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Abstract

Transformers are state-of-the-art in a wide range of NLP
tasks and have also been applied to many real-world prod-
ucts. Understanding the reliability and certainty of trans-
former model predictions is crucial for building trustable
machine learning applications, e.g., medical diagnosis. Al-
though many recent transformer extensions have been pro-
posed, the study of the uncertainty estimation of transformer
models is under-explored. In this work, we propose a novel
way to enable transformers to have the capability of uncer-
tainty estimation and, meanwhile, retain the original predic-
tive performance. This is achieved by learning a hierarchi-
cal stochastic self-attention that attends to values and a set of
learnable centroids, respectively. Then new attention heads
are formed with a mixture of sampled centroids using the
Gumbel-Softmax trick. We theoretically show that the self-
attention approximation by sampling from a Gumbel distri-
bution is upper bounded. We empirically evaluate our model
on two text classification tasks with both in-domain (ID)
and out-of-domain (OOD) datasets. The experimental results
demonstrate that our approach: (1) achieves the best pre-
dictive performance-uncertainty trade-off among compared
methods; (2) exhibits very competitive (in most cases, bet-
ter) predictive performance on ID datasets; (3) is on par with
Monte Carlo dropout and ensemble methods in uncertainty
estimation on OOD datasets.

1 INTRODUCTION
Uncertainty estimation and quantification are important
tools for building trustworthy and reliable machine learn-
ing systems (Lin, Engel, and Eslinger 2012; Kabir et al.
2018; Sprangers, Schelter, and de Rijke 2021; Riedmaier
et al. 2021). Particularly, when such machine-learned sys-
tems are applied to make predictions that involve impor-
tant decisions, e.g., medical diagnosis (Ghoshal and Tucker
2020), financial planning and decision-making (Baker et al.
2020; Oh and Hong 2021), and autonomous driving (Hoel,
Wolff, and Laine 2020). The recent development of neu-
ral networks has shown excellent predictive performance in
many domains. Among those, transformers, including the
vanilla transformer (Vaswani et al. 2017) and its variants
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Figure 1: The methods of uncertainty estimation. (a) Deter-
ministic neural network outputs a single-point prediction;
(b) Bayesian neural network captures uncertainty via sam-
pling from a Gaussian distribution; (c) Variational dropout
captures uncertainty via sampling dropout masks from a
Bernoulli distribution; (d) Ensemble captures uncertainty
by combining multiple independently trained deterministic
models with different random seeds; (e) Gumbel-Softmax
trick for uncertainty estimation, the randomness comes from
the sampling categorical distribution from a Gumbel.

such as BERT (Devlin et al. 2019; Mohammed and Ali
2021; Wang et al. 2020) are the representative state-of-the-
art type of neural architectures that have shown remarkable
performance on various recent Natural Language Processing
(NLP) (Gillioz et al. 2020; Yan et al. 2021; Wang et al. 2021)
and Information Retrieval (IR) (Ren et al. 2021a,b) tasks.

Transformers excel in terms of predictive effective-
ness (Sun et al. 2020; Tetko et al. 2020; Han et al. 2021)
or computational efficiency (Tay et al. 2020; Xi et al. 2021;
Zhou et al. 2021; Zhu and Soricut 2021). However, they
do not offer the opportunity for practitioners to inspect the
model confidence due to their deterministic nature, i.e., in-
capability to assess if transformers are confident about their
predictions. This influence is non-trivial because transform-
ers are cutting-edge basic models for NLP. Thus, estimating
the predictive uncertainty of transformers benefits a lot in
terms of building and examining model reliability for the
downstream tasks.

To estimate the uncertainty of neural models’ prediction,
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one common way is to inject stochasticity (e.g., noise or ran-
domness) (Kabir et al. 2018; Gawlikowski et al. 2021). It
enables models to output a predictive distribution, instead
of a single-point prediction. Casting a deterministic trans-
former to be stochastic requires us to take the training and
inference computational complexity into consideration, be-
cause uncertainty estimation usually relies on multiple for-
ward runs. Therefore, directly adapting the aforementioned
methods is not desired, given the huge amount of parameters
and architectural complexity of transformers.

Figure 1 outlines deterministic transformer (Figure 1(a))
and the possible approaches (Figure 1(b-e) for making a
stochastic transformer. BNN (Figure 1(b)) assumes the net-
work weights follow a Gaussian or a mixture of Gaus-
sian (Blundell et al. 2015), and tries to learn the weight dis-
tribution (µ, σ), instead of weight W itself, with the help of
re-parameterization trick (Kingma and Welling 2014). That
means, BNN doubles the number of parameters. This is par-
ticularly challenging for a large network like a transformer,
which has millions of parameters to be optimized. To alle-
viate this issue, MC dropout (Gal and Ghahramani 2016)
(Figure 1(c)) uses dropout (Srivastava et al. 2014), con-
cretely Bernoulli distributed random variables, to approxi-
mate the exact posterior distribution (Gal and Ghahramani
2016). However, MC dropout tends to give overconfident
uncertainty estimation (Foong et al. 2019). Ensemble (Lak-
shminarayanan, Pritzel, and Blundell 2017)(Figure 1(d)) is
an alternative way to model uncertainty by averaging N in-
dependently trained models, which yields the computational
overhead by N times in model training.

Unlike models above, we propose a simple yet effec-
tive approach based on Gumbel-Softmax tricks or Con-
crete Dropout (Jang, Gu, and Poole 2017; Maddison, Mnih,
and Teh 2017), which are independently found for con-
tinuous relaxation, to estimate uncertainty of transformers.
First, we cast the deterministic attention distribution for val-
ues in each self-attention head to be stochastic. The at-
tention is then sampled from a Gumbel-Softmax distribu-
tion, which controls the concentration over values. Second,
we regularize the key heads in self-attention to attend to
a set of learnable centroids. This is equivalent to perform-
ing clustering over keys (Vyas, Katharopoulos, and Fleuret
2020) or clustering hidden states in RNN (Wang and Niepert
2019; Wang, Lawrence, and Niepert 2021). Similar atten-
tion mechanism has been also used to allow the layers in
the encoder and decoder attend to inputs in the Set Trans-
former (Lee et al. 2019) and to estimate attentive matri-
ces in the Capsule networks (Ahmed and Torresani 2019).
Third, each new key head will be formed with a mixture
of Gumbel-Softmax sampled centroids. The stochasticity
is injected by sampling from a Gumbel-Softmax distribu-
tion. This is different from BNN (sampling from Gaussian
distribution), MC-dropout (sampling from Bernoulli distri-
bution), Ensemble (the stochasticity comes from random
seeds in model training). With this proposed mechanism,
we approximate the vanilla transformer with a stochastic
transformer based on a hierarchical stochastic self-attention,
namely H-STO-TRANS, which enables the sampling of at-
tention distributions over values as well as over a set of
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Figure 2: The illustration of multi-head self-attention in
deterministic and stochastic transformers. (a) The vanilla
transformer with deterministic self-attention. (b) Stochastic
transformer has stochastic self-attention used to weight val-
ues V , the standard Softmax is replaced with the Gumbel-
Softmax. (c) Hierarchical stochastic transformer learns to
pay attention to values V and a set of learnable centroids
C stochastically.

learnable centroids.
Our work makes the following contributions:

• We propose a novel way to cast the self-attention in trans-
formers to be stochastic, which enables transformer mod-
els to provide uncertainty information with predictions.

• We theoretically show that the proposed self-attention
approximation is upper bounded, the key attention heads
that are close in Euclidean distance have similar attention
distribution over centroids.

• In two benchmark tasks for NLP, we empirically demon-
strate that H-STO-TRANS (1) achieves very competi-
tive (in most cases, better) predictive performance on in-
domain datasets; (2) is on par with baselines in uncer-
tainty estimation on out-of-domain datasets; (3) learns a
better predictive performance-uncertainty trade-off than
compared baselines, i.e., high predictive performance
and low uncertainty on in-domain datasets, high predic-
tive performance and high uncertainty on out-of-domain
datasets.

2 BACKGROUND
Predictive Uncertainty
The predictive uncertainty estimation is a challenging and
unsolved problem. It has many faces, depending on different
classification rules. Commonly it is classified as epistemic
(model) and aleatoric (data) uncertainty (Der Kiureghian
and Ditlevsen 2009; Kendall and Gal 2017). Alternatively,
on the basis of input data domain, it can also be classi-
fied into in-domain (ID) (Ashukha et al. 2019) and out-of-
domain (OOD) uncertainty (Hendrycks and Gimpel 2017;
Wang and Van Hoof 2020). With in-domain data, i.e. the
input data distribution is similar to training data distribu-
tion, a reliable model should exhibit high predictive per-
formance (e.g., high accuracy or F1-score) and report high
confidence (low uncertainty) on correct predictions. On the
contrary, out-of-domain data has quite different distribution
from training data, an ideal model should give high predic-
tive performance to illustrate the generalization to unseen



data distribution, but desired to be unconfident (high uncer-
tainty). We discuss the epistemic (model) uncertainty in the
context of ID and OOD scenarios in this work.

Vanilla Transformer
The vanilla transformer (Vaswani et al. 2017) is an alter-
native architecture to Recurrent Neural Networks recurrent
neural networks (RNNs) for modelling sequential data that
relaxes the model’s reliance on input sequence order. It con-
sists of multiple components such as positional embedding,
residual connection and multi-head scaled dot-product at-
tention. The core component of the transformer is the multi-
head self-attention mechanism.

Let x ∈ Rl×d (l is sequence length, d is dimension) be
input data, and Wq,Wk,Wv ∈ Rd×d be the matrices for
query Q ∈ Rl×h×dh , key K ∈ Rl×h×dh , and value V ∈
Rl×h×dh , dh = d

h and h is the number of attention heads.
Each x is associated with a query Q and a key-value pair
(K,V ). The computation of an attentive representation A of
x in the multi-head self-attention is:

Q = Wqx; K = Wkx; V = Wvx; (1)

A = SOFTMAX(α−1QK>); H = AV (2)

where H = [h1, ..., hh] is the multi-head output and A =
[a1, ..., ah] is the attention distribution that needs to attend to
V , α is a scaling factor. Note that a large value of α pushes
the Softmax function into regions where it has extremely
small gradients. This attention mechanism is the key factor
of a transformer for achieving high computational efficiency
and excellent predictive performance. However, as we can
see, all computation paths in this self-attention mechanism
are deterministic, leading to a single-point output. This lim-
its us to access and evaluate the uncertainty information be-
yond prediction given an input x.

We argue that the examination of the reliability and con-
fidence of a transformer prediction is crucial for many NLP
applications, particularly when the output of a model is di-
rectly used to serve customer requests. In the following sec-
tion, we introduce a simple yet efficient way to cast the de-
terministic attention to be stochastic for uncertainty estima-
tion based on Gumbel-Softmax tricks (Jang, Gu, and Poole
2017; Maddison, Mnih, and Teh 2017).

3 METHODOLOGY
Bayesian Inference and Uncertainty Modeling
In this work, we focus on using transformers in classification
tasks. Let D = {X,Y } = {xi, yi}Ni=1 be a training dataset,
yi ∈ {1, ...,M} is the categorical label for an input xi ∈ Rd.
The goal is to learn a transformation function f , which is
parameterized by weights ω and maps a given input x to a
categorical distribution y. The learning objective is to mini-
mize negative log likelihood, L = − 1

N

∑N
i log p(yi|xi, ω).

The probability distribution is obtained by Softmax function
as:

p(yi = m|xi, ω) =
exp(fm(xi, ω))∑
k∈M exp(fk(xi, ω)

. (3)

In the inference phase, given a test sample x∗, the predictive
probability y∗ is computed by:

p(y∗|x∗, D) =

∫
p(y∗|x∗, ω)p(ω|D)dω (4)

where the posterior p(ω|D) is intractable and cannot be
computed analytically. A variational posterior distribution
qθ(ω), where θ are the variational parameters, is used to ap-
proximate the true posterior distribution by minimizing the
Kullback-Leilber (KL) distance. This can also be treated as
the maximization of evidence lower bound (ELBO):

Lθ =
∫
qθ(ω)p(Y |X,ω)dω −KL[qθ(ω) ‖ p(ω)] (5)

With the re-parametrization trick (Kingma, Salimans, and
Welling 2015), a differentiable mini-batched Monte Carlo
estimator can be obtained.

The predictive (epistemic) uncertainty can be measured
by performing T inference runs and averaging predictions.

p(y ∗ |x∗) = 1

T

T∑
t=1

pωt
(y∗|x∗, ωt) (6)

T corresponds to the number of sets of mask vectors from
Bernoulli distribution {rt}Tt=1 in MC-dropout, or the num-
ber of randomly trained models in Ensemble, which po-
tentially leads to different set of learned parameters ω =
{ω1, ..., ωt}, or the number of sets of sampled attention dis-
tribution from Gumbel distribution {gt}Tt=1 in our proposed
method.

Stochastic Self-Attention with Gumbel-Softmax
As described in section 2, the core component that makes a
transformer successful is the multi-head self-attention. For
each i-th head, let qi ∈ Q, ki ∈ K, vi ∈ V , it is written as:

ai = SOFTMAX(
qik
>
i

τ
); ai ∈ Rl×l (7)

hi = aivi; hi ∈ Rl×dh (8)

We here use a temperature parameter τ to replace the scaling
factor α. The ai is attention distribution, which learns the
compatibility scores between tokens in the sequence with
the i-th attention head. The scores are used to retrieve and
form the mixture of the content of values, which is a kind of
content-based addressing mechanism in neural Turing ma-
chine (Graves, Wayne, and Danihelka 2014). Note the atten-
tion is deterministic.

A straightforward way to inject stochasticity is to replace
standard Softmax with Gumbel-Softmax, which helps to
sample attention weights to form âi.

âi ∼ G(
qik
>
i

τ
) (9)

hi = âivi (10)

where G is GUMBEL-SOFTMAX function. The Gumbel-
Softmax trick is an instance of a path-wise Monte-Carlo gra-
dient estimator (Gumbel 1954; Maddison, Mnih, and Teh



2017; Jang, Gu, and Poole 2017). With the Gumbel trick,
we can draw samples z from a categorical distribution given
by parameters θ, that is, z = ONE HOT

(
argmaxi[gi +

log θi]
)
, i ∈ [1 . . . k], where k is the number of categories

and gi are i.i.d. samples from the GUMBEL(0, 1), that is,
g = − log(− log(u)), u ∼ UNIFORM(0, 1) is indepen-
dent to network parameters. Because the argmax operator
breaks end-to-end differentiability, the categorical distribu-
tion z can be approximated using the differentiable Soft-
max function (Jang, Gu, and Poole 2017; Maddison, Mnih,
and Teh 2017). Here the τ is a tunable temperature param-
eter equivalent to α in Eq. (2), Then the attention weights
(scores) for values in Eq.2 can be computed as:

âi =
exp((log(θi) + gi)/τ)∑k
j=1 exp((log(θtj ) + gj)/τ)

, i ∈ [1 . . . k]. (11)

where the θi = qik
>
i . And we use the following approxima-

tion:
KL[a ‖ â] where aj =

aj∑i=1
k ai

(12)

This indicates an approximation of a deterministic atten-
tion distribution a with a stochastic attention distribution â.
With a larger τ , the distribution of attention is more uniform,
and with a smaller τ , the attention becomes more sparse.

The trade-off between predictive performance and un-
certainty estimation. This trade-off is rooted in bias-
variance trade-off. Let φ(x) be a prediction function, and
f(x) is the true function and ρ be a constant number. The
error can be computed as:

ξ(x) = (E[φ(x)− f(x)])2︸ ︷︷ ︸
Bias2

+(E[φ(x)− E[φ(x)]]2)︸ ︷︷ ︸
V ariance

+ ρ︸︷︷︸
Const

(13)
MC-dropout (Gal and Ghahramani 2016) with T times

Monte Carlo estimation gives a prediction E[φt(x)], t ∈ T
and predictive uncertainty, e.g., variances V ariance[φt(x)]
(ρ is a constant number denotes irreducible error). On both
in-domain and out-of-domain datasets, a good model should
exhibit low bias, which ensures model generalization ca-
pability and high predictive performance. For epistemic
(model) uncertainty, we expect model outputs low variance
on in-domain data and high variance on out-of-domain data.

We empirically observe (from Table 1 and Table 2) that
this simple modification in Eq. (9) can effectively capture
the model uncertainty, but it struggles to learn a good trade-
off between predictive performance and uncertainty estima-
tion. That is, when good uncertainty estimation performance
is achieved on out-of-domain data, the predictive perfor-
mance on in-domain data degrades. To address this issue, we
propose a hierarchical stochastic self-attention mechanism.

Hierarchical Stochastic Self-Attention
To further encourage transformer model to have stochastic-
ity and retain predictive performance, we propose to add
an additional stochastic attention before the attention that
pays values. This attention forces each key head stochasti-
cally attend to a set of learnable centroids, which will be

learned during back-propagation. This is equivalent to regu-
larizing key attention heads. Similar ideas have been used to
improve transformer efficiency (Vyas, Katharopoulos, and
Fleuret 2020) and to improve RNN memorization (Wang
and Niepert 2019).

We first define the set of c centroids, C ∈ Rdh×c . Let
each centroid ci ∈ Rdh have the same dimension with each
key head kj ∈ Rdh . The model will first learn to pay at-
tention to centroids, and a new key head k̂j is formed by
weighting each centroid. Then k̂ and a query q decides the
attention weights to combine values v. For the i-th head, a
given query qi, key ki, value vi, the stochastic self-attention
can be hierarchically formulated as:

âc ∼ G(τ−11 kiC), âc ∈ Rl×c (14)

k̂i = âcC
>, k̂i ∈ Rl×dh (15)

âv ∼ G(τ−12 qik̂
>
i ), âv ∈ Rl×l (16)

hi = âvvi (17)

âc, âv are the sampled categorical distributions that are used
to weight centroids in C and tokens in vi. The τ1, τ2 control
the softness for each stochastic self-attention, respectively.

We summarize the main procedures of performing hier-
archical stochastic attention in transformer in Algorithm 1.

Algorithm 1: Hierarchical stochastic transformer.
Input : query Q, key K, value V , centroids C
Output: Hierarchical stochastic attentive output H

1 Model stochastic attention Âc over centroids C as Eq.14;
2 Sample Âc from a categorical distribution

z = ONE HOT
(
argmaxi[gi + log θi]

)
, i ∈ [1 . . . k],

g = − log(− log(u)), u ∼ UNIFORM(0, 1) ;
3 Differentially approximate Âc as Eq. 11;
4 Compute K̂ = ÂcC

> as Eq. 15;
5 Model stochastic attention Âv over value V as Eq.16;
6 Sample and approximate Âv , similar to line 2 to 3;
7 Compute H = ÂvV as Eq. 17;

Why perform clustering on key heads? The equation
(14) performs clustering on the key attention heads and out-
puts an attention distribution, and equation (15) tries to form
a new head based on attention distribution and learned cen-
troids. The goal is to make the original key heads to be
stochastic, allowing attention distribution to have random-
ness for uncertainty estimation. This goal can be also accom-
panied by applying equations (14) and (15) to query while
keeping key unchanged. In that case, âc can be still sampled
stochastically based on query and centroids.

Stochastic attention approximation. The equations (14)
and (15) group the key heads into a fixed number of cen-
troids and are reweighed by the mixture of centroids. As
in (Vyas, Katharopoulos, and Fleuret 2020), we can ana-
lyze the attention approximation error, and derive that the
key head attention difference is bounded.



Proposition 3.1 Given two keys ki and kj such that
‖ki − kj‖2 ≤ ε, stochastic key attention difference is
bounded:

∥∥G(τ−1kiC))− G(τ−1kjC))∥∥2 ≤ τ−1ε ‖C‖2,
where G is the Gumbel-Softmax function, and ‖C‖2 is the
spectral norm of centroids. ε and τ are constant numbers.

Proof 3.1 Same to the Softmax function, which has Lips-
chitz constant less than 1 (Gao and Pavel 2017), we have
the following derivation:∥∥G(τ−1kiC))− G(τ−1kjC))∥∥2

≤
∥∥τ−1kiC − τ−1kjC∥∥2

≤ τ−1ε ‖C‖2

(18)

Proposition 3.1 shows that the i-th key assigned to j-th
centroid can be bounded by its distance from j-th centroid.
The keys that are close in Euclidean space have similar at-
tention distribution over centroids.

4 EXPERIMENTAL SETUPS
We design experiments to achieve the following objectives:

• To evaluate the predictive performance of models on in-
domain datasets. High predictive scores and low uncer-
tainty scores are desired.

• To compare the model generalization from in-domain to
out-of-domain datasets. High scores are desired.

• To estimate the uncertainty of the models on out-of-
domain datasets. High uncertainty scores are desired.

• To measure the model capability in learning the predic-
tive performance-uncertainty estimation trade-off.

Datasets
We use IMDB dataset1 (Maas et al. 2011) for the sentiment
analysis task. The standard IMDB has 25,000/25,000 re-
views for training and test, covering 72,062 unique words.
For hyperparameter selection, we take 10% of training data
as validation set, leading to 22,500/2,500/25,000 data sam-
ples for training, validation, and testing. Besides, we use
customer review (CR) dataset (Hendrycks and Gimpel 2017)
which has 500 samples to evaluate the proposed model in
OOD settings. We conduct the second experiment on lin-
guistic acceptability task with CoLA dataset2 (Warstadt,
Singh, and Bowman 2019). It consists of 8,551 training and
527 validation in-domain samples. As the labels of test set
is not publicly available, we split randomly the 9078 in-
domain samples into train/valid/test with 7:1:2. Addition-
ally, we use the provided 516 out-of-domain samples for un-
certainty estimation.

Compared Methods.
We compare the following methods in our experimental
setup:

• TRANS (Vaswani et al. 2017): The vanilla transformer
with deterministic self-attention.
1https://ai.stanford.edu/ amaas/data/sentiment/
2https://nyu-mll.github.io/CoLA/

• MC-DROPOUT (Gal and Ghahramani 2016): Using
dropout (Srivastava et al. 2014) as a regularizer to mea-
sure the prediction uncertainty.

• ENSEMBLE (Lakshminarayanan, Pritzel, and Blundell
2017): Average over multiple independently trained
transformers.

• STO-TRANS: The proposed method that the attention dis-
tribution over values is stochastic;

• H-STO-TRAN: The proposed method that uses hierarchi-
cal stochastic self-attention, i.e., the stochastic attention
from key heads to a learnable set of centroids and the
stochastic attention to value, respectively.

Implementation details
We implement models in PyTorch (Paszke et al. 2019). The
models are trained with Adam (Kingma and Ba 2014) as the
optimization algorithm. For each trained model, we sam-
ple 10 predictions (run inference 10 times), the mean and
variance (or standard deviation) of results are reported. The
uncertainty information is quantified with variance (or stan-
dard deviation). For sentiment analysis, we use 1 layer with
8 heads, both the embedding size and the hidden dimen-
sion size are 128. We train the model with learning rate
of 1e-3, batch size of 128, and dropout rate of 0.5/0.1. We
evaluate models at each epoch, and the models are trained
with maximum 50 epochs. We report accuracy as the eval-
uation metric. For linguistic acceptability, we use 8 layers
and 8 heads, the embedding size is 128 and the hidden di-
mension is 512. We train the model with learning rate of
5e-5, batch size of 32 and dropout rate of 0.1. We train the
models with maximum 2000 epochs and evaluate the mod-
els at every 50 epochs. We use Matthews correlation coeffi-
cient (MCC) (Matthews 1975) as the evaluation metric. The
model selection is performed based on validation dataset ac-
cording to predictive performance.

5 EXPERIMENTAL RESULTS
Results on Sentiment Analysis
Table 1 presents the predictive performance and uncer-
tainty estimation on IMDB (in-domain, ID) and CR (out-
of-domain, OOD) dataset, evaluated by accuracy.

First, STO-TRANS and H-STO-TRANS are able to pro-
vide uncertainty information, as well as maintain and even
slightly outperform the predictive performance of TRANS.
Specially, STO-TRANS (τ = 40) and H-STO-TRANS (τ1 =
1, τ2 = 30) outperforms TRANS (η = 0.1) by 0.42% and
0.66% on ID dataset. In addition, they allow us to measure
the uncertainty via predictive variances. It is because they in-
ject randomness directly to self-attentions. However, TRANS
has no access to uncertainty information due to its determin-
istic nature.

Second, STO-TRANS is struggling to learn a good trade-
off between ID predictive performance and OOD uncer-
tainty estimation performance. With small temperature τ =
1, STO-TRANS gives good uncertainty information, but we
observe that the ID predictive performance drops. When
τ approaches to

√
d/h (the original scaling factor in the
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Figure 3: The experiments with hyperparameter τ . Left: STO-TRANS with different τ . The randomness is solely based on
the sampling on attention distribution over values. While uncertainty information is captured, STO-TRANS has difficulties in
learning the trade-off between in-domain and out-of-domain performance. Middle: The hyperparameter tuning of τ1 and τ2 in
H-STO-TRANS. τ1 controls the concentration on centroids and τ2 controls the concentration on values.

ID (%) OOD (%) 5ID (%) 5OOD (%)
TRANS (η = 0.1) 87.00 65.00 / /
TRANS (η = 0.5) 87.51 63.40 0.51 ↑ 1.60 ↓
MC-DROPOUT (η = 0.5) 86.06 ± 0.087 63.38 ± 1.738 0.94 ↑ 1.62 ↓
MC-DROPOUT (η = 0.1) 87.01 ± 0.075 63.38 ± 0.761 0.10 ↑ 1.62 ↓
ENSEMBLE 86.89 ± 0.230 64.20 ± 1.585 0.11 ↓ 0.80 ↓
STO-TRANS (τ = 1) 82.62 ± 0.092 67.92 ± 0.634 4.38 ↓ 2.92 ↑
STO-TRANS (τ = 40) 87.42 ± 0.022 63.78 ± 0.289 0.42 ↑ 1.22 ↓
H-STO-TRANS (τ1 = 1, τ2 = 20) 87.63 ± 0.017 67.14 ± 0.400 0.63 ↑ 2.14 ↑
H-STO-TRANS (τ1 = 1, τ2 = 30) 87.66 ± 0.022 66.72 ± 0.271 0.66 ↑ 1.72 ↑

Table 1: The predictive performance and uncertainty estimation of models on IMDB (ID) and CR (OOD) dataset. The uncer-
tainty estimation is performed by running forward pass inference by 10 runs, then the uncertainty is quantified by standard
deviation across runs. For ensemble, the results are averaged on 10 models that are independently trained with random seeds.
Dropout is used in the inference of MC-DROPOUT and η is dropout rate. In the rest of methods, dropout is not used in inference.
The5ID (%) and5OOD (%) present the predictive performance difference to TRANS (η = 0.1).

vanilla transformer), STO-TRANS achieves better perfor-
mance on ID dataset, but lower performance on OOD
dataset. We conjecture that the randomness in STO-TRANS
is solely based on the attention distribution over values and
is not enough for learning the trade-off.

Third, H-STO-TRANS achieves better accuracy-
uncertainty trade-off compared with STO-TRANS. For
instance, with τ1 = 1, τ2 = 20, H-STO-TRANS achieves
87.63% and 67.14%, which outperform the corresponding
numbers of STO-TRANS for both ID and OOD datasets. It
also outperforms MC-DROPOUT and ENSEMBLE, specially,
H-STO-TRANS outperforms 0.62%-1.6% and 2.52%-3.76%
on ID and OOD datasets, respectively. On OOD dataset,
while MC-DROPOUT and ENSEMBLE exhibit higher un-
certainty (measured by standard deviation) across runs,
the accuracy is lower than that of TRANS (η = 0.1),
STO-TRANS (τ = 1) and H-STO-TRANS. It is due to a
better way of learning two types of randomness: one from
sampling over a set of learnable centroids and the other one
from sampling attention over values.

Figure 3 reports the hyperparameter tuning of τ1 and τ2.
The goal is to find a reasonable combination to achieve high
predictive performance on both ID and OOD datasets. To
simplify the tuning work, we fix the τ1 = 1 and then change
τ2 with different values, and vice versa. As we can see, the
combination of a small τ1 and a large τ2 performs better than
the other way around. We think this is because τ2 is in the
latter stage and has bigger effects on the predictive perfor-
mance. However, removing τ1 goes back to Figure 3 (Left),
where accuracy-uncertainty trade-off is not well learned by

STO-TRANS.

Results on Linguistic Acceptability
Table 2 shows the performance of compared models on both
in-domain (ID) and out-of-domain (OOD) sets of CoLA
dataset, evaluated by MCC.

Models ID(%) OOD(%) 5ID (%) 5OOD (%)

TRANS (η = 0.1) 20.09 16.46 / /
MC-DROPOUT (η = 0.1) 19.91± 0.40 16.70± 2.21 0.18 ↓ 0.24 ↑
MC-DROPOUT (η = 0.05) 20.03± 0.30 17.11± 1.21 0.06 ↓ 0.65 ↑
ENSEMBLE 21.20± 2.59 16.73± 4.92 1.11 ↑ 0.27 ↑
STO-TRANS 23.27± 0.75 15.25± 4.65 3.18 ↑ 1.21 ↓
H-STO-TRANS 20.52± 0.76 16.49± 4.08 0.43 ↑ 0.03 ↑

Table 2: The performance of compared models on CoLA
dataset. We set all temperature values τ1 = 1 and τ2 = 1.
The5ID (%) and5OOD (%) present the predictive perfor-
mance and difference to TRANS (η = 0.1), respectively.

First, STO-TRANS and H-STO-TRANS obtain compara-
ble performance as well as provide uncertainty information,
compared with TRANS. To be specific, STO-TRANS and H-
STO-TRANS improves 3.18% and 0.43% of MCC on ID
dataset compared with deterministic TRANS respectively.

Second, STO-TRANS achieves the best performance on
ID dataset but the worst performance on OOD dataset.
Although STO-TRANS outperforms TRANS, the best MC-
DROPOUT, ENSEMBLE by 3.18%, 3.24%, 2.07% of MCC on
ID dataset, its performance drops by 1.21%, 1.86%, 1.48%,



Examples (Labels) Prob. Corr. Corr./Total

no man has ever beaten the centaur. (1) 0.75± 0.001 10/10
nora sent the book to london (1) 0.65± 0.007 10/10
sally suspected joe, but he did n’t holly. (1) 0.60± 0.008 8/10
kim is eager to recommend. (0) 0.41± 0.011 3/10
he analysis her was flawed (0) 0.24± 0.003 0/10
sandy had read how many papers ? ! (1) 0.67± 0.010 10/10
which book did each author recommend ? (1) 0.58± 0.010 7/10
she talked to harry , but i do n’t know who else .(1) 0.52± 0.013 4/10
john is tall on several occasions . (0) 0.42± 0.005 1/10
they noticed the painting , but i do n’t know for how long . (0)0.28± 0.003 0/10

Table 3: Illustration of predictions with H-STO-TRANS. The
predictions for each ID (top) and OOD (bottom) samples are
measured by the probability of being correct of each predic-
tion and the number of correct predictions.

correspondingly on OOD dataset. This further verifies our
conjecture that the randomness is only introduced to atten-
tion distribution over values and is insufficient for learning
the trade-off of ID and OOD data.

Third, H-STO-TRANS enabled to learn better trade-off
between prediction and uncertainty. Precisely, the perfor-
mance improves 0.43% and 0.03% of MCC on ID and OOD
datasets respectively. H-STO-TRANS is 0.49% superior to
MC-DROPOUT (η = 0.05), meanwhile, 0.68% inferior to
ENSEMBLE on ID dataset. Given ENSEMBLE shows high un-
certainty on ID dataset and MC-DROPOUT (η = 0.05) has
low uncertainty on OOD dataset, this is not desired. There-
fore, H-STO-TRANS is the one that strikes the better balance
across the objectives. In the context of this task, it means
high MCC, low variance on ID dataset and high MCC, high
variance on OOD dataset.

Table 3 gives some predictions of test samples with H-
STO-TRANS. What we observed are two folds: (1) In gen-
eral, ID predictions have lower variances in terms of the
probability of being correct. For “10/10” (10 correct predic-
tions out of 10 total predictions) prediction cases, the ID ex-
amples have higher probability score than the ones in OOD
data. Also, we find there are much less number of “10/10”
prediction cases in OOD dataset than that in ID dataset. (2)
For ID dataset, either with high or low probability scores, we
can see low variances, we see more “10/10” (tend to be con-
fidently correct) or “0/10” (tend to be confidently incorrect)
cases. As expected, for both cases, the variance is relatively
low as compared to probability around 0.5. In deterministic
models, we are not able to access this kind of information
which would imply how confident are the transformer mod-
els towards predictions.

6 RELATED WORK
Bayesian neural networks (Blundell et al. 2015) inject
stochasticity by sampling the network parameters from a
Gaussian prior. Then the posterior distribution of target
can be estimated in multiple sampling runs. However, the
Bayesian approach doubles the number of network param-
eters, i.e., instead of learning a single-point network pa-

rameter, it learns a weight distribution which is assumed
to follow a Gaussian distribution. Additionally, it often re-
quires intensive tuning work on Gaussian mean and vari-
ance to achieve stable learning curves as well as predictive
performance. MC dropout (Gal and Ghahramani 2016) ap-
proximates Bayesian approach by sampling dropout masks
from a Bernoulli distribution. However, MC dropout has
been demonstrated to give overconfident uncertainty estima-
tion (Foong et al. 2019). Alternatively, the recently proposed
deep ensembles (Lakshminarayanan, Pritzel, and Blundell
2017) offers possibility to estimate predictive uncertainty
by combining predictions from different models which are
trained with different random seeds. This, however, signif-
icantly increases the computational overhead for training
and inference. There are some MC dropout based meth-
ods recently proposed. Sequential MC transformer (Mar-
tin et al. 2020), which models uncertainty by casting self-
attention parameters as unobserved latent states by evolving
randomly through time. (He et al. 2020) combined mix-
up, self-ensembling and dropout to achieve more accurate
uncertainty score for text classification. (Shelmanov et al.
2021) propose to incorporate determinantal point process
to MC dropout to quantify the uncertainty of transform-
ers. Different to the above-mentioned approaches, we in-
ject stochasticity into the vanilla transformer with Gumbel-
Softmax tricks. As it is shown in the experiment section,
hierarchical stochastic self-attention component can effec-
tively capture model uncertainty, and learn a good trade-
off between in-domain predictive performance and out-of-
domain uncertainty estimation.

7 DISCUSSION
While many extension of transformers have been recently
proposed, the most of transformer variants are still deter-
ministic. Our goal in this work is to equip transformers in a
stochastic way to estimate uncertainty while retaining the
original predictive performance. This requires special de-
sign in order to achieve the two goals without adding a ma-
jor computational overhead to model training and inference
like Ensembles and Bayesian Neural Network (BNN). The
complexity gain of our method to its deterministic version is
modest and requires an additional matrix C ∈ Rdh×c. This
is more efficient than Ensemble and BNN, which gives N
(N ≥ 2 for Ensemble and N = 2 for BNN) times more
weights.

8 CONCLUSION
This work proposes a novel, simple yet effective way to en-
able transformers with uncertainty estimation, as an alterna-
tive to MC dropout and ensembles. We propose variants of
transformers based on two stochastic self-attention mecha-
nisms: (1) injecting stochasticity into the stochastic attention
over values; (2) forcing key heads to pay stochastic atten-
tion to a set of learnable centroids. Our experimental results
show that the proposed approach learns good trade-offs be-
tween in-domain predictive performance and out-of-domain
uncertainty estimation performance on two NLP benchmark
tasks, and outperforms baselines.
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