Taming the Dynamics of

Recommender Systems

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Universiteit van Amsterdam
op gezag van de Rector Magnificus
prof. dr. ir. PP.C.C. Verbeek
ten overstaan van een door het College voor Promoties
ingestelde commissie,
in het openbaar te verdedigen in de Aula der Universiteit

op woensdag 2 oktober 2024, te 14:00 uur

door

Romain Emmanuel Deffayet

geboren te Epinal

PROMOTIECOMMISSIE

Promotor:

prof. dr. M. de Rijke Universiteit van Amsterdam
Copromotores:

dr. J.M. Renders Naver Labs Europe

dr. A.C Yates Universiteit van Amsterdam

Overige leden:

dr. H.C. van Hoof Universiteit van Amsterdam
prof. dr. D. Jannach University of Klagenfurt
prof. dr. E. Kanoulas Universiteit van Amsterdam
dr. H.R. Oosterhuis Radboud Universiteit

prof. dr. S.J.L. Smets Universiteit van Amsterdam

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

The work described in this thesis has been primarily carried out at the Informa-
tion Retrieval Lab of the University of Amsterdam and at Naver Labs Europe.

Printed by Proefschriftspecialist.

ISBN: 978-94-93391-36-9

Copyright © 2024 by R. Deffayet, La Tronche, France.

ACKNOWLEDGEMENTS

This thesis has been made not only possible, but also a pleasant and enriching
time, by several people:

First and foremost, my daily supervisors: Maarten and Jean-Michel. Maarten,
when I initially presented a vague research plan to you, you trusted me and of-
fered the support required to pursue my PhD under your supervision. Thank
you so much for that. Throughout the work, you taught me how to conduct
research and tackle the research world while staying true to myself. It certainly
required a good touch, knowing when to contain my ideas and when to push
them. Jean-Michel, even before the first draft of a thesis topic, you trusted
me to take on this journey and pushed me to make the most of it. By care-
tully inspecting everything I wrote, said, or cited, and by always questioning
the arguments I formulated, you certainly improved the quality of this thesis,
and taught me how to a be a better scientist. Also, thank you for enlarging
my knowledge about many different topics, from machine learning to wine-
making.

This thesis, to be a complete research work, required the help of those who
were there from the beginning, but also those who stood for it at the end.
Dietmar, Evangelos, Harrie, Herke, Sonja: thank you for being members of my
committee.

I must obviously also thank my collaborators along the way. Philipp: you
taught me how to get something properly done, how to extract the most out
of our experiments, and how to convert an interesting idea into an impactful
research work. Most importantly, thank you for being a great friend from day
o to day -1. As I write these lines, you have pulled me out of a tricky situation
once again. It seems only natural that you are my paranymph now through
this last step. Sami: Despite the many ups and downs with our work, you
kept being there, iterating, going forward and you never gave up. Thanks to
your pugnacity with reviewers and your samisearch™ hyperparameter tuning

algorithm, we got it done. Thank you for guiding me through many steps

il

v

| ACKNOWLEDGEMENTS

of my professional and personal life, and for always being the devil on my
shoulder. Thibaut: Thank you for always being firmly present when deadlines
approached, and for pushing me to deliver convincing experiments. Your han-
dling of the project helped me a lot structuring and managing my research.
Dongyoon, Onno, Paul, Vassilissa: thank you for for your time, patience and

critical thinking that definitely improved this thesis.

Now, I have to talk about the amazing environment in which I was lucky to
work. First the IRLab. Gabriel, thanks for being so accessible and enthusiastic
and for teaching me that one cannot suffer from too much confidence. Mariya,
your kindness made me instantly feel at home in the lab. I learned a lot form
you. Pooya, thank you for sharing so many interesting stories and activities.
Thilina, I appreciate a lot your constant willingness to organize dinners or
board games night. You might learn how to pronounce my name some day.
Since I can’t name everyone here, I would like to thank the entire IRLab, who
really made this period a fun time. Thank you to the Dune players and the
squash players, Team Café Neo and Team main building, the first slides and
the last slides of the research meeting, those who unknowingly lended me their
desk while they were away, those who left their desk to get me a coffee one
of the countless times I forgot my access card, and most importantly all those

that I spent great moments with when I travelled to Amsterdam.

Before I talk about my other research lab, NLE, it seems fitting to speak about
Simon, who has been there with me on both sides since (almost) the beginning,
from playing frenzied ping-pong games to introducing me to gravel riding,

and now to being my paranymph. Thank you so much for that.

At Naver Labs, I met many fascinating people who became close colleagues
and friends. In particular, the search and recommendation team was a great
environment to work in. Stéphane, you have always been there to support me,
and always encouraged me to try different things and keep learning. You had
an important role in making me consider the PhD as a learning experience
rather than a succession of deadlines and presentations. Carlos, thank you for
helping in my projects and for sharing great moments all around the world.
Hervé, the wise man of the team, thank you for your phlegm and humor. Till,
thank you for all the interesting and challenging discussions, both scientific
ones and about life in general. Thibault, thank you for demonstrating that even
as a researcher, being relaxed and accessible is a strength. I would also like to

thank everyone I met at NLE that made this thesis possible and enjoyable,

ACKNOWLEDGEMENTS | v

each in their own way: Augustin, Bingbing, Cécile, David, Ginger, Gustavo,
Jean-Yves, Marcely, Tomi, Veronika, ...

Finally, I am thankful to my family, especially my parents, for supporting
me long before this journey even started, and throughout the entire process.
Eva, my development as a person and as a researcher is deeply linked to living
with you. I would have been much less open, serene and happy during this
time, if not thanks to you. Thank you.

CONTENTS

Acknowledgements il
Introduction m
1.1 Research questions
1.2 Contributions
1.3 Thesisoverview 7
1.4 Origins

Evaluation of Dynamic and Interactive Recommender Systems

Offline Evaluation for Reinforcement Learning-based Recom-

mendation: A Critical Issue and Some Alternatives ist
2.1 Introductiono Lo 12]
2.2 Relatedstudies
2.3 Next-item prediction in RL-based recommendation
2.4 Three shortcomingsof NIP 16
2.4.1 A myopicevaluation 17
2.4.2 Asuboptimal target 18]
2.4.3 Riskydeployment. 19
24.4 Upshot 20]
2.5 Some alternativestoNIP
2.5.1 Online evaluation in recommendation platforms 20]
2.5.2 Counterfactual off-policy evaluation b3
2.5.3 Simulator-based evaluation 22
2.5.4 Intermediate evaluation
2.5.5 Uncertainty-aware evaluation
26 Conclusion L 24
2.7 Reflections on the chapter
2.7.1 Researchoutcomes
2.7.2 Additional thoughts

vil

vili | CONTENTS

3 SARDINE: A Simulator for Automated Recommendation in
Dynamic and Interactive Environments
3.1 Introduction
3.1.1 The role of simulators in recommender systems research .
3.1.2 A research agenda for interactive recommender systems .
3.1.3 QOur contributionso
3.2 Problem definition L.
3.3 Simulator oo oo
3.3.1 Item and user embeddings
3.3.2 Initial recommendation
3.3.3 Relevance computation & click model
3.3.4 Boredom and influence mechanisms
3.3.5 Full observability vs partial observability
3.4 Experimentalsetup
3.4.1 Simulated environments Lo
3.4.2 Comparedmethods.
3.4.3 Hyperparameter setting
3.4.4 Evaluation protocol and metrics
35 Results
3.5.1 Experiments on single item recommendation
3.5.2 Experiments on slate top-K recommendation
3.5.3 Experiments on slate reranking
36 Relatedwork
3.7 Conclusion o Lo
3.8 Reflections on the chapter
3.8.1 Researchoutcomes
3.8.2 Additional thoughts

Appendices

3.A Efficiency

3.B Webtoon experiment
3.B.1 Environment description. L.
3.B2 Results oo

3.C Clicked item influence experiment

3.D Itemscores

HFHEEREE EHE

39
40

43

47

CONTENTS | ix

Il Estimation and Correction of Biases in Learning-to-Rank

4 Evaluating the Robustness of Click Models to Policy Distri-

butional Shift 83
4.1 Introduction B4
4.1.1 Evaluating click models 85|
4.1.2 Policy distributional shift and click models 85|
4.1.3 Research goal and findings 87
4.1.4 Contributions oL 88
42 Relatedwork L B9
4.2.1 Off-Policy training and evaluation B9
422 Clickmodels. OT]
4.3 Experimentalsetup, 92]
4.3.1 Problem statement and existing protocol 97]
4.3.2 Click model definitions 03]
4.4 Naive baselines beat advanced models at relevance estimation . . @00
4.4.1 Data and evaluation protocol [@oT
442 Results oo [T07]
443 Upshot o 106}
4.5 An augmented evaluation protocol 106
4.5.1 New evaluation criteria 106}
4.5.2 Simulatordesign [108]
4.6 Evaluating robustness to policy distributional shift in a simulator TI0!
4.6.1 Observable metrics do not guarantee robustness
4.6.2 Robustness of click prediction.
4.6.3 Robustness of subsequent policies
4.7 Discussion e 117
48 Conclusion L [118]
481 Mainfindings 118
4.8.2 Broader implicationso 0L, 11|
4.8.3 Limitations. o 00000 119
484 Futureworkol 120
4.9 Reflectionsonthechapter 120}
4.9.1 Researchoutcomes 120
4.9.2 Additional thoughts @21

Appendices

X

I CONTENTS

Training and implementation details
Definitionof CoCM o o
Figure |4.2| with confidence bounds
Tables [4.1] (left) and [4.2] (right) with confidence bounds

5 An Offline Metric for the Debiasedness of Click Models

5.1
5.2

53

5.4

55

5.7
5.8

124
Offline metrics on CLARA and Yandex : AUROC and Recall . . . [128
37
132
L35
135]

Introduction oo oo
Related work L
5.2.1 Click models and their evaluation
5.2.2 Conditional independence testing
Background oo oo 137
5.3.1 Notation and assumptions 137
5.3.2 Evaluating click models 133]
5.3.3 Perplexity fails to generalize, especially under model misfitT39]
5.3.4 nDCG fails to generalize when the logging policy is good [0
Towards healthy benchmarks: A metric to quantify debiasedness [T
5.4.1 Debiasedness in click modeling 147
5.4.2 Testing for debiasedness with mutual information 144
5.4.3 Estimating conditional mutual information with the log-

ging policy (CMIP) 145]
Experimental Setup oo o oL 147
5.5.1 Semi-synthetic click simulation 147
5.5.2 Click model overview 150}
553 Experiments 152
Results 152
5.6.1 Evaluation with CMIP: A visual example 152
5.6.2 CMIP helps predict out-of-distribution perplexity 153]
5.6.3 Strategies based on CMIP incur lower regret in off-policy

selection problems 154
Conclusion
Reflections on the chapter
5.8.1 Researchoutcomes 157
5.8.2 Additional thoughts

CONTENTS |

Il Challenges of Reinforcement Learning for Recommender Sys-
tems

6.1
6.2
6.3

6.5

6.6

6.7
6.8

Introduction
Related work
Method . . .

6.3.1 Notations and problem definition

6.3.2 Overview of the framework
6.3.3 Generative Modeling of Slates (GeMS)
6.3.4 RL agent and beliefencoder
Baselines and their assumptions

setup

Experimental

6.5.1 Simulator. o000

6.5.2 Implementation and evaluation details

Results . . .

6.6.1 Comparison of our method against baselines (RQ1)

6.6.2 GeMS overcomes boredom to improve its return (RQz) . .

6.6.3 Balancing hyperparameters fand A (RQ3)

Conclusion .

Reflections on the chapter

6.8.1 Research outcomes
6.8.2 Additional thoughts

Distributional Reinforcement Learning with Dual Expectile-

Quantile Regression

7.1
7.2

7:3
7-4

75

Introduction

Background

7.2.1 Distributional reinforcement learning

7.2.2 Quantile and expectile regression.

7.2.3 Quantiles and expectiles in distributional RL

Related work

7.4.1 Dual training of quantiles and expectiles

7.4.2 Convergence of the dual expectile-quantile operator

7.4.3 A practical implementation: IEQN

Experiments

Generative Slate Recommendation with Reinforcement Learningié1l

194
195

Xi

xit

| CONTENTS

7.5.1 Chain MDP: A toyexample

7.5.2 Experiments on the Atari Arcade Learning Environment .

7.6 Conclusion

7.7 Reflections on the chapter

7.7.1 Research outcomes

7.7.2 Additional thoughts, ...

Appendices

7.A Hyperparameters, code and implementation details

7.A.1 Hyperparameters

7.A.2 Code

7.A.3 Sharing the mapper’s parameters

7.B Toy Markov

decision process

7.B.1 Expectile regression.o oL

7.C Proofs . . .

8 Conclusion
8.1 Summary of

8.2 Future work
Bibliography
Summary

Samenvatting

findings L o o

212

d BB

INTRODUCTION

When you start doing research on recommender systems, you get surprisingly
quickly accustomed to certain idiomatic phrases: preference and information need,
relevance and bias, items and users. User, in particular, is a peculiar word: no
one primarily describes themselves as a user, and yet all our definitions seem
to build on the immovable notion of a user: we recommend things that are rele-
vant to the user, we estimate the user preference and fulfill the user’s information
need. But who is the user? After asking people around me whether they are
the user, 1 still haven’t found out. Fortunately, it seems that researchers have
created the user from data: it is a ranking function over possible items — another
generic term — which is determined from the judgement of certain people on
said items in the past (Aggarwal, [2016). When recommendations are person-
alized, they can often be refined based on a history of past interactions with
the system, in which case the user is a function of interaction logs that came
before the recommendation event, and its value is determined by the logs that
followed (e.g., clicks, likes, watch time) (Wang et al., [2019).

Once the user has been built, we can conveniently learn our own models
from data, which are also ranking functions, and compare them against the
user (Robertson, [1977). Doing so essentially amounts to a static matching task:
the user has preferences over items and we must find which ones it values the
most, i.e., we must match its ranking function by learning from data. While
this is a very convenient approach, the user does not exist. Or rather, it is made
of multiple snapshots of what a person, at a given time in the past and given
their environment at the time, did when facing the pieces of content returned
by a (possibly unknown) recommender system. Matching the behavior of this

idealized user is fine as long as these persons, their environment and the rec-

2

| INTRODUCTION

ommended results stay the same in the future (at least in distribution). When
that is true, models that perform well against the user will continue to perform

well once deployed on the actual online platform.

In this thesis, I investigate what happens when this is not the case, i.e., when
there is a distribution shift between the observed data and the future inter-
actions on the platform. In particular, I focus on the distribution shifts that
result from our system’s own decisions. They can typically occur in two cases:
(i) when a new system is deployed and is different from the previous ver-
sion that was in place during data collection, which happens at virtually every
deployment as the goal is usually to improve the recommender system in pro-
duction (Oosterhuis, [2021b)); and (ii) whenever the recommended items have
the power to shape future user behavior, i.e., when recommendations are per-
formative (Perdomo et al., Wang et al.,[2024). In the first case, the previous
recommender system may have constrained the choice of the person whose in-
teractions are logged in the data (for instance by placing results on the page
in an unequal manner or by not returning at all certain results), and therefore
the value of items may have been wrongly reflected in the data. Regarding
the second case, we must acknowledge that the recommendations can change
a person’s behavior (for example by boring them due to redundant recommen-
dations) (Gao et al., and even change their worldview (e.g., by exposing
them to biased world representations) (Cinus et al., [2022).

But contrary to exogenous distribution shifts (e.g., due to people being influ-
enced by their social circle or due to changes in the world that affect the value
of certain items), the effects described above directly result from decisions that
we control, and therefore that we can adapt. Controlling for these unexpected
dynamic effects of our recommendations on the future user experience is cru-
cial as a large part of the information available on the internet is algorithmically
filtered before reaching its intended target user (European Commission, [2024)).
Moreover, accounting for such effects is not merely a way to avoid potential
pitfalls of static recommender systems, but can also be seen as an opportunity:
to better help people navigate the large amounts of available information by
getting them interested in topics they didn’t know initially or by providing a

consistent sequence of recommendations as they keep using the online service.

Throughout the thesis, I employ various techniques that present favorable
properties towards harnessing the complex dynamics of recommender sys-

tems: reinforcement learning (RL), including its distributional variant, unbi-

1.1 RESEARCH QUESTIONS |

ased learning to rank through click modeling, generative user modeling, ...

Essentially, I wish to identify what these techniques can bring to recommender
systems and more importantly, to the people using them, what are the chal-
lenges in applying these general methodologies to the very specific recommen-
dation task, and finally what kind of tools they require to be made reliable and
trustworthy. While it is illusory — and undoubtedly inappropriate — to expect
recommender systems to perfectly understand and control the inner mecha-
nisms that explain how people behave on the internet, I argue that developing
tools that are able to observe, forecast and manage the performative effects of
the systems that power most online services is both key to their improvement
and a societal responsibility.

1.1 RESEARCH QUESTIONS

I try to address certain specific questions that stem from the overarching re-
search topic described above. I list them here.

Before training any model that could be capable of handling dynamic and
interactive recommendation environments, we must make sure our evaluation

setup is up to the task. I therefore introduce the first research question:

Research Question 1. How can we evaluate recommender systems in a way that

accounts for their dynamic and interactive nature?

This topic is mostly covered in Part I, i.e., Chapter [2land Chapter 3| Specifi-
cally, in Chapter|[2} we review how reinforcement learning-based models, which
are often seen as being promising for controlling the dynamics of recommender
systems (Afsar et al., [2022), are usually evaluated in the context of recommen-
dation. We find that the common static approach of next-item prediction is
inadequate in this new, dynamic setting, and list its limitations. We then pro-
pose alternative ways forward. One of these is the use of simulators as an
evaluation tool, in a research context. In Chapter [3| we therefore propose a

simulator suited to research the dynamic aspects of recommendation.

Distribution shifts also manifest themselves in the form of biased data used
for training new models. While selection bias (e.g., some items have not been
recommended and we therefore don’t know their value) is prevalent in virtu-

ally all application fields of offline bandit and reinforcement learning (Levine

3

4

| INTRODUCTION

et al., , information retrieval systems present a more unusual kind of bias:
multiple items are often returned at once, and their presentation on the result
page may affect the likelihood of the user engaging with these items. There-
fore, the observed data is not a reliable indicator of item value. This is clearly
an issue for later deployment where models learned on such biased data may
perform poorly or unfairly promote certain items above others. This leads to
the following question:

Research Question 2. Can we predict in a fully offline manner the performance of
models learned on biased data?

We review the existing studies on offline evaluation of learning-to-rank algo-
rithms under biased data and highlight their limitations in Chapter [2l Chap-
ter [4) and Chapter [5] are dedicated to answering this question. In Chapter [4]
we perform a large empirical study on click models, i.e., models that aim to
learn user biases from logged data. Then in Chapter |5, we propose an offline
metric that yields a better correlation with the performance of the learned click

models after deployment.

It quickly becomes apparent that making assumptions about user behavior,
for instance by leveraging user studies, often helps to enable an accurate estima-
tion and mitigation of bias, or simply to correctly capture the structure of the
data and the value of recommendations. However, making such assumptions
comes at a cost: they may not fit the actual user behavior well. We therefore

investigate this issue:

Research Question 3. When do we need assumptions on user behavior, and how can

we test for the validity of these assumptions?

In Chapter |4 and Chapter [5}, we compare click models making different as-
sumptions about the user behavior. We find that, generally, simplifying the
problem by imposing strong constraints on the learned parameters helps mit-
igate bias in the data, and that simpler user assumptions lead to more ro-
bust performance on the downstream task, even when the actual user behavior
is more complex. Moreover, we find that our metric proposed in Chapter
is an effective way of choosing the right set of assumptions. In Chapter [6]
we take a different perspective, and ask the question: can we train reinforce-
ment learning-based recommender systems without formulating assumptions
on data structure and user behavior. We propose an assumption-free reinforce-

ment learning agent that is typically able to capture the signal in the data.

1.2 CONTRIBUTIONS |

A major challenge in training such an assumption-free RL agent is the size of
the action space, which can grow very large in recommender systems scenarios:
from a few hundred or thousand possible items for small-scale recommender
systems to an intractably large number of possible slates (i.e., lists of items) for
large-scale recommender systems that present multiple items at a time. This is

summarized by the following research question:

Research Question 4. How to train reinforcement learning agents that recommend
slates of items to users effectively and efficiently?

Chapter [f] is entirely dedicated to this RQ, and we propose an approach
based on pretraining a generative model of slates and user responses, and

then using its latent space as action space for a continuous control RL agent.

Finally, another prevalent challenge in recommender systems, and even more
so when we consider their dynamics, is very high uncertainty about user pref-
erence, item value, feedback reliability, The poor observability of user
preference, coupled with click noise and dynamics that can be very different
depending on the specific user we consider, make the whole process very un-
certain. Recommender systems should therefore be able to assess and adapt to
this uncertainty.

Research Question 5. How can we train reinforcement learning algorithms to handle

high degrees of uncertainty, which is common in interactive recommender systems?

In Chapter [7}, we investigate distributional reinforcement learning, i.e., re-
inforcement learning agents that learn the full distribution of future returns
instead of their expected value. Distributional RL agents are known to handle
uncertainty in the environment better than their point estimate counterparts,
but we note that maintaining a theoretically valid estimation of the full dis-
tribution usually comes at the cost of decreased performance. We therefore
propose a method that is valid in theory and matches the performance of the
most effective agents.

1.2 CONTRIBUTIONS

In this section, I list the main contributions of this thesis. I split them into the-
oretical contributions, i.e., proofs, insights and guidelines, and practical contri-

butions, i.e., implementations, benchmarks, and resources.

5

6

| INTRODUCTION

Theoretical contributions

A formalization of the next-item prediction evaluation protocol in sequen-
tial recommendation and its limitations for evaluating interactive recom-

mender systems. (Chapter [2)

A set of requirements for a research-oriented simulator of dynamic and

interactive recommender systems. (Chapter [3)

The discovery of a critical limitation of annotator-based evaluation under
policy distribution shift: biased models can obtain very high performance

on annotation-based ranking metrics. (Chapter
An offline metric for the debiasedness of click models. (Chapter

A comparison of assumptions commonly used in reinforcement learning

for slate recommendation. (Chapter [6)

A proof of the Bellman-closedness of mapped expectiles, that indicates
that it is possible to learn theoretically valid distributional RL agents us-
ing efficient L, loss functions. (Chapter [7)

Practical contributions

A simulator for interactive recommender systems research, and a bench-

mark of common approaches in various scenarios. (Chapter [3)

A benchmark of the robustness of various click models to policy distribu-
tion shift, and their performance on downstream tasks. (Chapter @

An assessment of the predictive power of our proposed metric for the
debiasedness of click models and its usefulness for selecting models to

be deployed. (Chapter

An assumption-free agent for RL-based slate recommendation. (Chap-

ter [6)

A dual implicit expectile-quantile networks agent for distributional rein-

forcement learning. (Chapter [7)

1.3 THESIS OVERVIEW |

1.3 THESIS OVERVIEW

I now provide an overview of how the thesis is organized. The thesis is the-
matically split into three parts, each containing two chapters. While each part
— and each chapter — can be read independently, I recommend starting with
Part I, especially Chapter |2} in order to get a better understanding of how this
thesis builds on considerations that are different from many existing studies
on recommender systems. Chapter |5/ should ideally be read right after Chap-
ter [4} as it is a direct follow-up of the work presented in Chapter |4 Chapter
includes in its experiments the method presented later in Chapter [6| but a de-

tailed understanding of how this method works is not necessary when reading
Chapter

1.4 ORIGINS
The research chapters in this thesis are based on the following publications:

(Chapter 2) Romain Deffayet, Thibaut Thonet, Jean-Michel Renders, and Maa-
rten de Rijke. 2023. Offline Evaluation for Reinforcement Learning-based
Recommendation: A Critical Issue and Some Alternatives. In SIGIR Fo-
rum 56, 2, Article 3 (December 2022).

RD proposed the idea. RD and TT surveyed relevant articles. JMR and
MdR had an important advisory role. All authors participated in writing.
RD did most of the writing.

(Chapter 3) Romain Deffayet, Thibaut Thonet, Dongyoon Hwang, Vassilissa
Lehoux, Jean-Michel Renders, and Maarten de Rijke. 2024. SARDINE: A
Simulator for Automated Recommendation in Dynamic and Interactive
Environments. In ACM Transactions on Information Systems (TORS), “Just
accepted”.

RD proposed the idea and drew the requirements. RD, TT, DH, VL par-
itcipated in the implementation. RD and TT performed experiments. All
authors participated in writing. RD and TT did most of the writing.

(Chapter 4) Romain Deffayet, Jean-Michel Renders, and Maarten de Rijke.
2023. Evaluating the Robustness of Click Models to Policy Distributional

7

8

| INTRODUCTION

Shift. In ACM Transactions on Information Systems (TOIS) 41, 4, Article 84
(October 2023).

RD proposed the idea, implemented the models, and performed the ex-
periments. JMR and MdR had an important advisory role. All authors
participated in writing. RD did most of the writing.

(Chapter 5) Romain Deffayet, Philipp Hager, Jean-Michel Renders, and Maa-

rten de Rijke. 2023. An Offline Metric for the Debiasedness of Click
Models. In SIGIR'23: the 47™ International ACM SIGIR Conference on Re-
search and Development in Information Retrieval.
RD proposed the idea and theory. PH derived the metric and imple-
mented the evaluation setup. RD and PH implemented models and ran
the experiments. JMR and MdR had an important advisory role. All
authors participated in writing. RD and PH did most of the writing.

(Chapter 6) Romain Deffayet, Thibaut Thonet, Jean-Michel Renders, and Maa-

rten de Rijke. 2023. Generative Slate Recommendation with Reinforce-
ment Learning. In WSDM'23: the 16" ACM International Conference on
Web Search and Data Mining.
RD proposed the idea and implemented the method. RD and TT created
the experimental setup and ran the experiments the models. JMR and
MdR had an important advisory role. All authors participated in writing.
RD and TT did most of the writing.

(Chapter 7) Sami Jullien, Romain Deffayet, Jean-Michel Renders, Paul Groth,
and Maarten de Rijke, 2024. Distributional Reinforcement Learning with
Dual Expectile-Quantile Regression. Under review.

SL and RD did the initial investigation and proposed the idea. RD built
the theory and the toy experiment. SJ derived the practical agent and ran
the large-scale experiments. JMR and MdR had an important advisory
role. All authors participated in writing. RD and SJ did most of the

writing.

The thesis also benefitted from the following publication: Philipp Hager, Ro-
main Deffayet, Jean-Michel Renders, Onno Zoeter, and Maarten de Rijke, 2024.
Unbiased Learning to Rank Meets Reality: Lessons from Baidu’s Large-Scale
Search Dataset. In SIGIR24: the 48" International ACM SIGIR Conference on

Research and Development in Information Retrieval.

Part |

Evaluation of Dynamic and Interactive

Recommender Systems

OFFLINE EVALUATION FOR
REINFORCEMENT
LEARNING-BASED

RECOMMENDATION: A CRITICAL
ISSUE AND SOME
ALTERNATIVES

With this first research chapter, we try to establish a sound basis for research on
dynamic and interactive recommender systems. We review the growing trend
of modeling recommender systems in an interactive fashion, mostly by training
reinforcement learning agents. In particular, we focus on how reinforcement
learning-based recommender are usually evaluated. We find that most studies
use a form of next-item prediction, where the next interacted item in the se-
quence of interactions acts as a label, whose score should be maximized by the
agent.

We note that this evaluation protocol is unsuited to RL agents: on the one
hand it cannot reflect the expected benefits that RL can supposedly bring, and
on the other hand, some critical pitfalls of RL agents trained offline can fly un-
der the radar of this type of evaluation. Consequently, we give our suggestions

going for forward, and list a few existing or emerging alternatives.

This chapter is based on the following publication: Romain Deffayet, Thibaut
Thonet, Jean-Michel Renders, and Maarten de Rijke. 2023. Offline Evalua-

11

12

| OFFLINE EVALUATION FOR REINFORCEMENT LEARNING-BASED RECOMMENDATION

tion for Reinforcement Learning-based Recommendation: A Critical Issue and

Some Alternatives. In SIGIR Forum 56, 2, Article 3 (December 2022).

2.1 INTRODUCTION

Recommender systems play a major role in defining internet users’ experience
due to their ubiquitous presence on, e.g., content providing and e-commerce
platforms. Correct and careful evaluation of recommender systems is therefore
critical as it directly impacts business metrics as well as user satisfaction — and
sometimes even society as a whole.

While recommendation accuracy (i.e., recommending relevant items) is often
taken to be the main indicator of performance, the literature on recommender
systems highlights the importance of additional criteria. Beyond-accuracy goals
include, e.g., diversity, novelty or serendipity, fairness, and user experience in
general (McNee et al., . Such criteria sometimes cannot be enforced in
one-shot recommendation (i.e., in a single interaction between the user and
the recommender system) but they may require that we consider the longer-
term experience. These concerns have motivated researchers and practition-
ers alike to acknowledge the sequential nature of many recommendation en-
gines, and to seek to optimize over whole sequences instead of one-shot pre-
dictions (Quadrana et al., [2018).

Reinforcement learning (RL) formulates this problem as a Markov decision
process (MDP), in which we wish to select appropriate actions (i.e., item recom-
mendations) in order to maximize the sum of rewards (e.g., clicks, purchases,
etc.) along the full sequence of user interactions with the recommender sys-
tem. RL is a natural fit for this problem because the underlying MDP is able
to model the long-term influence of recommendations on the user. Note that
in recommendation scenarios, online exploration is often impossible, so the
policy must be trained from a fixed dataset of interactions, i.e., by offline RL.
While sequence optimization with offline RL is not expected to entirely fulfill
all the desired beyond-accuracy criteria highlighted in the literature, it holds
the promise of making some of the desired properties naturally emerge as a
result of whole-sequence optimization. Indeed, one can expect that, given an
appropriate reward function, policies that are effective over the entire span

of the user’s experience require some of these desired properties: diversity,

2.2 RELATED STUDIES |

novelty, etc. Because these auxiliary metrics are embedded into a sequence’s
cumulative reward, whole-sequence optimization with RL can be seen as a way
to bridge the gap between offline and online performance.

In this chapter, we argue that the progress supposedly achieved in sequen-
tial recommendation, thanks to RL, lacks ecological validity (Andrade, [2018): the
trained agents are likely not to generalize to real-world scenarios, because of
certain shortcomings in the current evaluation practices. Namely, RL-based
recommender systems are often evaluated in an offline fashion, following a
traditional one-shot accuracy-oriented protocol that cannot capture the poten-
tial benefits introduced by the use of RL algorithms. We refer to this evalu-
ation protocol as next-item prediction (NIP). More critically, we highlight that
the specifics of this protocol are likely to hide the deficiencies of recommender
systems trained by offline RL. Briefly, we argue that with the most commonly
employed evaluation practices, we cannot verify that the RL algorithm correctly opti-
mizes the very metric it is designed to optimize, i.e., expected cumulative reward.
We worry that instead of bridging the gap between offline and online perfor-
mance, it only widens it. We then provide suggestions towards a sound evalua-
tion methodology for RL-based recommendation in order to help practitioners
and researchers avoid common pitfalls and to inspire future research on this
important topic.

After contrasting our criticism with that formulated by previous studies in
Section in Section we provide a definition of the next-item prediction
(NIP) evaluation protocol along with an overview of its use in sequential rec-
ommendation with RL. Section [2.4] dives into the three major issues of the NIP
protocol, and their implications for the evaluation of RL-based recommender
systems. Finally, we formulate our suggestions towards a sound evaluation

methodology in RL-based recommendation in Section

2.2 RELATED STUDIES

Deficiencies in recommender systems evaluation have been a long-standing
problem in the recommendation literature. In this section we review previous
studies that discuss this topic.

Firstly, as we recalled in the introduction, McNee et al. and Jannach et
al. have highlighted the need for recommender systems that go beyond

13

14

| OFFLINE EVALUATION FOR REINFORCEMENT LEARNING-BASED RECOMMENDATION

accuracy of the proposed item, i.e., which do not only consider recommenda-
tion as a matrix completion problem. This is motivated by an observed gap
between offline and online performance, sometimes rendering any conclusions
drawn from offline evaluation obsolete (Garcin et al., Gomez-Uribe and

Hunt, Jeunen, [2019).

Secondly, pitfalls of recommender system evaluation — including the next-
item prediction protocol for offline evaluation that we focus on in this chap-
ter — have been extensively discussed in the past: Chen et al. (2017), Jeunen
(2019), Ji et al. (2020), Cremonesi and Jannach (2021), Sun (2023), and Zhao
et al. highlighted multiple issues resulting from data leakage and other
dataset construction fallacies, which can lead to counter-intuitive statements.
The presence of selection bias in the data used for evaluating recommender
systems from implicit feedback has also been identified as a major source of
inaccuracies (Gomez-Uribe and Hunt, Jannach et al., Chen et al.,
Jeunen, [2o1g). In addition, and more specifically to the next-item predic-
tion protocol, Krichene and Rendle and Zhao et al. have shown
that sampling negative items at inference time in order to ease the computation
of ranking metrics leads to drawing incorrect conclusions on the recommenda-

tion performance.

Finally, many studies reaffirm the importance of appropriate baseline selec-
tion in order to ensure that progress has been made, and have shown that

certain claims do not hold against properly tuned baselines (Ludewig et al.,

Ferrari Dacrema et al., Rendle et al., Sun et al., Zhao
et al., [2022).

The argument we formulate in this chapter is specific to RL-based recommen-
dation and while it has, to the best of our knowledge, never been expressed,
it is not incompatible with the issues listed in this section. It is rather to be
considered as an additional caveat when evaluating RL-based recommender

systems.

2.3 NEXT-ITEM PREDICTION IN RL-BASED RECOMMENDATION | 15

2.3 NEXT-ITEM PREDICTION IN RL-BASED RECOMMEN-

DATION

We propose an (informal) definition of next-item prediction that encompasses
the offline evaluation protocols of many sequential recommendation studies,
and that we consider to be problematic when used to evaluate RL-based rec-

ommender systems:

Definition 1. Next-item prediction (NIP) is an offline evaluation protocol for
sequential item recommendation from real user feedback. The task is to ensure
that the next interacted item is among the top items ranked by the model, given
the sequence of past interactions. Model performance is measured according

to ranking metrics (e.g., hit rate, recall, NDCG, etc).

We propose this definition because it is representative of the evaluation setup
adopted in many sequential recommendation studies, e.g., GRU4REC (Hidasi
et al.,, , and also encompasses several variants. In particular, the choice of
“next interacted item” can vary depending on the dataset and task at hand: the
next clicked item in content recommendation (e.g., Last.fm (Last.fm, @), the
next purchased product in product recommendation (e.g., RecSys Challenge
2015 (Ben-Shimon et al., or RetailRocket (RetailRocket, [2016)), the next
highly rated movie in movie recommendation (e.g., MovieLens (GroupLens,

in.d)), the next basket in grocery shopping (Instacart, [2017), etc.

How prevalent is it in RL-based recommendation? RL-based recommenda-
tion (RL4REC) has become increasingly popular in recent years: we counted
55 papers about RL4REC in the proceedings of major information retrieval
and recommender systems (or related) conferences between January 2017 and
October 2022. To obtain this result, we queried “reinforcement learning rec-
ommendation” and “reinforcement learning recommender” on DBLP* and in-
cluded papers published at AAAI, CIKM, ICDM, IJCAI, KDD, RecSys, SIGIR,
WSDM or WWW. Figure [2.1{shows the increasing trend in published RL4REC
papers. Out of the 55 papers retrieved from DBLP, we identified 39 papers that
address sequential item recommendation using RL-based approaches. Other
tasks irrelevant to our argument included conversational recommendation or

explainable recommendations, so we ignore papers related to these topics in

1 |https://db1p.org/|

https://dblp.org/

16

| OFFLINE EVALUATION FOR REINFORCEMENT LEARNING-BASED RECOMMENDATION

Number of papers
14

2017 2018 2019 2020 2021 2022
Year

Figure 2.1: Evolution of the number of RL-based recommendation papers published

in major RecSys and IR conferences between 2017 and 2022.

this study. Among the 39 relevant articles, we found 24 papers performing a
form of offline evaluation, including 22 papers that followed the NIP protocol
from Definition 1} The 15 other papers exclusively rely on online evaluation,
either in production using an industrial recommendation platform or based on
a simulator. The NIP protocol is therefore by far the most commonly adopted type of
offline evaluation.

2.4 THREE SHORTCOMINGS OF NIP

Before engaging with the explanation of the issues with next-item prediction,

we would like to recall the benefits promised by the use of RL algorithms:

e RL aims to optimize long-term outcomes resulting from a sequence of
decisions. This requires accounting for the effect of the recommender
on the user. RL-based methods are able to optimize whole-sequences by
assigning the credit for observed rewards to individual actions, thereby
preventing costly search throughout the combinatorial space of action
sequences.

e RL algorithms learn in a self-supervised manner, by maximizing scalar
rewards. Doing so allows them to recover open-ended solutions and

generate novel policies. However, training the agent in an offline fashion

2.4 THREE SHORTCOMINGS OF NIP |

also comes with the risk of deriving policies with inaccurate estimation
of their expected return.
In the following, we list three major shortcomings of the NIP protocol for eval-
uating offline RL agents, and explain how they harm the ecological validity of

the claims derived from this evaluation protocol.

2.4.1 A myopic evaluation

Evaluating an offline RL-based recommender system using Definition (1| only
accounts for short-term rewards and ignores the causal effect of the recommen-
dations on the user. Indeed, an important motivation to design RL algorithms
is to maximize the return (i.e., sum of rewards) along full trajectories, as op-
posed to bandit algorithms that aim to maximize the average reward at each
timestep. When the actions (i.e., recommendations) cause the environment
(i.e., user) to change its state, RL algorithms still have convergence guarantees,
while the environment appears as non-stationary to bandit algorithms that fail
to find the optimal policy both in theory and in practice. But the next-item
prediction evaluation protocol only requires short-term thinking as it rewards
one-shot prediction of the next interacted item — this is due to the offline, static
nature of the evaluation that overlooks the causal impact of the recommenda-
tion policy of interest over subsequent interactions. This argument has been
formulated by Lee et al. (2022a)), who also empirically verified that greedy, my-
opic agents achieve similar or better performance on the NIP protocol than
long-term-aware RL agents on standard recommendation datasets. Quadrana
et al. also warned about the limits of the NIP evaluation protocol in
sequential recommendation when not only immediate satisfaction but also di-
versity or user guidance in content discovery is desired.

However, in contrast to Lee et al. (2022a), we additionally argue that the
inclusion of delayed rewards such as dwell-time in content recommendation
or lifetime value in product recommendation would not be sufficient to solve
this issue. Indeed, the long-term outcomes encoded in the delayed reward (e.g.,
was the product satisfactory over its whole lifetime?) can be orthogonal to the
long-term outcomes encoded in the sum of rewards along the trajectory (e.g.,
was the trajectory diverse enough to avoid boring out the user?). While the
former clearly seem to be important in order to obtain useful and enjoyable

recommender systems, the latter are the ones that are modeled by the Markov

17

18

| OFFLINE EVALUATION FOR REINFORCEMENT LEARNING-BASED RECOMMENDATION

decision process underlying the RL agent. Consequently, if we include delayed
rewards but ignore the long-term outcomes induced by the sequential decision-
making process, we still cannot observe the benefits brought by RL training
from the NIP protocol. Note that these two types of long-term outcomes are
not incompatible and we recommend using a reward function that is as close

as possible to the user’s needs and satisfaction, including delayed outcomes.

2.4.2 A suboptimal target

As explained in Section in datasets commonly employed for next-item
prediction, we observe the rewards (e.g., clicks, purchases) only on the items
that the user interacted with. This incurs a selection bias in the evaluation
protocol, caused by the application of a particular treatment to the user. This
treatment can take the form of a logging policy or a mixture of logging policies
when data is gathered from organic interactions on recommendation platforms,
or the implicit effect of exogenous factors when the observed data is the result
of active user feedback, e.g., voluntary movie reviews or product search. We
refer to the latter kind of bias as an implicit logging policy for simplicity. Note
that another source of sub-optimality of the interacted items is that user choice
may also be shortsighted or reluctant to novelty, even though acting so may

lead to a less enjoyable experience overall.

By considering the fact that selecting the interacted item is a binary target,
instead of a scalar reward to be maximized, the NIP evaluation incentivizes
researchers and practitioners to build policies that are close to the (implicit)
logging policy, at the expense of choosing optimal actions. It is a close-ended
task of policy matching while RL allows for open-ended outcomes, i.e., gen-
erating novel policies achieving high return. There exist simpler methods to
replicate the policy which generated the data, e.g., imitation learning (Hussein
et al., , and the reward maximization objective of RL is likely to deteri-
orate the results on this evaluation by selecting items that are different from
the interacted item but incurring higher returns. Consequently, NIP will dis-
card performant policies and encourage policies similar to the logging policy,
even when the sequences in the dataset were highly suboptimal. Considering
stronger signals such as purchases or high ratings mitigates this issue, but the
selection bias that users were exposed to during data collection implies that

some highly rewarding items are likely discarded.

2.4 THREE SHORTCOMINGS OF NIP |
2.4.3 Risky deployment

The two previous points that we have formulated indicate that the next-item
prediction evaluation cannot reflect the potential benefits brought by offline RL-
based recommender systems. The third problematic aspect that we discuss
shows that next-item prediction may also hide critical deficiencies of offline RL

agents.

Even though in the evaluation protocol of Definition |1f we account for the
position of the next interacted item in the model predictions, through the use
of ranking metrics, the recommender system will only select its most preferred
item (or top-k most preferred items in slate recommendation) when used in
production, while none of the other items will be shown to the user. It therefore
seems crucial to ensure that the top item is satisfactory, regardless of the full
ranking. This is unfortunately not possible with a fixed dataset where only one
or a few items have been shown to the considered user. A tacit assumption
of NIP is that higher ranking metrics correlate with a top item causing high
return. However, a gap between offline and online results has been identified
in previous studies (Garcin et al., Gomez-Uribe and Hunt, . More
importantly, it has been shown that even under the strong assumption that the
Q-value associated to every action (i.e., item recommendation) can be correctly
estimated in expectation (i.e, no bias), there can be an overestimation of the
predicted offline reward with respect to the actual online reward, because the
selected item is more likely to be one of those with an overestimated Q-value
(Jeunen and Goethals, [2021). This phenomenon is called the optimizer’s curse,
and while its practical impact in certain cases can be limited, we argue that it
can critically affect RL algorithms. Indeed, a particular set of conditions has
been identified to cause a catastrophic impact of the optimizer’s curse and is
often called the deadly triad (Hasselt et al., Sutton and Barto, [2018a)). It can
be observed with most RL algorithms and occurs when (i) the value estimate at
one state is used to update the value estimate at the previous state, (ii) function
approximation is used to build the estimate of the value function, and (iii) the

RL agent is trained in an off-policy fashion.

Under such conditions, small overestimations of the value function on out-of-
distribution actions can be amplified and propagated to neighboring states and
actions, potentially leading to divergence of the value function. In that case,

while the model predicts high Q-values for its policy, the observed return after

19

20

| OFFLINE EVALUATION FOR REINFORCEMENT LEARNING-BASED RECOMMENDATION

deployment can be arbitrarily bad. The highly damaging effect of the deadly
triad has been observed in multiple scenarios and motivated the emergence of
extensive research on offline reinforcement learning (Hasselt et al., Fu
et al,, Fu et al.,, Levine et al., Brandfonbrener et al.,
Kostrikov et al., [2022). Unfortunately, this harmful phenomenon cannot be
detected in the standard next-item prediction evaluation of Definition |1 while
the interacted item may rightfully be ranked high by the model, it is likely that
at least one out-of-distribution item is drastically overestimated and preferred
by the model. Since this item will be the one selected by the model, we may
observe an unpredicted catastrophic failure at deployment time. Even worse,
this probability of failure tends to increase with the size of the action-space

(Gu et al., [2022), which can be enormous in certain recommendation scenarios.

2.4.4 Upshot

The three shortcomings we presented in this section render offline evaluation
using the NIP protocol of RL-based recommender systems unreliable. They
effectively widen the gap between offline and online metrics, where RL al-
gorithms were actually supposed to bridge this gap. In the next section, we
suggest potential solutions to address this issue.

2.5 SOME ALTERNATIVES TO NIP

The limitations of NIP make offline evaluation of RL-based recommender sys-
tems difficult. We detail below some partial solutions to this problem and

discuss their limitations and remaining open questions.

2.5.1 Online evaluation in recommendation platforms

The most obvious counter-measure to the issues raised above is to evaluate rec-
ommender systems online when possible, directly on the metrics we care about.
This is usually done by deploying the policies on an actual recommendation
platform. However, it is obvious that not all researchers and practitioners have

access to an operational industrial platform, and online evaluation itself may

2.5 SOME ALTERNATIVES TO NIP |

include other forms of biases, e.g., through the inclusion of business rules in
recommendations. Online evaluation clearly circumvents the three issues we
highlighted in the previous section, but since the focus of this chapter is on

offline evaluation, we will not further detail it.

2.5.2 Counterfactual off-policy evaluation

There is a large body of work on off-policy evaluation (OPE) in information
retrieval, often based on techniques such as inverse propensity scoring (Swami-
nathan and Joachims, Joachims et al.,[2017), where a propensity weight is
applied to rescale the observed rewards and returns. Although OPE has mostly
been tackled for the one-shot bandit problem, some studies address OPE of RL
policies both in the RL community (Fu et al., and in the IR community
(Chen et al., 2019b), and more recently a library for off-policy evaluation of RL
algorithms in IR has been proposed in (Kiyohara and Kawakami, [2022).

Counterfactual methods for off-policy evaluation are attractive in that they
can provide unbiasedness guarantees under mild assumptions. However, we
want to stress three (known) deficiencies of these methods: (i) IPS suffers from
a notoriously high variance which becomes exponentially higher when applied
on sequences, because of the product of inverse propensity weights (Precup et
al., ; (ii) in non-tabular settings (i.e., when one can generalize the predic-
tions from a state-action pair to another, for example with continuous spaces),
generalization capabilities must implicitly or explicitly be assumed when the
logging policy is not known, in order to compute the propensity (Hanna et al.,
,' and (iii) when we train RL algorithms in an offline manner, the error
of the off-policy training and of the off-policy evaluation are likely correlated,
which means that counterfactual OPE may still be biased and wrongly choose
certain methods above others. An extreme example of the latter occurs if we
train and evaluate a policy-gradient recommender with the same propensity
weights, which makes the agent appear as optimal regardless of its true per-
formance. While using an ensemble of estimators might mitigate this issue,
it remains unclear how to fully alleviate this issue. Counterfactual OPE cir-
cumvents all three shortcomings highlighted in the previous section in theory,
but as we have seen it comes with its own shortcomings which may make it

unreliable in certain practical settings.

21

22

| OFFLINE EVALUATION FOR REINFORCEMENT LEARNING-BASED RECOMMENDATION

2.5.3 Simulator-based evaluation

Simulators have proved useful to assess progress in other domains, such as
robotics, games or industrial applications (Fu et al., Gulcehre et al.,
Qin et al.,[2021). While the interaction with a recommender system is arguably
one of the hardest problems to simulate because of the complexity and appar-
ent stochasticity of human behavior, the true value of simulators lies in their
ability to observe how recommenders react under a chosen set of assumptions
on user behavior. Additionally, by allowing the researcher to access otherwise
unobservable metrics, they can enlighten us on the inner workings of the sys-
tems we build.

Many studies proposed to build semi-synthetic simulators, where the syn-
thetic part is as limited as possible in order to adhere to real-world scenarios.
This can for instance be done by using real item embeddings (Shi et al.,
or by extending the implicit feedback to unseen data, with debiasing in the
missing-not-at-random case (Huang et al., [2020). Moreover, it is possible to as-
sess the generalizability of a method by benchmarking it against a wide range
of simulated configurations, so as to mitigate the influence of simulator design
on the results. Regardless of the chosen setup, one should ensure that the sim-
ulator exhibits the characteristics we wish to model, most notably long-term

influence of the recommender system on the user.

Simulators are not sensitive to the three issues of the NIP protocol, but their
ecological validity may clearly be limited. On top of building simulators from
real data, some approaches aim to bridge the gap between simulation and
reality, for example with domain randomization (Tobin et al., OpenAl

et al., [2020).

2.5.4 Intermediate evaluation

By intermediate evaluation, we refer to the offline evaluation of models, simu-
lators or propensities that are used as building blocks in the final recommen-
dation model (Huang et al., Deffayet et al., [2023b). In certain cases, it
may be easier to evaluate these intermediate models than the final model, for
example when they can be evaluated thanks to the availability of human an-
notations, e.g., of item relevance. By breaking down the evaluation protocol

into several components, we can isolate and reduce the sources of bias. For

2.5 SOME ALTERNATIVES TO NIP |

instance, in top-k recommendation for cumulative click maximization, if the
click model is correctly estimated, i.e., the relevance and propensity scores are
correct, then only state dynamics (i.e., how a user changes in response to a

recommendation) are left as a source of uncertainty.

Doing so mitigates the risks associated with deploying RL agents, but does
not suppress them. Moreover, we want to stress that offline RL agents will
likely use the intermediate models outside of their training distribution in or-
der to perform policy evaluation, and therefore may exploit inaccuracies in

these high uncertainty regions if no proper countermeasure is applied (Def-

fayet et al., [2023D).

2.5.5 Uncertainty-aware evaluation

While it may not be feasible to accurately evaluate the final performance of
an RL policy in a purely offline fashion, we argue that quantifying its perfor-
mance at different levels of uncertainty can help assess the risks of deployment.
Indeed, the value overestimation issue highlighted in the previous section re-
sults from the high uncertainty on out-of-distribution state-action pairs. We
can constrain the RL algorithm to recover safe policies, that stay within the dis-
tribution of the logging policy, or allow exploration in order to find potentially
high-return policies, at the cost of increasing uncertainty (Brandfonbrener et
al., [2021). By quantifying the match between the support of the logging policy
and that of the target policy, we can assess the risk induced by the deployment
of the target policy. In particular, if we restrict the set of available actions to
those considered “in-support”, we can get an accurate estimate of the perfor-
mance of the policy on those actions. Indeed, uncertainty is low inside the
support of the logging policy, and it is anyway possible to evaluate the quality
of the Q-value prediction on a held-out test set of the offline dataset as in, e.g.,
(Ji et al, [2021). A safe policy achieving high in-support expected return would
constitute a reliable improvement, while an unsafe policy not even achieving
good in-support expected return can probably be discarded. This type of eval-
uation needs a proper definition of in-support and out-of-support, e.g., as in
(Fujimoto et al., Gu et al., [022), which is not trivial in the non-tabular
setting and requires assuming a certain degree of tolerance to uncertainty, but
Kumar et al. show that it is possible to adjust this tolerance based on the

training curves of certain offline RL algorithms.

23

24

| OFFLINE EVALUATION FOR REINFORCEMENT LEARNING-BASED RECOMMENDATION

This type of evaluation focuses on characterizing and mitigating the risks
induced by the third issue we raise in Section while potentially allowing
us to detect the benefits brought by RL training. The main open question lies
in the ability to properly define distance measures between the support of the

logging and target policy.

2.6 CONCLUSION

In this study, we highlighted that the most commonly employed protocol for
the offline evaluation of RL-based recommender systems is in fact unsuitable,
because it cannot reflect the benefits that RL supposedly brings compared to
more traditional approaches and because it may hide critical deficiencies of
offline RL agents that can lead to catastrophic deployment. These shortcomings
can be summarized as follows: (i) a myopic protocol aimed only at measuring
shortterm accuracy, (ii) a close-ended, suboptimal recommendation target, and

(iii) sensitivity to the optimizer’s curse.

As of now, there exists no truly satisfactory solution to the problem of eval-
uating RL policies in an entirely offline fashion. Yet, several proxies for online
performance can be used to bridge the gap between offline metrics and on-
line performance. Finding appropriate offline evaluation protocols is still an
active research area in the offline RL literature, and we urge the sequential
recommendation community to join the effort and develop protocols suitable
for the recommendation scenario. Additionally, acknowledging the presence
of uncertainty in the deployment of RL-based recommender systems paves
the way towards solutions that are robust or resilient to such uncertainty. For
instance, Oosterhuis and de Rijke propose a criterion for fallback to a
safer policy when out-of-distribution (although in a different context, i.e., coun-
terfactual learning to rank), and Ghosh et al. and Reichlin et al.
propose adaptive offline RL policies that are able to recover from stepping in
uncertain states during deployment by branching back to supported states. We
hope that future research in recommender systems will put stronger emphasis

on these aspects and reduce the gap between offline and online performance.

2.7 REFLECTIONS ON THE CHAPTER |

2.7 REFLECTIONS ON THE CHAPTER

2.7.1 Research outcomes

In this chapter, we worked towards answering my first research question:

Research Question 1. How can we evaluate recommender systems in a way that
accounts for their dynamic and interactive nature?

We highlighted the limits of the traditional next-item prediction evaluation,
and proposed some alternatives that are more suited to dynamic recommender
systems. The exact implementation of these guidelines, and their link with on-
line real-world experiments is still largely an open question. In the next chapter,

we explore these remaining questions for one of the alternatives: simulators.

2.7.2 Additional thoughts

A correct and appropriate evaluation setup is critical for research. Unfortu-
nately, it became apparent after we had listed the limitations of existing alter-
natives that there is no silver bullet. Instead, it seems that the combination of
multiple types of evaluation, along with being generally careful with claims
and expected results, is necessary going forward.

Online evaluation is certainly necessary at some point, and I see the offline
evaluation methods described in this chapter more as a way for practitioners to
avoid wasting time and resources on obviously wrong models. For researchers,
I think this chapter is a stark reminder that we should be very careful with
claiming improvements based on a single offline metric and dataset, and that
making progress in a research topic as complex and hard to evaluate as recom-
mendation requires a well-rounded assessment for multiple perspectives and
reproducibility efforts, rather than blindly maximizing a single metric. See for
instance (Ferrari Dacrema et al., for a large empirical review of progress
in recommender systems.

I was happy to see this work being adopted by the community for evaluating
new algorithms (Gao et al., [2023). Interesting research questions have also
come up from this reflection. For example, Silva et al. studied why RL
agents perform well on NIP benchmarks when they should not bring anything
in theory.

25

SARDINE: A SIMULATOR FOR
AUTOMATED
RECOMMENDATION IN
DYNAMIC AND INTERACTIVE
ENVIRONMENTS

One of the possible alternatives for next-item prediction that we highlighted in
the previous chapter is the use of simulators. I naturally wanted to experiment
and find such a simulator, but among the existing ones, none really fitted
the way I wished to use them. Either they did not incorporate any of the
mechanisms that make recommender systems dynamic and interactive, or they
were hardly interpretable and configurable or felt like black-boxes, where you

essentially have to "trust" the simulator to be faithful to reality.

But it seems very unlikely to me that simulators will ever be realistic ap-
proximations of a real recommender systems, as that would require accurately
modeling the inner workings of the human brain — and you could argue that if
that ever happens, the problem will then be solved and the simulator will not
be useful anymore. We therefore came up with the idea of proposing our own
take at making a simulator, but we also explain in detail, using examples, how

we think it can be used to investigate specific research questions.

This chapter is based on the following publication: Romain Deffayet, Thibaut
Thonet, Dongyoon Hwang, Vassilissa Lehoux, Jean-Michel Renders, and Maarten
de Rijke. 2024. SARDINE: A Simulator for Automated Recommendation in

27

28

| SARDINE: A SIMULATOR FOR INTERACTIVE RECOMMENDER SYSTEMS

Dynamic and Interactive Environments. In ACM Transactions on Information
Systems (TORS), “Just accepted”.

3.1 INTRODUCTION

Recommender systems must match users and items based on item content and
user preferences, so as to provide users with content that fulfills a consump-
tion need or carries relevant information given user preferences (Melville and
Sindhwani, . In other words, they need to learn the semantic informa-
tion (Sequoiah-Grayson and Floridi, that explains why a certain user is
attracted to a certain item, usually by leveraging user features, item content
or logged interactions. However, by restricting the scope of recommender sys-
tems to a static semantic matching task one would ignore a crucial part of the
recommendation task: converting semantic understanding of users and items
into increased value for the user, as well as for content providers and other po-
tential stakeholders. Value may be measured by, e.g., click-through rate, user

satisfaction, retention rate, or fairness metrics.

This concern has led to the emergence of methods that consider beyond-
accuracy goals (McNee et al., Jannach et al., and that often view
recommendation as a dynamic and interactive task (He et al., . First, rec-
ommender systems are often trained from user interaction data, either in an
online (Silva et al., or offline (Gupta et al., fashion. As a result, rec-
ommender systems must learn to deal with noisy user feedback (Wang et al.,
[2022)), limited knowledge about new users in the cold start scenario (Knyazev
and Oosterhuis, , as well as potential biases in user behavior that may
impact the training data (Gupta et al., [2023). Second, the items consumed by
a user may have an effect on the user state (Anderson et al,, Deffayet
et al., Gao et al., [2023). They could alter user preferences — by devel-
oping a user’s interest in a topic, by educating users about a topic in a way
that encourages them to explore more advanced content, or by changing their
perspective on other items, for instance by sparking their interest or instead by
reducing it. Items could also temporarily affect user behaviors, for instance by
causing boredom, which subsequently reduces user interest and engagement
in the platform (Anderson et al., [2020). Third, exogenous factors may change

3.1 INTRODUCTION |

the value of items and the preferences of users, yielding an ever-changing dy-
namic environment (Huleihel et al., [2021).

3.1.1 The role of simulators in recommender systems research

In order to account for the dynamic and interactive aspects of recommen-

dation, various approaches have been proposed, including contextual ban-
dits (Agrawal and Goyal, Li et al, [2010), reinforcement learning (RL) (Chen

et al,, Deffayet et al., Gao et al.,, [2023)), active learning (Rubens
et al.,[po15), counterfactual learning-to-rank (Joachims et al., Gupta et al.,

[2023), and click modeling (Craswell et al., Chuklin et al., Deffayet et
al.,[2023a). These approaches are trained from user data, and it has been shown
that they should not be evaluated solely on accuracy-centric benchmarks (Def-
fayet et al., Jannach et al.,, Sun, as these miss the potential
benefits brought by beyond-accuracy methods.

While online evaluation (Zangerle and Bauer, Sato, remains a
gold standard — when done right (Jeunen, [2023) — to evaluate the impact of
recommendation models on user-related metrics, most researchers do not have
access to a live recommendation system. Moreover, the potential degradation
in user satisfaction and revenue induced by online experiments may limit the
possibility to conduct such an evaluation, especially in a research setting where
many experiments are needed to improve on the current version of the recom-

mender system.

In that case, prior work (Deffayet et al., Swaminathan et al., Kiy-
ohara et al., has advised to either resort to off-policy evaluation (OPE),
which consists in evaluating the target system using data collected with the
original system, or otherwise to conduct experiments in a simulated environ-
ment. Simulators are by definition synthetic, at least partially, and good perfor-
mance obtained in a simulator is therefore no guarantee of success in the live
system. However, their value lies in the ability to control relevant parameters
in a way that spans the potential dynamics encountered in the real environ-
ment. Indeed, tweaking parameters and observing their effect on candidate
methods allows one to identify general trends and study important research
topics: regimes of success and failure (e.g., low data, high bias), robustness
to environmental features that may be observed in the real world (e.g., noise,

distribution shifts), generalizability of the results, etc.

29

30

| SARDINE: A SIMULATOR FOR INTERACTIVE RECOMMENDER SYSTEMS

In that sense, simulated evaluation can even be less opaque than OPE and
online evaluation, as observing variables that are normally not accessible to
the practitioner can help better interpret the observed performance of the can-

didate systems. In order to deliver these benefits, we argue that simulators
should be:

1. Configurable in a way that is easily interpretable to the practitioner,

2. Able to span a large part of the various forms of complex behavior com-

monly found in the real environment.

In practice, we draw up a list of specifications that we use as a goalpost for

designing our simulator:

Specifications — Our simulator should satisfy the following requirements:

Comprehensiveness: Most of the important research questions for inter-

active recommender systems can be studied in one core simulated engine;

Interpretability: One or a few well-defined parameters can control a spe-
cific aspect of interest in recommender system research, i.e., the simulator

should be interpretable and controllable;

Effect isolation: The effect of individual parameters or individual algo-
rithmic modules can be singled out, so as to allow the focused study of
one aspect of the environment (e.g., noise, user drift, etc.) or one part of
the method (e.g., user and item representation, decision-making module,
etc.);

Non-triviality: The simulated task should not be trivially solved by off-

the-shelf baselines; and

Configurability: Additions and changes to the existing simulator should
be easy enough to enable deeper studies or new research questions.

In order to fulfill the specifications, and before engaging with simulator design,
we must define the scope of the research we wish to enable with such a simu-
lator. We therefore define the research agenda our simulator addresses in the

next section.

3.1 INTRODUCTION |

3.1.2 A research agenda for interactive recommender systems

We identify four overarching research topics (RTs) that we believe to be crucial

for interactive recommender systems (RSs) research, and that can be studied

in our simulator. We also connect them to variants of our simulator that are

particularly well-suited to study them:

(RT1)

(RT2)

How to enable multi-step reasoning and control user-related metrics
in the long run? In a dynamic and interactive environment, shifting
dynamics and delayed consequences of actions prompt RS designers to
adopt a control paradigm, where target variables such as user satisfac-
tion, revenue, or fairness-related variables must be optimized and kept at
a desired value in the long run. This requires multi-step reasoning, i.e.,
thinking ahead of time about future consequences of recommendations
formulated at the present time. Many approaches have been proposed
to tackle multi-step reasoning, notably with reinforcement learning (Def-
fayet et al., Gaoetal., Chen et al., Xin et al., [2022). This
research topic can be studied thanks to the interactive environments we
release, i.e., SingleItem-Bored, SlateTopK-Bored, SlateTopK-BoredInf,
SlateTopK, SlateTopK-Uncertain, SlateRerank-Bored.

How to learn from biased data? As online learning is often not pos-
sible in a large commercial platform, it is common to resort to offline
or off-policy learning, by first collecting data in the live environment,
and then learning from this data. However, multiple biases arise in the
logged data. Due to selection bias, the distribution of items observed
in the data is highly imbalanced, including many items that are never
or almost never shown to certain users. Additionally, even when feed-
back is observed, biases in user behavior favor certain items above oth-
ers, e.g., due to position bias. As a result, training models that do not
account for these biases leads to the unfair promotion of already well-
exposed items. Learning from data despite these biases is a very active
area in information retrieval research, with techniques such as offline

reinforcement learning (Chen et al., Gao et al., Xin et al.,
[2022)), counterfactual learning-to-rank (Gupta et al., Joachims et al.,

[2017), or click modeling (Deffayet et al., Chuklin et al., 2o15). All

of our simulated environments can be used for off-policy training, but

31

32

| SARDINE: A SIMULATOR FOR INTERACTIVE RECOMMENDER SYSTEMS

(RT3)

(RTy)

we notably study this research topic with our SlateRerank-Static and

SlateRerank-Bored environments.

How to make sure that interactive recommender systems are robust
to uncertainties of the real-world? Recommender systems must oper-
ate under large amounts of uncertainty coming from multiple sources:
in the user feedback and in their evolution after consuming items (e.g.,
varying mood and personal traits, light scanning of the results), about
exogenous factors influencing user behavior and item value (e.g., world
events, current context when accessing the platform), about user prefer-
ences (e.g., cold start, changing users) and in the policy itself (e.g., busi-
ness rules, stochastic amortization). Large amounts of uncertainty may
hurt the performance of recommender systems and yield disappointing
results during the deployment of these models, which has prompted
the development of uncertainty-aware methods (Knyazev and Ooster-
huis, Oosterhuis and de Rijke, 2021a). Our SlateTopK-Uncertain,
SlateTopK-PartialObs and SingleItem-PartialObs allow to study such
uncertainties.

How to effectively and efficiently recommend slates (e.g., lists or grids)
of items to users? The interface of many recommendation platforms re-
quires showing multiple recommendations to users on the same page.
This comes with additional challenges as different combinations of items
may lead to different short and long-term outcomes. The problem thus
becomes combinatorial in nature, which makes the task intractable for
most applications. The existing literature discusses slate-specific meth-
ods for both training and evaluation of slate recommendation policies (Ie
etal., Chenetal., Swaminathan et al., 2o17), including meth-
ods that improve on the efficiency of slate recommender systems (Oost-
erhuis, Sakhi et al., . It is possible to train slate recommender
systems on all our SlateTopK and SlateRerank environments.

3.1.3 Our contributions

Our contributions can be summarized as follows:

We introduce a simulator for automated recommendation in dynamic and

interactive environments (SARDINE), which can be used as a flexible core

3.1 INTRODUCTION |

engine for multiple types of simulated experiments in recommender sys-
tems research, allowing quicker iterations towards studying, among oth-
ers, the research topics (RT1—4) mentioned in Section [3.1.2] i.e., multi-step

reasoning, biased data, uncertain dynamics, and slate recommendation.

e We additionally provide nine different environments derived from this
simulator, in the form of gymnasium (Towers et al., environments,
that are already tailored for studying important aspects of recommenda-

tion in dynamic and interactive settings."

e We conduct experiments on the nine proposed environments, in order
to (i) better describe the main dynamics of the simulator, (ii) provide
a testbed for existing approaches and baselines, and (iii) uncover novel
findings about existing approaches, thereby restating the value of our

simulator for effective recommender system research.?

Furthermore, we now summarize the expected benefits of releasing our simu-
lator. Indeed, we seek to help accelerate future research, by: (i) providing a
playground for researchers to create and test prototypes and therefore iterate
more quickly; (ii) enabling quickly building experimental set-ups in order to
gain knowledge on specific research questions related to the topics RT1—4 we
described in the previous section; and (iii) providing a set of not-yet-solved
simulated tasks that trace a path towards progress in recommender systems
research (e.g., as Atari games or Go have been for multi-step visual control).
In contrast, we have no intention to: (i) create a realistic simulator of the hu-
man mind — besides clearly being an unattainable goal, we argue that it is not
necessary to gain perfect knowledge of the actual underlying user model to ef-
fectively optimize the target variables (e.g., user engagement). Instead, we pro-
pose to study the adaptability and robustness of recommendation agents, with
the help of a large array of different simulated settings. (ii) Provide guaran-
tees of live performance. Simulators, whether they are fully- or semi-synthetic,
cannot provide guarantees of performance in the live recommender system.
They are nonetheless valuable for making progress in recommender systems

research, e.g., by studying the robustness of agents and the edge cases where

1 The core simulator as well as the proposed environments can be found at

|https: / /github.com/naver/ sardine}
2 Our experiments are open-source and can be found at

[https://github.com/RomDeftayet/SARDINE_Experiments|

33

https://github.com/naver/sardine
https://github.com/RomDeffayet/SARDINE_Experiments

34

| SARDINE: A SIMULATOR FOR INTERACTIVE RECOMMENDER SYSTEMS

they might struggle, by quickly iterating on simulated tasks that robust recom-
menders should be able to solve, or even by detecting poorly robust methods
before conducting A/B testing in a live system and potentially negatively im-
pacting real users. And (iii) replace offline evaluation on traditional metrics.
While a set of diverse simulated experiments offers a unique perspective on
the inner workings of recommender systems, simulations must always be com-
plemented with offline and online real-world experiments in order to build a

well-rounded assessment of the progress in recommender systems research.

The remainder of the chapter is organized as follows. We formally define
the recommendation problem of interest in Section We then describe the
technical details of the SARDINE simulator in Section [3.3} Section [3.4] covers
the details about our experimental setup, which includes the description of the
SARDINE environments tested in our experiments as well as the compared ap-
proaches. The experimental results are presented and discussed in Section
Finally, we compare our proposed SARDINE to existing recommendation sim-
ulators in Section and conclude the chapter in Section

3.2 PROBLEM DEFINITION

The problem studied in this chapter can be defined as slate recommendation3
in a dynamic environment. In this scenario, we consider that a user interacts
with a recommender system over a session of L steps. In each step, the rec-
ommender system presents a slate containing S items from a predefined set
7 of cardinal n7 to the user. Based on the affinity between the recommended
items and the user preferences, the user decides to click on some or none of
the slate items. Information about the interaction and the current user state is
then returned to the agent and, based on this, the recommender determines the
next slate to recommend. This process can be formulated as a Markov decision
process (MDP) M = (S, A, P, R) defined as follows:

A set of states s € S, which represent the user state and summarize

information about the past interactions.

3 We consider that single-item recommendation is just a special case of slate recommendation

with a slate of size one. Therefore our problem formulation also covers this case.

3.3 SIMULATOR |

A set of actions a € A corresponding to the possible slates presented by
the recommender to the user. This set covers all slates combining items

from Z, so that |A| = (n;—f's), for a slate of size S.

A set of transition probabilities P : S x A x § — [0, 1], which define the
dynamics in the process, i.e., how likely a state s’ € S is if the recom-
mender takes action a € A in state s € S.

A (potentially stochastic) reward function R : S x A — R, which we
define as the sum of clicks over the recommended slate.

We also define a possibly stochastic policy 7 : S x A — [0,1] whose role is
to decide what slate a the recommender system should return in a given state
s. A trajectory T is defined as the set of successive states, actions and rewards
collected in a session of interactions between a user and a recommender. We
denote as T ~ 7 the fact that trajectory 7 is generated by following the actions
provided by policy 7r. The problem of slate recommendation in a dynamic en-
vironment can then be summarized as identifying a policy 7* that maximizes
the cumulated reward (also known as return) in expectation over possible tra-
jectories, i.e., T € argmax;,; Er~ [Z(SIQ)GTR(s,a) .

In this chapter, we introduce a simulator that instantiates the MDP described
above to provide a testbed for developping recommendation policies and study-
ing their characteristics in various settings. The proposed simulator is further
described in Section [3.3

3.3 SIMULATOR

In this section, we detail the components of our simulator for automated
recommendation in dynamic and interactive environments, or SARDINE in
short. In SARDINE, we consider a cold-start scenario where each new session
corresponds to a new user, generated on-the-fly. This means that we assume
no prior knowledge on user profiles before a session starts and that the agent
must do some exploration to discover user interests. This design choice is
realistic for many recommendation platforms, e.g., when a single device or
profile regroups several users — who exhibit diverse preferences over different

sessions — or when the platform does not track a user ID for privacy reasons

(Hidasi et al., [2016).

35

36 | SARDINE: A SIMULATOR FOR INTERACTIVE RECOMMENDER SYSTEMS

.~ SARDINE \
environment

embedding

matrix

slate item

Fetch slate Smbeddings

item embeddings relevance scores

Compute item

Recommendation

|
I
agent |
! relevance
@ : scores
Sample €
L "
X-X) slate clicks

Session-specific
user embedding
/ reward, | .
o~ \—/'/ obs | clicks

|

I

|

|

‘ Click model Apply boredom &

| influence effects updated user |
embedding /

Figure 3.1: Diagram summarizing the different components of the proposed SARDINE

simulator, and its interaction with the recommendation agent.

First, our simulator is initialized by forming synthetic embeddings for the set
of recommendable items (Section [3.3.1). Then, each user session is generated

by following these successive steps:

1. Sample a user embedding for the current session’s user (Section [3.3.1);

2. Provide an initial recommendation (Section [3.3.2) or prompt the agent to

recommend a slate to the user;

3. Compute the relevance of the items in the slate with respect to the user

and sample the clicks on the slate based on items’ relevance and rank
(Section [3.3.3);

4. Update the user embedding to account for the effects of boredom and

clicked item influence, if those mechanisms are included in the simulator
(Section [3.3.4);

5. Repeat steps (2) to (4) until the number of interaction steps reaches the

session length L.

We define both a fully observable variant and a partially observable variant for
SARDINE, whose differences are detailed in Section [3.3.5) Moreover, we use
the main engine described in this section with different sets of hyperparam-

eters so as to create nine different environments with various characteristics,

3.3 SIMULATOR |

Table 3.1: List of the hyperparameters used in the proposed SARDINE simulator, with
their description.

Hyperparameter Description

L Session length (in time steps).
S Slate size (in number of items).
nr Number of items.
nr Number of topics (and user/item embedding dimension).

Scale hyperparameter for the relevance function.

1 Shift hyperparameter for the relevance function.

« Range hyperparameter for item attractiveness.

€ Click propensity for examination probability.

1y Number of items considered for boredom computation.
tp Click recency (in time steps) for boredom computation.
T Threshold on topic occurrence for boredom computation.
w Weight controlling the influence of clicked items on user.
(@) Whether the state is fully or partially observable.

and targeting various research outcomes. We introduce these environments in

Section

Fig. 3.1|illustrates the different components of our simulator and its interac-
tions with the recommendation agent. In Table 3.1l we additionally provide a
description for the hyperparameters of the simulator, which are further defined

in the remainder of this section.

3.3.1 Item and user embeddings

Items and users are assigned randomly-generated sparse embeddings of size
ny = |T|, where T is the set of topics associated to items and users (defined
below). The sparsity enforces a coverage of only a limited number of topics
per item and user. The generative process to define the embedding* for each

item 7 in the set of items 7 is the following;:

To distinguish the item embeddings used in the simulator from the item embeddings