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Abstract. Learned sparse retrieval (LSR) is a family of first-stage re-
trieval methods that are trained to generate sparse lexical representations
of queries and documents for use with an inverted index. Many LSR
methods have been recently introduced, with Splade models achieving
state-of-the-art performance on MSMarco. Despite similarities in their
model architectures, many LSR methods show substantial differences in
effectiveness and efficiency. Differences in the experimental setups and
configurations used make it difficult to compare the methods and derive
insights. In this work, we analyze existing LSR methods and identify key
components to establish an LSR framework that unifies all LSR methods
under the same perspective. We then reproduce all prominent methods
using a common codebase and re-train them in the same environment,
which allows us to quantify how components of the framework affect
effectiveness and efficiency. We find that (1) including document term
weighting is most important for a method’s effectiveness, (2) including
query weighting has a small positive impact, and (3) document expan-
sion and query expansion have a cancellation effect. As a result, we show
how removing query expansion from a state-of-the-art model can reduce
latency significantly while maintaining effectiveness on MSMarco and
TripClick benchmarks. Our code is publicly available.3

Keywords: neural retrieval · learned sparse retrieval · lexical retrieval.

1 Introduction

Neural information retrieval has becoming increasingly common and effective
with the introduction of transformers-based pre-trained language models [17].
Due to latency constraints, a pipeline is often split into two stages: first-stage
retrieval and re-ranking. The former focuses on efficiently retrieving a set of can-
didates to re-rank, whereas the latter focuses on re-ranking using highly effective
but inefficient methods. Neural first-stage retrieval approaches can be grouped
into two categories: dense retrieval (e.g., [12,13,38]) and learned sparse retrieval
(e.g., [7, 40, 44]). Learned sparse retrieval (LSR) methods transform an input
text (i.e., a query or document) into sparse lexical vectors, with each dimension

3 Code: https://github.com/thongnt99/learned-sparse-retrieval

https://github.com/thongnt99/learned-sparse-retrieval
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containing a term score analogous to TF. The sparsity of these vectors allows
LSR methods to leverage an inverted index. Compared with dense retrieval, LSR
has several attractive properties. Each dimension in the learned sparse vectors is
usually tied to a term in vocabulary, which facilitates transparency. We can, for
example, examine biases encoded by models by looking at the generated terms.
Furthermore, LSR methods can re-use the inverted indexing infrastructure built
and optimized for traditional lexical methods over decades.

The idea of using neural methods to learn weights for sparse retrieval pre-
dates transformers [40, 42], but approaches’ effectiveness with pre-BERT meth-
ods is limited. With the emergence of retrieval powered by transformer-based
pre-trained language models [6, 17, 36], many LSR methods [5, 7, 8, 16, 20, 23, 41]
have been introduced that leverage transformer architectures to substantially
improve effectiveness. Among them, the Splade [7] family is a recent promi-
nent approach that shows strong performance on the MSMarco [26] and BEIR
benchmarks [35].

Despite their architectural similarities, different learned sparse retrieval meth-
ods exhibit very different behaviors regarding effectiveness and efficiency. The
underlying reasons for these differences are often unclear.

In this work, we conceptually analyze existing LSR methods and identify
key components in order to establish a comparative framework that unifies all
methods under the same perspective. Under this framework, the key differences
between existing LSR methods become apparent. We first reproduce methods’
original results, before re-training and re-evaluating them in a common envi-
ronment that leverages best practices from recent work, like the use of hard
negatives. We then leverage this setting to study how key components influence
a model’s performance in terms of efficiency and effectiveness. We investigate
the following research questions:

RQ1: Are the results from LSR papers reproducible?
This RQ aims to reproduce the results of all recent, prominent LSR methods in
our codebase, consulting the configuration on the original papers and codes. We
find that most of the methods can be reproduced with MRR comparable to the
original work (or slightly higher).

RQ2: How do LSR methods perform with recent advanced training
techniques?
Splade models [7] show impressive ranking scores on MSMarco. While these
improvements could be due to architectural choices like incorporating query
expansion, Splade also benefits from an advanced training process with mined
hard negatives and distillation from cross-encoders. Our experiments show that
with the same training as Splade, many older methods become significantly more
effective. Most noticeably, the MRR@10 score of the older EPIC [20] model was
boosted by 36% to become competitive with Splade.

RQ3: How does the choice of encoder architecture and regularization
affect results?
The common training environment we use to answer RQ2 allows us to quantify
the effect of various architectural decisions, such as expansion, weighting, and
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regularization. We find that document weighting had the greatest impact on a
system’s effectiveness, while query weighting had a moderate impact, though
query weighting improves latency by eliminating non-useful terms. Notably, we
observed a cancellation effect between improvements from document and query
expansion, indicating that query expansion is not necessary for a LSR system to
perform well.

Our contributions are: (1) an conceptual framework that unifies all promi-
nent LSR methods under the same view, (2) an analysis of how LSR components
affect efficiency and effectiveness, which e.g. leads to a modification that reduces
more than 74% retrieval latency while keeping the same SOTA effectiveness,
and (3) implementations of all studied methods in the same codebase, including
simple changes in Anserini [39] that make LSR indexing faster.

2 Learned sparse retrieval

Learned sparse retrieval (LSR) uses a query encoder fQ and a document encoder
fD to project queries and documents to sparse vectors of vocabulary size: wq =

fQ(q) = w1
q , w

2
q , . . . , w

|V |
q and wd = fD(d) = w1

d, w
2
d, . . . , w

|V |
d . The score between

a query a document is the dot product between their corresponding vectors:

sim(q, d) =
∑|V |

i=1 w
i
qw

i
d. This formulation is closely connected to traditional

sparse retrieval methods like BM25; indeed, BM25 [32,33] can be formulated as:

BM25(q, d) =

|q|∑
i=1

IDF(qi) ×
tf(qi, d) × (k1 + 1)

tf(qi, d) + k1 ·
(

1 − b + b · |d|
avgdl

)
=

|V |∑
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query encoder

×1d(vj)
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tf(vj , d) + k1 ·
(

1 − b + b · |d|
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)
︸ ︷︷ ︸

doc encoder

=

|V |∑
j=1

fQ(q)j × fD(d)j

With BM25 the IDF and TF components can be viewed as query/document term
weights. LSR differs by using neural models, typically transformers, to predict
term weights. LSR is compatible with many techniques from sparse retrieval,
such as inverted indexing and accompanying query processing algorithms. How-
ever, differences in LSR weights can mean that existing query processing opti-
mizations become much less helpful, motivating new optimizations [21,22,24].

2.1 Unified learned sparse retrieval framework

In this section, we introduce a conceptual framework consisting of three com-
ponents (sparse encoder, sparse regularizer, supervision) that captures the key
differences we observe between existing learned sparse retrieval methods. Later,
we describe how LSR methods in the literature can be fit into this framework.
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Name Backbone Head Expansion Weighting

BINARY Transf. Tokenizer - No No
MLP Transf. Encoder Linear(s) No Yes
expMLP Transf. Encoder Linear(s) Yes Yes
MLM Transf. Encoder MLM Head + Agg. Yes Yes
clsMLM Transf. Encoder MLM Head Yes Yes

Table 1: Encoder architectures. (Transf: Transformers)

Sparse (Lexical) Encoders. A sparse or lexical encoder encodes queries and
passages into weight vectors of equal dimension. This is the main component that
determines the effectiveness of a learned sparse retrieval method. There are three
distinct characteristics that make sparse encoders different from dense encoders.
The first and most straightforward difference is that sparse encoders produce
sparse vectors (i.e., most term weights are zero). This sparsity is controlled by
sparse regularizers, which we will discuss in the next section.

Second, dimensions in sparse weight vectors are usually tied to terms in a
vocabulary that contains tens of thousands of terms. Therefore, the size of the
vectors is large, equal to the size of the vocabulary; each dimension represents
a term (typically a BERT word piece). On the contrary, (single-vector) dense
retrieval methods produce condensed vectors (usually fewer than 1000 dimen-
sions) that encode the semantics of the input text without a clear correspon-
dence between terms and dimensions. Term-level dense retrieval methods like
ColBERT [13] do preserve this correspondence.

The third distinction is that encoders in sparse retrieval only produce non-
negative weights, whereas dense encoders have no such constraint. This con-
straint comes from the fact that sparse retrieval relies on software stacks (in-
verted indexing, query processing algorithms) built for traditional lexical search
(e.g., BM25), where weights are always non-negative term frequencies.

Whether these differences lead to systematically different behavior between
LSR and dense retrieval methods is an open question. Researchers have observed
that LSR models and token-level dense models like ColBERT tend to generalize
better than single-vector dense models on the BEIR benchmark [8,35]. There are
also recent works proposing hybrid retrieval systems that combine the strength
of both dense and sparse representations [3,18,19], which can bring benefits for
both in-domain and out-of-domain effectiveness [19].

There are several variants of sparse encoders, which are typically built on a
transformer-backbone [36] with additional head layer(s) on top. In Table 1, we
summarize a list of common architectures of sparse encoders proposed in the
literature. We use the following notation when describing these sparse encoder
architectures: vi denotes the i

th term in a vocabulary V ; tj denotes the jth term
in an input sequence t (either a query or document) of length L; hj represents
the contextualized embedding of tj from a transformer encoder; ei represents
the transformer’s input embedding of the vi; wi(t) represents the weight of vi in
the context of t. The architectures include:
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• BINARY: The BINARY encoder simply tokenizes the input into terms
(word pieces) and considers the presence of terms in the input text. The
binary encoder performs neither term expansion nor weighting:

wi(t) = max
j=1..L

1
(
vi = tj) (1)

• MLP: This encoder uses a Multi-layer Perceptron (usually one layer) on top
of each contextualized embedding hj produced by the transformer-backbone
for each input term to generate the term’s score. Only terms in the input
receive a weight; the other terms are zero.

wi(t) =
∑

j=1...L

log

(
1(vi = tj)

(
ReLU(hjW + b)

)
+ 1

)
(2)

where W and b are the weight and bias of the linear head. This MLP archi-
tecture focuses on term weighting.

• expMLP: This encoder adds a pre-processing step to expand the input with
relevant terms before using a MLP encoder. The expansion terms can be
selected from an external source/model (e.g., DocT5Query [27]).

• MLM: The MLM encoder aggregates term weights over the logits produced
by BERT’s Masked Language Model head. The weight for each term in the
vocabulary is generated as follows:

wi(t) = q(t)log

(
1 + max

j=1...L
ReLU

(
h⊺
j ei + bi

)
g(tj)

)
. (3)

The ReLU function ensures non-negative weights and can be replaced with
e.g. a Softplus, which has similar properties but is differentiable everywhere.
The log normalization prevents some weights from getting too large. Term
importance and passage quality scores are captured by g(tj) and q(t), re-
spectively. When present, the g(tj) and q(t) functions can be modeled by
an linear layer on top of contextualized embeddings of input tokens and the
[CLS] token. Out of the three approaches using a MLM encoder, only one
includes these functions. The choice of max aggregation and ReLU activation
makes sparser representations and, at the same time, reduces training time
as they disconnect the output from many paths in the computational graph.

• clsMLM: This is a simplified version of the MLM encoder that only takes
the logits of the [CLS] token, which is at the position 0 of the sequence, as
the output vector. Intuitively, this encoder squeezes the information of the
whole sequence into a small [CLS] vector, which is then projected into an
over-complete set of vocabulary bases:

wi(t) = ReLU(h⊺
0ei + bi) (4)

where h0 is the contextualized embedding of the CLS token.

These encoders are defined independent of input type (i.e., query or document).
We can use a single shared encoder to encode both queries and documents or
employ two separate encoders mixed-and-matched from the above list.
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Sparse regularizers. Sparse regularizers control the sparsity of weight vec-
tors, which is crucial for query processing efficiency. We describe three common
regularization techniques used in learned sparse retrieval methods.

• FLOPs: The FLOPs regularizer [29], estimates the average number of floating-
point operations needed to compute the dot product between two weight
vectors by a smooth function. FLOPs is defined over a batch of N sparse
representations as follows:

FLOPs =

|V |∑
i=1

āi
2 =

|V |∑
i=1

( 1

N

N∑
j=1

wi
j

)2
(5)

where āi is the estimated activation probability of the ith dimension. Intu-
itively, the FLOPS regularizer might lead to two side-effects: (1) it forces
the weights to be small and (2) it encourages uniform activation probability
across all dimension when the square sum is minimized.

• Lp Norm: The family of Lp norms has been commonly applied in machine
learning to mitigate over-fitting. With LSR, Lp is applied to the output vector
rather than to model weights. L1 and L2 are two widely used norms.

• Top-K: This is a simple pruning technique which only keeps the top-k highest
weights and zeroes out the rest. This pruning can be applied at inference time
as a post-processing step or at training time with the value of k decreasing
over time [20].

Supervision

Negatives

QuantityQuality

Labels

Term level Passage level

Teacher's labels 
(distillation)

Random BM25 Hard

Level Type Human labels

Self-labels 
(weak-labels)

Fig. 1: Aspects of supervision commonly used for learned sparse retrieval.

Supervision. As some published LSR methods have identical sparse encoder(s)
and sparse regularizer(s), we consider the supervision component to differenti-
ate them and to consider its effect. As illustrated in Figure 1, this supervision
component is composed of two factors: negative examples and labels.

• Negatives: For contrastive learning, the quality and number of negatives
used for training have a significant impact on performance [1]. The more and
harder the negatives, the better the result. A naive way of selecting negatives
is randomly sampling non-positive passages/documents from the corpus [10,
20, 26, 44], but this tends to create easy, less informative examples. Harder
negatives can be selected from the top non-positive documents returned by
BM25 or by neural retrieval models [38], which can also be used to filter out
false negatives [30].
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• Labels: Labels for training LSR methods are classified by type and level.
Types include human, teacher’s, and self-labels. Human labels have good
quality but are scarce and costly to collect in large quantities. Teacher’s labels
are generated by a previously trained model and are referred to as distillation.
Self-labels or proxy-labels are generated by the model itself. Label level refers
to term-level or passage/document-level labels. Term-level labels provide one
score per term, while passage-level labels indicate relevance for query-passage
pairs. Most methods use passage-level labels.

2.2 Surveyed learned sparse retrieval methods

In Table 2, we present a summary of LSR methods fit into our conceptual frame-
work. We cover nearly all transformer-based LSR methods for text ranking in
the literature4, but omit several due to time and space limitations [2, 4, 11, 25].
We group the methods into four groups by their conceptual similarity. We dis-
cuss how the methods fit into our framework and point out any small differences
that are not described by our three components (e.g., choice of nonlinearity and
including term or passage quality functions).

A. Methods without any expansion. DeepCT [5] and uniCOIL [16] use
an MLP encoder for weighting terms in queries and documents, with a slight
modification to Equation 2 by removing log normalization. Using the MLP means
no expansion is applied (to query or document). DeepCT and uniCOIL only differ
in supervision. DeepCT is supervised by term-recall, a term-level label defined
as the ratio of relevant queries containing a term. On the other hand, uniCOIL
uses passage-level labels rather than supervising individual term scores.

B. Methods without query expansion. uniCOILdT5q [16], uniCOILtilde

[16], and EPIC [20] replace the MLP document encoder in group A with either
an expMLP or MLM encoder, which is capable of document expansion. As a
pre-processing step, uniCOILdT5q and uniCOILtilde expand passages with rele-
vant terms generated by third-party models (docT5query [27], TILDE). Instead
of pre-expanding the passages, EPIC is the first to leverage the MLM architec-
ture trained to do document expansion and term scoring end-to-end at once.
On the query side, EPIC keeps the log normalization as in Equation 2. On the
document side, the ReLU in Equation 3 is replaced by a Softplus and both q(t)
and g(t) are modeled by a linear layer with a softmax activation.

C. Methods without query expansion or weighting. DeepImpact [23],
Sparta [41], TILDE [44], and TILDEv2 [43] simplify methods in group B by
removing the (MLP) query encoder, hence have a near-instant query encoding
time but no query expansion and weighting capability. DeepImpact and TILDEv2

can be viewed as the uniCOILdT5q and uniCOILtilde models without a query
encoder, respectively. Sparta is simplified from EPIC by (1) removing query
encoder and (2) removing q(t) and g(tj) in Equation 3. TILDE replaces the
MLM head in Sparta with clsMLM.

4 We consider the prominent doc2query document expansion methods [27, 28] in the
context of pre-processing for document expansion (e.g., combined with uniCOIL),
but we do not treat these as standalone retrieval methods.
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D. Methods with full expansion and weighting. Splade-max [7] and
distilSplade-max [7] use a shared MLM architecture on both the query and
document side. The MLM enables end-to-end weighting and expansion for both
query and document. Instead of selecting top-k terms as in EPIC, this Splade
family uses the FLOPs regularizer during training to sparsify the representa-
tions. The difference between Splade-max and distilSplade-max is the super-
vision. While Splade-max is trained with multiple in-batch BM25 negatives,
distilSplade-max is trained with a distillation technique using mined hard neg-
atives. Similar to Sparta, q(t) and g(tj) in Equation 3 are removed from Splade
models.

Method Query Passage Reg.
Supervision

Level Neg. Type

A
DeepCT [5] MLP MLP - Term - -
uniCOIL [16] MLP MLP - Passage BM25(s) Human

B
uniCOILdT5q [16] MLP expMLP - Passage BM25(s) Human
uniCOILtilde [16] MLP expMLP - Passage BM25(s) Human
EPIC [20] MLP MLM Top-k Passage BM25 Human

C

DeepImpact [23] BINARY expMLP - Passage BM25 Human
TILDE [43] BINARY clsMLM - Term - -
TILDEv2 [43] BINARY expMLP - Passage BM25(s) Human
Sparta [41] BINARY MLM - Passage BM25 Human

D
SPLADE-max [7] MLM MLM FLOPs Passage BM25(s) Human
DistilSPLADE-max [7] MLM MLM FLOPs Passage Hard Teacher

Table 2: Definition of existing LSR methods. An (s) indicates multiple negatives.

3 Experimental settings

For all experiments, we use Huggingface’s BERT implementation with distilbert-
base-cased [34, 37]. We train our models on the MSMarco [26] and TripClick
datasets [31]. For models that need hard negative mining and distillation on
MSMarco, we use the data provided by SentenceTransformers5 [30] for training.
For TripClick, we use the training triples6 created by [9]. We evaluate methods
with the benchmarks’ standard metrics, including MRR@10, NDCG@10, and
Recall@1000. In the following sections, we remove the cut-off @K for brevity.

We measure encoding latency on an AMD EPYC 7702 CPU and Tesla V100
GPU. We use a modified version of Anserini [15] for indexing passages and
measure retrieval latency on an AMD EPYC 7702 CPU using 60 threads. For
RQ1, we followed the same hyper-parameters and losses described in the original
papers to reproduce LSR methods. For RQ2 and RQ3, we train all methods
on a single A100 GPU using the above mined hard negatives, and distillation
data for MSMarco or the BM25 triplets for TripClick. Our Github repository
contains the full configurations for all experiments.

5 huggingface.co/datasets/sentence-transformers/msmarco-hard-negatives
6 github.com/sebastian-hofstaetter/tripclick

huggingface.co/datasets/sentence-transformers/msmarco-hard-negatives
github.com/sebastian-hofstaetter/tripclick
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Method Original MRR Reproduced MRR ∆ %

A
DeepCT 24.3 24.6 1.234
uniCOIL 31.5 31.6 0.317

B
uniCOILdT5q 35.2 34.7 -1.420
uniCOILtilde 34.9 34.8 -0.286
EPIC∗

top1000 27.3 28.8 5.495

C
DeepImpact 32.6 31.2 -4.294
TILDE∗

v2 33.3 33.7 1.201
Sparta - 31.0 -

D
Splademax 34.0 34.0 0.000
distilSplademax 36.9 37.9 2.439

Table 3: Reproduced MRR@10 scores on MSMarco dev. (∗) Indicates reranking
results on BM25 top-1000 passages (following the original work).

4 Results and analysis

In this section we consider our three RQs. We first reproduce LSR methods in
their original experimental settings (RQ1), before training them in a common
setting (RQ2) and analyzing the impact of architectural differences (RQ3).

4.1 RQ1: Are the results from LSR papers reproducible?

We train the LSR methods using a similar experimental setup described in the
original papers and code. The reproduced results are reported in Table 3. For
most of the methods, we obtain scores that are slightly higher or comparable to
the original work. A slightly higher MRR was observed for DeepCT, uniCOIL,
EPIC, TILDEv2, and distilSplademax, while DeepImpact and uniCOILdT5q re-
ceived slightly lower reproduced scores. Sparta was not evaluated on MSMarco
in the original paper, so there is no comparison point for our result.

These reproduced results show that DeepCT and uniCOIL (without docT5query
expansion) tend to be the least effective approaches, whereas distilSplademax

achieves the highest MRR. Interestingly, we observe pairs of methods that have
identical architectures, but different training recipes lead to a significant dis-
crepancy in scores. uniCOIL changes the supervision signal of DeepCT from
token-level weights to passage-level relevance, making a 28% jump in MRR
from 24.6 to 31.6. Apparently, the supervision matters a lot here; using the
passage-level labels allows the model to learn the term weights more optimally
for passage-level relevance. Similarly, using mined hard negatives and distillation
boosts MRR from 34.0 to 37.9 with the Splade model. This change of supervi-
sion makes distilSplademax the most effective LSR method considered. Without
this advanced training, Splademax performs comparably to uniCOILdT5q and
uniCOILtilde. Looking closely at the group (B), EPIC seems to perform under
its full capacity because it achieves a MRR substantially below the two uniCOIL
variants. This may be due to the fact that EPIC was originally trained on 40000
triples, whereas the other methods were trained on up to millions of samples.
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Method
MSMarco DL-2019 DL-2020 Index RL BM25 Negs

MRR R NDCG R NDCG R GB ms MRR R

A uniCOIL 27.3†††
∗∗∗ 88.0†††

∗∗∗ 59.3 72.9 54.3 77.9 1.1 6.1 32.1 92.6

B
uniCOILdT5q 35.0†

∗ 95.7 65.9 81.0 68.4 84.6 1.8 12.7 34.7 96.4

uniCOILtilde 36.1†††
∗∗∗ 96.8††

∗∗ 69.1 82.2 69.4 85.2 2.6 7.1 34.8 96.5

EPICtop400 37.2†††
∗∗∗ 97.2†††

∗∗∗ 70.9 87.7 71.8 88.7 9.7 17.7 35.5 96.4

C

DeepImpact 32.2∗∗ 94.7††† 63.1 77.2 63.3 82.1 1.8 16.1 32.2 95.4

TILDEtop400 29.9††† 93.9††† 65.1 68.5 63.0 69.9 6.4 29.0 21.6 74.5

TILDEv2 32.9††
∗∗ 96.0 66.3 79.7 65.9 83.5 2.6 9.5 33.7 96.1

Spartatop400 35.3††† 96.8††† 69.1 81.9 68.1 85.8 6.1 26.7 28.3 88.7

D
distilSplademax 37.9††† 98.1††† 74.8 87.9 72.5 89.5 6.3 122.5 35.3 97.0
distilSpladesep 38.0 98.0 74.1 87.7 70.6 89.0 8.0 50.2 - -

***/† † † p < 0.01, **/†† p < 0.05, */† p < 0.1 with paired two-tailed t-test
Comparing with results in Table 3 (*) and BM25 negatives results (†)

Table 4: Results with cross-encoder distillation on hard negatives (left) and
BM25 negatives on MS MARCO (two rightmost columns). QEL and RL in-
dicate the latency (ms/q) for query encoding and retrieval, respectively.

4.2 RQ2: How do LSR methods perform with recent advanced
training techniques?

Variations in environments, as shown in RQ1, make it difficult to fairly compare
LSR methods and can lead to inaccurate conclusions. To eliminate these discrep-
ancies, we train all methods in a consistent environment, which we show to be
effective in this section. We focus on the most effective supervision setup, which
is distilSplademax trained using distillation and hard negatives. Table 4 shows
the results of the LSR methods under this setting. Note that several methods
(DeepCT and uniCOIL; Splade variants) will have identical scores in this ex-
periment as they collapse into the same model. We only report a representative
method in these cases.

Comparing to the results of RQ1 (Table 3), we find that the least effective
methods (DeepCT, now equivalent to uniCOIL) and the most effective method
(distilSplademax) remain in the same positions. Methods between these two end-
points move around with substantial changes in their effectiveness. Out of 10
methods we reproduced in Table 3, we observe an upward trend on seven meth-
ods, while the remaining three methods stay the same or perform worse. The
biggest jumps are seen using EPIC and Sparta, with a relative improvement
of 8.0 and 4.2 MRR points on MSMarco, respectively. The increase in EPIC’s
effectiveness, which is due to the combination of longer training time and im-
proved supervision, moves the approach’s relative ranking from the second worst
to the second best, with metrics competitive with distilSplademax on MSMarco.
On TREC DL 2019 and TREC DL 2020, the gap in NDCG@10 between EPIC
and distilSplademax is higher. The increased MRR@10 on MSMarco also brings
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Sparta a nice efficiency-effectiveness trade-off: since there is no query encoder
with Sparta, there is no need for a GPU at retrieval time.

In addition to EPIC and Sparta, we also observe positive trends with DeepCT,
DeepImpact, uniCOILdT5q and uniCOILtilde; however, the change is relatively
marginal. We observe decreased effectiveness on uniCOIL and TILDEv2. While
the decline with TILDEv2 is small, the drop with uniCOIL (32.1→27.3) is quite
large. Indeed, without expansion capability, no soft-matching could be possible,
which renders a challenge for uniCOIL to reconstruct the MarginMSE’s loss
margin produced by a cross-encoder teacher, which is capable of soft-matching.

Regarding architecture types, methods using the MLM architecture, either
on the document or query side (EPIC, Sparta, Splade), generally perform better
than those using other architectures (clsMLM, MLP, expMLP, BINARY) on all
three datasets. However, MLM also increases index size and latency significantly.
For instance, EPIC’s index is at least 6 GB larger than other methods in the
group. Notably, distilSplademax not only creates a large index but also has a
notably high retrieval latency, almost 20 times slower than the fastest method.

The latency issue in Splade is related to using the same shared MLM encoder
for query and documents, resulting in similar term activation probability between
queries and documents. We confirmed this by replacing the shared encoder with
two separate ones (distilSpladesep), which reduced latency from 122.5 ms to 50.2
ms, a 59% decrease. This benefit of separate encoders was also reported in [14],
and our results further support its substantial impact.

In the last two columns of Table 4, we provide additional MSMarco results
with training using BM25 in-batch negatives (the same as uniCOIL’s original
setup). We find that using hard negatives with distillation is generally more
effective than using BM25 negatives, though not with uniCOIL or TILDEv2.

4.3 RQ3: How does the choice of encoder architecture and
regularization affect results?

In this RQ, we aim to quantify how different factors (query expansion, docu-
ment expansion, query weighting, document weighting, regularization) affect the
effectiveness and efficiency of LSR systems. To eliminate potential confounding
factors due to minor differences between groups (e.g., choice of nonlinearity), we
perform a series of controlled experiments in which we make single architectural
changes while holding the rest of the architecture constant.

In Table 5, numbers before + or - are the metrics before a change (left side
of arrow), while numbers after these symbols show the effect of a change (right).
We see that document weighting seems to be the most crucial component since
the systems without this component fail on all three datasets. In row 1(a,b), the
system with a binary document encoder shows very low MRR and NDCG scores
regardless of MLM or MLP on the query side. On both MSMarco and TripClick,
enabling document weighting (by replacing the binary document encoder with
an MLP) improves the effectiveness by a large margin (at least 11 points) with
reasonable latency and index size increases. Without document weighting, the
models are not able to identify important terms in documents.
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Effect Control Change
MSMarco DL 2019 DL 2020 Latency Index

MRR R NDCG NDCG ms GB

Doc weighting
1a QMLM DBIN → DMLP 16.7+18.3 86.0+11.0 44.1+26.8 42.9+24.5 11.4+04.2 0.6+0.7
1b QMLP DeBIN → DeMLP 08.2+27.9 76.2+20.6 30.4+38.7 27.5+41.9 10.8-03.7 1.2+1.4

Query weighting
2a DeMLP QBIN → QMLP 32.9+3.2 96.0+0.8 66.3+2.8 65.9+3.5 09.5-0.9 2.6+0.0
2b DMLM QBIN → QMLP 35.2+1.9 96.5+0.7 69.4+1.5 69.7+2.1 28.9-7.9 8.6+1.1

Doc expansion
3a QMLM DMLP → DMLM 34.9+3.1 97.0+0.9 70.9+3.3 67.4+3.2 15.6+34.6 1.3+6.7
3b QMLP DMLP → DMLM 27.5+10.0 89.7+8.2 59.3+12.0 54.3+17.9 27.5+10.5 1.2+6.9

Query expansion
4a DMLM QMLP → QMLM 38.0+0.0 97.0+0.1 71.3+2.8 72.1-1.3 12.9+37.3 8.0-0.1
4b DMLP QMLP → QMLM 27.5+7.5 89.7+7.4 59.3+11.6 54.3+13.1 06.1+9.5 1.2+0.1

Regularization 5a
QMLP

DMLM
FLOPs → Topk 38.0+0.0 97.9-0.3 71.3+0.8 72.1+0.1 12.8+4.3 8.1-0.7

TripClick

HEAD(dctr) TORSO(raw) TAIL(raw) Latency Index
NDCG R NDCG NDCG ms GB

Doc weighting
1a QMLP DBIN → DMLP 6.5+18.9 69.7+18.4 10.7+17.5 16.2+13.2 2.0-0.1 0.3+0.3
1b QMLP DeBIN → DeMLP 5.7+21.0 67.2+21.1 9.1+20.4 13.9+16.5 2.5-0.3 0.4+0.5

Query weighting
2a DMLM QBIN → QMLP 26.3+3.9 90.0+1.9 31.3+3.3 34.2+3.8 3.2-0.0 1.8-0.1
2b DMLP QBIN → QMLP 24.2+1.1 87.3+0.8 27.7+0.4 29.4+0.0 2.1-0.2 0.5+0.1

Doc expansion
3a QMLM DMLP → DMLM 27.9+2.2 90.9+1.0 32.7+1.5 34.1+3.9 4.6+1.6 0.7+0.7
3b QMLP DMLP → DMLM 25.3+4.7 88.1+3.7 28.2+6.1 29.4+7.9 1.9+1.6 0.6+0.8

Query expansion
4a DMLM QMLP → QMLM 30.0+0.1 91.8+0.1 34.2-0.1 37.4+0.6 3.4+2.8 1.4-0.0
4b DMLP QMLP → QMLM 25.3+2.6 88.1+2.8 28.2+4.5 29.4+4.6 1.9+2.7 0.6+0.0

Regularization 5a
QMLP

DMLM
L1 → Topk 30.0+0.1 91.8+0.1 34.2+0.3 37.4+0.7 3.4-0.2 1.4+0.3

Table 5: The effects of architecture and regularizer on MSMarco and TripClick.
We use names that better reflect the architectural differences between methods.
Visit our Github repository to see the full configurations and original names.

Similarly, as shown in rows 2(a,b), we control the document side and change
the binary query encoder to an MLP query encoder to observe the effect of query
weighting. The result suggests that query weighting has a moderate contribution
to the ranking metrics overall. Still, interestingly, it causes almost no harm to
the index size or even reduces the latency. Note that the latency of the MLP
query encoder here is measured on GPU; therefore, the encoding overhead is tiny.
The improved overall latency is mostly due to the MLP reducing the weights of
some non-useful query terms to zero, making queries shorter. The effect is quite
consistent between MSMarco and TripClick collections.

Regarding the expansion factors, we observe the cancellation effect between
query expansion and document expansion. Indeed, with the absence of expansion
on one side (3b: QMLP has no query expansion, 4b: DMLP has no document
expansion), the expansion on the other side largely improves the ranking metrics
with at least 7.4(2.6) points and at most 17.9(7.9) points overall on MSMarco
(TripClick). The cost of latency, in this case, is rather low. The numbers in
rows 3a and 4a indicate that query and document expansion have a cancellation
effect. That is, query expansion reduces the benefit of performing document
expansion and vice versa. Row 4a shows that when document expansion is in
place, query expansion has minimal impact on ranking effectiveness and incurs
a relatively high latency overhead (increases of 289% and 82% on MSMarco and
TripClick). Row 3a shows a similar trend, with document expansion making

https://github.com/thongnt99/learned-sparse-retrieval
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moderate contributions to system effectiveness. On TripClick, the cancellation
interaction between the two factors is less strong. Overall, this cancellation effect
suggests that including both expansion components may not be necessary.

Lastly, to examine the effect of regularization, we keep the model’s archi-
tecture constant and change the FLOPs/L1 regularizer during training to Topk
pruning during inference. As shown in rows 5a, changing the regularization ap-
proach does not significantly affect effectiveness or efficiency.

Method
MSMarco-dev TripClick-HEAD(dctr)

MRR R Index(GB) RL(ms) NDCG R Index(GB) RL(ms)

distilSpladesep 38.0 98.0 8.0 50.2 30.1 91.9 1.4 6.3
distilSpladeqMLP 38.0 97.9 8.1 12.9 30.0 91.8 1.4 3.4
distilSpladedMLP 34.9∗ 97.0∗ 1.3 15.6 27.9∗ 90.9∗ 0.7 4.6

Table 6: Results with only query expansion or only document expansion.
* p < 0.01 with paired two-tailed t-test

In Table 6, we show the results of systems with expansion only on either
the query or the document side. In the table, distilSpladeqMLP denotes the
distilSpladesep with the MLM query encoder replaced by an MLP query en-
coder; hence no query expansion is involved. Similar interpretation applies for
distilSpladedMLP . As can be seen, distilSpladeqMLP makes no significant changes
on ranking metrics, while reducing the retrieval latency by more than 74% and
46% on MSMarco and TripClick, respectively. distilSpladedMLP exhibits a sim-
ilar latency improvement, but suffers from a significant drop in effectiveness. In
practice, distilSpladeqMLP could be viewed as a more efficient drop-in replace-
ment for the full model. This use of qMLP is complementary to other changes
(e.g., using a smaller encoder as in [14]) to improve the efficiency of LSR.

5 Conclusion

In this work, we introduced a conceptual framework for learned sparse retrieval
that unifies existing LSR methods under the perspective of three components.
After reproducing these methods, we carried out a series of experiments to iso-
late the effect of single changes on a model’s performance. This analysis led to
several findings about the components, including that we can remove the query
expansion from a SOTA system, leading to a significant latency improvement
without compromising the system’s effectiveness. While this study covered the
most prominent transformer-based LSR methods, several others could not be
considered due to time and computing constraints (e.g., [2, 4, 11, 25]). We plan
to incorporate them into our implementation as future work.
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