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Abstract. Click logs collect user interaction with information retrieval
systems (e.g., search engines). Clicks therefore become implicit feedback
for such systems, and are further used to train click models, which in
turn improve the quality of search and recommendations results. Click
models based on expectation maximization (EM) are known to be effec-
tive and robust against various biases.

Training EM-based models is challenging due to the size of click logs,
and can take many hours when using sequential tools like PyClick. Alter-
natives, such as ParClick, employ parallelism and show significant speed-
up. However, ParClick only works on single-node multi-core systems. To
further scale up and out, in this work we introduce MassiveClicks, the
first massively parallel, distributed, multi-GPU framework for EM-based
click-models training. MassiveClicks relies on efficient GPU kernels, bal-
anced data-partitioning policies, and distributed computing to improve
the performance of EM-based model training, outperforming ParClick by
orders of magnitude when using GPUs and/or multiple nodes. Addition-
ally, the framework supports heterogeneous GPU architectures, variable
numbers of GPUs per node, allows for multi-node multi-core CPU-based
training when no GPUs are available.

Keywords: massively-parallel training + multi-node multi-GPU - click
models training - expectation-maximization models

1 Introduction

The primary goal of an Information Retrieval (IR) system, such as a search
or recommendation engine, is to return results that satisfy users’ information
needs: users submit queries and receive documents in response to their query.
Assessing the relevance of the documents (as answers to the query) is essential
for the further development of IR systems. While domain experts can run such
assessments, this approach does not scale with the number of IR applications and
queries. Instead, Radlinski et al. [21] demonstrate that user interactions, such
as clicks, may quantify users’ satisfaction and serve as a proxy for relevance

assessments. Thus, clicks are collected in click logs and further analysed.
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However, click logs are not perfect: user clicks suffer from various types of
biases, such as position or popularity bias [7]. To mitigate biases, many click
models have been developed, based on probabilistic graphical model (PGM)
[7,18] and neural networks [3,19,24], and trained with users’ click logs over time.
In general, the PGM-based approaches are more explainable, more compact, and
perform well, and are common for applications focusing on improving ranking
models for web search [1,14,22,23].

While PGM-based click models are known to be effective, their training effi-
ciency and scalability are not well studied, despite the immense volume of avail-
able search data - e.g., Google processes 1.2 trillion searches per year!. Scalabil-
ity is essential to process increasingly large datasets, while efficiency is essential
in light of raising concerns about the C'Oy footprint of big data applications
[15]. Recently, Khandel et al. [16] introduced ParClick, a scalable algorithm
for training Expectation-Maximization (EM)-based click models that enables
multi-core training of PGM-based models, and demonstrates significant speed-
up over previous methods. But ParClick’s applicability is limited to multi-core
shared-memory machines (basically, single-node CPU-only systems), and its per-
formance is limited by the available number of cores.

In this work, we advance state-of-the-art with MassiveClicks , a framework
that uses multi-scale, heterogeneous distributed systems for efficient EM-based
training of click models. Our proposed framework supports the most common
click models: Position-Based Model (PBM) [8], Click Chain Model (CCM) [13],
User Browsing Model (UBM) [9], Dynamic Baysian Network Model (DBN) [6],
and enables their training on heterogeneous system configurations, efficiently
scales up to multiple nodes with multiple GPU devices, and, in the absence of
GPU devices, can switch to CPU-based parallelism in a multi-node manner.

We measure the efficiency of MassiveClicks through extensive experiments
using different mixes of CPUs and GPUs, and large-scale datasets. We find that
MassiveClicks does use large-scale heterogeneous systems efficiently, and it can
outperform ParClick by a factor larger than 850x when using 14 nodes with
multiple GPUs.

This paper makes the following contributions:

— We design, implement, and analyze highly-efficient generic GPU kernels for
training EM-based click models.

— We introduce MassiveClicks , the first framework that can be deployed to
train click models using multi-node, multi-GPU, heterogeneous machine con-
figurations.

— We demonstrate MassiveClicks provides orders-of-magnitude improvement
over state-of-the-art in terms of training performance.

— We provide the open-source implementation of MassiveClicks.

! https://www.internetlivestats.com/google-search-statistics.
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2 Background and Related Work

2.1 EM-Based Click Models

Click models are developed to address the bias in logged users’ clicks over time.
Formally, given a click model M, the probability of a click on the document d
given the query g, will be calculated as follows [7]: P(Cy) = P(Eq=1)-P(Aq =
1), where P(E4 = 1) is the examination probability of document d, i.e., the
probability that a user will scan this document on search engine results page
(SERP) and P(A4 = 1) is the attractiveness probability of d, i.e., the probability
that user finds this document relevant for the input query. Various probabilistic
graphical model (PGM)-based click models designed in the last decade differ in
their assumption of user behavior while scanning the SERP, which in turn leads
to specific formulations for the examination and attractiveness probabilities.

It follows that each model consists of a few examinations and a large number
of attractiveness parameters. Their values can be estimated by employing the
Expectation-Maximization (EM) algorithm through an iterative process where
all parameters are initialized at the beginning, and new estimates are calculated
based on user click logs at each iteration. This process continues for a certain
number of iterations, such that the estimated parameters reach a convergence
point for click probability calculation.

The primary challenge with EM-based click models training is that for every
existing combination of query-document pairs, one attractiveness parameter
exists; thereby, the number of attractiveness parameters scales with the size
of the click log, and standard sequential training becomes too slow and ineffi-
cient. In this work, we propose to address this inefficiency by using all resources
available in heterogeneous distributed systems.

2.2 Programming Models

In this work, we consider a heterogeneous node to combine a CPU and one or
more GPUs. A distributed heterogeneous system is therefore a cluster of hetero-
geneous nodes, with potentially different architectures. For the remainder of this
work, we use NVIDIA GPUs; however, our approach works without modification
on, for example, AMD GPUs. The code, however, is not directly portable, but
can be converted using, for example, the hipify tool?.

To program distributed heterogeneous systems, we use a combination of
CUDA (for GPUs), multi-threading (for CPUs), and MPI (for communication).
Our framework is therefore usable on any multi-node multi-GPU cluster where
CUDA and MPI are available.

2.3 Related Work

Click models were chiefly designed based on PGMs [7], and more recently, based
on neural networks [3]. In the context of PGMs, Craswell et al. [8] introduced

2 https://docs.amd.com /bundle/HIPify- Reference- Guide-v5.4 /page/HIPify.html.
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PBM that assumes the probability of clicking on a document in SERP highly
relies on its position and is independent of the rest of the documents in the same
SERP. In contrast, in CCM [13], the probability of clicking for a document is
affected if the documents in higher rank within a SERP are clicked. Several other
click models [7,12] are introduced as extensions of these models to improve their
capabilities in addressing various biases in users’ clicks, such as UBM [9] or DBN
[6] click models. Our work is orthogonal to these approaches, as they only focus
on the effectiveness of click models, while we focus on training efficiency and
scalability aspects, but as they are trained with EM, our proposed framework is
applicable for training them.

In contrast to click models’ effectiveness, their training efficiency and scal-
ability are not well studied. [20] focus on large-scale training of the Bayesian
browsing model though it does not generalize with the rest of EM-based click
models. Recently, [16] was introduced as a generic algorithm that can be applied
for EM-based click models training; however, it is only limited to multi-core
shared-memory machines. In our work, we aim to address the limitations of
existing approaches, and we introduce the first general framework applicable to
diverse machine configurations that can efficiently scale up when more (hetero-
geneous) resources are added.

Finally, there are several runtime systems - e.g., OmpSS, StarPU, IRIS,
PARSEC or LAMA [2,4,5,11,17] - and many heterogeneous programming mod-
els [10]. However, our application is very specific in terms of computation to
communication to synchronization ratios: the processing and code are very sim-
ple, and most design decisions are related to data structures, balanced data
distribution, and synchronization. To the best of our knowledge, none of these
systems could have better automated this design process. Therefore, we devel-
oped MassiveClicks as a prototype starting from the ParClick® method and code,
and chose native programming models. However, for portability, one can easily
port MassiveClicks to use different programming models or runtime systems.

3 Framework Design

Our goal is to design and prototype MassiveClicks as a general framework
for training EM-based click models using distributed heterogeneous systems.
The framework must support multi-GPU configurations (ranging from single-
node/single-GPU to multi-node/multi-GPU), heterogeneous GPU architectures
and memory sizes, and if/when a node does not have access to GPUs, the frame-
work must run correctly on CPUs only. The framework must enable the users to
partition the training dataset using several strategies, thus taking into account
load balancing and processor compute capability. Finally, the framework must
support four different click models: PBM, CCM, UBM, and DBN.

3 https://github.com/uva-sne/ParClick.
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Fig. 1. The training process from start to finish.

A high-level design of MassiveClicks , complying with these requirements,
is presented in Fig.1. The training process is initiated by parsing the click log
dataset, which includes queries, documents, and clicks on the documents, on a
single machine. The dataset is then sorted internally and partitioned according to
a user-specified partitioning scheme, with each partition being sent to a separate
node in the cluster. A node receives the incoming partition and starts the training
process by repeatedly carrying out the following four steps: (1) Estimating the
click model parameters (Compute), (2) Clearing the previous iteration’s results
(Reset), (3) Copying the new iteration’s results to the previous results ( Update),
and (4) Synchronizing the results with other nodes (Synchronize).

___________________ Partition1
/session % ¢ session "\ /" session % /" session %
i[QueryA]i Query A Ji i (Query A QueryCN —» (GPU 1
i [Document i ! [Document]; ! [Documenl} D [Document} '
(L1-10 1-10 Jii1-10 Ji:l1-10 Ji
[ : coreemea !t Partition 2
f seslon % session g _session_ ¢ _session_4i | g ian ™y ession ™y (7 siasion
11 (Query C )i i[Query A )i i[Query D }i i[Query B ]! H = i = i e
:i Document)! :[Document)} :(Document|: :(Document)} [ Otieiyib ] [ (Ot 19 ] [ Query D ] [ Query D ]1 —» |GPU2
HEs 1-10 1-10 1-10 )it :[Document} Document]: {Ducumem} {Ducumem}
! 1-10 J: 1-10 J: i 1-10 J: i 1-10 J:

Fig. 2. Dataset distribution for separate GPUs, according to a partitioning scheme.
Sessions are grouped by their search query into the same partition.

Upon completion of the designated number of training iterations, the node
sends the trained parameters to the root node to evaluate the effectiveness (accu-
racy) of the trained click model.

4 Implementation Details

The implementation of the framework* utilizes multiple nodes, possibly with
several GPUs per node, to train a click model using a click log dataset. The click
log comprises search engine result pages (SERPs) - also referred to as sessions -
and the clicks that occur on these pages. Each session is a personalized response

* MassiveClicks is open-source and available here https://github.com/skip-th/
MassiveClicks.
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generated by a search engine for a user’s search query and contains a number of
documents (search results) and the clicks on these documents.

Click models mainly use two types of parameters: (1) parameters common to
documents with similar search queries from different sessions, and (2) parameters
shared across all documents. The combination of these parameters allows for the
estimation of the probability of a user clicking on a document given a certain
query. Click models are trained precisely to estimate these parameters, where
the estimation process requires calculations with different parameters on each
document in the click log. Given the large number of documents, the application
should be a well-suited workload for GPUs.

4.1 Data Distribution

We scale out MassiveClicks by using multiple GPUs (possibly on multiple nodes).
To divide the click log among the multiple GPU devices, we propose four par-
titioning strategies, aiming to match different hardware configurations. These
strategies aim to assign multiple sessions with the same search query to a single
GPU device, as shown in Fig. 2, thereby eliminating the need for communication
between nodes when estimating the parameters.

1. Round-robin: Assign groups of sessions to each device in a cyclic manner. It
is suitable for test cases with smaller click logs, where slight imbalances in
the workload per device do not significantly impact the performance.

2. Mazimum-Utilization: Distribute, evenly, the number of sessions to all devices
by continuously assigning groups of sessions to each GPU in turn. This strat-
egy is useful for homogeneous (i.e., same-performance) GPUs.

3. Proportional Mazimum-Utilization: Assign a number of sessions proportional
to each device’s memory size; devices with less memory receive fewer ses-
sions, but have the same percentage of their memory occupied. This strategy
is recommended when the size of a device’s memory is an indicator of its
performance.

4. Newest Architecture First: Prioritize assigning sessions to GPUs with the
highest Compute Capability. Once these GPUs are “full”, sessions are sent
to less recent GPUs. This strategy is appropriate when there is a significant
performance difference between older and newer GPUs in the system.

To minimize the memory footprint of the click log on the GPU, only the
clicks on each document are included; the session, query, and document IDs are
excluded during the transfer process.

4.2 GPU-Based Parameter Estimation

The estimation of the parameters for the click model is performed through iter-
ative Expectation-Maximization (EM), which combines clicks on each session’s
documents and parameters from the previous iteration, stored in global GPU
memory. An EM iteration has four phases: (1) Computing the parameters, (2)
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Resetting the original parameters, (3) Updating the original parameters, and (4)
Synchronizing the result. The first iteration is initialized with a default value of
%, as per the PyClick implementation®.

Compute. The GPU processes one session per thread, with multiple threads han-
dling sessions with the same search queries. Each thread handles all ten docu-
ments in a session sequentially. This granularity is a trade-off between the degree
of parallelization and thread independence. A more fine-grained approach, with
a single document per thread, would increase communication between threads,
while assigning a group of sessions with a similar query to a single thread would
decrease communication, but increase load imbalance, as groups may vary in
size.

Each thread uses its ID to access the click log and retrieve the documents for
its session. The parameters associated with a document are also stored in the
click log and indexed for quick access. This index is precomputed on the host
machine. The parameters are stored in the click log because different sessions
processed by separate threads can contain documents belonging to the same
search query and, thus, require the same parameters (such as attractiveness in
the PBM click model). Estimating the parameters for these query-document
(QD) pairs involves reading and writing to the same memory location, which is
addressed by storing the parameter index alongside each document in the click
log. Unfortunately, this approach does not coalesce memory accesses, but is the
only currently viable solution.

The use of shared parameters by different GPU threads can result in race con-
ditions, where one thread writes changes to a parameter before another thread
has had a chance to read its original value. To prevent such errors, each thread
writes its results to a unique intermediate parameter in global memory.

Update. The intermediate parameters are then combined into a single original
parameter in the Update phase for use in the next iteration. This process starts
by resetting the original values to the default value of % A reset of the original
parameters is necessary to ensure that the previous iteration’s parameters do
not influence the results of the next iteration twice. During the Update phase,
there are two types of parameters being reduced: (1) the parameters that are
unique to a group of similar-query sessions (such as attractiveness in PBM), and
(2) the parameters that are shared by all threads (such as examination in PBM).

To update the unique intermediate parameters, each thread atomically writes
the intermediate values to the corresponding original parameters, which are iden-
tified using the index stored in the click log. The intermediate shared parameters
are also written atomically to the original parameters. However, writing all inter-
mediate shared parameters simultaneously with all threads to the same small
set of shared original parameters can cause a significant delay due to the large
number of threads awaiting their turn to write. To reduce this delay, each thread

5 https://github.com/markovi/PyClick /blob/master /pyclick /click_models/Param.
py-
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block performs a local reduction operation on each of its threads’ intermediate
shared parameters. The reduced results are then atomically written to the orig-
inal parameters in global memory by a single thread. This writing thread also
starts with the shared parameter whose index is equal to its thread block index,
further reducing the number of atomic writes to the same memory location.

4.3 Communication and Synchronization

The synchronization of parameters between GPUs occurs once a GPU has fin-
ished updating all its parameters. For the shared parameters to be communicated
between iterations and workers, they are transferred to the host machine. The
aggregation of shared parameters happens first at node level, using only the
parameters received the local GPUs. The node-level (combined) shared parame-
ters are subsequently sent to the other nodes using an MPI Allgather routine.
Each node then repeats the aggregation operation and copies the result to all
its GPUs. A new iteration can then start.

4.4 Dealing with Heterogeneity

The framework integrates two programming models: CUDA and MPI, to per-
form the click model training. The two models are separated into distinct tasks,
with CUDA handling the parallel computation on GPUs and MPI managing the
communication and coordination between multiple nodes. The heterogeneity of
combining CUDA and MPI is managed through C++ as the main programming
language. In the framework, high performance is achieved by CUDA providing
the parallel computing power required for training large click models, and MPI
allowing for the distribution of work across multiple nodes, increasing scalability.

4.5 CPU-Based Parameter Estimation

Each click model is designed to run both on the CPU and the GPU, with instruc-
tions for host-side computation and device-side computation, respectively. The
data partitioning strategies remain unchanged, with the data passed to each
machine being the size of the corresponding (i.e., CPU or GPU) memory.

To train the click model, the nodes locally sort their assigned data parti-
tion into groups based on search query and distribute the groups evenly among
the specified number of threads. This sorting helps to minimize communication
between threads by reducing concurrent access to the same parameters. Fur-
ther, the CPU-based approach assigns entire groups to a single thread (while
the GPU-based approach assigns each session to its own thread to balance the
load). Thus, the CPU-based approach can process the documents within a group
of sessions sequentially, allowing for direct writes to the parameters unique to
that group without the need for intermediate parameters as in the GPU-based
approach. Parameters shared across all sessions still require atomic writes to
retrieve the final result.
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Each thread uses a local copy of the shared parameters to estimate their
values; the original shared parameters are updated with the local copies when all
threads have completed their work. Finally, the results are synchronized among
multiple nodes using the same scheme as in the GPU-based training.

4.6 Limitations

The current implementation of MassiveClicks is limited by the size of the input
machine’s memory, which must contain the full click log. This is necessary
because our data distribution requires that each GPU receives a set of sessions
with “unique” queries - i.e., that do not occur on another GPU. This approach
allows GPUs to compute the parameters for the session separately until the final
synchronization step, when some parameters must be synchronized.

Currently, the input machine reads the entire click log, and groups same-
query sessions together on the same GPU, according to the chosen partitioning
scheme. The distribution of sessions to GPUs is performed only after reading
the entire click log, so the size of each group of sessions is known to prevent the
session groups from being assigned to GPUs with insufficient memory.

Assigning sessions to GPUs on separate nodes while reading the click log, in
order to not be limited by the input machine’s memory, requires the grouping of
sessions located on different nodes. This operation is currently not supported.

The limitation can be circumvented by sorting the click log beforehand with
sessions of the same query grouped together. The click log can then be processed
in separate chunks that individually fit into the input machine’s memory. The
few parameters shared between all sessions can be combined afterward manually.

5 Evaluation

Our evaluation focuses on MassiveClicks’s ability to use multi-node multi-GPU
systems, its scalability, and its efficiency in using various heterogeneous config-
urations®. For all our experiments, training time is the main metric of interest,
and we also report speed-up versus state-of-the-art (to quantify advancements
in performance) and memory footprint (to assess feasibility for large datasets).

Table 1. Training time, speed-up, and ACE for PBM and CCM for different datasets
and NVIDIA RTX A4000 GPUs compared to ParClick on an AMD EPYC
7402P CPU with 48 threads.

GPUs | D10 D25 D50

Training [s] | Speed-up ACE [%] Training [s] | Speed-up ACE [%] Training [s] | Speed-up ACE [%] ‘
PBM | CCM | PBM | CCM | PBM | CCM | PBM | CCM | PBM | CCM | PBM | CCM | PBM | CCM | PBM | CCM | PBM | CCM
4.0 6.1 10.1 |73.1 |14.7 424 |10.1 |15.7 |10.5 |70.1 |14.0 |41.4 21.8 |31.9 |9.7 66.3 |13.5 |40.5
1.9 3.3 20.9 |137.6 104 |41.7 |58 8.5 19.2 1129.5 12,9 |39.8 |12.1 |174 |17.5 |121.8|12.8 [39.0
1.1 1.6 37.5 |272.2]13.7 |39.6 |2.8 4.1 39.4 |267.5[13.1 |39.2 6.1 7.6 34.5 |280.0|7.1 24.5
0.6 0.9 67.1 |488.8|12.4 |36.2 |1.7 2.2 66.4 |494.1|10.1 |36.2 |3.0 4.4 71.2 |482.0(12.9 |36.3
14 0.4 0.5 110.1850.4 [12.2 |37.2 |1.0 1.4 110.0 | 794.0 | 10.8 [33.4 |19 2.7 112.1790.7 | 11.6 | 34.6

00| k| | =

5 Additional evaluation data and plots are available at https://bit.ly/HP23-extra.
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Fig. 3. MassiveClicks’s speedup over ParClick for PBM (left) and CCM (right) using
10, 25, and 50 million sessions. ParClick runs on an AMD EPYC 7402P CPU with 48
threads, and MassiveClicks uses NVIDIA RTX A4000 GPUs.

5.1 Experimental Setup

The Platform. For all our experiments, we use DAS-67, a cluster comprising
compute nodes with one CPU (AMD EPYC 7402P or Intel E5-2630 v3) and
various NVIDIA GPUs (e.g., Titan X, Titan-X Pascal, A6000, A4000), inter-
connected using 100 Gbit/s Ethernet and managed by SLURM. The nodes run
CUDA v11.5.119 on the Red Hat 8.5.0-3 operating system. We measure GPU
(kernel) performance using NVIDIA Nsight Compute NVIDIA®, and we measure
the CPU performance with simple code instrumentation.

The Data. All our models are trained and tested with the Yandex dataset®.
For all experiments, we divide the dataset into two parts: the first 80% forms a
training set, and the last 20% forms a test set. Because the trained click-model
only provides relevant parameters for search results contained within the training
set [7, p.b3], we filter the test set to only include sessions from the training set.
To do so, we follow ParClick’s approach of filtering on sessions [16].

5.2 The GPU Impact

Speed-Up. To assess the performance gain due to GPU acceleration, we analyze
the speed-up of MassiveClicks on up to 14 GPUs compared to ParClick running
on a 24-core AMD EPYC 7402P CPU. We use PBM and CCM as representatives
of a less and more complex click model, respectively. Speed-up is calculated
as the ratio of ParClick’s training time to MassiveClicks’s training time. We
also measure the Average Percentage of Computation Time spent within the
parameter estimation stage per itEration (ACE - introduced in [16]), to indicate
parameter synchronization overhead.

" https://www.cs.vu.nl/das/.

8 https://developer.nvidia.com /nsight-compute.

9 https://www.kaggle.com/competitions/yandex-personalized-web-search-challenge/
data.
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Table 1 shows the training time, speed-up, and ACE, for 10, 25, and 50 million
sessions. We observe that a single GPU already improves training performance
up to 10x for PBM and 73x for CCM. When using 14 GPUs, MassiveClicks shows
speed-ups as high as 850x for the smallest dataset, and as high as 790x for the
largest log. However, the stages unrelated to parameter estimation, measured
with ACE, take up a considerable part of the total training time. Consequently,
the maximum speed-up in training time observed in Table1 differs significantly
between click models, as also seen in Fig. 3: PBM achieves a significantly lower
maximum speed-up compared to CCM, due to the lower computation intensity of
the former. As expected, higher computational intensity indicates more efficient
GPU acceleration, and thus higher speed-up.

=

Memory footprint (GB)

0.1 0.2 0.5 0.8 1.0 1.2
Sessions x10%
I PBM B3 ccM

Fig. 4. MassiveClicks memory footprint for PBM and CCM using an NVIDIA RTX
A4000 GPU with 16.7 GBs of memory and up to 120M sessions.

Memory Footprint. Figure4 shows that the memory footprint linearly
increases with the number of sessions, albeit with different slopes. The PBM
and CCM click models cut off at 75 and 100 million sessions, respectively, when
the GPU’s memory becomes too small to hold the entire click log and parame-
ters.

5.3 Scalability

We measure the scalability of MassiveClicks by comparing speed-up and training
time PBM and CCM for an increasing number of NVIDIA RTX A4000 GPUs
computing up to 120 million sessions, the maximum size of the Yandex dataset.

Figure 5 shows that even for very large click logs, our framework significantly
reduces training time. The addition of multiple GPUs further reduces training
time to several seconds for even the largest dataset sizes. These performance
improvements through scaling the number of GPUs also apply to the less complex
PBM click model. Furthermore, the speed-up shows that the overhead of scaling
to multi-GPU multi-node configurations has minimal impact on the final training
time. Each click log size scales close to the ideal scaling factor for both the
complex CCM and less complex PBM click model.
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Fig. 5. MassiveClicks training time (top) and scalability (bottom) for PBM (left) and
CCM (right) using 14 NVIDIA RTX A4000 GPUs with up to 120M sessions.
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Fig. 6. MassiveClicks training time for PBM, CCM, DBN, and UBM on up to 16
NVIDIA TITAN X (red) and 14 A4000 (blue) GPUs for dataset sizes of D10 to D120.
(Color figure online)

5.4 Putting It All Together

We demonstrate the framework’s full capability by testing various combina-
tions of click models computed on multiple nodes with different GPU devices;
the achieved performance is summarized in Fig. 6. The results indicate a signif-
icant difference in training time when comparing the older NVIDIA TITAN X
GPU to the newer A4000 model: A4000 performs the training significantly faster.
However, the TITAN X does still provide significant performance improvements
and is capable of reducing training time, even for the largest dataset, to seconds.

These results show that multi-GPU training of EM-based click models with
our proposed framework can significantly reduce training time. Moreover, the
performance benefits of GPUs are more significant for models like the CCM and
DBN, which are more complex models than PBM and UBM.
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6 Conclusion

User clicks can be used as implicit feedback to IR systems such as search and rec-
ommendation engines, but they suffer from various types of biases. Click models
are trained to avoid such biases, but they can be slow and inefficient., with the
notable exception of ParClick [16], the first parallel, shared-memory solution for
training these models. As ParClick is fundamentally limited in scale, we propose
MassiveClicks , a framework for training EM-based click models on heteroge-
neous systems of any scale. MassiveClicks supports heterogeneous, multi-node
and multi-GPU systems, but can be also used with CPU-only clusters. We also
support multiple partitioning schemes.

Our empirical analysis demonstrates that MassiveClicks can speed-up train-
ing by more than 850x when compared with ParClick. The framework is open-
source and can be executed on any distributed heterogeneous system using
NVIDIA GPUs, where CUDA and MPI are available.

In the future, we plan to improve the heterogeneity of training by employing
CPU and GPU resources simultaneously, a task that is particularly challenging
in determining the best partitioning of user clicks among processors. We aim to
also extend the framework by implementing more efficient data ingestion and
data distribution mechanisms.
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