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Abstract
By computing the rank correlation between at-
tention weights and feature-additive explanation
methods, previous analyses either invalidate or
support the role of attention-based explanations as
a faithful and plausible measure of salience. To in-
vestigate whether this approach is appropriate, we
compare LIME, Integrated Gradients, DeepLIFT,
Grad-SHAP, Deep-SHAP, and attention-based ex-
planations, applied to two neural architectures
trained on single- and pair-sequence language
tasks. In most cases, we find that none of our
chosen methods agree. Based on our empirical
observations and theoretical objections, we con-
clude that rank correlation does not measure the
quality of feature-additive methods. Practition-
ers should instead use the numerous and rigorous
diagnostic methods proposed by the community.

1. Introduction
Of the many possible explanations for a model’s decision,
only those simultaneously plausible to human stakeholders
and faithful to the model’s reasoning process are desirable
(Jacovi & Goldberg, 2020). The rest are irrelevant in the
best case and harmful in the worst, particularly in critical do-
mains such as law (Kehl & Kessler, 2017), finance (McGrath
et al., 2018), and medicine (Caruana et al., 2015). It would
therefore be prudent to discourage algorithms that gener-
ate misleading explanations. However, it is challenging to
identify when Additive Explainable AI (XAI) methods fail
without first decomposing the abstract concepts of plausibil-
ity and faithfulness into measurable diagnostic properties.

In their critique of attention-based explanations, Jain &
Wallace (2019) argue that faithful XAI methods2 must be
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highly agreeable3. That is, their generated rankings of
input importance must correlate with other XAI methods.
Following Jain & Wallace (2019)’s claim that ‘attention
is not explanation’, several recent papers have presented
an increased agreement with a small set of XAI methods
as evidence for their proposed method’s ability to improve
the faithfulness of the attention mechanism. For example,
Mohankumar et al. (2020) show that minimizing hidden
state conicity in a BiLSTM improves the Pearson correlation
of attention weights with Integrated Gradients (Sundararajan
et al., 2017) attributions. As the popularity of agreement as
evaluation grows (Meister et al., 2021; Abnar & Zuidema,
2020, inter alia), we believe it is worth investigating the
diagnostic capacity of agreement as a metric.

Under the paradigm of agreement as evaluation, proposed
XAI methods (e.g., attention-based) are compared to one
or more established XAI method(s) (e.g., gradient-based).
However, can any XAI method act as the standard against
which other XAI methods may be graded? Explanations
are task-, model-, and context-specific (Doshi-Velez & Kim,
2017), and the performance of XAI methods depends on the
particular diagnostic tests considered (DeYoung et al., 2020;
Robnik-Šikonja & Bohanec, 2018, inter alia). In this work,
we examine the agreement of contemporary XAI methods
in a more expansive study to investigate what agreement as
evaluation can lead us to conclude. We ask:

RQ: How well do the XAI methods LIME, Integrated Gradi-
ents, DeepLIFT, Grad-SHAP, and Deep-SHAP correlate (i)
with one other and (ii) with attention-based explanations?
Does the correlation depend on (a) the model architecture
(LSTM- and Transformer-based), or (b) the nature of the
classification task (single- and pair-sequence)?

We observe low overall agreement between XAI methods,
particularly for the more complex Transformer-based model,
and pair-sequence tasks. We use this empirical evidence,
along with our theoretical objections, to argue that practi-
tioners should refrain from grading XAI methods based on
agreement. Rank correlation is not a method of objective
evaluation unless ground-truth rankings are available (e.g.,
in Yalcin et al., 2021). In all other situations, rigorous di-
agnostic measures — such as those proposed by Atanasova
et al. (2020) — are better suited for this role.

3Ethayarajh & Jurafsky (2021) use the term consistent.
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2. Related Work
2.1. Agreement as Evaluation

Jain & Wallace (2019) introduced the agreement as evalua-
tion paradigm by comparing attention-based explanations
with simple XAI methods. Specifically, they report a weak
Kendall-τ correlation between the rankings of input token
importance obtained from attention weights and those from
the input × gradient (Kindermans et al., 2016; Hechtlinger,
2016) and leave-one-out (Li et al., 2016) XAI methods.
Their work inspired others to measure agreement, including
Abnar & Zuidema (2020), who demonstrate their attention-
flow algorithm improves the SpearmanR correlation with
the feature-ablation (blank-out) XAI method, and Meister
et al. (2021), who show that — under the same experimental
setup as Jain & Wallace (2019) — inducing sparsity in the
attention distribution decreases agreement with XAI meth-
ods. We test the generalizability of agreement as a metric
by including a more complex Transformer-based model and
by comparing more recent XAI methods.

2.2. Attention as Explanation

Despite concerns with Jain & Wallace (2019)’s approach
(Wiegreffe & Pinter, 2019; Grimsley et al., 2020, inter
alia), their influential critique has inspired enhancements
of the faithfulness and plausibility of attention-based ex-
planations. Proposed modifications of the attention mecha-
nism include: guided training (Zhong et al., 2019), sparsity
(Correia et al., 2019), and word-level objectives (Tutek &
Snajder, 2020). Additionally, techniques such as projecting
from the null space of multi-head self-attention (Brunner
et al., 2020), or accounting for the transformed vectors’
magnitude (Kobayashi et al., 2020), address problems with
analyzing attention weights in their raw form. Bastings &
Filippova (2020) question why the community is concerned
with the faithfulness of attention when salience measures
already exist. We contribute to the ‘attention/explanation’
argument by including attention-based explanations in our
survey, but do not seek to justify their use.

2.3. Limitations of XAI methods

XAI methods are known to suffer from limitations. For ex-
ample, Camburu et al. (2019) show that LIME (Ribeiro et al.,
2016) and SHAP (Lundberg & Lee, 2017) tend to select a
token with zero contribution as the most relevant feature,
Kindermans et al. (2019) show that saliency methods are
not invariant to consistent transformations of model inputs,
and Hooker et al. (2019) demonstrate that gradient-based
XAI methods are no better than random rankings of im-
portance under their remove-and-retrain approach. Finally,
Yalcin et al. (2021) prove the performance of TreeSHAP is
inversely correlated with dataset complexity when ground-

truth rankings of feature importance are known. Atanasova
et al. (2020) unify various evaluation paradigms with a se-
ries of diagnostic tests to evaluate XAI methods for text
classification. We also compare XAI methods, but only to
investigate the suitability of agreement as evaluation.

3. Method
We define an explanation of an input sequence of tokens as
a vector of corresponding importance scores. We investi-
gate two types of explanations: (i) those from recent XAI
methods and (ii) those based on attention scores. We mea-
sure agreement between these explanation methods as the
Kendall-τ correlation between the ranked importance scores
of all input tokens.

3.1. Recent XAI methods

We select a number of recent XAI methods, namely: LIME;
Integrated Gradients; DeepLIFT (Shrikumar et al., 2017);
and two methods from the SHAP family: Grad-SHAP,
which is based on Integrated Gradients; and Deep-SHAP,
which is based on DeepLIFT.

3.2. Attention-based explanations

Given an input sequence of tokens S = t1, ..., tn, we de-
fine an attention-based explanation as an assignment of
attention weights α ∈ Rn over the tokens in S. Since
the dimensionality of α is architecture-dependent, it may
be necessary to filter or aggregate the weights. In our ex-
periments, this is only relevant for our Transformer-based
model’s self-attention mechanism (Vaswani et al., 2017).
Previous analyses at the attention head level (e.g., Baan
et al., 2019; Clark et al., 2019) implicitly assume that con-
textual word embeddings remain tied to their corresponding
tokens across self-attention layers. This assumption may not
hold in Transformers, since information mixes across layers
(Brunner et al., 2020). Therefore, we use the attention roll-
out (Abnar & Zuidema, 2020) method — which assumes
the identities of tokens are linearly combined through the
self-attention layers based exclusively on attention weights
— to calculate a post-hoc, faithful, token-level attribution.
Like Abnar & Zuidema (2020), we use the attribution cal-
culated for the last layer’s [CLS] token, resulting in a final
vector α ∈ Rn at the time of evaluation.

Recurrent models similarly suffer from issues of identifia-
bility. In LSTM-based models, attention is computed over
hidden representations across timesteps, which does not
provide faithful token-level attribution. Approaches that
trace explanations back to individual timesteps (Bento et al.,
2020) or input tokens (Tutek & Snajder, 2020) are only just
emerging. Therefore, we limit ourselves to an analysis of
the raw attention weights for our LSTM-based model.
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4. Experiments
4.1. Datasets

We evaluate two types of classification tasks: (i) single-
sequence, and (ii) pair-sequence. For single-sequence, we
perform binary sentiment classification on the Stanford
Sentiment Treebank (SST-2) (Socher et al., 2013) and the
IMDb Large Movie Reviews Corpus (Maas et al., 2011).
We use identical splits and pre-processing as Jain & Wallace
(2019), but also remove sequences longer than 240 tokens
for faster attribution calculation. For pair-sequence, we ex-
amine natural language inference and understanding with
the SNLI (Bowman et al., 2015), MultiNLI (Williams et al.,
2018), and Quora Question Pairs datasets. Since MultiNLI
has no publicly available test set, we use the English subset
of the XNLI (Conneau et al., 2018) test set. We use a custom
split (80/10/10) for the Quora dataset, removing pairs with
a combined count of 200 or more tokens. Most importantly,
we include a uniform activation baseline to contextualize the
attention mechanism’s utility (Wiegreffe & Pinter, 2019).

4.2. LSTM-based Model

We use the same single-layered bidirectional encoder with
additive (tanh) attention and linear feedforward decoder as
Jain & Wallace (2019). In pair-sequence tasks, we embed,
encode, and induce attention over each sequence separately.
The decoder predicts the label from the concatenation of:
both context vectors c1 and c2; their absolute difference
|c1 − c2|; and their element-wise product c1 · c2.

4.3. Transformer-based Model

To reduce the computational overhead, we fine-tune the
lighter, pre-trained DistilBERT variant (Sanh et al., 2019)
instead of the full BERT model (Devlin et al., 2019). For
classification, we add a linear layer on top of the pooled
output. We concatenate pair-sequences with a [SEP] token.

4.4. Training the models

We train three independently-seeded instances of both mod-
els using the AllenNLP framework (Gardner et al., 2018),
each for a maximum of 40 epochs. We use a patience value
of 5 epochs for early stopping. For the BiLSTM, we follow
Jain & Wallace (2019) and select a 128-dimensional encoder
hidden state with a 300-dimensional embedding layer. We
tune pre-trained FastText embeddings (Bojanowski et al.,
2017) and optimize with the AMSGrad variant (Tran &
Phong, 2019) of Adam (Kingma & Ba, 2015). For Distil-
BERT, we fine-tune the standard ‘base-uncased’ weights
available in the HuggingFace library (Wolf et al., 2019)
with the AdamW (Loshchilov & Hutter, 2019) optimizer.
Table 1 confirms our models are sufficiently accurate for
our analysis. Our extendable Python package for evaluat-

Table 1. Test set accuracy using softmax or uniform activations
in the attention mechanisms. A uniform activation renders the
mechanism defunct and contextualizes its utility for each task.

BiLSTM DistilBERT

Uniform Softmax Uniform Softmax

MNLI .659± .001 .667± .004 .599± .002 .779± .002
Quora .829± .001 .830± .001 .832± .001 .888± .001
SNLI .804± .004 .807± .002 .770± .005 .871± .001
IMDb .874± .011 .872± .014 .879± .003 .890± .005
SST-2 .823± .008 .826± .011 .823± .004 .842± .003

ing agreement between XAI methods and attention-based
explanations, court-of-xai, is publicly available4.

4.5. Explaining the models

We leverage existing implementations of LIME, Integrated
Gradients, DeepLIFT, Grad-SHAP, and Deep-SHAP5, and
use the padding token as a baseline where applicable. For
LIME, we mask tokens as features and use 1000 samples to
train the interpretable models. We apply our XAI methods
to 500 random instances taken from each test set.

5. Results
5.1. XAI methods rarely correlate with one another

Table 2 displays the Kendall-τ correlations for: (a) the BiL-
STM model, and (b) the DistilBERT model. Since the agree-
ment between XAI methods and their SHAP approximations
is biased by algorithmic similarity, we do not include their
comparisons in our calculations of average agreement. We
answer RQ(i) and RQ(ii) by showing our XAI methods
neither agree with each other (mean = 0.2684) nor with
attention-based explanations (mean = 0.1736) across mod-
els and tasks.

5.2. Correlation is model and task dependent

For RQ(a), the agreement between non-attention-based XAI
methods is lower for DistilBERT (mean = 0.1088) than for
the BiLSTM (mean = 0.4281). Average agreement be-
tween the XAI methods and attention-based explanations is
comparable for both models (DistilBERT mean = 0.1658,
BiLSTM mean = 0.1814). Regarding RQ(b), the to-
tal agreement across all methods is higher for the single-
sequence datasets (combined model mean = 0.273) than
for the pair-sequence datasets (combined model mean =
0.1883). This difference is particularly noticeable
for the BiLSTM (single-sequence mean = 0.4219,
pair-sequence mean = 0.2308).

4github.com/sfschouten/court-of-xai
5github.com/pytorch/captum
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Table 2. Mean Kendall-τ between the explanations given by our
XAI methods for each model when applied to 500 instances of the
test portion of each dataset. Comparisons between methods and
their SHAP variants are not representative and thus colored gray.

LIME Int-Grad DeepLIFT Grad-SHAP Deep-SHAP

A
ttn

MNLI .1958 .2523 .2549 .2473 .2370
Quora .0363 .0143 .0894 .0182 .1017
SNLI .2198 .2566 .3158 .2517 .2938
IMDb .2014 .2188 .2494 .2209 .2309
SST-2 .1326 .1093 .1372 .1101 .1400

L
IM

E

MNLI .3281 .2444 .3187 .2269
Quora .2099 .1900 .2037 .1670
SNLI .2673 .1676 .2481 .1566
IMDb .6538 .5854 .6486 .5584
SST-2 .4968 .4734 .4962 .4422

In
t-

G
ra

d

MNLI .4984 .8138 .4021
Quora .2906 .7420 .2290
SNLI .2461 .6535 .2165
IMDb .7331 .9409 .6994
SST-2 .8683 .9707 .8063

D
ee

pL
IF

T

MNLI .4987 .6208
Quora .3158 .6179
SNLI .2557 .5791
IMDb .7378 .8593
SST-2 .8682 .8729

G
ra

d-
SH

A
P MNLI .4015

Quora .2433
SNLI .2219
IMDb .7021
SST-2 .8056

(a) BiLSTM

LIME Int-Grad DeepLIFT Grad-SHAP Deep-SHAP

A
ttn

R
ol

l MNLI .2678 .1891 .2432 .1905 .2067
Quora .1622 .0574 .2267 .0518 .2257
SNLI .1434 .1645 .2214 .1600 .1796
IMDb .1259 .1818 .2516 .1432 .2303
SST-2 .1359 .0511 .1328 .0737 .1291

L
IM

E

MNLI .1794 .1526 .1592 .1205
Quora .1407 .0032 .1144 .0095
SNLI .1529 .0925 .1104 .0593
IMDb .1050 .0696 .0929 .0655
SST-2 .2861 .0618 .2414 .0499

In
t-

G
ra

d

MNLI .2153 .4780 .1708
Quora .0625 .4674 .0529
SNLI .0955 .3932 .0700
IMDb .1433 .5495 .1246
SST-2 .0498 .4987 .0381

D
ee

pL
IF

T

MNLI .2324 .4985
Quora .0637 .5951
SNLI .1181 .5554
IMDb .1306 .4830
SST-2 .0522 .4514

G
ra

d-
SH

A
P MNLI .1752

Quora .0535
SNLI .0851
IMDb .1093
SST-2 .0419

(b) DistilBERT

6. Discussion & Conclusion
The agreement as evaluation paradigm assumes — at least
implicitly — the desirability of an XAI method decreases
monotonically with its correlation to some unobserved
‘ideal’. However, there are reasons to doubt whether this
assumption holds. For instance, input rankings may only
capture a narrow slice of the model’s behavior such that
many equally faithful compressions exist. And, since many
tasks may be too complex for humans to judge token-level
importance, there may also be many plausible rankings.
While a handful of highly polar tokens are generally indica-
tive of the class label in binary sentiment classification (Sun
& Lu, 2020), annotators may be unsure how to rank the other
tokens. The problem only gets worse in the pair-sequence
setting. For example, if two words indicate a contradiction,
which one is more important? There is a reason that ratio-
nale collections are normally limited to binary relevance
labels or free-form explanations6. Thus, when agreement is
measured in the presence of multiple faithful and plausible
rankings, XAI methods will look deceptively problematic.

We observe low agreement among XAI methods when ex-
plaining more complex models and tasks. If we embraced
agreement as evaluation, we would be obligated to conclude
at most one of our chosen XAI methods is near the ideal; im-
plying the other methods cannot explain the more complex
Transformer-based model and pair-sequence tasks. Instead,
we interpret our results as evidence against the underlying
assumptions of agreement as evaluation, and conclude that
agreement is not a suitable method of evaluation.

Without an external ground-truth explanation (like those
constructed by Yalcin et al., 2021), all rank correlation tells
us is whether or not two rankings are similar. For this reason,
we recommend practitioners stop using agreement as evalu-
ation. Instead, we recommend using robust, theoretically-
motivated measures of an XAI method’s quality, such as
those proposed by Atanasova et al. (2020).

Agreement can still be informative, even if it is unsuit-
able as an evaluation measure. For example, it may re-
veal how theoretical properties manifest in practice. While
algorithms that approximate Shapley Values are normally
referenced with the umbrella term ‘SHAP’, Ethayarajh &
Jurafsky (2021) show that attention flow (Abnar & Zuidema,
2020) is also a Shapley Value explanation. Interestingly,
we observe low agreement between Grad-SHAP and Deep-
SHAP (combined model mean = 0.2839) and between at-
tention flow and our chosen SHAP approximations as well
(mean = 0.1726, see our supplementary material). As pre-
viously argued, this does not mean these methods are wrong,
merely that we cannot assume they are interchangeable.

6See (Wiegreffe & Marasovic, 2021) and (DeYoung et al.,
2020) for good reviews of explainability datasets in NLP.
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A. Attention Flow

Table 1. Mean Kendall-τ between the explanations given by at-
tention flow and our chosen XAI methods for the DistilBERT
model when applied to 500 instances of the test portion of each
dataset. IMDb is not included among these datasets, because the
long sequences made the attention flow computation unfeasible.

LIME Int-Grad DeepLIFT Grad-SHAP Deep-SHAP

A
ttn

Fl
ow

MNLI .1326 .1251 .2159 .1227 .2148
Quora .0853 .2426 .0367 .0241 .2319
SNLI .0844 .0753 .2178 .0571 .2149
SST-2 .1795 .0689 .1286 .0811 .1202

Despite attention flow, Grad-SHAP, and Deep-SHAP all
(supposedly) being valid Shapley Value explanations,
agreement is low.

B. Reproducibility Checklist
In this Appendix, we include information about our exper-
iments from the Reproducibility Checklist.

B.1. For all reported experimental results

B.1.1. A CLEAR DESCRIPTION OF THE MATHEMATICAL
SETTING, ALGORITHM, AND/OR MODEL

We clearly explain our methods in Section 3 and our mod-
els, datasets, and experiments in Section 4.

B.1.2. SUBMISSION OF A ZIP FILE CONTAINING
SOURCE CODE, WITH SPECIFICATION OF ALL
DEPENDENCIES, INCLUDING EXTERNAL
LIBRARIES, OR A LINK TO SUCH RESOURCES
(WHILE STILL ANONYMIZED)

Our code is publicly available at github.com/
sfschouten/court-of-xai

B.1.3. DESCRIPTION OF COMPUTING
INFRASTRUCTURE USED

We conducted our experiments on Amazon Web Ser-
vices g4dn.xlarge EC2 instances using an NVIDIA T4
GPU with 16GB of RAM. The version of PyTorch was
1.6.0+cu101.

B.1.4. AVERAGE RUNTIME FOR EACH APPROACH

Refer to Table 2 for the average time to train each model
on each dataset.

B.1.5. NUMBER OF PARAMETERS IN EACH MODEL

The DistilBERT model contained 66955779 trainable pa-
rameters and the BiLSTM model contained 12553519
trainable parameters, as reported by the AllenNLP library.

B.1.6. CORRESPONDING VALIDATION PERFORMANCE
FOR EACH REPORTED TEST RESULT

Table 3 details the validation performance of the best model
weights for each dataset.

B.1.7. EXPLANATION OF EVALUATION METRICS USED,
WITH LINKS TO CODE

We evaluate our models by their accuracy. We evaluate
the correlation (agreement) between XAI methods using
Kendall’s-τ . Both of these metrics are explained in Sec-
tion 3. The code is available at the previously listed URL.

B.2. For all experiments with hyperparameter search

The items in this part of the Reproducibility Checklist are
not applicable to our paper.

B.3. For all datasets used

B.3.1. RELEVANT STATISTICS SUCH AS NUMBER OF
EXAMPLES

Table 4 lists the number of instances in each split of each
dataset.

B.3.2. DETAILS OF TRAIN/VALIDATION/TEST SPLITS

Split details are outlined in Section 4.1. See below for links
to each dataset.

B.3.3. EXPLANATION OF ANY DATA THAT WERE
EXCLUDED, AND ALL PRE-PROCESSING STEPS

Details of data exclusion and pre-processing steps are out-
lined in Section 4.1.

B.3.4. A LINK TO A DOWNLOADABLE VERSION OF THE
DATA

Links to download versions of all datasets are included in
our code repository. For posterity, links to all datasets are
listed here: SST-21, IMDb2, SNLI3, MNLI4, XNLI5. Our
Quora Question Pair dataset will be made available upon
publication.

1https://github.com/successar/
AttentionExplanation/tree/master/
preprocess/SST

2https://github.com/successar/
AttentionExplanation/tree/master/
preprocess/IMDB

3https://nlp.stanford.edu/projects/snli/
4https://cims.nyu.edu/˜sbowman/multinli/
5https://cims.nyu.edu/˜sbowman/xnli/
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BiLSTM DistilBERT

MNLI 8.65 ± 0.635 296.228 ± 48.859
Quora 7.567 ± 1.404 380.056 ± 124.911
SNLI 31.495 ± 5.618 126.395 ± 22.909
IMDb 1.122 ± 0.107 24.2 ± 1.212
SST-2 0.216 ± 0.029 2.833 ± 0.65

Table 2. Number of minutes (average ± standard deviation) re-
quired to train each model on each dataset reported across three
seeds.

BiLSTM DistilBERT

MNLI 67.088 ± 0.190 77.338 ± 0.251
Quora 83.232 ± 0.139 88.801 ± 0.055
SNLI 81.535 ± 0.041 87.679 ± 0.075
IMDb 87.975 ± 1.375 88.587 ± 0.489
SST-2 80.696 ± 0.403 83.066 ± 0.692

Table 3. Validation accuracy (average ± standard deviation) of
the selected model epoch reported across three seeds.

B.3.5. FOR NEW DATA COLLECTED, A COMPLETE
DESCRIPTION OF THE DATA COLLECTION
PROCESS, SUCH AS INSTRUCTIONS TO
ANNOTATORS AND METHODS FOR QUALITY
CONTROL

We did not collect new data for this paper.

Training Validation Test

MNLI 392702 10000 5000
Quora 323426 40429 40431
SNLI 550152 10000 10000
IMDb 17212 4304 4363
SST-2 8544 1101 2210

Table 4. Number of instances in each split of each dataset before
any exclusions based on length (see Section 4.1). Since MultiNLI
has no publicly available test set, we use the English subset of the
XNLI dataset.


