
Taking the Counterfactual Online:
Efficient and UnbiasedOnline Evaluation for Ranking

Harrie Oosterhuis
University of Amsterdam

Amsterdam, The Netherlands
oosterhuis@uva.nl

Maarten de Rijke
University of Amsterdam &Ahold Delhaize

Amsterdam, The Netherlands
derijke@uva.nl

ABSTRACT
Counterfactual evaluation can estimate Click-Through-Rate (CTR)
differences between ranking systems based on historical interaction
data, while mitigating the effect of position bias and item-selection
bias. We introduce the novel Logging-Policy Optimization Algo-
rithm (LogOpt), which optimizes the policy for logging data so that
the counterfactual estimate has minimal variance. As minimizing
variance leads to faster convergence, LogOpt increases the data-
efficiency of counterfactual estimation. LogOpt turns the counter-
factual approach – which is indifferent to the logging policy – into
an online approach, where the algorithm decides what rankings
to display. We prove that, as an online evaluation method, LogOpt
is unbiased w.r.t. position and item-selection bias, unlike existing
interleaving methods. Furthermore, we perform large-scale exper-
iments by simulating comparisons between thousands of rankers.
Our results show that while interleaving methods make systematic
errors, LogOpt is as efficient as interleaving without being biased.

ACMReference Format:
Harrie Oosterhuis and Maarten de Rijke. 2020. Taking the Counterfactual
Online: Efficient and Unbiased Online Evaluation for Ranking. In Proceedings
of the 2020 ACM SIGIR International Conference on the Theory of Information
Retrieval (ICTIR ’20), September 14–17, 2020, Virtual Event, Norway. ACM,
New York, NY, USA, 8 pages. https://doi.org/10.1145/3409256.3409820

1 INTRODUCTION
Evaluation is essential for the development of search and recommen-
dation systems [8, 14]. Before any ranking model is widely deployed
it is important to first verify whether it is a true improvement over
the currently-deployed model. A traditional way of evaluating rela-
tive differences between systems is through A/B testing, where part
of the user population is exposed to the current system (“control")
and the rest to the altered system (“treatment") during the same time
period. Differences in behavior between these groups can then in-
dicate if the alterations brought improvements, e.g. if the treatment
group showed a higher Click-Through-Rate (CTR) or more revenue
was made with this system [4].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICTIR ’20, September 14–17, 2020, Virtual Event, Norway
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8067-6/20/09. . . $15.00
https://doi.org/10.1145/3409256.3409820

Interleaving has been introduced in Information Retrieval (IR) as
a more efficient alternative to A/B testing [11]. Interleaving algo-
rithms take the rankings produced by two ranking systems, and for
each query create an interleaved ranking by combining the rankings
from both systems. Clicks on the interleaved rankings directly indi-
cate relative differences. Repeating this process over a large number
of queries and averaging the results, leads to an estimate of which
ranker would receive the highest CTR [10]. Previous studies have
found that interleaving requires fewer interactions than A/B test-
ing, which enables them to make consistent comparisons in a much
shorter timespan [4, 21].

More recently, counterfactual evaluation for rankings has been
proposed by Joachims et al. [13] to evaluate a ranking model based
on clicks gathered using a different model. By correcting for the po-
sition bias introduced during logging, the counterfactual approach
can unbiasedly estimate the CTR of a newmodel on historical data.
To achieve this, counterfactual evaluation makes use of Inverse-
Propensity-Scoring (IPS), where clicks are weighted inversely to
the probability that a user examined them during logging [22]. A
big advantage compared to interleaving and A/B testing, is that
counterfactual evaluation does not require online interventions.

In this paper, we show that no existing interleaving method is
truly unbiased: they are not guaranteed to correctly predict which
ranker has the highest CTR. On two different industry datasets, we
simulate a total of 1,000 comparisons between 2,000 different rankers.
In our setup, interleaving methods converge on the wrong answer
for at least 2.2% of the comparisons on both datasets. A further anal-
ysis shows that existing interleaving methods are unable to reliably
estimate CTR differences around 1% or lower. Therefore, in prac-
tice these systematic errors are expected to impact situations where
rankers with a very similar CTR are compared.

We propose a novel online evaluation algorithm: Logging-Policy
Optimization Algorithm (LogOpt). LogOpt extends the existing un-
biased counterfactual approach, and turns it into an online approach.
LogOpt estimates which rankings should be shown to the user, so
that the variance of its CTR estimate is minimized. In other words, it
attempts to learn the logging-policy that leads to the fastest possible
convergence of the counterfactual estimation. Our experimental
results indicate that our novel approach is as efficient as any inter-
leaving method or A/B testing, without having a systematic error.
As predicted by the theory, we see that the estimates of our approach
converge on the true CTR difference between rankers. Therefore, we
have introduced the first online evaluation method that combines
high efficiency with unbiased estimation.

The main contributions of this work are:
(1) The first logging-policy optimizationmethod forminimizing the

variance in counterfactual CTR estimation.

Session 6: Learning to Rank ICTIR '20, September 14–17, 2020, Virtual Event, Norway

137

https://doi.org/10.1145/3409256.3409820
https://doi.org/10.1145/3409256.3409820

(2) The first unbiased online evaluation method that is as efficient
as state-of-the-art interleaving methods.

(3) A large-scale analysis of existing online evaluationmethods that
reveals a previously unreported bias in interleaving methods.

2 PRELIMINARIES: RANKERCOMPARISONS
The overarching goal of ranker evaluation is to find the ranking
model that provides the best rankings. For the purposes of this
paper, we will define the quality of a ranker in terms of the num-
ber of clicks it is expected to receive. Let 𝑅 indicate a ranking and
let E[CTR(𝑅)] ∈ R≥0 be the expected number of clicks a rank-
ing receives after being displayed to a user. We consider ranking
𝑅1 to be better than 𝑅2 if in expectation it receives more clicks:
E[CTR(𝑅1)] >E[CTR(𝑅2)]. We will represent a ranking model by
a policy 𝜋 , with 𝜋 (𝑅 | 𝑞) as the probability that 𝜋 displays 𝑅 for a
query 𝑞. With 𝑃 (𝑞) as the probability of a query 𝑞 being issued, the
expected number of clicks received under a ranking model 𝜋 is:

E[CTR(𝜋)]=
∑︁
𝑞

𝑃 (𝑞)
∑︁
𝑅

E[CTR(𝑅)]𝜋 (𝑅 |𝑞) . (1)

Our goal is to discover theE[CTR] difference between two policies:
Δ(𝜋1,𝜋2)=E[CTR(𝜋1)]−E[CTR(𝜋2)] . (2)

We recognize that to correctly identify if one policy is better than
another, we merely need a corresponding binary indicator:

Δ𝑏𝑖𝑛 (𝜋1,𝜋2)=sign
(
Δ(𝜋1,𝜋2)

)
. (3)

However, in practice the magnitude of the differences can be very
important, for instance, if one policy is much more computationally
expensive while only having a slightly higherE[CTR], it may be
preferable to use the other in production. Therefore, estimating the
absoluteE[CTR] difference is more desirable in practice.

2.1 User Behavior Assumptions
Any proof regarding estimators using user interactions must rely
on assumptions about user behavior. In this paper, we assume that
only two forms of interaction bias are at play: position bias and
item-selection bias.

Users generally do not examine all items that are displayed in a
ranking but only click on examined items [5]. As a result, a lower
probability of examination for an item also makes it less likely to
be clicked. Position bias assumes that only the rank determines the
probability of examination [6]. Furthermore, we will assume that
given an examination only the relevance of an item determines the
click probability. Let 𝑐 (𝑑) ∈ {0,1} indicate a click on item 𝑑 and
𝑜 (𝑑) ∈ {0,1} examination by the user. Then these assumptions result
in the following assumed click probability:

𝑃 (𝑐 (𝑑)=1 |𝑅,𝑞)=𝑃 (𝑜 (𝑑)=1 |𝑅)𝑃 (𝑐 (𝑑)=1 |𝑜 (𝑑)=1,𝑞)
=𝜃rank(𝑑 |𝑅)𝜁𝑑,𝑞 .

(4)

Here rank(𝑑 | 𝑅) indicates the rank of 𝑑 in 𝑅; for brevity we use
𝜃rank(𝑑 |𝑅) to denote the examination probability – 𝜃rank(𝑑 |𝑅) =

𝑃 (𝑜 (𝑑) = 1 | 𝑅) – and 𝜁𝑑,𝑞 for the conditional click probability –
𝜁𝑑,𝑞 =𝑃 (𝑐 (𝑑)=1 |𝑜 (𝑑)=1,𝑞).

Wealso assume that item-selectionbias is present; this type of bias
is an extreme form of position bias that results in zero examination
probabilities for some items [16, 17]. This bias is unavoidable in top-𝑘

ranking settings, where only the 𝑘 ∈N>0 highest ranked items are
displayed.Consequently, any itembeyond rank𝑘 cannot beobserved
or examinedby theuser:∀𝑟 ∈N>0 (𝑟 >𝑘→𝜃𝑟 =0). The distinction be-
tween item-selection bias and position bias is important because the
original counterfactual evaluationmethod [13] is only able to correct
for position bias when no item-selection bias is present [16, 17].

Based on these assumptions, we can now formulate the expected
CTR of a ranking:

E[CTR(𝑅)]=
∑︁
𝑑∈𝑅

𝑃 (𝑐 (𝑑)=1 |𝑅,𝑞)=
∑︁
𝑑∈𝑅

𝜃rank(𝑑 |𝑅)𝜁𝑑,𝑞 . (5)

While we assume this model of user behavior, its parameters are still
assumed unknown. Therefore, the methods in this paper will have
to estimateE[CTR] without prior knowledge of 𝜃 or 𝜁 .

2.2 Goal: CTR-Estimator Properties
Recall thatourgoal is toestimate theCTRdifferencebetweenrankers (Eq.2);
online evaluation methods do this based on user interactions. Let
I be the set of available user interactions, it contains 𝑁 tuples
of a single (issued) query 𝑞𝑖 , the corresponding displayed rank-
ing 𝑅𝑖 , and the observed user clicks 𝑐𝑖 : I = {(𝑞𝑖 ,𝑅𝑖 ,𝑐𝑖)}𝑁𝑖=1. Each
evaluation method has a different effect on what rankings will
be displayed to users. Furthermore, each evaluation method con-
verts each interaction into a single estimate using some function
𝑓 : 𝑥𝑖 = 𝑓 (𝑞𝑖 ,𝑅𝑖 ,𝑐𝑖), the final estimate is simply the mean over these
estimates: Δ̂(I) = 1

𝑁

∑𝑁
𝑖=1𝑥𝑖 =

1
𝑁

∑𝑁
𝑖=1 𝑓 (𝑞𝑖 ,𝑅𝑖 ,𝑐𝑖). This description

fits all existing online and counterfactual evaluation methods for
rankings. Every evaluation method uses a different function 𝑓 to
convert interactions into estimates; moreover, online evaluation
methods also decide which rankings 𝑅 to display when collecting I.
These two choices result in different estimators. Before we discuss
the individual methods, we briefly introduce the three properties we
desire of each estimator: consistency, unbiasedness and variance.

Consistency – an estimator is consistent if it converges as 𝑁
increases. All existing evaluation methods are consistent as their
final estimates are means of bounded values.

Unbiasedness – an estimator is unbiased if its estimate is equal
to the true CTR difference in expectation:

Unbiased(Δ̂)⇔E
[
Δ̂(I)

]
=Δ(𝜋1,𝜋2). (6)

If an estimator is both consistent and unbiased it is guaranteed to
converge on the trueE[CTR] difference.

Variance – the variance of an estimator is the expected squared
deviation between a single estimate 𝑥 and the mean Δ̂(𝑋):

Var(Δ̂)=E
[(
𝑥−E[Δ̂(I)]

)2]
. (7)

Variance affects the rate of convergence of an estimator; for fast
convergence it should be as low as possible.

In summary, our goal is tofindanestimator, for theCTRdifference
between two ranking models, that is consistent, unbiased and has
minimal variance.

3 EXISTINGONLINEANDCOUNTER-
FACTUAL EVALUATIONMETHODS

We describe three families of online and counterfactual evaluation
methods for ranking.

Session 6: Learning to Rank ICTIR '20, September 14–17, 2020, Virtual Event, Norway

138

3.1 A/B Testing
A/B testing is awell established formof online evaluation to compare
a system Awith a system B [14]. Users are randomly split into two
groups and during the same time period each group is exposed to
only one of the systems. In expectation, the only factor that differs be-
tween the groups is the exposure to the different systems. Therefore,
by comparing the behavior of each user group, the relative effect
each system has can be evaluated.

We will briefly show that A/B testing is unbiased forE[CTR] dif-
ference estimation. For each interaction either 𝜋1 or 𝜋2 determines
the ranking, let 𝐴𝑖 ∈ {1,2} indicate the assignment and 𝐴𝑖 ∼ 𝑃 (𝐴).
Thus, if𝐴𝑖 = 1, then 𝑅𝑖 ∼ 𝜋1 (𝑅 | 𝑞) and if𝐴𝑖 = 2, then 𝑅𝑖 ∼ 𝜋2 (𝑅 | 𝑞).
Each interaction 𝑖 is converted into a single estimate 𝑥𝑖 by 𝑓A/B:

𝑥𝑖 = 𝑓A/B (𝑞𝑖 ,𝑅𝑖 ,𝑐𝑖)=
(
1[𝐴𝑖 =1]
𝑃 (𝐴=1) −

1[𝐴𝑖 =2]
𝑃 (𝐴=2)

) ∑︁
𝑑∈𝑅𝑖

𝑐𝑖 (𝑑) . (8)

Abbreviating 𝑓A/B (𝑞𝑖 ,𝑅𝑖 ,𝑐𝑖) as 𝑓A/B (...), we can prove that A/B test-
ing is unbiased, since in expectation each individual estimate is equal
to the CTR difference:

E[𝑓A/B (...)]=
∑︁
𝑞

𝑃 (𝑞)
(
𝑃 (𝐴=1)∑𝑅𝜋1 (𝑅 |𝑞)E[CTR(𝑅)]

𝑃 (𝐴=1)

− 𝑃 (𝐴=2)∑𝑅𝜋2 (𝑅 |𝑞)E[CTR(𝑅)]
𝑃 (𝐴=2)

)
=
∑︁
𝑞

𝑃 (𝑞)
∑︁
𝑅

E[CTR(𝑅)]
(
𝜋1 (𝑅 |𝑞)−𝜋2 (𝑅 |𝑞)

)
=E[CTR(𝜋1)]−E[CTR(𝜋2)]=Δ(𝜋1,𝜋2) . (9)

Variance is harder to evaluate without knowledge of 𝜋1 and 𝜋2. Un-
less Δ(𝜋1,𝜋2) = 0, some variance is unavoidable since A/B testing
alternates between estimating CTR(𝜋1) and CTR(𝜋2).

3.2 Interleaving
Interleaving methods were introduced specifically for evaluation in
ranking, as a more efficient alternative to A/B testing [11]. After a
query is issued, they take the rankings of two competing ranking
systems and combine them into a single interleaved ranking. Any
clicks on the interleaved ranking can be interpreted as a preference
signal between either ranking system. Thus, unlike A/B testing, in-
terleaving does not estimate the CTR of individual systems but a
relative preference; the idea is that this allows it to be more efficient
than A/B testing.

Each interleavingmethodattempts touserandomizationtocounter
position bias, without deviating toomuch from the original rankings
so as to maintain the user experience [11]. Team-draft interleaving
(TDI) randomly selects one ranker to place their top document first,
then the other ranker places their top (unplaced) document next [20].
Then it randomly decides the next two documents, and this process
is repeated until all documents are placed in the interleaved ranking.
Clicks on the documents are attributed to the ranker that placed
them. The rankerwith themost attributed clicks is inferred to be pre-
ferred by the user. Probabilistic interleaving (PI) treats each ranking
as a probability distribution over documents; at each rank a distri-
bution is randomly selected and a document is drawn from it [9].
After clicks have been received, probabilistic interleaving computes
the expected number of clicks documents per ranking system to

infer preferences.Optimized interleaving (OI) casts the randomiza-
tion as an optimization problem, and displays rankings so that if all
documents are equally relevant no preferences are found [19].

While every interleaving method attempts to deal with position
bias, none is unbiased according to our definition (Section 2.2). This
may be confusing because previous work on interleaving makes
claims of unbiasedness [9, 10, 19]. However, they use different defini-
tions of the term. More precisely, TDI, PI, and OI provably converge
on the correct outcome if all documents are equally relevant [9, 10,
19, 20]. Moreover, if one assumes binary relevance and 𝜋1 ranks all
relevant documents equal to or higher than 𝜋2, the binary outcome
of PI and OI is proven to be correct in expectation [10, 19]. However,
beyond the confines of these unambiguous cases, we can prove that
these methods do not meet our definition of unbiasedness: for every
method one can construct an example where it converges on the
incorrect outcome. The rankers𝜋1,𝜋2 andposition bias parameters𝜃
canbe chosen so that in expectation thewrong (binary) outcome is es-
timated; seeAppendixA for a proof for each of the three interleaving
methods. Thus, while more efficient than A/B testing, interleaving
methods make systematic errors in certain circumstances and thus
should not be considered to be unbiased w.r.t. CTR differences.

We note that the magnitude of the bias should also be consid-
ered. If the systematic error of an interleaving method is minuscule
while the efficiency gains are very high, it may still be very useful in
practice. Our experimental results (Section 6.2) reveal that the sys-
tematic error of all interleaving methods becomes very high when
comparing systems with a CTR difference of 1% or smaller.

3.3 Counterfactual Evaluation
Counterfactual evaluation is based on the idea that if certain biases
can be estimated well, they can also be adjusted [12, 22]. While esti-
mating relevance is considered the core difficulty of ranking evalua-
tion, estimating theposition bias terms𝜃 is very doable. By randomiz-
ing rankings, e.g., by swapping pairs of documents [12] or exploiting
data logged during A/B testing [1], differences in CTR for the same
itemondifferent positions canbeobserveddirectly.Alternatively, us-
ingExpectationMaximization (EM) optimization [23] or a dual learn-
ing objective [2], position bias can be estimated from logged data as
well. Once the bias terms 𝜃 have been estimated, logged clicks can be
weighted so as to correct for the position bias during logging. Hence,
counterfactual evaluation can work with historically logged data.
Existing counterfactual evaluation algorithms do not dictate which
rankings should be displayed during logging: they do not perform
interventions and thuswedonot consider them tobeonlinemethods.

Counterfactual evaluation assumes that the position bias 𝜃 and
the logging policy 𝜋0 are known, in order to correct for both position
bias and item-selection bias. Clicks are gathered with 𝜋0 which de-
cideswhich rankings are displayed to the user.We followOosterhuis
and de Rijke [16] and use as propensity scores the probability of
observance in expectation over the displayed rankings:

𝜌 (𝑑 |𝑞)=E𝑅
[
𝑃 (𝑜 (𝑑)=1 |𝑅) |𝜋0

]
=
∑
𝑅𝜋0 (𝑅 |𝑞)𝑃 (𝑜 (𝑑)=1 |𝑅) .

(10)

Then we use 𝜆(𝑑 | 𝜋1,𝜋2) to indicate the difference in observance
probability under 𝜋1 or 𝜋2:

𝜆(𝑑 |𝜋1,𝜋2)=E𝑅
[
𝑃 (𝑜 (𝑑)=1|𝑅) |𝜋1

]
−E𝑅

[
𝑃 (𝑜 (𝑑)=1|𝑅) |𝜋2

]

Session 6: Learning to Rank ICTIR '20, September 14–17, 2020, Virtual Event, Norway

139

=
∑︁
𝑅

𝜃rank(𝑑 |𝑅)
(
𝜋1 (𝑅 |𝑞𝑖)−𝜋2 (𝑅 |𝑞𝑖)

)
. (11)

Then, the IPS estimate function is formulated as:

𝑥𝑖 = 𝑓IPS (𝑞𝑖 ,𝑅𝑖 ,𝑐𝑖)=
∑︁

𝑑 :𝜌 (𝑑 |𝑞𝑖)>0

𝑐𝑖 (𝑑)
𝜌 (𝑑 |𝑞𝑖)

𝜆(𝑑 |𝜋1,𝜋2) . (12)

Each click is weighted inversely to its examination probability, but
items with a zero probability: 𝜌 (𝑑 |𝑞𝑖)=0 are excluded. We note that
these items can never be clicked: ∀𝑞,𝑑 (𝜌 (𝑑 |𝑞)=0→𝑐 (𝑑)=0). Before
we prove unbiasedness, we note that given 𝜌 (𝑑 |𝑞𝑖)>0:

E

[
𝑐 (𝑑)
𝜌 (𝑑 |𝑞)

]
=

∑
𝑅𝜋0 (𝑅 |𝑞)𝜃rank(𝑑 |𝑅)𝜁𝑑,𝑞

𝜌 (𝑑 |𝑞𝑖)

=

∑
𝑅𝜋0 (𝑅 |𝑞)𝜃rank(𝑑 |𝑅)∑
𝑅′𝜋0 (𝑅′ |𝑞)𝜃rank(𝑑 |𝑅′)

𝜁𝑑,𝑞 =𝜁𝑑,𝑞 .

(13)

This, in turn, can be used to prove unbiasedness:

E[𝑓IPS (...)]=
∑︁
𝑞

𝑃 (𝑞)
∑︁

𝑑 :𝜌 (𝑑 |𝑞𝑖)>0
𝜁𝑑,𝑞𝜆(𝑑 |𝜋1,𝜋2)

=E[CTR(𝜋1)]−E[CTR(𝜋2)]=Δ(𝜋1,𝜋2) .
(14)

This proof is only valid under the following requirement:

∀𝑑,𝑞(𝜁𝑑,𝑞𝜆(𝑑 |𝜋1,𝜋2)>0→𝜌 (𝑑 |𝑞)>0) . (15)

In practice, this means that the items in the top-k of either 𝜋1 or 𝜋2
need to have a non-zero examination probability under 𝜋0, i.e., they
must have a chance to appear in the top-k under 𝜋0.

Besides Requirement 15 the existing counterfactual method [12,
22] is completely indifferent to 𝜋0 and hence we do not consider it
to be an online method. In the next section, we will introduce an
algorithm for choosing and updating 𝜋0 during logging to minimize
the variance of the estimator. By doing so we turn counterfactual
evaluation into an online method.

4 LOGGING POLICYOPTIMIZATION
FORVARIANCEMINIMIZATION

Next, we introduce a method aimed at finding a logging policy for
the counterfactual estimator that minimizes its variance.

4.1 Minimizing Variance
In Section 3.3, we have discussed counterfactual evaluation and es-
tablished that it is unbiased as long as 𝜃 is known and the logging
policy meets Requirement 15. The variance of ΔIPS depends on the
position bias 𝜃 , the conditional click probabilities 𝜁 , and the logging
policy 𝜋0. In contrast with the user-dependent 𝜃 and 𝜁 , the way data
is logged by 𝜋0 is something one can have control over. The goal
of our method is to find the optimal policy that minimizes variance
while still meeting Requirement 15:

𝜋∗0 = argmin
𝜋0:𝜋0 meets Req. 15

Var
(
Δ̂𝜋0IPS

)
, (16)

where Δ̂𝜋0IPS is the counterfactual estimator based on data logged
using 𝜋0.

To formulate the variance, we first note that it is an expectation
over queries:

Var(Δ̂)=
∑︁
𝑞

𝑃 (𝑞)Var(Δ̂ |𝑞). (17)

To keep notation short, for the remainder of this section we will
write: Δ = Δ(𝜋1,𝜋2); 𝜃𝑑,𝑅 = 𝜃rank (𝑑 | 𝑅); 𝜁𝑑 = 𝜁𝑑,𝑞 ; 𝜆𝑑 = 𝜆(𝑑 | 𝜋1,𝜋2);
and 𝜌𝑑 = 𝜌 (𝑑 | 𝑞,𝜋0). Next, we consider the probability of a click
pattern 𝑐 , this is simply a possible combination of clicked documents
𝑐 (𝑑)=1 and not-clicked documents 𝑐 (𝑑)=0:

𝑃 (𝑐 |𝑞)=
∑︁
𝑅

𝜋0 (𝑅 |𝑞)
∏

𝑑 :𝑐 (𝑑)=1
𝜃𝑑,𝑅𝜁𝑑

∏
𝑑 :𝑐 (𝑑)=0

(1−𝜃𝑑,𝑅𝜁𝑑)

=
∑︁
𝑅

𝜋0 (𝑅 |𝑞)𝑃 (𝑐 |𝑅).
(18)

Here, 𝜋0 has some control over this probability: by deciding the
distribution of displayed rankings it can make certain click patterns
more or less frequent. The variance added per query is the squared
error of every possible click pattern weighted by the probability of
each pattern. Let

∑
𝑐 sum over every possible click pattern:

Var(Δ̂𝜋0IPS |𝑞)=
∑︁
𝑐

𝑃 (𝑐 |𝑞)
(
Δ−

∑︁
𝑑 :𝑐 (𝑑)=1

𝜆𝑑

𝜌𝑑

)2
. (19)

It is unknownwhether there is a closed-form solution for 𝜋∗0 . How-
ever, the variance function is differentiable. Taking the derivative
reveals a trade-off between two potentially conflicting goals:

𝛿

𝛿𝜋0
Var(Δ̂𝜋0

𝐼𝑃𝑆
|𝑞)=

∑︁
𝑐

minimize frequency of high-error click patterns︷ ︸︸ ︷[
𝛿

𝛿𝜋0
𝑃 (𝑐 |𝑞)

] (
Δ−

∑︁
𝑑 :𝑐 (𝑑)=1

𝜆𝑑

𝜌𝑑

)2
+𝑃 (𝑐 |𝑞)


𝛿

𝛿𝜋0

(
Δ−

∑︁
𝑑 :𝑐 (𝑑)=1

𝜆𝑑

𝜌𝑑

)2︸ ︷︷ ︸
minimize error of frequent click patterns

.

(20)

On the one hand, the derivative reduces the frequency of click pat-
terns that result in high error samples, i.e., by updating 𝜋0 so that
these are less likely to occur. On the other hand, changing 𝜋0 also
affects the propensities 𝜌𝑑 , i.e., if 𝜋0 makes an item𝑑 less likely to be
examined, its corresponding value 𝜆𝑑/𝜌𝑑 becomes larger, which can
lead to a higher error for related click patterns. The optimal policy
has to balance: (i) avoiding showing rankings that lead to high-error
click patterns; and (ii) avoidingminimizing propensity scores, which
increases the errors of corresponding click patterns.

Our method applies stochastic gradient descent to optimize the
logging policy w.r.t. the variance. There are two main difficulties
with this approach: (i) the parameters 𝜃 and 𝜁 are unknown a priori;
and (ii) the gradients include summations over all possible rankings
and all possible click patterns, both of which are computationally in-
feasible. In the following sections, we will detail how LogOpt solves
both of these problems.

4.2 Bias & Relevance Estimation
In order to compute the gradient in Eq. 20, the parameters 𝜃 and 𝜁
have to be known. LogOpt is based on the assumption that accurate
estimates of 𝜃 and 𝜁 suffice to find a near-optimal logging policy.We
note that the counterfactual estimator only requires 𝜃 to be known
for unbiasedness (see Section 3.3). Our approach is as follows, at
given intervals during evaluation we use the available clicks to esti-
mate𝜃 and 𝜁 . Thenwe use the estimated𝜃 to get the current estimate

Session 6: Learning to Rank ICTIR '20, September 14–17, 2020, Virtual Event, Norway

140

Δ̂IPS (I,𝜃) (Eq. 12) and optimize w.r.t. the estimated variance (Eq. 19)
based on 𝜃 , 𝜁 , and Δ̂IPS (I,𝜃).

For estimating 𝜃 and 𝜁 we use the existing EM approach byWang
et al. [23], because it works well in situations where few interac-
tions are available and does not require randomization. We note
that previous work has found randomization-based approaches to
be more accurate for estimating 𝜃 [1, 7, 23]. However, they require
multiple interactions per query and specific types of randomization
in their results, by choosing the EM approach we do avoid having
these requirements.

4.3 Monte-Carlo-Based Derivatives
Both the variance (Eq. 19) and its gradient (Eq. 20), include a sum
over all possible click patterns. Moreover, they also include the prob-
ability of a specific pattern 𝑃 (𝑐 | 𝑞) that is based on a sum over all
possible rankings (Eq. 18). Clearly, these equations are infeasible
to compute under any realistic time constraints. To solve this issue,
we introduce gradient estimation based onMonte-Carlo sampling.
Our approach is similar to that of Ma et al. [15], however, we are
estimating gradients of variance instead of general performance.

First,we assume that policies place the documents in order of rank
and the probability of placing an individual document at rank 𝑥 only
depends on the previously placed documents. Let𝑅1:𝑥−1 indicate the
(incomplete) ranking from rank 1 up to rank 𝑥 , then 𝜋0 (𝑑 |𝑅1:𝑥−1,𝑞)
indicates the probability that document 𝑑 is placed at rank 𝑥 given
that the ranking up to 𝑥 is 𝑅1:𝑥−1. The probability of a ranking 𝑅 up
to rank 𝑘 is thus:

𝜋0 (𝑅1:𝑘 |𝑞)=
𝑘∏
𝑥=1

𝜋0 (𝑅𝑥 |𝑅1:𝑥−1,𝑞) . (21)

Let 𝐾 be the length of a complete ranking 𝑅, the gradient of the
probability of a ranking w.r.t. a policy is:

𝛿𝜋0 (𝑅 |𝑞)
𝛿𝜋0

=

𝐾∑︁
𝑥=1

𝜋0 (𝑅 |𝑞)
𝜋0 (𝑅𝑥 |𝑅1:𝑥 ,𝑞)

[
𝛿𝜋0 (𝑅𝑥 |𝑅1:𝑥−1,𝑞)

𝛿𝜋0

]
. (22)

The gradient of the propensity w.r.t. the policy (cf. Eq. 10) is:

𝛿𝜌 (𝑑 |𝑞)
𝛿𝜋0

=

𝐾∑︁
𝑘=1

𝜃𝑘

∑︁
𝑅

𝜋0 (𝑅1:𝑘−1 |𝑞)
([
𝛿𝜋0 (𝑑 |𝑅1:𝑘−1,𝑞)

𝛿𝜋0

]
+
𝑘−1∑︁
𝑥=1

𝜋0 (𝑑 |𝑅1:𝑘−1,𝑞)
𝜋0 (𝑅𝑥 |𝑅1:𝑥−1,𝑞)

[
𝛿𝜋0 (𝑅𝑥 |𝑅1:𝑥−1,𝑞)

𝛿𝜋0

])
. (23)

To avoid iterating over all rankings in the
∑
𝑅 sum, we sample𝑀

rankings: 𝑅𝑚 ∼ 𝜋0 (𝑅 | 𝑞), and a click pattern on each ranking:
𝑐𝑚 ∼𝑃 (𝑐 |𝑅𝑚). This enables us tomake the following approximation:

�𝜌-grad(𝑑)= 1
𝑀

𝑀∑︁
𝑚=1

𝐾∑︁
𝑘=1

𝜃𝑘

([
𝛿𝜋0 (𝑑 |𝑅𝑚1:𝑘−1,𝑞)

𝛿𝜋0

]
(24)

+
𝑘−1∑︁
𝑥=1

𝜋0 (𝑑 |𝑅𝑚1:𝑘−1,𝑞)
𝜋0 (𝑅𝑚𝑥 |𝑅𝑚1:𝑥−1,𝑞)

[
𝛿𝜋0 (𝑅𝑚𝑥 |𝑅𝑚1:𝑥−1,𝑞)

𝛿𝜋0

])
,

since 𝛿𝜌 (𝑑 |𝑞)
𝛿𝜋0

≈�𝜌-grad(𝑑,𝑞). In turn, we can use this to approximate
the second part of Eq. 20:�error-grad(𝑐)=2(Δ− ∑︁

𝑑 :𝑐 (𝑑)=1

𝜆𝑑

𝜌𝑑

) ∑︁
𝑑 :𝑐 (𝑑)=1

𝜆𝑑

𝜌2
𝑑

�𝜌-grad(𝑑), (25)

we approximate the first part of Eq. 20 with:�freq-grad(𝑅,𝑐)= (26)(
Δ−

∑︁
𝑑 :𝑐 (𝑑)=1

𝜆𝑑

𝜌𝑑

)2 𝐾∑︁
𝑥=1

1
𝜋0 (𝑅𝑥 |𝑅1:𝑥−1,𝑞)

[
𝛿𝜋0 (𝑅𝑥 |𝑅1:𝑥−1,𝑞)

𝛿𝜋0

]
.

Together, they approximate the complete gradient (cf. Eq. 20):

𝛿Var(Δ̂𝜋0
𝐼𝑃𝑆
|𝑞)

𝛿𝜋0
≈

1
𝑀

𝑀∑︁
𝑚=1

�freq-grad(𝑅𝑚,𝑐𝑚)+ �error-grad(𝑐𝑚). (27)

Therefore, we can approximate the gradient of the variance w.r.t. a
loggingpolicy𝜋0, basedonrankingssampled from𝜋0 andourcurrent
estimated click model 𝜃 , 𝜁 , while staying computationally feasible.1

4.4 Summary
We have summarized the LogOpt method in Algorithm 1. The algo-
rithm requires a set of historical interactions I and two rankers 𝜋1
and 𝜋2 to compare. Then by fitting a click model on I using an EM-
procedure (Line2)anestimateofobservationbias𝜃 anddocument rel-
evance𝜁 is obtained.Using𝜃 , an estimate of the difference in observa-
tion probabilities𝜆 is computed (Line 3 and cf. Eq 11), and an estimate
of the CTR difference Δ̂(𝜋1,𝜋2) (Line 4 and cf. Eq 12). Then the opti-
mization of a new logging policy 𝜋0 begins: A query is sampled from
I (Line 7), and for that query𝑀 rankings are sampled from the cur-
rent𝜋0 (Line 8), then for each ranking a click pattern is sampledusing
𝜃 and 𝜁 (Line 9). Finally, using the sampled rankings and clicks, 𝜃 , 𝜆,
and Δ̂(𝜋1,𝜋2), thegradient isnowapproximatedusingEq. 27 (Line10)
and thepolicy𝜋0 isupdatedaccordingly (Line11).Thisprocess canbe
repeated for afixednumberof steps, oruntil thepolicyhas converged.

This concludes our introduction of LogOpt: the first method that
optimizes the loggingpolicy for faster convergence in counterfactual
evaluation. We argue that LogOpt turns counterfactual evaluation
into online evaluation, because it instructs which rankings should
be displayed for the most efficient evaluation. The ability to make
interventions like this is the defining characteristic of an online
evaluation method.

5 EXPERIMENTAL SETUP
We ran semi-synthetic experiments that are prevalent in online and
counterfactual evaluation [9, 13, 16]. User-issued queries are sim-
ulated by sampling from learning to rank datasets; each dataset
contains a preselected set of documents per query. We use Yahoo!
Webscope [3] andMSLR-WEB30k [18]; they both contain 5-grade
relevance judgements for all preselected query-document pairs. For
each sampled query,we let the evaluationmethoddecidewhich rank-
ing to display and then simulate clicks on them using probabilistic
click models.
1For a more detailed description see Appendix B in the supplementary material.

Session 6: Learning to Rank ICTIR '20, September 14–17, 2020, Virtual Event, Norway

141

Algorithm 1 Logging-Policy Optimization Algorithm (LogOpt)

1: Input: Historical interactions: I; rankers to compare 𝜋1,𝜋2.
2: 𝜃,𝜁← infer_click_model(I) // estimate bias using EM
3: 𝜆←estimated_observance(𝜃,𝜋1,𝜋2) // estimate 𝜆 cf. Eq 11
4: Δ̂(𝜋1,𝜋2)←estimated_CTR(I,𝜆,𝜃) // CTR diff. cf. Eq 12
5: 𝜋0← init_policy() // initialize logging policy
6: for 𝑗 ∈ {1,2,...} do
7: 𝑞∼𝑃 (𝑞 | I) // sample a query from interactions
8: R←{𝑅1,𝑅2,...,𝑅𝑀 }∼𝜋0 (𝑅 |𝑞) // sample𝑀 rankings
9: C←{𝑐1,𝑐2,...,𝑐𝑀 }∼𝑃 (𝑐 | R) // sample𝑀 click patterns
10: 𝛿←approx_grad(R,C,𝜆,𝜃,Δ̂(𝜋1,𝜋2)) // using Eq. 27
11: 𝜋0←update(𝜋0,𝛿) // update using approx. gradient
12: return 𝜋0

To simulate position bias, we use the rank-based probabilities of
Joachims et al. [13]:

𝑃 (𝑜 (𝑑)=1 |𝑅,𝑞)= 1
rank(𝑑 |𝑅) . (28)

If observed, the click probability is determined by the relevance label
of the dataset (ranging from 0 to 4). More relevant items are more
likely to be clicked, yet non-relevant documents still have a non-zero
click probability:

𝑃 (𝑐 (𝑑)=1 |𝑜 (𝑑)=1,𝑞)=0.225·relevance_label(𝑞,𝑑)+0.1. (29)

Spread over both datasets, we generated 2,000 rankers and created
1,000 ranker-pairs. We aimed to generate rankers that are likely to
be compared in real-world scenarios; unfortunately, no simple distri-
bution of such rankers is available. Therefore, we tried to generate
rankers that have (at least) a decent CTR and that span a variety
of ranking behaviors. Each ranker was optimized using Lambda-
Loss [24] based on the labelled data of 100 sampled queries; each
ranker is based on a linear model that only uses a random sample
of 50% of the dataset features. Figure 1 displays the resulting CTR
distribution; it appears to follow a normal distribution.

For each ranker-pair and method, we sample 3·106 queries and
calculate their CTR estimates for different numbers of queries. We
considered three metrics: (i) The binary error: whether the estimate
correctly predicts which ranker should be preferred. (ii) The abso-
lute error: the absolute difference between the estimate and the true
E[CTR] difference:

absolute-error= |Δ(𝜋1,𝜋2)−Δ̂(I)|. (30)

And (iii) the mean squared error: the squared error per sample (not
the final estimate); if the estimator is unbiased this is equivalent to
the variance:

mean-squared-error=
1
𝑁

𝑁∑︁
𝑖=1
(Δ(𝜋1,𝜋2)−𝑥𝑖)2 . (31)

We compare LogOpt with the following baselines: (i) A/B testing
(with equal probabilities for each ranker), (ii) Team-Draft Interleav-
ing, (iii) Probabilistic Interleaving (with 𝜏 = 4), and (iv) Optimized
Interleaving (with the inverse rank scoring function). Furthermore,
we compare LogOpt with other choices of logging policies: (i) uni-
form sampling, (ii) A/B testing: showing either the ranking of A or
B with equal probability, and (iii) an Oracle logging policy: applying
LogOpt to the true relevances 𝜁 and position bias𝜃 .We also consider

YahooWebscope MSLRWeb30k

1.1 1.2
0.0%

5.0%

0.6 0.8 1.0
0.0%

5.0%

Figure1:TheCTRdistributionof the2000generated rankers,
1000 were generated per dataset.

LogOpt both in the case where 𝜃 is known a priori, or where it has to
be estimated still. Because estimating 𝜃 and optimizing the logging
policy 𝜋0 is time-consuming, we only update 𝜃 and 𝜋0 after 103, 104,
105 and 106 queries. The policy LogOpt optimizes uses a neural net-
work with 2 hidden layers consisting of 32 units each. The network
computes a score for every document, then a softmax is applied to
the scores to create a distribution over documents.

6 RESULTS
Our results are displayed in Figures 2, 3, and 4. Figure 2 shows the
results comparing LogOpt with other online evaluation methods;
Figure 3 compares LogOpt with counterfactual evaluation using
other logging policies; and finally, Figure 4 shows the distribution
of binary errors for each method after 3·106 sampled queries.

6.1 Performance of LogOpt
In Figure 2 we see that, unlike interleaving methods, counterfactual
evaluation with LogOpt continues to decrease both its binary error
and its absolute error as the number of queries increases. While
interleaving methods converge at a binary error of at least 2.2% and
an absolute error greater than 0.01, LogOpt appears to converge
towards zero errors for both. This is expected as LogOpt is proven
to be unbiased when the position bias is known. Interestingly, we
see similar behavior from LogOpt with estimated position bias. Both
when bias is known or estimated, LogOpt has a lower error than the
interleaving methods after 2·103 queries. Thus we conclude that in-
terleavingmethods converge faster and have an initial period where
their error is lower, but are biased. In contrast, by being unbiased,
LogOpt converges on a lower error eventually.

Ifweuse Figure 2 to compare LogOptwithA/B testing,we see that
on both datasets LogOpt has a considerably smaller mean squared
error. Since both methods are unbiased, this means that LogOpt has
a much lower variance and thus is expected to converge faster. On
the Yahoo dataset we observe this behavior, both in terms of binary
error and absolute error and regardless of whether the bias is esti-
mated, LogOpt requires half as much data as A/B testing to reach
the same level or error. Thus, on Yahoo LogOpt is roughly twice as
data-efficient than A/B testing. On the MSLR dataset it is less clear
whether LogOpt is noticeably more efficient: after 104 queries the
absolute error of LogOpt is twice as high, but after 105 queries it has
a lower error than A/B testing. We suspect that the relative drop
in performance around 104 queries is due to LogOpt overfitting on
incorrect 𝜁 values, however, we were unable to confirm this. Hence,
LogOpt is just as efficient as, or evenmore efficient than, A/B testing,
depending on the circumstances.

Finally, when we use Figure 3 to compare LogOpt with other log-
ging policy choices, we see that LogOpt mostly approximates the
optimalOracle loggingpolicy. In contrast, theuniform loggingpolicy

Session 6: Learning to Rank ICTIR '20, September 14–17, 2020, Virtual Event, Norway

142

Binary Error Absolute Error Mean Squared Error

Ya
ho

o
W
eb
sc
op

e

102 103 104 105 106

10−2

10−1

102 103 104 105 106

10−2

102 103 104 105 106
0

5

10

M
SL

R
W
eb
30
k

102 103 104 105 106

10−2

10−1

102 103 104 105 106

10−2

102 103 104 105 106
0.0

2.5

5.0

Number of Queries Issued Number of Queries Issued Number of Queries Issued
A/B Testing
Optimized Interleaving

Probabilistic Interleaving
Team-Draft Interleaving

LogOpt (Position Bias Known)
LogOpt (Position Bias Estimated)

Figure 2: Comparison of LogOpt with other onlinemethods; displayed results are an average over 500 comparisons.

Binary Error Absolute Error Mean Squared Error

Ya
ho

o
W
eb
sc
op

e

102 103 104 105 106

10−2

10−1

102 103 104 105 106

10−2

102 103 104 105 106

2.5

5.0

7.5

M
SL

R
W
eb
30
k

102 103 104 105 106

10−2

10−1

102 103 104 105 106

10−2

102 103 104 105 106

10

20

30

Number of Queries Issued Number of Queries Issued Number of Queries Issued
A/B Logging Policy Uniform Logging Policy LogOpt (Position Bias Known) Oracle Logging Policy

Figure 3: Comparison of logging policies for counterfactual evaluation; displayed results are an average over 500 comparisons.

is very data-inefficient on both datasets it requires around ten times
the number of queries to reach the same level or error as LogOpt.
The A/B logging policy is a better choice than the uniform logging
policy, but apart from the dip in performance on the MSLR dataset,
it appears to require twice as many queries as LogOpt. Interestingly,
the performance of LogOpt is already near the Oracle when only 102
queries have been issued. With such a small number of interactions,
accurately estimating the relevances 𝜁 should not be possible, thus
it appears that in order for LogOpt to find an efficient logging policy
the relevances 𝜁 are not important. This must mean that only the
differences in behavior between the rankers (i.e. 𝜆) have to be known
for LogOpt to be efficient. Overall, these results show that LogOpt
can greatly increase the efficiency of counterfactual estimation.

6.2 Bias of Interleaving
Our results in Figure 2 clearly illustrate the bias of interleaving
methods: each of them systematically infers incorrect preferences
in (at least) 2.2% of the ranker-pairs. These errors are systematic
since increasing the number of queries from 105 to 3·106 does not
remove any of them. Additionally, the combination of the lowest
mean-squared-error with a worse absolute error than A/B testing
after 104 queries, indicates that interleaving results in a low variance
at the cost of bias. To better understand when these systematic er-
rors occur, we show the distribution of binary errors w.r.t. the CTR
differences of the associated ranker-pairs in Figure 4. Here we see
that most errors occur on ranker-pairs where the CTR difference is
smaller than 1%, and that of all comparisons the percentage of errors

greatly increases as theCTR difference decreases below 1%. This sug-
gests that interleaving methods are unreliable to detect preferences
when differences are 1% CTR or less.

It is hard to judge the impact this bias may have in practice. On
the one hand, a 1% CTR difference is far from negligible: generally
a 1% increase in CTR is considered an impactful improvement in
the industry. On the other hand, our results are based on a single
click model with specific values for position bias and conditional
click probabilities. While our results strongly prove interleaving is
biased,we should be careful not to generalize the size of the observed
systematic error to all other ranking settings.

Previous work has performed empirical studies to evaluate var-
ious interleaving methods with real users. Chapelle et al. [4] applied
interleavingmethods to compare ranking systems for three different
search engines, and found team-draft interleaving tohighly correlate
with absolute measures such as CTR. However, we note that in this
study no more than six rankers were compared, thus such a study
would likely miss a systematic error of 2.2%. In fact, Chapelle et al.
[4] note themselves that they cannot confidently claim team-draft
interleaving is completely unbiased. Schuth et al. [21] performed
a larger comparison involving 38 ranking systems, but again, too
small to reliably detect a small systematic error.

It appears that the field is missing a large scale comparison that
involves a large enough number of rankers to observe small system-
atic errors. If such an error is found, the next step is to identify if
certain types of ranking behavior are erroneously and systemati-
cally disfavored. While these questions remain unanswered, we are

Session 6: Learning to Rank ICTIR '20, September 14–17, 2020, Virtual Event, Norway

143

YahooWebscope MSLRWeb30k

Te
am

-D
ra
ft
In
te
rl.

10 4 10 3 10 2 10 1 100
0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

10 4 10 3 10 2 10 1 100

Pr
ob
ab
ili
st
ic
In
te
rl.

10 4 10 3 10 2 10 1 100
0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

10 4 10 3 10 2 10 1 100

O
pt
im

iz
e d

In
te
rl.

10 4 10 3 10 2 10 1 100
0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

10 4 10 3 10 2 10 1 100

A
/B

Te
st
in
g

10 4 10 3 10 2 10 1 100
0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

10 4 10 3 10 2 10 1 100

Lo
gO

pt
(B
ia
sE

st
im

at
ed
)

10 4 10 3 10 2 10 1 100
0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

10 4 10 3 10 2 10 1 100

CTR difference CTR difference

Figure 4: Distribution of errors over the CTR differences
of the rankers in the comparison; red indicates a binary
error; green indicates a correctly inferred binary preference;
results are on estimates based on 3·106 sampled queries.

concerned that the claims of unbiasedness in previous interleaving
work (see Section 3.2) give practitioners an unwarranted sense of
reliability in interleaving.

7 CONCLUSION
In this paper, we have introduced the Logging-Policy Optimization
Algorithm (LogOpt): the firstmethod that optimizes a logging policy
forminimal variance counterfactual evaluation. Counterfactual eval-
uation is proven to be unbiasedw.r.t. position bias and item-selection
bias under a wide range of logging policies. With the introduction of
LogOpt, we now have an algorithm that can decide which rankings
should be displayed for the fastest convergence. Therefore, we argue
that LogOpt turns the existing counterfactual evaluation approach
–which is indifferent to the logging policy – into an online approach
– which instructs the logging policy.

Our experimental results show that LogOpt can lead to a better
data-efficiency than A/B testing, without introducing the bias of in-
terleaving.While ourfindings aremostly theoretical, theydo suggest
that future work should further investigate the bias in interleaving
methods. Our results suggest that all interleaving methods make
systematic errors, in particular when rankers with a similar CTR are
compared. Furthermore, to the best of our knowledge, no empirical
studies have been performed that could measure such a bias, our
findings strongly show that such a studywould be highly valuable to
the field. Finally, LogOpt shows that in theory an evaluationmethod
that is bothunbiased and efficient is possible, if futureworkfinds that
these theoretical findings match empirical results with real users,
this could be the start of a new line of theoretically-justified online
evaluation methods.

Acknowledgements
Wewant to thank the anonymous reviewers for their feedback. This
research was partially supported by the Netherlands Organisation
for Scientific Research (NWO) under project nr 612.001.551 and by
the Innovation Center for AI (ICAI). All content represents the opin-
ion of the authors, which is not necessarily shared or endorsed by
their respective employers and/or sponsors.

Reproducibility
Our experimental implementation is publicly available at https:
//github.com/HarrieO/2020ictir-evaluation.

REFERENCES
[1] Aman Agarwal, Ivan Zaitsev, Xuanhui Wang, Cheng Li, Marc Najork, and

Thorsten Joachims. 2019. Estimating PositionBiaswithout Intrusive Interventions.
InWSDM. ACM, 474–482.

[2] QingyaoAi, KepingBi, ChengLuo, JiafengGuo, andWBruceCroft. 2018. Unbiased
Learning to Rank with Unbiased Propensity Estimation. In SIGIR. ACM, 385–394.

[3] Olivier Chapelle and Yi Chang. 2011. Yahoo! Learning to Rank Challenge
Overview. Journal of Machine Learning Research 14 (2011), 1–24.

[4] Olivier Chapelle, Thorsten Joachims, Filip Radlinski, and Yisong Yue. 2012.
Large-scale Validation and Analysis of Interleaved Search Evaluation. ACM
Transactions on Information Systems (TOIS) 30, 1 (2012), 1–41.

[5] Aleksandr Chuklin, Ilya Markov, and Maarten de Rijke. 2015. Click Models for
Web Search. Morgan & Claypool Publishers.

[6] Nick Craswell, Onno Zoeter, Michael Taylor, and Bill Ramsey. 2008. An
Experimental Comparison of Click Position-bias Models. InWSDM. 87–94.

[7] Zhichong Fang, Aman Agarwal, and Thorsten Joachims. 2019. Intervention Har-
vesting for Context-dependent Examination-bias Estimation. In SIGIR. 825–834.

[8] KatjaHofmann, LihongLi, andFilipRadlinski. 2016. OnlineEvaluation for Informa-
tion Retrieval. Foundations and Trends in Information Retrieval 10, 1 (2016), 1–117.

[9] Katja Hofmann, ShimonWhiteson, andMaarten de Rijke. 2011. A Probabilistic
Method for Inferring Preferences from Clicks. In CIKM. ACM, 249–258.

[10] Katja Hofmann, Shimon Whiteson, and Maarten De Rijke. 2013. Fidelity,
Soundness, and Efficiency of Interleaved ComparisonMethods. ACMTransactions
on Information Systems (TOIS) 31, 4 (2013), 1–43.

[11] Thorsten Joachims. 2003. Evaluating Retrieval Performance Using Clickthrough
Data. InTextMining, J. Franke,G.Nakhaeizadeh, and I. Renz (Eds.). PhysicaVerlag.

[12] Thorsten Joachims, Laura Granka, Bing Pan, Helene Hembrooke, and Geri Gay.
2005. Accurately Interpreting Clickthrough Data as Implicit Feedback. In SIGIR.
ACM, 154–161.

[13] Thorsten Joachims, Adith Swaminathan, and Tobias Schnabel. 2017. Unbiased
Learning-to-Rank with Biased Feedback. InWSDM. ACM, 781–789.

[14] RonKohavi andRoger Longbotham. 2017. OnlineControlled Experiments andA/B
Testing. Encyclopedia of Machine Learning and Data Mining 7, 8 (2017), 922–929.

[15] Jiaqi Ma, Zhe Zhao, Xinyang Yi, Ji Yang, Minmin Chen, Jiaxi Tang, Lichan Hong,
and Ed H Chi. 2020. Off-policy Learning in Two-stage Recommender Systems.
In TheWeb Conference 2020. ACM, 463–473.

[16] Harrie Oosterhuis andMaarten de Rijke. 2020. Policy-Aware Unbiased Learning
to Rank for Top-k Rankings. In SIGIR. ACM.

[17] Zohreh Ovaisi, Ragib Ahsan, Yifan Zhang, Kathryn Vasilaky, and Elena Zheleva.
2020. Correcting for Selection Bias in Learning-to-rank Systems. In WWW.
1863–1873.

[18] Tao Qin and Tie-Yan Liu. 2013. Introducing LETOR 4.0 datasets. arXiv preprint
arXiv:1306.2597 (2013).

[19] Filip Radlinski and Nick Craswell. 2013. Optimized Interleaving for Online
Retrieval Evaluation. InWSDM. ACM, 245–254.

[20] Filip Radlinski, Madhu Kurup, and Thorsten Joachims. 2008. How Does
Clickthrough Data Reflect Retrieval Quality?. In CIKM. ACM, 43–52.

[21] Anne Schuth, Katja Hofmann, and Filip Radlinski. 2015. Predicting Search
Satisfaction Metrics with Interleaved Comparisons. In SIGIR. 463–472.

[22] Xuanhui Wang, Michael Bendersky, Donald Metzler, and Marc Najork. 2016.
Learning to Rank with Selection Bias in Personal Search. In SIGIR. ACM, 115–124.

[23] XuanhuiWang, Nadav Golbandi, Michael Bendersky, Donald Metzler, andMarc
Najork. 2018. Position Bias Estimation for Unbiased Learning to Rank in Personal
Search. InWSDM. ACM, 610–618.

[24] XuanhuiWang, Cheng Li, Nadav Golbandi, Michael Bendersky, and Marc Najork.
2018. The LambdaLoss Framework for Ranking Metric Optimization. In CIKM.
ACM, 1313–1322.

Session 6: Learning to Rank ICTIR '20, September 14–17, 2020, Virtual Event, Norway

144

https://github.com/HarrieO/2020ictir-evaluation
https://github.com/HarrieO/2020ictir-evaluation

	Abstract
	1 Introduction
	2 Preliminaries: Ranker Comparisons
	2.1 User Behavior Assumptions
	2.2 Goal: CTR-Estimator Properties

	3 Existing Online and Counter- factual Evaluation Methods
	3.1 A/B Testing
	3.2 Interleaving
	3.3 Counterfactual Evaluation

	4 Logging Policy Optimization for Variance Minimization
	4.1 Minimizing Variance
	4.2 Bias & Relevance Estimation
	4.3 Monte-Carlo-Based Derivatives
	4.4 Summary

	5 Experimental Setup
	6 Results
	6.1 Performance of LogOpt
	6.2 Bias of Interleaving

	7 Conclusion
	References

