-2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.tandfonline.com


2 R. SCHELLINGERHOUT ET AL.

Introduction

With an average of 34.6 billion page views per month, YouTube represents the world’s 
largest video-sharing platform and the second most popular website on the internet 
(Neufeld 2021). Whether related to lifestyle, music, fiction, or politics, an estimated 
70% of the videos watched are discovered by users through YouTube’s recommender 
system (Cooper 2020). Considering the platform’s centrality in contemporaries’ infor-
mation diets, it is important to put its recommendation system under scrutiny in the 
context of broader calls for algorithmic transparency and fairness (Gillespie 2014; 
Milan and Agosti 2019; Sandvig et  al. 2014; Pasquale 2015). YouTube’s recommendation 
system has already been at the center of attention and criticism because of its alleged 
tendency to spiral into bubbles or “rabbit holes” of toxic content (Tufekci 2018). 
Whereas YouTube’s policy statement (YouTube 2021) promises to actively remove 
harmful content, and actions in this sense have been taken, the platform is still home 
to a community of channels promoting conspiracies, “alternative facts,” and/or misin-
formation alike (Allington and Joshi 2020; Faddoul, Chaslot, and Farid 2020).

Arguments such as “filter bubbles” (Pariser 2011) and algorithmic “rabbit holes” (Tufekci 
2018) have firmly entered the public debate. These arguments have for long relied on 
largely anecdotal accounts and might underestimate the relative importance of individual 
selective exposure and social processes of homophily (Bruns 2019; Hosseinmardi et  al. 
2020; Spohr 2017; Zuiderveen Borgesius et al. 2016). However, a growing body of empirical 
studies on the effects of recommender systems is emerging, including on YouTube (Airoldi, 
Beraldo, and Gandini 2016; Bryant 2020; Hosseinmardi et al. 2020; O’Callaghan et al. 2013; 
Ledwich and Zaitsev 2020; Kaiser and Rauchfleisch 2020; Romano et  al. 2021; Roth, 
Mazières, and Menezes 2020), thus far providing mixed evidence. Most empirical research, 
moreover, focused on non-personalized, rather than personalized recommendations – an 
evident limitation for research on the effects of recommendation algorithms, which in 
real-world scenarios heavily rely on personalization.

Wishing to intervene in this pressing and debated issue, this article presents the 
findings of a study based on an original experimental setting, looking at recommen-
dations directed at users engaging with conspiracy-classified content on YouTube. 
Following a sock-puppet approach to algorithmic auditing (Sandvig et  al. 2014), 
brand-new Google accounts have been developed and programmatically directed to 
play YouTube videos according to different “watch strategies,” simulating different 
ways users can engage with conspiracy-related content based on more or less per-
sonalized recommendations. After each video watched, the recommendations provided 
on the homepage of the user were scraped and labeled as being either 
conspiracy-related or not by a machine learning classifier trained on an existing, 
manually labeled dataset (Ledwich and Zaitsev 2020). Consequently, it was possible 
to assess the proportion of conspiracy-classified content at each step, evaluating the 
impact of different watch strategies against the baseline and its dynamics. The research 
design corresponds to an experimental setup where the proportion of recommended 
videos classified as conspiracy is the outcome variable, the number of videos watched 
at each measurement is the within factor, and the watch strategy followed by the 
bots is the between factor.
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The article provides original empirical evidence related to the following question: 
How does YouTube’s recommendation system treat conspiracy-classified content based on 
personalized watch patterns? In other words, the research assessed whether, and under 
which conditions, YouTube’s recommender system tends to develop a preference for 
conspiracy videos over non-conspiracy ones, where “preferring” is defined as the 
situation in which the amount of conspiracy videos present in the recommendations 
is significantly higher than that of a baseline. Whereas we opted to look into con-
spiracy content because of its salience and controversial nature on YouTube, the main 
goal of the research is largely independent of this specific topic and speaks more in 
general to how the platform’s recommender systems can be influenced by preferences 
for any type of specific content signaled by certain watch patterns. Different watch 
strategies have been implemented in order to account for different user behavior; 
the analysis also focused on the dynamics of the process, as important components 
of the problem are how fast a preference for certain types of content is developed, 
and to what extent such a preference is (if at all) forgotten. Hence, the study focuses 
on the following sub-questions:

•	 RQ1: Do watch strategies signaling interest towards conspiracy content increase 
the proportion of conspiracy content being recommended?

•	 RQ2: How Persistent Are These Effects?
•	 RQ3: How Do Specific users’ Watch Strategies, Making Use of More or Less 

Personalized Inputs, Influence These Recommendation Patterns?

In broad terms, the study measured the tendency for YouTube recommendations 
to spiral down into a filter bubble of conspiracy content, as well as the persistence 
of such potentially pernicious patterns. The unit of analysis is actual recommendations 
collected over fifteen iterations, through twenty sock-puppet Google accounts simu-
lating four different watch strategies. We are aware that demonstrating the existence 
of so-called “filter bubbles” or “rabbit holes” would require further conceptual elabo-
ration as well as different types of data and analyses. Nonetheless, this article con-
tributes original empirical evidence to the debate, supporting the claim that conspiracy 
content gets easily, quickly, and persistently preferred once a personalized watch 
pattern signals a preference in this sense.

The article is structured as follows. The literature section introduces the urgency 
of the issue, the ambiguity of existing results, and highlights the originality of this 
study. The methods section describes the data collection process, presents the setup 
of the experiments, and offers an overview of the analysis. The results section show-
cases our findings in relation to dynamics and relational patterns of recommendations. 
The discussion reflects upon the implication of the findings, their relation to previous 
findings, and the limitations of the present study. The conclusion summarizes the key 
points of the article.

To reproduce or extend our study, all described code and data are available on 
the public GitHub repository https://github.com/Roan-Schellingerhout/YouTube_ 
conspiracy_paper.

https://github.com/Roan-Schellingerhout/YouTube_conspiracy_paper
https://github.com/Roan-Schellingerhout/YouTube_conspiracy_paper
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Algorithmic Personalization on YouTube

The Public Relevance of Recommender Systems

Algorithmic systems mediate social processes unfolding online in a variety of ways 
(Gillespie 2014) and are at the center of contention in contemporary societies (Beraldo 
and Milan 2019). Research, advocacy, and activism around the issue of algorithmic 
transparency and accountability have thus spurred in the past years (Noble 2018; 
Pasquale 2015; Sandvig et  al. 2014). One of the key issues associated with the algo-
rithmic mediation of social life is that of algorithmic personalization (Milan and Agosti 
2019), i.e., the way in which complex, often proprietary technologies such as filtering, 
ranking, and recommender systems influence users’ exposure to information by tai-
loring their output to inferred (and, sometimes, engineered) individual preferences.

Sources and content that are algorithmically selected to maximize users’ satisfaction 
(often measured as the time a user spends engaging with content) create personalized 
informational universes on spheres of life that range from leisure activities to political 
participation. The notorious “filter bubble” hypothesis (Pariser 2011) claims that this 
results in users being trapped in streams of content confirming their existing beliefs, 
with detrimental effects in terms of political polarization and the spread of misinfor-
mation. Whereas algorithmic-driven personalization can produce benefits in terms of 
efficient information retrieval and user satisfaction, the fragmented and self-reinforcing 
information universes they produce can also pose threats to social cohesion 
(Whittlestone et  al. 2019).

The observation that algorithmic “pre-selected” personalization is generally paired 
with a conscious “self-selected” one, and the reliance of the filter bubble thesis on 
largely anecdotal accounts, have left some scholars wondering whether societal con-
cerns around the issue have been exaggerated (Zuiderveen Borgesius et  al. 2016). 
Selective exposure to information sources (Frey 1986), predisposition to confirmation 
bias (Nickerson 1998), and homophily in social networks (McPherson, Smith-Lovin, 
and Cook 2001) are all well-researched phenomena that pre-exist the advent of the 
internet. However, the fact that ideological polarization might depend to a larger 
extent on pre-existing individual or social patterns (Hosseinmardi et  al. 2020) does 
not eliminate risks associated with algorithmic ones (Roth, Mazières, and Menezes 
2020). Moreover, pre-selection and self-selection are interconnected with each other 
– more self-selection of specific content can trigger an increase in pre-selection of 
said content and vice versa. Therefore, either type of content selection should never 
be studied in a vacuum, as that will lead to an inadequate understanding of the 
algorithm. The inherent link between the two selection types makes it clear that 
previous works have been limited in their approach, exclusively viewing the type of 
selection as a binary (Roth, Mazières, and Menezes 2020; Hosseinmardi et  al. 2020; 
O’Callaghan et  al. 2013).

YouTube’s Recommender System and Conspiracy Videos

Conspiracy content has been booming on YouTube (Donzelli et  al. 2018), and the 
platform’s recommender system is often understood as prone to the generation of 
“rabbit holes” – recommendation patterns that spiral down into increasingly extremist 
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or generally problematic content. “Alternative news” and conspiracy channels have 
attracted growing audiences, allegedly contributing to political extremism and general 
distrust in mainstream media as well as in science (Tufekci 2018). Whenever this 
increased distrust relates to crucially important topics, such as believing in the efficacy 
of vaccines or in the legitimacy of an electoral process, it can create genuine dangers 
to the public (Rosenbaum 2021). An antidote to polarization and radicalization pat-
terns could be that of diversifying the content presented to users, in order to challenge 
someone’s viewpoints and avoid reinforcing their existing beliefs (Bozdag and van 
den Hoven 2015). However, since the platform’s business model capitalizes on users’ 
attention and engagement with content, YouTube’s algorithm is broadly tuned to 
recommending videos that are likely to generate a lot of watch time (Maack 2019). 
As it turns out, controversial content (such as conspiracies of all kinds) tends to have 
higher audience retention: people keep watching controversial content for longer 
(Birch 2019). Whenever content is surprising (and conspiracy theories often are), it is 
more likely to capture and maintain a user’s attention. Thus, by showing the user 
more diverse content, the system would actively hinder its own goals. Because of 
this design, “conspiracy filter bubbles” could be an endogenous outcome of a recom-
mender system tuned to maximize users’ engagement and adopt estimated watch 
time as the key factor for its selections (Chitra and Musco 2020). Especially individuals 
that are already more predispositioned to be interested in such content (e.g., because 
of their social environment, political affiliation, education) could be susceptible to the 
effects of such phenomena. For example, conspiracy theories have been shown to 
be more potent in convincing those subscribing to right-wing authoritarianism 
Frischlich et  al. (2021), those with lower intelligence Furnham and Grover (2022), and 
those in a less-favorable socio-economic position Freeman and Bentall (2017).

Controversies around platforms’ responsibilities towards content moderation and 
recommendation (Gorwa, Binns, and Katzenbach 2020) have led to the announcement 
of stricter policies. YouTube has ambiguous rules with regard to the spread of con-
spiracy videos on the platform (YouTube 2021). As long as the content does not 
directly incite violence or endanger public health (e.g., misinformation about the 
COVID-19 virus), misinformation is allowed to be shared. As a result, YouTube is home 
to multiple conspiracy communities, and videos related to theories such as “the earth 
is flat and the government is hiding it from us” or “the world is ruled by cannibalistic 
satanic pedophiles” gather millions of views on the platform (Paolillo 2018; Miller 
2021). These communities not only harbor on YouTube itself, but also on so-called 
“dark websites,” such as Gab and 8Kun (formerly 8chan) – platforms that receive 
limited moderation, causing them to be safe havens for extremist content (Zeng and 
Schäfer 2021). However, such websites often have limited resources, which leads to 
a lack of video hosting functionalities. As a result, YouTube is the most-cited website 
on dark websites, functioning as an intermediary platform. Considering most legacy 
media have stricter policies on conspiracy content in place, this makes YouTube a 
sort of safe haven for such content, which may contribute to the behavior of its 
algorithm.

YouTube’s algorithmic recommendations have a remarkable influence on users’ 
content consumption (Cooper 2020). YouTube’s recommender system tries to suggest 
videos based on the expected watch time they will generate, rather than the 
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probability of a user clicking on them (Covington, Adams, and Sargin 2016), a decision 
made in order to decrease the likelihood of deceptive, clickbait videos being recom-
mended. In order to keep the user on the website as long as possible, which is 
profitable for YouTube, the algorithm prefers recommending videos that it suspects 
the user will watch for a longer period of time, allegedly even when they may contain 
harmful or otherwise toxic content (Maack 2019; Tufekci 2018). YouTube’s recommender 
system makes its decisions by combining the similarity of content and signals from 
users’ watching behavior. According to YouTube (Ledwich and Zaitsev 2020), a user’s 
viewing behavior is responsible for approximately 70% of their recommendations.

Existing Studies and Contribution

Existing research on recommendation patterns on YouTube shows mixed results. This 
might stem from the great variability in research design, combining different sources 
of data (YouTube’s API or users’ interface), units of analysis (channels or videos), rec-
ommendations type (watch-next or homepage), recommendation depth (one or more 
levels) and modeled user (authenticated or not).

Roth, Mazières, and Menezes (2020) analyzed confinement patterns within networks 
of non-personalized, “watch-next” video recommendations linking channels. According 
to their findings, these recommendations quickly lead to a decrease in information 
diversity and tend to produce recommendation patterns more and more homogeneous 
in terms of broad topics (e.g., politics, music, entertainment). They also speculate that, 
as soon as the algorithm collects and includes information about a user in its rec-
ommendations, personalized recommendations could lead to an even stronger lim-
itation of recommendations’ variety. Similarly, Romano et  al. (2021) found that 
watch-next recommendation patterns generated by (non-logged) users primed to 
signal interest towards either progressive or conservative channels, produce differences 
in terms of the type of sources and content recommended.

In the context of extremist bubbles, research based on large-scale longitudinal 
data of real users’ browsing behaviors (Hosseinmardi et  al. 2020) found evidence for 
a small but growing echo chamber of far-right content; however, a preliminary analysis 
on the causes attributes this outcome more to individual consumption patterns than 
to YouTube’s recommendation system. A study relying on data obtained from YouTube’s 
API, instead, provided evidence that users accessing extreme right videos are likely 
to be recommended further extreme right content (O’Callaghan et  al. 2013). Similarly, 
in their large-scale audit of radicalization patterns on YouTube, Ribeiro et  al. (2021) 
found that communities at different degrees of extremism exhibit important overlaps, 
and that users tend to migrate from more moderate to more extreme ones. Kaiser 
and Rauchfleisch (2020) measured strong homophily (i.e., patterns of homogeneous 
associations) in networks of channel recommendations, with implication for the for-
mation of far-right communities; they also claim that YouTube’s recommendations 
point from moderate towards extremist channels more often than the other way 
around. In a study focusing more specifically on conspiracy theories, Alfano et  al. 
(2021) found that following recommendations leads to a substantial proportion of 
conspiracy content when starting the query from specific topics, potentially associated 
with conspiracies. They specifically found that starting on topics more commonly 
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associated with conspiracies led to a higher level of eventual recommendation 
homogeneity.

On the other side of the spectrum, in their analysis of how YouTube’s recommender 
system treats more or less politically extreme channels, Ledwich and Zaitsev (2020) 
overturn common assumptions by showing how mainstream sources seem to be 
advantaged, compared to extremist ones, in video-level watch-next recommendations 
obtained through anonymous accounts. In an attempt to audit Google’s announcement 
of a crackdown on conspiracy and misinformation content, Faddoul, Chaslot, and 
Farid (2020), also focusing on watch-next recommendations, were largely able to 
corroborate such claims. However, their results signal a persistent (although, weakened) 
higher likelihood of a conspiracy video generating a conspiracy recommendation.

As this review suggests, despite the growing cleavage between supporters and 
deniers of the filter bubble and rabbit hole hypotheses, empirical evidence is still 
inconclusive and/or contradictory. One reason for this, besides the methodological 
and epistemological complexity of the issue, might be in the variety of research 
designs that can be developed to tackle it. The most notable aspect is the tendency 
of most research on personalization algorithms to rely on non-personalized 
recommendations.

Most existing studies discard content-personalization by adopting anonymous users 
not logged in with an account (Faddoul, Chaslot, and Farid 2020; Ledwich and Zaitsev 
2020; Roth, Mazières, and Menezes 2020; Ribeiro et  al. 2021) or by using YouTube’s 
API outcome as proxies for recommendations (Airoldi, Beraldo, and Gandini 2016; 
O’Callaghan et  al. 2013). However, actual recommendations are not the deterministic 
output of pre-existing related video networks, such as those retrievable via YouTube 
API or via one-shot anonymous scraping sessions. In order to audit the functioning 
of a recommender system in real-world scenarios, one needs to engage with person-
alization (Milan and Agosti 2019), and this can only be achieved by looking at lon-
gitudinal data of (real or simulated) users, possibly logged in with their Google Account 
credentials. By making use of some form of personalization (priming non-logged-in 
users with an ideologically-polarized watch history and retaining cookies), Romano 
et  al. (2021) provide preliminary evidence for the emergence of ideology-specific 
recommendation patterns.

As a corollary, most existing studies try to assess the behavior of recommender 
systems based on one standard click strategy (e.g., the first watch-next recommen-
dation); however, there is no such a thing as an “average user” (Roth, Mazières, and 
Menezes 2020), and the outcome of algorithms might be more or less sensitive to 
different users’ behaviors. In particular, the tendency of users to make use of (more 
or less) personalized recommendations as input for their watch patterns can have a 
substantial impact on the videos recommended as output (Solsman 2018; Cooper 
2020). We can expect that the fact that a YouTube user primarily watches recom-
mended videos might be interpreted as implicit positive feedback, further steering 
recommendations toward a certain type of content.

Moreover, little is known about how quickly a user’s recommendations adapt to a 
user’s behavior, even though this is a critical aspect when it comes to the generation 
of so-called rabbit holes, as several studies generally focus on one-step recommen-
dations. In other words, we do not know how strong a user’s signaled preference for 
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certain types of content needs to be in order for it to effectively steer recommenda-
tions towards that type of content, nor how easy or difficult it is to revert the effects 
of a user’s priming on the recommendation system.

Against this background, the present study followed an original experimental setup 
that simulates actual patterns of personalized recommendations. It adopted sock-puppet 
Google accounts programmed to follow different watch patterns, each carrying their 
watch history to the next step of recommendations. This allows us to assess the 
impact of different watch strategies, all signaling interest towards conspiracy content 
by following less or more personalized inputs, on the strength and dynamics of the 
recommendation system’s preference for conspiracy videos.

Materials and Methods

In order to determine how different watch strategies affect YouTube personalized 
recommendations in relation to conspiracy content, a sock-puppet algorithmic audit 
approach (Sandvig et  al. 2014) was designed. Twenty ad hoc Google accounts have 
been generated, and programmatically controlled to operate on YouTube according 
to four distinct watch strategies modeling four distinct users’ behavior, each taking 
more and more personalized recommendations as input. The bots, logged in through 
their Google account, watched 15 videos in sequence each, and at each iteration, 
the top 20 homepage recommendations were scraped and classified into conspiracy 
versus non-conspiracy content using a support-vector machine (appendix Machine 
Learning). Consequently, it was possible to characterize the effects of different watch 
strategies on the network of video recommendations produced in terms of the pro-
portion of conspiracy content over time. Moreover, another experiment was conducted 
in order to assess how long would it take for each of the model users “trapped” in 
a (potential) bubble to “escape” it. The article thus compares the effect of different 
watch strategies on the tendency for a user to spiral down into a stream of conspiracy 
content, as well as the persistence of said (potentially) pernicious algorithmic outcome. 
Data were collected in the first week of May 2021. The following sections describe 
the experimental setup.

Watching Conspiracy Videos

Google Login
Google’s strict policy regarding automated activity poses many obstacles to logging 
into a Google account using automation software. To circumvent this restriction, two 
steps had to be taken. Firstly, the Selenium WebDriver1 was paired with the 
Selenium-Stealth package,2 which removes metadata about the current browser, thus 
masking the fact a WebDriver is being used. Removing metadata causes Google’s 
login service to trigger a warning that prevents a user from logging in. To avoid this 
warning, the Google accounts were created within the WebDriver. Therefore, all 20 
accounts were manually created using ChromeDriver. Since Google accounts require 
a phone number verification upon creation, ten free (prepaid) SIM cards were ordered 
from various providers in order to create the accounts. Each SIM card could create 
two to three accounts before being blocked due to suspicious activity.
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The Watch Strategies
After all accounts had been created, they were divided into four distinct watch strat-
egies, each representing distinct user behavior. Each strategy was implemented 
by 5 bots.

1.	 Random non-conspiracies (baseline). In the first watch strategy bots watch ran-
dom non-conspiracy videos from a dataset (for a description of the dataset see 
appendix Dataset). This watch strategy is used as the baseline to compare the 
other three strategies.

2.	 Random conspiracies. In the second strategy bots watch random conspiracy 
videos from the labeled dataset. This watch strategy should provide signals of 
interest toward conspiracy content through a watch pattern not based on 
inputs already subject to personalization.

3.	 Watch-next recommendations. The third strategy relies on the watch-next, partly 
personalized recommendations as input, although it consists of more stages. 
It starts as strategy 2 (it chooses a random conspiracy video) after which the 
bots watch the four most similar videos in the dataset (similarity was defined 
as the cosine similarity of the titles, descriptions, transcripts, channel descrip-
tions, and channel keywords of the videos) in order to allow for the algorithm 
to “get a feel” for the user’s interests. After watching those five initial videos, 
it starts looking at the recommended videos displayed next to the current 
video and selects the one that is most likely to be a conspiracy video (out of 
the first 20 recommendations). The watch-next recommendations are based 
on both the content of the current video and the user’s past behavior.

4.	 Homepage recommendations. The fourth strategy is similar to the previous one, 
but rather than choosing a recommended conspiracy video from the watch-next 
recommendations listed next to the current video, it chooses a (likely) con-
spiracy video from the recommendations listed on the user’s homepage (again, 
out of the top 20). The homepage recommendations include more personalized 
content than the watch-next recommendations (Roth, Mazières, and Menezes 
2020); compared to the third strategy, this will lead to the user watching more 
personalized, rather than content-based, recommendations.

For strategies 3 and 4, the likelihood of a recommendation being a conspiracy 
video was estimated by a neural network (see appendix Machine Learning) using the 
title, description, transcript, channel description, and channel keywords of the spe-
cific video.

Each strategy was executed by 5 different accounts in order to control for random 
fluctuations. Each account watched a total of 15 videos as described by their watch 
strategy, for a total of 300 videos. To simulate real-world user behavior, the average 
watch time proportion for the videos was normally distributed with a mean of 55% 
and a standard deviation of 25% (Park, Naaman, and Berger 2021; Lang 2018). In the 
same vein, the clicking behavior of users was simulated as accurately as possible. 
Whenever, for strategies 3 and 4, none of the recommendations were predicted to 
be conspiracy videos, the probability of a user clicking on a video at position k within 
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a given list of recommendations (its click-through rate: CTR), was determined using 
the following formula:

	
CTR k N k

n
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n

N( ; , ) /
( / )

�
�

�
��
1

1
1

	 (1)

Wherein N is the total number of recommendations (N = 20 in our case) and α is 
the distribution’s exponent value (a b d× × ) (Zhou, Khemmarat, and Gao 2010). Using 
this formula, when considering the first twenty recommendations, the first recom-
mendation will have a click-through rate of approximately 20.6%, after which the CTR 
quickly decreases, until a probability of 1.9% at the twentieth recommendation.

Running the Bots
After the accounts were logged in, they started watching YouTube videos according 
to their watch strategy. However, some restrictions were implemented to avoid exces-
sive total watch time. For example, bots were not allowed to watch videos over an 
hour long, nor live streams that can theoretically go on for an indefinite amount of 
time. Additionally, the random videos at the start of the third and fourth strategies 
were first manually inspected to make sure the bots would not start the experiment 
by watching a falsely flagged conspiracy video. Considering the potential presence 
of false positives in the tested classification outcome, it is possible that a few videos 
that are flagged as conspiracy videos are in reality not. Despite the likelihood of a 
false positive being generally low, the selection of a non-conspiracy video as a seed 
for the watch strategies could have substantially altered the results, hence the manual 
intervention to avoid the possibility.

Data and Analysis
Running the script for all 20 bots resulted in two different datasets: the first containing 
the videos watched by the bots (watched videos, 300 in total) and the second con-
taining the homepage recommendations for all bots after each video watched (home-
page recommendations, 6,000 in total). The outcome variable has been computed at 
each step (i.e., number of videos watched) by looking at the top 20 homepage 
recommendations, rather than on “watch-next,” because those appear to be the most 
personalized and less researched ones (Faddoul, Chaslot, and Farid 2020). These rec-
ommendations were then labeled as being either conspiracy or non-conspiracy videos 
by the classifier. Additional information about the video was collected via YouTube’s 
API: title, description, transcript, (dis)likes, views, video duration, channel description, 
and channel keywords. The title, description, transcript, channel description, and 
channel keywords were collected in order for the classifier to label the videos. Since 
the dataset used to prime the watch strategies dates back to 2017, a small number 
of its videos are not hosted on the platform anymore. Additionally, some videos 
encountered by the bots were labeled as age restricted by YouTube, prohibiting the 
bots from watching them. This resulted in a small number of missing observations. 
In order to avoid further reducing the sample size, we decided to estimate the missing 
values by averaging the values at the previous and at the following step.
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The data collected allowed us to compare the proportion of recommended videos 
classified as conspiracy content across different watch strategies. Descriptively, this 
consisted in calculating the ratio of conspiracy-classified recommendations for each 
“treatment” strategy (strategy 2, 3, and 4) over the baseline (strategy 1). The ratio is 
calculated for each number n of watched videos as the number of the top 20 rec-
ommendations classified as conspiracy videos for strategy S, divided by the same 
measure but then for the random non-conspiracy strategy 1. The ratio thus indicates 
how much more conspiracy videos are recommended in strategy S than in the random 
non-conspiracy watch strategy.

In order to test for statistical significance, we conducted a Mixed ANOVA using 
the number of videos watched as the within-subject factor, the watch strategy 
followed by each group of bots as the between-subject factor, and the proportion 
of conspiracy-classified videos over the 20 collected videos for each step as the 
dependent variable. This model allowed us to test whether, overall, the number of 
videos watched and the different watch strategies influence the behavior of the 
recommendation system. Moreover, we focused on the interaction effects in the 
pairwise comparisons; this made it possible to determine at which number of 
videos watched each relevant watch strategy exhibits significant differences from 
the baseline strategy, understanding the dynamics of “falling” into a conspiracy 
bubble. In order to unpack the effects of watch strategies on recommendations 
further, we computed and compared, for each strategy, the conditional probabilities 
of within-class recommendations (i.e., non-conspiracy content producing 
non-conspiracy recommendations and conspiracy content producing conspiracy 
recommendations) and across-class recommendations (i.e., non-conspiracy content 
producing conspiracy recommendations and conspiracy content producing 
non-conspiracy recommendations).

Persistence of Recommendation Patterns

Another experiment was set up in order to assess the influence of different watch 
strategies on the persistence of (potential) recommendation patterns generated through 
the previous one.

Since watch strategy 1 represents the baseline, its five bots were ignored. The 
remaining bots, still primed with their respective watch strategy, were fed a total 
of 15 non-conspiracy videos, and their homepage recommendations were stored 
as in the previous setup. The title, description, transcript, channel description, and 
channel keywords of each recommendation were again downloaded for the clas-
sifier to predict whether each recommendation was a conspiracy video. The pro-
portion of conspiracy-classified recommendations was subsequently analyzed again 
in terms of watch strategy and the number of videos watched. By doing so, it 
was possible to observe how many videos each bot needed to watch for its rec-
ommendations to start looking similar to that of the baseline again, hence “escap-
ing” a bubble of conspiracy-related content. The Mixed ANOVA post hoc interaction 
effects between non-baseline strategies versus the baseline at each number of 
videos watched were used again to test the persistence of the effects created by 
different watch strategies.
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Conspiracy Videos Classification

The whole research relies on the capacity to discriminate between conspiracy and 
non-conspiracy content. Considering the large number of videos being recommended, 
determining each video manually would have been unfeasible; hence we trained 
conspiracy video classifiers based on a dataset containing 7000 YouTube channels 
manually annotated as a conspiracy channel or not (with 2825 conspiracy channels) 
(Ledwich and Zaitsev 2020).

For each channel, the title, description, and transcript of the ten most recently 
uploaded videos were downloaded using YouTube’s API. Additionally, the channel 
description and channel keywords were added to each video. Each video received 
the conspiracy label of its channel. Table A.1 contains example data. This dataset 
contained 65.683 unique YouTube videos, with 22.156 labeled as conspiracy. The two 
classes were balanced by undersampling non-conspiracy videos so that the classifier 
would not develop a bias for non-conspiracy videos (Lemaître, Nogueira, and Aridas 
2017; Sun, Kamel, and Wang 2006). Considering the large size of the dataset, under-
sampling was preferred over implementing class-weights (Brownlee 2021). The resulting 
set contained 44.312 videos.

Performance Optimization

After splitting the dataset into a training (80% of data), validation (10% of data), and 
test (10% of data) set, the hyperparameters of five different algorithms were tuned to 
get the optimal performance (Feurer and Hutter 2019). Performance was measured 
using four distinct metrics: accuracy, which shows the share of correct predictions; 
recall, which shows what fraction of truly positive samples were correctly labeled as 
such; precision, which shows what part of the positive predictions were correct; and 
the F1-score, which is the harmonic mean of the recall and precision (Sokolova and 
Lapalme 2009). For each classifier, different configurations of hyperparameters (such 
as the kernel and the penalty parameter) were systemically tested – each possible 
combination was tried. The classifiers were trained on the training set and the optimal 
hyperparameters were determined based on the performance of the classifiers on the 
validation set. By saving these performance measures for every configuration, for every 
classifier, the optimal configuration of each classifier could be determined. Lastly, the 
classifiers were equipped with their optimal hyperparameters and then tested for on 
the test set. By comparing the performance of every optimally configured classifier 
on the test set, the best-performing classifier could be chosen (Reitermanova 2010).

We trained video classifiers using five approaches (k-nearest neighbors, support-vector 
machine, neural network, logistic regression, and ridge regression) and an ensemble. 
Apart from k-nearest neighbors, all classifiers scored very similarly with F1 scores 
between .9 and .92, see Figure 1. Appendix Machine Learning contains the details 
on the hyperparameter settings used for each method.

We applied the classifier to new unseen data encountered in the experiments. We 
used the SVM for the final counts and the neural network for the real-time classifi-
cation of recommendations because of its inherent use of probabilities, rather than 
confidence scores.
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Although the classifier’s outcome cannot be considered 100% accurate, and the 
notion of “conspiracy-related content” can be hard to define even by human coders, 
inaccuracies or ambiguities in the classification task do not significantly undermine 
the main goal of the experiments: that of assessing the respective effects of different 
watch patterns on the behavior of YouTube’s recommendation system.

Results

This section presents the results of our two experiments, answering our research 
questions.

Experiment 1: Spiraling into Conspiracy Bubbles

Aggregate Ratios
The first experiment measured the tendency of YouTube’s recommender to develop 
a preference for conspiracy videos depending on the different watch strategies.  
Table 1 presents the ratio between the total number of recommended conspiracy 
content, accumulated over 15 videos watched by 5 bots per strategy, versus the 
non-conspiracy baseline (strategy 1). This value can be interpreted as the increase in 
the likelihood of YouTube’s recommender suggesting conspiracy content. These results 
show that watch patterns based on conspiracy content do produce a largely higher 
proportion of conspiracy content as recommendations. Moreover, the effect is stronger 
for watch strategies involving personalized content.

Figure 1.  Precison, Recall, and F1-scores for video conspiracy classification for each classifier with 
optimized hyperparameters (average score over both classes). A train-validation-test split was 
performed to determine model performance. Classifiers were trained on 80% of the data 
(N = 35.450). Optimal hyperparameters were determined based on performance on the validation 
set (N = 4.431, 10% of the data). The shown scores are the performance of the optimized models 
on the test set, which consisted of the left 10% of the data.
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Effects of Strategies and Videos Watched
The results presented refer to aggregated values over a sample of observations (5 
bots) and a number of steps (15 videos watched) per watch strategy. In order to test 
if the differences are statistically significant, we ran a Mixed ANOVA model, as described 
in Materials and methods (Table 2).

The watch strategies have significant effects on the proportion of conspiracy-classified 
recommendations (t). The number of videos watched has a (positive) significant 
influence on the proportion of conspiracy content recommended l). There are also 
significant interaction effects of watch strategies and the number of videos watched 
(w), signaling that the effects of different watch strategies are significantly different 
in different points of “time” (i.e., videos watched). Thus, the different strategies have 
a significant impact on the number of conspiracy videos being recommended, as well 
as the “speed” with which this impact occurs.

As our main goal is to assess the difference between treatment strategies and the 
baseline, we turn to the post hoc pairwise comparisons to evaluate differences 
between specific pairs of strategies (Table 3).

More or Less Personalized Strategies
Having assessed that watch patterns including conspiracy content tend to generate 
significantly more conspiracy recommendations, we now turn to test whether increas-
ingly personalized watch strategies tend to have stronger effects on this pattern. This 
hypothesis seems corroborated by the descriptive aggregate and average values 
presented in Table 1 and Figure 2. In order to do so, we look at the post hoc com-
parisons contrasting individual treatment strategies reported in Table 3. Whereas the 
odds ratio effects reported before are pretty clear in indicating a hierarchy between 
watch strategies in terms of “degree of personalization,” the results of the statistical 
test are more ambiguous. As Table 3 shows, all the treatment strategies significantly 
differ from the baseline (strategy 1) in terms of the proportion of conspiracy-classified 
content recommended to the bots. As already noted in terms of ratios, and reported 
here in terms of the difference in means of probabilities (MD), the effect seems to 
be stronger the more personalized the watch strategy is (e.g., the difference between 
strategy 4 and strategy 1 is 35.5%, while the difference between strategy 2 and 
strategy 1 is 18.7%). However, when confronting different treatment strategies, the 
only statistically significant result is between strategy 4 (fully personalized), and strat-
egy 2 (non-personalized). Despite a remarkable difference in terms of ratios (see 1), 
no statistically significant difference is observable between strategy 3 (partly person-
alized) and strategy 2, and between strategies 4 and 3. This ambiguity is also evident 
in Figure 2 when looking at the large intersection in confidence intervals, represented 
by the overlap in the areas around the lines.

Table 1. R atio of total conspiracy-classified recommendations for each strategy versus the baseline 
(for each strategy averaged over 5 users).

Random conspiracy Watch-next Homepage

Ratio vs. strategy 1 3.8 4.8 6.3

E.g., after watching 15 videos following strategy 2, a user gets recommended 3.8 times more conspiracy videos 
than when watching according to the baseline watch strategy.
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Strategies’ Dynamics versus the Baseline
Figure 2 plots the proportion of conspiracy-classified content at each moment in time 
for the four watch strategies, thus showing the evolution of conspiracy-related “bub-
bles” per each watch strategy.

As Figure 2 indicates, all strategies (excluding the baseline) quickly (after 4 to 6 
initial videos) lead to a permanent significant increase in the number of conspiracy 
recommendations on the user’s homepage. This figure gives a more fine-grained 
picture of the experiment compared to only the end results given in Table 1.

Strategy 2 (random conspiracy videos) produces the lower overall effects, and takes 
the longest to generate consistently significant differences from the baseline. Besides 
an impromptu significant difference at step 1, bots following this strategy need to 
watch 6 videos before the difference with the baseline becomes stably significant, 
with 21.5% of its recommendations consisting of conspiracy-labeled videos (3.1 times 
higher than the baseline). The proportion of conspiracy videos being recommended 
to the users of this strategy keeps steadily growing, eventually reaching its maximum 
at 42%, a measure 5.3 higher than the corresponding value in the baseline.

Strategy 3 (watch-next recommendations) spiraled towards a conspiracy bubble 
quicker, with 4 videos needed for the difference with the baseline to become signif-
icant at 26% (corresponding to a ratio of 4.7). Following this head start, the increase 
comes to a halt, with step 7 producing non-significant differences, and declining after 
peaking at 9 videos watched with 46% of conspiracy content recommended (corre-
sponding to a ratio over the baseline of 6.6). The percentage of conspiracy recom-
mendations settles then around the value of 35%. Overall, compared to strategy 2 
(random conspiracy), strategy 3 presents a higher proportion of conspiracy-related 
recommendations until a steady decline from video 10.

Strategy 4 (homepage recommendations) also takes 4 steps to generate sig-
nificant differences (with 23%, 4.2 times higher than the baseline), however, it 
ends up being the watch strategy that causes, significantly, the most conspiracy 

Table 2. R esults of the Mixed ANOVA model with watch strategy (between factor), number of 
videos watched (within factor), and proportion of conspiracy-classified content (dependent 
variables).
Factor DF1 DF2 F p x

a

strategy 3 16 18.47 0.000 .41
vids_watched 14 224 12.78 0.000 .16
interaction 42 224 2.69 0.000 .10

Table 3.  Post hoc pairwise comparison of Mixed ANOVA model with watch strategy (between 
factor), number of videos watched (within factor), and proportion of conspiracy-classified content 
(dependent variables).
A B p MD

Baseline Random conspiracy 0.000 −0.187
Baseline Watch-next 0.002 −0.251
Baseline Homepage 0.003 −0.355
Random conspiracy Watch-next 0.160 −0.064
Random conspiracy Homepage 0.041 −0.168
Watch-next Homepage 0.168 −0.105
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content being recommended. By definition, strategy 3 (watch-next) and strategy 
4 (homepage) behave identically until video number 5, and indeed differences 
between the two strategies up to then are not observable. However, as soon as 
strategy 4 diverges from strategy 3 by taking into account homepage recommen-
dations, the percentage of conspiracy recommendations increases drastically, 
quickly reaching 58% at video watched number 7 (corresponding to a ratio over 
the baseline of 6.6). After this, the value oscillates between 46% and 60% until 
the end of the experiment, producing at step 10 almost 17 times more 
conspiracy-classified recommendations than the baseline. These results indicate 
that, in terms of average values, the homepage recommendations seem to have 
stronger effects on overall recommendations.

Experiment 2: Escaping from the Spiral

After assessing the relative consistency of conspiracy-related recommendations, and 
the pace at which different watch strategies fall within this pattern, it is interesting 
to measure how long it takes for the recommender system to stop recommending 
conspiracy content at an above-baseline rate. If the former can be considered a proxy 
of whether and how easily conspiracy bubbles are generated, the latter tells us about 
the persistence of those recommendation patterns. Each of the bots was subsequently 
fed 15 non-conspiracy videos, and their recommendations were collected at each 
step, to measure the impact of this “de-radicalization” strategy. Figure 3 shows the 
dynamics of the percentage of conspiracy-related videos over the number of videos 
watched, grouped per watch strategy. Again, the statistical significance in differences 
with the baseline at each step is indicated based on the post hoc comparison fol-
lowing the same Mixed ANOVA model, using strategy 1’s data from the previous 
experiment and this experiment’s data for the treatment strategies.

Figure 2.  Proportion of conspiracy recommendations after each number of videos watched per 
strategy. Line values correspond to averages, areas correspond to 95% confidence intervals. Crossed 
dots correspond to significant differences (p < 0.05) compared to the baseline (strategy 1).
Note: Significance to the baseline was tested through independent samples t-tests between each strategy and the baseline 
at each number of videos watched.
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While in the previous experiment it took only a handful of watched videos for 
treatment strategies’ recommendations to start preferring conspiracy content, escaping 
this “spiral” seems more difficult. In all relevant watch strategies, the share of con-
spiracy content recommended manifests a slow tendency to decrease, and the dif-
ference with the baselines sporadically chases to be significant, especially for strategy 
2 (non-personalized). However, the value remains significantly higher than the baseline 
in most of the points of observations, even after the users have watched a substantial 
number (up to 15) of non-conspiracy videos.

Discussion

Interpretation of the Results

RQ1 – Proportion of Conspiracy Recommendations
The results of our experiment provide strong evidence that YouTube’s homepage 
recommendation system is highly sensitive to the signals provided by specific watch 
patterns. When primed with videos classified as conspiracy content, the probability 
of further conspiracy-classified content being recommended increases dramatically 
for each of the three “treatment” watch strategies developed. Moreover, within each 
watch strategy, the number of videos watched produces a significant effect on the 
proportion of conspiracy-classified recommendations, indicating that these effects are 
cumulative. The dynamic of recommendations across the number of videos watched 
systematically generates, relatively early, significant differences between treatment 
and baseline watch strategies at different numbers of videos watched. Watching 
random non-conspiracy videos does not produce any trend in the proportion of 
conspiracy videos recommended. Watching conspiracy content, instead, quickly intro-
duces a preference for further conspiracy content.

Overall, these results suggest that YouTube’s homepage recommendation system 
is prone to considerably, systematically, and quickly recommending a disproportionally 

Figure 3.  Proportion of conspiracy recommendations after each number of non-conspiracy videos 
watched per strategy (primed in experiment 1). Line values correspond to averages, areas corre-
spond to 95% confidence intervals. Crossed dots correspond to significant differences (p < 0.05) 
compared to the baseline (strategy 1).
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higher percentage of certain types of content if the user signals interest towards this 
type of content through their watching behavior – even when it comes to potentially 
problematic content, such as conspiracies.

RQ2 – Reverting the Pattern
As the results of the second experiment indicate, reverting this pattern proves more 
difficult than generating it. Despite the proportion of conspiracy content somewhat 
declining once users stop signaling interest through their watch patterns, even after 
15 unrelated videos the algorithm is in most cases still inclined to recommend a 
significantly higher proportion of conspiracy content than the baseline. The observed 
trend does not seem to suggest that a further drop would be only few steps ahead. 
Moreover, the decline in preference for conspiracy recommendations seems moderate, 
especially for watch strategies adopting personalized content as input (strategies 
3 and 4).

RQ3 – Personalized Strategies
Different treatment strategies have been designed according to different logic: strategy 
2 (random conspiracies) is based on non-personalized inputs; strategy 3 (watch-next 
recommendations) is based on partly personalized inputs; and strategy 4 (homepage 
recommendations) is based on fully personalized inputs. Whereas the effect of treat-
ment strategies on recommendation patterns is evident both in terms of descriptive 
ratios and in terms of statistical tests, the results are more ambiguous when it comes 
to differences between specific watch strategies, i.e., the role of personalized inputs 
in influencing the recommendation output. Based on aggregate results, the more 
personalized the watch strategy, the higher the ratio of conspiracy recommendations 
versus the baseline, as well as the higher the probability of more conspiracy content 
being recommended as output to conspiracy content being watched as input. This 
observation holds true in terms of average proportions of conspiracy-classified rec-
ommendations over the number of videos watched: differences in average proportions 
at each step seem to be consistent with the idea of the stronger effect of more 
personalized strategies. However, the only difference that produces statistically sig-
nificant results is the one between strategy 4 (fully personalized) and strategy 2 
(non-personalized). Consequently, we cannot draw definite conclusions on the hypoth-
esis that the more personalized the input of the watch strategies, the more person-
alized the output of the recommender system, although the overall average measures 
and the comparison between the fully personalized and the non-personalized strat-
egies provide indications in this sense.

Rabbit Holes and Filter Bubbles vs. Algorithmic Personalization

In formulating our research questions and interpreting our results, we avoided making 
bold and specific references to notions such as “rabbit holes,” “filter bubbles,” and the 
fallacies of YouTube’s content moderation, as these are generally hard to define in 
operative terms. Nonetheless, our article contributes clear results and an innovative 
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methodology to these tangent debates. Our results are compatible with the idea that 
YouTube’s recommender system is susceptible to the creation of filter bubbles and/
or rabbit holes even when it comes to debatable, potentially harmful content such 
as conspiracy videos. Despite Google’s efforts to reduce the visibility of such content 
in its recommendations (YouTube 2019), a real-world scenario of watch patterns easily, 
quickly, and persistently generates a substantial preference for conspiracy content 
based on signals of interest. This effect might be particularly strong when users watch 
videos recommended by the platform, either as watch-next or (especially) homepage 
recommendations, although more evidence is needed in this sense.

Existing studies on YouTube’s propensity to generate filter bubbles in general, or 
filter bubbles of extremist content in particular, thus far provided contrasting evidence. 
In spite of the growing skepticism around the role of recommendation systems in 
trapping users in bubbles or rabbit holes of extremist content (Bruns 2019; Hosseinmardi 
et  al. 2020; Zuiderveen Borgesius et  al. 2016), Roth, Mazières, and Menezes (2020) 
highlighted a tendency for recommendations to generate bubbles of homogeneous 
content in terms of broad topics, and Romano et  al. (2021) provided support to the 
argument that YouTube’s recommendation system is sensitive to personalized input 
in terms of sources and content recommended along political partisanship lines. The 
idea of extremist (mostly, right-wing) “rabbit holes” being a worrisome trait of the 
platform’s algorithmic system (Tufekci 2018) is supported by some studies (O’Callaghan 
et  al. 2013; Ribeiro et  al. 2021) and disconfirmed by others (Hosseinmardi et  al. 2020; 
Ledwich and Zaitsev 2020). Focusing on conspiracy content more specifically, Faddoul, 
Chaslot, and Farid (2020) were able to back Google’s claims about the reduced visi-
bility of such content after the 2019 crackdown, however, they also highlight that 
conspiracy videos are still likely to generate more conspiracy videos in watch-next 
recommendations. Such an inconclusive body of evidence is surely related to the 
infancy of the field of study and the number of factors at play, as well as the het-
erogeneity in research designs adopted.

Whereas, mostly for reasons of convenience, most existing studies discard person-
alization (i.e., users’ watch history stored in the browser or, even better, in Google 
Accounts) from their analysis, this is a crucial aspect to consider when assessing the 
concrete effects of algorithms such as recommender systems on users’ information 
diets (Milan and Agosti 2019). The present study addresses personalization on three 
levels. First (and foremost), it deals with personalized (albeit fictional) recommenda-
tions as the outcome variable, instead of observing anonymous users or API responses. 
Using bots logged in with fresh-made Google accounts allowed our experimental 
setup to better approximate the natural conditions of recommendation patterns 
involving real-world users. Recommendation systems such as YouTube’s are complex 
algorithms aggregating inputs related to content and to users’ behavior. They are 
dynamic and local systems that, when reduced to static and universal proxies, gen-
erate misleading, ecologically invalid operational definitions of what “algorithmic 
recommendations” are. Secondly, this research distinguishes between personalized 
and non-personalized recommendations as input. This permits us to reflect upon how 
different sources that bring a user to watch a certain video (i.e., external referral, 
videos suggested after the current one, or videos displayed on the homepage) might 
have different impacts on the variety and quality of the content they are 
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recommended. By differentiating watch strategies, this article shows that a user’s 
individual watching behavior influences the strength of recommendation patterns as 
well as their persistence. Following recommendations as input might generate stronger 
effects on recommendation patterns than accessing videos through their URLs, and 
following homepage recommendations might generate different results than following 
watch-next ones. Thirdly, while most existing research focuses on the video-specific 
recommendations listed next to the video currently being watched, generated also 
based on information about the video itself, this research collected homepage rec-
ommendations, solely based on the analysis of personalized watch patterns. Whereas 
we do not know the relative impact of these recommendations on users’ watching 
behavior, the fact that, based on signals of interest, the homepage of a YouTube user 
gets so quickly populated with problematic content might be considered an issue of 
societal concern.

Our results do not provide definite proof of the existence of such things as filter 
bubbles or rabbit holes as outcomes of YouTube’s recommender system. However, 
they contribute clear evidence in this direction based on a more ecologically valid 
methodological framework than that of most existing studies. We refrained from 
providing specific conceptual and operative definitions of notions such as filter bub-
bles and rabbit holes because our data can still be open to interpretation based on 
methodological, epistemological as well as normative assumptions. However, by tack-
ling the issue of personalization at many levels, our study contributes to this devel-
oping debate by providing evidence for the potentially pernicious effects of YouTube’s 
recommender system, as well as a replicable methodology to investigate this issue 
further.

Limitations and Expansion

An important limitation to acknowledge relates to the small sample size. The key 
aspect of our methodology is that, unlike existing studies, the recommender system 
is observed in response to authenticated users carrying a watch history. While this 
requires additional set-up costs, the ability to research algorithmic effects in a 
quasi-realistic scenario arguably outweighs the drawbacks. However, due to the 
time-demanding requirements associated with setting up ad hoc Google accounts 
and having them watch substantial portions of videos make this method difficult (i.e., 
expensive) to replicate on a large scale. As a result, a limitation of this research is 
the fairly small sample size (5 user-level observations per group). Despite the small 
sample size, the effects observed in terms of treatment strategies versus the baseline 
are large enough to hold. The small sample size, paired with a relatively high variance 
in the distributions of, especially, strategy 3 and strategy 4, probably explains the 
ambiguous results obtained when comparing the effects of specific treatment strat-
egies. Future research with more resources available could replicate the present study 
on a larger scale. Parallelization of execution could be a technical solution to the 
issue of scale. Another possibility would be that of relaxing the experimental character 
of the research design, and involving a number of volunteers in running collective 
tests on a large scale (WeTest3), either with ad hoc accounts or with their actual ones, 
mostly primed by a realistic, long-term watch history.
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Users’ watch strategies and the computation of the outcome variable both required 
YouTube’s content to be automatically classified as conspiracy or non-conspiracy. We 
are aware of the fact that such automated classification is prone to errors and pres-
ents a general shade of ambiguity. Quantifying and correcting for this distortion can 
be quite a daunting task, considering that assessing what constitutes conspiracy-related 
content can be an inherently ambiguous operation for human coders as well. However, 
evaluating and coping with the incidence of content misclassification is not a priority 
for the goal of our research, as we focused on diverging trends between treatment 
and baseline strategies, and we have no reasons to believe that any systematic error 
could be introduced by different watch strategies.

Whereas adopting logged-in accounts with different watch strategies provide a 
more realistic and more meaningful way to study the effects on YouTube’s recom-
mendations system, the requirements of an experimental setup maintain elements of 
artificiality in the users’ profiles and behaviors, affecting ecological validity. Relying 
on fresh-made accounts with a straightforward watch history dictated by a relatively 
deterministic watch strategy might introduce distortions in the results when compared 
with existing, long-term accounts with a more complex watch history (and other web 
browsing activities). This is particularly true for the dynamic of patterns, investigated 
in this study, as the lack of alternative potential “interests” signaled by the users might 
explain the quickness and persistence of the patterns observed. Tests involving real 
users, as suggested above, might help control for this potential distortion. Furthermore, 
although necessary for the experimental design, the accounts’ behavior of constantly 
returning to the YouTube homepage before watching the next video, is unnatural. 
Although there are no indications that lead us to believe this influenced the results, 
it is good to keep this atypical behavior in mind.

Arguably, assessing the relevance of issues such as filter bubbles and rabbit holes 
requires accounting for actual, “naturalistic” patterns of information consumption, 
rather than on recommendations generated and selected based on artificial settings 
(Hosseinmardi et  al. 2020). Nonetheless, in the spirit of auditing algorithms of societal 
relevance (Sandvig et  al. 2014), the existence of concerning algorithmic outcomes on 
the basis of artificial set-ups is an issue worth raising and assessing.

Conclusion

The goal of this research was to find out how YouTube’s recommendation system treats 
conspiracy-classified content based on personalized watch patterns. By automating 20 
brand-new YouTube accounts, we set up 4 different watch strategies to prime users with 
either non-conspiracy or conspiracy-classified content, based on either non-personalized 
or personalized inputs. Our results show that watching conspiracy-classified content 
produces a strong and significant increment in the proportion of conspiracy-classified 
content being recommended. Reverting this pattern, by feeding primed users 
non-conspiracy-classified content, proves substantially more difficult than generating it. 
Watch strategies that rely on the platform’s own recommendations have the largest effect.

On a general level, although our results do not definitively prove filter bubbles or 
rabbit holes are a result of YouTube’s recommendation algorithm, they do provide 
evidence in this direction based on a more holistic and sound methodological 
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framework. While this evidence is far from conclusive, this study contributes clear 
findings to the debate based on an original experimental setting.

Previous research on the topic, coming to conflicting conclusions, has generally 
discarded personalization from their research design. This research, instead, engaged 
with personalization by using logged-in accounts, by differentiating between more or 
less personalized watch strategies, and by focusing on the homepage, purely personal 
recommendations. The variety of operational choices related to assessing conceptually 
malleable concepts such as filter bubbles or rabbit holes (what type of recommenda-
tions to collect? what type of users to model? what type of topics to focus on? what 
type of patterns to look for?) hamper the possibility to produce cumulative knowledge 
on the issue. Converging on a more solid, coherent body of results, we argue, requires 
a first step to take personalization seriously when studying recommendation systems.

Notes

	 1.	 https://pypi.org/project/selenium/
	 2.	 https://pypi.org/project/selenium-stealth/
	 3.	 For an example of such research design see https://youtube.tracking.exposed/wetest/1/
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Appendix 

Algorithms All of the data and code used for this research is publicly available on GitHub.
The following script was created and run for all twenty bots, keeping track of the videos 

they watched and the homepage recommendations they had after each video:

Algorithm 1: Watch YouTube videos according to a watch strategy

Data: User information and a video dataset
Result: The watched videos and homepage recommendations of the user

for  twenty bots  do
	 initialize WebDriver;
	 log into Google account;

	 for  fifteen videos  do
	 if  there is a recommendation to be watched  then go to the link;
	 else
	 pick a random video to watch based on usertype;
	 determine how long it will get watched;
	 go to the link;

	 get video metadata and store for overview of watched videos;
	 watch video for given amount of time;

	 if  usertype == 3  then
	 pick recommendation next to current video to watch next;
	 determine watch time for found recommendation;
	 go to YouTube homepage;
	 store current recommendations for overview;
	 if  usertype == 4  then
	 pick homepage recommendation to watch next;
	 determine watch time for found recommendation;

return watched videos and homepage recommendations;

For the second experiment, a slightly altered version of the algorithm was used:

Q9
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International Journal of Network Security & Its Applications 5 (4): 143.
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AAAI/ACM Conference on AI, Ethics, and Society, pp. 195–200.

YouTube. 2019. “Our Ongoing Work to Tackle Hate.” June. https://blog.youtube/news-and-events/
our-ongoing-work-to-tackle-hate/
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Recommendation System on Video Views.” In Proceedings of the 10th ACM SIGCOMM 
Conference on Internet Measurement (IMC’10). Association for Computing Machinery, New 
York, NY, USA, 404–410.
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Algorithm 2: Getting out of a filter bubble

Data: User information and a video dataset
Result: The watched videos and homepage recommendations of the user

for  fifteen bots  do
	 initialize WebDriver;
	 log into Google account;

	 for  fifteen videos  do
	 pick a random non-conspiracy video to watch;
	 determine how long it will get watched;
	 go to the link;

	 get video metadata and store for overview of watched videos;
	 watch video for given amount of time;

	 go to YouTube homepage;
	 store current recommendations for overview;

return watched videos and homepage recommendations;

Dataset

Data Gathering

To answer the research question, it was necessary to determine which YouTube videos can be 
considered conspiracy videos. Considering the large number of videos getting recommended, 
determining each video manually is simply not possible. There are two possible ways to solve 
this problem. Firstly, there is a dataset that contains nearly 7000 YouTube channels that have 
been manually labeled based on their political view – almost 3000 of which were labeled as 
conspiracy channels (Ledwich and Zaitsev 2020); whenever a video is made by one such chan-
nel, it can be considered a conspiracy video. Thus, our definition of conspiracy content is any 
content uploaded by a conspiracy channel, which, according to Ledwich & Zaitsev is: a chan-
nel that regularly promotes a variety of conspiracy theories. A conspiracy theory explains an 
event/circumstance as the result of a secret plot that is not widely accepted to be true (even 
though sometimes it is). Example conspiracy theories: Moon landings were faked, QAnon & 
Pizzagate, and Trump colluding with Russia to win the election.

However, due to the enormous amount of existing YouTube channels, the odds of a video 
being uploaded by a channel that is not present in this dataset are very large. For those vid-
eos, a supervised machine learning classifier was used. To optimize performance, five different 
classifiers have been trained and compared: k-nearest neighbors, support-vector machine, 
neural network, logistic regression, and ridge regression.

In order to train these machine learning algorithms, a training dataset was created. To get 
a labeled dataset of conspiracy and non-conspiracy videos, use was made of the aforemen-
tioned channel dataset made by Ledwich and Zaitsev (2020). For each channel in that dataset, 
the title, description, and transcript of the ten most recently uploaded videos were downloaded 
using YouTube’s API. Videos uploaded by a conspiracy channel were then labeled as conspir-
acy videos, and videos uploaded by a channel from a different category were labeled as 
normal videos. Additionally, the channel description and channel keywords (which are used 
for targeted advertising on YouTube) were added to each video. The final dataset contained 
65.683 unique YouTube videos, 22.156 of which were considered conspiracy videos.
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Data Cleaning

However, this dataset was not yet suitable for machine learning, as the data was still messy. 
Therefore, multiple steps were taken in order to clean the data. Firstly, the two classes (con-
spiracy and non-conspiracy) were balanced, so that the classifier would not develop a bias for 
non-conspiracy videos. Rather than opting for balancing the two classes through the use of 
class weights (a technique where weights are attributed to classes, thereby telling the classi-
fier that getting a prediction correct for a certain, underrepresented class is more important), 
the choice was made to undersample the data in order to equalize both classes (both con-
taining 22.156 videos, for a total of 44.312 videos) (Lemaître et  al. 2017; Sun et  al. 2006). 
Considering the large size of the dataset, undersampling was preferable over implementing 
class-weights (Brownlee 2021). After both classes had been balanced, the text for each video 
had to be translated into English. Since the original dataset by Ledwich and Zaitsev (2020) 
also contained channels by non-English speakers, these videos had to be automatically trans-
lated. Then, a few common cleaning methods were applied: all text was converted to lowercase, 
after which special characters, such as emojis were removed, whereafter stop words were re-
moved and all words were stemmed using the porter stemmer (Wahiba and Karaa 2013). Finally, 
each video was TF-IDF vectorized to allow the classifiers to function.

Machine Learning
Table A1 shows the features used to classify videos.
The hyperparameter tuning led to impressive scores for all classifiers. When making predictions 
for the test set, the best-performing classifier was the support-vector machine making use 
of the Radial Basis Function (RBF) kernel and a penalty parameter (C-value) of 10. The SVM 
was tied for F1-score with the neural network using the identity activation function, with 10 
hidden layers of 10 neurons. Ridge regression with a sparse-cg solver and penalty (alpha) 
value of 0.1 took third place, very closely followed by logistic regression with an L2 penalty, a 
penalty (C) value of 20, and a newton-cg solver. The worst-performing classifier was also the 
simplest of the bunch: the k-nearest neighbors classifier (K = 1). Although its performance was 
still formidable, it did substantially worse than the others. An overview of all metrics for each 
classifier can be seen in Figure 1. The ten best-performing configurations for each classifier 
can be found in Table A2.

Table A1.  Example output of the experiment. Every row contains the metadata of a video 
recommended to a bot and the label from the conspiracy classifier.
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Support-vector machine.

Neural network.

Ridge regression.

Kernel C Accuracy Precision Recall F1

rbf 10.0 0.936309 0.945473 0.928747 0.937035
rbf 100.0 0.935557 0.942289 0.930713 0.936465
rbf 1.0 0.925276 0.930163 0.922850 0.926492
poly 10.0 0.916499 0.946017 0.886978 0.915547
poly 100.0 0.915246 0.944940 0.885504 0.914257
linear 1.0 0.913741 0.917944 0.912531 0.915229
poly 1.0 0.909729 0.935065 0.884521 0.909091
linear 10.0 0.904965 0.907882 0.905651 0.906765
linear 100.0 0.898195 0.905830 0.893366 0.899555
rbf 0.1 0.878887 0.878906 0.884521 0.881705

Activation Layers Neurons Accuracy Precision Recall F1

identity 10 10 0.923019 0.935484 0.912039 0.923613
identity 25 10 0.921013 0.933031 0.910565 0.921661
relu 10 10 0.919007 0.917561 0.924324 0.920930
identity 10 20 0.916750 0.906056 0.933661 0.919652
relu 10 20 0.915998 0.912221 0.924324 0.918233
tanh 10 10 0.915747 0.914592 0.920885 0.917728
relu 1 1 0.915747 0.931876 0.900737 0.916042
tanh 25 20 0.915496 0.919052 0.914988 0.917016
tanh 10 20 0.914744 0.920178 0.912039 0.916091
logistic 1 1 0.913741 0.925516 0.903686 0.914470

Solver Alpha Accuracy Precision Recall F1

auto 0.1 0.918506 0.919118 0.921376 0.920245
sparse_cg 0.1 0.918506 0.919118 0.921376 0.920245
sag 0.1 0.918255 0.919902 0.919902 0.919902
auto 1.0 0.917252 0.923497 0.913514 0.918478
sparse_cg 1.0 0.917252 0.923497 0.913514 0.918478
sag 1.0 0.917252 0.923497 0.913514 0.918478
sag 10.0 0.878385 0.893002 0.865356 0.878962
auto 10.0 0.878134 0.892549 0.865356 0.878743
sparse_cg 10.0 0.878134 0.892549 0.865356 0.878743
auto 100.0 0.812437 0.854545 0.762162 0.805714

Table A2. R esults of the classifiers on the validation set with different hyperparameters.
Ensemble.
Ensemble Activation Layers Neurons Accuracy Precision Recall F1

svm, nn, knn logistic 1 20 0.9393 0.9489 0.9312 0.9399
svm, nn, knn relu 1 20 0.9393 0.9489 0.9312 0.9399
svm, nn, knn identity 1 1 0.9393 0.9489 0.9312 0.9399
svm, nn, knn identity 10 1 0.9393 0.9489 0.9312 0.9399
svm, nn, knn logistic 1 10 0.9393 0.9489 0.9312 0.9399
ridge, svm, 

nn, knn
tanh 10 1 0.9393 0.9489 0.9312 0.9399

svm, nn, knn tanh 1 10 0.9393 0.9489 0.9312 0.9399
svm, nn, knn tanh 1 20 0.9393 0.9489 0.9312 0.9399
svm, nn, logr, 

knn
identity 1 1 0.9393 0.9489 0.9312 0.9399

svm, nn, logr, 
knn

identity 1 10 0.9393 0.9489 0.9312 0.9399

(Continued)
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Logistic regression.

K-nearest neighbors.

Noteworthy is the fact that the optimal ensemble actually outperformed the support-vector 
machine by a slight margin. This ensemble, consisting of the SVM, the neural network, and 
the k-nearest neighbor classifiers, got slightly higher scores than the runner-up across the 
board. The ensemble had a sixteen-way tie for best-performing parameters, all of which con-
tained at least the SVM, neural network, and k-NN classifiers.

Though the ensemble outperformed the other classifiers, it has a significant drawback: its 
training time is significantly larger than that of the individual classifiers. Support-vector machines 
are infamous for their slowness when there is a lot of training data, and neural networks can 
require a lot of training time whenever the number of neurons gets large Burges and Schölkopf 
(1997) and Kamarthi and Pittner (1999). Requiring both algorithms to run would therefore 
require a lot of additional training time. Considering the marginal performance increase, the 
cost outweighs the benefit. As a result, when taking everything into account, the support-vector 
machine is the best classifier for labeling conspiracy videos on YouTube.

Penalty C Solver Accuracy Precision Recall F1

l2 20 newton-cg 0.918506 0.924107 0.915479 0.919773
l2 20 saga 0.918506 0.924107 0.915479 0.919773
l2 20 sag 0.918506 0.924107 0.915479 0.919773
l2 10 sag 0.916249 0.920831 0.914496 0.917653
l2 10 newton-cg 0.916249 0.920831 0.914496 0.917653
l2 10 saga 0.916249 0.920831 0.914496 0.917653
l2 10 lbfgs 0.915747 0.919506 0.914988 0.917241
2 20 lbfgs 0.914744 0.921432 0.910565 0.915966
none 1 sag 0.913992 0.923848 0.906143 0.914909
none 10 saga 0.913240 0.922461 0.906143 0.914229

K Accuracy Precision Recall F1

1 0.889669 0.888456 0.896314 0.892368
3 0.888415 0.882212 0.901720 0.891859
4 0.879137 0.908899 0.848157 0.877478
5 0.873370 0.858482 0.900246 0.878868
6 0.873119 0.882441 0.866830 0.874566
2 0.872618 0.935043 0.806388 0.865963
7 0.868355 0.848891 0.902703 0.874970
8 0.867603 0.867382 0.874201 0.870778
9 0.861585 0.835672 0.907125 0.869934
10 0.859579 0.854397 0.873710 0.863946

The best score per metric is written in bold.

Table A2.  Continued.
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