
Feeding the Second Screen:
Semantic Linking based on Subtitles

Daan Odijk
d.odijk@uva.nl

Edgar Meij
edgar.meij@uva.nl

Maarten de Rijke
derijke@uva.nl

ISLA, University of Amsterdam
Amsterdam

ABSTRACT
Television is changing. Increasingly, broadcasts are consumed in-
teractively. This allows broadcasters to provide consumers with ad-
ditional background information that they may bookmark for later
consumption. To support this type of functionality, we consider
the task of linking a textual streams derived from live broadcasts to
Wikipedia. While link generation has received considerable atten-
tion in recent years, our task has unique demands that require an
approach that needs to (i) be high-precision oriented, (ii) perform
in real-time, (iii) work in a streaming setting, and (iv) typically,
with a very limited context. We propose a learning to rerank ap-
proach that significantly improves over a strong baseline in terms
of effectiveness and whose processing time is very short. We ex-
tend this approach, leveraging the streaming nature of the textual
sources that we link by modeling context as a graph. We show how
our graph-based context model further improves effectiveness. For
evaluation purposes we create a dataset of segments of television
subtitles that we make available to the research community.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content Analysis
and Indexing

1. INTRODUCTION
Television broadcasts are increasingly consumed on an interac-

tive device or with such a device in the vicinity. Around 70%
of tablet and smartphone owners use their devices while watching
television [25]. These developments allow the television audience
to interact with the content they are consuming, extending the view-
ing experience both live and on-demand. The interaction includes
not only producing and consuming broadcast-specific social media,
but it also caters for providing content that is created exclusively for
the interactive device, such as additional background information.
When an interactive device is used in this fashion, it is commonly
referred to as a second screen.

For live television, edited broadcast-specific content to be used
on second screens is hard to prepare in advance. We present an

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OAIR 2013, May 22–24, 2013, Lisbon, Portugal.
Copyright 2013 CID 978-2-905450-09-8.

approach for automatically generating links to background infor-
mation in real-time, to be used on second screens. Our approach
automatically generates links to Wikipedia. This process is com-
monly known as semantic linking and has received much attention
in recent years [10, 18, 19, 22, 23]. Such links are typically ex-
planatory, enriching the link source with definitions or background
information [4, 13]. Recent work has considered semantic linking
for short texts such as queries and microblogs [18–20]. The perfor-
mance of generic methods for semantic linking deteriorates in such
settings, as language usage is creative and context virtually absent.

We base our semantic linking approach for television broadcasts
on subtitles, thereby effectively casting the task as one of identi-
fying and generating links for elements in the stream of subtitles.
Note that the subtitles are not actually shown, but only used as a
textual stream to generate links that may then be shown through
a visual representation, on a second screen, as sketched in Fig. 1.
Traditional document-based approaches to semantic linking are not
suited for this task, as links need to be generated continuously from
this stream. On the other hand, using semantic linking approaches
for short text, that completely ignore the streaming nature of the
material, would mean missing out on important contextual signals.
Hence, in order for our semantic linking approach to be effective
in the context of second screens, it needs to be fast, able to disam-
biguate between candidate links in real-time, and leverage stream-
ing data so as to capture context. Furthermore, since the viewer is
dividing her attention between the actual broadcast and the second
screen, the information that is being offered needs to be of high
quality, i.e., have high precision.

We propose a learning to rerank approach to improve upon a
strong baseline retrieval model for generating links from streaming
text. In addition, we model context using a graph-based approach.
This approach is particularly appropriate in our setting as it allows
us to combine a number of context-based signals in streaming text
and capture the core topics relevant for a broadcast, while allowing
real-time updates to reflect the progression of topics being dealt
with in the broadcast. Our graph-based context model is highly

Figure 1: Sketches of a second screen (left) and an interactive
video player (right) showing links to background information,
synchronized with a television broadcast. Links pop up briefly
when relevant and are available for bookmarking or exploring.

accurate, fast, allows us to disambiguate between candidate links
and capture the context as it is being built up.

We address the following three research questions:

RQ1 What is the performance, in terms of effectiveness and ef-
ficiency, of a state-of-the-art retrieval model on the task of
semantic linking of streaming text?

RQ2 Is a learning to rerank approach with task-specific features
able to improve the effectiveness over the retrieval baseline,
and, if so, at what computational costs?

RQ3 Can we leverage the streaming nature of a textual source, by
modeling context as a graph, to improve the effectiveness of
semantic linking?

Our main contribution is a set of effective feature-based methods
for performing real-time semantic linking. We show how a learn-
ing to rerank approach for semantic linking performs on the task
of real-time semantic linking, in terms of effectiveness and effi-
ciency. We extend this approach with a graph-based method to keep
track of context in a textual stream and show how this can further
improve effectiveness. By investigating the effectiveness and effi-
ciency of individual features we provide insight in how to improve
effectiveness while maintaining efficiency for this task. Additional
contributions include a formulation of a new task: semantic linking
of a textual stream, and the release of a dataset for this new task,
including ground truth.

2. TASK DEFINITION
The task we describe is real-time semantic linking of a textual

stream. We link subtitles that come with television broadcasts—
live or recorded—to Wikipedia articles. The identified links should
be interesting and relevant for a wide audience. In the context of
subtitles, we define a dynamic textual stream as a source that con-
tinually produces “chunks” of text. A chunk is the amount of sub-
title text that can be displayed on a single screen (again, we are not
assuming that the text is actually displayed, only that it comes with
the broadcast). Chunks are relatively short and contain approx-
imately seven terms on average. Therefore, chunks do not nec-
essarily form a grammatical sentence. However, as these chunks
are produced to be read in sequence, syntactic phrases generally
do not cross chunk boundaries. Chunks form a growing sequence
T = 〈t1, . . .〉 and our task is to decide, in real-time, whether a
link to Wikipedia should be created for ti and what the link target
should be.

A link candidate li ∈ L links an “anchor” a in chunk ti to a
target w; an anchor is a term n-gram within in a chunk. Each target
w is a Wikipedia article proper, i.e., excluding redirect and disam-
biguation pages, from a set of Wikipedia articles W . A target is
identified by its unique title on Wikipedia. In the dataset we manu-
ally identified video segments of a television program; here, a video
segment is a set of chunks that share a single topic, for example an
interview with a guest in a talk show.

3. REAL-TIME SEMANTIC LINKING
Next, we introduce our approach to real-time semantic linking.

It consists of a baseline retrieval model that is based on how links
between Wikipedia articles are created. We improve over this base-
line using a learning to rerank approach using a set of lightweight
features. Finally, we describe an extension to the learning to rerank
approach that explicitly models context.

3.1 Baseline retrieval model
Our method for real-time link generation consists of three steps:

link candidate finding, ranking and reranking. We consider the first
two steps our baseline retrieval model. In this model, each Wiki-
pedia article is represented by the anchors that are used to link to it
within Wikipedia. The first, recall-oriented step is aimed at finding
as many link candidates as possible. Here, we produce a set of link
candidates L for each chunk ti that each link to a Wikipedia article
w. To this end, we perform lexical matching of each n-gram a of
chunk ti with the anchor texts found in Wikipedia.

The second step is to rank the link candidates in L. In particular,
we can use statistics on the anchor text usage. We consider the prior
probability that anchor text a links to Wikipedia article w:

COMMONNESS(a,w) =
|La,w|∑

w′∈W |La,w′ | , (1)

where La,w denotes the set of all links with anchor text a and target
w. The intuition is that link candidates with anchors that always
link to the same target are more likely to be a correct representation
than those for which the anchor text is used more often to link to
other targets.

3.2 Learning to rerank
The third step is aimed at improving precision using a learn-

ing to rerank approach, that was effective on similar tasks [16, 20,
23]. For link candidates many ranking criteria are in play, mak-
ing learning to rerank particularly appropriate. We use a set of
lightweight features, that can be computed online. We use vari-
ants of features proposed by Meij et al. [20], that are suited for
our television broadcast context. These 26 features are listed in
Table 1. WIKISTATSn(w) is an indication of the popularity of
a Wikipedia article and is defined as the absolute number of visi-
tors for an article w in the n days before the television broadcast.1

WIKISTATSTRENDn,m(w) is the relative number of visitors in
the last n days, compared to the number of visitors in the last m
days. This feature is intended to provide information on peaks in
the number of visitors. The intuition is that these features help to
identify popular current topics in the television broadcast. We use
a decision tree based approach as it has outperformed Naive Bayes
and Support Vector Machines on similar tasks [20, 23]. We choose
Random Forests [2] as it is robust, efficient and easily paralleliz-
able.

3.3 Modeling context
Link generation methods that rely on an entire document are not

suited for use in the context of streaming text. Such methods are
computationally expensive, due to the many comparisons that have
to be made, as explained below in §6. Since we want to gener-
ate links for each chunk, we would need to do these comparisons
for each chunk in the stream. What we need, instead, is a method
to model context that can be incrementally updated and by which
we can easily compute features for link candidates. We model the
context of a textual stream as an undirected graph as follows. A
context graph G = (V,E), comprises a set V of vertices and a
set E of edges; vertices are either a chunk ti, a target w or an an-
chor (ti, a). Edges link each chunk ti to ti−1. Furthermore, for
each anchor (ti, a), there is an edge from (ti, a) to ti and one from
(ti, a) to w. The graph reflects the content of the textual stream
and encodes the structure by connecting chunks. This results in a
smaller distance for things that are mentioned together. Further-
more, nodes for Wikipedia articles that are mentioned more often,

1See http://dumps.wikimedia.org/other/pagecounts-raw/

http://dumps.wikimedia.org/other/pagecounts-raw/

Table 1: Features used for the learning to rerank approach.
Anchor features

LEN (a) = |a| Number of terms in the n-gram a
IDF f (a) Inverse document frequency of a in representation f , where f ∈ {title, anchor, content}
KEYPHRASE(a) Probability that a is used as an anchor text in Wikipedia (documents)
LINKPROB(a) Probability that a is used as an anchor text in Wikipedia (occurrences)
SNIL(a) Number of articles whose title equals a constituent n-gram of a
SNCL(a) Number of articles whose title match a constituent n-gram of a

Target features

LINKSf (w) Number of Wikipedia articles linking to or from w, where f ∈ {in, out} respectively
GEN (w) Depth of w in Wikipedia category hierarchy
REDIRECT (w) Number of redirect pages linking to w
WIKISTATSn(w) Number of times w was visited in the last n ∈ {7, 28, 365} days
WIKISTATSTRENDn,m(w) Number of times w was visited in the last n days divided by the number of times w visited in last m

days, where the pair (n,m) ∈ {(1, 7), (7, 28), (28, 365)}
Anchor + Target features

TF f (a,w) =
nf (a,w)

|f |
Relative phrase frequency of a in representation f of w, normalized by length of f , where f ∈ {title,
first sentence, first paragraph}

POS1 (a,w) =
pos1(a)
|w| Position of first occurrence of a in w, normalized by length of w

NCT (a,w) Does a contain the title of w?
TCN (a,w) Does the title of w contain a?
TEN (a,w) Does the title of w equal a?
COMMONNESS(a,w) Probability of w being the target of a link with anchor text a

w

chunk t1 chunk t2 chunk t3

anchor (t2, a) anchor (t3, a’)

donderdag 14 maart 13

Figure 2: Illustration of a context graph with three chunks
(t1, t2, t3) and two link candidates with different anchors
((t2, a) and (t3, a

′)), but the same target w.

will have more anchors connecting to them, making these nodes
more central and thereby more important in the graph. Fig. 2 shows
an illustration of a context graph with three chunks.

Constructing the context graph. At the start of each video
segment we initialize an empty context graph. The algorithm that
describes how we update the context graph is described in Algo-
rithm 1. We do not add vertices and edges to the context graph for
every link candidate, for two reasons. First, the algorithm to find
link candidates is recall-oriented and, therefore, produces many
links for each chunk; a single usage of an anchor for a Wikipedia
article is enough for it to be considered a link candidate. This intro-
duces links that are very unlikely or trivial and can be considered
noise. Second, given our objective to perform semantic linking in
real time, we need to limit the size of the context graph.

We select what link candidates to add to the context graph by
placing a threshold, τ , on the probability of a link candidate being
correct. The baseline ranking function COMMONNESS(a) as
defined in Eq. 1, can be seen as an estimate for this probability for
a Wikipedia article. The probability that an n-gram a is used as an
anchor is estimated by the feature

LINKPROB(a) =

∑
w∈W |La,w|∑

w′∈W n(a,w′)
, (2)

Algorithm 1: Updating the context graph.
Data: A context graph G = (V,E), comprising a set V of

vertices or nodes and a set E of edges.
On initialization, V = ∅, E = ∅

Input: Set of link candidates L = {l1, ..., lM} that each link a
specific anchor (ti, a) to a Wikipedia article w ∈W
for chunk ti

Input: A ranking function r and a threshold τ
Result: Nodes and edges added to G for link candidates in L

if r(a,w) > τ

V ←− V ∪ ti;
if i > 0 then

E ←− E ∪ {ti, ti−1};
foreach l = ((ti, a), w) ∈ L do

if r(a,w) > τ then
V ←− V ∪ (ti, a) ∪ w;
E ←− E ∪ {(ti, a), ti} ∪ {(ti, a), w};

where La,w denotes the set of all links with anchor text a and tar-
get w and n(a,w) is the number of occurrences of n-gram a in
w. If we combine these two probabilities, we have an estimate for
the probability that an n-gram a is used as an anchor linking to
Wikipedia article w. We define this combined probability as

SENSEPROB(a,w) =
|La,w|∑

w′∈W n(a,w′)
, (3)

where La,w and n(a,w) denote the same as in Eq. 2. We use
SENSEPROB to select candidates to add to a context graph, as
it captures both whether a link is correctly disambiguated and the
likelihood of the anchor text being a link.

We set the threshold value so that we can easily update the graph
and compute the features below during the time a particular sub-

Table 2: Context features used for learning to rerank on top of
the features listed in Table 1.

Context features
DEGREE(w,G) Number of edges connected to the node

representing Wikipedia articlew in context
graph G.

DEGREE−
CENTRALITY (w,G)

Centrality of Wikipedia article w in
context graph G, computed as the ratio

of edges connected to the node represent-
ing w in G.

PAGERANK (w,G) Importance of the node representing w in
context graph G, measured using PageR-
ank.

title is shown on the screen (roughly four seconds). On a small
development set, this resulted in τ = 0.1. We prune the graph for
nodes that were added more than 100 chunks ago (∼7 minutes on
our dataset, see below).

Computing features from context graphs. To feed our learn-
ing to rerank approach with information from the context graph we
compute a number of features for each link candidate. These fea-
tures are described in Table 2. First, we compute the degree of the
target Wikipedia article in this graph. To measure how closely con-
nected a target is, we compute degree centrality. Finally, we mea-
sure the importance of a target by computing its PageRank [26].

4. EXPERIMENTAL SETUP
We describe the dataset used, our ground truth and metrics.

Dataset. To measure the effectiveness and efficiency of our pro-
posed approach to semantic linking, we use the subtitles of six
episodes of a live daily talk show. The subtitles are generated dur-
ing live broadcast by a professional and are intended for the hearing
impaired. From these subtitles, video segments are identified, each
covering a single item of the talk show. These video segments are
based on the structure of the talk show. Video segments cover a
single topic; their boundaries are manually identified during anno-
tation. We leave automatically identifying video segment bound-
aries for future work. Our data set consists of 5,173 chunks in 50
video segments, with 6.97 terms per chunk. The broadcast time of
all video segments combined is 6 hours, 3 minutes and 41 seconds.

Establishing ground truth. In order to train the supervised
machine learning methods and also evaluate the end result, we need
to establish a gold standard. To this end, we have asked a trained
human annotator to manually identify links that are relevant for a
wide audience.2 The subtitles are in Dutch, so we link to a Dutch
version of Wikipedia.3 Each video segment is assessed in sequence
and links are identified by selecting anchors and a target Wikipedia
article. If no target can be identified a link with a NIL target is
created. A total of 1,596 links have been identified, 150 with a
NIL target and 1,446 with a target Wikipedia article, linking to 897

2To validate these manual annotations, we have asked a second annotator
to annotate six video segments; 95,9% of links identified by the main anno-
tator were also found by the second one.
3There is nothing in our approach, however, that is language specific. One
could even argue that semantic linking for Dutch is more difficult than for
English as the Dutch version of Wikipedia contains fewer Wikipedia arti-
cles.

unique articles, around 17.94 unique articles per video segment and
2.47 unique articles per minute.

Evaluation metrics. For the evaluation of our learning to rerank
approach, we are specifically interested in the ranking that is as-
signed to each link. We therefore regard the ranked list of all target
Wikipedia articles for the link candidates that are produced by the
baseline retrieval model for a video segment. Our learning to rerank
approach assigns new ranks for the ranked list, but does not update
the elements making up the list. We report average R-precision and
mean average precision (MAP). We also measure efficiency. We
report the average classification time per chunk on a single core of
an eight core machine. This classification time per chunk indicates
how long it takes to produce links for one line of subtitles, after
they appear on the screen. It should be noted, that all features can
be computed off-line, only requiring a simple lookup at runtime.

Features and baselines. To compute our features, we use a
Wikipedia dump from November 2011 (∼1M articles) for which
we calculate link statistics. For the WIKISTATS features, we col-
lect visitor statistics for Wikipedia on a daily basis and aggregate
these per day, week, month, and year. This preprocessing makes all
features fairly easy to compute at runtime. We consider one base-
line: a baseline retrieval model using COMMONNESS as a ranking
function. On top of that we consider a learning to rerank approach
as described as step 3 in §3. In this learning to rerank approach,
the ranker is trained using five-fold cross-validation at the video
segment level. The Random Forests algorithm has two free pa-
rameters; the number of trees is set to 1500, based on preliminary
experiments reported in §5 and we setK, the number of features to
consider when taking a bootstrap sample, according to the common
rule-of-thumb, to roughly 10% of the number of features [24].

5. RESULTS AND DISCUSSION
We discuss the outcomes of our experiments aimed at answering

our research questions.

Baseline retrieval model. First, we consider the performance
of our baseline retrieval model. Line 1 in Table 3 shows the scores
for the ranking baseline. The recall oriented link candidate find-
ing step described in §3 produces 120,223 links with 42,265 target
articles, including 771 known targets that are in the ground truth
(a recall of 0.8595). With this number of link candidates, there is
a clear need for ranking. The ranking baseline achieves reason-
able effectiveness scores; in absolute terms they are higher than
the numbers reported for the COMMONNESS ranking baseline
on microblog data in [20]. Recall is comparable to the numbers
reported for the baseline on Wikipedia articles in [10, 23], where
R-Precision and MAP are not reported, however. As to our first
research question, the state of the art retrieval model that we use
performs well on the task of semantic linking of streaming text in
terms of efficiency. The performance in terms of effectiveness is
strong, with high recall-scores. In terms of precision these numbers
are comparable to the literature, while leaving room for improve-
ment.

Learning to rerank. Next we consider the performance of the
learning to rerank approach (§3.2). Lines 2–10 in Table 3 show the
results with a growing set of features. We add groups of features
in a coordinate ascent [21], i.e., adding the best feature at each step
plus any related feature we can compute without additional costs
in classification time. We see that learning to rerank significantly
boosts effectiveness over the retrieval baseline, while keeping the
average classification time per chunk at around 100 milliseconds.

Table 3: Semantic linking results ranked by classification time.
Significant differences, tested using a two-tailed paired t-test,
are indicated for lines 2–10 tested against line 1 at p < 0.05 (M)
or p < 0.01 (N).

Average classification time
per chunk (in ms) R-Prec MAP

1. Baseline retrieval model 54 0.6052 0.6463

Learning to rerank approach (listing the features used)

2. COMMONNESS
+ LINKPROB + IDFanchor

+ NCT + TCN + TEN 92 0.6424 0.7213M

3. + KEYPHRASE 92 0.6617 0.7355N

4. + REDIRECT
+ LINKSin + LINKSout 93 0.6910M 0.7624N

5. + POS1 + TFtitle

+ TFsentence + TFparagraph 96 0.7003M 0.7729N

6. + IDF content + IDF title 97 0.7057N 0.7728N

7. + LEN + SNCL + SNIL 97 0.7118N 0.7758N

8. + GEN 98 0.7112N 0.7749N

9. + WIKISTATS7

+ ...STATS28 + ...STATS365 99 0.7175N 0.7849N

10. + WIKISTATSTREND1 ,7

+ ...TREND7 ,28

+ ...TREND28 ,365 99 0.7177N 0.7884N

This makes classification in a streaming text setting almost real-
time. Lines 9 and 10 in the table concern the WIKISTATS fea-
tures: while they may gain slightly in terms of R-Precision and
MAP, this comes at a big increase in pre-processing effort, as we
need to collect visitor statistics for Wikipedia on a daily basis. In
our experiments, we refer to line 10 as the learning to rerank ap-
proach.

Our second research question is whether a learning to rerank ap-
proach would be able to outperform our retrieval baseline on the
task of semantic linking of streaming text. The results for our learn-
ing to rerank approach show that it can be highly effective and sig-
nificantly improve over the retrieval baseline. We can achieve this
high effectiveness at an average online classification time of less
than 100 milliseconds, making the learning to rerank approach ef-
ficient and suited for usage in real time.

As an aside, we analyze the influence of one parameter for the
Random Forest algorithm, the number of trees. We evaluate the
effectiveness by taking the average of five runs with all features in
Table 1. Fig. 3 shows the results. The effectiveness increases as the
number of trees increases and reaches a plateau at a value of about
1000, indicating that a value of 1500 is a safe setting.

Modeling context as a graph. We turn to our third research
question, and determine whether modeling context as a graph im-
proves effectiveness on the semantic linking task. We evaluate three
features for the context graph (listed in Table 2). The results for the
learning to rerank runs with these features added are listed in Ta-
ble 4. Compared to the learning to rerank approach in line 2, we are
able to achieve significantly higher performance. All three features
improve effectiveness, with DEGREECENTRALITY achiev-
ing the best score for average R-Precision and DEGREE the best
for MAP. The fact that we improve on both measures (R-Prec and
MAP) indicates that both recall and precision are improved, by
each of the three context graph features. The combination of the
three context features does not yield further improvements in ef-

1 5 10 50 100 500 1000 5000

0.
60

0.
65

0.
70

0.
75

0.
80

Number of Trees

MAP

R-Precision

Figure 3: Analyzing the influence of the number of trees, mea-
sured in terms of R-precision and MAP.

Table 4: Semantic linking results for the graph-based context
model and an oracle run (indicating a ceiling). Significant dif-
ferences, tested using a two-tailed paired t-test, are indicated
for lines 2–6 with − (none), M (p < 0.05) and N (p < 0.01);
the position of the symbol indicates whether the comparison is
against line 1 (left most) or line 2 (right most).

Average classification time
per chunk (in ms) R-Prec MAP

1. Baseline retrieval model 54 0.5753 0.6235

2. Learning to rerank approach 99 0.7177N 0.7884N

Learning to rerank (L2R) + one context graph feature

3. L2R+DEGREE 104 0.7375NM 0.8252NN

4. L2R+DEGREECENTRALITY 108 0.7454NN 0.8219NN

5. L2R+PAGERANK 119 0.7380NM 0.8187NN

Learning to rerank (L2R) + three context graph features

6. L2R+DEGREE+PAGERANK
+DEGREECENTRALITY 120 0.7341N− 0.8204NN

7. Oracle picking the best out of lines
3–5 for each video segment

0 .7636 0 .8400

fectiveness over the individual context graph features (as shown in
line 6). To investigate why the combination does not improve ef-
fectiveness, we look at the result of a hypothetical oracle that picks
the best of the result for each video segment. This gives us a ceil-
ing value for effectiveness that is very close to the value achieved
by the individual feature runs, suggesting that the three features
measure qualitatively similar things in the context graph. To verify
this, we analyze the difference in effectiveness per video segment
for each of the three context features between the learning to rerank
approach and its extensions with graph-based contextual informa-
tion. This difference is plotted in Fig. 4. Comparing the individual
context features, we see only minor differences in performance per
segment. Combining these features can hardly lead to further im-
proved performance.

To further investigate where the inclusion of contextual infor-
mation helps and where it hurts, we analyze the difference in ef-
fectiveness per video segment between the learning to rerank ap-
proach and its extensions with the graph-based context model. Out
of the 50 video segments, 37 show an increase and 13 a decrease
in effectiveness (for each of lines 2–5 in Table 4). We plot the
difference in effectiveness against the number of target Wikipedia
articles per video segment in Fig. 5. We observe that for video seg-
ments with more links, the extended approach with our graph-based

D
iff

er
en

ce
 in

 A
P

-0
.1

5
-0

.0
5

0.
05

0.
15

D
EG

R
EE

D
EG

R
EE

C
EN

TR
AL

IT
Y

D
iff

er
en

ce
 in

 A
P

-0
.1

5
-0

.0
5

0.
05

0.
15

D
iff

er
en

ce
 in

 A
P

-0
.1

5
-0

.0
5

0.
05

0.
15

PA
G

ER
AN

K

Figure 4: Analyzing the difference in effectiveness per video segment for each context feature, between the learning to rerank
approach and the graph-based context model. Effectiveness is measured by AP, for R-precision we observe qualitative similar
patterns. Bars are sorted from left to right in increasing performance for the learning to rerank approach.

model consistently improves effectiveness. This indicates that hav-
ing more context to work with improves the effectiveness of the
graph-based context model. On the other hand, we can also ob-
serve improvements in the video segments with fewer targets. This
indicates that the graph-based context model is also able to improve
when context is limited.

In Fig. 5, two video segments stand out by showing relatively
low effectiveness scores for both approaches (R-precision below
0.4). Neither video segment contains many links. Looking at their
content, these are understandably hard cases as they discuss rare
or even obscure news events (one covers the ups and downs of a
homeless person, the other a less popular sports contest). Finally,
most video segments that show a decrease in effectiveness under
the graph-based context model already have a relatively high ef-
fectiveness in the learning to rerank approach; the highest decrease
was for a video segment with a perfect score.

In terms of efficiency, the PAGERANK feature is computation-
ally more expensive than the other two, but classification time is
still low enough for this approach to be used in a real-time setting.
Interestingly, the relatively simple to compute DEGREE feature
performs relatively well.

Our third research question concerns whether we can improve
the effectiveness of our learning to rerank approach if we model
context as a graph, leveraging the streaming nature of a textual
source. The results in Table 4 show that we can significantly im-
prove the performance of our learning to rerank approach, while
maintaining efficiency at an acceptable level, if we add features
that were computed from the graph-based context model.

To add or not to add?. The influence of the decision on what
links to include in the context graph, as described in §3.3, deserves
further attention. First, we use a threshold for what to add to the
graph and second, we prune the graph based on age (defined as the
n most recent chunks included in the context graph). We consider
the effectiveness of three threshold functions: SENSEPROB ,
COMMONNESS , LINKPROB , with threshold values
τ ∈ [0, 0.5]. Furthermore, we consider five values for the age n:
10, 25, 50, 75 and 100.

Figure 6 shows the results. For the COMMONNESS threshold
function (Eq. 1), increasing τ improves results until τ = 0.4. Intu-
itively this makes sense, as more ambiguous link candidates have
lower COMMONNESS values. For the LINKPROB (Eq. 2) and
SENSEPROB (Eq. 3) threshold functions, there seems to be a
sweet spot for τ between 0.1 and 0.2. The influence of the age
value n seems to be less substantial, but there is indication that the
higher the value, the better the performance is. The SENSEPROB
threshold function we proposed is clearly the most effective of the

three functions. Hence, our choice of τ = 0.1 for SENSEPROB ,
with n = 100 is a good choice.

6. RELATED WORK
Automatically generating hypertext links has been studied for

nearly two decades. Early work included defining a taxonomy of
hyperlink types and applying string-matching methods for auto-
matic links [1]. An issue that was raised early on was inter-linker
consistency [8]. A typical use case is in linking news archives [12],
more recently also across modalities [4]. Henzinger et al. [14]
proposed an approach to find relevant news article stories during
broadcast news. Every 15 seconds, they produce a two term query
to search a news archive, using a ‘history feature’, containing the
last three blocks of text.

Using automatic speech recognition (ASR) for television broad-
casts will lead to noisy transcripts, making it difficult to do seman-
tic linking on ASR transcripts. In [5] such transcripts are analyzed
in real time to produce entities and topics. VideoCLEF’09 [16]
featured a linking task aimed at linking video content to related
resources across languages. This task was framed as a known-
item-task, where noisy ASR for Dutch was used to produce links
to target English Wikipedia articles. The best performance was
achieved by taking an off-the-shelf semantic linking toolkit for doc-
uments [23]. The learning to rerank approach employed by the
toolkit outperformed several retrieval approaches.

Early work on semantic linking, i.e., automatic link generation
for Wikipedia, aimed to improve linking on Wikipedia, by finding
missing links [11]. Fissaha Adafre and de Rijke clustered similar
pages and identified candidate links to be added to a page. These
methods to generate links to Wikipedia are also effective outside
the Wikipedia domain as several approaches to semantic linking
for documents have shown [6, 7, 22, 23, 27]. In this case, links
are intended to be explanatory, by providing definitions or back-
ground information. In some work, links are created as an concept
or entity normalization step [6, 7, 22, 27]. These document-based
approaches generally consist of three steps. First, find all candi-
dates for linking and then disambiguate possible targets. From this,
select which candidates to link and pick the target to link to. These
methods assume text is more or less clean and grammatically cor-
rect and rely heavily on context for link selection and disambigua-
tion. This context has been modeled in different ways. Early work
uses only local approaches to disambiguation [6, 22], looking at
how well each link candidate fits in the text. This is done by com-
paring the content of the source document to the content the page
to be linked to. Global approaches regard all link candidates for
a document and then try to form a coherent set from these. These

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of target Wikipedia articles in video segment

Av
er

ag
e

Pr
ec

is
io

n

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of target Wikipedia articles in video segment

R
-P

re
ci

si
on

Figure 5: Analyzing the difference in effectiveness in terms of AP (left) and R-Precision (right) per video segment, between the
learning to rerank approach and the graph-based context model (using DEGREECENTRALITY). For each video segment, a line
starts at the effectiveness value for the learning to rerank approach, leading to a circle indicating the effectiveness for the graph-based
context model approach.

0.0 0.1 0.2 0.3 0.4 0.5

0.
77

0.
78

0.
79

0.
80

0.
81

0.
82

COMMONNESS

Threshold value

M
AP

n = 100
n = 75
n = 50
n = 25
n = 10

0.0 0.1 0.2 0.3 0.4 0.5

0.
77

0.
78

0.
79

0.
80

0.
81

0.
82

PRIOR_PROBABILITY

Threshold value

M
AP

n = 100
n = 75
n = 50
n = 25
n = 10

0.0 0.1 0.2 0.3 0.4 0.5

0.
77

0.
78

0.
79

0.
80

0.
81

0.
82

SENSE_PROBABILITY

Threshold value
M

AP

n = 100
n = 75
n = 50
n = 25
n = 10

Figure 6: Analyzing the influence of the threshold settings for context graphs for the n most recent chunks, measured by MAP (for
R-precision we observe qualitatively similar patterns).

methods use relatedness measures based on the structure of Wiki-
pedia [7, 23, 27]. Milne and Witten [23] balance a measure for how
common a link is with how related it is to other links. Comparing
all possible links for a document is computationally expensive, so
a choice of what link candidates to consider is often made. Using
only the few unambiguous link candidates such as in [23] dismisses
many link candidates, while considering all makes the set subject to
noise and impractically large [7]. For global approaches, semantic
relatedness between articles is computed using a distance measure
for the incoming and outgoing links and categories an article be-
longs to [7, 23, 27]. For streaming text, neither local nor global
approaches for disambiguation are suited as linking is considered
for just a chunk of text. These local and global approaches are com-
putationally heavy, as there are many comparisons to be made for
each link candidate.

Semantic linking has been applied to many different specific do-
mains. Jijkoun et al. [15] studied this as an entity normalization
task in blogs and comments. He et al. [13] showed that apply-
ing semantic linking to radiology reports did not yield satisfactory
results and propose a sequential labeling approach, with syntactic
features. More recently, work has gone into applying semantic link-
ing to short texts, such as queries [10, 18] and microblogs [20]. In
these short texts, generic methods developed for documents fail, as
grammar and context are virtually absent. Ferragina and Scaiella
[10] developed a system called TAGME, designed specifically for
short snippets of poorly composed text. For this they try to find

collective agreement for the link targets using voting scheme based
on a relatedness score. The authors point out that computing this
relatedness score is the most time consuming step in their system.
For semantic linking of short texts, Meij et al. [20] have shown that,
as a retrieval model for finding link candidates, lexical matching on
anchor text performs better than lexical matching on title, language
modeling and a document retrieval-based approach.

We have captured context chunks in a structured manner us-
ing graphs. Graph-based methods have been proposed for nat-
ural language processing (NLP) problems, such as word cluster-
ing [3], word dependency [28], text summarization [9] and topic
modeling [17]. Erkan and Radev [9] show how a random walk
on sentence-based graphs can help in text summarization. A well-
known example of this idea of a random walk is PageRank [26]—
one of the measures that we use.

7. CONCLUSION
Motivated by the rise in so-called second screen applications we

introduced a new task: real-time semantic linking of streaming text.
We have created a dataset for this task.4 We have shown that learn-

4The dataset (described in §4) is made available to the research commu-
nity; it consists of more than 1,500 manually annotated links in over 5,000
subtitle chunk for 50 video segments. See: http://ilps.science.
uva.nl/resource/oair-2013-feeding-second-screen

http://ilps.science.uva.nl/resource/oair-2013-feeding-second-screen
http://ilps.science.uva.nl/resource/oair-2013-feeding-second-screen

ing to rerank can be applied to significantly improve an already
competitive retrieval baseline and that this can be done in real-time.

Additionally, we have shown that by modeling context as a graph
we can significantly improve the effectiveness of this learning to
rerank approach. This graph-based method to keep track of context
is especially well-suited for the streaming text, as we can incremen-
tally update the context model.

As to future work, we have shown that selecting what candidate
links to add to the graph is an important choice. An interesting
follow-up to this observation is to semantically enrich the graph, by
weighting the edges of the graph, accounting for the quality of the
evidence collected. We can further extend the enrichment to encode
more information, e.g., by using the Wikipedia link structure.

The dataset used in this study consists of subtitles from video
segments of talk shows. We have chosen talk shows because they
cover a range of topics, mostly current. However, our approach
is not specific for talk shows and it will be interesting to evaluate
this approach on different types of television broadcast, such as live
events and sports. Furthermore, with advances in automatic speech
recognition (ASR), combining our approach with the output of an
ASR-system may provide an effective solution when manually cre-
ated subtitles are not available.

ACKNOWLEDGEMENTS
This research was partially supported by the European Union’s ICT
Policy Support Programme as part of the Competitiveness and In-
novation Framework Programme, CIP ICT-PSP under grant agree-
ment nr 250430, the European Community’s Seventh Framework
Programme (FP7/2007-2013) under grant agreements nr 258191
(PROMISE Network of Excellence) and 288024 (LiMoSINe
project), the Netherlands Organisation for Scientific Research
(NWO) under project nrs 612.061.814, 612.061.815, 640.004.802,
727.011.005, 612.001.116, HOR-11-10, the Center for Creation,
Content and Technology (CCCT), the Hyperlocal Service Platform
project funded by the Service Innovation & ICT program, the BI-
LAND project funded by the CLARIN-nl program, the Dutch na-
tional program COMMIT, the ESF Research Network Program
ELIAS, the Elite Network Shifts project funded by the Royal Dutch
Academy of Sciences (KNAW), and the Netherlands eScience Cen-
ter under project number 027.012.105.

REFERENCES
[1] J. Allan. Automatic hypertext construction. PhD thesis, Cor-

nell University, 1995.
[2] L. Breiman. Random forests. Machine Learning, 45(1):5–32,

2001.
[3] C. Brew and S. Schulte im Walde. Spectral clustering for

German verbs. In EMNLP ’02, pages 117–124. ACL, 2002.
[4] M. Bron, B. Huurnink, and M. de Rijke. Linking archives

using document enrichment and term selection. In TPDL ’11,
pages 360–371. Springer, 2011.

[5] E. Brown, S. Srinivasan, A. Coden, D. Ponceleon, J. Cooper,
A. Amir, and J. Pieper. Towards speech as a knowledge re-
source. In CIKM ’01, pages 526–528. ACM, 2001.

[6] R. Bunescu and M. Pasca. Using encyclopedic knowledge
for named entity disambiguation. In EACL ’06, pages 9–16.
ACL, 2006.

[7] S. Cucerzan. Large-scale named entity disambiguation based
on Wikipedia data. In EMNLP ’07, pages 708–716. ACL,
2007.

[8] D. Ellis, J. Furner-Hines, and P. Willett. On the creation of
hypertext links in full-text documents: Measurement of inter-
linker consistency. J. Documentation, 50(2):67–98, 1994.

[9] G. Erkan and D. Radev. LexRank: Graph-based lexical cen-
trality as salience in text summarization. J. Artificial Intelli-
gence Research, 22:457–479, 2004.

[10] P. Ferragina and U. Scaiella. TAGME: On-the-fly annotation
of short text fragments (by Wikipedia entities). In CIKM ’10,
pages 1625–1628. ACM, 2010.

[11] S. Fissaha Adafre and M. de Rijke. Discovering missing links
in Wikipedia. In 3rd international workshop on Link discov-
ery, pages 90–97. ACM, 2005.

[12] S. Green. Building hypertext links by computing semantic
similarity. IEEE Trans. on Knowledge and Data Engineering,
11(5):713–730, 1999.

[13] J. He, M. de Rijke, M. Sevenster, R. van Ommering, and
Y. Qian. Automatic link generation with Wikipedia: A case
study in annotating radiology reports. In CIKM ’11, pages
1867–1876. ACM, 2011.

[14] M. Henzinger, B.-W. Chang, B. Milch, and S. Brin. Query-
free news search. World Wide Web, 8(2):101–126, June 2005.

[15] V. Jijkoun, M. Khalid, M. Marx, and M. de Rijke. Named en-
tity normalization in user generated content. In Proceedings
of the second workshop on Analytics for noisy unstructured
text data, pages 23–30. ACM, 2008.

[16] M. Larson, E. Newman, and G. Jones. Overview of Video-
CLEF 2009. In CLEF ’09, pages 354–368. Springer, 2010.

[17] Q. Mei, D. Cai, D. Zhang, and C. Zhai. Topic modeling with
network regularization. In WWW ’08, pages 101–110. ACM,
2008.

[18] E. Meij, M. Bron, L. Hollink, B. Huurnink, and M. de Rijke.
Learning semantic query suggestions. In ISWC ’09, pages
424–440. Springer, 2009.

[19] E. Meij, M. Bron, L. Hollink, B. Huurnink, and M. de Rijke.
Mapping queries to the linking open data cloud: A case study
using DBpedia. J. Web Semantics, 9(4):418–433, 2011.

[20] E. Meij, W. Weerkamp, and M. de Rijke. Adding semantics
to microblog posts. In WSDM 2012, pages 563–572. ACM,
2012.

[21] D. Metzler and W. Bruce Croft. Linear feature-based models
for information retrieval. Information Retrieval, 10(3):257–
274, 2007.

[22] R. Mihalcea and A. Csomai. Wikify!: Linking documents
to encyclopedic knowledge. In CIKM ’07, pages 233–242.
ACM, 2007.

[23] D. Milne and I. H. Witten. Learning to link with Wikipedia.
In CIKM ’08, pages 509–518. ACM, 2008.

[24] A. Mohan, Z. Chen, and K. Q. Weinberger. Web-search rank-
ing with initialized gradient boosted regression trees. JMLR:
Workshop and Conference Proceedings, 14:77–89, 2011.

[25] Nielsen. In the U.S., tablets are TV buddies while eread-
ers make great bedfellows, May 2012. http://bit.ly/
L4lf9E [Online; accessed May 2012].

[26] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageR-
ank citation ranking: Bringing order to the web. Technical
report, Stanford InfoLab, 1999.

[27] L. Ratinov, D. Downey, M. Anderson, and D. Roth. Local
and global algorithms for disambiguation to Wikipedia. In
ACL ’11, pages 1375–1384. ACL, 2011.

[28] K. Toutanova, C. Manning, and A. Ng. Learning random walk
models for inducing word dependency distributions. In ICML
’04, pages 103–110. ACM, 2004.

http://bit.ly/L4lf9E
http://bit.ly/L4lf9E

	Introduction
	Task Definition
	Real-Time Semantic Linking
	Baseline retrieval model
	Learning to rerank
	Modeling context

	Experimental Setup
	Results and Discussion
	Related Work
	Conclusion

