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1
I N T R O D U C T I O N

When you start doing research on recommender systems, you get surprisingly
quickly accustomed to certain idiomatic phrases: preference and information need,
relevance and bias, items and users. User, in particular, is a peculiar word: no
one primarily describes themselves as a user, and yet all our definitions seem
to build on the immovable notion of a user: we recommend things that are rele-
vant to the user, we estimate the user preference and fulfill the user’s information
need. But who is the user? After asking people around me whether they are
the user, I still haven’t found out. Fortunately, it seems that researchers have
created the user from data: it is a ranking function over possible items – another
generic term – which is determined from the judgement of certain people on
said items in the past (Aggarwal, 2016). When recommendations are person-
alized, they can often be refined based on a history of past interactions with
the system, in which case the user is a function of interaction logs that came
before the recommendation event, and its value is determined by the logs that
followed (e.g., clicks, likes, watch time) (Wang et al., 2019).

Once the user has been built, we can conveniently learn our own models
from data, which are also ranking functions, and compare them against the
user (Robertson, 1977). Doing so essentially amounts to a static matching task:
the user has preferences over items and we must find which ones it values the
most, i.e., we must match its ranking function by learning from data. While
this is a very convenient approach, the user does not exist. Or rather, it is made
of multiple snapshots of what a person, at a given time in the past and given
their environment at the time, did when facing the pieces of content returned
by a (possibly unknown) recommender system. Matching the behavior of this
idealized user is fine as long as these persons, their environment and the rec-
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2 introduction

ommended results stay the same in the future (at least in distribution). When
that is true, models that perform well against the user will continue to perform
well once deployed on the actual online platform.

In this thesis, I investigate what happens when this is not the case, i.e., when
there is a distribution shift between the observed data and the future inter-
actions on the platform. In particular, I focus on the distribution shifts that
result from our system’s own decisions. They can typically occur in two cases:
(i) when a new system is deployed and is different from the previous ver-
sion that was in place during data collection, which happens at virtually every
deployment as the goal is usually to improve the recommender system in pro-
duction (Oosterhuis, 2021b); and (ii) whenever the recommended items have
the power to shape future user behavior, i.e., when recommendations are per-
formative (Perdomo et al., 2020; Wang et al., 2024). In the first case, the previous
recommender system may have constrained the choice of the person whose in-
teractions are logged in the data (for instance by placing results on the page
in an unequal manner or by not returning at all certain results), and therefore
the value of items may have been wrongly reflected in the data. Regarding
the second case, we must acknowledge that the recommendations can change
a person’s behavior (for example by boring them due to redundant recommen-
dations) (Gao et al., 2023) and even change their worldview (e.g., by exposing
them to biased world representations) (Cinus et al., 2022).

But contrary to exogenous distribution shifts (e.g., due to people being influ-
enced by their social circle or due to changes in the world that affect the value
of certain items), the effects described above directly result from decisions that
we control, and therefore that we can adapt. Controlling for these unexpected
dynamic effects of our recommendations on the future user experience is cru-
cial as a large part of the information available on the internet is algorithmically
filtered before reaching its intended target user (European Commission, 2024).
Moreover, accounting for such effects is not merely a way to avoid potential
pitfalls of static recommender systems, but can also be seen as an opportunity:
to better help people navigate the large amounts of available information by
getting them interested in topics they didn’t know initially or by providing a
consistent sequence of recommendations as they keep using the online service.

Throughout the thesis, I employ various techniques that present favorable
properties towards harnessing the complex dynamics of recommender sys-
tems: reinforcement learning (RL), including its distributional variant, unbi-
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ased learning to rank through click modeling, generative user modeling, . . .
Essentially, I wish to identify what these techniques can bring to recommender
systems and more importantly, to the people using them, what are the chal-
lenges in applying these general methodologies to the very specific recommen-
dation task, and finally what kind of tools they require to be made reliable and
trustworthy. While it is illusory – and undoubtedly inappropriate – to expect
recommender systems to perfectly understand and control the inner mecha-
nisms that explain how people behave on the internet, I argue that developing
tools that are able to observe, forecast and manage the performative effects of
the systems that power most online services is both key to their improvement
and a societal responsibility.

1.1 research questions

I try to address certain specific questions that stem from the overarching re-
search topic described above. I list them here.

Before training any model that could be capable of handling dynamic and
interactive recommendation environments, we must make sure our evaluation
setup is up to the task. I therefore introduce the first research question:

Research Question 1. How can we evaluate recommender systems in a way that
accounts for their dynamic and interactive nature?

This topic is mostly covered in Part I, i.e., Chapter 2 and Chapter 3. Specifi-
cally, in Chapter 2, we review how reinforcement learning-based models, which
are often seen as being promising for controlling the dynamics of recommender
systems (Afsar et al., 2022), are usually evaluated in the context of recommen-
dation. We find that the common static approach of next-item prediction is
inadequate in this new, dynamic setting, and list its limitations. We then pro-
pose alternative ways forward. One of these is the use of simulators as an
evaluation tool, in a research context. In Chapter 3, we therefore propose a
simulator suited to research the dynamic aspects of recommendation.

Distribution shifts also manifest themselves in the form of biased data used
for training new models. While selection bias (e.g., some items have not been
recommended and we therefore don’t know their value) is prevalent in virtu-
ally all application fields of offline bandit and reinforcement learning (Levine
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et al., 2020), information retrieval systems present a more unusual kind of bias:
multiple items are often returned at once, and their presentation on the result
page may affect the likelihood of the user engaging with these items. There-
fore, the observed data is not a reliable indicator of item value. This is clearly
an issue for later deployment where models learned on such biased data may
perform poorly or unfairly promote certain items above others. This leads to
the following question:

Research Question 2. Can we predict in a fully offline manner the performance of
models learned on biased data?

We review the existing studies on offline evaluation of learning-to-rank algo-
rithms under biased data and highlight their limitations in Chapter 2. Chap-
ter 4 and Chapter 5 are dedicated to answering this question. In Chapter 4

we perform a large empirical study on click models, i.e., models that aim to
learn user biases from logged data. Then in Chapter 5, we propose an offline
metric that yields a better correlation with the performance of the learned click
models after deployment.

It quickly becomes apparent that making assumptions about user behavior,
for instance by leveraging user studies, often helps to enable an accurate estima-
tion and mitigation of bias, or simply to correctly capture the structure of the
data and the value of recommendations. However, making such assumptions
comes at a cost: they may not fit the actual user behavior well. We therefore
investigate this issue:

Research Question 3. When do we need assumptions on user behavior, and how can
we test for the validity of these assumptions?

In Chapter 4 and Chapter 5, we compare click models making different as-
sumptions about the user behavior. We find that, generally, simplifying the
problem by imposing strong constraints on the learned parameters helps mit-
igate bias in the data, and that simpler user assumptions lead to more ro-
bust performance on the downstream task, even when the actual user behavior
is more complex. Moreover, we find that our metric proposed in Chapter 5

is an effective way of choosing the right set of assumptions. In Chapter 6,
we take a different perspective, and ask the question: can we train reinforce-
ment learning-based recommender systems without formulating assumptions
on data structure and user behavior. We propose an assumption-free reinforce-
ment learning agent that is typically able to capture the signal in the data.
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A major challenge in training such an assumption-free RL agent is the size of
the action space, which can grow very large in recommender systems scenarios:
from a few hundred or thousand possible items for small-scale recommender
systems to an intractably large number of possible slates (i.e., lists of items) for
large-scale recommender systems that present multiple items at a time. This is
summarized by the following research question:

Research Question 4. How to train reinforcement learning agents that recommend
slates of items to users effectively and efficiently?

Chapter 6 is entirely dedicated to this RQ, and we propose an approach
based on pretraining a generative model of slates and user responses, and
then using its latent space as action space for a continuous control RL agent.

Finally, another prevalent challenge in recommender systems, and even more
so when we consider their dynamics, is very high uncertainty about user pref-
erence, item value, feedback reliability, . . . . The poor observability of user
preference, coupled with click noise and dynamics that can be very different
depending on the specific user we consider, make the whole process very un-
certain. Recommender systems should therefore be able to assess and adapt to
this uncertainty.

Research Question 5. How can we train reinforcement learning algorithms to handle
high degrees of uncertainty, which is common in interactive recommender systems?

In Chapter 7, we investigate distributional reinforcement learning, i.e., re-
inforcement learning agents that learn the full distribution of future returns
instead of their expected value. Distributional RL agents are known to handle
uncertainty in the environment better than their point estimate counterparts,
but we note that maintaining a theoretically valid estimation of the full dis-
tribution usually comes at the cost of decreased performance. We therefore
propose a method that is valid in theory and matches the performance of the
most effective agents.

1.2 contributions

In this section, I list the main contributions of this thesis. I split them into the-
oretical contributions, i.e., proofs, insights and guidelines, and practical contri-
butions, i.e., implementations, benchmarks, and resources.
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Theoretical contributions

• A formalization of the next-item prediction evaluation protocol in sequen-
tial recommendation and its limitations for evaluating interactive recom-
mender systems. (Chapter 2)

• A set of requirements for a research-oriented simulator of dynamic and
interactive recommender systems. (Chapter 3)

• The discovery of a critical limitation of annotator-based evaluation under
policy distribution shift: biased models can obtain very high performance
on annotation-based ranking metrics. (Chapter 4)

• An offline metric for the debiasedness of click models. (Chapter 5)

• A comparison of assumptions commonly used in reinforcement learning
for slate recommendation. (Chapter 6)

• A proof of the Bellman-closedness of mapped expectiles, that indicates
that it is possible to learn theoretically valid distributional RL agents us-
ing efficient L2 loss functions. (Chapter 7)

Practical contributions

• A simulator for interactive recommender systems research, and a bench-
mark of common approaches in various scenarios. (Chapter 3)

• A benchmark of the robustness of various click models to policy distribu-
tion shift, and their performance on downstream tasks. (Chapter 4)

• An assessment of the predictive power of our proposed metric for the
debiasedness of click models and its usefulness for selecting models to
be deployed. (Chapter 5)

• An assumption-free agent for RL-based slate recommendation. (Chap-
ter 6)

• A dual implicit expectile-quantile networks agent for distributional rein-
forcement learning. (Chapter 7)
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1.3 thesis overview

I now provide an overview of how the thesis is organized. The thesis is the-
matically split into three parts, each containing two chapters. While each part
– and each chapter – can be read independently, I recommend starting with
Part I, especially Chapter 2, in order to get a better understanding of how this
thesis builds on considerations that are different from many existing studies
on recommender systems. Chapter 5 should ideally be read right after Chap-
ter 4, as it is a direct follow-up of the work presented in Chapter 4. Chapter 3

includes in its experiments the method presented later in Chapter 6, but a de-
tailed understanding of how this method works is not necessary when reading
Chapter 3.

1.4 origins

The research chapters in this thesis are based on the following publications:

(Chapter 2) Romain Deffayet, Thibaut Thonet, Jean-Michel Renders, and Maa-
rten de Rijke. 2023. Offline Evaluation for Reinforcement Learning-based
Recommendation: A Critical Issue and Some Alternatives. In SIGIR Fo-
rum 56, 2, Article 3 (December 2022).
RD proposed the idea. RD and TT surveyed relevant articles. JMR and
MdR had an important advisory role. All authors participated in writing.
RD did most of the writing.

(Chapter 3) Romain Deffayet, Thibaut Thonet, Dongyoon Hwang, Vassilissa
Lehoux, Jean-Michel Renders, and Maarten de Rijke. 2024. SARDINE: A
Simulator for Automated Recommendation in Dynamic and Interactive
Environments. In ACM Transactions on Information Systems (TORS), “Just
accepted".
RD proposed the idea and drew the requirements. RD, TT, DH, VL par-
itcipated in the implementation. RD and TT performed experiments. All
authors participated in writing. RD and TT did most of the writing.

(Chapter 4) Romain Deffayet, Jean-Michel Renders, and Maarten de Rijke.
2023. Evaluating the Robustness of Click Models to Policy Distributional
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Shift. In ACM Transactions on Information Systems (TOIS) 41, 4, Article 84
(October 2023).
RD proposed the idea, implemented the models, and performed the ex-
periments. JMR and MdR had an important advisory role. All authors
participated in writing. RD did most of the writing.

(Chapter 5) Romain Deffayet, Philipp Hager, Jean-Michel Renders, and Maa-
rten de Rijke. 2023. An Offline Metric for the Debiasedness of Click
Models. In SIGIR’23: the 47th International ACM SIGIR Conference on Re-
search and Development in Information Retrieval.
RD proposed the idea and theory. PH derived the metric and imple-
mented the evaluation setup. RD and PH implemented models and ran
the experiments. JMR and MdR had an important advisory role. All
authors participated in writing. RD and PH did most of the writing.

(Chapter 6) Romain Deffayet, Thibaut Thonet, Jean-Michel Renders, and Maa-
rten de Rijke. 2023. Generative Slate Recommendation with Reinforce-
ment Learning. In WSDM’23: the 16th ACM International Conference on
Web Search and Data Mining.
RD proposed the idea and implemented the method. RD and TT created
the experimental setup and ran the experiments the models. JMR and
MdR had an important advisory role. All authors participated in writing.
RD and TT did most of the writing.

(Chapter 7) Sami Jullien, Romain Deffayet, Jean-Michel Renders, Paul Groth,
and Maarten de Rijke, 2024. Distributional Reinforcement Learning with
Dual Expectile-Quantile Regression. Under review.
SL and RD did the initial investigation and proposed the idea. RD built
the theory and the toy experiment. SJ derived the practical agent and ran
the large-scale experiments. JMR and MdR had an important advisory
role. All authors participated in writing. RD and SJ did most of the
writing.

The thesis also benefitted from the following publication: Philipp Hager, Ro-
main Deffayet, Jean-Michel Renders, Onno Zoeter, and Maarten de Rijke, 2024.
Unbiased Learning to Rank Meets Reality: Lessons from Baidu’s Large-Scale
Search Dataset. In SIGIR’24: the 48th International ACM SIGIR Conference on
Research and Development in Information Retrieval.



Part I

Evaluation of Dynamic and Interactive
Recommender Systems





2
O F F L I N E E VA L U AT I O N F O R

R E I N F O R C E M E N T
L E A R N I N G - B A S E D

R E C O M M E N DAT I O N : A C R I T I C A L
I S S U E A N D S O M E

A LT E R N AT I V E S

With this first research chapter, we try to establish a sound basis for research on
dynamic and interactive recommender systems. We review the growing trend
of modeling recommender systems in an interactive fashion, mostly by training
reinforcement learning agents. In particular, we focus on how reinforcement
learning-based recommender are usually evaluated. We find that most studies
use a form of next-item prediction, where the next interacted item in the se-
quence of interactions acts as a label, whose score should be maximized by the
agent.

We note that this evaluation protocol is unsuited to RL agents: on the one
hand it cannot reflect the expected benefits that RL can supposedly bring, and
on the other hand, some critical pitfalls of RL agents trained offline can fly un-
der the radar of this type of evaluation. Consequently, we give our suggestions
going for forward, and list a few existing or emerging alternatives.

This chapter is based on the following publication: Romain Deffayet, Thibaut
Thonet, Jean-Michel Renders, and Maarten de Rijke. 2023. Offline Evalua-

11
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tion for Reinforcement Learning-based Recommendation: A Critical Issue and
Some Alternatives. In SIGIR Forum 56, 2, Article 3 (December 2022).

2.1 introduction

Recommender systems play a major role in defining internet users’ experience
due to their ubiquitous presence on, e.g., content providing and e-commerce
platforms. Correct and careful evaluation of recommender systems is therefore
critical as it directly impacts business metrics as well as user satisfaction – and
sometimes even society as a whole.

While recommendation accuracy (i.e., recommending relevant items) is often
taken to be the main indicator of performance, the literature on recommender
systems highlights the importance of additional criteria. Beyond-accuracy goals
include, e.g., diversity, novelty or serendipity, fairness, and user experience in
general (McNee et al., 2006a). Such criteria sometimes cannot be enforced in
one-shot recommendation (i.e., in a single interaction between the user and
the recommender system) but they may require that we consider the longer-
term experience. These concerns have motivated researchers and practition-
ers alike to acknowledge the sequential nature of many recommendation en-
gines, and to seek to optimize over whole sequences instead of one-shot pre-
dictions (Quadrana et al., 2018).

Reinforcement learning (RL) formulates this problem as a Markov decision
process (MDP), in which we wish to select appropriate actions (i.e., item recom-
mendations) in order to maximize the sum of rewards (e.g., clicks, purchases,
etc.) along the full sequence of user interactions with the recommender sys-
tem. RL is a natural fit for this problem because the underlying MDP is able
to model the long-term influence of recommendations on the user. Note that
in recommendation scenarios, online exploration is often impossible, so the
policy must be trained from a fixed dataset of interactions, i.e., by offline RL.
While sequence optimization with offline RL is not expected to entirely fulfill
all the desired beyond-accuracy criteria highlighted in the literature, it holds
the promise of making some of the desired properties naturally emerge as a
result of whole-sequence optimization. Indeed, one can expect that, given an
appropriate reward function, policies that are effective over the entire span
of the user’s experience require some of these desired properties: diversity,
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novelty, etc. Because these auxiliary metrics are embedded into a sequence’s
cumulative reward, whole-sequence optimization with RL can be seen as a way
to bridge the gap between offline and online performance.

In this chapter, we argue that the progress supposedly achieved in sequen-
tial recommendation, thanks to RL, lacks ecological validity (Andrade, 2018): the
trained agents are likely not to generalize to real-world scenarios, because of
certain shortcomings in the current evaluation practices. Namely, RL-based
recommender systems are often evaluated in an offline fashion, following a
traditional one-shot accuracy-oriented protocol that cannot capture the poten-
tial benefits introduced by the use of RL algorithms. We refer to this evalu-
ation protocol as next-item prediction (NIP). More critically, we highlight that
the specifics of this protocol are likely to hide the deficiencies of recommender
systems trained by offline RL. Briefly, we argue that with the most commonly
employed evaluation practices, we cannot verify that the RL algorithm correctly opti-
mizes the very metric it is designed to optimize, i.e., expected cumulative reward.
We worry that instead of bridging the gap between offline and online perfor-
mance, it only widens it. We then provide suggestions towards a sound evalua-
tion methodology for RL-based recommendation in order to help practitioners
and researchers avoid common pitfalls and to inspire future research on this
important topic.

After contrasting our criticism with that formulated by previous studies in
Section 2.2, in Section 2.3 we provide a definition of the next-item prediction
(NIP) evaluation protocol along with an overview of its use in sequential rec-
ommendation with RL. Section 2.4 dives into the three major issues of the NIP
protocol, and their implications for the evaluation of RL-based recommender
systems. Finally, we formulate our suggestions towards a sound evaluation
methodology in RL-based recommendation in Section 2.5.

2.2 related studies

Deficiencies in recommender systems evaluation have been a long-standing
problem in the recommendation literature. In this section we review previous
studies that discuss this topic.

Firstly, as we recalled in the introduction, McNee et al. (2006a) and Jannach et
al. (2016) have highlighted the need for recommender systems that go beyond
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accuracy of the proposed item, i.e., which do not only consider recommenda-
tion as a matrix completion problem. This is motivated by an observed gap
between offline and online performance, sometimes rendering any conclusions
drawn from offline evaluation obsolete (Garcin et al., 2014; Gomez-Uribe and
Hunt, 2016; Jeunen, 2019).

Secondly, pitfalls of recommender system evaluation – including the next-
item prediction protocol for offline evaluation that we focus on in this chap-
ter – have been extensively discussed in the past: Chen et al. (2017), Jeunen
(2019), Ji et al. (2020), Cremonesi and Jannach (2021), Sun (2023), and Zhao
et al. (2022) highlighted multiple issues resulting from data leakage and other
dataset construction fallacies, which can lead to counter-intuitive statements.
The presence of selection bias in the data used for evaluating recommender
systems from implicit feedback has also been identified as a major source of
inaccuracies (Gomez-Uribe and Hunt, 2016; Jannach et al., 2016; Chen et al.,
2017; Jeunen, 2019). In addition, and more specifically to the next-item predic-
tion protocol, Krichene and Rendle (2020) and Zhao et al. (2022) have shown
that sampling negative items at inference time in order to ease the computation
of ranking metrics leads to drawing incorrect conclusions on the recommenda-
tion performance.

Finally, many studies reaffirm the importance of appropriate baseline selec-
tion in order to ensure that progress has been made, and have shown that
certain claims do not hold against properly tuned baselines (Ludewig et al.,
2019; Ferrari Dacrema et al., 2019; Rendle et al., 2019; Sun et al., 2020; Zhao
et al., 2022).

The argument we formulate in this chapter is specific to RL-based recommen-
dation and while it has, to the best of our knowledge, never been expressed,
it is not incompatible with the issues listed in this section. It is rather to be
considered as an additional caveat when evaluating RL-based recommender
systems.
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2.3 next-item prediction in rl-based recommen-
dation

We propose an (informal) definition of next-item prediction that encompasses
the offline evaluation protocols of many sequential recommendation studies,
and that we consider to be problematic when used to evaluate RL-based rec-
ommender systems:

Definition 1. Next-item prediction (NIP) is an offline evaluation protocol for
sequential item recommendation from real user feedback. The task is to ensure
that the next interacted item is among the top items ranked by the model, given
the sequence of past interactions. Model performance is measured according
to ranking metrics (e.g., hit rate, recall, NDCG, etc).

We propose this definition because it is representative of the evaluation setup
adopted in many sequential recommendation studies, e.g., GRU4REC (Hidasi
et al., 2016), and also encompasses several variants. In particular, the choice of
“next interacted item” can vary depending on the dataset and task at hand: the
next clicked item in content recommendation (e.g., Last.fm (Last.fm, n.d.)), the
next purchased product in product recommendation (e.g., RecSys Challenge
2015 (Ben-Shimon et al., 2015) or RetailRocket (RetailRocket, 2016)), the next
highly rated movie in movie recommendation (e.g., MovieLens (GroupLens,
n.d.)), the next basket in grocery shopping (Instacart, 2017), etc.

How prevalent is it in RL-based recommendation? RL-based recommenda-
tion (RL4REC) has become increasingly popular in recent years: we counted
55 papers about RL4REC in the proceedings of major information retrieval
and recommender systems (or related) conferences between January 2017 and
October 2022. To obtain this result, we queried “reinforcement learning rec-
ommendation” and “reinforcement learning recommender” on DBLP1 and in-
cluded papers published at AAAI, CIKM, ICDM, IJCAI, KDD, RecSys, SIGIR,
WSDM or WWW. Figure 2.1 shows the increasing trend in published RL4REC
papers. Out of the 55 papers retrieved from DBLP, we identified 39 papers that
address sequential item recommendation using RL-based approaches. Other
tasks irrelevant to our argument included conversational recommendation or
explainable recommendations, so we ignore papers related to these topics in

1 https://dblp.org/

https://dblp.org/
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Figure 2.1: Evolution of the number of RL-based recommendation papers published

in major RecSys and IR conferences between 2017 and 2022.

this study. Among the 39 relevant articles, we found 24 papers performing a
form of offline evaluation, including 22 papers that followed the NIP protocol
from Definition 1. The 15 other papers exclusively rely on online evaluation,
either in production using an industrial recommendation platform or based on
a simulator. The NIP protocol is therefore by far the most commonly adopted type of
offline evaluation.

2.4 three shortcomings of nip

Before engaging with the explanation of the issues with next-item prediction,
we would like to recall the benefits promised by the use of RL algorithms:

• RL aims to optimize long-term outcomes resulting from a sequence of
decisions. This requires accounting for the effect of the recommender
on the user. RL-based methods are able to optimize whole-sequences by
assigning the credit for observed rewards to individual actions, thereby
preventing costly search throughout the combinatorial space of action
sequences.
• RL algorithms learn in a self-supervised manner, by maximizing scalar

rewards. Doing so allows them to recover open-ended solutions and
generate novel policies. However, training the agent in an offline fashion
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also comes with the risk of deriving policies with inaccurate estimation
of their expected return.

In the following, we list three major shortcomings of the NIP protocol for eval-
uating offline RL agents, and explain how they harm the ecological validity of
the claims derived from this evaluation protocol.

2.4.1 A myopic evaluation

Evaluating an offline RL-based recommender system using Definition 1 only
accounts for short-term rewards and ignores the causal effect of the recommen-
dations on the user. Indeed, an important motivation to design RL algorithms
is to maximize the return (i.e., sum of rewards) along full trajectories, as op-
posed to bandit algorithms that aim to maximize the average reward at each
timestep. When the actions (i.e., recommendations) cause the environment
(i.e., user) to change its state, RL algorithms still have convergence guarantees,
while the environment appears as non-stationary to bandit algorithms that fail
to find the optimal policy both in theory and in practice. But the next-item
prediction evaluation protocol only requires short-term thinking as it rewards
one-shot prediction of the next interacted item – this is due to the offline, static
nature of the evaluation that overlooks the causal impact of the recommenda-
tion policy of interest over subsequent interactions. This argument has been
formulated by Lee et al. (2022a), who also empirically verified that greedy, my-
opic agents achieve similar or better performance on the NIP protocol than
long-term-aware RL agents on standard recommendation datasets. Quadrana
et al. (2018) also warned about the limits of the NIP evaluation protocol in
sequential recommendation when not only immediate satisfaction but also di-
versity or user guidance in content discovery is desired.

However, in contrast to Lee et al. (2022a), we additionally argue that the
inclusion of delayed rewards such as dwell-time in content recommendation
or lifetime value in product recommendation would not be sufficient to solve
this issue. Indeed, the long-term outcomes encoded in the delayed reward (e.g.,
was the product satisfactory over its whole lifetime?) can be orthogonal to the
long-term outcomes encoded in the sum of rewards along the trajectory (e.g.,
was the trajectory diverse enough to avoid boring out the user?). While the
former clearly seem to be important in order to obtain useful and enjoyable
recommender systems, the latter are the ones that are modeled by the Markov
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decision process underlying the RL agent. Consequently, if we include delayed
rewards but ignore the long-term outcomes induced by the sequential decision-
making process, we still cannot observe the benefits brought by RL training
from the NIP protocol. Note that these two types of long-term outcomes are
not incompatible and we recommend using a reward function that is as close
as possible to the user’s needs and satisfaction, including delayed outcomes.

2.4.2 A suboptimal target

As explained in Section 2.3, in datasets commonly employed for next-item
prediction, we observe the rewards (e.g., clicks, purchases) only on the items
that the user interacted with. This incurs a selection bias in the evaluation
protocol, caused by the application of a particular treatment to the user. This
treatment can take the form of a logging policy or a mixture of logging policies
when data is gathered from organic interactions on recommendation platforms,
or the implicit effect of exogenous factors when the observed data is the result
of active user feedback, e.g., voluntary movie reviews or product search. We
refer to the latter kind of bias as an implicit logging policy for simplicity. Note
that another source of sub-optimality of the interacted items is that user choice
may also be shortsighted or reluctant to novelty, even though acting so may
lead to a less enjoyable experience overall.

By considering the fact that selecting the interacted item is a binary target,
instead of a scalar reward to be maximized, the NIP evaluation incentivizes
researchers and practitioners to build policies that are close to the (implicit)
logging policy, at the expense of choosing optimal actions. It is a close-ended
task of policy matching while RL allows for open-ended outcomes, i.e., gen-
erating novel policies achieving high return. There exist simpler methods to
replicate the policy which generated the data, e.g., imitation learning (Hussein
et al., 2017), and the reward maximization objective of RL is likely to deteri-
orate the results on this evaluation by selecting items that are different from
the interacted item but incurring higher returns. Consequently, NIP will dis-
card performant policies and encourage policies similar to the logging policy,
even when the sequences in the dataset were highly suboptimal. Considering
stronger signals such as purchases or high ratings mitigates this issue, but the
selection bias that users were exposed to during data collection implies that
some highly rewarding items are likely discarded.
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2.4.3 Risky deployment

The two previous points that we have formulated indicate that the next-item
prediction evaluation cannot reflect the potential benefits brought by offline RL-
based recommender systems. The third problematic aspect that we discuss
shows that next-item prediction may also hide critical deficiencies of offline RL
agents.

Even though in the evaluation protocol of Definition 1 we account for the
position of the next interacted item in the model predictions, through the use
of ranking metrics, the recommender system will only select its most preferred
item (or top-k most preferred items in slate recommendation) when used in
production, while none of the other items will be shown to the user. It therefore
seems crucial to ensure that the top item is satisfactory, regardless of the full
ranking. This is unfortunately not possible with a fixed dataset where only one
or a few items have been shown to the considered user. A tacit assumption
of NIP is that higher ranking metrics correlate with a top item causing high
return. However, a gap between offline and online results has been identified
in previous studies (Garcin et al., 2014; Gomez-Uribe and Hunt, 2016). More
importantly, it has been shown that even under the strong assumption that the
Q-value associated to every action (i.e., item recommendation) can be correctly
estimated in expectation (i.e, no bias), there can be an overestimation of the
predicted offline reward with respect to the actual online reward, because the
selected item is more likely to be one of those with an overestimated Q-value
(Jeunen and Goethals, 2021). This phenomenon is called the optimizer’s curse,
and while its practical impact in certain cases can be limited, we argue that it
can critically affect RL algorithms. Indeed, a particular set of conditions has
been identified to cause a catastrophic impact of the optimizer’s curse and is
often called the deadly triad (Hasselt et al., 2018; Sutton and Barto, 2018a). It can
be observed with most RL algorithms and occurs when (i) the value estimate at
one state is used to update the value estimate at the previous state, (ii) function
approximation is used to build the estimate of the value function, and (iii) the
RL agent is trained in an off-policy fashion.

Under such conditions, small overestimations of the value function on out-of-
distribution actions can be amplified and propagated to neighboring states and
actions, potentially leading to divergence of the value function. In that case,
while the model predicts high Q-values for its policy, the observed return after



20 offline evaluation for reinforcement learning-based recommendation

deployment can be arbitrarily bad. The highly damaging effect of the deadly
triad has been observed in multiple scenarios and motivated the emergence of
extensive research on offline reinforcement learning (Hasselt et al., 2018; Fu
et al., 2019; Fu et al., 2020; Levine et al., 2020; Brandfonbrener et al., 2021;
Kostrikov et al., 2022). Unfortunately, this harmful phenomenon cannot be
detected in the standard next-item prediction evaluation of Definition 1: while
the interacted item may rightfully be ranked high by the model, it is likely that
at least one out-of-distribution item is drastically overestimated and preferred
by the model. Since this item will be the one selected by the model, we may
observe an unpredicted catastrophic failure at deployment time. Even worse,
this probability of failure tends to increase with the size of the action-space
(Gu et al., 2022), which can be enormous in certain recommendation scenarios.

2.4.4 Upshot

The three shortcomings we presented in this section render offline evaluation
using the NIP protocol of RL-based recommender systems unreliable. They
effectively widen the gap between offline and online metrics, where RL al-
gorithms were actually supposed to bridge this gap. In the next section, we
suggest potential solutions to address this issue.

2.5 some alternatives to nip

The limitations of NIP make offline evaluation of RL-based recommender sys-
tems difficult. We detail below some partial solutions to this problem and
discuss their limitations and remaining open questions.

2.5.1 Online evaluation in recommendation platforms

The most obvious counter-measure to the issues raised above is to evaluate rec-
ommender systems online when possible, directly on the metrics we care about.
This is usually done by deploying the policies on an actual recommendation
platform. However, it is obvious that not all researchers and practitioners have
access to an operational industrial platform, and online evaluation itself may
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include other forms of biases, e.g., through the inclusion of business rules in
recommendations. Online evaluation clearly circumvents the three issues we
highlighted in the previous section, but since the focus of this chapter is on
offline evaluation, we will not further detail it.

2.5.2 Counterfactual off-policy evaluation

There is a large body of work on off-policy evaluation (OPE) in information
retrieval, often based on techniques such as inverse propensity scoring (Swami-
nathan and Joachims, 2015; Joachims et al., 2017), where a propensity weight is
applied to rescale the observed rewards and returns. Although OPE has mostly
been tackled for the one-shot bandit problem, some studies address OPE of RL
policies both in the RL community (Fu et al., 2021) and in the IR community
(Chen et al., 2019b), and more recently a library for off-policy evaluation of RL
algorithms in IR has been proposed in (Kiyohara and Kawakami, 2022).

Counterfactual methods for off-policy evaluation are attractive in that they
can provide unbiasedness guarantees under mild assumptions. However, we
want to stress three (known) deficiencies of these methods: (i) IPS suffers from
a notoriously high variance which becomes exponentially higher when applied
on sequences, because of the product of inverse propensity weights (Precup et
al., 2000); (ii) in non-tabular settings (i.e., when one can generalize the predic-
tions from a state-action pair to another, for example with continuous spaces),
generalization capabilities must implicitly or explicitly be assumed when the
logging policy is not known, in order to compute the propensity (Hanna et al.,
2019); and (iii) when we train RL algorithms in an offline manner, the error
of the off-policy training and of the off-policy evaluation are likely correlated,
which means that counterfactual OPE may still be biased and wrongly choose
certain methods above others. An extreme example of the latter occurs if we
train and evaluate a policy-gradient recommender with the same propensity
weights, which makes the agent appear as optimal regardless of its true per-
formance. While using an ensemble of estimators might mitigate this issue,
it remains unclear how to fully alleviate this issue. Counterfactual OPE cir-
cumvents all three shortcomings highlighted in the previous section in theory,
but as we have seen it comes with its own shortcomings which may make it
unreliable in certain practical settings.
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2.5.3 Simulator-based evaluation

Simulators have proved useful to assess progress in other domains, such as
robotics, games or industrial applications (Fu et al., 2020; Gulcehre et al., 2020;
Qin et al., 2021). While the interaction with a recommender system is arguably
one of the hardest problems to simulate because of the complexity and appar-
ent stochasticity of human behavior, the true value of simulators lies in their
ability to observe how recommenders react under a chosen set of assumptions
on user behavior. Additionally, by allowing the researcher to access otherwise
unobservable metrics, they can enlighten us on the inner workings of the sys-
tems we build.

Many studies proposed to build semi-synthetic simulators, where the syn-
thetic part is as limited as possible in order to adhere to real-world scenarios.
This can for instance be done by using real item embeddings (Shi et al., 2019)
or by extending the implicit feedback to unseen data, with debiasing in the
missing-not-at-random case (Huang et al., 2020). Moreover, it is possible to as-
sess the generalizability of a method by benchmarking it against a wide range
of simulated configurations, so as to mitigate the influence of simulator design
on the results. Regardless of the chosen setup, one should ensure that the sim-
ulator exhibits the characteristics we wish to model, most notably long-term
influence of the recommender system on the user.

Simulators are not sensitive to the three issues of the NIP protocol, but their
ecological validity may clearly be limited. On top of building simulators from
real data, some approaches aim to bridge the gap between simulation and
reality, for example with domain randomization (Tobin et al., 2017; OpenAI
et al., 2020).

2.5.4 Intermediate evaluation

By intermediate evaluation, we refer to the offline evaluation of models, simu-
lators or propensities that are used as building blocks in the final recommen-
dation model (Huang et al., 2020; Deffayet et al., 2023b). In certain cases, it
may be easier to evaluate these intermediate models than the final model, for
example when they can be evaluated thanks to the availability of human an-
notations, e.g., of item relevance. By breaking down the evaluation protocol
into several components, we can isolate and reduce the sources of bias. For
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instance, in top-k recommendation for cumulative click maximization, if the
click model is correctly estimated, i.e., the relevance and propensity scores are
correct, then only state dynamics (i.e., how a user changes in response to a
recommendation) are left as a source of uncertainty.

Doing so mitigates the risks associated with deploying RL agents, but does
not suppress them. Moreover, we want to stress that offline RL agents will
likely use the intermediate models outside of their training distribution in or-
der to perform policy evaluation, and therefore may exploit inaccuracies in
these high uncertainty regions if no proper countermeasure is applied (Def-
fayet et al., 2023b).

2.5.5 Uncertainty-aware evaluation

While it may not be feasible to accurately evaluate the final performance of
an RL policy in a purely offline fashion, we argue that quantifying its perfor-
mance at different levels of uncertainty can help assess the risks of deployment.
Indeed, the value overestimation issue highlighted in the previous section re-
sults from the high uncertainty on out-of-distribution state-action pairs. We
can constrain the RL algorithm to recover safe policies, that stay within the dis-
tribution of the logging policy, or allow exploration in order to find potentially
high-return policies, at the cost of increasing uncertainty (Brandfonbrener et
al., 2021). By quantifying the match between the support of the logging policy
and that of the target policy, we can assess the risk induced by the deployment
of the target policy. In particular, if we restrict the set of available actions to
those considered “in-support”, we can get an accurate estimate of the perfor-
mance of the policy on those actions. Indeed, uncertainty is low inside the
support of the logging policy, and it is anyway possible to evaluate the quality
of the Q-value prediction on a held-out test set of the offline dataset as in, e.g.,
(Ji et al., 2021). A safe policy achieving high in-support expected return would
constitute a reliable improvement, while an unsafe policy not even achieving
good in-support expected return can probably be discarded. This type of eval-
uation needs a proper definition of in-support and out-of-support, e.g., as in
(Fujimoto et al., 2019; Gu et al., 2022), which is not trivial in the non-tabular
setting and requires assuming a certain degree of tolerance to uncertainty, but
Kumar et al. (2021) show that it is possible to adjust this tolerance based on the
training curves of certain offline RL algorithms.
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This type of evaluation focuses on characterizing and mitigating the risks
induced by the third issue we raise in Section 2.4.3, while potentially allowing
us to detect the benefits brought by RL training. The main open question lies
in the ability to properly define distance measures between the support of the
logging and target policy.

2.6 conclusion

In this study, we highlighted that the most commonly employed protocol for
the offline evaluation of RL-based recommender systems is in fact unsuitable,
because it cannot reflect the benefits that RL supposedly brings compared to
more traditional approaches and because it may hide critical deficiencies of
offline RL agents that can lead to catastrophic deployment. These shortcomings
can be summarized as follows: (i) a myopic protocol aimed only at measuring
shortterm accuracy, (ii) a close-ended, suboptimal recommendation target, and
(iii) sensitivity to the optimizer’s curse.

As of now, there exists no truly satisfactory solution to the problem of eval-
uating RL policies in an entirely offline fashion. Yet, several proxies for online
performance can be used to bridge the gap between offline metrics and on-
line performance. Finding appropriate offline evaluation protocols is still an
active research area in the offline RL literature, and we urge the sequential
recommendation community to join the effort and develop protocols suitable
for the recommendation scenario. Additionally, acknowledging the presence
of uncertainty in the deployment of RL-based recommender systems paves
the way towards solutions that are robust or resilient to such uncertainty. For
instance, Oosterhuis and de Rijke (2021a) propose a criterion for fallback to a
safer policy when out-of-distribution (although in a different context, i.e., coun-
terfactual learning to rank), and Ghosh et al. (2022) and Reichlin et al. (2022)
propose adaptive offline RL policies that are able to recover from stepping in
uncertain states during deployment by branching back to supported states. We
hope that future research in recommender systems will put stronger emphasis
on these aspects and reduce the gap between offline and online performance.
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2.7 reflections on the chapter

2.7.1 Research outcomes

In this chapter, we worked towards answering my first research question:

Research Question 1. How can we evaluate recommender systems in a way that
accounts for their dynamic and interactive nature?

We highlighted the limits of the traditional next-item prediction evaluation,
and proposed some alternatives that are more suited to dynamic recommender
systems. The exact implementation of these guidelines, and their link with on-
line real-world experiments is still largely an open question. In the next chapter,
we explore these remaining questions for one of the alternatives: simulators.

2.7.2 Additional thoughts

A correct and appropriate evaluation setup is critical for research. Unfortu-
nately, it became apparent after we had listed the limitations of existing alter-
natives that there is no silver bullet. Instead, it seems that the combination of
multiple types of evaluation, along with being generally careful with claims
and expected results, is necessary going forward.

Online evaluation is certainly necessary at some point, and I see the offline
evaluation methods described in this chapter more as a way for practitioners to
avoid wasting time and resources on obviously wrong models. For researchers,
I think this chapter is a stark reminder that we should be very careful with
claiming improvements based on a single offline metric and dataset, and that
making progress in a research topic as complex and hard to evaluate as recom-
mendation requires a well-rounded assessment for multiple perspectives and
reproducibility efforts, rather than blindly maximizing a single metric. See for
instance (Ferrari Dacrema et al., 2019) for a large empirical review of progress
in recommender systems.

I was happy to see this work being adopted by the community for evaluating
new algorithms (Gao et al., 2023). Interesting research questions have also
come up from this reflection. For example, Silva et al. (2024) studied why RL
agents perform well on NIP benchmarks when they should not bring anything
in theory.
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One of the possible alternatives for next-item prediction that we highlighted in
the previous chapter is the use of simulators. I naturally wanted to experiment
and find such a simulator, but among the existing ones, none really fitted
the way I wished to use them. Either they did not incorporate any of the
mechanisms that make recommender systems dynamic and interactive, or they
were hardly interpretable and configurable or felt like black-boxes, where you
essentially have to "trust" the simulator to be faithful to reality.

But it seems very unlikely to me that simulators will ever be realistic ap-
proximations of a real recommender systems, as that would require accurately
modeling the inner workings of the human brain – and you could argue that if
that ever happens, the problem will then be solved and the simulator will not
be useful anymore. We therefore came up with the idea of proposing our own
take at making a simulator, but we also explain in detail, using examples, how
we think it can be used to investigate specific research questions.

This chapter is based on the following publication: Romain Deffayet, Thibaut
Thonet, Dongyoon Hwang, Vassilissa Lehoux, Jean-Michel Renders, and Maarten
de Rijke. 2024. SARDINE: A Simulator for Automated Recommendation in

27
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Dynamic and Interactive Environments. In ACM Transactions on Information
Systems (TORS), “Just accepted".

3.1 introduction

Recommender systems must match users and items based on item content and
user preferences, so as to provide users with content that fulfills a consump-
tion need or carries relevant information given user preferences (Melville and
Sindhwani, 2010). In other words, they need to learn the semantic informa-
tion (Sequoiah-Grayson and Floridi, 2022) that explains why a certain user is
attracted to a certain item, usually by leveraging user features, item content
or logged interactions. However, by restricting the scope of recommender sys-
tems to a static semantic matching task one would ignore a crucial part of the
recommendation task: converting semantic understanding of users and items
into increased value for the user, as well as for content providers and other po-
tential stakeholders. Value may be measured by, e.g., click-through rate, user
satisfaction, retention rate, or fairness metrics.

This concern has led to the emergence of methods that consider beyond-
accuracy goals (McNee et al., 2006b; Jannach et al., 2016) and that often view
recommendation as a dynamic and interactive task (He et al., 2016). First, rec-
ommender systems are often trained from user interaction data, either in an
online (Silva et al., 2022) or offline (Gupta et al., 2023) fashion. As a result, rec-
ommender systems must learn to deal with noisy user feedback (Wang et al.,
2022), limited knowledge about new users in the cold start scenario (Knyazev
and Oosterhuis, 2023), as well as potential biases in user behavior that may
impact the training data (Gupta et al., 2023). Second, the items consumed by
a user may have an effect on the user state (Anderson et al., 2020; Deffayet
et al., 2023c; Gao et al., 2023). They could alter user preferences – by devel-
oping a user’s interest in a topic, by educating users about a topic in a way
that encourages them to explore more advanced content, or by changing their
perspective on other items, for instance by sparking their interest or instead by
reducing it. Items could also temporarily affect user behaviors, for instance by
causing boredom, which subsequently reduces user interest and engagement
in the platform (Anderson et al., 2020). Third, exogenous factors may change
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the value of items and the preferences of users, yielding an ever-changing dy-
namic environment (Huleihel et al., 2021).

3.1.1 The role of simulators in recommender systems research

In order to account for the dynamic and interactive aspects of recommen-
dation, various approaches have been proposed, including contextual ban-
dits (Agrawal and Goyal, 2013; Li et al., 2010), reinforcement learning (RL) (Chen
et al., 2019b; Deffayet et al., 2023c; Gao et al., 2023), active learning (Rubens
et al., 2015), counterfactual learning-to-rank (Joachims et al., 2017; Gupta et al.,
2023), and click modeling (Craswell et al., 2008; Chuklin et al., 2015; Deffayet et
al., 2023a). These approaches are trained from user data, and it has been shown
that they should not be evaluated solely on accuracy-centric benchmarks (Def-
fayet et al., 2022; Jannach et al., 2016; Sun, 2023) as these miss the potential
benefits brought by beyond-accuracy methods.

While online evaluation (Zangerle and Bauer, 2022; Sato, 2021) remains a
gold standard – when done right (Jeunen, 2023) – to evaluate the impact of
recommendation models on user-related metrics, most researchers do not have
access to a live recommendation system. Moreover, the potential degradation
in user satisfaction and revenue induced by online experiments may limit the
possibility to conduct such an evaluation, especially in a research setting where
many experiments are needed to improve on the current version of the recom-
mender system.

In that case, prior work (Deffayet et al., 2022; Swaminathan et al., 2017; Kiy-
ohara et al., 2023) has advised to either resort to off-policy evaluation (OPE),
which consists in evaluating the target system using data collected with the
original system, or otherwise to conduct experiments in a simulated environ-
ment. Simulators are by definition synthetic, at least partially, and good perfor-
mance obtained in a simulator is therefore no guarantee of success in the live
system. However, their value lies in the ability to control relevant parameters
in a way that spans the potential dynamics encountered in the real environ-
ment. Indeed, tweaking parameters and observing their effect on candidate
methods allows one to identify general trends and study important research
topics: regimes of success and failure (e.g., low data, high bias), robustness
to environmental features that may be observed in the real world (e.g., noise,
distribution shifts), generalizability of the results, etc.
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In that sense, simulated evaluation can even be less opaque than OPE and
online evaluation, as observing variables that are normally not accessible to
the practitioner can help better interpret the observed performance of the can-
didate systems. In order to deliver these benefits, we argue that simulators
should be:

1. Configurable in a way that is easily interpretable to the practitioner,

2. Able to span a large part of the various forms of complex behavior com-
monly found in the real environment.

In practice, we draw up a list of specifications that we use as a goalpost for
designing our simulator:

Specifications 3.1.1 – Our simulator should satisfy the following requirements:

• Comprehensiveness: Most of the important research questions for inter-
active recommender systems can be studied in one core simulated engine;

• Interpretability: One or a few well-defined parameters can control a spe-
cific aspect of interest in recommender system research, i.e., the simulator
should be interpretable and controllable;

• Effect isolation: The effect of individual parameters or individual algo-
rithmic modules can be singled out, so as to allow the focused study of
one aspect of the environment (e.g., noise, user drift, etc.) or one part of
the method (e.g., user and item representation, decision-making module,
etc.);

• Non-triviality: The simulated task should not be trivially solved by off-
the-shelf baselines; and

• Configurability: Additions and changes to the existing simulator should
be easy enough to enable deeper studies or new research questions.

In order to fulfill the specifications, and before engaging with simulator design,
we must define the scope of the research we wish to enable with such a simu-
lator. We therefore define the research agenda our simulator addresses in the
next section.
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3.1.2 A research agenda for interactive recommender systems

We identify four overarching research topics (RTs) that we believe to be crucial
for interactive recommender systems (RSs) research, and that can be studied
in our simulator. We also connect them to variants of our simulator that are
particularly well-suited to study them:

(RT1) How to enable multi-step reasoning and control user-related metrics
in the long run? In a dynamic and interactive environment, shifting
dynamics and delayed consequences of actions prompt RS designers to
adopt a control paradigm, where target variables such as user satisfac-
tion, revenue, or fairness-related variables must be optimized and kept at
a desired value in the long run. This requires multi-step reasoning, i.e.,
thinking ahead of time about future consequences of recommendations
formulated at the present time. Many approaches have been proposed
to tackle multi-step reasoning, notably with reinforcement learning (Def-
fayet et al., 2023c; Gao et al., 2023; Chen et al., 2019b; Xin et al., 2022). This
research topic can be studied thanks to the interactive environments we
release, i.e., SingleItem-Bored, SlateTopK-Bored, SlateTopK-BoredInf,
SlateTopK, SlateTopK-Uncertain, SlateRerank-Bored.

(RT2) How to learn from biased data? As online learning is often not pos-
sible in a large commercial platform, it is common to resort to offline
or off-policy learning, by first collecting data in the live environment,
and then learning from this data. However, multiple biases arise in the
logged data. Due to selection bias, the distribution of items observed
in the data is highly imbalanced, including many items that are never
or almost never shown to certain users. Additionally, even when feed-
back is observed, biases in user behavior favor certain items above oth-
ers, e.g., due to position bias. As a result, training models that do not
account for these biases leads to the unfair promotion of already well-
exposed items. Learning from data despite these biases is a very active
area in information retrieval research, with techniques such as offline
reinforcement learning (Chen et al., 2019b; Gao et al., 2023; Xin et al.,
2022), counterfactual learning-to-rank (Gupta et al., 2023; Joachims et al.,
2017), or click modeling (Deffayet et al., 2023a; Chuklin et al., 2015). All
of our simulated environments can be used for off-policy training, but
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we notably study this research topic with our SlateRerank-Static and
SlateRerank-Bored environments.

(RT3) How to make sure that interactive recommender systems are robust
to uncertainties of the real-world? Recommender systems must oper-
ate under large amounts of uncertainty coming from multiple sources:
in the user feedback and in their evolution after consuming items (e.g.,
varying mood and personal traits, light scanning of the results), about
exogenous factors influencing user behavior and item value (e.g., world
events, current context when accessing the platform), about user prefer-
ences (e.g., cold start, changing users) and in the policy itself (e.g., busi-
ness rules, stochastic amortization). Large amounts of uncertainty may
hurt the performance of recommender systems and yield disappointing
results during the deployment of these models, which has prompted
the development of uncertainty-aware methods (Knyazev and Ooster-
huis, 2023; Oosterhuis and de Rijke, 2021a). Our SlateTopK-Uncertain,
SlateTopK-PartialObs and SingleItem-PartialObs allow to study such
uncertainties.

(RT4) How to effectively and efficiently recommend slates (e.g., lists or grids)
of items to users? The interface of many recommendation platforms re-
quires showing multiple recommendations to users on the same page.
This comes with additional challenges as different combinations of items
may lead to different short and long-term outcomes. The problem thus
becomes combinatorial in nature, which makes the task intractable for
most applications. The existing literature discusses slate-specific meth-
ods for both training and evaluation of slate recommendation policies (Ie
et al., 2019b; Chen et al., 2019b; Swaminathan et al., 2017), including meth-
ods that improve on the efficiency of slate recommender systems (Oost-
erhuis, 2021a; Sakhi et al., 2023). It is possible to train slate recommender
systems on all our SlateTopK and SlateRerank environments.

3.1.3 Our contributions

Our contributions can be summarized as follows:

• We introduce a simulator for automated recommendation in dynamic and
interactive environments (SARDINE), which can be used as a flexible core
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engine for multiple types of simulated experiments in recommender sys-
tems research, allowing quicker iterations towards studying, among oth-
ers, the research topics (RT1–4) mentioned in Section 3.1.2, i.e., multi-step
reasoning, biased data, uncertain dynamics, and slate recommendation.

• We additionally provide nine different environments derived from this
simulator, in the form of gymnasium (Towers et al., 2023) environments,
that are already tailored for studying important aspects of recommenda-
tion in dynamic and interactive settings.1

• We conduct experiments on the nine proposed environments, in order
to (i) better describe the main dynamics of the simulator, (ii) provide
a testbed for existing approaches and baselines, and (iii) uncover novel
findings about existing approaches, thereby restating the value of our
simulator for effective recommender system research.2

Furthermore, we now summarize the expected benefits of releasing our simu-
lator. Indeed, we seek to help accelerate future research, by: (i) providing a
playground for researchers to create and test prototypes and therefore iterate
more quickly; (ii) enabling quickly building experimental set-ups in order to
gain knowledge on specific research questions related to the topics RT1–4 we
described in the previous section; and (iii) providing a set of not-yet-solved
simulated tasks that trace a path towards progress in recommender systems
research (e.g., as Atari games or Go have been for multi-step visual control).

In contrast, we have no intention to: (i) create a realistic simulator of the hu-
man mind – besides clearly being an unattainable goal, we argue that it is not
necessary to gain perfect knowledge of the actual underlying user model to ef-
fectively optimize the target variables (e.g., user engagement). Instead, we pro-
pose to study the adaptability and robustness of recommendation agents, with
the help of a large array of different simulated settings. (ii) Provide guaran-
tees of live performance. Simulators, whether they are fully- or semi-synthetic,
cannot provide guarantees of performance in the live recommender system.
They are nonetheless valuable for making progress in recommender systems
research, e.g., by studying the robustness of agents and the edge cases where

1 The core simulator as well as the proposed environments can be found at
https://github.com/naver/sardine.

2 Our experiments are open-source and can be found at
https://github.com/RomDeffayet/SARDINE_Experiments.

https://github.com/naver/sardine
https://github.com/RomDeffayet/SARDINE_Experiments
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they might struggle, by quickly iterating on simulated tasks that robust recom-
menders should be able to solve, or even by detecting poorly robust methods
before conducting A/B testing in a live system and potentially negatively im-
pacting real users. And (iii) replace offline evaluation on traditional metrics.
While a set of diverse simulated experiments offers a unique perspective on
the inner workings of recommender systems, simulations must always be com-
plemented with offline and online real-world experiments in order to build a
well-rounded assessment of the progress in recommender systems research.

The remainder of the chapter is organized as follows. We formally define
the recommendation problem of interest in Section 3.2. We then describe the
technical details of the SARDINE simulator in Section 3.3. Section 3.4 covers
the details about our experimental setup, which includes the description of the
SARDINE environments tested in our experiments as well as the compared ap-
proaches. The experimental results are presented and discussed in Section 3.5.
Finally, we compare our proposed SARDINE to existing recommendation sim-
ulators in Section 3.6, and conclude the chapter in Section 3.7.

3.2 problem definition

The problem studied in this chapter can be defined as slate recommendation3

in a dynamic environment. In this scenario, we consider that a user interacts
with a recommender system over a session of L steps. In each step, the rec-
ommender system presents a slate containing S items from a predefined set
I of cardinal nI to the user. Based on the affinity between the recommended
items and the user preferences, the user decides to click on some or none of
the slate items. Information about the interaction and the current user state is
then returned to the agent and, based on this, the recommender determines the
next slate to recommend. This process can be formulated as a Markov decision
process (MDP)M = (S ,A, P, R) defined as follows:

• A set of states s ∈ S , which represent the user state and summarize
information about the past interactions.

3 We consider that single-item recommendation is just a special case of slate recommendation
with a slate of size one. Therefore our problem formulation also covers this case.
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• A set of actions a ∈ A corresponding to the possible slates presented by
the recommender to the user. This set covers all slates combining items
from I , so that |A| = nI !

(nI−S)! for a slate of size S.

• A set of transition probabilities P : S ×A× S → [0, 1], which define the
dynamics in the process, i.e., how likely a state s′ ∈ S is if the recom-
mender takes action a ∈ A in state s ∈ S .

• A (potentially stochastic) reward function R : S × A → R, which we
define as the sum of clicks over the recommended slate.

We also define a possibly stochastic policy π : S ×A → [0, 1] whose role is
to decide what slate a the recommender system should return in a given state
s. A trajectory τ is defined as the set of successive states, actions and rewards
collected in a session of interactions between a user and a recommender. We
denote as τ ∼ π the fact that trajectory τ is generated by following the actions
provided by policy π. The problem of slate recommendation in a dynamic en-
vironment can then be summarized as identifying a policy π∗ that maximizes
the cumulated reward (also known as return) in expectation over possible tra-
jectories, i.e., π∗ ∈ arg maxπ Eτ∼π

[
∑(s,a)∈τ R(s, a)

]
.

In this chapter, we introduce a simulator that instantiates the MDP described
above to provide a testbed for developping recommendation policies and study-
ing their characteristics in various settings. The proposed simulator is further
described in Section 3.3.

3.3 simulator

In this section, we detail the components of our simulator for automated
recommendation in dynamic and interactive environments, or SARDINE in
short. In SARDINE, we consider a cold-start scenario where each new session
corresponds to a new user, generated on-the-fly. This means that we assume
no prior knowledge on user profiles before a session starts and that the agent
must do some exploration to discover user interests. This design choice is
realistic for many recommendation platforms, e.g., when a single device or
profile regroups several users – who exhibit diverse preferences over different
sessions – or when the platform does not track a user ID for privacy reasons
(Hidasi et al., 2016).
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Figure 3.1: Diagram summarizing the different components of the proposed SARDINE

simulator, and its interaction with the recommendation agent.

First, our simulator is initialized by forming synthetic embeddings for the set
of recommendable items (Section 3.3.1). Then, each user session is generated
by following these successive steps:

1. Sample a user embedding for the current session’s user (Section 3.3.1);

2. Provide an initial recommendation (Section 3.3.2) or prompt the agent to
recommend a slate to the user;

3. Compute the relevance of the items in the slate with respect to the user
and sample the clicks on the slate based on items’ relevance and rank
(Section 3.3.3);

4. Update the user embedding to account for the effects of boredom and
clicked item influence, if those mechanisms are included in the simulator
(Section 3.3.4);

5. Repeat steps (2) to (4) until the number of interaction steps reaches the
session length L.

We define both a fully observable variant and a partially observable variant for
SARDINE, whose differences are detailed in Section 3.3.5. Moreover, we use
the main engine described in this section with different sets of hyperparam-
eters so as to create nine different environments with various characteristics,
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Table 3.1: List of the hyperparameters used in the proposed SARDINE simulator, with

their description.

Hyperparameter Description

L Session length (in time steps).
S Slate size (in number of items).

nI Number of items.
nT Number of topics (and user/item embedding dimension).
λ Scale hyperparameter for the relevance function.
µ Shift hyperparameter for the relevance function.
α Range hyperparameter for item attractiveness.
ϵ Click propensity for examination probability.

nb Number of items considered for boredom computation.
tb Click recency (in time steps) for boredom computation.
τb Threshold on topic occurrence for boredom computation.
ω Weight controlling the influence of clicked items on user.
O Whether the state is fully or partially observable.

and targeting various research outcomes. We introduce these environments in
Section 3.4.1.

Fig. 3.1 illustrates the different components of our simulator and its interac-
tions with the recommendation agent. In Table 3.1 we additionally provide a
description for the hyperparameters of the simulator, which are further defined
in the remainder of this section.

3.3.1 Item and user embeddings

Items and users are assigned randomly-generated sparse embeddings of size
nT = |T |, where T is the set of topics associated to items and users (defined
below). The sparsity enforces a coverage of only a limited number of topics
per item and user. The generative process to define the embedding4 for each
item i in the set of items I is the following:

4 To distinguish the item embeddings used in the simulator from the item embeddings that may
be learned by an agent, we refer to the former as ideal item embeddings when disambiguation is
needed.
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1. Sample the item embedding components from a uniform distribution
over [0, 1]: ei = (ei,1, . . . , ei,nT ) ∈ RnT with ei,j ∼ Unif([0, 1]);

2. Sample a number of topics associated to the item (i.e., the number of non-
zero components to retain in ei) equal to either 2 or 3: nTi ∼ Unif({2, 3});

3. Sample the nTi topics associated to the item from the topic set T : Ti =

{Ti,1, . . . , Ti,nTi
} ⊂ T with Ti,j ∼ Unif(T ) without replacement;

4. Zero out the components of the item embedding that correspond to non-
selected topics (i.e., outside of Ti): ei,j := 0 if j ∈ T \ Ti;

5. Normalize the components to have an embedding with unitary Euclidean
norm: ei := ei

∥ei∥2
.

We denote the main topic of item i as T∗i which corresponds to the dominating
component in the item embedding ei, i.e., T∗i = arg maxj∈T ei,j.

The process to generate a user embedding eu for each new session is similar
to that of generating an item embedding, with the difference that we allow
a user embedding to cover 3, 4, or 5 topics instead of 2 or 3 for items. The
rationale for this choice is that a user may be interested in a broad selection
of topics whereas an item usually spans a more narrow set of topics (e.g., the
number of movie genres a user likes vs. the number of genres a movie belongs
to).

3.3.2 Initial recommendation

The first recommendation the user receives at the beginning of a session is
independent of the agent and done directly in the simulator. Given our cold-
start setting, i.e., we have no prior knowledge of the user profile, we wish
to start the session by probing the preferences of the user. For that purpose,
our initial recommendation is simply a slate containing random items. In a
real-life scenario, other alternatives could be considered, e.g., by exploiting the
popularity of items (Chaimalas et al., 2023), prior user profile (Chamsi Abu
Quba et al., 2014) as well as user metadata (Majumdar and Jain, 2017). We
leave the investigation of alternative initial recommendations for future work.
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3.3.3 Relevance computation & click model

In this section, we describe how relevance, i.e., the matching score, is computed
for a (user, item) pair. Then we detail how this relevance score is used to sample
the clicks and skips on a slate recommended to the user.

Relevance score. The relevance of items presented to a user is calculated
based on the dot-product between the item embedding and the user embed-
ding:

rel(i, u) = eT
i eu. (3.1)

Item attractiveness. To the relevance score we then apply a sigmoid function
that is rescaled and shifted to account for the range of values and the desired
level of saturation for the function, resulting in an attractiveness score. Com-
pared to the relevance score, the attractiveness of an item reflects click behavior
specified by the hyperparameters of the sigmoid; their role is explained below.
Formally, the attractiveness of item i for user u is defined as follows:

Au,i = α · σ(rel(i, u)) where σ(x) =
1

1 + exp(−λ(x− µ))
. (3.2)

The hyperparameter α is introduced to adjust the range of the attractiveness
score. The shift hyperparameter µ ensures that the function outputs a value
close to 1 for a highly matching (user, item) pair, and close to 0 for an item
totally unrelated to the user. The scale hyperparameter λ controls how steep
the sigmoid will be (i.e., how easily the output of the function saturates to 0

or 1). This latter hyperparameter plays a key role for the level of uncertainty
in the simulator. Indeed, a lower value of λ implies that the sigmoid σ will be
less steep, leading to smaller differences in attractiveness (and, in turn, in click
probabilities as detailed below) between relevant and irrelevant items. In other
words, the user feedback is more uncertain when λ is low.

In practice, we set the values of λ and µ using the following rules:

1. A random recommendation policy should almost always propose irrele-
vant items, i.e., such that σ(ei

Teu) is generally close to 0 for a randomly
selected item i;

2. An oracle recommendation policy should always propose relevant items,
i.e., such that σ(ei

Teu) is close to 1 for the few top items i that best match
user u;
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3. A bored5 user cannot be satisfied most of the time, even by an oracle
recommendation policy, i.e., when user u is in a bored state, σ(ei

Teu) is
much smaller than 1 even for the few top items i that best match u.

Click model. After the attractiveness score for a (user, recommended item)
pair has been computed for each item of the slate, the simulator has to decide
if this pair leads to a click or not. For that purpose, we consider a position-
based click model, i.e., the probability of click is defined by the product of
item-specific attractiveness and rank-specific examination probability. More
complex click models could be considered and added to the simulator, but
we do not wish to provide a catalog of all existing models. Instead, we want
to show that the impact of biased data in general is visible in our simulator,
taking the position-based model as an example.

Formally, this click probability is expressed as P(c | u, i, r) = Au,i × Er for an
item i positioned at rank r ∈ {1, . . . , S} in the slate, with S the slate size. Au,i is
the attractiveness of item i for user u defined in Eq. 3.2 and Er is the probability
that the user examines the items in the slate down to rank r. By default, the
examination probability is set to Er = εr−1, where the hyperparameter ε defines
the rate of decay of the examination probability. The click (or skip) from user u
on item i at rank r in the slate is then sampled from the Bernoulli distribution
Bern(Au,i × Er).

3.3.4 Boredom and influence mechanisms

Our SARDINE simulator introduces two long-term mechanisms in the recom-
mendation, which penalize myopic strategies and thus require the agent to
consider the consequences of its actions several steps after taking them. The
rationale for this choice is to be able to generate benchmarks where reinforce-
ment learning-based agents are a better choice than bandit approaches, which
would otherwise be more suitable for a greedy sequential recommendation
task as shown in (Lee et al., 2022a). This goal is motivated by empirical evi-
dence of the limits of greedy methods with respect to, e.g., diversity, and thus
their detrimental impact on long-term metrics such as churn rate (Gao et al.,
2023; Anderson et al., 2020; Mehrotra, 2021). The first mechanism we define is
referred to as boredom and intuitively reflects the fact that a user may become

5 The notion of boredom introduced in this simulator is further detailed in Section 3.3.4.
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less interested in consuming content (i.e., clicking on items) when the items
recommended in successive slates are too similar, similarly to (Gao et al., 2023;
Deffayet et al., 2023c). The second mechanism we consider is the influence of the
clicked items on the future user behavior: when a user consumes an item, this
may shift the user’s interest towards the item’s topics, as in (e.g., Cinus et al.,
2022). These two mechanisms are described in more detail below.

Boredom. To determine if a user u gets bored during a session, we consider
the items clicked in the last tb time steps. If there are more than nb such items,
we keep only the nb most recently clicked items and we record a list of their
main topics. Then, if a topic T ∈ T occurs more than a threshold of τb ≤ nb

times in this list, we consider that the user u is bored with respect to topic T.
We define two boredom variants that specify the impact on the bored user’s
behavior: temporary loss-of-interest boredom and churn-and-return boredom. For
the temporary loss-of-interest boredom, the user u who is bored with respect
to topic T has their user embedding component eu,T set to 0 (i.e., this simulates
a loss of interest for topic T) for tb time steps. After this period, we consider
that the boredom effect has timed out and the user may be willing to click
again on items with main topic T, so the component eu,T is restored to its
previous value. The churn-and-return boredom operates in a similar fashion
with the difference that all components of eu are set to 0 until the boredom
effect times out: this simulates the fact that the user churns the platform (as
an all-zero user embedding implies an absence of clicks in our simulator) and
then returns after tb time steps.

Clicked item influence. At each interaction step, the user u is recommended
a slate and potentially clicks on some of this slate’s items. We denote as Ic

this set of clicked items. We transcribe the influence of clicked items on u’s
future behavior by updating the user embedding eu as a weighted average of
the previous user embedding and the mean of the clicked item embeddings:
eu := ω eu + (1− ω) 1

|Ic| ∑i∈Ic ei, where ω is a hyperparameter controlling the
amount of influence clicked items have on the user. Intuitively, the influence
mechanism causes a drift in user interests and thus makes the recommendation
process more dynamic.
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3.3.5 Full observability vs partial observability

Our SARDINE simulator can be used in two modes: either with full state
observability or with partial state observability, which is recorded in the hy-
perparameter O. The former simulates a Markov decision process (MDP)
setting while the latter defines a partially observable Markov decision pro-
cess (POMDP) setting. In this section, we define the state/observation used in
these two cases.

Full observability. In the full observability case, agents have access to the
entire information about the user state. Here, the state fed to the agent is
defined as the concatenation of 3 vectors:

• The current user embedding, i.e., eu, which corresponds to the user em-
bedding at the current time step and thus includes the effects of boredom
and influence (if those mechanisms are included in the simulator). Size:
nT .

• A histogram indicating the number of times each topic was the main topic
of an item among the nb last clicked items in the most recent tb time steps.
The histogram is normalized by dividing click numbers by the threshold
τb and by clipping between 0 and 1. Size: nT .

• A vector indicating the boredom timeout duration (in number of steps)
left for each topic. If a topic is not in a bored state for the user, then
its default timeout duration is tb. For topics that triggered boredom in
previous steps and whose boredom is still ongoing, the duration will be
between 0 and tb (excluded). This vector is also normalized between 0

and 1 by dividing it by tb. Size: nT .

In the state, the current user embedding is used to keep track of the dynamic
user preferences, while the histogram and timeout vectors maintain the infor-
mation about recent item consumption and boredom. The current item em-
beddings – which represent the actual preferences of a user at a given time –
are normally not available in a real-life recommendation scenario. However,
studying this fully observable setting enables the practitioner to single out the
impact of the recommendation algorithm, contrarily to the partially observable
setting which compounds the effects of algorithm effectiveness and user em-
bedding estimation quality. As we will show in our experiments (Sections 3.4



3.4 experimental setup 43

and 3.5), the fully observable case already leads to challenging environments
which justifies our choice to include this less realistic scenario.

Partial observability. For the partial observability setting, the agent cannot
access the inner workings of the simulator and is only provided a set of obser-
vations about the last interaction. The observation returned to the agent is the
concatenation of 3 vectors:

• The slate that was recommended by the agent, with the item ID for each
slot. Size: S.

• The clicks that the user did on the recommended slate, with 1 or 0 at each
slot to indicate a click or a skip, respectively. Size: S.

• The histogram of recent clicked topics, as in the fully observable case.
It is realistic to consider this information accessible to the agent as item
categories in recommender systems are generally public. Size: nT .

Based on these 3 pieces of information, the agent is able to identify which
recommended items led to a click and exploit recently clicked topics to better
infer user preferences. However, they are not enough to perfectly determine
the user state and the agent may need to incorporate the history of observations
in the same session in order to improve its estimation of the user state (which
is usually done through state encoders).

3.4 experimental setup

Now that we have detailed the main components of our simulator in the previ-
ous section, we can describe some of its possible instantiations for conducting
experiments related to the research agenda of Section 3.1.2. This section there-
fore aims (i) to provide guidance for the usage of the simulator, (ii) to define a
testbed for studying existing methods along the research topics defined in Sec-
tion 3.1.2, and (iii) to demonstrate the simulator’s utility for recommendation
research by uncovering some novel insights about these methods.

First, Section 3.4.1 introduces nine recommendation environments instanti-
ated from our simulator, that we use in our experiments. Then, Section 3.4.2
describes the recommendation agents we seek to compare on the environments.
Finally, Section 3.4.3 summarizes the simulator hyperparameters adopted by
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the different environments, as well as the agent hyperparameters used in our
experiments.

3.4.1 Simulated environments

To demonstrate possible use cases enabled by SARDINE, we defined nine dif-
ferent environments – each being a variant of our simulator. The characteristics
of these nine environments are detailed in Table 3.3. They are characterized
along six dimensions, which are directly linked to the research topics defined
in Section 3.1.2:

(1) The type of recommendation made to the user: single-item recommenda-
tion (corresponding to the case where S = 1) or slate recommendation
(S > 1) — RT4;

(2) The presence of a boredom mechanism, i.e., users get bored when being
presented repeatedly with a similar content, and thus become less likely
to click on the related items — RT1;

(3) The presence of an influence mechanism, i.e., users are influenced by
clicked items in future interaction steps — RT1;

(4) The level of click uncertainty, i.e., the degree of stochasticity in the click
probabilities, which is controlled by the scale hyperparameter λ in the rel-
evance sigmoid: lowering λ increases the click likelihood on less relevant
items (see Section 3.3.3 for more details) — RT3;

(5) The observability, i.e., whether the agent has access to full or partial user
state information (MDP or POMDP setting, respectively) as detailed in
Section 3.3.5 — RT3;

(6) Whether the task is reranking, in which case there is a limited number of
items that are all presented to the user (i.e., nI = S) and the recommen-
dation agent has to find the best permutation of those items6 — RT2.

6 An example of such a scenario in a real-life recommender system is in a two-stage setting
where the recommender first reranks the (limited) set of item categories for the user. Then, in
a second step, the recommender identifies the best item to present for each ranked category
slot. What we are interested in here is the first reranking step where items correspond to
categories.
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Below, we summarize the purpose of each of the nine environments we intro-
duce:

• SingleItem-Static: This single-item recommendation environment with
static user behavior and full state observability was chosen to showcase
an “easy” environment where learned agents should be able to reach op-
timal performance without difficulty. This environment also provides a
good sanity check to validate that a learned agent is working as expected.

• SingleItem-BoredInf: This environment augments SingleItem-Static

with boredom and influence long-term mechanisms, which require the
agent to consider multi-turn dynamics to provide effective recommenda-
tions. Therefore, this corresponds to a typical RL-based recommendation
environment, in an MDP setting.

• SingleItem-PartialObs: This is another variant of SingleItem-Static

that increases the environment’s difficulty through partial observability,
i.e., the true state is not directly accessible and the agent is only provided
with partial observations at each interaction step. This simulates typi-
cal sequential recommendation environments based on offline feedback,
where the state (i.e., the user embedding) is unknown and recommen-
dations have no causal effect on future user interactions (Deffayet et al.,
2022).

• SlateTopK-Bored: This variant of the simulator includes slate recommen-
dation (as opposed to the single-item recommendation from the previous
environments) and a boredom mechanism, with full state observability.
It makes this environment suitable to evaluate RL-based slate recommen-
dation methods in an MDP setting.

• SlateTopK-BoredInf: This environment is based on SlateTopK-Bored

with an additional influence mechanism, making the dynamics more com-
plex as clicked items’ influence causes a drift in user interests.

• SlateTopK-PartialObs: This challenging environment is derived from
SlateTopK-BoredInf and includes boredom and influence mechanisms,
but also partial observability. The POMDP setting along with the need
for RL-based agents to tackle the effects of the long-term mechanisms
make this environment a good choice to investigate state encoders as
well as RL-based slate recommendation agents.
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• SlateTopK-Uncertain: To create this environment, we build on top of
SlateTopK-PartialObs and gradually increase the uncertainty through
greater stochasticity in the clicking process. In practice, this is done by
reducing the value of the relevance scale hyperparameter λ. We vary λ

from its standard value 100 (used in SlateTopK-PartialObs) to 10, 5 or 2

to study different levels of click uncertainty.

• SlateRerank-Static: This environment is focused on the reranking task
described previously and includes static users. Its main purpose is to
enable us to study the effect of the ranking order (i.e., the presentation
bias) as opposed to the mere effect of including items in the ranking (i.e.,
the selection bias), as done in SlateTopK environments. This environ-
ment and its potential variants are therefore particularly suited for click
modeling and counterfactual learning-to-rank research.

• SlateRerank-Bored: Similarly to SlateRerank-Static, this environment
provides a testbed for research on presentation biases such as position
bias. However, it adds a boredom mechanism so that greedy agents, even
with perfectly alleviated position bias, are not optimal. It thus constitutes
a way to conduct research on the effect of data biases on, e.g., RL agents.

The set of environments introduced above is not intended to give an exhaus-
tive coverage of all possible hyperparameter combinations allowed by our sim-
ulator, but rather to provide a sample of relevant environments highlighting
its various possibilities. In particular, we chose these environments to reflect
the four research topics introduced in Section 3.1.2: the inclusion of multi-step
mechanisms (in SingleItem-BoredInf, SlateTopK-Bored, SlateTopK-BoredInf,
SlateTopK-PartialObs, and SlateRerank-Bored), the biases induced by the
item presentation order (in SlateRerank-Static and SlateRerank-Bored), the
uncertainty in the clicks (in SlateTopK-Uncertain) and in the user state (in
SingleItem-PartialObs, SlateTopK-PartialObs, and SlateTopK-Uncertain),
and the recommendation of slates as opposed to single items (SlateTopK and
SlateRerank environments vs. SingleItem environments). The precise set of
hyperparameters used in each environment are detailed in Section 3.4.3.

As a side note, in Section 3.3.4, we defined two types of boredom mechanism:
the temporary loss-of-interest boredom and the churn-and-return boredom. In
our experiments, we only use the churn-and-return boredom. Indeed, the
experiments done in our pilot studies with the two boredom mechanisms lead
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to similar conclusions on the approaches’ relative performance. Therefore, we
omit results with the temporary loss-of-interest boredom for the sake of brevity.

3.4.2 Compared methods

This section presents the different baseline recommendation methods that we
re-implemented in SARDINE7 and tested in our experiments. We sought to
include both simple, naive baselines as well as recent and state-of-the-art ap-
proaches to highlight the different characteristics and difficulty levels of the
environment presented in Section 3.4.1. Our compared methods include the
following:

• Random: This simple baseline simply consists in recommending a ran-
dom slate (or item in the case of SingleItem environments) at each inter-
action step.

• Greedy Oracle: This baseline recommends at each step the optimal slate
(or item in the case of SingleItem environments) based on the current
user embedding. The optimal slate contains the S items that maximize
the relevance function defined in Section 3.3.3, ordered by relevance in a
top-down fashion. This approach is optimal in a static setting (without
boredom and influence). However, it is unable to perform multi-step
reasoning in a dynamic setting (with boredom and/or influence) due to
its myopic behavior, hence the name Greedy Oracle.

• REINFORCE + Top-K: This approach proposed in (Chen et al., 2019b)
extends the REINFORCE policy-gradient agent to the slate recommenda-
tion problem. It estimates the value of individual items rather than the
full slate, thereby making the problem tractable. However, it requires
certain assumptions, for instance that the slate receives at most one click
and that the items’ returns are mutually independent. Since slates can
have several clicks in SARDINE, we simply use the first click in the slate
for this method. For the SingleItem environments, we instead use a stan-
dard REINFORCE agent as the top-K addition is not needed.

7 The implementation for those methods is included in our code at
https://github.com/RomDeffayet/SARDINE_Experiments and made available for the
sake of reproducibility.

https://github.com/RomDeffayet/SARDINE_Experiments
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• SAC + Top-K: This method was introduced in (Deffayet et al., 2023c)
as a simple yet strong baseline for slate recommendation. It relies on
a soft actor-critic (SAC) (Haarnoja et al., 2018) policy that takes actions
in the item embedding space. The recommended slate is then formed
by identifying the items which maximize the dot-product with the action,
i.e., the K-nearest neighbors, and by ordering them in a top-down fashion.
For the SingleItem environments, we adopt a standard SAC agent and
simply replace the top-K selection by a top-1 selection.

• SAC + GeMS: Proposed in (Deffayet et al., 2023c), this approach relies
on a variational autoencoder (VAE) to embed the high-dimensional slate
space into a low-dimensional latent space, that is used as a tractable ac-
tion space for a SAC agent. This process is done in two steps. First, a VAE
is trained on logged data containing past user sessions with slates and
clicks. For that purpose, we generate a dataset which collects interactions
between the environment of interest and a logging policy corresponding
to a uniformly balanced mixture of a Random agent and a Greedy Oracle
agent.8 Second, the frozen decoder of the VAE is plugged on the output
of a SAC agent to reconstruct a slate from the agent’s action in the latent
space.

• HAC: Similarly to the GeMS framework, the hyper-actor critic (HAC)
method (Liu et al., 2023) proposes to use an RL agent which takes ac-
tions in a latent space and introduces a module to translate latent actions
into slates. Differently from SAC + GeMS, this approach relies on the
DDPG (Lillicrap et al., 2016) policy and it does not exploit a VAE to reg-
ularize the latent space. It also requires no pretraining as all parameters
are learned in an off-policy fashion. Moreover, HAC uses a supervised
click prediction objective in addition to the RL one, in order to stabilize
the learning of the agent and directly exploit the user response signal on
slate items.

In our experiments, we consider that methods have access to the ideal item em-
beddings, i.e., the item embeddings that are used in the simulator (whose gen-
eration was described in Section 3.3.1). This constitutes an advantage for the
agents which explicitly use item embeddings in their method, namely, Greedy

8 In other words, each item in a slate generated by the logging policy has 50% chance to be the
item the Greedy Oracle would recommend at this rank, and 50% chance to be a random item.
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Oracle, SAC + Top-K, SAC + GeMS, and HAC. The other approaches (Ran-
dom and REINFORCE + Top-K) therefore have a slight disadvantage over the
former methods for that reason. To study the impact of the access to high-
quality item embeddings, we also compared the results with ideal embeddings
to those obtained using sub-optimal, matrix factorization embeddings (see the
experiments on SlateTopK-Bored in Section 3.5.2).

3.4.3 Hyperparameter setting

The hyperparameters used for each of the environments introduced in Sec-
tion 3.4.1 are detailed in Table 3.2. The hyperparameter values were chosen to
reflect the environment-specific characteristics that we highlighted in Table 3.3.

We now describe the hyperparameters used for the different methods.9 For
all RL recommendation agents, we set the discount factor γ to 0.0 for static en-
vironments (without boredom and influence) and 0.8 for dynamic ones (with
boredom and/or influence). Agents are trained for 500,000 steps, where each
step corresponds to the agent producing a recommendation: a slate or a single
item depending on the environment. The policy learning rate and critic learn-
ing rate (for approaches with a critic) were fixed to 0.0003 and 0.01, respectively.
Actors and Q-networks are MLPs with a hidden size of 256 at all layers. For
REINFORCE agents, the buffer size was set to 100. For SAC-based approaches
and HAC, we used a buffer size of 106, a batch size of 32, and a target smooth-
ing coefficient τ equal to respectively 0.05 and 0.5. In SAC-based agents, we
adopted auto-tuning for the entropy regularization coefficient α and we used a
single Q-network. We also independently tuned the hyperparameters specific
to the HAC approach: we set the learning rate of the behavior loss to 0.00003,
the standard deviation for the reparameterization trick to 0.1, the weight for
the hyper-actor loss to 0.1, and the dimension of the latent space to 32.

For environments with a partial observable state (SingleItem-PartialObs,
SlateTopK-PartialObs, SlateTopK-Uncertain), we used two types of state
encoders commonly used in RL-based recommender systems (Huang et al.,
2022a): GRU and transformer. The input to the state encoder is a sequence
containing for each step the concatenation of click embeddings and item em-
beddings averaged over the slate. The click and item embeddings are learned

9 With our source code we provide the detailed hyperparameters used for each agent on each
environment to facilitate reproducibility.
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independently in the state encoder. The click embedding dimension was set to
2, and the item embedding dimension was set to 16 for the GRU state encoder
and 32 for the transformer state encoder. The dimension of the state output
by the state encoder was fixed to 32. We used 2 layers (both for the GRU and
the transformer), as well as 4 attention heads, a dropout rate of 0.1, and a
feedforward dimension of 64 (only for the transformer).

3.4.4 Evaluation protocol and metrics

For the evaluation, we performed 5 seeded runs for each method on each envi-
ronment. For each run, we recorded the validation performance on 25 valida-
tion episodes every 50,000 training steps. An episode corresponds to a session
of L steps where each step corresponds to the agent issuing a recommendation.
For every episode, we sample a new random user embedding following the
procedure described in Section 3.3.1. For that reason, validation users are dis-
tinct from training users, ensuring no leakage between training and validation.
We also used different seeds during hyperparameter tuning (detailed in Sec-
tion 3.4.3) and evaluation, in order to have different validation users in these
two phases and thus avoid the situation where methods would be specifically
optimized on the set of users sampled for tuning.

We considered two metrics in our evaluation. The first one is the return
(i.e., the cumulated reward over an episode), averaged over the 25 validation
episodes. This metric ranges from 0 to L × S (i.e., 100 for SingleItem envi-
ronments and 1000 for SlateTopK environments), which corresponds to the
case where the user clicked on all the items presented to them. A higher
return indicates more clicks from the user across the episode and therefore
higher quality recommendations from the agent. On the five environments
that include a notion of boredom (SingleItem-BoredInf, SlateTopK-Bored,
SlateTopK-BoredInf, SlateTopKPartialObs, SlateTopK-Uncertain), we also
report the boredom metric. We define this metric as the number of steps in
the episode where the user is bored on at least one topic – lower is better. In
our churn-an-return boredom setting (see Section 3.3.4 for more details), this
corresponds to the number of steps where the user embedding is zeroed out
and the user cannot click. This metric is important as in order to be successful
an agent should be able to balance accurate recommendations (to reach high
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immediate rewards) and diverse recommendations over time (to avoid trigger-
ing boredom and temporary churn).

3.5 results

In this section, we describe the results of the experiments done on single item
recommendation (Section 3.5.1), slate top-K recommendation (Section 3.5.2),
and slate reranking (Section 3.5.3). Again, we remind the reader that the goal
of these experiments is to demonstrate the possibilities and challenges of the
environments derived from SARDINE, rather than to create a benchmark for
state-of-the-art approaches on a limited set of environments. These experi-
ments should be seen as a starting point for researchers and practitioners to
further investigate the specific scenarios and approaches of their interest.

3.5.1 Experiments on single item recommendation

We performed experiments on three SingleItem environments whose charac-
teristics are recalled below (see Section 3.4.1 for a more detailed description).
In SingleItem-Static, we consider an easy, static recommendation scenario in
a fully observable setting and with low uncertainty in order to validate that
learned agents can reach optimal performance. SingleItem-BoredInf adds
boredom and influence mechanisms to SingleItem-Static, increasing the dif-
ficulty of the environment. For SingleItem-PartialObs, we start as well from
SingleItem-Static but change it to a POMDP setting. The results on the
SingleItem environments are given in Fig. 3.2 and discussed below.

SingleItem-Static. The validation return over the different training steps
on SingleItem-Static is plotted in Fig. 3.2a. In this experiment we compared
SAC and REINFORCE agents against the Greedy Oracle and Random base-
lines. In this specific setting, the Greedy Oracle is by design optimal due to the
absence of long-term mechanisms (boredom or influence). It is therefore not
surprising that the Greedy Oracle achieves a return of 100, meaning that all rec-
ommended items in the session have been clicked. However, it is interesting to
note that among the learned agents, SAC fares much better than REINFORCE.
Indeed, the former is able to reach optimal performance (or very close to it)
after only 200,000 steps, whereas the latter struggles to close the gap. This
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Figure 3.2: Results on the SingleItem-Static (3.2a), SingleItem-PartialObs (3.2b),

and SingleItem-BoredInf (3.2c, 3.2d) environments. The colored envelope sur-

rounding lines indicates the 95% confidence interval around the mean computed

from 5 seeded runs. Boredom results are not shown for SingleItem-Static and

SingleItem-PartialObs as these static environments do not include a boredom com-

ponent and thus all methods have a default boredom of 0.

difference might be explained by the fact that SAC exploits the ideal item em-
beddings whereas REINFORCE simply selects actions through a softmax over
items. Additionally, SAC is generally a better performing RL agent than REIN-
FORCE in most cases, due to a better bias-variance trade-off. Nonetheless, it is
reassuring to see that in this simple environment, a learned agent such as SAC
is able to easily find the optimal policy.
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SingleItem-BoredInf. We now turn to the challenging SingleItem-BoredInf

environment which includes boredom and influence mechanisms. The results
according to the return and boredom metrics are illustrated in Fig. 3.2c and
3.2d, respectively. This environment corresponds to typical RL-based recom-
mendation in an MDP setting and we expect RL agents to be able to beat a
myopic approach such as the Greedy Oracle. Indeed, the Greedy Oracle is no
longer optimal here due to the introduction of long-term mechanisms. This is
confirmed by the results in the plots, which show that the Greedy Oracle only
yields a return of around 50, and a boredom of around 50 as well. This means
that for 50% of the steps the user is in a bored state, and for the remaining
50% the recommendation leads to a click. Turning to the RL agents, we first
see that REINFORCE struggles to learn an effective policy and remains infe-
rior to the Greedy Oracle in terms of return. However, SAC is able to provide
high-quality recommendations, with a return close to 70 even after only 50,000

training steps. SAC is also able to recommend diversified items, as its low
(and diminishing) boredom confirms. On the other hand, the boredom of RE-
INFORCE increases steadily as return increases, showing that its policy is still
in an accuracy improvement stage and is not favoring result diversification.

SingleItem-PartialObs. This environment is static like SingleItem-Static

but we consider here a POMDP setting, i.e., partial state observability. This
corresponds to the typical sequential recommendation scenario based on of-
fline feedback, where recommendations have no causal effect on user behavior
(Deffayet et al., 2022). Due to the partial observability, RL agents require a state
encoder to convert the observations returned by the environment into a state
that can be exploited by the agent. We consider both a GRU and a transformer
state encoder, which we test in combination with a SAC agent as it obtained
convincing results on SingleItem-Static. The results are shown in Fig. 3.2b.
Here, the Greedy Oracle is still optimal as it has access to the true user state
(and thus is not affected by the POMDP setting). The partial observability
does have an impact on the SAC agents, leaving a gap between the 60+ return
obtained by these and the 100 return obtained by the Greedy Oracle. This
highlights that more research might be needed on state encoders to be able to
accurately estimate the true user state in this setting. Comparing the variants
of SAC equipped with a GRU and transformer state encoder, we do not notice
statistically significant differences between those two in this case.
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3.5.2 Experiments on slate top-K recommendation

We now move on to the experiments performed on slate top-K recommenda-
tion, i.e., where the recommendation presented to the user is a list instead of a
single item as in SingleItem environments. We studied four SlateTopK envi-
ronments which are summarized below (and further detailed in Section 3.4.1).
SlateTopK-Bored and SlateTopK-BoredInf are both fully observable environ-
ments which require agents to do multi-step reasoning to perform well. The
difference between the two is that the former only includes a boredom mecha-
nism, whereas the latter additionally integrates an influence mechanism – caus-
ing user embeddings to drift based on clicked items and thus making it more
difficult to track user interest. We also investigated a partially observable ver-
sion of SlateTopK-BoredInf through SlateTopK-PartialObs, further increas-
ing the difficulty of the task. Finally, we experimented with various levels of
uncertainty in the clicking process through the SlateTopK-Uncertain environ-
ments. The results on the SlateTopK environments are shown in Fig. 3.3, 3.4, 3.5,
and 3.6.

SlateTopK-Bored. The results on the SlateTopK-Bored environment are plot-
ted in Fig. 3.3a (for the return) and Fig. 3.3b (for the boredom). We compared
the Greedy Oracle baseline, which is sub-optimal here, to four learned agents:
REINFORCE + Top-K, SAC + Top-K, SAC + GeMS and HAC. Similar to the
results observed on SingleItem environments, we see here that REINFORCE +
Top-K fails to reach the performance of the Greedy Oracle, while SAC + Top-K
beats by a good margin the Greedy Oracle. HAC and SAC + GeMS are also
able to beat the oracle baseline, but by a much smaller margin. In terms of bore-
dom, SAC + Top-K is also the winner with a much lower value. We also report
the distribution of item relevance scores for the different methods tested here in
Appendix 3.D. We hypothesize that the superiority of SAC + Top-K, in partic-
ular over SAC + GeMS and HAC, is due to the use of ideal item embeddings
in this experiment. Indeed, SAC + Top-K directly uses the item embedding
space as action space and thus rely heavily on the quality of item represen-
tations. To investigate this hypothesis, we repeated the same experiment as
shown in Fig. 3.3a and Fig. 3.3b, but we replace the ideal item embeddings
used by default in our experiments with item embeddings learned by matrix
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factorization (MF).10 We report the results in Fig. 3.3c and Fig. 3.3d for the re-
turn and boredom metrics, respectively. We observe that changing from ideal
to MF embeddings does have a drastic effect on the recommendation perfor-
mance (measured by the return metric) of SAC + Top-K, which degraded to the
level of the Greedy Oracle. The performance of HAC is also greatly impacted –
its return dropping even below that of REINFORCE Top-K. SAC + GeMS is the
approach that underwent the smallest performance drop in comparison to the
ideal embedding case. This suggests that this latter approach might overall be
more robust to sub-optimality in item embeddings.

In addition to the results described above on SlateTopK-Bored, we also in-
vestigated a challenging variant of this environment that is closer to a real-life
scenario, where certain topics tend to co-occur and the distribution of topics
for items and users is skewed. The setting and the experiments done in this
environment are further detailed in Appendix 3.B.

SlateTopK-BoredInf. On the SlateTopK-BoredInf environment, which adds
an influence mechanism to SlateTopK-Bored with ideal embeddings, we ob-
serve similar trends as this latter environment. The return and boredom re-
sults are given in Fig. 3.4a and Fig. 3.4b, respectively. One notable difference
with SlateTopK-Bored, however, is that in SlateTopK-BoredInf HAC fails to
beat the Greedy Oracle and gets a return that is significantly worse than that
of SAC + GeMS. This might be explained by the fact that HAC integrates a
supervised click prediction loss which may hinder the model performance due
to the greater dynamics in the user embedding caused by the influence drift.

SlateTopK-PartialObs. The results on the SlateTopK-PartialObs environ-
ment, which increases SlateTopK-BoredInf’s challenge with partial observabil-
ity, are shown in Fig. 3.5a (for return) and Fig. 3.6a (for boredom). Given the
superior performance of SAC + Top-K on SlateTopK-BoredInf, we focus here
on variants of this method based on a GRU or a transformer state encoder. In
this setting, we observe that the performance of the transformer variant leads
on most training steps to a significant improvement in terms of return over the
GRU variant. This result is in line with previous findings on state encoders for
RL-based recommendation (Huang et al., 2022a). However, both SAC + Top-K
variants fail to beat the Greedy Oracle baseline, highlighting the difficulty of

10 To obtain these embeddings, we used the dataset generated for SAC + GeMS pretraining
(described in Section 3.4.2) to train a matrix factorization model with an embedding dimension
of 10.
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Figure 3.3: Results on the SlateTopK-Bored environment with default, ideal item em-

beddings (3.3a, 3.3b) and with matrix factorization item embeddings (3.3c, 3.3d). The

colored envelope surrounding lines indicates the 95% confidence interval around the

mean computed from 5 seeded runs. Some approaches keep the same performance

across the two settings as they either do not rely on item embeddings (Random, REIN-

FORCE Top-K) or are an oracle baseline and only make sense with ideal item embed-

dings (Greedy Oracle).

this environment and showing that additional efforts on the agent and/or state
encoder might be needed to achieve high-quality recommendation.

SlateTopK-Uncertain. Starting from SlateTopK-PartialObs, we varied the
level of uncertainty in the clicks through the λ scale hyperparameter in the
simulator’s relevance function. In particular, we compared the original set-
ting of SlateTopK-PartialObs with low uncertainty (λ = 100) to different
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Figure 3.4: Results on the SlateTopK-BoredInf environment. The colored envelope

surrounding lines indicates the 95% confidence interval around the mean computed

from 5 seeded runs.

SlateTopK-Uncertain environments with medium uncertainty (λ = 10), high
uncertainty (λ = 5) and very high uncertainty (λ = 2) – which we will refer to
as SlateTopK-Uncertain10, SlateTopK-Uncertain5, and SlateTopK-Uncertain2

for simplicity. The return and boredom results in these environments are
illustrated in Fig. 3.5 and Fig. 3.6, respectively. Comparing the return on
SlateTopK-PartialObs (Fig. 3.5a) to SlateTopK-Uncertain10 (Fig. 3.5b), we
observe that the gap between the SAC + Top-K transformer and GRU vari-
ants increases. Indeed, while the overall performance of SAC + Top-K GRU
slightly decreases with the uncertainty increase, we see that SAC + Top-K
transformer is able to maintain its performance at around 125 at 500,000 steps.
This suggests that the transformer state encoder is more robust to a medium
level of uncertainty. When we increase the uncertainty to a high level in
SlateTopK-Uncertain5 (Fig. 3.5c), we notice that the SAC Top-K variants beat
the Greedy Oracle baseline, and that the gap between the Random baseline and
the Greedy oracle shrinks. This is explained by the fact that with more stochas-
ticity in the clicking process, less relevant items get more clicks – which reduces
the advantage of the greedily optimal recommendations from the Greedy Or-
acle. Clicks on more varied items also means that user boredom is less likely
to be triggered, which is confirmed by the comparison of the boredom scores
of the SAC Top-K variants across Fig. 3.6a, Fig. 3.6b, and Fig. 3.6c. When the
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uncertainty level is further increased in SlateTopK-Uncertain2, we observe
that the environment rewards random recommendations more than the accu-
rate recommendations from the Greedy Oracle, as shown in Fig. 3.5d. This is,
again, explained by the fact that less relevant items lead to a click probability
similar to that of relevant items. In this setting, the SAC Top-K variants both
perform similarly to the Random baseline and are thus learning to favor more
diverse recommendations over accurate ones.
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Figure 3.5: Results in terms of return (↑) on the SlateTopK-PartialObs (3.5a) and

SlateTopK-Uncertain (3.5b, 3.5c, 3.5d) environments. The click uncertainty degree

varies from low (3.5a), medium (3.5b), high (3.5c) to very high (3.5d), corresponding

to a scale hyperparameter λ in the relevance function equal to 100, 10, 5, and 2, re-

spectively (see Section 3.3.3 for more details). The colored envelope surrounding lines

indicates the 95% confidence interval around the mean computed from 5 seeded runs.
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(b) SlateTopK-Uncertain, medium uncert.
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(c) SlateTopK-Uncertain, high uncert.
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Figure 3.6: Results in terms of boredom (↓) on the SlateTopK-PartialObs (3.6a) and

SlateTopK-Uncertain (3.6b, 3.6c, 3.6d) environments. The click uncertainty degree

varies from low (3.6a), medium (3.6b), high (3.6c) to very high (3.6d), corresponding

to a scale hyperparameter λ in the relevance function equal to 100, 10, 5, and 2, re-

spectively (see Section 3.3.3 for more details). The colored envelope surrounding lines

indicates the 95% confidence interval around the mean computed from 5 seeded runs.

3.5.3 Experiments on slate reranking

With this last set of experiments, we explore the reranking task using two
SlateRerank environments: the static SlateRerank-Static and the interactive,
multi-step SlateRerank-Bored. We conduct experiments on click modeling
according to the following protocol: (i) we generate a dataset of interactions
using a certain logging policy, (ii) we train a click model on the generated
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dataset, and (iii) we rerank the items by decreasing amount of relevance, ac-
cording to the model. For both environments, we use the reverse-oracle policy,
i.e., the policy that orders items by increasing order of relevance, as the logging
policy. It therefore generates a dataset that contains substantial spurious corre-
lations due to position bias. We report the observed return when applying the
reranking methods in the live environment in Table 3.4.

Table 3.4: Online return obtained by debiasing the logged data on the reranking envi-

ronments. Averaged over five seeded runs.

Method SlateRerank-Static SlateRerank-Bored

Greedy Oracle 21.45 13.69

Reverse Oracle 8.82 8.47

dCTR 9.28 8.97

PBM 21.17 13.14

Online SAC + Top-K 19.01 14.82

SlateRerank-Static. On the static environment, the Greedy Oracle policy is
the optimal policy, while the Reverse Oracle yields minimal return. We can
indeed first verify in Table 3.4 that an online-trained SAC + Top-K, as in Sec-
tion 3.5.2, even with full observability of user state and ideal item embeddings,
does not beat the greedy oracle.

Secondly, we can see that a position-based model (PBM) correctly identifies
the biases in the logged data and almost reaches the performance of the ora-
cle policy, while the naive document click-through rate model (dCTR) model
fails to do so, and barely improves on the Reverse Oracle policy it was trained
on. This result does not come as a surprise since the underlying user click
model in the SlateRerank environments is also a position-based model. We
can nonetheless verify that the learned propensities, i.e., observation probabil-
ities at each rank, match the true propensities of the simulator. We therefore
compute the mean-squared error (MSE) of the normalized propensities, i.e.,
where the probability of observation at the first position is set to 1, and we find
that the learned PBM’s propensities have an MSE of 0.570. That indicates that
despite documents being correctly ordered, the learned model does not fully
match the underlying model.

The experiments on SlateRerank-Static call for further experiments with
different underlying user click models and candidate click models, e.g. as done
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in (Deffayet et al., 2023a), so as to investigate the performance of click models
under the more realistic settings of model mismatch. While we leave this for
readers to experiment with, we turn to another natural extension that is, to the
best of our knowledge, unexplored, and that SARDINE enables.

SlateRerank-Bored. In this interactive environment, the Greedy Oracle pol-
icy is not optimal anymore, because the agent must trade off the accuracy and
diversity of the most-exposed topics. Indeed, we can see in Table 3.4 that an
online-trained SAC + Top-K agent beats the Greedy Oracle. This environment
therefore constitutes a testbed for (offline) RL agents with biased feedback, and
notably the combination of RL and click modeling.

Another important difference that comes with this interactive environment
is the fact that the logged data may appear relatively noisier to a click model,
as the click/skip feedback can be explained by something else than relevance
and position: the boredom. While the boredom information is contained in the
ideal user state we use for click model training and the model should therefore
in theory be able to correctly identify biases, we expect the training process to
be harder. We observe what seems to be a slight degradation of relative perfor-
mance, compared to the static environment. Indeed, while the PBM managed
to fill 98% of the gap between the logging policy and the oracle policy on the
Static environment, it only fills 89% of the gap on the Bored environment. But
the extent of the degradation is most apparent when we compare the propen-
sities learned by the model in this new dynamic environment. The MSE now
increases to 0.915, compared to 0.570 in the static case. This suggests that using
the learned propensities of the model in downstream tasks, e.g., counterfactual
learning-to-rank, fairness or reinforcement learning, is likely to lead to imper-
fect and biased policies.

Effectively using the user behavior learned by click models in a dynamic and
interactive environment with, e.g., reinforcement learning, including when the
learned variables are imperfect, is to the best of our knowledge still an open
question. Our proposed simulator offers the possibility to study this topic in
an interpretable and controllable way.
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3.6 related work

In this section we highlight how our work differs from previously published
simulators. Considering the research agenda we defined in Section 3.1.2 as well
as our target specifications 3.1.1, we draw a comparison of existing simulators,
along with our proposed SARDINE, in Table 3.5. Note that some of these
simulators may have been proposed to target a different research outcome, but
we analyze only what we think to be relevant to interactive recommendation
research and our corresponding research agenda. Also, we acknowledge that
some of the criteria used here are subjective and we try to substantiate our
claims as much as possible.

We now describe related simulators that have been published in recent years,
and how they may differ from our objective.

RecoGym (Rohde et al., 2018) is an e-commerce and advertising simulator
where the agent aims to display attractive ads so that the users come back
on an e-commerce website they have previously visited. It comes bundled
with multiple bandit agents and use cases, including the effect of selection bias
on offline agents, and stochasticity in user response and evolution, as well as
in observed returning time. Its ease of configurability and experimentation
makes it a desirable choice, but it does not address multi-step reasoning, slate
recommendation and presentation bias.

MARS-Gym (Santana et al., 2020) aims to simulate online marketplaces, and
is based on real data from such platforms. It includes next-item prediction
and off-policy metrics for evaluation of trained agents. The agent’s objective,
for a given user, is to select one of the items that were observed in the real
data for that user. Therefore, MARS-Gym aims to evaluate the quality of static,
semantic information learned by agents and does not meet our research agenda
targeting dynamic and interactive systems.

RL4RS (Wang et al., 2023a) is an e-commerce, slate recommendation simulator
based on real purchase data, and where the reward function is a black-box se-
quential recommendation model. It is composed of two variants: one-shot (i.e.,
single-turn) and sequential slate recommendation. Offline RL agents can be
trained on the real logged data and evaluated in the simulator, but one cannot
directly control the logging policy, and presentation bias is not modeled. The
authors verify that a transformer model can better capture the item sequence
using non-greedy decoding strategies, which might indicate multi-step depen-
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dencies. However, the simulator is opaque and hardly tunable, and thus does
not satisfy our specifications for a research-oriented simulator.

RecSim (Ie et al., 2019a) is certainly the effort closest to ours. The authors
provided a configurable simulator and three environment instantiations that
cover, at least partially, all research topics that we wish to study. However, we
found practical drawbacks in using it, motivating us to propose our take on
interactive recommendation simulators. First, installation and usage is made
very difficult as it relies on older, unmaintained packages, without specifying
the version being used. Moreover, relying on third-party software like Ten-
sorflow 1.15 or Google dopamine hurts the ease of configurability of both the
environment and agents. In contrast, our simulator relies only on Numpy (and
Gymnasium). Second, we found tweaking the environment properties and sin-
gling out specific research questions to be hard, as there are often multiple pa-
rameters controlling the same research dimension, without clear guidance on
their effect, and they are not always tunable without substantial modifications:
e.g., the uncertainty in user response comes from a binary coin flip, which does
not allow to draw profiles of robustness to increasing uncertainty. There is also
no simple way to use an oracle for user state or item embeddings as we do in
our environment to single out certain modules of the agent. Finally, while the
simulator aims to tackle slate recommendation, no proposed environment uses
a number of candidates greater than 15 or a slate size greater than 3, while we
wish to study slate recommendation at a larger scale, e.g., with a number of
candidates of 1000 and a slate size of 10 as in our proposed SlateTopK environ-
ments. Overall, we adopt the general philosophy of RecSim and propose our
take on making a lightweight, flexible, and research-oriented simulator.

Virtual-TaoBao (Shi et al., 2019) is an online retail simulator trained from real
data, where generative adversarial networks are trained via multi-agent imita-
tion learning in order to approximate the user response to recommendations.
It incorporates certain uncertainties, e.g., on the user churning mechanism, and
rewards multi-step reasoning, but it does not address other research topics, i.e.,
biases in the data and slate recommendation. Additionally, since the simulator
consists of model approximations of real user behavior, the notion of items is
lost (state and actions are continuous latent variables) and the user response is
a black-box that cannot be tweaked for further experimentations.

SOFA (Huang et al., 2020) uses an intermediate reweighting step in order to re-
move popularity and positivity biases in the resulting simulator. The authors
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verify that policies trained in the debiased simulators perform better when
evaluated on datasets from the same platform but where biases have been al-
leviated (i.e., through random recommendations). The simulator is relatively
easy to tweak as we can replace the intermediate inverse-propensity scoring
step with a different technique, and change the underlying logged data. How-
ever, SOFA does not target the study of the other research topics in our agenda,
i.e., multi-step reasoning, environment uncertainty and slate recommendation.

OBP (Saito et al., 2021) is a semi-synthetic, research-oriented simulator for
off-policy training evaluation of bandit agents. Using real logs of an online
retail platforms collecting with several policies, it can evaluate the quality of
off-policy evaluation estimators and therefore help research in that direction.
However, it does not address our other concerns, i.e., multi-step reasoning,
environment uncertainty and slate recommendation.

3.7 conclusion

Summary. In this chapter, we have introduced SARDINE, a simulator for au-
tomated recommendation in a dynamic and interactive environments. Our
efforts seek to address different shortcomings identified in existing recommen-
dation simulators: (i) a lack of comprehensiveness in the covered research ques-
tions, that compels researchers and practioners to scatter their study across
several simulators; (ii) a lack of interpretability and controllability, when spe-
cific aspects of the simulator depend on the setting of multiple parameters; (iii)
the inability to study in isolation the phenomena and effects of interest in the
simulator; (iv) the solvability of the simulator through trivial off-the-shelf base-
lines; and (v) the difficulty for researchers and practitioners to make additions
and changes to the simulator to study certain directions in more depth, or to
investigate new research questions.

In an effort to cover a wide range of problems studied in recommendation,
we devised our simulator to enable the investigation of four over-arching re-
search topics, including the multi-step reasoning capacity of models (RT1), the
ability to learn models from biased data (RT2), the robustness to uncertainty
(RT3), and the challenges associated with recommending slates (RT4). Con-
cretely, these research topics translate into six dimensions – that the practioner
may or may not decide to include in their instantiation of the simulator – span-
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ning the recommendation type (single-item vs. slate recommendation), the in-
clusion of a boredom and/or influence mechanism, the level of uncertainty in
the clicking process, the state observability (full vs. partial), and whether the
task is reranking.

We then conducted extensive experiments on a set of nine environments de-
rived from SARDINE. These environments have been selected to constitute di-
verse combinations of the aforementioned dimensions and thus provide a good
coverage of our four research topics. In our experiments, we compared various
methods which include both simple baselines and state-of-the-art approaches.
To foster reproducibility and enable researchers to draw from this work to de-
velop their own environments, we release the code for the simulator,11 as well
as the detailed specifications for each environment and the implementation for
all the compared methods.12

Findings. Through our experiments on nine SARDINE environments, we de-
rived some valuable insights on the behavior of existing approaches in certain
settings, demonstrating the usefulness of our simulator. First, we found that
the SAC + Top-K approach, which combines the widely used SAC agent to a
simple top-K ranker, showed impressive performance across the different envi-
ronments and demonstrated a high stability. To the best of our knowledge, this
approach is rarely considered as a baseline in RL-based slate recommendation
works (except in (Deffayet et al., 2023c)) despite its effectiveness and relative
simplicity in comparison to state-of-the-art models. Therefore, we advocate for
its usage as a baseline in future work on slate recommendation in dynamic
environments.

To slightly nuance this first finding, we wish to add as a caveat that SAC
+ Top-K may be particularly dependent on the high quality of the item em-
beddings used. The performance of this approach was particularly high when
using the ideal item embeddings (i.e., the ones that are used inside the simula-
tor), but it decreased by a good margin when we replaced the ideal item em-
beddings with sub-optimal, matrix factorization embeddings. In comparison,
the SAC + GeMS (Deffayet et al., 2023c) approach seemed to be more robust
overall to the item embedding quality. The recent hyper-actor critic (HAC)
approach (Liu et al., 2023) was the most impacted by the quality of item em-
beddings in the studied settings. Moreover, we found that this approach was

11 https://github.com/naver/sardine
12 https://github.com/RomDeffayet/SARDINE_Experiments

https://github.com/naver/sardine
https://github.com/RomDeffayet/SARDINE_Experiments
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more affected than other methods by a highly dynamic environment with a
drift in the user interests. We attribute this to the supervised click prediction
loss used in HAC, which favors immediate reward over multi-step reasoning
in the model.

Secondly, we studied how a transformer state encoder compare to a GRU
state encoder in partially observable environments, and identified that the for-
mer tends to outperform the latter. This was notable in particular on environ-
ments where the click uncertainty was medium or high. This finding on the
superiority of the transformer over the GRU as a state encoder goes in line with
previous studies (Huang et al., 2022a) and thus it does not come as a surprise.
However, the impact of the level of click uncertainty on the state encoder is
a subject that has not been considered a lot in the recommendation literature,
and might be a topic worth investigating more deeply.

Finally, we conducted experiments on the impact of presentation bias in the
user feedback in a recommendation scenario. We notably found that when the
environment is dynamic, click models trained offline may be less accurate than
on static environments, which can have a detrimental effect on downstream
tasks, such as counterfactual learning-to-rank or offline reinforcement learn-
ing. Our experiments also open up the possibility of studying the end-to-end
training of RL agents from biased data, including a click modeling step.

Overall, the experiments we conducted act as guidance on how to use the
simulator, examples of use cases that can be studied through SARDINE, and
more importantly as a call for more research on dynamic and interactive ap-
proaches for recommender systems. The insights we gathered throughout our
experiments also reinforce the usefulness of simulated evaluation in general,
and SARDINE in particular.

Future work. While we designed our simulator to be flexible and config-
urable, so that researchers can tweak the experimental setup to their needs, we
did not implement variants of the simulator that target the study of many of
the research questions associated with our agenda (Section 3.1.2). For instance,
the performance of agents when the environment is non-stationary (e.g., due
to changes in the world) is still largely unknown (Padakandla et al., 2020),
and could be investigated in SARDINE. Similarly, reaching the best possi-
ble policy in a limited number of deployments, a task known as deployment-
efficiency (Matsushima et al., 2020), as well as continual learning (Wang et al.,
2023b), which aims to deploy agents that keep on learning, could be explored
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in the recommendation scenario thanks to SARDINE. We hope our simulator
can foster the experimentation of such novel ideas in recommender systems
research.

3.8 reflections on the chapter

3.8.1 Research outcomes

We proposed one of the many possible tools that can help answer my first
research question:

Research Question 1. How can we evaluate recommender systems in a way that
accounts for their dynamic and interactive nature?

While they bring interesting insights and fast development cycles, simula-
tors are clearly lacking real-world validity. Our use of users and items from
the Webtoon platform gives a way to make simulators more plausible repre-
sentation of reality, but even doing so cannot bring the gap between simulated
and real user behavior. But what if we relax the requirements and, rather than
trying to build accurate representations of real humans, merely aim to predict
the online performance of models ? This is the purpose of my second research
question, that the next part is dedicated to exploring:

Research Question 2. Can we predict in a fully offline manner the performance of
models learned on biased data?

3.8.2 Additional thoughts

It is clear from the experiments of this chapter that the recommendation task
is very hard: even with perfect knowledge of the user preference and item
content, and even in this relatively simple scenario, interactive slate recom-
mendation is far from solved. This was not obvious to me before working on
SARDINE. That means that the current limitations of recommender systems
are not merely due to a lack of understanding of users and items, but also
to limited reasoning capabilities, at least for out-of-the-box RL agents. Going
forward, I believe RL-based recommender systems will need to be improved
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on this aspect, and that in the more realistic scenario where the user and item
representations must be learnt, semantic representations that are designed to
help the agent reason will be a necessity.





C H A P T E R A P P E N D I X

3.A efficiency

On a single Intel Xeon Gold 6338 CPU, we found that our simulator can op-
erate at approximately 4, 500 steps (i.e., user interactions) per second with
the SlateTopK-Bored environment and up to 5, 000 steps per second on the
SingleItem-Static environment. Moreover, training a SAC+TopK agent on
SlateTopK-Bored or SlateTopK-BoredInf for 500, 000 training steps, as in Sec-
tion 3.5.2, takes around 40 minutes on a single NVIDIA A100 GPU.

3.B webtoon experiment

3.b.1 Environment description

The environments introduced in Section 3.4 and experimented on in Section 3.5
are based on purely synthetic items with uniformly drawn topic-item assign-
ments. While these environments enabled us to derive interesting insights, one
might question whether such environments reflect a real-life scenario where
(i) topic-item assignments are not uniformly drawn (i.e., some topics tend to
co-occur within items), (ii) item-topic distribution is skewed (i.e., some topics
are more prominent than others among items), and (iii) user-topic distribution
is skewed (i.e., some topics are more popular than others among users). To
showcase the possibilities of SARDINE to address such a scenario, we define a
semi-synthetic environment named WebtoonSlateTopK-Bored that presents the
same characteristics as SlateTopK-Bored with the difference that its items are
based on the real-world catalog of the Webtoon13 online comics platform. The
hyperparameters for this environment are summarized in Table 3.B.1. Differ-

13 https://www.webtoons.com/en (Item catalog accessed in January 2022).
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Table 3.B.1: Value of the simulator hyperparameters for the WebtoonSlateTopK-Bored

environment. The description of the hyperparameters’ meaning and role is detailed in

Table 3.1.

Hyperparameter value

L S nI nT λ µ α ϵ nb tb τb ω O

100 10 669 16 100 0.65 1.0 0.85 10 5 5 1.0 full

ently from SlateTopK-Bored, WebtoonSlateTopK-Bored includes 669 items and
16 topics.

User and item embeddings. In this experiment, we consider that we only
have access to an item catalog, which does not directly include embeddings.
Therefore, item and user embeddings need to be generated under the con-
straints imposed by the catalog (e.g., item-topic assignments), leading to a
semi-synthetic setting. To obtain item and user embeddings based on the
Webtoon catalog, we slightly changed the generation process described in Sec-
tion 3.3.1. For item embeddings, steps (2) and (3) are removed as item-topic
assignments are directly obtained from the catalog – these correspond to the
genres of an item, such as Drama, Romance, Superhero, Sci-fi, etc. Exploiting
these assignments ensures a meaningful co-occurrence of topics within items:
for example, the pairs (Drama, Romance) as well as (Superhero, Sci-fi) are more
likely to co-occur than the pair (Romance, Superhero). The distribution of items
across topics, i.e., the number of items attributed to each topic, is illustrated
in Fig. 3.B.1a. This figure highlights a skewed distribution, with a large share
of items pertaining to Fantasy, Drama, or Romance topics, and a much smaller
share of items with Sports, Historical or Informative topics.

To generate user embeddings, we changed step (3) from the embedding gen-
eration process in Section 3.3.1 to reflect the fact that topics may not be uni-
formly popular among users. More specifically, instead of being sampled from
Unif(T ), the topics of interest for a user u (denoted as Tu = {Tu,1, . . . , Tu,nTu

} ⊂
T ) are sampled from a categorical, non-uniform prior pT without replacement.
The probability pT (j) for a topic j is defined as the ratio of the average number
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of likes for items with category j divided by the average number of likes for
items with any category. Formally, pT (j) is defined as follows:

pT (j) =
1
|Ij| ∑i∈Ij

#likes(i)

∑j′∈T
1
|Ij′ |

∑i∈Ij′
#likes(i)

, (3.3)

where #likes(i) indicates the number of likes given to item i, and Ij is the set of
items which pertain to topic j (i.e., items i such that Ti,j > 0). The distribution
pT is plotted in Fig. 3.B.1b, which highlights as well the skewed nature of
user-topic preferences in the WebtoonSlateTopK-Bored environment.
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Figure 3.B.1: Properties of Webtoon items and topics (i.e., Webtoon categories). Fig.

3.B.1a depicts the number of items attributed to each topic, based on the actual item-

category assignments in the Webtoon catalog. Fig. 3.B.1a illustrates the topic prior

used for generating user embeddings in SARDINE, which is drawn from the number

of likes obtained for the items of each category.

3.b.2 Results

Following the experimental setup and hyperparameters used for the experi-
ments on SlateTopK-Bored (Ideal) (the results of which are described in Sec-
tion 3.5.2, and illustrated in Fig. 3.3a and Fig. 3.3b), we compared the same
methods on the WebtoonSlateTopK-Bored environment. The results are shown
in Fig. 3.B.2, with the return in Fig. 3.B.2a and the boredom in Fig. 3.B.2b av-
eraged over validation episodes. A notable difference with the results on the
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SlateTopK-Bored environment is the fact that no RL-based approach is able to
beat the Greedy Oracle. This might be explained by the greater difficulty of
WebtoonSlateTopK-Bored due to its skewed item-topic and user-topic distribu-
tions. Nonetheless, similarly to the results on SlateTopK-Bored, we observe
that among the RL-based approaches, SAC + Top-K performed the best and
is followed by SAC + GeMS. However, differently from previous results, HAC
underperformed and showed some instability which is illustrated by its high
variance. This suggests that HAC might be less robust and more sensitive to
changes in the environment in comparison to other methods. Overall, this
experiment demonstrates that deriving environments with realistic, long-tail
distributions provides interesting and challenging use-cases in SARDINE.
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Figure 3.B.2: Results on the WebtoonSlateTopK-Bored environment. The colored enve-

lope surrounding lines indicates the 95% confidence interval around the mean com-

puted from 5 seeded runs.

3.C clicked item influence experiment

In this section we focus on the effect of clicked items on the user prefer-
ence, which can be controlled by the ω parameter introduced in Section 3.3.4.
Concretely, we use the SlateTopK-BoredInf environment and build a perfor-
mance profile of the benchmarked algorithms under increasing influence of
the clicked items: ω ∈ {1.0, 0.95, 0.9, 0.85}. Note that ω = 1 correponds to the
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Figure 3.B.3: Validation return after 500, 000 training steps on the SlateTopK-BoredInf

environment at different levels of influence by the clicked items (the lower ω, the

higher the influence of clicked items on user preference). The colored envelope sur-

rounding lines indicates the 95% confidence interval around the mean computed from

5 seeded runs.

SlateTopK-Bored environment, where clicked items do not change the user
preference. With ω < 1, clicked items attract the user by shifting the user pref-
erence embedding towards the embedding of the clicked item. As a result, the
system must control for the long-term effect of its recommendations on user
preference, possibly yielding complex dynamics.

As in Section 3.5.2, we train all models for 500, 000 steps, with five differ-
ent random seeds. In Figure 3.B.3, we report the validation episodic return
obtained after 500, 000 training steps, at four different values of ω. We find
that the complex dynamics created by increasing the influence of clicked items
makes it harder for all methods to reach a high return. In particular, for
ω ⩽ 0.9, none of the tested methods manages to beat a greedy oracle agent.
Moreover, the relative performance of the different methods is sensitive to the
strength of item influence, with SAC+GeMS being overall more robust than its
counterparts and even beating SAC+TopK under lower ω values.
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3.D item scores

In Figure 3.D.1 we report the distribution of scores for items recommended
by the methods benchmarked on the SlateTopK-Bored environment. In this
environment, there exists a trade-off between recommending highly relevant
items and mitigating user boredom. We can indeed see that while the greedy
oracle algorithm recommends only highly relevant items, it does not yield as
much return as multi-step approaches like HAC, SAC+TopK and SAC+GeMS.
Furthermore, we can spot differences across methods, as it appears that HAC
often recommends highly relevant items, but also often defaults to poorly rel-
evant items, in contrast to REINFORCE+TopK, which mostly avoids irrelevant
items but also usually fails to accurately estimate user preferences and propose
highly relevant items.

Overall, the availability and interpretability of standardized item scores with-
in our simulator14 allows us to complement the information contained in the fi-
nal return obtained by each method, and therefore to better qualify the strengths
and weaknesses of each method.

14 Item scores are returned by the step method of the simulator under info["scores"].
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Figure 3.D.1: Distribution of the relevance score of items recommended by different

methods after training for 500, 000 steps on SlateTopK-Bored. The higher the score, the

higher the click probability. See Section 3.3.3 for how the relevance score is computed

within the simulator.





Part II

Estimation and Correction of Biases
in Learning-to-Rank





4
E VA L U AT I N G T H E R O B U S T N E S S

O F C L I C K M O D E L S TO P O L I C Y
D I S T R I B U T I O N A L S H I F T

A major obstacle to learning recommender systems from data is biased data.
It is well known that reinforcement learning agents are especially sensitive to
selection bias: agents that use dynamic programming have a tendency to over-
estimate the value of actions that were not taken in the data, and therefore
perform poorly at deployment time. The Offline RL community tries to over-
come this challenge (Levine et al., 2020). In information retrieval, the selection
bias problem is also well known, but it is often coupled with other types of
data biases that misrepresent the true value of items: position bias (Joachims
et al., 2007), trust bias (Agarwal et al., 2019), outlier bias (Sarvi et al., 2023),
... Even a perfectly calibrated offline RL agent would wrongly estimate the fu-
ture expected returns under these biases, and the resulting agent would likely
perform very poorly.

These biases have been studied for a long time in the information retrieval
community. Most approaches can be grouped in two categories: those that pos-
tulate a certain type of bias and strive to find effective and efficient way to cor-
rect for the biases (they often identify with the term unbiased learning-to-rank),
and those that propose and compare new bias models and the assumptions on
user behavior that these models implement (they are often grouped under the
umbrella term click modeling). In order to answer research question 3, i.e., to
understand when we need assumptions and how to choose the correct ones, I
chose to study biases from the click modeling perspective.

83
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Therefore, in this chapter and the next one, we investigate the impact of the
choice of click model on different downstream tasks, and how to select the
right one. We perform our analysis in the context of web search, rather than
recommendation, as biases are usually of similar nature, but more real-world
datasets are available in this scenario and it allows us to isolate the effect of
click modeling while ignoring the challenges that come with personalisation.

This chapter is based on the following publication: Romain Deffayet, Jean-
Michel Renders, and Maarten de Rijke. 2023. Evaluating the Robustness of
Click Models to Policy Distributional Shift. In ACM Transactions on Information
Systems (TOIS) 41, 4, Article 84 (October 2023).

4.1 introduction

Search engines rank items according to their relevance to users, given the query
they enter as well as the user and search context. To do so, many learning-to-
rank (L2R) approaches leverage click logs, due to their abundance and the
realistic settings they result from (Joachims et al., 2007; Chen et al., 2019a).
However, clicks and skips are not direct signals of relevance. They emerge from
interactions of users with the search system, meaning that the data is biased by
the policy in place in the search system during data collection, often called the
logging policy (Jagerman et al., 2019). Different sources of intrinsic bias induced
by the logging policy have been identified, such as position bias (Joachims et
al., 2005) (the position of documents in the search result page (SERP) influences
their click likelihood) or trust bias (Vardasbi et al., 2020a) (users are likely to
trust the system to return appropriate results and to click on top-returned
documents regardless of their actual relevance).

Therefore, in order to improve L2R models, it is crucial to gain a better un-
derstanding of user behavior on search engines by using click models (Chuklin
et al., 2015). They model user behavior by learning to generate realistic click
sequences, while maintaining an interpretable structure that makes it possible
to identify and disentangle the underlying causal factors of user behavior (rele-
vance, examination, . . ., often in the form of latent variables of the model). This
constrained structure allows one to extract a more accurate, unbiased relevance
signal from the logs, and to derive models that do not replicate the biases seen
in the logged data. The typical debiasing workflow with click models consists
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of (i) collecting biased click logs from the search engine, (ii) training a click
model on this dataset, and (iii) using the resulting (hopefully) unbiased model
to improve the policy of the search engine.

4.1.1 Evaluating click models

Click models are often evaluated on two tasks (Grotov et al., 2015): (i) click
prediction, typically measured by the perplexity (PPL) (Dupret and Piwowarski,
2008) obtained when predicting clicks on a separate test set, and (ii) relevance
estimation, typically measured by the normalized discounted cumulative gain
(nDCG) (Järvelin and Kekäläinen, 2002) of rankings produced by the ordering
of relevance scores recovered by the click model compared to those based on
relevance grades given by human annotators. The click prediction metrics are
usually computed on a test set collected using the same ranking policy as the
training set, thus presenting the same intrinsic biases. Consequently, this type
of evaluation is able to quantify the goodness of fit of a click model to the
distribution of the logged data, but cannot guarantee that this data has been ef-
fectively debiased by the click model. On the contrary, at first glance one could
hypothesise that strong performance in the relevance estimation task ensures
effective debiasing. After all, a high nDCG score should be an indication that
the causal identification of underlying factors (relevance, examination, etc.) has
been successful, which would mean that the resulting click model is unbiased
with respect to the logging policy.

The central question that motivates this chapter is: can the current evaluation
practice for click models ensure that a click model is robust to changes in the ranking
policy? To make this question more precise, we introduce the notion of policy
distributional shift.

4.1.2 Policy distributional shift and click models

Policy distributional shift (PDS) occurs when we ask the click model to predict
clicks on rankings produced by a policy different from the logging policy, a
task known as off-policy evaluation (OPE) (Swaminathan et al., 2017). PDS is a
type of covariate shift, as it modifies the input distribution of the click model
at test time. Under PDS, spurious correlations replicated from the data can
have a detrimental impact on the performance. Therefore, robustness to PDS
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requires successful causal identification of the underlying factors, i.e., effective
debiasing of the logged data.

Policy distributional shift matters. To illustrate its real-world impact, we list
five common downstream tasks for click models and group them into three
categories:

Group 1⃝: Latent variable extraction

• Label debiasing: extracting unbiased relevance scores from the model ei-
ther to directly derive a policy or to serve as labels or features in a super-
vised L2R approach (Chapelle and Zhang, 2009; Vardasbi et al., 2020b);

• Counterfactual L2R: extracting propensity scores to reweight individual
samples in a L2R loss (Oosterhuis and de Rijke, 2020a; Vardasbi et al.,
2020b).

Group 2⃝: Off-policy evaluation

• Click-through rate (CTR) prediction: deriving CTR estimates of specific
rankings for optimizing ad placement and pricing (McMahan et al., 2013;
Chen and Yan, 2012).

Group 3⃝: Inverse model optimisation

• Fair ranking: extracting both relevance and exposure scores to measure
and control the utility and fairness of fair re-ranking algorithms (Singh
and Joachims, 2018);

• Offline Bandits and RL: using the model as an interaction predictor for
training bandits or RL policies (Huang et al., 2020; Zhang et al., 2022).

Tasks in Group 1⃝ do not require OPE, so they are not subject to underper-
formance due to PDS. However, we show in Section 4.4 that existing offline
evaluation protocols cannot guarantee that the relevance or propensity scores
have been effectively debiased, which defeats the purpose of click models for
such applications.

CTR prediction ( 2⃝) consists in performing explicit OPE; as a consequence, it
is sensitive to policy distributional shift. We show in Section 4.6.1 that existing
offline evaluation protocols are not able to detect such sensitivity, and we inves-
tigate how click models compare to each other in this setting in Section 4.6.2.
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The problem of PDS is especially critical for tasks in Group 3⃝, where we seek
to recover a high-performance policy through an optimisation process. Such
tasks require (implicitly or explicitly) numerous instances of OPE to select the
best-performing policy. This leads to a phenomenon known as the optimiser’s
curse where inaccuracies of the model are exploited by the optimisation algo-
rithm, potentially leading to failure at inference time (Smith and Winkler, 2006;
Jeunen and Goethals, 2021). We compare click models w.r.t. the performance
of the policies recovered in such tasks in Section 4.6.3.

4.1.3 Research goal and findings

Our research goal is to assess whether the current evaluation practice for click
models is able to detect a lack of robustness to policy distributional shift, i.e.,
whether the current offline metrics are good indicators of the performance of
click models on downstream tasks involving PDS ( 2⃝, 3⃝). To address this ques-
tion, we proceed as follows. We assess the robustness of four different types of
click models (Craswell et al., 2008; Dupret and Piwowarski, 2008; Chapelle and
Zhang, 2009; Borisov et al., 2016), ranging from older models based on proba-
bilistic graphs to newer neural models, which all encode a different structural
assumption in their architecture. To make the comparison fair, we instantiate
them under a unified implementation based on modern tools such as neural
networks and stochastic gradient descent. In other words, we wish to com-
pare the robustness of the key assumptions encoded in each model, rather
than specific implementation details. Moreover, to enrich the experiments, we
add two additional click models corresponding to two additional structural
assumptions.

The experimental setup we adopt to address our research goal involves an
evaluation protocol simulating OPE and online deployment that allows us to
assess the robustness of click models under policy distributional shift in a way
that is as close as possible to practical use cases of click models. Specifically,
we simulate the deployment of click models for two tasks: CTR prediction
2⃝ and Offline Bandits 3⃝, respectively, in Sections 4.6.2 and 4.6.3. For both

experiments, we introduce a wide range of semi-synthetic environments in
which relevance labels are derived from a real-world dataset but the simulated
user behavior and the ranking policy are controlled by us. Our experiments
show that click models exhibit largely different and sometimes unexpected behaviors
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when tested outside of their training distribution, and that downstream policies are
affected by this lack of robustness.

The performance inside the simulator strongly depends on its design, and
is thus not meant to be a reliable indicator of online performance, but it can
provide insights into the inner working of click models and enable us to dis-
criminate poorly robust ones. It allows us to gain higher confidence that the ranking
policies that we wish to derive, depending on the chosen downstream task, will behave
as expected once deployed into the real system: it is a way to mitigate the risks of
deploying L2R models online. Moreover, evaluating click models in a wide
range of simulated environments decreases the sensitivity to simulator design
and allows us to identify trends in the results.

4.1.4 Contributions

Our main contributions are the following:

• We identify the problem of policy distributional shift (PDS) in the context
of click models and their evaluation;

• We show in a simulated environment that existing evaluation protocols
do not guarantee good robustness of click models to PDS; and

• We propose an evaluation protocol for assessing the robustness to PDS
of click models and compare various click models in a range of semi-
synthetic environments.

Related work is discussed in Section 4.2. In Section 4.3, we introduce the con-
cepts and tools necessary to our analysis, notably the existing offline evaluation
protocol and the models we study throughout the chapter. Section 4.4 provides
a preliminary experiment on real-world datasets which indicates that the ex-
isting evaluation protocol suffers from important shortcomings. We therefore
describe our augmented evaluation protocol and our experimental setup in
Section 4.5. Finally, we instantiate this protocol in Section 4.6: we first provide
counter-examples where the current evaluation protocol is unable to guarantee
robustness to PDS (Section 4.6.1), and then perform a full comparative evalu-
ation of click models in a wide range of environments for downstream tasks
from Group 2⃝ in Section 4.6.2 and Group 3⃝ in Section 4.6.3. An online ap-
pendix containing our code with reproduction instructions can be found at
github.com/naver/dist-shift-click-models.

https://github.com/naver/dist-shift-click-models
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4.2 related work

4.2.1 Off-Policy training and evaluation

Offline training and evaluation of search and recommendation systems has
been extensively addressed in the literature (Ai et al., 2021; Li et al., 2018;
Steck, 2010), because performing online testing with real users is very costly.
Among the issues to be addressed when evaluating search and recommenda-
tion systems offline, mitigating the bias induced by the policy used for data
collection in learning-to-rank (L2R) has been tackled in numerous previous
studies (Oosterhuis and de Rijke, 2020a; Swaminathan et al., 2017; McInerney
et al., 2020; Li et al., 2018), usually under the umbrella terms Off-Policy Evalua-
tion or Counterfactual L2R.

In these approaches, the experimental setup is usually as follows: we aim to
learn from click logs that have been generated by a logging policy. Since this
logging policy is usually not uniformly random, certain documents are more
likely to be clicked than they would be under a different policy. Therefore, a
correction is applied to de-bias the observed clicks (Joachims et al., 2017). In
domain-agnostic off-policy evaluation (Swaminathan et al., 2017; McInerney
et al., 2020), the correction corresponds to the probability of the document
being placed at the rank at which we found it, by assuming a certain structure
for the logging policy. These approaches are domain-agnostic in the sense
that they do not leverage the specific properties of user behavior on search
and recommendation sytems. Conversely, in inverse propensity scoring (IPS)
(Joachims et al., 2017; Oosterhuis and de Rijke, 2020a), one assumes a certain
user click model and reweighs each observed document by its probability of
being examined by the user under the logging policy. Vardasbi et al. (2020a)
and Oosterhuis and de Rijke (2021b) also model trust bias in order to improve
the relevance estimates found by the counterfactual estimator. While certain
studies compute the off-policy corrections with online swapping interventions
(Joachims et al., 2017) or with eye-tracking experiments (Joachims et al., 2007),
in this study we focus on the fully observational training of user click models,
directly on the logs, as used in (Oosterhuis and de Rijke, 2020a; Vardasbi et al.,
2020a; Zhang et al., 2022).

Regardless of the method used for propensity estimation, one must ensure the va-
lidity of the off-policy correction. To do so, most of the existing click model and
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counterfactual L2R literature evaluates the de-biasing capabilities of learned
models by using relevance labels provided by human annotators (either on
real-world or semi-synthetic datasets) (Vardasbi et al., 2020a; Oosterhuis and
de Rijke, 2020a; Joachims et al., 2017; Craswell et al., 2008; Borisov et al., 2016).
However, as we explained in the introduction, this setting does not cover all
possible use cases of click models and most importantly does not evaluate what
would happen under policy distributional shift, i.e., in many practical scenar-
ios (see task groups 2⃝ and 3⃝ in the introduction). Swaminathan et al. (2017)
and McInerney et al. (2020) evaluate the performance of their respective esti-
mator on a simulated CTR prediction task with a few different policies, which
ensures a certain degree of robustness to distributional shift for this particular
task. However, ensuring that type of robustness is especially critical in appli-
cations such as fairness-constrained utility maximisation (Singh and Joachims,
2018) or RL-based L2R (Kveton et al., 2015; Zhang et al., 2022), in which the
optimisation process will exploit any inaccuracies of the click model if it serves
its objective. Besides, their counterfactual estimators are domain-agnostic and
do not leverage the specific behavior of users on search and recommendation
services. To the best of our knowledge, no other work has evaluated how counter-
factual L2R estimators perform when they are applied on policies different from the
logging policy, i.e., under policy distributional shift. Conversely, the offline rein-
forcement learning (RL) literature has extensively tackled policy distributional
shift (Levine et al., 2020; Precup et al., 2000; Janner et al., 2021), including
model robustness in model-based RL (Yu et al., 2020; Argenson and Dulac-
Arnold, 2021), which can be seen as a similar topic to ours, but these methods
are both structure and domain-agnostic because they do not leverage the spe-
cific properties of 1. policies returning rankings and 2. user behavior on search
and recommendation systems.

Dai et al. (2021) consider a form of intrinsic distributional shift which occurs
when the model is asked to generate a consistent click sequence while having
been trained using conditional click probabilities on ground truth clicks, but
they did not consider the policy distributional shift induced by the change of
policy for evaluation. In the work that is perhaps the closest in essence to
ours, Huang et al. (2020) introduce a protocol for evaluating policies produced
by models trained inside a de-biased simulator, but they address the topic of
single-item recommendation, which does not require click models because the
sources of bias are different from biases occurring in L2R.
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4.2.2 Click models

As mentioned in the previous section, we focus on the evaluation of counter-
factual estimators fitted from observed logged data, i.e. click models. In early
work on click models (Craswell et al., 2008; Dupret and Piwowarski, 2008;
Chapelle and Zhang, 2009; Liu et al., 2016), authors encode assumptions about
user behavior into a probabilistic graphical model (PGM) framework in order
to separate the influence of the result page’s presentation from the influence of
the document’s intrinsic relevance.

For example, the examination hypothesis, introduced with the position-based
model (PBM) (Craswell et al., 2008), postulates that a document must be exam-
ined and perceived as relevant in order to be clicked. Therefore, in this model,
one must identify relevance and examination parameters through a method
of parameter estimation such as expectation-maximisation or stochastic gradi-
ent descent. The cascade model (Craswell et al., 2008) additionally states that
users browse the page in a top-down fashion, and that the click probability at
a given rank depends on document relevance at lower ranks. Although some
of these assumptions can easily be challenged in many modern search engines,
they allow a certain level of generalisation in many practical settings (Chuklin
et al., 2015).

More recently, neural click models have emerged (Borisov et al., 2016; Dai
et al., 2021; Chen et al., 2020; Borisov et al., 2018; Zheng et al., 2019) because
they enable a better representation of the relevant variables (query, document,
vertical type, etc) and recent optimisation methods are efficient for training
large-scale click models from abundant data. But some of these models (Chen
et al., 2020; Dai et al., 2021) do not offer a straightforward solution for ex-
tracting intrinsic relevance scores, because they encode a notion of contextual
relevance, i.e., dependent on rank, previous clicks and SERPs and vertical type.

The comparison of these different click models with respect to their robust-
ness to policy distributional shift is the main focus of this chapter. To allow
for a fair comparison between them and filter out differences originating from
representational and algorithmic design choices, we adopt the same way of rep-
resenting entities such as query, context and document and the same type of
optimisation algorithms, while keeping the structural assumptions of the orig-
inal methods. In particular, the “older” methods (Craswell et al., 2008; Dupret
and Piwowarski, 2008; Chapelle and Zhang, 2009) are instantiated with the
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representational and optimisation tools used by newer methods (Borisov et al.,
2016; Dai et al., 2021; Chen et al., 2020; Borisov et al., 2018), i.e., deep neural
networks with embedding-based input encodings and gradient-based optimi-
sation algorithms.

4.3 experimental setup

This section describes the experimental setup we adopt for the remainder of the
chapter. Section 4.3.1 introduces the necessary notations and recalls how click
models are traditionally evaluated, and in Section 4.3.2 we define the stack
of click models we will use and compare throughout the experiments. We
detail our evaluation protocol for assessing click models’ robustness to policy
distributional shift in Section 4.5, after a preliminary experiment highlighting
the shortcomings of the existing evaluation protocol (Section 4.4).

4.3.1 Problem statement and existing protocol

We consider users engaging with a web search system displaying SERPs, i.e.,
fixed-size ranked lists of documents S = (d1, . . . , dR), as a response to a query q
that the user entered. The user can then click on zero, one or more documents,
which is represented by the sequence of binary outcomes (c1, . . . , cR). There-
fore, logs in the dataset D contain SERP-wide interactions IS = (τ1, . . . , τR)

with τr = (q, dr, r, cr), where 1 ⩽ r ⩽ R. For simplicity of notation, we will
write 1(q,d,r) for the function τ 7→ 1 if τ[0] = q, τ[1] = d, τ[2] = r and 0 other-
wise for any τ ∈ D.

In order to better convey our argument, we do not consider session-based
click models and we strip all datasets of additional context such as vertical
type, device, etc.

We consider click models trained by maximum likelihood estimation on the
task of predicting clicks based on query and presented SERP. The models’ per-
formance is evaluated on two tasks:
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• Click prediction on a separate test set (randomly or chronologically split),
which is measured by the conditional perplexity (PPL) at each rank and
the average conditional perplexity:

PPL@r = 2
1
|D| ∑I∈D cIr log2 p̃Ir +(1−cIr ) log2(1− p̃Ir )

PPL =
1
R

R

∑
r=1

PPL@r,
(4.1)

where p̃Ir is the conditional click probability according to the model.

• Estimation of the relevance rel(q, d) against labels provided by human annota-
tors, which is measured by the normalized discounted cumulative gain
(nDCG) at several truncation levels.

Throughout the chapter, we perform a statistical significance analysis by train-
ing each model using 10 random seeds, where the seed controls model ini-
tialisation as well as the order of input documents to rank in the relevance
estimation task. Confidence bounds use Student’s t-distribution and statistical
tests are Welch’s t-tests. Both use a confidence level of 0.95.

4.3.2 Click model definitions

In this section, we define several click models that will be used in the remain-
der of the chapter. To make the discussion easier in Section 4.4, we group these
models into three families: (i) naive baselines based on number of clicks and
impressions, (ii) as-is click models that we select from the existing literature,
and (iii) modified click models, which are adapted from the literature to fit our
requirements, that we introduce to enrich the experiments. As we mentioned
in the introduction, we are interested in assessing the robustness of different
structural assumptions to policy distributional shift, rather than the effective-
ness of specific implementation choices. To this end, we test several types of
click models which differ by their key structural assumptions, and we imple-
ment all models in the same way, i.e., with modern neural methods, to ensure
a fair and up-to-date comparison, as we describe in Section 4.3.2.

Naive baselines

For each document-query pair (q, d), we define the number of clicks at rank
r as Nc

q,d,r = ∑τ∈D cτ 1(qτ=q,dτ=d,rτ=r) and aggregated over all ranks as Nc
q,d =
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∑r Nc
q,d,r, where τ = (qτ, dτ, rτ, cτ), as defined in the previous section. Similarly,

we define the number of impressions at rank r as Ni
q,d,r = ∑τ∈D 1(qτ=q,dτ=d,rτ=r)

and aggregated over all ranks as Ni
q,d = ∑r Ni

q,d,r. Using these quantities, we
define the following models:

dctr: document-based click through rate model (Craswell et al., 2008): It is
one of the simplest click models, assuming that every document in the
list is examined equally, independently of its rank. Consequently, its
estimate of CTR is identical to its estimate of relevance probability:

P(Cd = 1|q) = rel(q, d) =
Nc

q,d

Ni
q,d

. (4.2)

where Cd is a random variable indicating whether the user has clicked
document d.

drctr: rank-weighted dCTR: It is an improved version of the dCTR model, re-
laxing its rank-independence assumption. It basically consists of a com-
bination of two simple models: the dCTR model and the rCTR model
(Chuklin et al., 2015), the latter making a document-independence as-
sumption (i.e. the click probability only depends on the rank of the doc-
ument).

P(Cdr = 1|q) =
Nc

q,d,r

Ni
q,d,r

,

rel(q, d) = ∑
r

1
rCTR(r)

×
Nc

q,d,r

Ni
q,d,r

,

(4.3)

with rCTR(r) =
(

∑τ∈D cτ 1(rτ=r)

)
/
(

∑τ∈D 1(rτ=r)

)
.

toppop: popularity-based model, based on the number of clicks:

rel(q, d) = Nc
q,d. (4.4)

Of course, the relevance estimate of this model is strongly influenced
by the logging policy, because the latter will determine the number of
impressions of a document and, therefore, the number of opportunities
to be clicked. The following two models further exacerbate this bias, by
giving more importance to the number of impressions of a document.
They are not intended to be used as realistic click models, but as a way of
detecting and quantifying the potentially detrimental effect of such bias
in our experiments.
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toppopobs: popularity-based model, based on the number of clicks and im-
pressions:

rel(q, d) = Nc
q,d × Ni

q,d. (4.5)

ranktopobs: rank-weighted popularity-based model, based only on the num-
ber of impressions:

rel(q, d) = ∑
r

rCTR(r)Ni
q,d,r. (4.6)

Note that TopPop, TopPopObs and RankTopObs are not well-defined click
models, as they cannot be used for click prediction. Additionally, for dCTR
and drCTR, we add Bayesian smoothing with a Dirichlet prior with param-
eter α = 1 when predicting clicks. This allows us to avoid arbitrarily high
perplexities on rarely seen items.

As-is click models

We select from the existing literature four widely used types of click models
that make different modeling assumptions. Here, we first list and describe the
key structural assumptions of the models we include in our experiments, and
then explain in more detail the selection and standardisation process, with the
help of two exclusion criteria.

We select the following four types of model from the literature :

pbm: position-based model (Craswell et al., 2008). It makes the examination
hypothesis by stating that a user clicks document d if and only if that
document is attractive to the user and has been examined by them: Cd =

1 ⇔ Ad = 1 and Ed = 1. Moreover, it encodes this assumption such
that attractiveness αq,d only depends on the query-document pair and
examination γr on the rank:

P(Cd = 1) = P(Ad = 1)× P(Ed = 1)

P(Ad = 1) = αq,d

P(Ed = 1) = P(Er = 1) = γr.

(4.7)

It is further assumed that the document relevance coincides with its at-
tractiveness:

rel(q, d) = αq,d. (4.8)
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ubm: user browsing model (Dupret and Piwowarski, 2008). UBM makes the
same assumptions as PBM, except that the examination probabilities also
depend on the rank of the latest clicked document:

P(Cd = 1) = P(Ad = 1)× P(Ed = 1)

P(Ad = 1) = αq,d

P(Ed = 1) = P(Er = 1 | C1 = c1, . . . , Cr−1 = cr−1) = γr,r′ ,

(4.9)

where γr,r′ is the probability that the document at rank r is examined
given that the latest clicked document was located at rank r′.

dbn: dynamic Bayesian network model (Chapelle and Zhang, 2009). Com-
paratively to previous models, it adds the concept of satisfaction Sd that
can happen with probability σq,d after a click; note that this satisfaction
probability depends on the particular query-document pair. The model
assumes that the user examines the page in a top-down fashion with
discount factor γ until they are satisfied:

P(Cd = 1) = P(Ad = 1)× P(Ed = 1)

P(Ad = 1) = αq,d

P(E1 = 1) = 1

P(Er = 1 | Er−1 = 0) = 0

P(Er = 1 | Sr−1 = 1) = 0

P(Er = 1 | Er−1 = 1, Sr−1 = 0) = γ

P(Sr = 1 | Cr = 1) = σq,d.

(4.10)

The relevance probability is then estimated by:

rel(q, d) = αq,d × σq,d. (4.11)

ncm: neural click model (Borisov et al., 2016). NCM does not encode the exam-
ination hypothesis but instead considers click prediction as a sequence-to-
sequence problem, where the SERP is modeled as a top-down sequence:

P(Cd,rd
= 1) = f (q, d1, . . . , drd , c1, . . . , crd−1), (4.12)

where f is parameterised as a long short-term memory (LSTM) in the
original implementation (Borisov et al., 2016), with ad-hoc representa-
tions (embeddings) for queries, documents and clicks. Because NCM
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does not implement the examination hypothesis, it does not explicitly
infer a latent variable which can be interpreted as the relevance proba-
bility. Instead, thanks to the top-down browsing assumption, Borisov et
al. (2016) suggest that a relevance score can be inferred by placing the
considered document at the first position of the ranking:

rel(q, d) = f (q, d). (4.13)

Selection process. The selection of click models from the literature was made
according to two exclusion criteria :

• EC1 : The click model should not leverage context other than position
and previous clicks on the same SERP, such as vertical type, timestamp,
previous SERPs, etc. This allows us to compare models on a fair basis,
and we leave the effect of context features on the robustness of click mod-
els for future work. This criterion prevents the study of context-related
biases but still allows the mitigation of the main identified sources of bias
such as position bias (Joachims et al., 2005) which constitute the motiva-
tion for using click models.

• EC2 : The click model should offer a way to compute intrinsic, de-
contextualized relevance scores, i.e., relevance scores depending solely
on the query-document pair. This is required in order to compute nDCG,
and to leverage relevance scores in downstream tasks such as label debi-
asing.

As a result of EC1, we exclude context-aware models such as (CSM, Borisov
et al., 2018), (MCM, Zheng et al., 2019), (CACM, Chen et al., 2020), (AICM,
Dai et al., 2021) and (GraphCM, Lin et al., 2021). However, we include in Sec-
tion 4.3.2 a variant of (CACM, Chen et al., 2020) stripped of additional context,
called CACM -⃝. When stripped of such context, AICM and MCM reduce re-
spectively to (NCM, Borisov et al., 2016) and (DBN, Chapelle and Zhang, 2009),
that we already include in our experiments, and GraphCM reduces to CACM -⃝.
It should also be noted that CTR prediction models (Cheng et al., 2016; Guo
et al., 2017), which are widely used in recommendation settings, incorporate
no concept of latent relevance and do not explicitly consider the ranks of the
recommended items. Moreover, these models exploit the “collaborative” na-
ture of the problem, namely that a single item is typically seen by numerous
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users and users interact with a lot of common items. In our stylised setting,
the queries of the datasets are associated most of the time with disjoint sets of
documents and the only available information consists of their id’s, their ranks
and the clicks. Consequently, there is no collaborative nature we could capture
and rely on. In other words, these model reduce to the key assumptions of
(dCTR, Craswell et al., 2008) (included in the previous section) when stripped
of additional features.

To satisfy EC2, we also had to modify the relevance model of our stripped
variant of CACM, as we will see in Section 4.3.2, because the relevance vari-
able depends on rank and previous clicks in the original chapter. For the
same reason, we had to exclude CSM because even when stripped of the use
of timestamp, its bi-GRU architecture does not allow the computation of de-
contextualized relevance scores.

Standardisation process. In order to ensure a fair comparison, we imple-
ment the included models using the same representation of query and doc-
uments. More specifically, for models following the examination hypothesis
(PBM, UBM, DBN), we separately encode query and documents into embed-
dings of size 64, which are then combined using a multi-layer perceptron
(MLP). In particular, this means that, instead of considering query-document
attractiveness (αq,d) and satisfaction probability (σq,d) directly as model param-
eters typically identified by an Expectation-Maximisation algorithm, these vari-
ables are modeled as the output of an MLP whose inputs are trainable docu-
ment and query embeddings. For NCM, we directly pass the concatenation
of the embeddings of query and document and a binary variable representing
the click value at previous rank, rather than the distributed representation in-
troduced in the original chapter. We also replace the original long short-term
memory (LSTM) with a gated recurrent unit (GRU), as in our experiments it
obtained the same performance more quickly. These implementation choices
allow us to isolate the contribution of the structural assumptions encoded in
these models and can be considered standard with respect to recent click model
literature (Chen et al., 2020; Dai et al., 2021; Borisov et al., 2018). All models
are trained by minimizing the cross-entropy between the predicted click distri-
bution and the actual one, using stochastic gradient descent. Further training
and implementation details of the click models can be found in Appendix 4.A.
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Modified click models

We adapt structural assumptions from the literature to our requirements, and
therefore add two new types of click models encoding two different structural
assumptions:

cacm -⃝ : Minimalistic, context-free variant of the context-aware click model
(CACM, Chen et al., 2020). This click model relies on the examination hy-
pothesis by having on one side attractiveness probabilities modeled with
an MLP from query/document pairs, similarly to PBM/UBM/DBN, and
on the other side examination probabilities computed similarly as in the
original CACM paper (Chen et al., 2020): the examination score is the
output of a GRU whose input at each rank is the concatenation of a posi-
tion embedding and an embedding for the previous click. There are two
main differences with the original CACM :

1. CACM -⃝ is context-free, i.e., it does not leverage information from
past interactions within the same session and the type of vertical.
This is to ensure fair comparisons, folowing our exclusion criterion
EC1.

2. The attractiveness probabilities are agnostic to the rank of the doc-
ument as well as previous clicks, which allows us to compute non-
contextual relevance scores. This is in line with our exclusion crite-
rion EC2.

Even though we drop certain specificities of the original work, our variant
keeps the key structural assumptions of CACM. Also, note that CACM -⃝

differs from NCM as it implements the examination hypothesis. We have:

P(Cd = 1) = P(Ad = 1)× P(Ed = 1)

P(Ad = 1) = αq,d

P(Ed = 1) =GRU((c1, p1), . . . , (crd−1, prd−1))

rel(q, d) = αq,d.

(4.14)

where ck and pk designate embeddings for click and position respectively,
while αq,d is derived as the output of an MLP whose inputs are trainable
document and query embeddings.

arm: auto-regressive click model. Similarly to CACM -⃝, ARM only differs
from PBM, UBM and DBN by the way it models examination: the exam-
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ination probability is the output of a logistic regression fω on previous
clicks, with one parameter for each absolute rank. We can write:

P(Cd = 1) = P(Ad = 1)× P(Ed = 1)

P(Ad = 1) = αq,d

P(Ed = 1) = fω(c1, . . . , crd−1)

rel(q, d) = αq,d,

(4.15)

with fω(c1, . . . , ck) = ω0 + ∑j=1 ωjcj for all j ⩽ k and αq,d derived as
the output of an MLP whose inputs are trainable document and query
embeddings. Even though ARM is similar to CACM -⃝ in its architecture,
the logistic regression requires significantly less parameters to predict
the examination probability, and non-clicked documents do not influence
the examination. We also introduce a non-causal version of ARM (called
ARM NC) where instead of passing only the previous clicks to the logistic
regression, we pass all previous clicks as well as the current one, i.e.,
P(Ed = 1) = fω(c1, . . . , crd). This variant involves a degenerate training
tasks: learning to predict a click which has been passed as input ! Yet,
we include it in our experiments in order to highlight the shortcomings
of the existing evaluation protocol.

Note once again that our contribution is not to introduce new click models
or to improve existing ones, but to test the robustness of several structural
assumptions in the context of policy distributional shift. To do so, we adopt
a setting which can be considered standard with respect to the recent click
model literature (Borisov et al., 2016; Chen et al., 2020; Dai et al., 2021; Borisov
et al., 2018), and we add two new click models (CACM -⃝, ARM) in order to
draw more reliable conclusions during our experiments.

4.4 naïve baselines beat advanced models at
relevance estimation

In this section, we perform a preliminary experiment on real datasets using the
widely used experimental setup described in Section 4.3.1, i.e., by computing
two offline metrics: perplexity and nDCG. We first give experimental details in
Section 4.4.1, and present the results in Section 4.4.2.
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4.4.1 Data and evaluation protocol

We evaluate click models on two real-world datasets: the Yandex Relevance
Prediction dataset (Serdyukov et al., 2012) and the CLARA dataset, which
comprises logs from Naver, a major South Korean search engine,1 and rel-
evance labels provided by human annotators. For both datasets, we follow
the same processing workflow: (i) we first break down sessions into separate
SERPs as we do not wish to use the additional information contained in a
session beyond the current page; then (ii) we restrict the dataset to queries
that have been annotated; finally (iii) we discard all pages without clicks. Af-
ter pre-processing, the Yandex dataset contains 255,467 unique documents and
4,991 unique queries and the CLARA dataset contains 1,345,880 documents
and 1,507 uniques queries. Both datasets have a cutoff rank of 10.

For perplexity computation, we use a chronological split where the test and
validation set both represent 1/30th of the full Yandex dataset and 1/20th of
the full CLARA dataset. For the nDCG computation, we remove documents
which do not appear in the dataset as well as queries whose remaining docu-
ments all have equal relevance, as they would output a nDCG of 1 regardless
of the quality of the click model.

We report our results in Tables 4.1 and 4.2 and 95% confidence bounds from
the t-distribution can be found in Appendix 4.D. Note that when we indicate
statistical significance or absence of it, we do not correct for multiple compar-
isons because we are not looking for at least one test to be positive, but for
baselines beating all existing click models on all nDCG metrics, i.e., for all
tests to be positive at the same time. Indeed, the informal null hypothesis
corresponding to this experiment could be defined as "No naïve baseline beats all
click models in terms of nDCG at every truncation level". Therefore, adding com-
parisons to the experiment (more click models, more truncation levels) would
only increase the likelihood of at least one test to be negative and decrease the
likelihood of our hypothesis being rejected.

We also report in Appendix 4.E the results measured by two other metrics,
namely area under the ROC curve for click prediction and recall for relevance
estimation.

1 https://www.naver.com/

https://www.naver.com/
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4.4.2 Results

In Tables 4.1 and 4.2, we report the performance of the click models we de-
scribed in Section 4.3.2. NCM achieves the lowest perplexity at all ranks but
the first one on both datasets, while dCTR and RankTopObs achieve the high-
est nDCG on respectively Yandex and CLARA. Overall, models in Group 1⃝,
i.e., naïve baselines, beat well-formed models from Groups 2⃝ and 3⃝ on the
relevance estimation task.

As mentioned in the introduction, even though measuring perplexity on a
test set collected by the same policy as the training set is not able to guarantee
robustness to policy distributional shift, one could hypothesise that the evalua-
tion protocol of the relevance estimation task (using nDCG) is a good proxy for
ensuring effective debiasing and therefore robustness to distributional shift.

However, the high nDCG of Group 1⃝ in both tables seems to contradict this
hypothesis: naïve baselines beat all click models in terms of nDCG, while we expect
most of these baselines to be strongly biased by the logging policy (especially TopPop,
TopPopObs, Weighted TopObs and dCTR). Indeed, they incorporate no mech-
anism for correcting common biases of the logged data such as position bias or
trust bias. Perhaps an even more surprising result is that the non-causal ARM
(ARM NC), despite using a degenerate training task, is able to beat most or all
existing click models in terms of nDCG on both datasets.

To explain these unsettling results, we hypothesise that when the logging pol-
icy is good, the nDCG-based evaluation protocol cannot distinguish between
biased models and well-debiasing models, and thus cannot ensure robustness
to policy distributional shift. To illustrate this intuition, let us assume the
existence of perfect relevance annotations and an optimal logging policy with
respect to these annotations. A click model such as dCTR incorporating no bias
mitigation mechanism will overestimate the relevance of the most exposed doc-
uments and underestimate the relevance of the least exposed documents. But
since the logging policy is optimal, the most relevant documents are also the
most exposed, so the ordering of relevance scores learned by the biased click
model does not differ from the optimal ordering, leading to an nDCG of 1. Yet,
this dCTR model is strongly biased and would not be able to accurately pre-
dict the CTR of a different policy: for example, if we consider the reverse policy
ranking documents by increasing order of relevance, dCTR would give the same
CTR estimate as for the optimal policy, while this reverse policy would clearly
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lead to a lower CTR due to position bias. This counter-example shows that
achieving high nDCG is no guarantee for effective debiasing, and consequently nor for
out-of-distribution robustness. As an aside, biased models can be favored even
more if the logging policy uses features that are meaningful for relevance pre-
diction but not observable by the click model, as it is often the case in industrial
settings.

Considering, again, the downstream tasks listed in the introduction, this
lack of guarantee on debiasing performance and robustness to a change of
policy is clearly a critical issue for the required Off-Policy Evaluation in task
Groups 2⃝ and 3⃝. But it is also problematic in tasks in Group 1⃝ because
we may obtain narrow, conservative, strongly biased policies as a result of the
training process, while we expect the use of click models to provide debiased
and potentially diverse policies. As we hinted in the discussion above, nDCG
is not a reliable indicator of click model debiasing when the logging policy
itself outputs high-nDCG rankings, because one cannot distinguish high nDCG
from having successfully debiased the click data and high nDCG from having
replicated biases in the click data. However, one might expect that, in practical
use cases, the rankings extracted from the click model should be at least as
good as those of the logging policy, and that if we observe an improvement in
nDCG over the logging policy, it could only be attributed to effective debiasing.
On the contrary, we argue that:

(1) in many industrial settings, the logging policy can be expected to ob-
tain higher nDCG than the click models we may train from it. Indeed,
commercial search engines usually perform well because they use many
additional features, while click models may not attain such performance
alone. Instead, the relevance scores extracted from click models may be
used as one feature of a larger learning-to-rank model and therefore be
useful even without a direct improvement in nDCG over the logging pol-
icy;

(2) even if there is an improvement in nDCG over the logging policy, we
cannot quantify how much of it can be attributed to effective debiasing.
Indeed, nDCG being aggregated over all queries, it is possible that click
models are affected by the issue we highlight above on certain queries
(e.g., head or tail), even though their aggregated nDCG is higher than the
logging policy’s. This renders improvements in nDCG unreliable.
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4.4.3 Upshot

We have shown that models that we expect to be strongly biased (i.e., naive
baselines implementing no bias correction) achieve high nDCG scores. It sug-
gests that the current evaluation protocol based on relevance labels from hu-
man annotators is not able to single out biased models from well de-biased
models. This would be a critical issue, as click models require correctly de-
biasing the observed logs in order to perform well on downstream tasks in-
volving policy distributional shift. We therefore formulate the hypothesis that
nDCG in the current offline evaluation protocol is not a good indicator of ro-
bustness to distributional shift (hypothesis H).

4.5 an augmented evaluation protocol

The surprising results of the previous section motivate us to design an aug-
mented evaluation protocol in a simulated environment, in order to verify hy-
pothesis H, to highlight the shortcomings of the nDCG-based evaluation pro-
tocol, and to allow researchers and practitioners to mitigate the risks induced
by distributional shift.

4.5.1 New evaluation criteria

Robustness of click prediction.

To evaluate the robustness to policy distributional shift of the click prediction
capabilities of click models, we can measure the perplexity of the model on a
dataset generated using a different ranking policy, i.e., a different distribution
of rankings. We call this metric the out-of-distribution (ood) perplexity, as op-
posed to the usual in-distribution (ind) perplexity. If the perplexity of a model
significantly increases on a new policy, we can conclude that causal identifi-
cation during training partly failed, leading to high sensitivity to policy dis-
tributional shift. This protocol thus evaluates the downstream performance
of click models on the off-policy evaluation (OPE) task ( 2⃝ in the introduc-
tion). Actually, the absolute value of perplexity is affected by other factors
than click model’s performance: it also depends on the dataset’s click distribu-
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tion, which itself depends on the choice of ranking policy, meaning we cannot
directly compare ind-perplexity and ood-perplexity. Therefore, in Section 4.6.2,
we only look at a normalised perplexity bounded by the respective performance
of the best and the worst click model:

nPPL(CMi) = 0.2 + log
(

1 +
PPL(CMi)−mink PPL(CMk)

maxk PPL(CMk)−mink PPL(CMk)

)
, (4.16)

where PPL(CMi) is the perplexity obtained by the i-th click model. The use of
the logarithm and the additive constant in this formula is simply for ease of vi-
sualisation in Figure 4.1, in order to spot small absolute differences. Note that
using normalised perplexity means that all models in the experiment are com-
pared relatively to each other. nPPL is bounded by 0.2 for the best model out-
of-distribution and 0.2 + log(2) for the worst. More importantly, a click model
CMi will be considered more robust than its counterparts if its ood normalised perplex-
ity is lower than its ind normalised perplexity, i.e., nPPLood(CMi) < nPPLind(CMi).

Robustness of subsequent policies

Click models are used to derive an unbiased ranking policy in four of the five
tasks we identified in the introduction. In label debiasing for L2R, the policy is
obtained by directly ordering documents by decreasing relevance, by a distilla-
tion process where an L2R algorithm uses relevance scores as training targets,
or by using the unbiased labels as features of an L2R model. In counterfac-
tual L2R, the propensities are extracted from the model, in order to reweight
the training targets of an L2R algorithm. In the fair ranking task, relevance
and exposure scores are derived to find a policy maximizing a notion of utility
while satisfying fairness constraints. Finally, in offline bandits and reinforce-
ment learning, the click model is used as a click predictor for training agents
seeking to maximise the expected reward, typically the expected number of
clicks. It is therefore crucial to assess the quality of the policies that we aim to
derive, depending on the choice of downstream task. To do so, we study the
expected number of clicks of two downstream policies for each click model:

• The Top-Down policy, which consists in ranking documents by decreasing
relevance scores according to the probability ranking principle (Robert-
son, 1977). This is the policy that we aim to recover in the label debiasing
task.
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• The Max-Reward policy, i.e., the policy maximizing the expected num-
ber of clicks according to the trained click model. It is the policy we
wish to recover in offline bandits. As mentioned in the introduction, this
downstream task requires numerous implicit or explicit instances of OPE,
which is already evaluated by the first criterion, but it is also affected by
the optimiser’s curse (Smith and Winkler, 2006): the maximisation pro-
cess is likely to select rankings that are grossly overestimated by the click
model.

Note that in a non-Top-Down environment, i.e., when exposure does not al-
ways decrease with the rank, the Max-Reward policy has the potential to lead
to more clicks than the Top-Down policy. A click model whose Max-Reward
policy incurs a lower CTR than its Top-Down policy would therefore be in-
terepreted as a poorly robust model.

For certain click models (UBM, NCM, ARM and CACM -⃝), finding the Max-
Reward policy by brute force can become intractable, especially if the cut-off
rank of the desired policy is large or if SERP-specific context such as vertical
type or GUI presentation is added. In our experiments, we randomly sample 8!
rankings from the 10! possible rankings and find the best one according to the
click model by brute force. We chose this sampling-based method over guided
methods such as Beam Search because it is not biased towards certain types
of solution; it is notably well-known that Beam Search favors near-Top-Down
solutions (Lowerre, 1976).

4.5.2 Simulator design

The evaluation protocol involving the two criteria presented in the previous
section is operationalised in a simulator. Although no simulation can guaran-
tee good online performance, it allows us to mitigate the risks of deploying
the model by testing the robustness of click models in a wide range of settings
before deployment.

A suitable simulator needs to include the following components:

• An internal click model, which emulates the click behavior of users when
confronted to a SERP;

• Ranking policies, which present SERPs to the simulated users, in response
to a query; and
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• Relevance ground truth, in order to compute the click probabilities as well
as the nDCG for the relevance estimation task.

Relevance ground truth

For the relevance ground truth, we use real-world data from the Microsoft
Learning to Rank Datasets (Qin and Liu, 2013), allowing us to get relevance
labels on a scale of 0 to 4. In practice, we restrict the dataset to 1000 random
queries which all have at least 10 documents of not-all-equal relevance.

Ranking policies

From the dataset, we are also able to get two ranking policies: BM25 (Robert-
son et al., 1994), which we directly extract from the features, and a Lamb-
daMART (Burges, 2010) policy we train from all available features. We then
rescale the scores given by these policies to be between 0 and 1. We also derive
a near-optimal policy (ϵ-oracle) by adding Gaussian perturbations of variance
0.15 to the rescaled ground truth relevance labels (2relq,d − 1)/15. Finally, we
derive a stochastic variant of all policies by sampling from a Plackett-Luce
model (Plackett, 1975; Luce, 1959), in order to allow causal identification by
the click models when the policy is used for training. In practice, the sam-
pling is performed using the Gumbel sampling trick (Oosterhuis, 2021a) with
a temperature specific to each policy: T = 0.1 for ϵ-oracle and lambdamart and
T = 0.03 for BM25. The resulting policies are therefore stochastic but rather
low-entropy.

Query distribution

In order to mimic a realistic query frequency distribution, we fit a power-law
model on the query distribution of the CLARA dataset. We find that the k-th
most frequent query appears with probability p ∝ (α− 1)k−α with α = 1.12.

Internal click model

Based on the relevance labels relq,d, we design three internal click models:

• DBN (Chapelle and Zhang, 2009) with the attractiveness, satisfaction
and continuation parameters taken respectively as αq,d = 0.95× (2relq,d −
1)/15, σq,d = 0.9× (2relq,d − 1)/15 and γ = 0.9.



110 evaluating the robustness of click models to policy distributional shift

• A “Complex Click Model” (CoCM), which is a mixture of click models
that does not follow either the examination hypothesis or the cascade hy-
pothesis. Therefore, all click models that we evaluate in our experiments
suffer from click model mismatch, i.e., their structure cannot accurately
model CoCM’s distribution. The complete definition of CoCM can be
found in Appendix 4.B. Note that the policy placing the most relevant
documents at the top is not necessarily optimal with this model as the
examination is not top-down.

• CoCM mismatch: A variant of CoCM with a stronger click model mis-
match (see Appendix 4.B).

4.6 evaluating robustness to policy distribu-
tional shift in a simulator

The experiment described in Section 4.6.1 below provides counter-examples
that confirm hypothesis H formulated in Section 4.4 and justify our evaluation
protocol. Then, we instantiate this protocol and perform a comparison of six
click models in Sections 4.6.2 and 4.6.3, corresponding respectively to the sim-
ulated deployments of click models for the tasks of CTR prediction ( 2⃝) and
Offline Bandits ( 3⃝) .

4.6.1 Observable metrics do not guarantee robustness

In this section, we provide counter-examples where the ood-perplexity cannot
be inferred from either ind-perplexity or nDCG. In Tables 4.3 and 4.4, we study
the effect of policy distributional shift on several click models, under respec-
tively DBN and CoCM as internal click models. For this particular experiment,
we design ranking policies so as to create a strong policy distributional shift.
To do so, we first sample 10 documents per query using relevance-stratified
sampling. Then the training rankings are obtained by sampling in a top-down
fashion from a Plackett-Luce model derived from the true relevances of these
documents. The ind-perplexity is computed on a randomly-split separate test
set. The policy used for ood-perplexity computation consists in ranking the
same 10 documents by increasing order of relevance scores. Consequently, the
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training policy contains spurious correlations (e.g., position bias) that do not
hold under the ood-testing policy, and it is near-optimal, which may lead to
the behavior observed in Section 4.4 according to our hypothesis.

Table 4.3: Effect of distributional shift with DBN as internal click model (same conven-

tions as in Table 1). DBN Oracle is a DBN model with hardcoded optimal parameters,

and therefore shows a lower bound of ind and ood perplexity.

Click model ind PPL ↓ nDCG@3 ↑ ood PPL ↓

DBN Oracle 1.2856 (+- 0.0000) 1.0 (+- 0.0000) 1.3002 (+- 0.0000)
DBN 1.3230 (+- 0.0005) 0.7784 (+- 0.0136) 1.3355 (+- 0.0016)

dCTR 1.3428 (+- 0.0000) 0.9219 (+- 0.0015) 1.4683 (+- 0.0000)
PBM 1.3336 (+- 0.0005) 0.8482 (+- 0.0033) 1.3561 (+- 0.0023)
UBM 1.3271 (+- 0.0005) 0.8580 (+- 0.0000) 1.3413 (+- 0.0011)
NCM 1.3248 (+- 0.0002) 0.7851 (+- 0.0124) 1.3501 (+- 0.0027)
CACM -⃝

1.3270 (+- 0.0005) 0.8119 (+- 0.0116) =
1.3414 (+- 0.0010)

ARM NC2 (1.2429 (+- 0.0003)) 0.9315 (+- 0.0021) 1.6100 (+- 0.0074)

Table 4.4: Effect of distributional shift with CoCM as internal click model (same con-

ventions as in Table 1). CoCM Oracle is a CoCM model with hardcoded optimal

parameters, and therefore shows a lower bound of ind and ood perplexity.

Click model ind PPL ↓ nDCG@3 ↑ ood PPL ↓

CoCM Oracle 1.2670 (+- 0.0000) 1.0 (+- 0.0000) 1.2611 (+- 0.0000)

dCTR 1.3025 (+- 0.0000) 0.8476 (+- 0.0018) 1.3485 (+- 0.0000)
PBM 1.3036 (+- 0.0003) 0.7475 (+- 0.0135) 1.3030 (+- 0.0011)
UBM 1.2945 (+- 0.0004) 0.7677 (+- 0.0137) 1.2949 (+- 0.0007)
DBN 1.2973 (+- 0.0003) 0.6674 (+- 0.0111) 1.3040 (+- 0.0006)
NCM 1.2948 (+- 0.0003) 0.6723 (+- 0.0105) 1.3067 (+- 0.0009)
CACM -⃝ 1.2928 (+- 0.0002) 0.7019 (+- 0.0151) 1.2934 (+- 0.0011)
ARM NC2 (1.1891 (+- 0.0003)) 0.8765 (+- 0.0029) 1.7012 (+- 0.0108)

dCTR and ARM NC turn out exhibiting very poor ood-PPL, especially with
a near-optimal logging policy (in Table 4.3), despite achieving high nDCG. This
collapse under the test policy shows that they were unable to learn meaningful
relationships, and are instead biased by the logging policy. More importantly,
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PBM, UBM, DBN, NCM and CACM -⃝, which were designed to be unbiased
with respect to the logging policy, show varying levels of robustness, and it
does not seem possible to accurately predict their ood-perplexity from ind-
PPL and nDCG. Consequently, we cannot rely on results in either ind-PPL or nDCG
to make statements about the success of click models at debiasing the logged data and
their robustness to policy distributional shift.

Our hypothesis regarding why dCTR and ARM NC can achieve such a high
nDCG while showing poor performance out-of-distribution is that nDCG indis-
tinguishably rewards biased and well-debiasing model (see Section 4.4). dCTR,
incorporating no bias mitigation mechanism, and amplifies the biases present
in the logged data. Regarding ARM NC, it seems surprising that a model us-
ing such a degenerate training task is even able to get a high nDCG. But it
did not collapse to a trivial solution during training because it does not have a
parameter specifically assigned to the current click (parameters are associated
to absolute ranks). The functional structure of the examination branch makes
it impossible to correctly estimate the examination probabilities and this incen-
tivises the relevance branch to directly predict clicks, in a way reminiscent of
what the dCTR model is doing. This behaviour consequently leads to strongly
biased relevance scores.

It is also worth noting that the ood-PPL of oracle models can be higher or
lower than their ind-PPL, even though these models perfectly match the inter-
nal click model. This is not surprising because, as explained in Section 4.5,
the policy used to generate the data determines the expected click probabili-
ties at each rank, and, therefore, how hard the click prediction task is. As an
illustrating example, under DBN, the training policy is near optimal: top doc-
uments are very likely to be clicked and bottom documents are almost never
clicked, leading to an easy task. But under the test policy, all ranks have either
low relevance or low examination probabilities, making the prediction task
harder. This is the effect we want to alleviate in our protocol for evaluating the
robustness of click prediction by considering normalised instead of absolute
perplexity.

2 Note that the perplexity of ARM NC cannot be compared to other click models as it takes the
click label as input, but we include it in Tables 4.3 and 4.4 to show that despite having access
to the ground truth at test time, the correlations learned by this model during training were so
spurious that its ood-perplexity is extremely high.
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Upshot

This experiment showed that the observable offline metrics commonly used in
click model evaluation cannot guarantee robustness to distributional shift. Our
evaluation protocol described in Section 4.5 allows us to observe the effect of
distributional shift on simulated deployments for common downstream tasks.

4.6.2 Robustness of click prediction

This section serves three purposes: (i) we instantiate our evaluation protocol for
mitigating the risk of a click model being affected by policy distributional shift
so that it can be easily reproduced, (ii) we compare the robustness of several
click models on the click prediction task, and (iii) we highlight how policy
distributional shift can affect click models differently depending on training
and test configurations.

Figure 4.1 illustrates the robustness of each click model compared to the
other models in the experiment. In this graph, the perplexity is normalised
according to our protocol (see Section 4.5). Therefore, when the blue line (ood-
perplexity) is inside the red dashed line (ind-perplexity), this means that the
model being considered is comparatively more robust than the others, and
vice-versa.

PBM usually comes with poor ind-perplexity, but its robustness is far greater
than most other models under a near-optimal policy like PL-oracle and strong
distributional shift (when tested on BM25 or a random policy), making it a
competitive choice for ood-click prediction in this case, despite its poor ind-
performance. Note that this setting is common in practice as logging policies
from commercial search engines usually have high performance. UBM is also
quite robust overall, especially under a near-optimal policy and strong distri-
butional shift. However, when trained on sub-optimal policies and mild click
model mismatch, it does not match the robustness of some other models. Un-
surprisingly, DBN almost always has the best performance both in-distribution
and out-of-distribution when a DBN is also used as internal click model. But
under click model mismatch, its robustness is very poor as ind-perplexity is
a very unreliable indicator of ood-perplexity and it is constantly worse than
other models when trained on a PL-oracle policy. NCM is also particularly
brittle to distributional shift under better policies. However, its relatively better
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Figure 4.1: (Continued on the following page.)
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Figure 4.1: Spider charts showing the level of robustness in a wide range of simulated

environments. Perplexities represented on each graph are log-normalised perplexities

where the best model is close to the center and the worst model is close to the border

(see Section 4.5 for the complete formula of log-normalised perplexity). The back-

ground colors represent the type of internal click model, the outer circle of labels indi-

cates the training policy and the inner circle indicates the test policy for ood-perplexity

computation. Confidence bounds appear in shaded areas.

representativeness makes it a competitive choice under strong click mismatch.
ARM is comparatively more robust than DBN or NCM under PL-oracle, but
its ood-performance is quite unreliable and its ind-performance is usually too
poor to make it competitive. Finally, CACM -⃝ usually retains most of its very
good ind-performance when tested out-of-distribution, which also makes it a
good candidate for the CTR prediction task.

Upshot

In summary, each click model shows strengths and weaknesses in different
settings, but PBM, UBM, and CACM -⃝ are generally more robust than ARM,
DBN and NCM, especially under strong policy distributional shift and a near-
optimal logging policy, which are common real-world conditions. We therefore
consider the former three as safer choices for the CTR prediction task 2⃝.

4.6.3 Robustness of subsequent policies

Here, we instantiate the second criterion of our proposed evaluation protocol:
measuring the CTR of policies produced by the click model. As explained
in Section 4.5, we derive two policies for each click model and simulator con-
figuration: Top-Down and Max-Reward. Under CoCM and CoCM mismatch,
the user does not always examine the page in a top-down fashion. Therefore,
Max-Reward has the potential to lead to higher click-through rate than Top-
Down. Conversely, spurious correlations in the data and high uncertainty on
rarely seen SERP configurations may lead to high expected CTR according to
the model but poor performance when facing the true internal click model.

In Figure 4.2, we report the observed click-through rate of the Top-Down
and the Max-Reward policy extracted from six click models, using CoCM
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Figure 4.2: Click-through rate obtained by the Top-Down and Max-Reward policies of

click models. A figure including confidence bounds is provided in Appendix 4.C. Left:

CoCM as internal click model. Right: CoCM mismatch as internal click model.

and CoCM mismatch as internal models. Confirming our intuition, the Max-
Reward policy can perform better than the Top-Down policy, especially with
CoCM mismatch as internal model (right plot). However, certain models some-
times achieve worse CTR than with Top-Down, demonstrating a critical lack of
robustness to policy distributional shift.

By looking more closely at the relative performance of Top-Down and Max-
Reward in Figure 4.2, we observe that complex and expressive models like
NCM and CACM -⃝ are poorly robust since they achieve no-better or worse
performance with Max-Reward than with Top-Down in certain configurations.
On the contrary, simpler models with fewer parameters, like PBM and UBM,
can lead to highly rewarding policies and robustly increase their performance
by applying Max-Reward instead of Top-Down.

We hypothesise that by relying on simpler structural assumptions and hav-
ing fewer but more frequently used parameters to be trained, these models are
less likely to suffer from spurious correlations as well as high uncertainty. It
is striking to see that models with poor ind click prediction performance can
produce highly rewarding policies.

Moreover, CACM -⃝ is clearly more affected than ARM by the maximisation
of the expected CTR, despite having shown better performance and robust-
ness than ARM on the CTR prediction task (see Section 4.6.2). This suggests
that tasks involving maximisation of the expected CTR, such as Fair Ranking
and Offline Bandits, are more demanding regarding robustness to policy dis-
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tributional shift. The expressivity of CACM -⃝ and NCM makes them better
at fitting the click distribution, but it also critically exposes them to the opti-
miser’s curse, i.e., they are likely to grossly overestimate the expected CTR of
at least one ranking which is going to be selected by the maximisation process.

Upshot

In summary, this experiment shows (i) that distributional shift critically im-
pacts the policies recovered by poorly robust models in certain downstream
tasks, e.g., Fair Ranking and Offline Bandits, and (ii) that simple models should
not be overlooked as they can produce highly rewarding policies and be robust
under distributional shift.

4.7 discussion

In the previous section, we have instantiated our proposed evaluation protocol
with a selection of six types of click models in order to analyse how well-
known models perform in practical scenarios that can be encountered in mul-
tiple downstream tasks, which have in common requiring out-of-distribution
predictions. Our results allow us to identify general trends, e.g., that fairness
and bandits tasks require stricter robustness than CTR prediction tasks or that
simpler models are usually more robust out-of-distribution. In this section, we
discuss how this protocol can be leveraged by practitioners in a real-world de-
ployment scenario. Note that our protocol allows us to compare different click
models with respect to each other. It can be used to do that in two different
ways:

A first use case would involve a practitioner wishing to quickly assess a new
candidate click model before taking the risk of deploying policies based on it
for online evaluation. The instantiation on MSLR data that we describe in our
experiments can be used out of the box. In order to make this process easier,
we provide code and result files that can be readily used when testing a new
candidate click model on MSLR annotations and features, without re-training
models included in our experiments.

A second possibility is to adapt the protocol described in Section 4.5 to a
given search engine. Indeed, it relies on semi-synthetic simulators that can be
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derived from graded relevance annotations (to define click probabilities) and
document features (to build realistic logging policies). Because of this semi-
synthetic setup, the scenario can be made to fit any real-world search engine,
with only the internal user click model left to be controlled by the practitioner.
In this setup, comparing candidate click models across a wide range of internal
click models is key in order to assess how their robustness is affected by click
model mismatch.

Also, in both settings, our experimental setup can be enriched with available
context features to fit the scenario at hand. Even though our protocol cannot
replace online evaluation, it constitutes a way to reduce the cost of deploying
new learning-to-rank models by mitigating the risk of under-performance once
deployed.

4.8 conclusion

In this work, we have highlighted the limitations of the traditional offline eval-
uation protocol for click models, specifically that it fails to detect a lack of
robustness of click models to policy distributional shift. To do so, we have im-
plemented several types of click models encoding different structural assump-
tions of user behavior, and have augmented the evaluation of these models
by using simulations that aim to mimic real-world deployment for different
downstream tasks involving policy distributional shift.

4.8.1 Main findings

Our experiments highlight the existence of a critical issue with click models:
the existing offline evaluation protocol cannot guarantee effective debiasing
and robustness to distributional shift. We show that it can cause click mod-
els to underperform on the target downstream task because of poor out-of-
distribution policy evaluation capabilities, whether it is when predicting the
CTR of unknown policies or when training policies based on the click model’s
parameters.

Three major take-aways emerge from our experiments:
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• They show that certain training configurations (strong click model mis-
match, near-optimal training policies) are more likely to be negatively
affected by distributional shift than others,

• They allow us to identify risky models (DBN, NCM) as well as relatively
safer ones (PBM, UBM), and

• They provide practitioners with a way of mitigating the risks of deploy-
ing policies based on candidate click models by detecting the lack of
robustness before deployment.

4.8.2 Broader implications

Our findings indicate that counterfactual models and estimators must be care-
fully evaluated in order to make them trustworthy for practical use in down-
stream tasks and that, despite being convenient, offline metrics can miss im-
portant robustness issues in certain settings.

On a more actionable note, our work suggests that getting more diverse
test sets, i.e., from different logging policies, should be considered whenever
possible. Moreover, simulations can play a role in an offline evaluation protocol
by measuring otherwise unobservable metrics, as long as we evaluate on a
wide range of simulations so as to mitigate the influence of simulator design.
Developing high-quality, learnable simulators matching the dynamics of real-
world deployment could also further mitigate the risks associated with it.

4.8.3 Limitations

We implemented click models in a standardised, context-free fashion in order
to fairly compare their resilience to policy distributional shift, but many im-
provements of these models leveraging context features have been proposed
in recent years (Borisov et al., 2018; Zheng et al., 2019; Dai et al., 2021; Chen
et al., 2020). We expect the general trends identified in this work to generalise
to these context-aware models, but the precise effect of data enrichment with
abundant side information and historical behavior remains unaddressed.
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4.8.4 Future work

Generalising predictions out-of-distribution is a hard problem exhibiting no
theoretical guarantees without further assumptions (Shen et al., 2021). In this
work we showed that click models, which aim to lift the in-distribution require-
ment by encoding such assumptions in their architecture, cannot be simply
evaluated with traditional offline metrics and human relevance annotations.
Future work should therefore investigate under which assumptions we can de-
rive theoretical results for the generalisation capabilities of click models, and
how their offline results relate to their online performance when such assump-
tions are satisfied.

As we have seen in the experiments, the most robust models also tend to
be the simplest, whose in-distribution performance is generally subpar com-
pared to more advanced models. Therefore, future work should also inves-
tigate strategies to counter the effect of distributional shift in order to attain
similar levels of robustness with more complex click models, such as training
on multiple logging policies, enforcing invariances or penalizing the epistemic
uncertainty.

supplementary materials

To facilitate reproducibility of the results in this chapter, we share the code
along with guidelines for reproduction at github.com/naver/dist-shift-click-
models.

4.9 reflections on the chapter

4.9.1 Research outcomes

In this chapter, we investigated my second research question:

Research Question 2. Can we predict in a fully offline manner the performance of
models learned on biased data?

https://github.com/naver/dist-shift-click-models
https://github.com/naver/dist-shift-click-models
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This chapter clearly answered this question negatively, at least when consid-
ering existing metrics. More downstream tasks, more complex models with
richer content and context for the logged data could certainly be considered.
Yet, the core issue of the existing ranking metrics not being adapted to evaluat-
ing models trained on biased data remains. We single out this issue in the next
section, and propose a method that brings us closer to answering this research
question positively.

4.9.2 Additional thoughts

The observation that simpler models are typically more robust than complex
ones, especially under click model mismatch, does not come as a surprise.
With more predictive power, complex models can improve their goodness-of-
fit to the data, but are also more likely to capture spurious correlations lying
in the data. This is exacerbated as in a typical web search or recommender
system training scheme, the datasets are highly imbalanced and show very lit-
tle variabilty: the same query almost always leads to the same ranking. Click
models are usually operating at the limit of causal identifiability, and adding
more bias variables (i.e., modeling more confouders) further restricts the ef-
fective support of the data for a given query-document-bias triplet, making
estimation even riskier.

This highlights a typical dilemma in confounder modeling, which is espe-
cially prevalent in information retrieval systems: simpler causal models under-
fit the data and do not capture the user behavior well, but complex models
leave very little space for de-confounding (in the extreme, if every possible
variable was passed to the model, there would be no data variability at all, and
therefore no notion of causality. . . things would just happen).
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4.A training and implementation details

All click models are implemented in PyTorch with PyTorch-Lightning. They
are trained using the Adam Optimiser with the ReduceLROnPlateau scheduler
with a factor of 0.5 and patience of 2. We use Early Stopping with patience of
3 to stop the training when the validation loss does not improve and restore
the best checkpoint for evaluation on the test set. We trained these models on
a single nVIDIA V100 GPU and no models required more than 10 minutes to
be trained on the simulated datasets.

4.B definition of cocm

We consider three modes: the user browses the page in a top-down fashion
(▽), in a bottom-up fashion (△), or does not look at the page at all and clicks
on documents without examining them (⃝). In our experiments, we take
the respective probabilities of each mode to be (0.6, 0.3, 0.1) for CoCM and
(0.2, 0.7, 0.3) for CoCM mismatch.

• In the top-down mode, the click probability of document d at rank k
depends on its attractiveness αq,d, whether the preceding document has

123
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been clicked ck−1, and the attractiveness of the next document αq,dk+1
.

With Ak, Ak+1, Ck−1 and Ek|C<k jointly independent, we have:

P(Ck = 1 | q, dk, dk+1, ck−1 = 1,▽) = 0

P(Ck = 1 | q, dk, dk+1, ck−1 = 0, c<k−1,▽) = αq,dk
× (1− αq,dk+1

/2)×
P(Ek = 1 | ck−1 = 0, c<k−1)

P(Ek = 1 | ck−1 = 1, c<k−1) = (1− σ)× γ× P(Ek−1 = 1 | c<k−1)

P(Ek = 1 | ck−1 = 0, c<k−1) = γ× P(Ek−1 = 1 | c<k−1).

(4.17)

We take αq,d = (2rel(q,d) − 1)/15, σ = 0.7 and γ = 0.9. Note that even
the top-down mode does not follow the cascade hypothesis as the click
probability depends on the relevance of the following document.

• The order of next and previous documents and clicks is simply reversed
in the bottum-up mode.

• In the no-look mode, the probability of the document at rank k being
clicked is P(Ck = 1 | ⃝) = ϵk with ϵk = 0.2× 0.9k.

4.C figure 4.2 with confidence bounds

Figure 4.C.1: Click-through rate obtained by the Top-Down and Max-Reward policies

of click models. Left: CoCM as internal click model. Right: CoCM mismatch as

internal click model.
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4.D tables 4.1 (left) and 4.2 (right) with con-
fidence bounds
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5
A N O F F L I N E M E T R I C F O R T H E

D E B I A S E D N E S S O F C L I C K
M O D E L S

The previous chapter gave us an idea of how robust click models are to the
distribution shift induced by deploying the newly learnt policy, and how sevral
click models compare on their downstream tasks. While a semi-simulated
empirical analysis like the one we performed helps understand how new click
models will perform in practice, it requires a lot of design choices and a large
amount of work to set up.

Therefore, in this chapter, we try to design a single offline metric that would
convey roughly the same information about click model robustness as the em-
pirical analysis. In order to do so, we had to restrict the scope of the robustness
analysis to the core issue that the previous chapter revealed: that click models
can reach high performance on the relevance annotations simply by replicat-
ing certain biases present in the offline data, rather than correcting for them.
We end up with a metric that, taken together with traditional likelihood and
ranking metrics, correlates much better with the actual performance after de-
ployment than the traditional metrics alone.

Our metric, CMIP, only requires ground truth relevance scores (from annota-
tions or randomized traffic) and scores from the logging policy (known or esti-
mated). It is based on the following simple idea: if you want to spot cheaters
in a class of student, i.e., those who copied on their classmates but won’t be
able to generalize to a new test, you cannot simply compare the grades of
the students as those who have cheated can get very good grades, sometimes
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even better than the classmate they copied on. Instead, you must compare the
mistakes that the students made: if two students consistently made the same
mistakes, one of them has likely cheated. We use this principle to design a met-
ric that spots the non-robust click models which simply replicated the biases
of the data.

This chapter is based on the following publication: Romain Deffayet, Philipp
Hager, Jean-Michel Renders, and Maarten de Rijke. 2023. An Offline Metric
for the Debiasedness of Click Models. In SIGIR’23: the 47th International ACM
SIGIR Conference on Research and Development in Information Retrieval.

5.1 introduction

Search and recommender systems aim to rank items in order of relevance to
a given search query or user context (Liu, 2009). Operational search engines
have access to large logs of user behavior that are valuable sources for improv-
ing ranking systems (Serdyukov et al., 2012; Qin and Liu, 2013; Chapelle and
Chang, 2011). However, implicit user feedback in the form of clicks is well-
known to be biased (Craswell et al., 2008; Joachims et al., 2005). E.g., clicks
can only occur on items exposed to users, introducing selection bias (Ovaisi
et al., 2020; Oosterhuis and de Rijke, 2020a). Also, the rank at which a doc-
ument is displayed greatly impacts the number of users seeing and clicking
an item, leading to position bias (Joachims et al., 2005; Joachims et al., 2017).
And trust bias arises when users rely on their search engine to place relevant
documents at the top leading to clicks on top-ranked items regardless of their
relevance (Agarwal et al., 2019; Vardasbi et al., 2020a).

Click models Click models have a long history in web search for modeling user
behavior by learning to predict how a user would interact with a given list of
items (Craswell et al., 2008; Dupret and Piwowarski, 2008; Chapelle and Zhang,
2009; Chuklin et al., 2015; Borisov et al., 2016). Click models explicitly model
effects that impact a user’s click decision, such as item relevance, position bias,
or trust bias, and are thus a valuable tool for understanding users (Craswell et
al., 2008), predicting ad clicks (Zhu et al., 2010; Chen and Yan, 2012; McMahan
et al., 2013), as offline evaluation metrics (Chuklin et al., 2013), or estimating
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biases that the field of unbiased learning-to-rank aims to mitigate (Joachims
et al., 2017; Vardasbi et al., 2020a; Ai et al., 2021).

Commonly, two aspects of click models are evaluated (Grotov et al., 2015;
Chuklin et al., 2015). First, a model’s ability to accurately predict clicks is com-
monly measured using the perplexity of the model on a hold-out test set of
clicks (Dupret and Piwowarski, 2008). Second, if a model estimates document
relevance, metrics such as nDCG or MRR can be computed using relevance
annotations gathered by human experts (Chapelle and Zhang, 2009). Recently,
Deffayet et al. (2023b), included here as Chapter 4, have shown that the current
evaluation protocol of perplexity and nDCG does not guarantee that the best-
performing model generalizes well to predicting clicks on unseen rankings. By
simulating a variety of user behaviors on rankings created by different rank-
ing policies, the authors show that the best-performing models on one ranking
policy are not guaranteed to perform well when presented with the same docu-
ments in a different order. This setting simulates a covariate shift in the ranking
distribution (also called policy shift).

Failure of generalization Deffayet et al. (2023b) identify two cases where the
current evaluation protocol breaks down. First, they find that biased click pre-
diction methods can achieve high nDCG scores, especially when the policy
that collected the click data is already near-optimal and tends to generate sim-
ilar rankings. Picture the case in which all documents are ranked in order of
relevance to the user. In this setting, position bias perfectly correlates with
document relevance, and naive methods such as using a document’s average
click-through rate (CTR) as relevance and click prediction will lead to strong
nDCG and perplexity scores. But this method fails to predict clicks on the
inverted ranking in which the most relevant item is displayed at the bottom
and is, thus, highly affected by position bias. In this case, predicting the av-
erage CTR of a document as inferred from the original dataset is not a good
prediction of user behavior on the inverted ranking, and the model fails to gen-
eralize. This model is not invariant under policy shift because it gives different
predictions depending on the train rankings.

Second, the authors find that click model mismatch, a case in which the
assumptions of the click models do not match the user behavior in the collected
dataset, can lead to wrong conclusions about which models generalize well
to unseen rankings. While Deffayet et al. (2023b) evaluate a variety of click
models and identify trends about which click models tend to generalize better,
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we still lack a principled approach to reliably select a click model from a set of
candidates for deployment in downstream applications.

Debiasedness of a click model In this work, we introduce the notion of debi-
asedness of a click model w.r.t. the logging policy, the concept that the inferred
relevance of a newly trained click model should not be correlated with the rel-
evance predictions of the policy that was used to collect the training data, be-
yond the true relevance signal. First, we prove that debiasedness is a necessary
condition (i) for obtaining consistent and unbiased estimations of document
relevance, and (ii) for the invariance of click prediction under policy shift. Sec-
ondly, we present conditional mutual information with the logging policy (CMIP), a
method based on conditional independence testing, that measures the degree
of debiasedness of a newly trained model with regard to the logging policy.

In our semi-synthetic experiments, we first reproduce the findings in (Def-
fayet et al., 2023b) on strong but narrow logging policies. Then, we verify, on
a wide array of training configurations, that CMIP helps to predict the perfor-
mance of models outside of their training distribution. Lastly, we show that
off-policy selection strategies based on CMIP incur lower regret than those
based on perplexity and nDCG only.

Contributions Our contributions can be summarized as follows:

• We introduce the notion of debiasedness of a click model and show that it
is necessary for unbiasedness, consistency, and invariance under policy shift
of click models.
• We propose CMIP, a metric using relevance annotations that measures debi-

asedness of a click model.
• We show in semi-synthetic experiments that CMIP improves predicting the

downstream performance of click models as well as the regret of off-policy
model selection strategies.

To support the reproducibility of this work, we release the code for this chap-
ter1 and a standalone implementation of our metric.2 Below, we first intro-
duce related work on click models and conditional independence testing (Sec-
tion 5.2). Then, we present the current evaluation protocol for click models
and its deficiencies (Section 5.3) before introducing the concept of debiased-

1 https://github.com/philipphager/sigir-cmip
2 https://github.com/philipphager/cmip

https://github.com/philipphager/sigir-cmip
https://github.com/philipphager/cmip
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ness and our proposed metric (Section 5.4). We end by evaluating our metric
in extensive semi-synthetic experiments (Section 5.5 and 5.6).

5.2 related work

5.2.1 Click models and their evaluation

Click models emerged to model user behavior in web search (Craswell et al.,
2008; Dupret and Piwowarski, 2008; Chapelle and Zhang, 2009; Liu et al., 2016).
Early methods use probabilistic graphical models to encode assumptions about
user behavior in order to disentangle the influence of the presentation of a
search result and its intrinsic relevance. The examination hypothesis, for ex-
ample, introduced with the position-based model (PBM) (Craswell et al., 2008),
assumes that the user examine and perceive the document as relevant in order
to click on it. The cascade model (Craswell et al., 2008) assumes that users
browse results from top to bottom, click on the first relevant result and then
leave the page. For an overview of common click models, see (Chuklin et al.,
2015).

More recently, click models based on neural architectures have emerged
(Borisov et al., 2016; Borisov et al., 2018; Zheng et al., 2019; Lin et al., 2021;
Chen et al., 2020; Dai et al., 2021) to model more complex browsing behav-
ior (Borisov et al., 2018) and user preferences across sessions (Chen et al., 2020;
Lin et al., 2021). Neural click models typically also use more expressive rep-
resentations of queries, documents, and other meta-data (Chen et al., 2020;
Borisov et al., 2018; Lin et al., 2021). Combined with recent optimization tech-
niques, these models enable efficient training on large-scale click logs. In this
work, we use three click models originally proposed as probabilistic graphical
models and implement them with current gradient-based optimization tech-
niques. We also include two neural click models, and two baselines based on
click statistics. These models are presented in Section 5.5.2.

Click models are commonly evaluated using the log-likelihood of clicks in a
test set, measuring how well a model approximates the observed data (Grotov
et al., 2015). Craswell et al. (2008) evaluate models by measuring cross-entropy.
More widely used nowadays is the perplexity metric, which measures how sur-
prised a model is to observe a click on a given document and rank (Dupret and
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Piwowarski, 2008). Another line of work compares predicted and actual click-
through-rates (CTRs) on a test set, typically using MAE or RMSE (Chapelle
and Zhang, 2009; Zhu et al., 2010; Grotov et al., 2015). Dai et al. (2021) intro-
duced distributional coverage, a metric quantifying whether the distribution
of click sequences predicted by a model matches the true distribution of clicks.
Moving beyond click prediction, Chapelle and Zhang (2009) evaluate the rank-
ing performance of click models by computing retrieval metrics (e.g., MAP or
nDCG) on an additional test set of human relevance annotations. We introduce
perplexity, nDCG, and their limitations in Section 5.3.2.

5.2.2 Conditional independence testing

This work introduces the concept of debiasedness, which requires a test for con-
ditional independence (Dawid, 1979). Given a set of three random variables X,
Y, and Z, conditional independence assesses if, given Z, knowing X is helpful
for predicting Y (and vice versa). Conditional independence tests are widely
applied in statistics and causal inference, e.g., to verify edges in Bayesian net-
works (Koller and Friedman, 2009), to discover causal graphs (Pearl, 2009), or
for feature selection (Koller and Sahami, 1996).

We require a non-parameteric conditional independence test for continuous
random variables. Approaches include binning continuous variables to apply
tests for discrete data (Margaritis, 2005), reframing the problem as measuring
the distance between two conditional densities (Su and White, 2007), estimat-
ing conditional mutual information (Mukherjee et al., 2019), or using kernel-
based methods (Fukumizu et al., 2004; Doran et al., 2014). We use methods
from (Sen et al., 2017; Mukherjee et al., 2019) to estimate conditional mutual
information. Their approach is inspired by the use of model-powered indepen-
dence testing (Lopez-Paz and Oquab, 2017; Sen et al., 2017; Mukherjee et al.,
2019), reformulating statistical tests as supervised learning problems, which
can be solved using standard classification or regression models. We introduce
the approach we follow in Section 5.4.3.
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5.3 background

5.3.1 Notation and assumptions

Notation. Let d ∈ D be a document. A ranking y is an ordered list of doc-
uments: y = [d1, d2, . . . , dK]. Note that y is a list of length K and y[k] is the
document displayed at position k. We retrieve the position of a document in y
using rank(d | y). A policy π serves a ranking y in response to a search query
q. We consider stochastic ranking policies π(y | q), which are probability dis-
tributions over rankings, given a query. For each ranking displayed to a user,
we observe a vector of binary feedback c of length K, with each entry denoting
a click or no click on the displayed item: c[k] ∈ {0, 1}. Thus, our final dataset
contains observations of a user query, the displayed ranking, and the recorded
clicks: D = {(qi, yi, ci)}N

i=1. The production ranker that collects this training
dataset is commonly called the logging policy, which we denote as πl.

Assumptions We follow a common assumption in L2R, that user clicks are a
noisy and biased indicator of how relevant a document is to a given query
(Joachims et al., 2017; Oosterhuis, 2022). We denote the relevance of an item
to a query as r(d, q). As explained before, clicks are usually influenced by bias
factors such as the item’s position or the user’s trust in the system. Depending
on the specific click model, bias factors can depend only on the position of a
document or even on other documents in the same ranking. We refer to the
vector of bias factors for documents in a given ranking as o(y).

Our theory considers the family of click models that follow the structure of
the examination hypothesis (Craswell et al., 2008; Chuklin et al., 2015), which
assumes that to be clicked, a document has to be observed by a user and
deemed as relevant. In a general form, the examination hypothesis demands
that relevance r and bias factors o factorize as:

∀k ∈ {1, . . . , K}, P(c[k] = 1 | y, q) = r(y[k], q)× o(y)[k]. (5.1)

This generic formulation of the examination hypothesis, also used in (Zhuang
et al., 2021), can account for users observing an item based on its position or
even based on the relevance of surrounding documents. For simplicity, we
assume that o(y)[k] > 0, ∀y ∈ D, k ∈ {1, . . . , K}, excluding any bias that leads
to an item having no chance of being clicked (Joachims et al., 2017), such as
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item selection bias. However, our work can be extended to this case. Lastly,
our discussions below consider only a single query q to simplify our notation.
All statements can be extended to a setting with multiple queries.

5.3.2 Evaluating click models

Click models are trained on an objective quantifying the quality of their click
prediction. However, their primary goal, arguably, is to recover accurate es-
timates of the latent factors of user feedback. Hence, the literature on click
models has adopted metrics for both of these objectives, respectively perplexity
(PPL) and normalized discounted cumulative gain (nDCG).

The click prediction quality on a test set is measured by the perplexity at
each rank k and by the average perplexity over all ranks:

PPL@k = 2−
1
N ∑(y,c)∈D c[k] log2 c̃[k]+(1−c[k]) log2(1−c̃[k]), (5.2)

PPL =
1
K

K

∑
k=1

PPL@k, (5.3)

where c̃ = P(c | y) is a vector of click probabilities predicted by the model
for a ranking y. Perplexity measures how surprised a model is to observe
a given click behavior in the test set, given the model’s parameters (Dupret
and Piwowarski, 2008). Perplexity is at least one and can be arbitrarily high.
However, since a model predicting clicks at random has a perplexity of two, a
realistic click model should achieve a perplexity between one and two (Chuklin
et al., 2015).

The quality of relevance estimates r̃ for documents is measured by the rank-
ing metric nDCG, comparing predicted relevance scores against human anno-
tations of relevance:

nDCG =
DCG(ỹ)

DCG(ytrue)
, with DCG(y) =

K

∑
k=1

2r(y[k]) − 1
log2(k + 1)

, (5.4)

where ytrue = arg sort↓d∈y r(d) and ỹ = arg sort↓d∈y r̃(d) are obtained by ranking
documents in order of relevance, as predicted by human annotators and the
click model, respectively.

These two metrics are complementary in the sense that perplexity quantifies
the goodness-of-fit of the model to the logged data while nDCG quantifies the
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Figure 5.1: Comparing the relevance estimates of two click models (DCTR and PBM)

against the relevance estimates of an almost optimal logging policy (NoisyOracle, de-

fined in Section 5.5.1) for 1.5k documents, grouped by their true relevance. Clicks

follow a PBM user model. The DCTR model achieves a higher nDCG but correlates

notably with the logging policy, resulting in a high CMIP. In contrast to the PBM, the

DCTR model is not debiased in this setup. Note that CMIP is in theory a non-negative

metric but approximations can make it slightly negative.

quality of the rankings produced by the recovered relevance estimates. How-
ever, as we recall below, previous work has warned about the poor generaliz-
ability of these two metrics in many practical scenarios.

5.3.3 Perplexity fails to generalize, especially under model misfit

Perplexity measures how well a model fits the conditional distribution of clicks
given rankings observed in the dataset. However, the performance measured
by perplexity only holds on a separate test set as long as the i.i.d. assumption is
satisfied (Shen et al., 2021), which notably requires that the rankings in the test
set are sampled from the same distribution as rankings in the training set. This
assumption is often violated when using click models to predict and evaluate
ranking policies that differ from the one used for training (e.g., (Chen and Yan,
2012; Joachims et al., 2017)). This mismatch creates a covariate shift in the
input distribution of the model. In such cases, no guarantee can be derived on
the out-of-distribution performance of the trained models, and we are likely to
observe a drop in performance.
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Deffayet et al. (2023b) show the empirical effect of covariate shift on click
model prediction. Model misfit, searching within model classes that do not
contain the Bayes-optimal function, likely aggravates the performance drop on
click predictions out-of-distribution. Model misfit is not the only cause for the
lack of robustness. E.g., deep neural networks, that have high capacity and
potentially include the Bayes-optimal predictor, can also suffer from covariate
shift due to training sets covering only a narrow space of all possible rankings.
Hence, PPL measured in-distribution is not a good predictor of click model performance
out-of-distribution in many practical scenarios, including model misfit and narrow
logging policies.

5.3.4 nDCG fails to generalize when the logging policy is good

nDCG assesses the ordering of documents based on their predicted relevance
scores. As a list-wise metric, nDCG does not evaluate the accuracy of the
estimated relevance probabilities but only how ordering by these relevance es-
timates correlates with rankings obtained through expert annotations. This
ranking task is a use case for click models, but many scenarios require accu-
rate estimation of relevance and examination probabilities, such as off-policy
evaluation (Oosterhuis and de Rijke, 2020b), counterfactual learning-to-rank
with inverse propensity scoring (Agarwal et al., 2019), or click maximization in
reinforcement learning (Slivkins, 2019). Performance measured by nDCG can
be misleading for these tasks since highly biased and poorly predictive click
models can obtain high nDCG scores (Deffayet et al., 2023b). Indeed, when
the logging policy already achieves a high nDCG, one cannot use nDCG to
differentiate between a model predicting accurate relevance probabilities from
a model replicating the logging policy, e.g., by sorting documents by their
number of impressions. In more realistic scenarios, this misleading behavior
of nDCG might manifest itself only for a group of queries (e.g., tail queries),
enabling a model to achieve an improved nDCG score at the cost of biased
relevance estimates for these queries. Consequently, nDCG is not a good predictor
of click model debiasing capabilities in many realistic settings.

Faced with the lack of metrics evaluating the robustness of click models to
shifts in the input rankings, we propose the idea of measuring debiasedness in
the next section.
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5.4 towards healthy benchmarks: a metric to
quantify debiasedness

To establish CMIP, which measures the robustness of click models to covariate
shift, we first introduce the notion of debiasedness in Section 5.4.1. We then
explain how to test for this property in Section 5.4.2, and finally instantiate our
proposed metric in Section 5.4.3.

5.4.1 Debiasedness in click modeling

Let R be a set containing three relevance scores for each document: R =

{(r̃(d), rl(d), r(d))}d∈D, where r is the true relevance as annotated by human
experts and rl the relevance estimate of the logging policy, which we define
as the expected rank of a document: rl(d) = Ey∼πl [rank(d | y)]. We assume
this quantity to be known in our experiments but it can easily be estimated
otherwise. Finally, r̃ is a set of relevance scores as estimated, e.g., by a new
model.

We consider the following random experiment. We draw triplets of relevance
scores from R at random and with replacement, revealing a document’s rele-
vance scores but not the document itself. We write R, Rl and R̃ for the random
variables that return the respective relevance scores over all documents.3 We
can now define the debiasedness of a set of scores r̃:

Definition 2. A set of scores r̃ is debiased w.r.t. the logging policy if its corre-
sponding random variable R̃ is independent of the relevance of the logging policy Rl,
conditioned on the true relevance R:

R̃ ⊥⊥ Rl | R. (5.5)

Intuitively, debiasedeness means that the score of a document cannot be pre-
dicted by knowing where the logging policy placed it. Click models aim to
disentangle the factors influencing user behavior, thereby also alleviating bi-
ases induced by the logging policy. Therefore, a natural property that we may
expect of a well-behaved click model is that its estimated relevance of an item
cannot be predicted by revealing the relevance of that same item according to
the logging policy, i.e., debiasedness:

3 In the remainder, we will use a set and its corresponding random variable interchangeably.
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Definition 3. A click model is debiased w.r.t. the logging policy if its estimated rel-
evance after training is independent of the relevance of the logging policy, conditionally
on the true relevance as well as the dataset it has been trained on:

R̃D ⊥⊥ Rl | (R,D), (5.6)

where R̃D is the set of relevance scores estimated by a click model trained on dataset D.

We give a visual intuition of debiasedness and our proposed metric CMIP in
Figure 5.1. We display the relevance estimates obtained by a PBM click model
and a model predicting the average CTR of each document (DCTR) as rele-
vance. In the plot, we group all documents by their true annotated relevance.
In contrast to the PBM, the DCTR model does not account for position bias
simulated in the click data. We can observe a clear correlation of the relevance
estimates of the DCTR model with those of the logging policy, meaning we can
predict the estimated relevance of a randomly drawn document by knowing
where the logging policy placed it. Thus, the DCTR model is not debiased in
this setting, which is captured in a higher score of CMIP.

Debiasedness alone does not guarantee high performance of a click model,
e.g., a model assigning random relevance scores is trivially debiased. Below, we
show that debiasedness is a necessary condition for common goals in unbiased
learning-to-rank.

Debiasedness is a necessary condition for both consistency and unbiased-
ness Unbiasedness has been introduced in different subfields as a common
goal of unbiased learning-to-rank (Oosterhuis, 2022; Joachims et al., 2017).
Extending the meaning of unbiasedness from estimators to click models, an
unbiased click model recovers the true relevance parameters for each document, in ex-
pectation over possible training datasets. Using r̃D(d) to denote the relevance of
document d, as predicted by a click model after being trained on dataset D, a
click model is unbiased if, and only if:

ED∼πl

[
r̃D(d)

]
= r(d) , (5.7)

where we use the notation D ∼ πl to illustrate that the dataset is generated
by users interacting with the logging policy. Consistency has been introduced
more recently (Oosterhuis, 2022), as a more attainable goal for click models.
A consistent click model recovers the true relevance parameters in the limit of
infinite data:

lim
|D|→∞

r̃D(d) = r(d) . (5.8)
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Since the relevance scores recovered by a consistent click model in the limit
of infinite data are equal to the true relevance R, a consistent click model is
trivially debiased: R ⊥⊥ Rπl | R. Similarly, the expected relevance scores of an
unbiased click model are debiased since ED∼πl [R̃

D] = R.

Debiasedness is a necessary condition for invariance under policy shift In
this work, we evaluate the click prediction capabilities of click models outside
of their training distribution. Therefore, we define the notion of invariance
under policy shift as a model predicting the same click probabilities for a doc-
ument, regardless of the dataset it was trained on:

Definition 4. A click model is said to be invariant under policy shift if its esti-
mated click probabilities are the same regardless of the training set, i.e., for
every ranking y and any two datasets D1 and D2:

c̃D1(y) = c̃D2(y) = c̃(y), (5.9)

where c̃D(·) are the click predictions obtained after training a click model on
D.

This definition allows us to introduce our main theorem that for every click
model following the examination-hypothesis (Eq. 5.1), debiasedness is a necessary
condition for invariance under policy shift:

Theorem 1. A click model that is invariant under policy shift is debiased. For every
dataset D and ranking y:

c̃D(y) = c̃(y)⇒ R̃D ⊥⊥ Rl | (R,D). (5.10)

Proof. First, a model such that r̃D = 0 is debiased since 0 ⊥⊥ Rl | (R,D), and
therefore satisfies Eq. 5.10. Next, assume r̃D ̸= 0 in the remainder. For a model
following the examination-hypothesis, we can write, for any rank k, ranking y
and training dataset D:

cD(y)[k] = rD(y[k])× oD(y)[k].

Consider two documents d1 and d2 with r̃D(d2) ̸= 0. Consider also two rank-
ings y1, y2 that differ only by their first document: y1[1] = d1, y2[1] = d2, and
y1[k] = y2[k] for k > 1. Let these rankings share the same examination prob-
ability on their first position: õD(y1)[1] = õD(y2)[1], then we can write down
the two click probabilities:{

c̃D(y1)[1] = r̃D(d1)× õD(y1)[1]
c̃D(y2)[1] = r̃D(d2)× õD(y2)[1]

.
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Because of the equality of examination probabilities, we have:

r̃D(d1)

r̃D(d2)
=

c̃D(y1)[1]
c̃D(y2)[1]

(LHS)
=

c̃(y1)[1]
c̃(y2)[1]

.

When the left-hand side of Eq. 5.10 is true, this ratio does not depend on πl

and relevance scores are determined up to a document-independent constant,
so knowing Rl does not help predict the relevance of a newly picked document:
P(R̃D | D, R) = P(R̃D | D, R, Rl). Thus, the model is debiased: R̃D ⊥⊥ Rl |
(R,D).

A key observation is that the estimated relevance of a document may depend
on the training dataset and ultimately on the logging policy, yet revealing
Rl | (R,D) might not help to predict R̃D | (R,D). Take, for example, the
PBM model. Without explicit constraints, we can scale its inferred relevance
scores up or down, and by adjusting the examination scores accordingly, the
click probabilities stay constant. Then a perfectly fitted PBM may be invariant
under policy shift, while the exact set of parameters it recovers depends on the
training dataset. However, for a fixed dataset, knowing Rl does not help to
predict R̃D in this setting.

In conclusion, while debiasedness alone does not guarantee that a click
model inferred the correct parameters during training, it is a necessary con-
dition for consistency, unbiasedness, and invariance under policy shift. We,
therefore, propose to systematically verify that this property holds, using a
protocol based on relevance annotations, which we describe in the following
sections.

5.4.2 Testing for debiasedness with mutual information

Given a set of annotated documents and the expected rank of these documents
under the logging policy, we can test for the debiasedness of a candidate click
model using any conditional independence test for continuous variables. Us-
ing independence tests, given some significance level, would yield a binary
answer to whether the click model is debiased. In practice, however, we may
be more interested in picking the best model from a set of candidates for de-
ployment, i.e., off-policy selection (OPS). For example, which model should we
select if multiple candidates are debiased, or none are? Therefore, we choose
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to quantify the degree of debiasedness using the effect size of an independence
test: conditional mutual information (CMI).

We first recall the concept of mutual information (MI), which measures the
average reduction in uncertainty of a random variable X obtained when know-
ing the value of a second random variable Y. Mutual information, usually
expressed as I(X; Y), can capture non-linear relationships between variables.
Conditioning the mutual information between two variables on a third vari-
able is strongly connected to conditional independence testing:

R̃ ⊥⊥ Rl | R ⇐⇒ I(R̃; Rl | R) = 0 , (5.11)

where R̃ are the relevance scores predicted by a click model, Rl the implicit rel-
evance scores of the logging policy, and R the human annotations of relevance.
This means that, conditional on R, knowing Rl does not reduce the uncertainty
of predicting R̃ and vice-versa. Thus, conditional independence testing is a
special use case of CMI and we can interpret a lower value of CMI as a higher
degree of debiasedness, with a CMI of zero indicating that the relevance scores
of a newly trained click model are independent of the policy that collected the
dataset, conditional on the true relevance. We refer to the CMI when computed
w.r.t. the logging policy as CMIP.

5.4.3 Estimating conditional mutual information with the logging policy (CMIP)

In this section, we cover how to estimate the CMIP metric to quantify debi-
asedness. First, we note that CMI can be expressed as the Kullback-Leibler
divergence between two distributions:

I(X; Y | Z) = DKL (p∥q)
with p = P(R̃, Rl, R)

and q = P(R) P(R̃ | R) P(Rl | R) ,

(5.12)

which is a pseudo-distance between the joint distribution p of all three vari-
ables occurring together and the distribution q in which the predicted rele-
vance scores R̃ and the relevance of the logging policies Rl are independent,
conditional on R. If the divergence between both distributions is zero, the joint
distribution (which we actually observe) is equivalent to the distribution on
which conditional independence holds. Given this divergence-based formula-
tion of CMI, we employ a two-step approach suggested in (Mukherjee et al.,
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2019). First, we obtain samples from the marginal distribution q on which con-
ditional independence holds. Second, we estimate the KL-divergence between
the observed dataset and the generated samples, which is the estimate of our
CMIP metric.

Sampling from the marginal distribution q

How can we obtain samples from the conditional independence distribution q
given our observational dataset p? For a proof that this methodology actually
approximates q, we refer to (Sen et al., 2017, Theorem 1). We use a knn-based
approach suggested in (Sen et al., 2017); its simplicity and computational speed
make it suitable for an evaluation metric. Given a dataset of observed relevance
labels for each document, R = {(r̃(d), rl(d), r(d))}d∈D, we split the data into
two equal parts Ri and Rj. For each document in Ri, we find the nearest
neighbor document in Rj with the most similar true relevance. In the case of
using relevance annotations, this method simplifies to sampling any document
from Rj with the same relevance label. By exchanging the relevance estimates
of the logging policy between the two documents, the resulting dataset Rq =

{(r̃(di), rl(dj), r(di))}, is now a sample from q.

Estimating KL-divergence

Given samples from the original relevance dataset Rp ∼ p and samples from
the marginal distributionRq ∼ q, we can compute the CMI as the KL-divergence
between both distributions. We follow Mukherjee et al. (2019) and frame the
task of divergence estimation between two continuous joint distributions as a
binary classification problem. The main idea is to label samples from p with
m = 1 and samples from q with m = 0. After shuffling the two datasets
into one, we train a binary classifier to predict to which distribution a given
triplet of relevance values (r̃, rl, r) belongs to. The better the classifier can
assign samples to their original distribution, the higher the divergence be-
tween the two distributions. Using the Donsker-Varadhan reformulation of
KL-divergence (Mukherjee et al., 2019, Definition 3), we use the classifier’s pre-
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dictions of P(m = 1) on a test set to compute the conditional mutual information
with the logging policy (CMIP) as:

CMIP = DKL (p ∥ q)

≈ 1
|Rp| ∑

i∈Rp

log
P(m = 1 | i)
P(m = 0 | i)

− log

 1
|Rq| ∑

j∈Rq

P(m = 1 | j)
P(m = 0 | j)

 .
(5.13)

The above procedure requires a well-calibrated classifier and we clip predic-
tions P(m = 1) ∈ [0.01, 0.99] to avoid extremely large likelihood ratios when
dividing by predictions close to zero. Lastly, we bootstrap the metric, per-
forming multiple repetitions of k-nn sampling and KL divergence estimation,
reporting the average over five repetitions. In order to simplify the usage of
our metric, we release a standalone implementation of CMIP.4

5.5 experimental setup

We test if CMIP helps to predict which click models are robust to covariate
shift by performing experiments using a semi-synthetic click simulation setup
prevalent in unbiased learning-to-rank (Joachims et al., 2017; Oosterhuis and
de Rijke, 2020a; Vardasbi et al., 2020a; Vardasbi et al., 2020b). The setup is
semi-synthetic since we generate synthetic user clicks on real search queries
and documents. To simulate shifts in the ranking distribution, we train models
on click data collected under one logging policy and evaluate the model on
clicks obtained under a different policy. Below, we introduce our simulation
setup and the click models used in our experiments.

5.5.1 Semi-synthetic click simulation

Overview

We generate click datasets by repeatedly: (i) sampling a query and its candidate
documents from a preprocessed real-world dataset; (ii) sampling a ranking of
the candidate documents using a stochastic logging policy; and (iii) presenting
the ranked search results to a synthetic user model to sample clicks. In the
following, we cover each step in more detail.

4 https://github.com/philipphager/cmip

https://github.com/philipphager/cmip
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Dataset and preprocessing

Our click simulation is based on the MSLR-WEB10K dataset (Qin and Liu,
2013). We use the training dataset of the first fold, containing 6,000 search
queries, each with a set of candidate documents. Each query-document pair
was judged by experts on a five point relevance scale: r(d) ∈ {0, 1, 2, 3, 4},
which we use as ground-truth in our experiments. During preprocessing, we
reduce the number of documents per query to ten using stratified sampling on
the human relevance annotation. Thereby, we reduce the number of candidate
documents, while keeping a similar distribution of relevance grades. After
discarding all queries with less than ten documents, we obtain a total of 5,888

queries.

Stochastic policies

For each new simulated user session, we first pick a query from the prepro-
cessed dataset uniformly at random, a common practice in simulation for un-
biased learning-to-rank (Joachims et al., 2017), to avoid high variance on rare
queries in this study. After sampling a query, we sample rankings of the can-
didate set of documents. For that, we first obtain relevance estimates for each
document using one of three policies of different quality:

uniform: A policy assigning the same relevance to all documents.
lambdamart: A LambdaMART ranker (Burges, 2010) trained on feature vec-
tors and relevance annotations provided in MSLR-WEB10K.5

noisyoracle: A near-optimal policy using perturbed human relevance anno-
tations after adding Gaussian noise of variance 0.5.

After using one of these three policies to obtain relevance estimates for each
document, we sample stochastic rankings using a Plackett-Luce model (Plack-
ett, 1975; Luce, 1959). We sample multiple rankings per query to observe docu-
ments in different positions since a deterministic ranking would not allow our
click models to disentangle effects such as position bias or relevance during
training. We use the Gumbel Softmax trick to efficiently sample rankings from
a Plackett-Luce distribution (Bruch et al., 2020; Oosterhuis, 2021a) and control
the degree of stochasticity in the sampled rankings using the temperature pa-
rameter of the softmax. We sample rankings with a low degree of stochasticity
in our experiments, using a temperature of T = 0.1 by default.

5 LightGBM version 3.3.2, using 100 trees, 31 leafs, and learning rate 0.1.



5.5 experimental setup 149

User models

After sampling rankings, we generate synthetic clicks on our documents. We
define how relevant each document is to the synthetic user based on the expert
relevance annotations (Chapelle et al., 2009): Rd = ϵ + (1− ϵ) 2r(d)−1

24−1 , with
noise ϵ = 0.1 to also sample clicks on irrelevant documents. To examine our
metric under a variety of click behaviors, we simulate four different users:

pbm: A user behaving according to the examination hypothesis, clicking only
on observed and relevant documents. The observation probability depends
only on the document position (Craswell et al., 2008). Following (Joachims et
al., 2017), we define the observation probability at rank k as: Ok =

1
k .

dbn: A user for whom relevance is split into two concepts: attractiveness and
satisfaction. Attractiveness measures how likely a user is to click on a docu-
ment after observing it in the ranking, while satisfaction estimates how likely a
user is satisfied with the document after opening it. Documents are examined
from top to bottom until the user is satisfied or abandons the list (Chapelle
and Zhang, 2009). Thus, examination of a document not only depends on its
rank, but also on the documents examined before. We use the probability of
relevance Rd to define the attractiveness of a document as Ad = Rd and its
satisfaction as Sd = Rd

2 , so that even on near-optimal policies, fulfilling a user’s
information need sometimes requires more than one click.
mixturedbn: This setting simulates platforms presenting results horizontally,
where users may not inspect the document in order (Borisov et al., 2018). This
mixture is composed of two DBN users: 70% of the time, the user inspects the
results in the usual order from first to last rank, but 30% of the time, the user
inspects the ranking in reverse order.
carousel: This last user simulates settings in which documents are grouped
in vertical rows or carousels (Rahdari et al., 2022). For this specific setting only,
we use 25 documents per query instead of ten. The user chooses one of five
carousels, according to a PBM, where the relevance of a carousel is taken to
be the average relevance of the five documents that compose it. Then the user
clicks on documents within the chosen carousels according to a DBN.

Next, we introduce the click models that we use, but we note that none fits
the MixtureDBN and Carousel user behavior. We include these complex click
behaviors to evaluate the usefulness of our metric under model mismatch.
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5.5.2 Click model overview

We compare seven click models in our simulations; two are naive baselines
using click statistics; five are prominent click models from the literature. In line
with earlier studies, the models we compare do not input document features
beyond the document’s id. Below, we only summarize the main idea for each
approach. For details, we refer to (Deffayet et al., 2023b), which we follow
closely in our implementation.

Naive baselines

DCTR: The document CTR model uses the mean click-through-rate of a docu-
ment as both click and relevance prediction. Since the CTR is averaged over all
document positions, this model naively assumes that users examine all ranks
equally.
RDCTR: The ranked document CTR model predicts the mean click-through-

rate of a document at a given rank as click probability. We follow (Deffayet
et al., 2023b, Eq. 3) and estimate relevance as the sum of a document’s CTR at
each rank, weighted by the inverse of the average CTR of all documents at the
given rank.

In both methods, rarely examined documents can cause extreme click pre-
dictions, such as predicting a click probability of zero for a document that
was never clicked. To mitigate predictions that lead to arbitrarily high perplex-
ity values, we use the empirical Bayes method and initialize each prediction
with Beta priors estimated on our training data as suggested in (Chapelle and
Zhang, 2009).

Click models

We implement a PBM and a DBN click model matching the user behaviors
introduced in Section 5.5.1. In addition, we implement three other models:
UBM: Extending the PBM, the user browsing model assumes that examining

an item depends in addition to its position also on the position of the latest
clicked document (Dupret and Piwowarski, 2008).
NCM: The neural click model uses an RNN to iterate over the list of docu-

ments and predicts clicks at every step. While the model only predicts clicks
and does not explicitly model relevance, Borisov et al. (2016) suggest to use the
click probability of an item when placed on top of a ranking as its relevance.
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CACM: We implement another RNN-based model iterating over rankings;
instead of predicting clicks it predicts the user’s probability of examination
at each rank. The resulting examination probability is multiplied with an es-
timated relevance probability to obtain the click prediction. The model is a
variant of the context-aware click model introduced in (Chen et al., 2020) as
proposed in (Deffayet et al., 2023b, Eq. 14).

All models are implemented using PyTorch, and are trained by minimizing a
binary cross-entropy loss between the predicted clicks and the observed clicks
in the training dataset. Further implementation details are openly accessible in
our code.6

5.5.3 Experiments

In our experiments, we evaluate whether CMIP helps to predict the perfor-
mance of click models under covariate shift. Therefore, we first generate 5M
training, 1M validation, and 1M test clicks on a strong baseline policy (Lamb-
daMART or NoisyOracle). We use the training/validation sets to train mod-
els and the test set to compute the in-distribution perplexity (ind PPL). We
simulate a covariate shift with a second test set of 1M clicks generated by a
different policy, called test policy, and report the out-of-distribution perplex-
ity (ood PPL). Lastly, we use the human-annotated relevance labels from the
MSLR-WEB10K dataset to compute nDCG and CMIP.

5.6 results

5.6.1 Evaluation with CMIP: A visual example

We introduce our experimental results by giving a visual intuition of CMIP.
In Figure 5.2, we use a near-optimal logging policy (NoisyOracle) and gener-
ate clicks according to a PBM user model. We train seven click models and
observe their in-distribution perplexity (ind PPL), nDCG, and our proposed
metric CMIP, as well as the models’ performance under policy shift as mea-
sured by the out-of-distribution perplexity (ood PPL). We can see that neither

6 https://github.com/philipphager/sigir-cmip

https://github.com/philipphager/sigir-cmip
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Figure 5.2: Comparing the performance of click models. Our proposed metric, CMIP,

helps predict out-of-distribution results. All models are trained on a PBM user model

and a NoisyOracle logging policy and evaluated under a uniform policy. We average

results over ten independent runs and we display the 95% confidence interval.

ind PPL nor nDCG are sufficient to predict the downstream performance in
ood PPL. E.g., the competitive nDCG score of the DCTR model fails to capture
the model’s poor generalizability. In contrast, CMIP correctly identifies this
model as biased by assigning it a high value. Similarly, despite a low nDCG,
NCM retains a good performance out-of-distribution as indicated by a low
debiasedness score.

This visual example helps understand how CMIP can be generally useful to
evaluate click models, but the results are dependent on the configuration used
for training and evaluating the models. Below, we assess the predictive power
of CMIP more systematically.

5.6.2 CMIP helps predict out-of-distribution perplexity

Next, we systematically evaluate whether adding CMIP to the existing metrics
(ind PPL and nDCG) helps to predict the out-of-distribution perplexity of click
models. To do so, we test click models in a total of 16 configurations, where
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the user model, logging policy, and test policy vary. Moreover, we evaluate
each model configuration over ten independent runs of our click simulation.

To quantify how well ind PPL, nDCG, CMIP, and their combinations pre-
dict ood PPL, we use the metrics as input to a decision tree regressor predict-
ing ood PPL. Since the metric ranges depend on the policy and user model,
we train separate regressors for each of the 16 user/policy configurations and
seven metric combinations. We report predictive performance using the ad-
justed R2 score on 2-fold cross validation with a thousand repetitions. We test
differences between each metric combination and the current evaluation proto-
col of jointly using nDCG and ind PPL using a two-tailed Welch’s t-test with a
significance level of α = 0.0001, accounting for multiple comparisons using the
Bonferroni correction.

We report the results in Table 5.1. First, neither ind PPL, nDCG, nor CMIP
are sufficient on their own to predict the ood PPL well, even though CMIP has
a better mean predictive power than the other two metrics across all configura-
tions. Second, using a combination of multiple metrics leads to better predic-
tions of ood performance. However, we can observe that combining CMIP with
any other of the two metrics leads to an average R2 greater than 0.9 which is not
attainable just using ind PPL and nDCG. More importantly, by inspecting the
performance across configurations, we see that metric combinations including
CMIP are notably more consistent across different configurations, with their R2

score rarely dropping below 0.8. This suggests that CMIP improves the safety
and reliability of click model evaluation for deployments in downstream tasks.
Lastly, the joint usage of all three metrics is either significantly better or on-
par with the usage of nDCG and ind PPL. These trends are consistent when
using linear regression and other regression metrics such as MSE. Our results
strongly indicate that adding CMIP to click modeling benchmarks should lead
to more reliable predictions of downstream performance, and therefore help
practitioners to mitigate the risks of deploying policies based on click models.

5.6.3 Strategies based on CMIP incur lower regret in off-policy selection
problems

Next, we use CMIP in an off-policy selection (OPS) problem where we have a
set of candidate click models and need to decide which one to use for down-
stream applications. To quantify how CMIP helps practitioners select the best
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Table 5.2: Average regret incurred by different OPS strategies (lower is better). The

regret is the difference in out-of-distribution click prediction performance with the

best-performing model. We mark the best strategy in bold and underline the second

best, and we report 95% confidence intervals inside parentheses.

Policies Average regret

PPL↓ 2.5499 (±0.0506)
nDCG↑ 5.2406 (±0.8480)
top-4 nDCG: PPL↓ 1.6423 (±0.1417)
top-4 PPL: nDCG↑ 2.5199 (±0.3168)

CMIP↓ 2.5268 (±0.2722)
top-4 CMIP: PPL↓ 2.5505 (±0.0507)
top-4 CMIP: nDCG↑ 0.9493 (±0.1175)
top-4 CMIP, top-4 nDCG: PPL↓ 1.6404 (±0.1430)
top-4 CMIP, top-4 PPL: nDCG↑ 0.9176 (±0.1221)

model, we design simple OPS strategies based on the three metrics and com-
pare the amount of regret they incur, i.e., how much click prediction perfor-
mance, measured by ood PPL, is lost by following a given strategy instead of
selecting the optimal model. Every selection strategy is based on the maximiza-
tion or minimization of a metric among the set of candidates. E.g., “nDCG↑”
is the strategy that selects the model with the highest nDCG. In addition to
the three basic strategies defined this way, we define conditional strategies:
e.g., “top-4 CMIP: PPL↓” selects the model with the lowest perplexity among
the four models with the lowest CMIP. The strategy “top-4 CMIP, top-4 PPL:
nDCG↑” selects the model with the highest nDCG among the intersection of
the four models with lowest CMIP and the four models with the lowest PPL.
If this intersection is empty, the model with highest nDCG is selected.

Table 5.2 reports the average regret incurred by these strategies over the
same configurations of user model, logging policy, and test policy as in Table
5.1. For better readability, we multiply the obtained regret in terms of differ-
ence in ood PPL by a factor 1000. Also, the regret in OPS is very sensitive
to the exact set of candidates in the comparison, so in order to obtain more
robust results, we apply each strategy on all possible combinations of five, six,
or seven models from our set of seven candidates and report the average re-
gret over these combinations. We observe that most strategies based on CMIP
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outperform those without it, and that the lowest average regret is obtained by
“top-4 CMIP, top-4 PPL: nDCG↑”, confirming that CMIP is useful in off-policy
selection problems.

5.7 conclusion

We propose conditional mutual information with the logging policy (CMIP), an
evaluation metric for click modeling benchmarks in unbiased learning-to-rank.
CMIP addresses the problem that existing metrics do not ensure that click
models are robust to shifts in the ranking policy and therefore fail to predict
their performance on downstream tasks. CMIP evaluates how relevance scores
of trained models correlate with relevance scores of the logging policy beyond
the true relevance signal, i.e., measuring how biased a new model is by the
model that was used to collect the training data.

Findings and broader impact We gave visual interpretations of CMIP and its
use for selecting best-performing click models. We quantified its usefulness in
click modeling benchmarks by showing that it (i) improves the prediction of
downstream performance when coupled with existing metrics, and (ii) lowers
the regret incurred by off-policy selection strategies. The effectiveness of CMIP
suggests that distributional approaches to offline evaluation, i.e., that consider
the distribution of model outputs instead of individual predictions, may be
useful to derive generalization properties.

Limitations and future work First, CMIP uses pointwise relevance annotations,
but pairwise or listwise annotations could also be used. Second, we have as-
sumed that annotations are a perfect predictor of relevance. It remains unclear
how to interpret nDCG and CMIP in case annotator disagreement and biases
render annotations less reliable. Finally, click feedback collected on fully ran-
domized rankings could replace the need for expert annotations; we leave an
analysis of CMIP in that case for future work.
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5.8 reflections on the chapter

5.8.1 Research outcomes

This chapter provides progress towards answering the following two research
questions:

Research Question 2. Can we predict in a fully offline manner the performance of
models learned on biased data?

Research Question 3. When do we need assumptions on user behavior, and how can
we test for the validity of these assumptions?

The CMIP metrics brings us closer to answering RQ2 positively, and helps
select the correct assumptions about user behavior that lead to bias in the data.
At least, it provides a more reasonable selection of candidates for an online
A/B test, than the ranking metrics alone. Now, multiple potential refinements
and open questions remain: can we extend CMIP to content-based and context-
aware models? How to port the CMIP approach to training de-biased models?
Finally, as we showed in Chapter 3 that click models do not work as well with
dynamic users, how robust is the metric when user behavior is dynamic, and
preference must be estimated?

5.8.2 Additional thoughts

Beyond simply making the process of deploying click-model-based systems
safer, I believe metrics like CMIP open an interesting avenue for model evalua-
tion. Indeed, we learned in this chapter that point predictions of performance,
i.e., comparing one prediction with one label and then aggregating these re-
sults in some way, give less information than distributional metrics like CMIP,
i.e., metrics that compare the whole distribution of predictions to the distri-
bution of labels. In particular, when we are dealing with issues such as bias,
which are distributional in nature, distributional metrics offer a range of new
features to measure: shape, modes, covariances, etc
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G E N E R AT I V E S L AT E

R E C O M M E N DAT I O N W I T H
R E I N F O R C E M E N T L E A R N I N G

This chapter is concerned with the following question: given that making as-
sumptions about how users behave on a recommendation platform restricts the
flexibility of the agent and that choosing the right assumptions is very tricky
as shown in the previous two chapters, can we train an assumption-free re-
inforcement learning agent that works for recommending slates (i.e., lists) of
items?

We propose a generic approach that involves pre-training a generative model
on logged data from a previous version of the recommender system in order to
create a suitable action-space for training RL agents. Rather than claiming state-
of-the-art performance thanks to this method, which would require a lot more
evidence in diverse scenarios than given in this chapter, I wish to showcase
how end-to-end approaches can match and sometimes surpass approaches that
incorporate strong inductive biases from decades of research in information
retrieval, therefore making them strong contenders for future improvements in
RL-based recommender systems.

This chapter is based on the following publication: Romain Deffayet, Thibaut
Thonet, Jean-Michel Renders, and Maarten de Rijke. 2023. Generative Slate
Recommendation with Reinforcement Learning. In WSDM’23: the 16th ACM
International Conference on Web Search and Data Mining.
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6.1 introduction

Ubiquitous in online services, recommender systems (RSs) play a key role in
personalization by catering to users’ identified tastes. Ideally, they also di-
versify their offerings and help users discover new interests (Jannach et al.,
2021). In the latter case, RSs take on an active role, which means that recom-
mendations influence future user behavior, and therefore their effects on users
must be explicitly controlled. Such effects can be detrimental: users may get
bored if too many similar recommendations are made, and it has been well-
documented that users can end up in so-called filter bubbles or echo chambers
(Pariser, 2011; Bakshy et al., 2015; Flaxman et al., 2016). From the perspective
of the online platform or the content provider, user boredom leads to poor
retention and conversion rates (Hohnhold et al., 2015), while filter bubbles
raise fairness and ethical issues for which providers can be held accountable
(Masrour et al., 2020). Conversely, RSs can also positively impact users, for
example, when users get interested in new, unexpected topics or when the RS
offers a fair representation of available options (Anderson et al., 2020). It is
natural, therefore, to balance exploitation (i.e., sticking to the known interests
of the user) and exploration (i.e., further probing the user’s interests) so as to
avoid always recommending similar items, and encourage recommendations
that boost future engagement. The reinforcement learning (RL) literature has
proposed models and algorithms that aim to optimize long-term metrics by ac-
knowledging the causal effect of recommendations on users (Chen et al., 2019b;
Zou et al., 2019).

In this work we consider the common scenario of slate recommendation
(Sunehag et al., 2015; Ie et al., 2019b; Chen et al., 2019b), which comes with
specific challenges. At each interaction turn, a slate recommender system rec-
ommends a list of items from the collection, and the user interacts with zero,
one or several of those items. As a consequence, users may not examine all the
recommended items, which leads to biases in the observed interactions along
with a complex interplay between items in the same slate (McInerney et al.,
2020). More importantly, the size of the action space, i.e., the number of possi-
ble slates, prohibits the use of off-the-shelf RL approaches (Dulac-Arnold et al.,
2015). Indeed, as slate recommendation is a combinatorial problem, the evalua-
tion of all actions by the RL agent through trial and error is simply intractable:
even with as few as 1, 000 items in the collection, the number of possible slates
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of size 10 is approximately 9.6× 1029. We propose to tackle this problem in the
context of a practical scenario, (S), which fits the second-stage ranking phase
(Dang et al., 2013) of many content recommendation platforms:

(S) The collection contains around a thousand items, and at each turn of interaction
the proposed model must select and rank 10 items to be presented to the user.

All our tractability and feasibility statements in this chapter must therefore be
understood through the lens of this scenario (S).

To reduce the prohibitively large size of the combinatorial action space, previ-
ous studies have proposed to decompose slates in a tractable manner (Sunehag
et al., 2015; Ie et al., 2019b; Chen et al., 2019b) – but at the cost of restrictive as-
sumptions, e.g., concerning mutual independence of items in the slate, knowl-
edge of the user click model, availability of high-quality item embeddings, or
that at most one item per slate is clicked.

In contrast, we propose to first learn a continuous, low-dimensional latent
representation of actions (i.e., slates), and then let the agent take actions within
this latent space during its training phase. In practice, we obtain the latent
representations by introducing a generative modeling of slates (GeMS) based on a
variational auto-encoder (VAE) pre-trained on a dataset of observed slates and
clicks, collected from a previous version of the recommender system. Such a
dataset is usually available in industrial recommendation settings. Therefore,
we do not rely on restrictive assumptions, and the fact that we represent full
slates enables the agent to improve the quality of its recommendations, instead
of using individual item representations.

Our contributions can be summarized as follows:

• We propose GeMS, a novel way to represent actions in RL for slate recom-
mendation, by pre-training a VAE on slates and associated clicks. Unlike
previous methods, GeMS is free of overly restrictive assumptions and only
requires logged interaction data.
• We provide a unified terminology to classify existing slate recommendation

approaches based on their underlying assumptions.
• We show on a wide array of simulated environments that previous methods

underperform when their underlying assumptions are lifted (i.e., in practical
settings), while GeMS allows us to recover highly rewarding policies without
restrictive assumptions.
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• To support the reproducibility of this work, we publicly release the code for
our approach, baselines and simulator.1

6.2 related work

Long-term user engagement Several studies have documented the misalign-
ment between short-term benefits and long-term user engagement (Anderson
et al., 2020; Hohnhold et al., 2015), as well as the tendency of traditional recom-
mender systems to be detrimental to long-term outcomes (Rossi et al., 2021).
Such myopic behavior is known to cause boredom and decrease user reten-
tion (Anderson et al., 2020), which is prejudicial for both users and content
providers. This behavior also raises concerns such as the rich-get-richer issue
(Chen et al., 2019b) and feeding close-mindedness (Rossi et al., 2021). Some
previous studies tried to counter this effect by explicitly maximizing diversity
(Waller and Anderson, 2019) or by finding metrics correlated with long-term
outcomes (Chandar et al., 2022; Athey et al., 2019). In contrast, in our work
we directly optimize long-term metrics by using reinforcement learning algo-
rithms (Chen et al., 2019b; Zou et al., 2019; Hansen et al., 2021).

Reinforcement learning for slate recommendation The problem of slate rec-
ommendation with reinforcement learning (RL) has been tackled in several
previous studies, although the settings in which solutions were tested vary
and are sometimes not applicable to our scenario (S). Chen et al. (2019b) and
Bai et al. (2019) assume a simple user click model and independence of items
within a slate in order to reduce the problem to choosing individual items,
which they solve with the REINFORCE algorithm on a SoftMax policy. Ie et al.
(2019b) assume knowledge of the user’s click model and item relevance, which
allows them to perform combinatorial optimization for the computation of Q-
values. Sunehag et al. (2015) take a continuous action in the product space
of item embeddings, i.e., one embedding per slot in the slate, and pre-select
nearest-neighbor items for full-slate Q-function evaluation. Chen et al. (2019c)
use properties of the optimal Q-function to propose an elegant decomposition
of it and generate optimal slates autoregressively. We detail the assumptions
made by each of these approaches in Section 6.4, but we had to discard (Chen

1 https://github.com/naver/gems.

https://github.com/naver/gems
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et al., 2019c) due to its prohibitively heavy computation: it requires a num-
ber of neural network forward passes proportional to the slate size times the
number of items in the collection (i.e., 10,000 passes in scenario (S)), for each
training or inference step.

Our proposed approach differs from previous work because we do not man-
ually decompose the slates using tractable heuristics based on restrictive as-
sumptions, but instead approximate the slate generation process with a deep
generative model. Our proposed framework only has a single requirement, viz.
the availability of logged data with slates and associated clicks, as we will detail
in Section 6.4. The latter assumption is by no means restrictive as such logged
data is readily available in common industrial recommendation settings.

Latent action representations While learning a latent representation of states
is very common in the RL literature (Stooke et al., 2021; Ha and Schmidhu-
ber, 2018), few studies have tackled the problem of latent action representation.
Chandak et al. (2019) train an action generation function in a supervised man-
ner, by learning to predict the action taken from a pair of successive states.
This is not directly applicable in our case, because the true user state is not
observable and successive observations are simply clicks that appear to be too
weak of a signal to infer the slates leading to these clicks. Botteghi et al. (2021)
learn a state-action world model and jointly train latent state and action repre-
sentations in a model-based fashion.

Figure 6.1: Our proposed framework for slate recommendation with reinforcement

learning. We first pretrain our GeMS model on previously collected logged data com-

posed of slates and associated clicks (left), then we use the frozen decoder of GeMS to

decode the RL agent’s low-dimensional proto-action vector into a slate (right).

Learning a world model in our setting essentially amounts to the latent mod-
eling of slates and clicks (similar to our approach), while also conditioning on
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an internal hidden state.2 The work by Zhou et al. (2020) is perhaps the clos-
est work to ours, as it uses a variational auto-encoder (VAE) to embed actions
into a controllable latent space before training an RL agent. However, it does
not consider slates but only simple, atomic actions. In contrast, Jiang et al.
(2019) and Liu et al. (2021) train VAEs to represent slates and their associated
clicks, but they do not investigate training an RL agent from the learned latent
representation.

To the best of our knowledge, we are the first to learn a latent representation
of slates for RL-based recommendation.

6.3 method

6.3.1 Notations and problem definition

We consider a slate recommendation scenario in which a user interacts with
a recommender system (RS) throughout an episode of T turns. At every turn
t ∈ {1, . . . , T}, the system recommends a slate at = (i1

t , . . . , ik
t ) where (ij

t)1⩽j⩽k

are items from the collection I and k is the size of the slate set by the RS
designer. The user can click on zero, one or several items in the slate and the
resulting click vector ct = (c1

t , . . . , ck
t ), cj

t ∈ {0, 1} is returned to the RS.

The problem of maximizing the cumulative number of clicks over an episode
can be modeled as a partially observable Markov decision process (POMDP)
MP = (S ,O,A, R, T, Ω) defined by:

• A set of states S , which represent the unobservable state of the user’s mind;
• A set of observations O accessible to the system. Here, observations are

clicks from the previous interaction (ot = ct−1) and therefore lie in the space
of binary vectors of size k: O = {0, 1}k;
• A set of actions A, which is the set of all possible slates composed of items

from the collection, i.e., |A| = |I|!
(|I|−k)! ;

• A reward function R : S ×A → R, which we set to R(st, at) = rt = ∑k
j=1 cj

t

in order to reflect our long-term objective of maximizing the cumulative
number of clicks; and

2 We tried a similar method in pilot experiments, but the additional conditioning only deterio-
rated the results, so we only present the condition-free method in this chapter.
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• A set of unknown transition and observation probabilities, respectively T :
S ×A×S → [0, 1] and Ω : S ×A×O → [0, 1], as well as a distribution over
initial states S1 : S → [0, 1].

Due to the unobserved nature of the true user state in the POMDP, it is com-
mon to train agents by relying on a proxy of the state inferred from available
observations. The function that provides such a proxy is traditionally referred
to as the belief encoder (Kaelbling et al., 1998). We also define the concepts of
a policy π : S ×A → [0, 1] and trajectory τ = (ot, at, rt)1⩽t⩽T. In the remain-
der, we write τ ∼ π to signify that we obtain a trajectory by first sampling an
initial state s1 from S1 and then recursively sampling actions T − 1 times from
the policy π. The goal can now be formulated as finding an optimal policy,
i.e., a policy maximizing the expected return π∗ ∈ arg maxπ Eτ∼π [R(τ)] with
R(τ) = ∑T

t=1 rt. Finally, given a state s and action a, we define the Q-function
Qπ(s, a) = Eτ∼π,s1=s,a1=a [R(τ)] and V-function Vπ(s) = Ea∼π(s) [Qπ(s, a)].

6.3.2 Overview of the framework

In our proposed framework, the interactions with the environment, i.e., the
user, can be described by the following repeated steps:

1. The belief encoder summarizes the history of interactions with the user into a
state vector;

2. The agent selects a proto-action based on this state; and

3. The ranker (here resulting from a VAE model) decodes this proto-action into
a slate that is served to the user.

In the remainder of this section, we first detail our proposed generative mod-
eling of slates (GeMS). GeMS is a deep generative model that learns a low-
dimensional latent space for slates and associated clicks – thus constituting
a convenient proto-action space for the RL agent and allowing for tractable RL
without resorting to restrictive assumptions as in prior work (Chen et al., 2019b;
Bai et al., 2019; Ie et al., 2019b; Sunehag et al., 2015). Then we describe how
GeMS is integrated as a ranker in our RL framework and we briefly discuss
the remaining RL components. This two-step process is depicted in Figure 6.1.
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6.3.3 Generative Modeling of Slates (GeMS)

In order to instantiate our GeMS model, we propose to train a variational auto-
encoder (VAE) on a precollected dataset D of logged interactions, as illustrated
in Figure 6.1 (left). A VAE aims to learn a joint distribution over data samples
(i.e., slates and clicks denoted as a and c, respectively) and latent encodings (i.e.,
proto-actions denoted as z) (Kingma and Welling, 2014). To do so, a parame-
terized distribution pθ(a, c, z) is trained to maximize the marginal likelihood
of the data pθ(a, c) =

∫
z pθ(a, c, z)dz. In practice, due to the intractability of

this integral, a parameterized distribution qϕ(z|a, c) is introduced as a varia-
tional approximation of the true posterior pθ(z|a, c) and the VAE is trained by
maximizing the evidence lower bound (ELBO):

LELBO
θ,ϕ =Ea,c∼D

[
Ez∼qϕ(·|a,c)[log pθ(a, c|z)]−KL

[
qϕ(z|a, c)∥p(z)

]]
,

where p(z) is the prior distribution over the latent space, KL is the Kullback-
Leibler divergence (Kullback and Leibler, 1951), and z is a sample from a
Gaussian distribution obtained using the reparameterization trick (Kingma
and Welling, 2014). The distributions qϕ(z|a, c) and pθ(a, c|z) are usually re-
ferred to as the encoder and the decoder, respectively.

The downstream performance of the RL agent we wish to ultimately learn
clearly depends on the upstream ability of the VAE to properly reconstruct
slates. However, as Liu et al. (2021) observe, an accurate reconstruction of slates
may limit the agent’s capacity to satisfy the user’s interests. Indeed, finding
high-performance continuous control policies requires smoothness and struc-
ture in the latent space, which may be lacking if too much emphasis is given
to the reconstruction objective in comparison to the prior matching objective
enforced by the KL-divergence. Therefore, it is necessary to balance reconstruc-
tion and controllability, which is done by introducing an hyperparameter β as
weight for the KL term in Eq. 6.1. Moreover, in order to promote additional
structure in the latent space, we add a click reconstruction term in the loss:
slates with similar short-term outcomes (i.e., clicks) are grouped together dur-
ing pre-training. Yet, we may want to avoid biasing the learned representations
towards click reconstruction too much, as it may come at the cost of quality of
the slate reconstruction. Therefore, we introduce a hyperparameter λ to adjust
this second trade-off. We show the empirical impact of β and λ in Section 6.6.3.

In our implementation, the prior p(z) is set as a standard Gaussian distribu-
tion N (0, I). The encoder qϕ(z|a, c) is a Gaussian distribution with diagonal
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covariance N (µϕ(a, c), diag(σ2
ϕ(a, c))), parameterized by a multi-layer percep-

tron (MLP). This MLP inputs the concatenation of learnable item embeddings
and associated clicks over the whole slate, and outputs (µϕ(a, c), log σϕ(a, c)).
For the decoder pθ(a, c|z), another MLP takes as input the latent sample z, and
outputs the concatenation of reconstructed embeddings ej

θ(z) and click proba-
bilities pj,c

θ (cj|z) for each slot j in the slate. We then derive logits for the item
probabilities pj,a

θ (aj|z) by taking the dot-product of the reconstructed embed-
ding ej

θ(z) with the embeddings of all items in the collection. For collection
items, we use the current version of embeddings learned within the encoder,
but we prevent the gradient from back-propagating to them using the stop-
gradient operator to avoid potential degenerate solutions.

In summary, the VAE is pre-trained by maximizing the ELBO on the task
of reconstructing slates and corresponding clicks, i.e., by minimizing LGeMS

θ,ϕ =

Ea,c∼D[LGeMS
θ,ϕ (a, c)] with:

LGeMS
θ,ϕ (a, c) =

slate reconstruction︷ ︸︸ ︷
k

∑
j=1

log pj,a
θ (aj|zϕ(a, c)) +

λ

click reconstruction︷ ︸︸ ︷
k

∑
j=1

log pj,c
θ (cj|zϕ(a, c)) +

β

KL-divergence︷ ︸︸ ︷
d

∑
i=1

(
σ2

ϕ,i + µ2
ϕ,i − log σϕ,i − 1

)
.

(6.1)

where zϕ(a, c) = µϕ(a, c) + diag(σ2
ϕ(a, c)) · ϵ, for ϵ ∼ N (0, I). Here, d is the

dimension of the latent space, and β and λ are hyperparameters controlling
the respective weight of the KL term and the click reconstruction term. Note
that the KL term takes this simple form due to the Gaussian assumption on
qϕ(z|a, c) and the N (0, I) prior.

6.3.4 RL agent and belief encoder

After the pre-training step described in Section 6.3.3, the parameters of GeMS
are frozen and we use its decoder as the ranker in our RL framework. The RL
agent can then be trained to maximize the discounted return by taking proto-
actions within the VAE’s latent space. To generate a slate (i1, . . . , ik) from the
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agent’s proto-action z, we take for each slot j ∈ {1, . . . , k} the most likely item
according to the decoder: ij = arg maxi∈I pj,a

ϕ (i|z).
Since our focus within the RL framework is on the choice of the ranker,

we adopt a standard implementation of the belief encoder and the agent: the
former is modeled by a gated recurrent unit (GRU) (Cho et al., 2014) taking
as input the concatenation of item embeddings and respective clicks from each
slate, and the latter is a soft actor-critic (SAC) (Haarnoja et al., 2018) algorithm.
We chose SAC because it is a well-established RL algorithm, known for its
strong performance and data-efficiency in continuous control. Additionally,
SAC adds an entropy term incentivizing exploration which we have noticed
during our experiments to be important to attain high performance in highly
stochastic recommendation environments.

6.4 baselines and their assumptions

We evaluate our proposed method against four main baselines derived from
prior work. In this section, we describe these baselines as well the assumptions
on user behavior that they formulate in order to make the combinatorial prob-
lem of slate recommendation tractable. By doing so, we are able to compare
the assumptions made by these baselines and highlight the generality of our
method in Table 6.1. Note that we only report from previous studies the mech-
anism used for slate generation, which is the topic of this study, and ignore
other design choices.

SoftMax In (Chen et al., 2019b; Bai et al., 2019), the authors reduce the com-
binatorial problem of slate optimization to the simpler problem of item opti-
mization: the policy network output is a softmax layer over all items in the
collection, and items are sampled with replacement to form slates.
Doing so requires the mild assumption that the Q-value of the slate can be lin-
early decomposed into item-specific Q-values (DQ). But more importantly, it also
requires two strong assumptions, namely users can click on at most one item per
slate (1CL) and the returns of items in the same slate are mutually independent (MI).
Together, these assumptions are restrictive, because their conjunction means
that the click probability of an item in the slate does not depend on the item
itself. Indeed, having dependent click probabilities (to enforce the single click)
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Table 6.1: Comparison of assumptions made by prior work. Our method only requires

access to logged interaction data.

1CL DQ MI CM SP EIB LD

SoftMax (Chen et al., 2019b; Bai et al., 2019) ✓ ✓ ✓ ✗ ✗ ✗ ✗

SlateQ (Ie et al., 2019b) ✓ ✓ ✗ ✓ ✗ ✗ ✗

WkNN (Sunehag et al., 2015) ✗ ✓ ✗ ✗ ✓ ✓ ✓

TopK ✗ ✗ ✗ ✗ ✓ ✗ ✓

GeMS (Ours) ✗ ✗ ✗ ✗ ✗ ✗ ✓

and independent items in the slate is compatible only if click probabilities do
not depend on items.

SlateQ Ie et al. (2019b) propose a model-based approach in which the click
behavior of the user is given, and Q-learning (Watkins and Dayan, 1992) is used
to plan and approximate users’ dynamic preferences. On top of the earlier DQ
and 1CL, it requires access to the true relevance and click model (CM), which is
an unfair advantage compared to other methods. For computational efficiency
reasons, we adopt the faster variant referred to as QL-TT-TS in the original
paper.

TopK Even though, to the best of our knowledge, no work has proposed this
approach, we include it in our set of baselines as it is a natural way to deal
with slate recommendation. The agent takes continuous actions in the space of
item embeddings, and we generate slates by taking the k items from the collec-
tion with the closest embeddings to the action, according to a similarity metric
(the dot-product in practice). This method therefore assumes the availability of
logged data of past interactions (LD), in order to pre-train item embeddings. In
our experiments, we evaluate two variants of this baseline: TopK (MF), where
item embeddings are learned by matrix factorization (Koren et al., 2009), and
TopK (ideal), which uses ideal item embeddings, i.e., the embeddings used in-
ternally by the simulator (see Section 6.5.1). The latter version clearly has an
unfair advantage. Also, because ranking items this way assumes that the most
rewarding items should appear on top, it makes the sequential presentation (SP)
assumption from (Sunehag et al., 2015) that the true click model is top-down and
fading, i.e., if c(i) indicates that item i has been clicked and l ⩽ k is the posi-
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tion of i in slate a, then P(c(i)|s, a) = P(c(i)|s, a⩽l) ⩽ P(c(i)|s, ã⩽l−1), where
a⩽l = (i1, . . . , il−1, i) and ã⩽l−1 = (i1, . . . , il−2, i).

WkNN In (Sunehag et al., 2015), the authors propose a finer-grained and poten-
tially more capable variant of TopK referred to as Wolpertinger (Dulac-Arnold
et al., 2015): the agent takes actions in the product-space of item embeddings
over slate slots, i.e., continuous actions of dimension k× d, where d is the di-
mension of item embeddings. Then, for each slot in the slate, p candidate items
are selected by Euclidean distance with embeddings of items from the collec-
tion, and every candidate item’s contribution to the Q-value is evaluated in a
greedy fashion. Besides LD and DQ, WkNN requires two strong assumptions
to ensure submodularity of the Q-function: sequential presentation SP and ex-
ecution is best (EIB), i.e., recommendations that are risky on the short term are never
worth it. Formally, this translates as: P(R(s, π1(s)) = 0) ⩾ P(R(s, π2(s)) =

0) ⇒ Vπ1(s) ⩽ Vπ2(s) for any policies π1, π2. Note that it partly defeats the
purpose of long-term optimization.

In Table 6.1, we summarize the assumptions made by each baseline. In com-
parison to prior work, our proposed framework has a single assumption: the
availability of logged data with slates and associated clicks (LD), as Table 6.1
indicates. This assumption is by no means restrictive as such logged data is
readily available in common industrial recommendation settings.

On top of these baselines, we also include a random policy and a short-term
oracle as reference points. The short-term oracle has access to the true user
and item embeddings, enabling it to select the items with the highest relevance
probability in each slate. Therefore, at each turn of interaction, it gives an
upper bound on the immediate reward but it is unable to cope with boredom
and influence phenomena.

6.5 experimental setup

6.5.1 Simulator

We design a simulator that allows us to observe the effect of lifting the as-
sumptions required by the baselines, and we experiment with several simula-
tor variants to ensure generalizability. We summarize our main design choices
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below and refer the reader to our code available online3 for a more detailed
description.

Item and user embeddings Following scenario (S), our simulator includes
1, 000 items. We consider a cold-start situation where users are generated on-
the-fly for each new trajectory. Items and users are randomly assigned embed-
dings of size 20, corresponding to ten 2-dimensional topics: e = (e1, . . . , e10).
Each 2-dimensional vector et is meant to capture the existence of subtopics
within topic t. The embedding of a user or item x is generated using the
following process: (i) sample topic propensities wt

x ∼ U (0, 1) and normalize
such that ∑t wt

x = 1; (ii) sample topic-specific components fflt
x ∼ N (0, 0.4 · I2)

and rescale as et
x = wt

x ·min(|fflt
x|, 1)); and (iii) normalize the embedding

ex = (e1
x, . . . , e10

x ) such that ∥ex∥ = 1. Each item is associated to a main topic,
defined as t(i) = arg max1⩽t⩽10 ∥et

i∥.
To accomodate different types of content and platforms, we derive two vari-

ants of item embeddings in the simulator: one with embeddings obtained
as described above, and one with embeddings for which we square and re-
normalize each component. In Section 6.6, we highlight this difference in
peakedness by referring to the former as diffuse embeddings and the latter as
focused embeddings.

Relevance computation The relevance probability of item i for user u is a
monotonically increasing function of the dot-product between their respective
embeddings: rel(i, u) = σ(ei

Teu), where σ is a sigmoid function.

Boredom and influence effects User embeddings can be affected by two mech-
anisms: boredom and influence. Each item i clicked by user u influences the user
embedding in the next interaction turn as: eu ← ωeu + (1− ω)ei, where we
set ω = 0.9 in practice. Additionally, if in the last 10 items clicked by user u
five have the same main topic tb, then u gets bored with this topic, meaning
we put etb

u = 0 for 5 turns. These mechanisms have been defined to penalize
myopic behavior and encourage long-term strategies.

Click model Users click on recommended items according to a position-based
model, i.e., the click probability is the product of item-specific attractiveness
and rank-specific examination probabilities: P(c|i, r) = Ai × Er. Specifically,
we define for an item located at rank r: Er = νεr + (1− ν)εk+1−r with ε = 0.85.

3 https://naver/github/gems

https://naver/github/gems
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It is a mixture of the terms εr and εk+1−r, which capture the top-down and
bottom-up browsing behaviors, respectively. We use two variants of this click
model in our experiments: TopDown with ν = 1.0 and Mixed with ν = 0.5.
The attractiveness of an item is set to its relevance in TopDown and Mixed. In
addition, we consider a third variant DivPen which also penalizes slates that
lack diversity: Ai is down-weighted by a factor of 3 if more than 4 items from
the slate have the same main topic (as in Mixed, we also set ν = 0.5 for DivPen).

In summary, our experiments are performed on 6 simulator variants defined
by the choice of item embedding peakedness (diffuse item embeddings or focused
item embeddings) and the choice of click model (TopDown, Mixed, or DivPen).

6.5.2 Implementation and evaluation details

Our implementation aims to be as standard as possible, considering the lit-
erature on RL, in order to ensure reproducibility. All baselines are paired
with SAC (Haarnoja et al., 2018), except SlateQ which is based on Q-Learning
(Watkins and Dayan, 1992), and SoftMax, which we pair with REINFORCE
(Sutton and Barto, 2018b) because it requires a discrete action space and a dis-
cretized variant of SAC led to lower performance in our experiments. We im-
plement all agents using two-layer neural networks as function approximators,
and use target networks for Q-functions in Slate-Q and SAC. For hyperparam-
eters common to baselines and our method, we first performed a grid search
over likely regions of the space on baselines, and re-used the selected values for
our method. For all methods we use the Adam optimizer with learning rates
of 0.001 for Q-networks and 0.003 for policy networks when applicable, as well
as a discount factor γ = 0.8 and a Polyak averaging parameter τ = 0.002. For
the hyperparameters specific to our method (d, β and λ), we perform a grid
search on the TopDown environment with focused item embeddings and se-
lect the combination with the highest validation return. This combination is
then re-used on all other environments. The searched ranges were defined as
d ∈ {16, 32}, β ∈ {0.1, 0.2, 0.5, 1.0, 2.0} and λ ∈ {0.0, 0.2, 0.5, 1.0}.

For methods making the (LD) assumption, we generated a dataset of 100K
user trajectories (with 100 interactions turns each) from an ϵ-greedy oracle pol-
icy with ϵ = 0.5, i.e., each recommended item is selected either uniformly ran-
domly or by an oracle, with equal probabilities. The VAE in GeMS is trained on
this dataset for 10 epochs with a batch size of 256 and a learning rate of 0.001.
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For approaches requiring pre-trained item embeddings (TopK and WkNN), we
learn a simple matrix factorization model on the generated dataset by consid-
ering as positive samples the pairs composed of the user in the trajectory and
each clicked item in their recommended slates.

In all of our experiments, we compare average cumulative rewards over 10

seeded runs, corresponding to ten initializations of the agent’s parameters. In
the case of GeMS, the seed also controls the initialization of the VAE model
during pre-training. We train agents for 100K steps. Each step corresponds
to a user trajectory, composed of 100 interaction turns (i.e., 100 slates succes-
sively presented to the user) for a unique user. Every 1, 000 training steps, we
also evaluate the agents on 200 validation user trajectories. Finally, the agents
are tested by selecting the checkpoint with the highest validation return and
applying it on 500 test user trajectories. Confidence intervals use Student’s
t-distribution, and statistical tests are Welch’s t-test. Both are based on a 95%
confidence level.

6.6 results

In our experiments, we investigate the following research questions:

(RQ1) How does our slate recommendation framework based on GeMS com-
pare to previous methods when the underlying assumptions of the latter
are lifted?

(RQ2) Does the proposed GeMS framework effectively balance immediate and
future rewards to avoid boredom?

(RQ3) How do the balancing hyperparameters β and λ in GeMS impact the
downstream RL performance?

6.6.1 Comparison of our method against baselines (RQ1)

In this section, we compare the performance of our method and baselines on a
wide array of simulated environments, corresponding to the six environments
described in Section 6.5.1.
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Overview of the results Table 6.2 shows the average test return (i.e., cumulated
reward or cumulated number of clicks) after training on 100K user trajectories.
We group methods into two categories: Disclosed env., i.e., methods leverag-
ing hidden environment information, and Undisclosed env., i.e., methods that
consider the environment as a black-box and are therefore practically applica-
ble. A first observation we can draw, regardless of the specific environment
used, is that the short-term oracle is easily beaten by most approaches. Indeed,
the simulator penalizes short-sighted recommendations that lead to boredom:
in these environments, diversity is required to reach higher returns. We can also
observe the superiority of SAC+TopK (Ideal). This is not surprising, as this
method benefits from an unfair advantage – access to true item embeddings –
but it suggests that practically applicable methods could be augmented with
domain knowledge to improve their performance. However, despite having
access to privileged information, SlateQ’s performance is subpar, especially in
DivPen environments. Its lower performance might be explained by its approx-
imate optimization strategy and restrictive single-click assumption.

Overall comparison of methods The proposed SAC+GeMS compares favorably to
baselines across the range of environments we simulate. Out of the 6 tested envi-
ronments, SAC+GeMS obtained the best average results on all of them, among
which 3 show a statistically significant improvement over all other methods.
SAC+WkNN performs very poorly: we hypothesize that the approach suffers
from the curse of dimensionality due to the larger action space (200 dimensions
in our experiments) and the assumption made by the approach that candidate
items need to be close to target item embeddings according to the Euclidean
distance. SAC+TopK (MF) is more competitive, but the large difference with
SAC+TopK (ideal) suggests that TopK is very sensitive to the quality of item
embeddings. Despite its very restrictive assumptions and lack of theoretical
guarantees in our setup, REINFORCE+SoftMax was a very competitive base-
line overall. However, while its best checkpoint had high return, its training
was unstable and failed to converge in our experiments, which suggests it may
be unreliable.

Comparisons across environments The TopDown environment is the easiest
for most methods, regardless of the type of item embeddings. This is not
surprising as all methods besides Random either assume a top-down click
model, sample items in a top-down fashion or rely on data from a top-down
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logging policy. However, it is worth noting that other factors can dominate the
performance, such as sub-optimality of item embeddings for SAC+TopK (MF).
Conversely, DivPen was harder for most methods, because it requires a strong
additional constraint to obtain high returns: intra-slate diversity must be high.
SAC+GeMS was also affected by these dynamics, but remained able to beat
other methods by generating diverse slates. Finally, the use of diffused item
embeddings does not appear to cause lower returns for GeMS, compared with
focused ones, but is associated with larger confidence intervals for SAC+GeMS:
indeed, pivot items spanning multiple topics are more likely to be attractive,
at the expense of more fine-grained strategies, making the training process
uncertain.

6.6.2 GeMS overcomes boredom to improve its return (RQ2)

In Section 6.1 we highlighted that long-term optimization with RL can penalize
myopic behavior such as recommending only highly relevant but similar items,
which may lead to boredom. In this section, we verify that SAC+GeMS is able
to adapt its slate selection to cope with boredom. We recall that in our simu-
lated environments (detailed in Section 6.5.1), users get bored of a particular
topic whenever 5 of their latest 10 clicks were on items from that topic. When
a topic is saturated, its corresponding dimensions in the user embedding are
set to 0, which has the effect of diminishing the attractiveness of future items
presented to the user. It is therefore necessary to avoid boredom in order to
reach higher returns, even if it comes at the cost of lower immediate rewards.

We compare three approaches on the TopDown environment with focused
item embeddings: (i) the short-term oracle (STO) always maximizing the imme-
diate reward, (ii) SAC+GeMS with γ = 0.8 (i.e., our proposed method) where
γ is the discount factor of the RL algorithm, and (iii) SAC+GeMS with γ = 0
which does not explicitly include future rewards in its policy gradient. In this
environment, SAC+GeMSγ=0.8 achieves an average test return of 305.3, while
SAC+GeMSγ=0 reaches 194.3, and STO only obtains 107.7. These results sug-
gest that long-term optimization is indeed required to reach higher returns.
It may seem surprising that SAC+GeMSγ=0 gets better returns than STO, but
its training objective incentivizes average immediate rewards, which implicitly
encourages it to avoid low future rewards. However, adopting an explicit mech-
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anism to account for its causal effect on the user (i.e., setting γ = 0.8) allows
SAC+GeMS to improve its decision-making.

In Figure 6.2, we plot the distribution of item scores (i.e., the dot-product
between internal user and item embeddings as defined in Section 6.5.1) for the
items recommended in slates by each of the three methods, with the same seed
for all three plots. The dashed vertical line shows the score threshold of 0.28
needed to reach a relevance probability of 0.5. Therefore, items on the left of
this line have a lower click probability while items on the right have a higher
click probability. The color indicates how many topics were saturated when the
agent recommended that particular item whose score is plotted: one can see
that when the user is bored of at least one topic, items become less attractive
as scores are reduced.

When no topic is saturated (i.e., yellow distribution), STO recommends items
with excellent scores (above the threshold and up to 0.45): as a consequence,
STO gets high immediate rewards. However, by doing so it incurs a lot of
boredom (large orange areas). Overall, it leads to lower expected scores (solid
red line) and therefore fewer clicks. Conversely, SAC+GeMSγ=0.8 sacrifices
some immediate reward (yellow distribution shifted to the left) but causes very
little boredom (small orange area). Overall, by trading off relevance and diversity,
SAC+GeMSγ=0.8 yields good immediate rewards while limiting boredom. It therefore
gets higher average scores. SAC+GeMSγ=0 exhibits an intermediate behavior
due to its limited capabilities: it recommends items of varying relevance, yet
leads to substantial boredom (larger orange area than for γ = 0.8).

6.6.3 Balancing hyperparameters β and λ (RQ3)

In Section 6.3.3, we suggested that the choice of β and λ leads to trade-offs
that may impact the downstream performance of SAC+GeMS. As a reminder,
β adjusts the importance of accurate reconstruction versus smoothness and
structure in the latent space (i.e., controllability), while λ weights the click
reconstruction with respect to the slate reconstruction. Next, we verify our
intuition on the importance of these trade-offs by reporting (in Figure 6.3) the
best validation return obtained for different values of said hyperparameters,
on the TopDown environment with focused item embeddings.

Figure 6.3a suggests that, indeed, there exists a “sweet spot” in the selection
of β. It confirms the intuition described in Section 6.3.3 and the observation of
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Liu et al. (2021): β must be appropriately balanced in order to ensure high performance
on the downstream RL task. Specifically, we found that choosing β = 1.0 leads to
the highest return overall, regardless of whether a latent dimension of 16 or 32
is used.

The impact on the downstream performance of the trade-off between slate
and click reconstruction (Figure 6.3b) is less prominent but can still be ob-
served. It justifies our choice to add the click reconstruction term in the loss
(Eq. 6.1), even though clicks output by GeMS’ decoder are not used during RL
training. This also confirms the importance of introducing and adjusting the
hyperparameter λ: modeling clicks jointly with slates improves the final performance
of SAC+GeMS, but properly weighting the click reconstruction objective with respect
to the slate reconstruction objective is necessary.

6.7 conclusion

We have presented GeMS, a slate representation learning method based on vari-
ational auto-encoders for slate recommendation with reinforcement learning.
This method has the notable advantage of being flexible, allowing full-slate
modeling and lightweight assumptions, in contrast with existing approaches.

Findings and broader impact Our experiments across a wide array of envi-
ronments demonstrate that GeMS compares favorably against existing slate
representation methods in practical settings. Moreover, our empirical analysis
highlights that it effectively balances immediate and future rewards, and that
the trade-offs imposed by β and λ significantly impact the RL downstream
performance, indicating that properly balancing these hyperparameters is crit-
ical. Our work suggests that generative models are a promising direction for
representing rich actions such as slates.

Limitations Our simulated experiments demonstrate the effectiveness of GeMS
for representing slates in an RL framework. However, it is well-known that on-
line training of RL agents is too expensive and risky, and that in practice agents
must be trained offline, i.e., directly from logged data (Chen et al., 2019b). We
did not address here the specific challenges of offline RL, as we wished to iso-
late the contribution of the slate representation to downstream performance.
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Future work In future work, we will investigate how generative models can
be leveraged in the offline setting, in different scenarios, or with even richer
actions. We also plan to look into improvements of the architectures used for
structured action representations, for example by using domain knowledge
and user models.

6.8 reflections on the chapter

6.8.1 Research outcomes

In this chapter, we primarily investigated the fourth research question:

Research Question 4. How to train reinforcement learning agents that recommend
slates of items to users effectively and efficiently?

We have proposed an alternative way of treating the slate recommendation
problem, based on a data-driven representation of the structure of the slate-
feedback space, rather than hardcoded, strong inductive biases.

With this chapter, we also gained a different perspective on the third research
question:

Research Question 3. When do we need assumptions on user behavior, and how can
we test for the validity of these assumptions?

Indeed, and in contrast to common practices in the literature, it turns out
that the size and complexity of the slate space does not necessarily require
simplifying assumptions on user feedback, at least not for agent training. This
comes in contrast to the offline, item-centric approach of Chapters 4 and 5,
where assumptions were required to correctly identify and mitigate presenta-
tion biases.

6.8.2 Additional thoughts

GeMS offers the possibility not only to perform a continuous relaxation of the
discrete slate selection problem, but also to make that latent space semanti-
cally meaningful for the recommendation task. We showed that adding a click
prediction objective helps structure the latent space and lets the agent reach
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higher performance during RL training. It opens a wider alley of research into
the type of representations needed for effective and efficient RL training in
recommendation.

It is particularly interesting for offline reinforcement learning, where we have
to learn from a fixed dataset. Then, agents can potentially improve on the data-
generating policy thanks to two mechanisms: stitching parts of trajectories and
generalizing across states and actions (Levine et al., 2020). Adding side ob-
jectives to GeMS can allow generalisation to users and slates that are distinct,
but semantically close, in the sense that they yield similar outcomes (clicks,
boredom, . . . ). However, offline RL training of an agent based on GeMS would
come with additional challenges: the support of the training must be correctly
estimated in order to identify out-of-distribution user-slate pairs. Lee et al.
(2022b) proposed an action representation similar to GeMS, where the distribu-
tion of the latent proto-action is estimated thanks to a normalizing flow, which
guarantees that only in-distribution actions are being selected by the agent.
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D I S T R I B U T I O N A L

R E I N F O R C E M E N T L E A R N I N G
W I T H D U A L

E X P E C T I L E - Q U A N T I L E
R E G R E S S I O N

Recommendation environments, because they imply interactions with humans,
are highly stochastic. Such uncertainty can create noise that destabilizes the
learning process, and may create trade-offs between risk and reward. Devel-
oping better ways of estimating and acting with respect to it is thus certainly
a promising research direction for reinforcement learning-based recommenda-
tion systems, such as the one presented in the previous chapter.

I found the area of uncertainty-aware reinforcement learning agents to be
underexplored, so in this final research chapter, I chose to investigate in a
more general and theoretical manner the estimation of uncertainty in dynamic
and interactive environments. I chose to focus on distributional RL, as it is
often presented as the go-to approach for learning full value distributions and
therefore providing uncertainty estimation.

Quantile-based approaches for distribution RL are very popular because of
their performance and flexibility, but after initial experiments, we found that
their performance is limited by the use of the L1-based quantile loss function.
The usual fix for this bottleneck is to replace the original quantile loss with a
hybrid L1 - L2 Huber loss that can leverage the efficiency of L2 based losses.
But this comes at the cost of distributional estimation guarantees, and the value

185
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distribution often ends up collapsing to its mean, which defeats the purpose of
distributional RL. We wanted to find a way to obtain the best of both worlds,
thereby giving rise to the hybrid expectile-quantile approach presented in this
chapter.

This chapter is based on the following publication: Sami Jullien, Romain
Deffayet, Jean-Michel Renders, Paul Groth, and Maarten de Rijke, 2024. Dis-
tributional Reinforcement Learning with Dual Expectile-Quantile Regression.
Under review.

7.1 introduction

Distributional reinforcement learning (RL) (Bellemare et al., 2023) aims to main-
tain an estimate of the full distribution of expected return rather than only the
mean. Compared to a mean-based approach, it can be used to better capture
the uncertainty in the transition matrix of the environment (Bellemare et al.,
2017), as well as the stochasticity of the policy being evaluated, which may
enable faster and more stable training by making better use of the data sam-
ples (Mavrin et al., 2019).

Non-parametric approximations of the return distribution learned by quan-
tile regression have proven very effective in several domains (Dabney et al.,
2018a; Dabney et al., 2018b; Yang et al., 2019), when combined with deep RL
agents such as deep Q-networks (DQN) (Mnih et al., 2013) or soft actor-critic
(SAC) (Haarnoja et al., 2018). They come with the major advantage of provid-
ing guarantees for the convergence of distributional policy estimation (Dabney
et al., 2018b), and in certain cases, of convergence to the optimal policy (Row-
land et al., 2023), all while requiring few assumptions on the shape of the
return distribution and demonstrating strong empirical performance (Dabney
et al., 2018a; Yang et al., 2019). However, the best-performing quantile-based
agents are often obtained by replacing the original quantile regression loss
function, i.e., an asymmetric L1 loss, by an asymmetric Huber loss, i.e., a hy-
brid L1-L2 loss. By doing so, distributional guarantees vanish, as the proofs
proposed in previous work relied on the L1-based quantile regression (Belle-
mare et al., 2023; Dabney et al., 2018b). Critically, we show in Section 7.5.2
that the estimated distributions collapse to their mean in practice. In this chap-
ter, we propose a different approach, based on both quantile and expectile regression,
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that matches the performance of Huber-based agents while preserving distributional
estimation guarantees and avoiding distributional collapse in practice.

We are not the first to note that asymmetric L2 losses, i.e., that regress expec-
tiles of the target distribution, tend to yield degenerate estimated distributions
when training agents with temporal difference learning. Rowland et al. (2019)
note that expectiles of a distribution cannot be interpreted as samples from
this distribution, and therefore expectiles other than the mean cannot be di-
rectly used to compute the target values in distributional temporal difference
learning. Instead, they propose to generate samples from expectiles of the
distribution by adding an imputation step, that requires solving a costly root-
finding problem. While theoretically justified, we found this approach to be
extremely slow in practice, preventing widespread use at scale. In contrast,
our dual approach only requires an additional two-layer neural network and
computing a quantile loss function on top of the expectile loss function, which
adds close to no computational overheads when training Atari agents on mod-
ern GPUs.

Our contributions can be summarized as follows:
• We propose a dual expectile-quantile approach to distributional dynamic

programming that provably converges to the true value distribution.
• We release implicit expectile-quantile networks (IEQN),1 a practical imple-

mentation of our dual approach based on implicit quantile networks (Dab-
ney et al., 2018a).
• We show both on a toy example and at scale on the Atari-5 benchmark that

IEQN (i) avoids distributional collapse, and (ii) matches the performance of
the Huber-based IQN-1 approach.

7.2 background

7.2.1 Distributional reinforcement learning

We consider an environment modeled by a Markov decision process (MDP)
(S ,A, R, T, γ), where S and A are a state and action space, respectively, R(s, a)
denotes the stochastic reward obtained by taking action a in state s, T(· | s, a) is
the probability distribution over possible next states after taking a in s, and γ

1 Available at https://anonymous.4open.science/r/ieqn.

https://anonymous.4open.science/r/ieqn
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is a discount factor. Furthermore, we write π(· | s) for a (potentially stochastic)
policy selecting the action depending on the current state. We consider the
problem of finding a policy maximizing the average discounted return, i.e.,

π∗ = arg max
π

E

[
∞

∑
t=0

γtR(st, at)

]
, (7.1)

where at ∼ π(· | st) and st+1 ∼ T(· | st, at). We can define the action-value ran-
dom variable for policy π as Zπ : (s, a) 7→ ∑∞

t=0 γtR(st, at), with s0 = s, a0 = a.
We will refer to action-value variables and their estimators as Z-functions in
the remainder. Note that the Q-function, as usually defined in RL (Sutton and
Barto, 2018a), is given by Qπ(s, a) = E [Zπ(s, a)]. In this work, we consider ap-
proaches that evaluate policies through distributional dynamic programming,
i.e., by repeatedly applying the distributional Bellman operator T π to a candi-
date Z-function:

T πZ(st, at) = R(sπ
t , aπ

t ) + γZ(sπ
t+1, aπ

t+1). (7.2)

This operator has been shown to be a contraction in the p-Wasserstein distance
and therefore admits a unique fixed point Zπ (Bellemare et al., 2017). A ma-
jor challenge of distributional RL resides in the choice of representation for
the action-value distribution, as well as the exact implementation of the distri-
butional Bellman operator. For simplicity, in the remainder and in line with
previous work, we only consider empirical distributions (Bellemare et al., 2023,
Definition 5.5) (i.e., whose representation can fit in finite memory), and refer to
the empirical representation distributional Bellman operator (Bellemare et al.,
2023, Algorithm 5.1) as T π.

7.2.2 Quantile and expectile regression

Let Z be a real-valued probability distribution. The α-quantile qα of Z is defined
as a value splitting the probability mass of Z in two parts of weights α and 1− α,
respectively:

P(z ≤ qα) = α. (7.3)

Therefore, the quantile function QZ : α 7→ qα is the inverse cumulative distribu-
tion function: QZ = F−1

Z . Alternatively, quantiles are given by the minimizer
of an asymmetric L1 loss:

qα = arg min
q

Ez∼Z
[(

α1z>q + (1− α)1z≤q
)
|z− q|

]
. (7.4)
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Expectiles and the expectile function EZ : τ 7→ eτ are defined analogously, as the
τ-expectile eτ minimizes the asymmetric L2 loss:

eτ = arg min
e

Ez∼Z

[
(τ1z>e + (1− τ)1z≤e) (z− e)2

]
. (7.5)

7.2.3 Quantiles and expectiles in distributional RL

Quantile regression has been used for distributional RL in many previous stud-
ies (Dabney et al., 2018a; Dabney et al., 2018b; Yang et al., 2019) where a pa-
rameterized quantile function Qθ

Z(s, a, α) is trained using a quantile temporal
difference loss function derived from Eq. (7.4), i.e., for N estimated quantiles:

LQ

(
Qθ

Z(s, a, ·)
)
=

N

∑
i=1

N

∑
j=1

lQ(qi, zj) with lQ(qi, zj)=
(

αi1zj>qi + (1− αi)1zj≤qi

) ∣∣zj − qi
∣∣ ,

(7.6)
where the trainable quantile values qi = Qθ

Z(s, a, αi) are obtained by query-
ing the quantile function at various quantile fractions αi, which can be fixed
by the designer (Dabney et al., 2018b), sampled from a distribution (Dab-
ney et al., 2018a), or learned during training (Yang et al., 2019). In quantile-
based temporal difference (QTD) learning, the target samples zj can be ob-
tained by querying the estimated quantile function at the next state-action
pair: zj = r + γQθ

Z(s
′, a′, αj).2 Indeed, because the true quantile function is the

inverse CDF of the action-value distribution, Dabney et al. (2018b) and Belle-
mare et al. (2023) showed that, among N-atoms representations, quantiles at
equidistant fractions minimize the 1-Wasserstein distance with the action-value
distribution and that the resulting projected Bellman operator is a contraction
mapping in such a distance. Rowland et al. (2023) extended these results to
prove the convergence of QTD learning under mild assumptions. We refer to
these studies for a more detailed convergence analysis.

In contrast, expectile-based temporal difference (ETD) learning does not al-
low the same training loss as the one given by Eq. (7.6). We first write the
generic ETD loss derived from Eq. (7.5):

LE

(
Eθ

Z(s, a, ·)
)
=

N

∑
i=1

N

∑
j=1

lE(ei, zj) with lE(ei, zj) =
(

τi1zj>ei + (1− τi)1zj≤ei

) (
zj − ei

)2 ,

(7.7)
2 We can have a′ ∼ π(· | s′), as in actor-critic algorithms, or a′ = arg maxaQθ

Z(s
′, a, αj) as in

Q-learning. This section is agnostic to that choice but we refer to (Bellemare et al., 2023) for
convergence analysis in the latter case.
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with ei = Eθ
Z(s, a, τi). Here, choosing zj = r + γEθ

Z(s
′, a′, τj), analogously to

QTD learning and non-distributional TD learning, would cause the update to
approximate a different distribution because the expectile function is in gen-
eral not the inverse CDF of the return distribution, meaning that expectiles
cannot be considered as samples from the distribution. Rowland et al. (2019)
formalized this idea using the concept of Bellman-closedness, i.e., that the pro-
jected Bellman operator yields the same statistics whether it is applied to the
target distribution or to the implicit distribution given by statistics of the target
distribution (i.e., in our case a uniform mixture of diracs with locations given
by quantiles or expectiles).

7.3 related work

Distributional reinforcement learning has been shown to result in several ben-
efits – by ascribing randomness to the value of a state-action pair, an algorithm
can learn more efficiently for close states and actions (Mavrin et al., 2019), as
well as capture possible stochasticity in the environment (Martin et al., 2020).
Multiple families of approaches have emerged.

Estimating a parameterized distribution is a straightforward approach, and
has been explored from both Bayesian (Strens, 2000; Vlassis et al., 2012) and
frequentist (Jullien et al., 2023) perspectives. However, this usually requires an
expensive likelihood computation, as well as making a restrictive assumption
on the shape of the return distribution Z. For instance, assuming a normal dis-
tribution when the actual distribution is heavy-tailed can yield disappointing
results.

Thus, approaches based on non-parametric estimation are also used to ap-
proximate the distribution. C51 (Bellemare et al., 2017) quantizes the domain
where Z has non-zero density (usually in 51 atoms, hence the name), and
performs weighted classification on the atoms, by computing the cross-entropy
between Z and T πZ. While C51 increases performance over non-distributional
RL, it requires the user to manually set the return bounds and is not guaran-
teed to minimize any p-Wasserstein metric with the target return distribution.

Another important non-parametric approach to the estimation of a distribu-
tion is quantile regression. Quantile regression relies on the minimization of
an asymmetric L1 loss. Estimating quantiles allows to approximate the action-
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value distribution without relying on a shape assumption. QR-DQN (Dab-
ney et al., 2018b) introduced quantile regression as a way to minimize the 1-
Wasserstein metric between Z and T πZ. ER-DQN (Rowland et al., 2019) traded
the estimation of quantiles for expectiles, at the cost of a potential distribution
collapse, that they prevent via a root-finding procedure. Further, implicit quan-
tile networks (IQN) (Dabney et al., 2018a) sample and embed quantile fractions,
instead of keeping them fixed, thereby improving performance. Fully param-
eterized quantile functions (FQF) (Yang et al., 2019) add another network gen-
erating quantiles fractions to be estimated. We build on IQN and its expectile
counterpart to propose a well-performing, non-collapsing agent.

7.4 method

7.4.1 Dual training of quantiles and expectiles

It has been suggested that expectiles are more efficient than quantiles for func-
tion approximation (Newey and Powell, 1987; Waltrup et al., 2015), but unlike
quantiles, they cannot be directly used to generate proper samples of the esti-
mated return distribution (zj in Eq. (7.7)), which are required in distributional
dynamic programming. Rowland et al. (2019) proposed an imputation strategy,
i.e., a way to generate samples of a distribution that matches the current set of
estimated expectiles, by solving a convex optimisation problem. In our exper-
iments, we found that applying this imputation strategy tends to drastically
increase the runtime (around 25 times slower in our setup), making experi-
mentation with such methods close to impossible for researchers with modest
computing resources. In this paper, we propose to learn a functional mapping
between expectiles and quantiles and use the predicted quantiles to generate
samples.

We learn a single Z-function using expectile regression. Therefore, we have
∀(s, a) ∈ S × A, τ ∈ [0, 1], Ẑ(s, a, τ) =̂ EZ(s,a)(τ), where Z is the true Z-
function we wish to estimate. Then, we note that for non-deterministic Z(s, a),
the expectile function at a given state-action pair EZ(s,a) ∈ R[0,1] is a strictly in-
creasing and continuous function that spans the entire convex hull of the distri-
bution’s support (Holzmann and Klar, 2016). Meanwhile, the quantile function
QZ(s,a) ∈ R[0,1] spans the distribution’s support. As a consequence, every quan-
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tile is a single expectile, i.e., there exists a functional mapping from quantile
fractions to expectile fractions. In this work, we propose to learn such a mapper
M̂(s, a, τ) =̂ E−1

Z(s,a) ◦ F−1
Z(s,a)(τ) using the quantile regression loss function from

Equation (7.6). We now have ∀(s, a) ∈ S × A, τ ∈ [0, 1], Ẑ(s, a,M̂(s, a, τ)) =̂

QZ(s,a)(τ). We can then simply query our estimator of quantiles at the next
state-action pair to yield a sound imputation step, while the parameters of the
Z-function are learned through expectile regression.

For any triplet (st, at, τ), our proposed update step can be described as fol-
lows:

1. Generate approximate samples of the target distribution using the quan-
tile representation :

ẑ ∼ R(st, at) + γẐ(st+1, at+1,M̂(st+1, at+1, τ))

2. Use expectile regression to learn the Z-function:

Ẑ(st, at, τ)← ER (ê, ẑ) with ê ∼ Ẑ(st, at, τ)

3. Use quantile regression to learn the mapper:

M̂(st, at, τ)← QR (q̂, ẑ) with q̂ ∼ Ẑ(st, at,M̂(st, at, τ))

The state-action embeddings of the mapper are copied form those of the
Z-function. This way, the parameters of the Z-function (including the large
image embedding networks and the overall scale of the rewards) are learned
using expectile regression, while only the residual shape difference between
the quantile and expectile function is learned by the mapper, using quantile
regression.

The update step described above can be formalized as a distributional op-
erator, that we define in Section 7.4.2. We prove that our proposed update
operator converges to the distributional Bellman operator in the limit of infi-
nite estimated quantile/expectile fractions. Then, in Section 7.4.3, we detail a
practical implementation of dual expectile-quantile RL based on implicit quan-
tile networks that we name IEQN.

7.4.2 Convergence of the dual expectile-quantile operator

In this section, we prove that our proposed update operator converges to the
distributional dynamic programming operator from Equation (7.2) as the num-
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ber of quantiles and expectiles kept in memory grows infinitely large, i.e., that
the error incurred by our dual expectile-quantile operator vanishes in the limit
of an infinite number of statistics to be evaluated. This result relies on several
properties of the expectile function, including its absolute continuity that we
establish in the following lemma:

Lemma 1. Let Z be a random variable taking values in [a, b] with finite second mo-
ment and whose CDF admits finitely many discontinuities. Then, the expectile func-
tion EZ : τ 7→ arg mine Ez∼Z

[
(τ1z>e + (1− τ)1z≤e) (z− e)2

]
is absolutely con-

tinuous on [0, 1].

The proof is in Appendix 7.C. We are now able to prove our main result,
Theorem 2, i.e., that our dual regression projection operator approximates the
target distribution well in the limit of an infinite number of quantile/expectile
fractions:

Theorem 2. Let τk = 2k−1
2K , for k = 1, . . . , K, and let ΠK

M : P(R) → P(R) be the
dual regression projection operator defined as:

∀η ∈P(R), ΠK
M(η) =

1
K

K

∑
k=1

δEη(floorK(E−1
η (F−1

η (τk)))
=

1
K

K

∑
k=1

δ
Eη

(
2⌊KM(τk)+1/2⌋−1

2K

) ,

where Eη : [0, 1] → R is the expectile function of η, F−1
η : [0, 1] → R is the inverse

CDF – i.e., the quantile function – of η, and floorK(x) = τ⌊Kx+ 1
2⌋. Let η ∈P(R) be

a bounded-support probability distribution with finite second moment and whose CDF
admits finitely many discontinuities, and let W1 be the 1-Wasserstein distance. Then:

lim
K→∞

W1(ΠK
Mη, η) = 0 .

Reusing the notation from the theorem, we can formally define our dual
expectile-quantile operator. Let π ∈P(A)S be a policy, we have:

T π
MK = ΠK

MT π , (7.8)

where T π : Z(st, at) = R(st, at) + γEπ

[
Z(sπ

t+1, aπ
t+1)

]
is the distributional Bell-

man operator (see Section 7.2.1). We can now derive a corollary in the context
of distributional RL training:

On Markov decision processes with bounded rewards and γ < 1, the dual
expectile-quantile operator converges pointwise to the distributional Bellman
operator:

lim
K→∞

T π
MK = T π pointwise.
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This results comes in contrast to the failure of the naive expectile opera-
tor (Rowland et al., 2019) to match the distributional Bellman operator. We
now present a practical implementation of an agent using our dual approach.

7.4.3 A practical implementation: IEQN

We use the principle described in Section 7.4.1 to implement IEQN (Algo-
rithm 1), a new distributional RL agent based on implicit quantile networks
(IQN) (Dabney et al., 2018a). The Z-function is modeled as a neural network
inputting a state and a fraction τ ∼ U (0, 1), and outputting τ-expectile val-
ues for all actions. Its parameters are learned via an asymmetric L2 loss, i.e.,
expectile regression. We also use a neural network to implement the mapper
between quantile fractions and expectile fractions, and learn its parameters via
an asymmetric L1 loss, i.e., quantile regression.

Algorithm 1 Implicit expectile-quantile networks (IEQN) update

Require: Z-function Zθ, mapper mϕ, fractions (τi)i=1,...,N ∼ U ([0, 1]), learning
rate λ.
Collect experience (s, a, r, s′)
for i = 1, . . . , N do

Compute expectile values ei ← Zθ(s, a, τi) and quantile values qi ←
Zθ(s, a, mϕ(τi))

Compute the greedy next-action a′ ← maxb∈A
1
N ∑N

i=1 Zθ(s′, b, τi)

Compute target samples zi ← r + γ · stop_grad(Zθ(s′, a′, mϕ(τi)))

end for
Compute expectile loss LE ← 1

N2 ∑N
i=1 ∑N

j=1

(
τi1zj>ei + (1− τi)1zj≤ei

) (
zj − ei

)2

Compute quantile loss LQ ← 1
N2 ∑N

i=1 ∑N
j=1

(
τi1zj>qi + (1− τi)1zj≤qi

) ∣∣zj − qi
∣∣

Update expectile function parameters θ ← θ − λ∇θLE

Update mapper parameters ϕ← ϕ− λ∇ϕLQ
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7.5 experiments

We first demonstrate on a toy MDP the benefits of learning quantiles and ex-
pectiles together. We then describe our experimental setup and results on the
Atari Arcade Learning Environment (ALE).

7.5.1 Chain MDP: A toy example
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(a) Approximating a distribution with separate and dual training.
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Figure 7.1: (a) Approximating a bimodal distribution with quantile and expectile re-

gression. Quantile regression approximates the inverse CDF, albeit with high variance,

especially on extreme values (left, blue curves). Expectiles converge very quickly to

the expectile function (left, red curves). When training a mapper to generate quantiles

from expectiles, quantile estimation becomes much more efficient (right). (b) Distribu-

tional RL with function approximation in a chain MDP with 4 states, and a bimodal

reward distribution at the last state. The expectile function collapses as the temporal

difference error propagates to previous states (left, red curves) while the quantile func-

tion is a poor approximation of the inverse CDF (left, blue curves). Our dual method

solves both problems (right).
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We start by observing the effect of our proposed operator in a toy environ-
ment. The MDP comprises 4 states, each pointing to the next through a unique
action and without accumulating any reward, until the last state s4, where the
episode terminates and the agent obtains a reward sampled from a bimodal
distribution r ∼

(
1
2N (−2, 1) + 1

2N (+2, 1)
)

(see Appendix 7.B for a visual de-
scription).

Figure 7.1a highlights the advantageous properties of expectile regression
that were introduced in prior work (Philipps, 2021a; Philipps, 2021b; Waltrup
et al., 2015). When trying to approximate the distribution of terminal rewards
directly from samples (left), expectile regression yields more accurate estimates
than quantile regression in the low-data regime (recall that the quantile func-
tion is the inverse CDF while the expectile function is in general not). Inter-
estingly, coupling expectile regression with our mapper (right) allows us to
recover the quantile function much more efficiently than quantile regression
itself.

In Figure 7.1b (left), we illustrate the deficiencies of regular quantile and ex-
pectile dynamic programming. Quantile function learning is sample-inefficient
and fails to approximate the distribution within the given evaluation budget.
However, we observe that the distribution information is propagated correctly
through temporal difference updates, since the quantile functions estimated at
each state coincide. In contrast, the expectile function collapses to the mean as
the error propagates from s4 to s1. This is due to the fact that expectile values
at the next state-action pair cannot be used as pseudo-samples of the return
distribution Z(st+1) (Rowland et al., 2019). Finally, Figure 7.1b (right) shows
that our dual training method, where the pseudo-samples of Z(s′, a′) are the
estimated quantiles Zθ(st+1, mϕ(τ)), solves both issues: the expectile function
does not collapse anymore and the quantile function approximation is more
accurate.

7.5.2 Experiments on the Atari Arcade Learning Environment

Baselines

We experimented with the following baselines to evaluate our approach:

IQN-0, IQN-1 We approximate quantiles using the general approach described
in IQN (Dabney et al., 2018a), respectively without and with a Huber loss.
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IEN-Naive We use a similar approach as for IQN, but trained with an ex-
pectile loss and a naive imputation step as described in (Rowland et al.,
2019), i.e., expectile values are used as target for the temporal difference
loss. The solver-based implementation described by the authors was too
slow on our setup, as it was approximately 25 times slower than the other
baselines.

Environments

We opted to conduct our experiments with the Atari Learning Environment
(ALE) (Bellemare et al., 2013), following the setup of Machado et al. (2018),
notably including a 25% chance to perform a sticky action at each step, i.e., re-
peating the latest action instead of using the action predicted by the agent. This
creates stochasticity in the environment, which should be captured by distri-
butional RL agents. In order to accommodate for limited computing resources,
we constrained ourselves to the Atari-5 subbenchmark (Aitchison et al., 2023),
yet using 5 seeds to reduce the uncertainty in our results. We perform 25

validation episodes every 1M steps to generate our performance curves. As
is common with ALE, we report human-normalized scores, rather than raw
game scores, and we aggregate them using the interquartile mean (IQM), as
it is a better indicator of overall performance (compared to sample median) (Agar-
wal et al., 2021), due to its robustness to scale across tasks and to outliers. It
is especially needed, as the presence of sticky actions increases the number of
outlier seeds.

Implementation details

We base all baselines and our method on the same underlying neural network,
implemented in JAX (Bradbury et al., 2018). Its architecture follows the struc-
ture detailed by Dabney et al. (2018a). We used the training loop composition
of CleanRL (Huang et al., 2022b). Hyperparameters can be found in Appendix
7.A.1. We implemented the Z-function for all agents as a feed-forward neural
network with layer normalization. We did not use the fraction proposal net-
work introduced with FQF (Yang et al., 2019), as our method can be seen as
complementary to it, and we focus on the effect of the choice of statistics. Fi-
nally, we found that using layer normalization increased performance for both
our method and baselines.
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Figure 7.2: Interquartile mean of the human normalized score of distributional RL

agents on the Atari5 benchmark with 5 random seeds per environment. Shaded areas

correspond to the 25-th and 75-th percentiles of a bootstrap distribution. A rolling

average with window size of 20M frames is performed to enhance readability.

As described in Algorithm 1, we only use the expectile loss to update the
Z-function for our agent, while we use the quantile loss to update our mapper.
The mapper is implemented as a two layer, residual fully-connected neural
network with ReLU and Tanh activations. Since it is queried to obtain both
the candidate and target values, we use a mapper-specific target network up-
dated less frequently than the live network, using Polyak averaging (Polyak
and Juditsky, 1992) with a weight of 0.5. We share the parameters across all
states, to simplify its architecture. We detail the implications of this choice in
Appendix 7.A.3.

Results

In this section, we verify that our dual approach also provides benefits at scale,
on a classic benchmark.
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Table 7.1: Average and standard deviation of the distance between quantile (respec-

tively expectile) 0.1 and 0.9, relatively to the scale of the Q-function, at the end of

training.

Quantiles spread Expectiles spread

IQN-0 1,25 ± 0,198 -
IQN-1 0,144 ± 0,072 -
IEN-Naive - 0,174 ± 0,195

IEQN 0,721 ± 0,142 0,465 ± 0,086

We first present in Figure 7.2 the aggregated results over 5 seeds on the
Atari5 benchmark. We can see that despite a slower start, IEQN ends up match-
ing the performance of IQN-1. To get statistically stronger results, we also
performed a bootstrap hypothesis test on the difference of IQMs at the end of
training (we average scores from the last 5 validation epochs to be robust to
instabilities). We found that our method surpasses the performance of both
the quantile approach (achieved significance level 0.0117), and naive expectile
approach (achieved significance level 0), thereby demonstrating the benefits of
dual regression over single regression of either quantiles or expectiles on the
final performace.

Furthermore, we verify in Table 7.1 that IEQN avoids distributional collapse
in practice. In fact, while IQN-1’s estimated distribution is much narrower than
IQN-0’s – a confirmation that the Huber loss causes distributional collapse,
IEQN’s quantile spread much larger than IQN-1’s. Moreover, the expectile
spread of IEQN is much larger and stable than that of IEN-Naive, suggest-
ing that expectile distributional RL yields degenerate distributions, as noted
in (Rowland et al., 2019), but that dual expectile-quantile distributional RL
avoids this collapse.

7.6 conclusion

We proposed a statistics-based approach to distributional reinforcement learn-
ing that uses the simultaneous estimation of quantiles and expectiles of the
action-value distribution. This approach presents the advantage of leverag-
ing the efficiency of the expectile-based loss for both expectile and quantile
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estimation while solving the theoretical shortcomings of expectile-based distri-
butional reinforcement learning, which often lead to a collapse of the expectile
function in practice.

We showed on a toy environment how the dual optimization affects the statis-
tics recovered in distributional RL: in short, the quantile function is estimated
more accurately than with vanilla quantile regression and the expectile func-
tion remains consistent after several steps of temporal difference training. We
then benchmarked our approach at scale, on the Atari5 benchmark. Our model,
IEQN, matched the performance of the Huber-based IQN-1 and surpassed that
of both expectile and quantile-based agents, demonstrating its effectiveness in
practical scenarios.

We open possibilities for future research to use a distributional approach that
performs well and does not collapse. For future work, we plan to investigate
how the dual approach can be used in risk-aware decision-making problems,
and how it performs when the goal is to optimize risk metrics such as (con-
ditional) value-at-risk. Moreover, we plan to gather insights into what type of
behavior is favored by the quantile and expectile loss, respectively.

7.7 reflections on the chapter

7.7.1 Research outcomes

This chapter serves towards answering my final research question:

Research Question 5. How can we train reinforcement learning algorithms to handle
high degrees of uncertainty, which is common in interactive recommender systems?

Distributional reinforcement learning is a promising approach for training
RL agents under uncertainty, but this chapter showed that properly captur-
ing the environmental stochasticity, let alone act with respect to it, is far from
trivial. We proposed a theoretically valid but efficient approach to the distribu-
tional value estimation problem. More work is now needed to find principled
ways to act with respect to the estimated uncertainty, and to study the effects
of doing so on the behavior of recommender systems.
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7.7.2 Additional thoughts

Expectiles possess a range of interesting properties that we have not used in
this chapter. They provide a natural measure of heteroskedasticity, which en-
ables calibrated regression on heteroskedastic data (Barry et al., 2022). They
allow us to better study the effect of binary variables than quantiles, as the
expectile function of a binary variable spans the whole [0, 1] interval, whereas
quantiles have to be either 0 or 1. An interesting corrolary is the ability of expec-
tiles to capture intersectional effects: Philipps (2021a) uses expectile regression
to study the effect of being Black on mortgage approval rates given the individ-
ual is likely (high expectile) or unlikely (low expectile) to be approved given
their other personal data. Expectile regression has also been used as a way
to regress a soft maximum other data points, by approximating the regression
line of an expectile fraction close to 1 (Kostrikov et al., 2022). Finally, expec-
tiles have been used in finance applications as they yield risk measures with
favorable properties, compared to metrics based on quantiles like CVaR (Chen,
2018).

All of these properties make expectile regression a valuable tool that, I be-
lieve, is underexplored and could have practical applications in many fields,
including information retrieval.





C H A P T E R A P P E N D I X

7.A hyperparameters, code and implementation
details

7.a.1 Hyperparameters

We use JAX (Bradbury et al., 2018) to train our models. A full training pro-
cedure of 200M training frames and corresponding validation epochs takes
approximately 50 hours in our setup.

Table 7.A.1: Z-function hyperparameters.

Key Value

Discount factor 0.99
Batch size 32
Fraction distribution U ([0, 1])
Learning rate 1e−4

Random frames before training 200000
Size of convolutional layers [32, 64, 64]
Size of fully-connected layer 512
Critic updates per sample 2
Buffer size 1e6
Frames between target network updates 35000
Target network update rate 1.0
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Table 7.A.2: Mapper hyperparameters.

Key Value

Layer size 64
Learning rate 7e−5

Target network update rate 0.5

7.a.2 Code

Our training and evaluation loop is based on CleanRL (Huang et al., 2022b).
The anonymized code base is available on https://anonymous.4open.science/

r/ieqn.

7.a.3 Sharing the mapper’s parameters

Sharing the mapper’s parameters across states and actions allows to lighten
the computational burden, as it is part of the goal of this chapter. We found
this technique to work well in practice on the Atari5 benchmark, although it
requires additional assumptions in theory. We review these assumptions in
this section.

Yao and Tong (1996) showed that there exists such a shared mapping be-
tween quantile and expectile a when the regression follows a location-scale
model, i.e., for random variables X and Y:

Y = µ(X) + σ(X)ε ,

where µ and σ are continuous functions, ε is centered and finite-variance, and
ε, X are independent. When the return distribution follows this model, X be-
ing the state-action variable in this context, sharing the mapper’s parameters
is theoretically valid. While this may seem limiting, it does not require all
state-action pairs to be allocated the same distributions, only that they share
a common shape. Moreover, the location-scale family is quite broad, as it in-
cludes, e.g., Normal, Student, Cauchy, GEV distributions, and more.

In many distributional reinforcement learning scenarios, the assumption
may be satisfied. For instance, when the environmental stochasticity emerges
from small, independent perturbations, i.e., normally-distributed errors, the
return distribution at every state will still be normally distributed as convo-

https://anonymous.4open.science/r/ieqn
https://anonymous.4open.science/r/ieqn
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lutions of Gaussian distributions are also Gaussian. On the other hand, this
assumption can fail under high-frequency transition distributions, i.e., branch-
ing behaviors, where the same state-action pair can yield drastically different
outcomes and the reward-next-state distribution has non-continuous support.
We leave for future work the investigation of when sharing the mapper’s pa-
rameters across state-action pairs fails in practice.

7.B toy markov decision process

s1 s2 s3 s4

R1 R2 R3 R4

Figure 7.B.1: Toy Markov decision process

7.b.1 Expectile regression

Expectiles were originally introduced as a family of estimators of location pa-
rameters for a given distribution, to palliate possible heteroskedasticity of the
error terms in regression (Newey and Powell, 1987; Philipps, 2021a).

Expectiles can be seen as mean estimators under missing data (Philipps,
2021b). Unlike quantiles, they span the entire convex hull of the distribution’s
support, and on this ensemble, the expectile function is strictly increasing: an
expectile fraction is always associated to a unique value. Expectiles have been
used in reinforcement learning successfully before (Rowland et al., 2019), but
in a way that requires a slow optimization step to achieve satisfactory perfor-
mance. Moreover, expectile regression is subject to the same crossing issue as
quantiles, albeit empirically less so (Waltrup et al., 2015). Expectiles have also
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been used in offline reinforcement learning to compute a soft maximum over
potential outcomes seen in the offline data (Kostrikov et al., 2022).

7.C proofs

Our proof of Theorem 2 requires the absolute continuity of the expectile func-
tion. Therefore, we first prove the following lemma:

Lemma 1. Let Z be a random variable taking values in [a, b] with finite second mo-
ment and whose CDF admits finitely many discontinuities. Then, the expectile func-
tion EZ : τ 7→ arg mine Ez∼Z

[
(τ1z>e + (1− τ)1z≤e) (z− e)2

]
is absolutely con-

tinuous on [0, 1].

Proof. Our proof relies on the Banach-Zarecki theorem (Zaretsky, 1925), which
states that any real-valued function f defined on a real bounded closed interval
is absolutely continuous if and only if on this interval:

(i) f is continuous;
(ii) f has bounded variation;

(iii) f follows the Luzin N property (Luzin, 1915), i.e., the image by f of a set
with null Lebesgue measure also has null Lebesgue measure.

It is well-known that the expectile function is continuous on [0, 1] (Holzmann
and Klar, 2016; Philipps, 2021b). Therefore, (i) is satisfied.

EZ is monotonically increasing and takes values in the finite support of Z.
Therefore it has bounded variation and (ii) is satisfied.

In order to prove (iii), we first note that any function that is differentiable
on a co-countable set has the Luzin N property (Luzin, 1915). We therefore
use our assumption that Z admits a finite number of discontinuities in the
following.

Let FZ be the CDF of Z and D = {z ∈ [a, b] , limx→z FZ(x) ̸= FZ(z)} be the
finite set of points at which FZ is not continuous. D is a finite set within a metric
space and therefore closed. As a consequence, its complement C[a,b] = [a, b]\D
is open in [a, b], i.e., ∀z ∈ C[a,b], ∃ε > 0 such that ∀x ∈ [a, b] , d(x, z) < ε ⇒
x ∈ C[a,b]. In other words, if FZ is continuous at a point within [a, b], it is also
continuous in a neighborhood of that point within [a, b]. By assumption, the
set CN[a,b] =

{
z ∈ [a, b] , ∃ε > 0 , ∀x ∈ [a, b] , d(x, z) < ε⇒ x ∈ C[a,b]

}
of points

where FZ is continuous in a neighborhood of said point is therefore co-finite.
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It has been shown that the expectile function EZ is continuously differen-
tiable at any point τ ∈ [0, 1] such that FZ is continuous in a neighborhood of
EZ(τ) (Holzmann and Klar, 2016; Newey and Powell, 1987). The expectile func-
tion is bijective (Philipps, 2021b) so the set of points where EZ is differentiable
DEZ

[a,b] = E−1
Z

(
CN[a,b]

)
is also a co-finite set.

The expectile function is differentiable on a co-finite (and thus co-countable)
set, i.e., it has the Luzin N property (Luzin, 1915), which yields (iii).

We can finally apply the Banach-Zarecki theorem and conclude that the ex-
pectile function EZ is absolutely continuous on [0, 1].

We can now use the absolute continuity of the expectile function under our
assumptions to prove the following theorem:

Theorem 2. Let τk = 2k−1
2K , for k = 1, . . . , K, and let ΠK

M : P(R) → P(R) be the
dual regression projection operator defined as:

∀η ∈P(R), ΠK
M(η) =

1
K

K

∑
k=1

δEη(floorK(E−1
η (F−1

η (τk)))
=

1
K

K

∑
k=1

δ
Eη

(
2⌊KM(τk)+1/2⌋−1

2K

) ,

where Eη : [0, 1] → R is the expectile function of η, F−1
η : [0, 1] → R is the inverse

CDF – i.e., the quantile function – of η, and floorK(x) = τ⌊Kx+ 1
2⌋. Let η ∈P(R) be

a bounded-support probability distribution with finite second moment and whose CDF
admits finitely many discontinuities, and let W1 be the 1-Wasserstein distance. Then:

lim
K→∞

W1(ΠK
Mη, η) = 0 .

Proof. Thanks to the triangle inequality, we have :

W1(ΠK
Mη, η) ⩽ W1(ΠK

Mη, ΠK
Qη) + W1(ΠK

Qη, η) , (7.9)

where ΠK
Q is the projected quantile regression estimator defined as:

∀η ∈P(R), ΠK
Q(η) =

1
K

K

∑
k=1

δF−1
η (τk)

.
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Rowland et al. (2019, Lemma 3.2) showed that we have W1(ΠK
Qη, η) = O

(
1
K

)
.

We now turn to the first term:

W1(ΠK
Mη, ΠQη) =

K−1

∑
i=0

1
K

∣∣∣∣Eη

(
floorK

(
E−1

η

(
F−1

η

(
2i + 1

2K

))))
− F−1

η

(
2i + 1

2K

)∣∣∣∣
=

K−1

∑
i=0

1
K

∣∣∣∣Eη

(
floorK

(
E−1

η

(
F−1

η

(
2i + 1

2K

))))
−

Eη

(
E−1

η

(
F−1

η

(
2i + 1

2K

)))∣∣∣∣
⩽

K−1

∑
i=0

1
K

∣∣∣∣Eη

(
floorK

(
E−1

η

(
F−1

η

(
2i + 1

2K

))))
−

Eη

(
floorK

(
E−1

η

(
F−1

η

(
2i + 1

2K

)))
+

1
K

)∣∣∣∣ ,

(7.10)

where the last inequality is obtained thanks to the monotonicity of the expectile
function. By absolute continuity of the expectile function under our assump-
tions (proven in Lemma 1), we have:

lim
K→∞

∣∣∣∣Eη

(
floorK

(
E−1

η

(
F−1

η

(
2i + 1

2K

))))
−

Eη

(
floorK

(
E−1

η

(
F−1

η

(
2i + 1

2K

)))
+

1
K

)∣∣∣∣ = 0,
(7.11)

from which we can deduce limK→∞ W1(ΠK
Mη, ΠQη) = 0 and finally

lim
K→∞

W1(ΠK
Mη, η) = 0

.

Finally, we can derive our main result for the use of distributional dynamic
programming with both quantiles and expectiles: On Markov decision pro-
cesses with bounded rewards and γ < 1, the dual expectile-quantile operator
converges pointwise to the distributional Bellman operator:

lim
K→∞

T π
MK = T π pointwise.

Proof. We have T π
MK = ΠK

MT π. Bellemare et al. (2023) have shown that the
set of empirical distributions FE is closed under the operator T π (Proposi-
tion 5.7). Thus, for any empirical return distribution η ∈ FE, T πη is also
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empirical and its CDF admits finitely many discontinuities. Moreover, it has
bounded support. Indeed, if without loss of generality we consider that the
reward distribution take values in [0, Rmax], we have that every possible re-
turn distribution η takes values in [0, Rmax

1−γ ], and therefore T πη takes values in
[0, Rmax + γ Rmax

1−γ ] = [0, Rmax
1−γ ].

We can now apply Theorem 2:

∀η ∈ FE , lim
K→∞

W1(ΠK
MT πη, T πη) = 0 ,

and the result immediately follows.





8
C O N C L U S I O N

Recommender systems are and will continue to be imperfect. Having explored
many challenges of recommender systems, I now realize how easily the small
amount of available signal gets lost in noise and bias. Moreover, we cannot
directly observe how the systems we build are doing; we must resort to met-
rics, which often comes with caveats. This makes it especially hard to hold
the course of scientific progress. A natural reaction to that complexity would
be to turn to simplistic approaches, that you could expect to be less prone to
unexpected failures. Yet, simple, static, non-debiasing approaches are far from
exempt of failure modes, as we have seen throughout the thesis (see, e.g., Chap-
ter 3 or Chapter 4). Furthermore, we have observed multiple occurrences of
meaningful signals being detected by approaches that cannot fully capture the
complexity of human interaction with recommender systems (see, e.g., Chap-
ter 5 or Chapter 6). Therefore, I argue that acknowledging the complexity of
human behavior on online platforms, and learning to manage it, is a viable way
of making recommender systems less imperfect, as long as the proper tools are
used to ensure robust and reliable progress.

In this thesis I tried to provide a toolbox for recommender systems that are
aware of the distribution shifts involved with offering recommendations to a
person, and with deploying a new version of the model. A major requirement
for ensuring progress is a reliable evaluation setup. In Chapters 2 to 5, we
investigated how robust the evaluation practices traditionally used for static
recommender systems are in this new, augmented setting. We propose metrics
and protocols that address the limitations we found. In Chapters 6 and 7, we
propose tools for adapting off-the-shelf dynamic RL-based approaches to the
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very specific and challenging recommendation setting. I will now answer the
research questions defined in the introduction, in light of our findings.

8.1 summary of findings

Research Question 1. How can we evaluate recommender systems in a way that
accounts for their dynamic and interactive nature?

In Chapter 2, we saw that next-item prediction, the most prevalent evalua-
tion protocol for sequential recommendation, is not adapted to evaluating the
interactions between recommender systems and dynamic users. Essentially,
next-item prediction consists in building an idealized, static representation of
a user and making sure that our models match the idealized user preferences.
However, recommendation is not only a matching task, but also a sequential
control task, which must be evaluated on the key variables of choice (e.g., click-
through rate, user satisfaction) resulting from the whole sequence of interac-
tions. This is most easily done through A/B tests on a live recommender sys-
tem, but doing so is often costly and simply inaccessible for many academic
researchers. We therefore identified multiple possibilities for offline evaluation
that each have strengths and weaknesses and can be used together to enhance
reliability: counterfactual off-policy evaluation, intermediate model evaluation,
uncertainty-aware evaluation and simulators. In Chapter 3, we proposed such
a simulator suitable for research in recommender systems with dynamic users.

In Chapter 4, we identified another major hurdle in the way of evaluating the
performance of recommender systems under the changes they induce them-
selves: models trained on biased data can largely replicate these biases and
therefore fail on certain downstream tasks after deployment. This issue goes
undetected by current evaluation metrics, which are once again based on a
static, idealized representation of a user, this time often based on expert anno-
tations.

Research Question 2. Can we predict in a fully offline manner the performance of
models learned on biased data?

In Chapter 4, our empirical analysis across a wide range of semi-synthetic
benchmarks revealed that models trained on implicit feedback data can retain
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residual bias and therefore come with disappointing performance after deploy-
ment. We then found in Chapter 5 that distributional metrics, i.e., metrics that
consider the entire distributions of predictions and labels, can help detect bi-
ases in the learned models. We proposed one such metric, CMIP, and showed
that it is a good predictor of downstream performance for models trained on
biased data. We can therefore answer the question positively: while our pro-
posed approach is not foolproof and does not detect all types of residual bias,
it shows that it is possible to go beyond static evaluation and better predict the
downstream performance of models before deploying them.

Research Question 3. When do we need assumptions on user behavior, and how can
we test for the validity of these assumptions?

Chapter 4 showed that assumptions on user behavior, e.g., the examination
hypothesis, are required to learn effective click and relevance predictors on
biased implicit feedback data. Moreover, we found that simple models with
fewer parameters and flexibility in their structure (e.g., PBM, UBM) tend to
be more robust under the distribution shift that comes with deploying them,
even when the true user behavior is more complex. This observation reflects a
dilemma: we must find a trade-off between realism of the chosen user assump-
tions and robustness of the model. Our proposed CMIP metric constitutes a
tool that helps practitioners choose the most appropriate set of assumptions,
without bearing the cost of performing online evaluation on the downstream
task.

With a different perspective, in Chapter 6, we investigated when assump-
tions about the user are not required. We proposed an online reinforcement
learning agent that effectively learns to recommend slates (i.e., lists) of items
without the need for assumptions on the user behaves and how the slate can
be composed, despite the combinatorial nature of slate recommendation.

Research Question 4. How to train reinforcement learning agents that recommend
slates of items to users effectively and efficiently?

In Chapters 3 and 6, we showed that appropriate action representation learn-
ing is key to the success of RL-based slate recommender systems. In particular,
continuous relaxations of the discrete but combinatiorally large slate action
space seems to perform well. Even a simple top-K approach that uses nearest
neighbor search on item embeddings is often hard to beat. However, its per-
formance is largely dependent on the quality of the learned item embeddings
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and the complexity of the task. The flexible GeMS approach is overall more
robust to these factors.

Research Question 5. How can we train reinforcement learning algorithms to handle
high degrees of uncertainty, which is common in interactive recommender systems?

In Chapter 3, we found that in a typical recommendation scenario, environ-
mental uncertainty is a major hurdle for reinforcement learning agents. This
is due to both the very poor observability of the user preference and mindset –
interactions logs convey very little information – and to noise in the user feed-
back. While we identified agents that are more robust to such uncertainty, e.g.,
agents employing a transformer-based state encoder, developing models and
algorithms that handle uncertainty well is crucial for recommender systems.

In Chapter 7, we investigated the use of distributional reinforcement learning
algorithms, as they are a natural tool for handling uncertainty. We found that
these algorithms can indeed better handle environmental uncertainty. But to
enable full distribution estimation and therefore proper uncertainty estimation,
they must retain certain theoretical guarantees. In particular, we found that
approaches using L2 loss functions, despite their strong empirical performance
when estimating the expected value of the return distribution, lose their ability
to accurately estimate other points of the distribution, contrary to L1-based loss
functions. We therefore proposed a method that fuses the effectiveness of L2-
based loss functions with the distributional estimation guarantees of L1-based
loss functions.

8.2 future work

Finally, I would like to take a forward look at the future of recommender sys-
tems and their dynamic aspect. With the sustained use of recommendation-
powered platforms and the emerging popularity of short content services, there
is little doubt that recommender systems will need to account for the long-term
satisfaction of their users across hundreds of thousands of interactions, in or-
der to provide a satisfying user experience. This is first and foremost a concern
for people using recommendation-powered platforms, who look for an enrich-
ing, entertaining, and mind-opening experience thanks to online content. It is
also required for all major platforms as user retention is a well-known chal-
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lenge (Anderson et al., 2020), and as they come under increased scrutiny due
to the potential detrimental effects of filtering information with recommender
systems (European Commission, 2024). I now list three directions that I con-
sider to be promising and relevant for future recommender systems.

Improved capabilities for reinforcement learning agents Firstly, and unsur-
prisingly, more work is needed to make dynamic recommender systems more
effective in real-world scenarios. This will likely involve training agents in an
offline manner, and deploying them in a zero-shot or few-shot scenario. Offline
reinforcement learning is known to be challenging, and its application to rec-
ommender systems may require additional efforts. It is still an open question
how to integrate the inductive biases prevalent in information retrieval (either
known from user studies or learned via bias estimation or click modeling tech-
niques) into offline RL agents. Moreover, to properly account for the high
uncertainty of the recommendation task, we currently lack theoretically sound
and empirically effective methods for risk-aware control. Such methods could
be used internally, for instance to provide exploration heuristics or avoid out-
of-distribution situations, or to provide a better user experience, for instance
through confidence assessments or to adapt the recommendations to the user’s
mood (exploratory or conservative). More work is also needed to balance the
effectiveness and efficiency of RL-based recommender systems, especially as
recommender system scenarios can scale to millions or billions of items in the
catalog.

Richer representations Secondly, and while this thesis was mostly concerned
with reasoning capabilities, rather than representation capabilities, a lot of po-
tential improvements lie in richer representations. One way of doing so is to
include more information as input to the model: content of the item, metadata,
richer feedback, etc. Many datasets already include such information, but more
work on the evaluation is required to enable progress on this aspect. Models
can also enrich their capabilities, for instance by modeling more different and
complex biases, by being able to handle more modalities or by leveraging pre-
trained representations. Finally, I believe that semantic representations which
incorporate this information in a way that is tailored to the recommendation
task will be required in order to enable agents with both strong reasoning
capabilities and rich representations.
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Multi-objective optimization Thirdly, more objectives can and should be con-
sidered to provide a better user experience. In this thesis, only the cumulative
number of clicks was considered as an objective. We showed that by optimiz-
ing the whole sequence of recommendations, rather than the immediate value,
even such a utility-based objective can yield emergent properties such as diver-
sity, as it is a means to provide sustained satisfaction to the users. Yet, it is pos-
sible and often desirable to explicitly set different objectives: fairness metrics,
churn rate, etc. Considering the dynamic aspect of recommender systems is
both a challenge and an opportunity for some of these objectives: for instance,
while sparse rewards like churn rate are notoriously difficult to handle for RL
algorithms, multi-step optimization opens the possibility to achieve fairness on
the whole sequence of interactions rather than for each recommendation. Fi-
nally, how to optimize for several of these objectives at the same time remains
largely under-explored, both from a theoretical and empirical perspective.
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S U M M A R Y

Recommender systems can provide content that matches the interests of their
users, but too often, their recommendations are redundant or overly biased
towards a few categories of content. This is known to degrade the user experi-
ence, and affect both user-side and business-side metrics in the long run, and
it is suspected to have detrimental consequences on certain societal concerns
such as fairness and radicalization pathways. Part of the reasons why this hap-
pens is the fact that recommender systems do not account for the effect they
have on people using them.

In this thesis, I investigate recommendation models and agents that are able
to acknowledge the consequences of deploying them to a live recommendation
platform, and can therefore correctly optimize the target metrics in the long-
run. In particular, I distinguish two types of distribution shifts, i.e., of changes
in user-system interactions due to the deployment of recommender systems:
(i) algorithmic filtering in the selection and presentation of content that results
in interaction logs that are biased towards certain items, and (ii) the effect of
recommendations on a user’s behavior and preferences (e.g., boredom, new
interests, biased worldviews, . . . ) when multiple recommendations are made
sequentially. Because of these effects of recommender systems on their users,
recommendation is an inherently dynamic and interactive task.

The first part of the thesis is dedicated to the evaluation of dynamic and
interactive recommender systems. I present limitations of the traditional way
of evaluating sequential recommender systems and present some alternatives
that are able to capture the dynamic and interactive nature of recommenda-
tion. In particular, my collaborators and I propose an extensive simulation en-
vironment that encompasses many challenges for future research on dynamic
recommender systems. The second part of the thesis concerns the deployment
of models trained on interaction logs that are biased by the selection presented
to the user, which often comes from previous versions of the recommender
system in production. While there exists models that can, under certain as-
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sumptions, mitigate the biases present in the data, I found that current prac-
tices cannot ensure that the newly deployed model will be free of residual
biases. We therefore propose a new metric that helps predict the robustness of
the trained models to deployment. In the third part, I explore ways to make
reinforcement learning agents, which are natural candidates for long-term op-
timization of dynamic recommender systems, adapted to the recommendation
scenario. In particular, we propose an assumption-free agent that effectively
and efficiently learns to balance accuracy and diversity of recommendations,
in order to maximize long-term user engagement. Then, I investigate distri-
butional reinforcement learning agents that are better able to capture the high
uncertainty that can typically be found in recommendation scenarios and we
propose an effective but theoretically sound update rule for distributional rein-
forcement learning.



S A M E N VAT T I N G

Recommender-systemen kunnen inhoud aanbieden die aansluit bij de inter-
esses van hun gebruikers, maar al te vaak zijn hun aanbevelingen overbodig
of te zeer gericht op een paar categorieën inhoud. Het is bekend dat dit de ge-
bruikerservaring verslechtert en op de lange termijn zowel de gebruikerskant
als de bedrijfskant beïnvloedt. Bovendien wordt vermoed dat dit nadelige
gevolgen heeft voor bepaalde maatschappelijke problemen zoals on eerlijkheid
en radicaliseringstrajecten. Een deel van de redenen waarom dit gebeurt, is
het feit dat aanbevelingssystemen geen rekening houden met het effect dat ze
hebben op mensen die ze gebruiken.

In dit proefschrift onderzoek ik aanbevelingsmodellen en agenten die in
staat zijn om de gevolgen van hun inzet op een live aanbevelingsplatform
te onderkennen, en daardoor de doelmetriek op de lange termijn correct kun-
nen optimaliseren. In het bijzonder onderscheid ik twee soorten distributie-
verschuivingen, d.w.z. veranderingen in de interacties tussen gebruiker en
systeem als gevolg van de inzet van aanbevelingssystemen: (i) algoritmische
filtering bij de selectie en presentatie van inhoud die resulteert in interactiel-
ogs die bevooroordeeld zijn ten opzichte van bepaalde items, en (ii) het effect
van aanbevelingen op het gedrag en de voorkeuren van een gebruiker (bijv.
verveling, nieuwe interesses, bevooroordeelde wereldbeelden, . . . ) wanneer
meerdere aanbevelingen na elkaar worden gedaan. Vanwege deze effecten
van aanbevelingssystemen op hun gebruikers, is aanbeveling een inherent dy-
namische en interactieve taak.

Het eerste deel van het proefschrift is gewijd aan de evaluatie van dynamis-
che en interactieve aanbevelingssystemen. Ik presenteer de beperkingen van
de traditionele manier om sequentiële aanbevelingssystemen te evalueren en
presenteer enkele alternatieven die de dynamische en interactieve aard van
aanbevelingen kunnen weergeven. In het bijzonder stellen mijn co-auteurs en
ik een uitgebreide simulatieomgeving voor die veel uitdagingen bevat voor
toekomstig onderzoek naar dynamische aanbevelingssystemen. Het tweede
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deel van het proefschrift gaat over de inzet van modellen die getraind zijn op
interactielogs die vertekend zijn door de selectie die aan de gebruiker is gepre-
senteerd, vaak afkomstig van eerdere versies van het recommender-systeem in
productie. Hoewel er modellen bestaan die, onder bepaalde aannames, de
vertekeningen in de gegevens kunnen verminderen, heb ik ontdekt dat de
huidige praktijk niet kan garanderen dat het nieuw ingezette model vrij zal
zijn van restvertekeningen. Daarom stellen we een nieuwe metriek voor die
helpt bij het voorspellen van de robuustheid van de getrainde modellen bij het
inzetten. In het derde deel onderzoek ik manieren om reinforcement learning
agenten, die natuurlijke kandidaten zijn voor langetermijnoptimalisatie van dy-
namische aanbevelingssystemen, aan te passen aan het aanbevelingsscenario.
In het bijzonder stellen we een agent zonder aannames voor die effectief en
efficiënt leert om een evenwicht te vinden tussen nauwkeurigheid en diver-
siteit van aanbevelingen, om de betrokkenheid van gebruikers op de lange ter-
mijn te maximaliseren. Vervolgens onderzoek ik distributieve reinforcement
learning agenten die beter in staat zijn om de grote onzekerheid te vatten die
meestal voorkomt in aanbevelingsscenario’s en stellen we een effectieve maar
theoretisch verantwoorde updateregel voor distributief versterkingsleren voor.
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