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Abstract

We propose a method for retrieving segments of source code from a large
repository. The method is based on conceptual modeling of the code, combin-
ing information extracted from the structure of the code and standard information-
distance measures. Our results show an improvement over traditional retrieval
models, indicating that, for this type of highly-structured documents, usage of
structure is indeed beneficial for retrieval.

1 Introduction

The complex task of retrieving, classifying and extracting information from source
code files —Code Retrieval— is essential in the development cycle of large soft-
ware systems (von Mayrhauser and Vans, 1994). Code retrieval encompasses many
subtasks; some are high-level ones, such as design recovery and reverse-engineering.
Other tasks require a lower-level analysis of the code: two such tasks areCode Du-
plication PreventionandPlagiarism Detection. Duplicated code accounts for up to
20% of the total amount of code in large software systems (Baker, 1995), and is a
well-known software engineering problem. Plagiarism of computer programs is com-
mon mainly in low-level programming courses (Sheard et al., 2002), but can also be
found in commercial, larger-scale scenarios (SCO vs. IBM). For both tasks, a method
which retrievessimilar (possibly duplicated, plagiarised, or otherwise related) code is
beneficial.

For various reasons, source code retrieval is a challenging task: most notably, the
interleaved nature of the structure and the content inside the documents, and the dif-
ferences between programming language syntax and semantics and natural language
syntax and semantics. We present an approach to retrieving source code that combines
both structural information and the content of the code into a single representation.
Our main contribution is a notion of source code similarity that is based on a rep-
resentation of source code asconceptual graphs(CGs), a knowledge representation
formalism proposed by Sowa (1984). This choice of representation allows us to com-
bine information-theoretic ideas aimed at capturingcontentaspects of source code with
techniques for manipulating graphs that are aimed at capturing thestructureof source
code. Our main experimental finding is that both structure and content are important
for source code retrieval; our best results are obtained by combining a moderate amount
of structural information with the content of the source code documents.
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The rest of the paper is organized as follows. We survey current approaches and
tools for code retrieval in Section 2. In Section 3 we describe our method for extraction
and representation of source code concepts from the code; then, in Section 4, we use
this representation to construct a retrieval model for source code. Section 5 presents
the experiments conducted to evaluate our approach and their results; our conclusions
and ongoing work are summarized in Section 6.

2 Related Work

Related work comes in several kinds, concerning source code retrieval, code similarity
analysis, and retrieval using conceptual graphs.

2.1 Source Code Retrieval

With the arrival and growing availability of HTML and XML documents, recent years
have witnessed an increased interest in structured document retrieval; (see e.g., Cutler
and Meng, 1997; INEX). Source code provides an example of strucured documents
whose retrieval has been researched at least since the mid-late 1980s (Frakes and Ne-
jmeh, 1987). Early forms of code retrieval were based on a classification scheme for
cataloging code components with a set of keywords; (see e.g., Prieto-Daz, 1991). Such
methods yield good results, but the manual effort required for them is very high, mostly
for the classification but also for the retrieval (which requires knowledge about the le-
gal, relevant keywords).

Formal approaches such as (Jeng and Cheng, 1993; Paul and Prakash, 1994) require
the information need to be specified in a specialized query language (in which requests
such as “find all functions that contain a variablearr ” can be stated formally). While
these are very powerful methods for maintainers of large software projects, they lack
the common retrieval “fuzziness” where documents arerelevantfor a query, but not
necessarilymatchit. Additionally, these methods require some training prior to usage,
because their query language is not standard. A similar method, making use of standard
(XML) markup of the code, was proposed in (Clarke et al., 1999); it is more standard-
ized but shares the same advantages and disadvantages of other formal methods.

Tools such as GURU (Maarek et al., 1994) and ROSA (Girardi and Ibrahim, 1995)
make use of natural language processing and information retrieval techniques to index
and retrieve software and software-related documents (design, specifications). These
approaches focus on the natural language text that exists in the code (comments, docu-
mentation, meaningful variable names etc.), and is therefore suited for well-documented
projects. Since almost no structural knowledge is taken into account, they are of limited
use for the common case of sparse documentation in large code bases.

Conceptual modeling and retrieval of code has been implemented in systems such
as LaSSIE (Devanbu et al., 1990); however, the modeling tends to focus on higher-
level concepts rather than the micro-concepts expressed through the code, resulting in
a tool fit for high-level architectural queries rather than low-level code matching. Addi-
tionally, these tools require hand-crafting separate knowledge bases for every software
project.



2.2 Code Similarity Analyzers

Tools for locating similar code, for duplication or plagiarism detection, can be grouped
as follows:

Pattern-based Analyzers.They check for shallow similarity between lines of codes,
using pattern matching techniques and tiling algorithms, (see PMD; Simian). This ap-
proach is very effective mostly at detecting simply duplicated (“copy-pasted”) chunks
of code scattered around large-scale enterprise projects, or very similar pieces of code.
However, very simple structural code changes render it almost completely useless.

Code Signature Analyzers.This group of analyzers (Ghosh et al., 2002; Jones, 2001;
Schleimer et al., 2003) associates a “code signature” with every piece of code, calcu-
lated by examining certain features of the code; programs with similar signatures are
considered to be similar. Since this approach relies on statistical properties of the code,
it is effective mainly for larger-scale segments of code, rather than detection of short
repeating sections of code.

Structural Analyzers. Analyzers of this type (Prechelt et al., 2000; Wise, 1996) com-
pare structural properties of the programs by representing the programs as strings and
measuring the string distance between them. This approach is highly effective (Verco
and Wise, 1996), but since it ignores information such as comments, dependency files
etc., it may fail to locate code that is not highly similar in structure, but similar in
“spirit,” i.e., addresses the same issue.

2.3 Retrieval using Conceptual Graphs

Conceptual graphs were identified as an abstraction layer for information that can be
useful for classifying and retrieving it. Work has been done on the use of CGs for
plain document retrieval (Montes-y-Gomez et al., 2000; Ounis and Chevallet, 1996;
Quintana et al., 1992), using parsing of the natural language to build the structure
of the document, with reported good results. Conceptual graphs were also used with
varying success for retrieval of legal arguments (Dick, 1991), medical information (Chu
and Cesnik, 2001), and multimedia documents (Ounis and Pasca, 1998; Yang and Oh,
1993). Clearly, the common feature of these document types is, just like source code,
the inherent nature of the structure inside the contents. There is also work regarding
usage of CGs for structured document classification and retrieval (Martin and Alpay,
1996; WebKB), however, this work relies on manual annotation and a WordNet-like
extensive ontology.

3 Representing Source Code

As mentioned earlier, we use conceptual graphs to model source code. In a nutshell, a
conceptual graph is a bipartite, directed, finite graph; each node in the graph is either a
concept nodeor relation node. Concept nodes represent entities, attributes, states, and
events, and relation nodes show how the concepts are interconnected. All nodes have
an associatedtype; additionally, concept nodes have areferentvalue, which contains
specific information regarding this concept. A conceptual graph is always related to
a support, a knowledge base providing background on the domain within which the
graph is presented. Examples of simple conceptual graphs are given in Figure 1.



Bird In Tree

Pine:* Attr Color:Green

Person:Peter Owns Car Attr Color:Blue

Figure 1: Examples of conceptual graphs

We now describe the support of the source code conceptual graphs(SCGs), and
then a procedure to construct them from the code.

3.1 A Taxonomy for Source Code

The concept types we allow in our graphs are presented in Table 1.

Name Description
ASSIGN Assignment of value, or operation including assignment such as “+=”
BLOCK A set of other concepts, logically grouped together
COMPAREOP A binary comparison, such as “6”, “ 6=” etc.
ENUM An enumerated set of values
FUNC-CALL An execution of a function
FUNCTION A declaration or definition of a function
IF A conditional branching statement
LOGICALOP A binary logical operation, such as “∨”, “∧” etc.
LOOP An iterative statement, dependent on a condition
MATHOP A binary mathematical operation, such as “+”, “÷” etc.
STRING Textual string; literals such as numbers are interpreted as strings too
VARIABLE An entity which holds values during the program execution
STRUCT A named BLOCK, containing variables only
SWITCH A multiple-branch conditional statement

Table 1: Source Code Concept Types

The possible referents of the concepts are as follows:

• STRING concepts always have an individual referent, which is text of any length.

• {VARIABLE , FUNC-CALL , FUNCTION, STRUCT} concepts always have an in-
dividual referent, which is a legal identifier of the programming language (in
C, for example, this includes strings containing alphanumeric characters and the
“underscore” symbol, that do not start with a number).

• BLOCK concepts may either have the generic referent (“*”) or an individual ref-
erent that is a legal identifier as above.

• All other concepts may only have the generic referent.

For space reasons, we only list the possible relations types, and not a specification of
which concepts they can connect and the semantics of such connectivity; however, the
semantics are mostly self-evident from the relation names. The relation types, with a
brief description, are listed in Table 2.



Name Description
CONDITION The condition for a branching statement.
CONTAINS Indicates that a concept is included in another one; for example, code

concepts inside a function are contained in the function’s concept.
COMMENT Relates a comment to the concept it is commenting.
DEFINES Indicates that a concept is defined by another one.
DEPENDS A dependency on another concept (in C, aninclude statement).
JUMPS Unconditional jump from concept to concept.
PARAMETER The concept is a parameter of another concept.
RETURNS Indicates that a concept is a return value of another one.
TYPEDEF The concept is defined as a type.

Table 2: Relation Types and their possible placement

3.2 Graph Construction

We now turn to a description of a mechanism for converting source code into SCGs.
We define a set of procedures to be carried out while parsing the code, when certain
grammar rules of the language are used; as this is a programming (not a natural) lan-
guage, the parsing process is unambiguous and the points where the procedures are
carried out are well-defined. These procedures include creation of new concepts as the
code is parsed, assigning referents to them, and connecting them with relations. The
entire process is similar to compilation of the code — however, instead of producing
the Abstract Syntax Tree, as a compiler would, we generate a conceptual graph. An ex-
ample procedure (for anIF statement) is presented in Figure 2. Additional mechanisms

statement → if “(” expr e “)” statements1

concept1 := createconcept(IF)
connectconcepts(concept1, e, CONDITION)
connectconcepts(concept1, s1, CONTAINS)

(else statements2)?
connectconcepts(concept1, s2, CONTAINS)

| . . .

Figure 2: Fragment of the Graph Construction Grammar -IF statement

are used to handle extra-grammatical data, e.g., comments and dependency statements.
An example of code and the graph which our construction process produces is given in
Figure 3.

4 Retrieving Code

After defining a mechanism for representing code as conceptual graphs, the retrieval
process is straightforward: given a source code snippetq and a collection of source
code filesD, we rank all documents inD according to their similarity toq. Both the
documents and the query are represented as conceptual graphs, so we need to use a
similarity measure for CGs.

A number of techniques exist for conceptual graph comparison. A family of pro-
jections and morphisms was already defined with the presentation of CGs in (Sowa,
1984). The main disadvantage of morphisms is their strictness: in essence, they are
aimed at locating identical graphs or subgraphs. Such similarity measures are unfit



#define RET_CODE −1

        int i = 10;
        int j = 20;
        int mul = i * j;

    printf ("i * j = %d\n", mul);
    

}
    return RET_CODE;

int main() {

#include "stdio.h"

Depends

String:stdio

Contains

Variable:mul

Contains

Assign:*

Contains

Func−call:printf

Returns

String:RET_CODE

Contains

Variable:i

Contains

Assign:*

Contains

Variable:j

Contains

Assign:*

Contains

Contains

String:10

Defines

String:RET_CODE −1

Contains

String:20 Contains

Contains

Function:main

Contains Contains

MathOp:*

Contains Contains

ParameterParameter

String:i j d n

Block:example1

Figure 3:example.c and its conceptual graph

for the “fuzzy” matching criteria needed for IR. More relaxed measures exist (Bunke
and Messmer, 1993; Dieng, 1996; Montes-y-Gomez et al., 2000; Poole and Campbell,
1995), but most of them tend to require a high level of structural similarity, basing the
similarity on morphisms and assigning a lower importance to the information in the
concept nodes itself. Structural fuzziness is permitted, but at the cost of complex pre-
requisites (sets of transformations between graphs, interest functions). For example,
the reported similarity measures will not render the graphs in Figure 4 highly similar,
although they may be related. Instead, we introduce a similarity measure that exploits

Loop:* Comment String:Sleep until user responds

Block:* Comment String:wait for user responseLoop:* Contains

Figure 4: Related graphs

both structure and content. The measure is based on the notion ofcontextual similarity,
according to which concepts should be compared not only by taking into account the
information contained in them, but also by making use of the information contained
in the concepts related to them, i.e., theircontext. Instead of comparing the actual
structure of the graphs, we choose to compare the graphs node-by-node. The structure
of the graph is implicitly used by augmenting each concept node with the information
contained in the concepts which are related to it. This expansion process also takes into
account the relation type between the concepts by using the type as a weight, affecting
the importance given to the expanded information (see Figure 5).

We will now formally define the components of the similarity measure. Given that
we have opted for a rich representation of source code in terms of conceptual graphs,
we have to take care of a number of aspects:

• the weights associated with components of a conceptual graph;

• similarity notions between concepts in the graph;
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Function:main

Returns

Variable:res

Contains Comment

String:simple multiplicationVariable:mul

weight(Comment)

1Function:main
Variable:mul
String:Simple multiplication
Variable:res

weight(Contains)

weight(Returns)

Figure 5: Concept Extension

• the process of expanding a concept node by importing information from related
nodes;

• similarity notions between expanded concepts.

Let’s examine one after the other now.
We start by discussing the weights associated with components of the conceptual

graph. Theconcept type weight(wt
c(c)) is a value indicating the “importance” of a

concept type, and is fixed for all concepts of the same type. For example, a concept
of type STRING should probably have a higher weight then the typeIF. Theconcept
referent weight(wr

c(c)) is a value proportional to the amount of information kept in a
concept (measured, for example, by its length). Theconcept weight(wc(c)) is simply
the product of the two previous components of the weight of the concept. Similarly,
therelation weight(wr(r)) is a value associated with the importance of a relation type.

Next, we define the basic similarity notions between the concepts in the graph.
The concept type similarity(simt

c(ci, cj)) measures the similarity between the types
of two concepts. For example, it indicates how similar aLOOP concept type is to a
BLOCK type. A naive approach for calculating this value is to assign 1 to it if the
concept type is identical or if one concept type is inherited from the other, and a low
value otherwise. Theconcept referent similarity(simr

c(ci, cj)) measures the similarity
between the content of the concepts; it can be any information-theoretic measure (we
use the Levenstein string-distance value). Finally, theconcept similarity(simc(ci, cj))
measures the total similarity between concepts, and is simply the product of the concept
type similarity and concept referent similarity between the concepts, normalized by
their weight:simc(ci, cj) = simt

c(ci, cj) · simr
c(ci, cj) · wc(ci) · wc(cj).

We now turn to the “information extension” process informally described earlier. A
weighted extended conceptis an extension of the conceptual graph standard concept. A
standard concept has only one type and one referent; an extended concept has a set of
〈concept type, concept referent〉 pairs, and a weight associated with every referent.
Theconcept extensionprocess (markedext(c)) is then a functionf : C×C×R → C,
i.e., a function that takes a pair of (possibly extended) concepts and a weight, and
produces a new (weighted extended) one. Letc1 be the concept to be extended withc2

and with weightx; then the result of the extensionext(c1, c2, x) is defined as follows:

• If c1 = c2, thenext(c1, c2, x) = c∗1, wherec∗1 is identical toc1 but with all
referent weights multiplied byx.

• Otherwise, for all concept types, we add the referent information inc2 to the
corresponding referent inc1, with weightx.

In a similar way, we expand this notion to anextended concept of ordern (extn(c)),
which augments the information in conceptc with the information kept in the concepts



related and recursively in the concepts related to them, up to depthn. It is defined as
follows:

• ext0(c) = ext(c, c, 1): The extended concept of order 0 is the concept itself.

• ext1(c) is defined according to the number of concepts related toc: if there is
one conceptc1, related toc with relationr1 thenextc(1) = ext(c, c1, wr(r1)).
Similarly, for n related concepts,extc(1) = ext(. . . (ext(ext(c, c1, wr(r1)), c2,
wr(r2)), . . . , cn, wr(rn)). In words, it is the extension ofc with all the concepts
“around” it, where the extension weight for any concept is determined by the
weight of its relation toc.

• extn(c) is the extension ofc with all related concepts, where they themselves are
extended to ordern − 1.

Equipped with these definitions, we are now able to discuss the similarity between
extended concepts. Theextended concept similarity(extsim(ci, cj)) measures the
similarity between extended concepts. Since both concepts may have more than 1
concept type and referent, we simply sum over all possible pairs of concept similari-
ties between the concepts. So, assume the two extended conceptsc1, c2 have referents
c1,1, . . . , c1,n andc2,1, . . . , c2,m, where the concept types areT (c1,1), . . . , T (c1,n) and
T (c2,1), . . . , T (c2,m), the referentsR(c1,1), . . . , R(c1,n) andR(c1,1), . . . , R(c1,n), and
the weightsw1,1, . . . , w1,n andw2,1, . . . , w2,m, respectively. Theextended concept
similarity is then defined to be

extsim(c1, c2) =
n∑

i=1

n∑
j=1

w1i
· w2j

· simc(c1,i, c2,j),

whereci, cj are concepts created by leaving only type/referenti andj respectively out
of the conceptsc1 andc2.

Similarly, theextended concept similarity of ordern (extsimn(ci, cj)) measures
the similarity between two concepts with contextual information up to depthn; that is,
extsimn(ci, cj) = extsim(extn(c1), extn(c2)).

Since the graphs are compared node-by-node, every concept in a graphG1 must
first be matched to a concept in another graphG2 to which it is compared. For this,
we define the notion of amaximally similar concept: given a conceptc∗1 ∈ G1 and
another graphG2, this is a conceptc∗2 ∈ G2 that has the maximal concept similarity
to c∗1. We will use the notationMSC (c1, G2) for this concept; note that there may be
more than oneMSC; in that case, one can be selected arbitrarily. It is possible to include
contextual information when searching for theMSC (by defining a “maximally similar
concept of ordern”, that usesextsimn instead ofsimc), at an additional computational
cost.

Finally, we define our core notion: the similarity measure between two SCGsG1,
G2 using the above definitions and notations, as follows:

simn(G1, G2) =
∑

ci∈G1
extsimn(ci,MSC (ci, G2))

+
∑

cj∈G2
extsimn(cj ,MSC (cj , G1))

In words, the similarity is a sum of all extended similarities of all most similar concept
pairs.

The complexity of the comparison process is polynomial,O(|G|3); this is substan-
tially higher than the standard linear retrieval complexity. Additionally, the “atomic”



(O(1)) operations included in this process are in practice much more complex than the
simpleO(1) operations in standard document retrieval. We implemented a number of
techniques both for reducing the number of graphs actually compared to the query and
for reducing the complexity of a single comparison; other modifications can be made
to reduce both of these. Such modifications include an implementation of an indexing
mechanism for the graphs, offline calculation of some of the intermediate results, and
shallow, low-complexity “first-step” retrieval of a relatively small number of candidates
which are then promoted to a second, deeper, comparison process.

5 Evaluation

In this section we describe the experiments carried out to evaluate the SCG retrieval
method and discuss their results.

5.1 Experimental Setting

Although many large open-source projects exist, there is no publicly available corpus
of code which is grouped in clusters of “similar code”, or a corpus of code annotated
with relevancy assessments regarding queries. Since assessing an entire corpus in this
way is a very laborious task, it was decided to obtain a corpus that contains,with high
likelihood, many clusters of similar documents.

The selected document collection was a subset of the source code ofgcc , the GNU
compiler suite. The collection includes the compiler’s test-suite for the C language,
and consists of 2932 files written in C. The reasons for using this corpus include the
popularity of C as a programming language for large-scale projects, as well as the
fact that the collection is written by many different contributers, ensuring an inconsis-
tent programming style and (with high likelihood) repetition of code. To make things
even “better” (in terms of fitness of the corpus to the problem), the documents in the
test-suite are in many cases cryptic, with meaningless variable names and with little
documentation. This makes them an interesting test case for comparison and retrieval.

Our experiments concerned two main “tasks”:

Identical Document Retrieval. For this task, we used 25 documents chosen randomly
out of the collection as queries. For each such query, the 5 top ranking documents were
retrieved. The purpose of this task was twofold: first, to serve as a sanity check for
the entire retrieval process. When using a document from the collection as a query,
we expect a good similarity measure to rank the document itself at a very high rank.
Second, a more “classic” retrieval experiment aim: to analyze the rest of the top ranking
documents, and check whether they are indeed relevant to the query.

Modified Document Retrieval. For this task we introduced a new set of documents
derived from the 25 documents used for the previous experiment. Each document was
subjected to code changes that have been reported as frequent in (Wagner). These
include token name changes, comment modifications, coding-convention changes and
so on. The new documents were then used as queries which had at least one highly
“relevant” document in the collection: the document which was modified to create the
query. The goal of this task was similar to our second goal in the Identical Document



task: to evaluate the “retrieval effectiveness” of the method, this time using a more real-
life scenario where retrieval is done with a query that is not identical to any document
in the collection1.

For both tasks, we measured theMean Reciprocal Rank(MRR), a common measure
for known item search, as well as theprecision@5(precision for the top 5 retrieved
documents) (Baeza-Yates and Ribeiro-Neto, 1999). The results were assessed by a C-
literate programmer; a document was defined as “relevant” to a query if the assessor
decided that the query and the document perform an identical, similar or related task,
or that the code in the document serves as an example/reference for someone writing
the code in the query.

We conducted two rounds of experiments: one aimed at comparing our SCG re-
trieval model against other (baseline) methods on the two tasks just described, and one
aimed at understanding the way in which our SCG method mixes content and structure
aspects of source code.

5.1.1 Baselines

As a baseline, we use Jacques Savoy’s version of the probabilistic retrieval model
Okapi (Savoy, 2003), i.e., Okapi weighting with “default” English parameters (k1 = 2,
b = 0.8) used for the documents, andnpn weighting used for the queries. This ap-
proach was shown to have goodprecision@nfor low values ofn (Jijkoun et al., 2003),
which is a desired feature in case the recall is difficult to assess. The retrieval was per-
formed on the source code files after the standard process of tokenization and stopword
removal (using both English and C stopword lists). For indexing the files, we used
FlexIR (Monz and de Rijke, 2002), a vector-space information indexing and retrieval
system developed at the University of Amsterdam.

Our SCG retrieval method uses string-distance measures, since many typical dif-
ferences between similar code files include tokens which have a small string distance
between them. To measure the effect of the “contextual knowledge” gained through
the graph representation, we also compared our results to two simpler baselines: a sim-
ple string-distance measure, and a “typed” string-distance one. In the simple distance
case, we rank all documents in the collection according to their string-distance from
the (stopped) query; for the “typed” string-distance variation, we first classify each
token as belonging to one of the classes{comment, dependency-statement,
other }, and then sum the string-distance from each corresponding set of string classes.

After initial testing of the effect of various parameters on the retrieval process, we
used a depth of 1 both for the actual comparison and for locating the Most Similar Con-
cepts. This means that each concept was extended with contextual information from its
immediate neighbors, but not more. Although it seems that including more contextual
data should improve the results, it may also cause irrelevant, noisy information to be
added to the actual content of the node, resulting in a decrease in performance.

5.2 Comparison Against the Baselines

A summary of the comparison between the graph retrieval method and the baseline
models is given in Table 3. Going down the table, we see a consistent increase of
performance, with the exception of the MRR scores of the string distance methods

1The coprus and queries are available fromhttp://www.science.uva.nl/ ∼gilad/scg/



Identical Document Modified Document
Model MRR P@5 MRR P@5
Simple distance 0.973 0.400 0.093 0.056
Typed distance 1.000 0.424 0.293 0.128
Okapi 0.870 0.464 0.400 0.248
SCG Retrieval 0.905 0.472 0.813 0.296

Table 3: MRR and P@5 comparison of retrieval methods

in the Identical Document task; otherwise, simple string-distance measures perform
worst, and graph retrieval performs best.

These MRR exceptions for the string distance baselines are not surprising, as the
Levenstein distance measure defines a string as having a distance of 0 to itself. The per-
formance of the string distance measures on the modified retrieval drops sharply, since
the modifications are exactly of the types that enlarge the string distance. The typed
string distance, which brings in a bit of structural information into the comparison,
performs better than the simple distance throughout all measurements. Probabilistic
retrieval does even better than the string distance measures (except the identical docu-
ment MRRs); a reason for this improvement may be the usage of term frequency mea-
sures that reduce the importance of matches of meaningless strings such as repeated
variable names (i, j, count ) and common tokens in comments (testcase,
bug ). Finally, the graph retrieval that uses a combination of structural information
and string distance yields the best results. The improvement of graph retrieval over the
baseline is substantially better for the Identical Document task than the corresponding
improvement in the Identical Document task.

Due to the relatively low number of queries, establishing statistical significance is
hard, and indeed only the improvement of the MRR score in the case of the Modi-
fied Document task is statistically significant, withp < 0.003. Expanding the test
set requires substantial manual effort (modifying documents for the Modified task and
assessing precision scores for both tasks); therefore, we only repeated the “fully au-
tomated” measurement, i.e., the MRR for the Identical Document task, this time with
250 queries instead of 25. Our results indicate a similar improvement over Okapi
as in the 25-query experiment (about 4%), but this time with statistical significance
(p < 0.0031); so, we consider the MRR improvement for both tasks to be statistically
significant.

5.3 Combination Experiments

In addition to comparing our method to the baselines, we conducted another experiment
which combined the results of two different methods: the most successful baseline
method (Okapi) and the conceptual graph retrieval method. The two methods employ
very different retrieval approaches: Okapi uses “classical” retrieval notions of term
frequency, document length etc., and the SCG method is based on contextual string-
distance comparisons. It has been shown that combination of retrieval methods tends to
be useful when the retrieval paradigms are different (Lee, 1995; Shaw and Fox, 1994);
this makes the combination of Okapi and the SCG method seem promising.

An analysis of the ranked lists returned by the two methods reveals differences both
in the retrieved relevant documents and the ordering of the same relevant documents.
For example, in the Modified Document task, in almost all cases where there was no



relevant document in the top 5 retrieved documents of one method, the other method
ranked at least one relevant document in its top 5 (see also Figure 6); additionally,
looking at the MRR scores, in 50% of the cases where the graph retrieval method did
not rank the relevant document in the top 10, Okapi retrieved it at the top rank, and
in 80% of the cases where Okapi did not get relevant documents in the top 10, the
SCG method ranked it at the top position. A closer look at the different successes and
failures shows, as expected, that Okapi succeeds in retrieving queries that contain rare
tokens which appear only in relevant documents; on the other hand, the SCG method is
successful when the token names are common and meaningless, and the structure plays
a more important role. We conclude that the different kinds of ranked lists produced by
the methods suggest that something can be gained by combining the two approaches.

To combine the scores of the methods we used the same method as described
in (Kamps et al., 2003), i.e., a linear combination of the normalized similarity scores
of the two methods:simnew = λ · simSCG + (1 − λ) · simOkapi, where we follow
(Lee, 1995, p. 185) and normalize the similarity scores into[0, 1] using the minimal and
maximal similarity scores. The linear combination of two ranked lists tends to improve
over the underlying runs by improving recall and/or puts found relevant documents at
a higher rank (Kamps et al., 2003).

The results of the combination experiments are presented in Table 4; notice that the
combination withλ = 0.0 is simply the Okapi baseline run, and the one withλ = 1.0
is the SCG Retrieval run, as reported in Table 3. A further breakdown by topic of

Identical Document Modified Document
λ MRR P@5 MRR P@5

0.0 0.870 0.464 0.400 0.248
0.2 1.000 0.504 0.630 0.272
0.5 0.960 0.488 0.840 0.352
0.8 0.960 0.448 0.833 0.336
1.0 0.905 0.472 0.813 0.296

Table 4: Combining Okapi and SCG-retrieval

the differences between the precision scores of Okapi, SCG and the combined method
(with λ = 0.5, and sorted by decreasing precision value of the combined method)
is presented in Figure 6, showing the different behaviors of the two models and the
“smoother” results obtained by combining them. Any combination improves on the
Okapi scores, and with the exception of the Modified Document task forλ = 0.2,
all combinations improve also over the SCG performance. For the Identical Document
task, it seems that lower importance attributed to the graph retrieval yields a better com-
bination: the results for the Modified Document task are mixed and require additional
tests to draw conclusions, but indicate that the combined scores are better when the
graph retrieval has a substantial weight. A possible conclusion of these results is that,
as expected, if there are more “visible” differences between the query and the relevant
documents, more structural information is needed to establish the similarity.

6 Conclusions and Future Work

We presented a retrieval model for source code documents; this model exploits the
highly structured nature of programming language text by extracting the information
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Figure 6: Precision scores for SCG, Okapi and combination: Topic Breakdown

embedded in it and merging it with the content to form a single representation, based
on conceptual graphs. We offer a similarity measure for these representations which
uses the notion of “contextual similarity,” expanding content with its local structural
context.

The initial results of our experiments are encouraging: although little was done in
terms of optimization and tuning, the proposed retrieval method outperformed well-
established retrieval models for the specific task we tested. While the amount of eval-
uation done serves only as a proof-of-concept, far from the amount required to support
firm conclusions, it appears that exploiting structure helps in the case of code retrieval.

The weak points of our approach are the high complexity and the large amount of
free parameters involved in the process (such as relation weights, match depth etc). To
address the first issue, we have implemented a number of complexity-reducing mech-
anisms which boosted our experiments run-times by large factors, and are currently
examining other mechanisms to further improve the complexity bounds. The second
issue can only be approached with more experimentation and evaluation of our pro-
posed method.
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