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ABSTRACT

Research on click models usually focuses on developing effective ap-
proaches to reduce biases in user clicks. However, one of the major
drawbacks of existing click models is the lack of scalability. In this
work, we tackle the scalability of Expectation-Maximization (EM)-
based click models by introducing ParClick, a new parallel al-
gorithm designed by following the Partitioning-Communication-
Aggregation-Mapping (PCAM) method. To this end, we first provide
a generic formulation of EM-based click models. Then, we design
an efficient parallel version of this generic click model following the
PCAM approach: we partition user click logs and model parameters
into separate tasks, analyze communication among them, and ag-
gregate these tasks to reduce communication overhead. Finally, we
provide a scalable, parallel implementation of the proposed design,
which maps well on a multi-core machine. Our experiments on the
Yandex relevance prediction dataset show that ParClick scales well
when increasing the amount of training data and computational
resources. In particular, ParClick is 24.7 times faster to train with
40 million search sessions and 40 threads compared to the standard
sequential version of the Click Chain Model (CCM) without any
degradation in effectiveness.
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1 INTRODUCTION

Users actively seek various kinds of information through search
engines by submitting queries and interacting with search engine
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results pages (SERPs). User interactions, such as clicks, mouse move-
ments, and timings, contain valuable information that is used to
enhance ranking performance [25]. Among these user-generated
data, the most widely used information source is user clicks [9, 25].

User clicks suffer from various types of biases, such as position
bias or attention bias [9]. To predict observed clicks accurately,
including correcting for biases, a number of click models were
proposed based on probabilistic graphical models (PGMs) [9] and
neural networks [3, 4, 8].

The most effective click models used in practice, e.g., Position-
Based Model (PBM) and Click Chain Model (CCM), employ Expecta-
tion-Maximization (EM) to learn their parameters from a click
log [9]. This learning approach suffers from a lack of scalability. For
example, training the PBM model with 8 million search sessions
using the standard PyClick! library takes about 12.5 hours on an
Intel(R) Xeon(R) Gold 5118 CPU running at 2.30GHz, while scaling
up the number of search sessions to 40 million is infeasible with
this approach, due to the large memory footprint of the training
(i.e., the training crashes out-of-memory, even though the machine
has 256GB of RAM). At the same time, a large web search engine,
such as Google, processes up to 3.5 billion search sessions (x 437
times more data) in a single day.? This means that, with existing
algorithms, training even a simple click model, such as PBM, on a
single Google-day’s worth of click logs is infeasible.

Improving the scalability of click models for large click logs is
extremely beneficial for real-world applications, because it enables
a significant processing speed-up and/or fast processing of massive
datasets. Concretely, better scalability (i) makes the analysis of
larger click logs feasible, which in turn provides better query cover-
age, as more unique queries can be seen during training,” (ii) enables
frequent retraining, thus providing efficient support for user-be-
havior variations over time, and (iii) provides opportunities for
employing increasingly complex and more effective click models.

PGM-based click models are widely used for online and counter-
factual learning to rank [1, 18, 20, 28, 30]. These models are usually
trained with Maximum Likelihood Estimation (MLE) or EM algo-
rithms; however, it has been shown that click models trained with
EM perform better [15]. In our work, we specifically address the
scalability of EM-based click models, aiming to devise a generic so-
lution that supports the diversity of applications, which manifests
itself in different parameters, different estimation functions, and
diverse statistical distributions of click log data

In this paper, we propose ParClick, a generic algorithm that con-
siderably improves the scalability of EM-based click models through
efficient parallelization. Specifically, we employ the Partitioning-
Communication-Aggregation-Mapping (PCAM) [13] design method

Lhttps://github.com/markovi/PyClick
Zhttps://www.internetlivestats.com/google-search-statistics
3Many click models only work with queries they have seen during training.
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to create a new parallel algorithm that correctly and efficiently
partitions user click logs and model parameters, and assigns the
processing of different partitions to parallel tasks. Our algorithm is
generic, in that it supports different processing tasks (supporting
multiple click-models), different partitioning and load-balancing
strategies, thus enabling close-to-optimal strong-scaling, and can
be implemented on any parallel system or programming model.

Our prototype, evaluated in this paper, includes two click models,
two load balancing policies, and is implemented for a multi-core
machine. Concretely, we demonstrate our generic algorithm on
two case-studies: the relatively simple PBM model, as a represen-
tative of position-based click models, and the more complex CCM
model, as a representative of cascade click models. We evaluate the
scalability of ParClick applied to PBM and CCM using the Yandex
relevance prediction dataset [26]. Our results indicate that ParClick
scales well when increasing the size of a click log and the allo-
cated resources (i.e., threads for the algorithm and cores for the
machine). For example, in our largest experiment, we trained CCM
with 40 million search sessions using 40 threads (one thread per
task) and observed a 24.7 speed-up compared to the standard se-
quential version. Overall, our analysis demonstrates that ParClick
can be employed for training EM-based click models with a large
number of search sessions, e.g., 40-50 million, in a matter of tens
of minutes, without any degradation of effectiveness.

In summary, the main contributions of our work are as follows:

(C1) We formulate a generic algorithm for training EM-based
click models.

(C2) We design a parallel version of our generic algorithm, fol-
lowing the PCAM method, thus providing the first scalable,
generic algorithm to train EM-based click models.

(C3) Through extensive empirical analysis, we demonstrate that
ParClick scales well with larger click logs and more compu-
tational resources.

(C4) We provide an open source, efficient implementation of
ParClick, applicable on any shared memory parallel ma-
chine.* Furthermore, this implementation is faster to train
and requires less memory compared to PyClick.

The rest of this paper is structured as follows. We overview
related work in Section 2. Section 3 describes the PBM and CCM
models, and explains how their parameters are estimated with the
EM algorithm. We explain in detail the design and implementation
of ParClick in Section 4. Our empirical evaluation and results are
presented in Section 5. Finally, we conclude the paper in Section 6.

2 RELATED WORK

To place our research in context, this section presents an overview of
recent advances in click models and in how they address scalability.

One class of click models is developed based on probabilistic
graphical models (PGMs) [19]. These models differ in how they dis-
tinguish two primary events: a user examining a document and a
user attracted by a document. For example, the PBM model assumes
that examination depends on rank [9]. The cascade model [10], in-
stead, assumes that examination depends on whether higher-ranked
documents were examined and/or clicked. Various extensions of
the PBM and cascade models were proposed [6, 12, 16, 17]. More

4https://github.com/uva-sne/ParClick

393

Pooya Khandel, Ilya Markov, Andrew Yates, and Ana-Lucia Varbanescu

recent work focuses on exploiting further information about users,
results, and other search characteristics to enhance the accuracy of
click models [7, 27, 29, 32].

Another class of click models is formed by neural-based ap-
proaches. Borisov et al. [3] proposed a general neural framework
and modeled user browsing behavior as a sequence of vectors. Yu
et al. [31] introduced the Rank-Biased Neural Network to learn in-
put representation of queries and documents automatically. Through
investigating the relationship between the predicted clicks and the
estimated relevance scores, Chen et al. [8] introduced the Context-
Aware Click Model. Furthermore, Dai et al. [11] exploit imitation
learning to address exposure bias and inferior estimation. More
recently, Lin et al. [21] proposed GraphCM that is based on graph
neural networks to extract sessions information and address the
data sparsity problem.

All these approaches focus on improving the effectiveness of
click models. However, computation efficiency and scalability have
received little attention so far. Most research on improving effi-
ciency focused on the EM algorithm itself, known to be computa-
tionally intensive. For example, [2] proposed a parallel variant of
EM using GPUs, optimized for the application of Gaussian Mixture
Models (GMM), but not directly applicable for efficient click models.
Instead, online approaches [5, 24], are built to converge faster, and
form the basis of the OnlineEM method Markov et al. [23] used
to update parameters of an already trained model for new logged
query sessions, without re-training from scratch. OnlineEM, how-
ever, cannot improve the efficiency of training click models from
scratch. The closest research to our work is [22] that focuses on ef-
ficient training of bayesian browsing model at large scale; however,
their method is not directly generalized for EM-based click models.

In this work, we propose the first generic parallel algorithm that
directly addresses the scalability of EM-based click models. There-
fore, our approach is complementary to current developments in
the field of click models: our solution can be combined with these
approaches to further improve the efficiency of existing and up-
coming click models.

3 BACKGROUND

In this Section, we present the details of the PBM and CCM click
models that are needed to introduce our ParClick in Section 4.
Table 1 presents the notation used in the paper.

3.1 Position-Based Model (PBM)

In the PBM click model, the probability that a user clicks on a search
result P(C4 = 1) depends on the probability that the user examines
that search result P(E; = 1) and finds it relevant/attractive P(Ay =
1) [9]. The examination probability depends on the rank of the
search result, while the attractiveness probability depends on the
query-result pair:

P(Cq=1)=P(Eyg=1)-P(Ag=1)=yr ayq, 1)

where r is the rank of result d and y» and a4 are the parameters
of PBM. They are estimated iteratively using EM as follows [9]:


https://github.com/uva-sne/ParClick

ParClick: A Scalable Algorithm for EM-based Click Models

Table 1: Notation used in this paper.

Symbol Description

(t) Iteration

M Number of EM iterations

q User’s query

d Document

r Rank of a document

a Attractiveness parameter

Y Examination parameter

S Set of all query sessions

s Query session

Dy Update function for a parameter of type x in the EM
algorithm

X Set

Xy Set that has concept y

Vv Set containing parameters of a click model

A Subset of V with all attractiveness parameters

r Subset of V with all examination parameters

v; Parameter of a click model

H(v;)  Type of parameter v;
Cm EM-based click model

T; Parallel task
D(T;)  Data associated with task T;
Yo, Set of all parameters that affect v; when updating
N Number of tasks
(t+) _ 1 ( ) (6 )
yro = |S|Z<I>y G ¥r 58 @
NN
(t+y _ _1 Z ( ® () )
a = — ) aLyrlss), 3)
d apBm T
q |Sqd| $€Sqd q

where t is the iteration count, d in the result shown at rank r in the
query session s when query g is issued, S is the set of all training
query sessions, and S is the subset of training sessions containing
query q and result d, ®, and @, are estimation functions for
examination and attractiveness parameters of PBM.

3.2 Click Chain Model (CCM)

CCM is one of cascade click models, that is, it assumes that users
scan search results from top to bottom. Similarly to PBM, this model
has attractiveness parameters; however, it differs from PBM in
the way examination probability of a result is computed. In CCM,
the probability of click can be calculated through the following
equation:

P(Cq=1)=agq P(E, =1), (4)

Unlike PBM, in CCM it assumed that the first ranked result is
always examined and the examination of other ranks depends on
previous ranks’ examinations and clicks. Accordingly, for CCM,
P(E, = 1) is computed based on three types of examination param-
eters y1, y2, y3 through Eq. (5).
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P(Ers1 = 1) = P(Ey = 1) - ((1 - aqdr) Tt o
®qd, (Yz ‘ (1 - “qdr) +v3- aqd,))

CCM parameters are also estimated using EM over multiple
iterations similar to (2) and (3) [9].

4 PARCLICK: A SCALABLE ALGORITHM FOR
EM-BASED CLICK MODELS

In this section we explain the design of our generic parallel click
model training, and present the core aspects of its implementation
in ParClick. We first present our generic formulation for EM-based
click models in Section 4.1. Next, our design follows the PCAM
methodology outlined in [13], in which the parallel algorithm to
solve a problem is built in four steps: partitioning (Section 4.2.1),
communication (Section 4.2.2), aggregation (Section 4.2.3), and map-
ping (Section 4.2.4).

4.1 Generic EM-based Click Models

A generic EM-based click model, Cjy, can be formulated using a fi-
nite set of parameters V = {v1,v2, . .. v} of different types, H(v;).
Click models usually have m > 2 different types of parameters. For
example, PBM has two types of parameters (thus, m = 2): attrac-
tiveness parameters (possibly billions) and examination parameters
(e.g., ten for web search). CCM, on the other hand, has four types of
parameters (thus, m = 4): similarly to PBM, attractiveness parame-
ters (possibly billions), and three types of examination parameters
(one of each type).

For all EM-based click models, the training procedure is the
same: we iterate over all query sessions s; € S and calculate any
required updates for parameters v; € V that are affected by the
current query session s;j. A generic way to calculate new estimates
of model parameters in each iteration of EM is the following (note,
for example, that Eq. (6) generalizes Eqgs. (2) and (3)):

1
§t+1) = m Z (DH(Z),-) (\Pg)i),s) . V’Uj eV, (6)
vi S€Sy;
(t+1)

where v; is the new estimate of model parameter v; at it-
eration (¢ + 1), ®pyy,) is the estimation function for a param-
eter of type H(v;) as derived in [9], Sy, C S is the set of all
query sessions that affect the value of v;, and ¥, = {vj | v; €
V,vj is required to update the value of v;} is a set of other param-
eters (from the previous iteration (t)) that affect v;.

Our ultimate goal is to provide a scalable parallel algorithm to
train a generic EM-based click model using Eq. (6). The design of
this parallel algorithm is described next.

4.2 Parallelization

When training a click model sequentially, a single task needs to
calculate all the parameters in V, iterating, for every parameter v;,
over a subset of sessions, Sy, C S. With |S| and |V| being very large
(in the order of billions), traditional sequential training becomes
prohibitively slow, and, therefore, it does not scale to real-world
scenarios such as web search. To tackle this lack of scalability,
we follow the Partitioning-Communication-Aggregation-Mapping



WWW °22, April 25-29, 2022, Virtual Event, Lyon, France

Pooya Khandel, Ilya Markov, Andrew Yates, and Ana-Lucia Varbanescu

omeannenennes - o o o / PN S
Attractiveness P -, - N t x
P P - o N Co E
- ; - - re 1 <o
@ Examinations -~ -~ ) —
. - P PR 1N @, Attractiveness  Examination
) — L Ll Core2 L. Parameters | | Parameters
B & P /1 Y Yo R
LY M Y I
\ () ‘ Core3 [+
_~—— 4 i ) o0 _ . s
AN [ """""""""""

(a) (b)

() d)

Figure 1: Defining tasks based on PCAM in ParClick: (a) Partitioning: One task per parameter is defined. () Communication:
Data from different tasks is required by other tasks. (c) Aggregation: Ultimately, each task contains multiple attractiveness
and all examination parameters. (d) Mapping: Map each task to a distinct thread, and each thread executed on a single core.

(PCAM) approach [13] to design a parallel algorithm to train EM-
based click models. In the following paragraphs, we describe the
specific actions we take at each stage of PCAM to define parallel
tasks. Figure 1 shows overall steps performed through PCAM®.

4.2.1  PCAM: Partitioning. In PCAM, partitioning refers to split-
ting the problem into tasks that could execute in parallel, i.e., the
tasks with minimal dependencies. Our generic click model (Eq. (6))
indicates that a parameter v; can be updated in iteration ¢ + 1 with a
subset of the input data, S, C S, and a subset of model parameters

from the previous iteration, ‘I’l(,tl) Based on this fundamental ob-
servation, our generic parallel algorithm for click-models training
aims to calculate multiple v; parameters in parallel.

Broadly speaking, there are two partitioning approaches: domain
decomposition (i.e., data-driven partitioning, where computation
follows the data) and functional partitioning (i.e., task-driven par-
titioning, where data follows the computation). For our problem,
domain decomposition requires identifying an efficient partitioning
of S and | J; ¥y, and, for every partition, identifying which v; pa-
rameters can be computed with data from this partition. With this
approach, calculating certain v; parameters would likely require
access to multiple partitions, which could be expensive. Instead,
functional partitioning requires identifying a partitioning of pa-
rameter computations into tasks and associating the required data
to each task. In this case, if the same data is required by multiple
tasks, data sharing and/or replication might be required. For both
cases, the next two steps — communication and aggregation — aim
to reduce the impact of non-ideal partitions.

Given the formulation in Eq. (6), we opt to start from a functional
partitioning and we define a task T; for calculating each v;. Conse-
quently, each task requires access to data D(T;) = Sy, U ¥y, Based
on this definition, there would be |V| tasks T = {T1, T2, ..., Tjy| }-

4.2.2 PCAM: Communication. The communication phase focuses
on analyzing the dependencies between the proposed tasks, that
is, identifying the data required by multiple tasks, which, in turn,
should be communicated across tasks. For this analysis, we split
tasks into independent and dependent, as follows: two tasks T,
and Tj, are independent (and, therefore, can execute in parallel)
iff D(T,) N D(Tp) = 0, and dependent otherwise. Consequently,
two independent tasks share no data, and, therefore, require no
communication or synchronization with each other.

SBased on Figure 2.1 from [13]
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Two dependent tasks can still execute in parallel if the shared
data is made available to both tasks (e.g., through shared memory).
However, this shared data still needs to be processed by both tasks,
which reduces parallelism efficiency (as more work is done than in
the sequential case) and hampers scalability. The larger the shared
data is, volume-wise, the higher its negative scalability impact is.
Thus, for ParClick, we must identify which tasks are dependent and
which are independent; for dependent tasks, we must also estimate
the shared data volume.

Our analysis is based on parameter types. Calculating new val-
ues of attractiveness parameters for PBM depends on a subset of
query sessions, Sy, and all examination parameters, but does not
depend on other attractiveness parameters. Calculating new val-
ues of examination parameters, however, might require all query
sessions in S and a number of attractiveness parameters. The same
holds for CCM.

Thus, all our tasks are dependent, and require some data shar-
ing. However, we can still separate parameters (and the tasks that
calculate them) between attractiveness and examination by commu-
nication volume, as the data shared between attractiveness tasks is
minimal in terms of volume, while data shared between examination
tasks is significantly larger.

4.2.3 PCAM: Aggregation. In general, PCAM uses aggregation to
reduce the amount of communication and increase task granularity.
To this end, its goal is to aggregate dependent tasks into larger
tasks, which can become independent from each other.

To aggregate our initial tasks T = {Ty, Tz, . . ., Tjy|}, we aim to
(i) aggregate dependent tasks with significant data sharing, and
(ii) preserve a sufficient number of tasks (to utilize the target ma-
chine well). As different attractiveness tasks only share a limited
number of examination parameters (at most 10), they are not ideal
candidates for (i). Different examination tasks share a lot of query
data and attractiveness parameters, but they are too few to meet (ii).
Therefore, we opt for a hybrid solution: we first aggregate all exam-
ination tasks in a subtask by replicating all examination parameters
into that, and then merge each attractiveness task with the sub-
task. As a consequence, an additional step is required to calculate
the global examination parameters after all tasks have completed,
which is performing synchronization for the examination param-
eters among all the tasks. However, through this aggregation, we
avoid any extra replication of query sessions.

After this first aggregation of initial tasks T into T/, we reduce
the number of tasks to as many as the attractiveness parameters |A|.
For EM-based click models in real applications, |A| might be in the
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order of billions, making the management and synchronization of all
these tasks very inefficient on any shared memory machine (and on
most supercomputers, too). Thus, we must aggregate tasks further,
by merging several existing tasks T”. After this aggregation, the new
task Tlé’ , will likely use many more query sessions to calculate more
attractiveness parameters, and the same examination parameters.
With this aggregation, no extra dependencies are created, but the
number of tasks to be executed in parallel can be reduced at will.

Algorithm 1 PCAM: Aggregation
’ ’ ’
T T Tl )

1: Create tasks T’
2 for T/ € T' do

3 k=n(T})

4 Merge ST;: with St/
5

6

M SO
> using Eq. (7) or (8)

Merge AT;! with AT,.’
: end for

One final aggregation consideration needs addressing: given the
synchronization required to compute the examination parameters,
the load balancing of the tasks becomes essential for scalability;
a task that takes much longer to compute than the others will
slow down the entire computation, and directly reduce scalability.
However, load balancing for these tasks is not easy to achieve:
|ST/,| varies over the tasks as there are a different number of query
sessions in the user click log for each query. To attain a balanced
workload among the new tasks, we merge the tasks based on policy
7 as explained in Algorithm 1. Based on the statistical distribution of
user click logs, different policies can be used. In this work, we adopt
two policies - Round-Robin (RR) and Minimum Utilization (MU) -
and compare them with each other.

In the RR policy, we iterate over tasks T’ = {Tl’ , TZ’ s Tl’AI}
and merge them into new tasks successively:
7(T{) = imod N. 7)

This policy can only produce a balanced workload if all T, have
very similar sizes; however, in reality, this is rarely the case. To
tackle this problem, we also define the MU policy, where we iterate
over the tasks in T/ and assign them to the least occupied task from
T ={1{.T,,...., T{}

(T}) = argmin{|ST/€r| | ke{1,2,...,N}}. (8)

MU policy will produce more balanced tasks, while requiring
very limited additional pre-processing; thus, the processing time
should be similar to the RR policy. The evaluation of these policies
is further discussed in Section 5.

4.2.4 PCAM: Mapping. Finally, the last stage of our design is the
mapping from the theoretical algorithm to a practical application.
Ideally, with a good aggregation, this step is a purely technical one,
for the actual implementation. However, in this step, additional
knowledge about the machine architecture should be taken into
account to potentially improve the previous step’s aggregation.

In our case, we execute the training on a multi-core machine.
Thus, we map each task to a distinct thread, and each thread is
executed on a single core. Since tasks calculate new estimates of
attractiveness parameters independently, attractiveness parameters
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can be assumed task-local, i.e., they need to be accessed by one single
task, and no synchronization is needed across tasks. Therefore, we
(virtually) distribute these parameters across threads. Examination
parameters are first estimated by each task independently, and then
combined in a shared set. Therefore, we keep a task-local copy of the
examination parameters for each thread, allow threads to compute
independently, synchronize to ensure all tasks have calculated their
examinations, and combine the results in the shared examinations.
We implement the synchronization using barriers as defined in [14].

4.3 Parallel EM for Generic EM-based Click
Models

In this section, we present our parallel EM algorithm for click mod-
els, and describe the concrete implementation of the workload of
each task (i.e., the so-called thread function). As explained in Sec-
tion 4.2.3, we have N tasks T”/ {Tl", TZ”, e TI’\;}' These tasks
will be launched in parallel (lines 1-3, Algorithm 2), and they pro-
cess ST;’ to estimate new values of Cjs parameters in each task Vp».

In particular, each task Tl.' ’ calculates new estimates for the set of
associated attractiveness parameters A7~ and task-local copy of
values estimated for examination parameters I’ - By design (see
Section 4.2), AT;/ parameters do not depend on any other ATJ{r, i#J;
thus, they need not be synchronized between tasks. Conversely,
task-local estimates of examination parameters I'r» need to be syn-
chronized after each iteration of EM to attain exact estimates of
examination parameters I. We discuss the estimation process for
corresponding model parameters of each task (Vp» = Ap» U Tpr)
below. 1 l l
Each parallel task starts with initializing the values of model
parameters Vv (line 5, Algorithm 2), such that examination param-
eters are initialized similarly in each task. During iteration ¢ of EM
(line 6, Algorithm 2), new estimates of all model parameters are
calculated with Eq. (6) (line 7, Algorithm 2). Note that, as described
in Section 4.2.3, calculating exact estimates of examination parame-
ters requires synchronization among tasks. To synchronize these
parameters and obtain correct values for them, each task waits
until all other tasks finish estimations at iteration ¢ and reach the
synchronization barrier as described in 4.2.4 (line 8, Algorithm 2).

Then, each task reads {1";7r l)} from all others tasks (line 9, Algo-

h

rithm 2). Finally, all tasks combine r*Dand {F;{,H)} into T4+
h

7
as follows (line 10, Algorithm 2):

N
1 t+1
p0 = LS (D s ) vy e ©)
ISyl Vs '
where y;t,f Y is the new value of the examination parameter y

computedl by the i-th task on iteration (¢ + 1) (line 7, Algorithm 2)
with the set of query sessions in corresponding task that affect its
value ST{”Y'

The training procedure (lines 6 to 11, Algorithm 2) continues for

M iterations. When the training is finished, each task i contains a
(T)

. T
part of attractiveness parameters A, and a local-task copy of the

1
examination parameters I'T). These final estimations values, i.e.,

T)

Uieq,...N} A(Ti" and T(T), represent the trained click model Cyy,



WWW °22, April 25-29, 2022, Virtual Event, Lyon, France

which is identical to the sequential Cp; as Algorithm 2 preserves
the order of computations.

Algorithm 2 Parallel Expectation-Maximization (EM) For Click-
Models Training

1: parfori=1..N do
2 Estimate Cp; Params(St»)
3: end parfor

> Launch parallel tasks

4. function Estimate Cpy Params(STl_v)

5. Initialize Vi : 0\ = 0.5 | Vo; € Viy

6 fort=0tot =M do > EM iterations
7: Estimate Vp» > using Eq. (6)
8 Synchronizelltion barrier > as described in 4.2.4
9 Vhe{1,...,N},h # i: Read T\,

Ty
Update T(¢+1)

11: end for

12: end function

> using Eq. (9)

4.4 Implementation Details

We implemented ParClick as a multi-threaded application in C++°.
Specifically, the N tasks that estimate Cp; parameters are imple-
mented as threads. Given that no synchronization for attractiveness
parameters is required, they are stored locally in each thread, but
the examination parameters are stored as shared arrays, i.e., they
are accessible for all threads.

To optimize memory usage, we do not preserve new estimations
through all iterations. Instead, we first calculate parameter initial-
ization variables and copy them into a container as current values.
Then, we calculate new estimations at each iteration, and by the end
of each iteration (line 10, Algorithm 2), we copy new estimations
into the current container. We call this step as post-processing.

Note that we extended our parallel implementation to also cover
the evaluation of ParClick, but the details of this implementation
are omitted due to the lack of space.

5 EVALUATION

This section presents the evaluation of our multi-core version of
ParClick, focusing on strong scalability and support for increasingly
large datasets.

5.1 Experimental Setup

Datasets. We run all our experiments on three subsets of the
Yandex relevance prediction dataset [26]: D1, D10, and D50, con-
sisting of 1, 10, and 50 million first query sessions, respectively. The
training sets consist of the first 80% records in the datasets, and
the test sets consist of the remaining 20%. Similar to the standard
experimental setup for click models evaluation [9], we remove from
each test set those queries that do not appear in the correspond-
ing training set. Table 2 reports the properties of each dataset: the

©The code is available online (link not included to preserve the double-blind evaluation
process).

397

Pooya Khandel, Ilya Markov, Andrew Yates, and Ana-Lucia Varbanescu

Table 2: Datasets used in this paper.

Dataset D1 D10 D50
Total 1,000,000 10,000,000 50,000,000
#Query Sessions  Training 800,000 8,000,000 40,000,000
Test 111,953 1,361,903 7,779,226
#Unique Queries Training 342,810 2,630,411 10,486,900
! Test 20,987 215,084 931,829

number of query sessions in the training and test datasets, and the
number of unique queries in the training and test data.

Baselines. To assess scalability, we compare all our parallel ver-
sions against efficient sequential versions of PBM and CCM. Be-
cause no prior work on large-scale training of EM-based click mod-
els exists, these baseline C++ versions are implemented in-house.
We further note that ParClick is, by virtue of its parallel design and
C++ implementation, orders of magnitude faster than state-of-the-
art Python models, like PyClick; we consider such an apples-to-
oranges comparison unfair, and we do not pursue it in this work.

Computational infrastructure. We perform our experiments on a
multi-core machine featuring a 4-socket, 48-core Intel(R) Xeon(R)
Gold 5118 CPU running at 2.30GHz, and 256 GB of memory. Baseline
experiments run on a single core; ParClick runs using 2, 4, 8, 16, 32,

and 40 threads, with one thread per core’.

Goals and evaluation metrics. We analyze the following perfor-
mance aspects of ParClick: scalability, parallelization cost, and mem-
ory usage. The metrics we use for the analysis are: (M1) execution
time in seconds; (M2) speed-up, i.e., the ratio between the sequen-
tial processing time and the parallel processing time; (1) Average
Percentage of Computation Time within Parameter Estimation
Stage per Iteration (ACE) (time spent in line 7), Average Percent-
age of Syncrhonization Time per Iteration (ASE) (time spent in
lines 8 to 9), and Average Percentage of Post-Processing Time per
Iteration (APE) as described in 4.4; and, (M3) memory footprint.

Effectiveness. The effectiveness of click models is usually evalu-
ated by calculating log-likelihood or perplexity [9]. As the proposed
algorithm 2 preserves the order of computations, no effectiveness
degradation will occur for ParClick. To validate this claim, we
measured the log-likelihood for all our experiments; we observed
exactly the same log-likelihood as the standard sequential version
for each dataset, regardless of the number of threads.

5.2 Experiments and Results

We performed 2 X 2 X 7 X 3 = 84 experiments, as we measured
execution time and its components for 2 models, 2 load-balancing
policies, 3 increasingly large datasets, and 7 different numbers of
threads. All results are presented in Tables 3 and 4, in terms of
training execution time (in seconds), speed-up, and ACE.

We observe that using more threads improves performance in
all cases for both small and large datasets. Moreover, in our largest
experiment, i.e., using D50, ParClick allows for 23.8 and 24.7 faster

"Due to the way the machine is configured, we cannot use all 48 cores for a single
experiment.
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Table 3: Training time, speed-up, and ACE for PBM for different datasets and thread counts.

D1 D10 D50
Threads | Training[s]  Speed-up ACE [%] Training[s] Speed-up ACE [%] Training|s] Speed-up ACE [%]
RR- MU RR MU RR MU| RR MU RR MU RR MU/ | RR MU RR MU RR MU
1| 224 228 1.0 1.0 77.0 77.4 | 2,079 2,041 1.0 1.0 795 79.5 | 11,036 11,566 1.0 1.0 83.6 83.8
2| 113 114 1.9 1.9 771 77.0 | 1,075 1,072 1.9 1.9 805 80.7 5,477 5,550 2.0 2.0 822 811
4733 662 3.0 34 664 700 597 603 34 33 769 765 | 3,163 3,048 34 3.7 804 795
8 30 33 7.3 6.8 72.8 69.2 317 282 6.5 7.2 727 76.6 1,356 1,351 8.1 8.5 785 80.6
16 18 17 121 128 688 69.7 150 156 13.8 13.0 739 723 804 738 13.7 156 706 753
32 13 12 166 184 64.1 653 118 112 176 180 66.8 69.3 547 536 20.1 215 709 721
40 12 11 18.0 19.0 62.6 64.1 106 104 195 19.5 67.7 68.5 505 484 21.8 23.8 716 742
Table 4: Training time, speed-up, and ACE for CCM for different datasets and thread counts.
D1 D10 D50
Threads | Training[s] Speed-up ACE [%] Training|[s] Speed-up ACE [%] Training[s] Speed-up ACE [%]
RR MU RR MU RR MU RR MU RR MU RR MU RR MU RR MU RR MU
12216 2219 1.0 1.0 98.0 98.0 | 22,745 22,704 1.0 1.0 984 984 | 119,408 118,559 1.0 1.0 987 987
211,142 1,118 1.9 20 956 97.1 | 11,867 11,188 1.9 20 97.1 979 58,484 58,014 2.0 20 97.7 98.2
4 635 616 35 3.6 90.7 945 6,215 6,062 3.7 3.7 962 963 30,843 31,455 3.9 3.8 964 96.8
8 331 313 6.7 7.1 88.8 952 3,409 3,176 6.7 7.1 899 95.0 16,339 15,775 7.3 7.5 919 956
16 194 168 114 13.1 798 924 1,925 1,705 11.8 133 845 935 9,933 8,408 12.0 14.1 80.1 932
32 141 111 156 20.0 682 89.8 1,297 1,111 175 204 753 89.5 6,220 5,552 19.2 214 783 895
40 113 100 19.6 22.1 76.0 884 1,201 960 189 23.6 729 94.1 6,360 4,804 188 24.7 683 945
training than the sequential versions for PBM and CCM, respec- 401 _m-
tively. Thus, with ParClick, the training time is drastically reduced —e-
from several hours to a few minutes for PBM, and from more than 0] %
a day to less than an hour for CCM. 2
In the following paragraphs, we discuss these results in more Té 20 :::
detail, focusing on our evaluation goals: scalability, parallelization &
cost, and memory footprint. 10
Scalability. There are two dimensions of scalability to discuss: ol W™
input-data scaling (i.e., how does our algorithm handle increasing 24 3 16 32 40
. . . . Number of Threads
input data) and strong scaling (i.e., h'ow does our algorithm respond Figure 2: Training speed-up PBM for different number of
when more resources are made available for the same dataset).
; i ; threads.
To assess input-data scalability, we observe that ParClick can
process all three datasets correctly. For D50 (the largest dataset in
our analysis), the execution time of training CCM is about 33 hours 40| _a 1geal ]
sequentially. Moreover, we observe that the algorithm’s execution -®- DIRR 7
time is increasing linearly with the size of the training dataset, i.e., 30/ ~*° DL-MU el ’
the training for D10 and D50 is roughly 10 and 50 times larger than o gig:m
that for D1. This indicates our algorithm scales to large datasets 1:3 20, ~® D50-RR i
without any loss of efficiency due to parallelism. g | bsomu
To assess strong scaling, we evaluate the speed-up achieved by 10
ParClick when increasing the number of threads made available
for training. In the ideal case, as we increase the number of threads, o -"

we should see a proportional increase in speed-up. Figures 2 and 3
illustrate the observed speed-ups for PBM and CCM, respectively.

The results indicate that ParClick’s performance significantly
increases up to 16 threads, proportional to the number of threads.
However, we see diminishing returns for more than 16 threads. This
decrease is due to the increasing cost of synchronization between
threads and the fixed overhead of post-processing which, as the
work per thread reduces, becomes more significant. In addition,
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Figure 3: Training speedup of CCM for different number of
threads.

NUMA effect, caching effect and hyper-threading are more pro-
nounced in limiting the speed-up for larger threads. Combined,
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these factors translate into a less than ideal speed-up gain from
increasing threads.

The results further indicate that, indeed, a partitioning scheme
that provides better load-balancing (such as MU) provides bet-
ter speed-up, especially for the more complex models. Thus, this
scheme should be preferred for better scalability, despite its slightly
increased pre-processing cost.

Parallelization cost. Although parallelization provides significant
performance gain for training our models, it does not come for free.
The cost of parallelization may become a bottleneck for overall
application performance, and, ultimately, may hinder scalability
and drastically reduce the efficiency of the parallel application.

We evaluate parallelization cost as the overhead due to other
tasks than computation. Thus, ACE is an indication of how well the
computational resources are utilized for the actual computation,
and ASE and APE represent the parallelization cost. Consequently,
higher ACE values indicate a more efficient utilization of computa-
tional resources; however, they do not have a linear relationship
with speed-up.

Increasing the number of threads usually results in degradation
of ACE, because the synchronization and post-processing for more
threads takes longer. However, as shown in Tables 3 and 4, the
decrease of ACE from 1 to 40 threads is not dramatic. More impor-
tantly, ACE improves as the input dataset grows larger (e.g., from
64.1 to 74.2 for D1 and D50, respectively, for 40 threads, with the
MU load balancing policy). This is a strong indication that ParClick
is efficient for large input datasets. Additionally, our results also
show that MU consistently outperforms RR in terms of ACE.

To further understand where the efficiency is lost, we also
measure the time spent performing synchronization and post-
processing, and calculate ASE and APE. As we aim for a high ACE,
it follows that ASE and APE should be as close to zero as possible.
Figure 4 presents ACE, ASE, and APE for PBM running on D50 with
different numbers of threads and load balancing policies. The data
indicates that APE is relatively constant for the PBM experiments,
taking about 20% of the time per iteration. As more threads are
used, the synchronization time also increases, as indicated by a
larger ASE. These two overheads hinder the speed-up gain from
adding more threads.

Similarly, Figure 5 compares ACE, ASE, and APE for CCM run-
ning on D50 with different numbers of threads and load balancing
policies. Because CCM is more complex than PBM, ACE is a larger
share of execution time per iteration, and APE is negligible com-
pared to it. As expected, ASE is still increasing as the number of
threads increases. However, a larger ACE still enables better speed-
up gains for CCM than for PBM.

Finally, we observe that the choice of distribution policy influ-
ences parallelization cost, as it directly impacts ASE. This happens
because synchronization is the time spent by threads waiting for
all tasks to complete; if the tasks are severely imbalanced, this wait
can become expensive for most threads, and will be reflected in the
execution time. As the role of the distribution policy is to balance
the workload per task, and MU is superior in this respect to RR,
ASE’s contribution is lower for MU. Indeed, our results from Fig-
ures 4 and 5 show that, for both PBM and CCM, MU leads to better
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Figure 4: Comparison between ACE, ASE, and APE for PBM
experiments with D50
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Figure 5: Comparison between ACE, ASE, and APE for CCM
experiments with D50

ACE results. However, for PBM, the impact of MU on reducing ASE
is small. For CCM, on the other hand, MU drastically reduces ASE.

Memory usage. We also investigate the memory footprint of
ParClick with efficiency reports from the machine produced at the
end of the experiments. The state-of-the-art implementation of
EM-based click models in the PyClick library is memory-intensive:
it requires 82.4GB of memory to train and evaluate a simple model
like PBM on the D10 dataset; processing the D50 dataset is not feasi-
ble within our 256GB. ParClick needs considerably less memory to
operate: when training on the D1-D50 datasets, the memory foot-
print varies from 0.9GB to 32.1GB for PBM, and 0.9GB to 32.3GB for
CCM. Consequently, it is now possible to train these models with
significantly more than 40 million query sessions. We note that,
for our solution, memory usage only increases marginally when
increasing the number of threads, because we focus, in our design
and implementation, on avoiding any unnecessary data replication.

6 CONCLUSION AND FUTURE WORK

Existing research on click models focuses extensively on improv-
ing effectiveness. However, training these models at large scale is,
currently, inefficient: most methods and tools are sequential, take
excessive training time, and consume too much memory. To address
these limitations, we introduce ParClick, the first scalable, generic,
efficient parallel algorithm for training EM-based click models
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To design ParClick, we first proposed a novel, generic algorithm
for training EM-based click models, and further parallelized it using
the PCAM design methodology.

We further implemented a prototype of ParClick as a multi-
threaded application and used the PBM and CCM click models as
case-studies. Our empirical results indicate that ParClick enables
click models’ training to scale up to very large click logs. Moreover,
for the tested datasets and models, ParClick shows close-to-optimal
efficiency when running on up to 16 threads; increasing the number
of threads further still improves performance significantly, but the
impact of synchronization overhead on parallelization efficiency is
more pronounced. Overall, our method makes large-scale training
of click models feasible and is considerably more efficient than
existing PyClick implementation.

In the near future, we aim to address both the efficiency and
effectiveness of more complex click models. We further work on
extending our approach to multi-node, large-scale training, and
further expand ParClick to use heterogeneous, accelerated archi-
tectures.
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