
Query Performance Prediction:
From Ad-hoc to Conversational Search
Chuan Meng

University of Amsterdam
Amsterdam, The Netherlands

c.meng@uva.nl

Negar Arabzadeh
University of Waterloo

Waterloo, Canada
narabzad@uwaterloo.ca

Mohammad Aliannejadi
University of Amsterdam

Amsterdam, The Netherlands
m.aliannejadi@uva.nl

Maarten de Rijke
University of Amsterdam

Amsterdam, The Netherlands
m.derijke@uva.nl

ABSTRACT
Query performance prediction (QPP) is a core task in information
retrieval. The QPP task is to predict the retrieval quality of a search
system for a query without relevance judgments. Research has
shown the effectiveness and usefulness of QPP for ad-hoc search.
Recent years have witnessed considerable progress in conversa-
tional search (CS). Effective QPP could help a CS system to decide an
appropriate action to be taken at the next turn. Despite its potential,
QPP for CS has been little studied. We address this research gap by
reproducing and studying the effectiveness of existing QPP meth-
ods in the context of CS. While the task of passage retrieval remains
the same in the two settings, a user query in CS depends on the
conversational history, introducing novel QPP challenges. In partic-
ular, we seek to explore to what extent findings from QPP methods
for ad-hoc search generalize to three CS settings: (i) estimating
the retrieval quality of different query rewriting-based retrieval
methods, (ii) estimating the retrieval quality of a conversational
dense retrieval method, and (iii) estimating the retrieval quality
for top ranks vs. deeper-ranked lists. Our findings can be summa-
rized as follows: (i) supervised QPP methods distinctly outperform
unsupervised counterparts only when a large-scale training set is
available; (ii) point-wise supervised QPP methods outperform their
list-wise counterparts in most cases; and (iii) retrieval score-based
unsupervised QPP methods show high effectiveness in assessing
the conversational dense retrieval method, ConvDR.
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1 INTRODUCTION
Query performance prediction (QPP) is an essential task in in-
formation retrieval (IR). It is about estimating the retrieval qual-
ity of a search system for a given query without relevance judg-
ments [13, 15, 21, 25, 56, 59]. QPP has been long studied in the
IR community [9]. Numerous benefits of QPP have been identi-
fied, including selecting the most effective ranking algorithm for a
query [25, 26, 56] based on the difficulty of the input query.

In conversational search (CS) there has been significant progress
onmultiple subtasks [58], including passage retrieval [12, 55], query
rewriting [51, 54], mixed-initiative interactions [3, 57], response
generation [37–39], and evaluation [17, 18]. Specifically, passage
retrieval has been the main focus of TREC CAsT 2019–2022 [12],
where modeling long conversational context for retrieval is shown
to be challenging [2]. Moreover, research has shown that mixed-
initiative interactions can lead to improved user and system perfor-
mance [3, 60]. As with ad-hoc retrieval, QPP benefits CS in multiple
ways. For instance, effective QPP can help a CS system take appro-
priate action at the next turn, e.g., take the initiative in asking a
clarifying question or saying “I cannot answer your question” to
the user, instead of giving a low-quality or risky answer when the
estimated retrieval quality for the current user query is low [5, 44].

Despite its importance and significance, little research has been
done on QPP for CS [36]. We take the first steps in this direction
by conducting a comprehensive reproducibility study, where we
examine a variety of QPP methods that were originally designed
for ad-hoc retrieval in the setting of CS. We aim to characterize the
novel challenges of QPP for CS and highlight the unique character-
istics of this field, while simultaneously assessing the effectiveness
of existing QPP methods in a conversational setting.

In particular, we highlight three main challenges of QPP applied
to CS that distinguish it from the ad-hoc search setting:
(1) a user query in a conversation depends on the conversational

context, i.e., it may contain omissions, coreferences, or ambigu-
ities, leading to unforeseen QPP challenges;

(2) QPP for CS has to predict the performance of novel retrieval
approaches, approaches that are specifically designed for CS;
two main groups of CS methods have been proposed to solve
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the query understanding challenge in CS, i.e., query-rewriting-
based retrieval [32, 35, 49, 51, 52, 54] and conversational dense
retrieval methods [28, 31, 33, 33, 34, 42, 55].

(3) QPP for CS should focus on estimating the retrieval quality for
the top-ranked results rather than for a full-ranked list because
CS systems need to return brief responses to adapt to limited-
bandwidth interfaces, such as a mobile screen [58].

In this reproducibility paper, we design our experiments inspired by
these CS characteristics and examine whether established findings
on QPP for ad-hoc search still hold under these conditions. Specifi-
cally, we study the following findings from the literature on QPP
for ad-hoc search: (i) supervised QPP methods outperform unsu-
pervised QPP methods [4, 7, 13, 15, 22, 56]; (ii) list-wise supervised
QPP methods outperform their point-wise counterparts [7, 15];
and (iii) retrieval score-based unsupervised QPP methods perform
poorly in estimating the retrieval quality of neural-based retriev-
ers [14, 22]. By examining each of these QPP-for-ad-hoc-search
findings listed above in the setting of CS, we aim to characterize the
problem of QPP applied to CS, with novel findings and directions
for future research as additional outcomes.

In this paper, we conduct experiments on three CS datasets:
(i) CAsT-19 [12], (ii) CAsT-20 [11], and (iii) OR-QuAC [42]. Our ex-
periments show that, in the setting of CS, (i) supervised QPP meth-
ods distinctly outperform unsupervised counterparts only when a
large amount of training data is available; unsupervised QPP meth-
ods show strong performance in a few-shot setting and when pre-
dicting the retrieval quality for deeper ranked lists; (ii) point-wise
supervised QPP methods outperform their list-wise counterparts in
most cases; however, list-wise QPP methods show a slight advan-
tage in a few-shot setting and when predicting the retrieval quality
for deeper ranked lists; and (iii) retrieval score-based unsupervised
QPP methods show high effectiveness in estimating the retrieval
quality of a conversational dense retrieval method, ConvDR, either
for top ranks or deeper ranked lists.

2 PRELIMINARIES AND TASK DEFINITION
We recap the definition of the QPP task in the context of ad-hoc
search. Generally, given a query 𝑞, a collection of documents 𝐷 , an
ad-hoc retrieval method 𝑀 and the ranked list with top-𝑘 ranked
documents𝐷𝑘

𝑞;𝑀 = [𝑑1, 𝑑2, . . . , 𝑑𝑘 ] returned by the retriever𝑀 over
the collection 𝐷 with respect to the query 𝑞, a QPP method 𝑓

estimates the retrieval quality of the ranked list 𝐷𝑘
𝑞;𝑀 with respect

to the query 𝑞, formally:

𝜙 = 𝑓 (𝑞, 𝐷𝑘
𝑞;𝑀 , 𝐷) ∈ R , (1)

where 𝜙 indicates the retrieval quality of the ad-hoc retriever 𝑀
in response to the query 𝑞; the retrieval quality 𝜙 can depend on
collection-based statistics.

Next, we define the task of QPP for CS. The CS task is to find
relevant items for each query in a multi-turn conversation 𝑄 =

{𝑞𝑡 }𝑛𝑡=1 [12], where 𝑛 is the number of turns in a conversation.
Unlike traditional ad-hoc search, the query 𝑞𝑡 at turn 𝑡 may con-
tain omissions, coreferences, or ambiguities, making it hard for
ad-hoc search methods to capture the underlying information need
of the query 𝑞𝑡 [55]. Two main groups of CS methods have been
proposed to solve the query understanding challenge in CS, i.e.,

query rewriting-based retrieval [32, 35, 49, 51, 54] and conversa-
tional dense retrieval methods [31, 33, 55]. Query rewriting-based
retrieval methods first rewrite the query 𝑞𝑡 into a self-contained
query 𝑞′𝑡 with the conversational history 𝑄1:𝑡−1 = 𝑞1, 𝑞2, . . . , 𝑞𝑡−1,
and then reuse ad-hoc search methods using the rewritten query
𝑞′𝑡 as input. When estimating the retrieval quality of this group of
CS methods, we define QPP for CS as:

𝜙𝑡 = 𝑓 (𝑞′𝑡 , 𝐷𝑘
𝑞′𝑡 ;𝑀

, 𝐷) ∈ R , (2)
where, given the query rewrite 𝑞′𝑡 , the ranked list of documents
𝐷𝑘
𝑞′𝑡 ;𝑀

retrieved by an ad-hoc searchmethod𝑀 for the query rewrite
𝑞′𝑡 , predicts𝜙𝑡 that is indicative of the retrieval quality of themethod
in response to the rewritten query 𝑞′𝑡 .

Conversational dense retrieval methods train a query encoder
to encode the current query 𝑞𝑡 and the conversation history𝑄1:𝑡−1
into a contextualized query embedding that is used to represent
the information need of the current query in a latent space [33, 55].
However, existing QPP methods do not have such a special module
to understand the noisy raw utterances 𝑄1:𝑡 ; directly feeding the
raw utterances 𝑄1:𝑡 into QPP methods may fuse them. Thus, when
estimating the retrieval quality of a conversational dense retrieval
method, we still feed a query rewrite𝑞′𝑡 instead of the raw utterances
𝑄1:𝑡 into QPP methods, formally:

𝜙𝑡 = 𝑓 (𝑞′𝑡 , 𝐷𝑘
𝑄1:𝑡 ;𝑀 , 𝐷) ∈ R , (3)

where 𝐷𝑘
𝑄1:𝑡 ;𝑀 is the ranked list retrieved by a conversational dense

retrieval method𝑀 in response to the raw utterances 𝑄1:𝑡 .

3 REPRODUCIBILITY METHODOLOGY
We describe our research questions and the experiments designed
to address them. We also describe our experimental setup.

3.1 Research questions
We address the following research questions:
(RQ1) Does the performance of QPP methods for ad-hoc search

generalize to CS when estimating the retrieval quality of
different query rewriting-based retrieval methods?

(RQ2) Does the performance of QPP methods for ad-hoc search
generalize to CS when estimating the retrieval quality of a
conversational dense retrieval method? Is the QPP effective-
ness influenced by the choice of query rewrites?

(RQ3) What is the performance difference between QPP methods
when predicting the retrieval quality for top-ranked items
vs. for longer-ranked lists?

3.2 Experimental design
Next, we describe the experiments aimed at answering our research
questions. Our main goal is to study the reproducibility of ad-hoc
QPP methods in the CS setting. We compare the performance of
unsupervised and supervised QPP methods on three CS datasets.
Specifically, we conduct the following experiments:
E1 To address (RQ1), we estimate the retrieval quality of BM25

with three query rewriting methods, namely, T5, QuReTeC,
and perfect rewriting (human-rewritten) [12]. Note that QPP
methods and BM25 always share the same query rewrites.

E2 To address (RQ2), we study the performance of QPP methods
for a conversational dense retrieval method, ConvDR [55], on
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all three datasets. As ConvDR directly models the raw conver-
sation context, no query rewriting step is required. However,
no existing QPP methods can model raw conversations. Hence,
we study the effect of feeding different query rewrites into QPP
methods when predicting the performance of ConvDR.

E3 To address (RQ3), we apply the QPP methods on evaluation
metrics at different depths.We utilize nDCG@3 and nDCG@100
and analyze how QPP performance is affected by the ranking
depth. We also consider Recall@100 to study the effectiveness
of QPP for first-stage CS rankers, where high recall is desired.

3.3 Experimental setup
QPP methods.We analyze a variety of unsupervised/supervised
QPPmethods. For unsupervised ones, we consider clarity-based and
score-based methods because they have been widely used in the lit-
erature. We consider more score-based ones since they have shown
great effectiveness [6]. We consider one clarity-based method:
• Clarity [9] quantifies the degree of ambiguity of a query w.r.t. a
collection of documents. Specifically, it measures the KL diver-
gence between a relevance model [30] induced from top-ranked
documents and a language model induced from the collection:

Clarity(𝑞, 𝐷𝑘
𝑞;𝑀 , 𝐷) =

∑︁
𝑤∈𝑉

𝑃 (𝑤 |𝐷𝑘
𝑞;𝑀 ) log

𝑃 (𝑤 |𝐷𝑘
𝑞;𝑀 )

𝑃 (𝑤 |𝐷) , (4)

where𝑤 and 𝑉 denote a term and the entire vocabulary of the
collection, respectively. The conjecture is that the larger the KL
divergence is, the better the retrieval quality is.

We consider five score-based QPP methods:
• Weighted information gain (WIG) [59] measures the divergence
of retrieval scores of top-ranked documents from those of the
entire corpus: the higher the divergence is, the better the retrieval
quality is [47, 48, 56]. WIG is formulated as:

WIG(𝑞, 𝐷𝑘
𝑞;𝑀 , 𝐷) = 1

𝑘

∑︁
𝑑∈𝐷𝑘

𝑞;𝑀

1√︁
|𝑞 |

(Score(𝑞;𝑑) − Score(𝑞;𝐷)), (5)

where Score(𝑞;𝑑) and Score(𝑞;𝐷) are the retrieval scores of docu-
ment 𝑑 and the entire collection 𝐷 , respectively; |𝑞 | is 𝑞’s length.

• Normalized query commitment (NQC) [47] measures the stan-
dard deviation of retrieval scores of top-ranked documents; the
standard deviation is normalized by the retrieval score of the
entire collection 𝐷 . The higher the standard deviation is, the
better the retrieval quality is assumed to be. NQC is modeled as:

𝑁𝑄𝐶 (𝑞, 𝐷𝑘
𝑞;𝑀 , 𝐷) = 1

Score(𝑞;𝐷)

√√√ 1
𝑘

∑︁
𝑑∈𝐷𝑘

𝑞;𝑀

(Score(𝑞;𝑑) − `)2, (6)

where ` is the mean retrieval score of the top-ranked documents.
• 𝜎𝑚𝑎𝑥 [41] is based on the standard deviation of retrieval scores of
ranked documents but finds themost suitable ranked list size𝑘 for
each query. The intuition is that most of the retrieved documents
in a ranked list obtain a low retrieval score; considering such
non-relevant documents would hurt QPP effectiveness. 𝜎𝑚𝑎𝑥

computes the standard deviation at each point in the ranked list
and selects the maximum standard deviation so as to reduce the
impact of the documents with a low retrieval score.

• n(𝜎𝑥%) [10], similar to 𝜎𝑚𝑎𝑥 , also uses a dynamic number of
documents to calculate the standard deviation for each query, but
only considers the documents whose retrieval scores are at least

𝑥% of the top retrieval score. The calculated standard deviation
is normalized by query length.

• Score magnitude and variance (SMV) [48] argues that WIG and
NQCmainly consider the magnitude and the variance of retrieval
scores, respectively. SMV takes both aspects into consideration:

𝑆𝑀𝑉 (𝑞, 𝐷𝑘
𝑞;𝑀 , 𝐷) =

1
𝑘

∑
𝑑∈𝐷𝑘

𝑞;𝑀
(Score(𝑞;𝑑) |ln Score (𝑞;𝑑 )

` |)

Score(𝑞;𝐷) , (7)

where Score(𝑞;𝑑) denotes score magnitude while |ln Score (𝑞;𝑑 )
` |)

represents score variance.
Recent studies show that BERT-based supervised QPP methods [4,
7, 15, 22] outperform other neural-based supervised QPP methods,
such as NeuralQPP [56] and Deep-QPP [13]. Thus, we consider
three competitive BERT-based supervised QPP methods:
• NQA-QPP [22] is the first supervised QPPmethod based on BERT.
It feeds the standard deviation of retrieval scores, BERT repre-
sentations for the given query and query-document pairs into a
feed-forward neural network for estimating the retrieval quality.

• BERT-QPP [4] feeds the given query and the top-ranked docu-
ment into BERT, followed by a linear layer for estimating the
retrieval quality. We use the cross-encoder version of BERT-QPP
as it outperforms the bi-encoder version.

• qppBERT-PL [15] is a listwise-document method. It splits the top-
ranked documents into chunks and then uses BERT to encode
all query-document pairs in each chunk; a sequence of query-
document BERT representations in a chunk is fed into an LSTM
and linear layers to predict the number of relevant documents
in the chunk. A weighted average of the number of relevant
documents across all chunks is calculated as the retrieval quality.

We do not include BERT-groupwise-QPP [7]. It is another list-wise
supervised QPP method, which uses cross-query information but
it cannot be directly applied in a CS setting, as it would access the
future next turn query 𝑞𝑡+1 when estimating the difficulty of the
current query 𝑞𝑡 during inference, which is unrealistic in CS.
Query rewriting methods. We adopt the following query rewrit-
ing techniques/data in the passage retrieval and QPP process: (i) T5
rewriter1 is fine-tuned on CANARD [16] query rewriting dataset;
(ii) QuReTeC [51] is a BERT-based term expansion query rewrit-
ing method. We use the checkpoint released by the author;2 and
(iii) Human is the human-generated oracle query rewriting model
obtained from the ground-truth data annotations.
CS methods to be evaluated for retrieval quality. We esti-
mate the retrieval quality of two groups of CS methods: query
rewriting-based retrieval and conversational dense retrieval meth-
ods. For the former, we consider: (i) T5+BM25 rewrites queries using
the T5 rewriter and ranks documents using BM253; (ii) QuReTeC
+BM25 [51] performs query resolution using QuReTeC, followed
by BM25 retrieval; and (iii) Human+BM25 uses the ground-truth
query rewrites to rank documents using BM25. For the latter, we
consider ConvDR [55] and use the code released by the author.4
All CS methods return the top-1000 documents per query.
Datasets. We consider three CS datasets: (i) CAsT-19 [12] is con-
structed manually to mimic a realistic conversation on a specific
1 https://huggingface.co/castorini/t5-base-canard
2 https://github.com/nickvosk/sigir2020-query-resolution 3 We use Pyserini BM25
with the default parameters k1=0.9, b=0.4. 4 https://github.com/thunlp/ConvDR

https://huggingface.co/castorini/t5-base-canard
https://github.com/nickvosk/sigir2020-query-resolution
https://github.com/thunlp/ConvDR
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topic; in this dataset, a later query turn often depends on its pre-
vious queries; (ii) CAsT-20 [11] is more realistic and complex be-
cause the information needs of queries are derived from commercial
search logs and queries can refer to previous system responses; and
(iii) OR-QuAC [42] is a large-scale synthetic CS dataset built on
a conversational QA dataset, QuAC [8]; there is usually only one
annotated relevant item for each query in this dataset. All three
datasets provide self-contained queries rewritten by humans for all
raw queries. Table 2 lists details of the datasets.
Evaluation. A common method for evaluating QPP performance
is to assess the correlation between the actual and predicted perfor-
mance of a query set. Pearson’s 𝜌 , Kendall’s 𝜏 , and Spearman’s 𝜌
correlation coefficients are widely used. We report the correlation
based on the major metrics adopted by TREC CAsT [12], namely,
nDCG@3 for high ranks and nDCG@100 for deeper ranked lists.
As mentioned above, we also adopt Recall@100 to investigate the
performance of QPP when evaluating first-stage CS retrievers.
Implementation details. We implement all QPP methods using
Pytorch.5 For unsupervised QPP methods, we use hyperparameters
that have been shown to be effective by previous studies. Follow-
ing [59], 𝑘 is set to 5 for WIG. As suggested by [47, 48], 𝑘 is set to
100 for NQC and SMV; following [48], we use the average retrieval
score of the top-1000 documents as the corpus score Score(𝑞;𝐷).
Following [10], we set 𝑥 to 50 for n(𝜎𝑥%). 𝜎𝑚𝑎𝑥 does not use any
hyperparameters. Following [47], we use the Clarity variant that
uses the sum-normalized retrieval scores (from BM25 or ConvDR
in our setting) for weighing documents when constructing a rele-
vance model [30]; our preliminary experiments showed that this
variant performed better than the original Clarity that uses query-
likelihood scores to weight documents; we induce the relevance
model using the top 100 documents and clip the relevance model
at the top-100 terms cutoff [46].

For all supervised QPP methods, we use bert-base-uncased,6
a fixed learning rate (0.00002), and the Adam optimizer [29]. All
methods are trained and inferred on an NVIDIA RTX A6000 GPU.
Following [33, 55], all training on CAsT-19 or CAsT-20 uses five-
fold cross-validation; we use the data split from [55] and train all
supervised QPP methods for 5 epochs. For training on OR-QuAC,
we train all QPP methods for 1 epoch on the training set of OR-
QuAC; we feed QPP methods with human-rewritten queries and
train them to estimate the retrieval quality of BM25 with human-
rewritten queries. To address the data scarcity on CAsT-19 and
CAsT-20, we consider a warm-up setting where we first pre-train
supervised QPP methods on the training set of OR-QuAC for one
epoch, followed by the five-fold cross-validation training for 5
epochs on CAsT. For future reproducibility, our code and data
resources are available at https://github.com/ChuanMeng/QPP4CS.

4 RESULTS AND DISCUSSIONS
Our experiments revolve around three main findings from the lit-
erature on QPP for ad-hoc search: (i) supervised QPP methods
outperform unsupervised QPP methods [4, 7, 13, 15, 22, 56]; (ii) list–
wise supervised QPP methods outperform their point-wise coun-
terparts [7, 15]; and (iii) retrieval score-based unsupervised QPP

5 https://pytorch.org/ 6 https://github.com/huggingface/transformers

Table 1: Actual retrieval quality of the CS methods used in
this paper in terms of nDCG@3.

CAsT-19 CAsT-20 OR-QuAC

T5-based query rewriter + BM25 0.330 0.170 0.218
QuReTeC-based query rewriter + BM25 0.338 0.172 0.249
Human query rewriter + BM25 0.360 0.257 0.309

ConvDR 0.471 0.343 0.614

Table 2: Data statistics of CAsT-19, CAsT-20 and OR-QuAC.

CAsT-19 CAsT-20 OR-QuAC

test test train valid test

#conversations 50 25 4,383 490 771
#conversations (judged) 20 25 – – –
#questions 479 216 31,526 3,430 5,571
#questions (judged) 173 208 – – –
#documents 38M 11M

methods perform poorly in estimating the retrieval quality of neu-
ral-based retrievers [14, 22]. We study whether the findings listed
above continue to hold for QPP methods in CS.

4.1 Assessing query rewriting-based retrieval
4.1.1 Overall performance. To answer (RQ1), we examine the re-
sults of Experiment E1, where we run QPP methods estimating
the retrieval quality of BM25 with three query rewriting meth-
ods (T5+BM25, QuReTeC+BM25, and Human+BM25). For all super-
vised QPPmethods on CAsT, we further consider their variants that
are first pre-trained on the training set of OR-QuAC for one epoch
before five-fold cross-validation training on CAsT. See Table 3. Note
that QPP methods and BM25 always share the same query rewrites.
Overall, feeding T5/QuReTeC query rewrites into QPP methods to
estimate the retrieval quality of BM25 is effective, compared to the
case of feeding perfect self-contained queries rewritten by humans.
We have two specific observations.

First, when applied to CS, supervised QPP methods only have
a distinct advantage over their unsupervised counterparts when
training data is sufficient. Specifically, on OR-QuAC, where training
data is ample, all supervised QPPmethods perform better than unsu-
pervised methods when assessing BM25 with all three query rewrit-
ers. NQA-QPP achieves state-of-art performance on OR-QuAC. On
CAsT-19, the performance of unsupervised QPP methods is com-
parable to the performance of supervised ones only using five-fold
cross-validation. However, on CAsT-20, where the information
needs of queries are derived from commercial search logs and so
query understanding is much harder than CAsT-19, unsupervised
QPP methods perform better than their supervised counterparts
only using five-fold cross-validation. Warming up on the train-
ing set of OR-QuAC brings about improvement in supervised QPP
methods in most cases. On CAsT-19, NQA-QPP with warm-up per-
forms better than all unsupervised methods given T5/QuReTeC
query rewrites. Nevertheless, on CAsT-20, even after warming up,
supervised methods do not have a distinct advantage. We think it
is because all supervised QPP methods need to be fed with queries
and the difficulty of query understanding on CAsT-20 limits their
performance. Conversely, the prediction of score-based unsuper-
vised methods does not depend on the input queries, reducing the

https://github.com/ChuanMeng/QPP4CS
https://pytorch.org/
https://github.com/huggingface/transformers
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Table 3: Outcomes of Experiment E1. Performance of QPPmethods on three CS datasets: Pearson’s 𝑟 , Kendall’s 𝜏 , and Spearman’s
𝜌 correlation coefficients with nDCG@3, for estimating the retrieval quality of three query rewriting-based retrieval methods
(BM25 fed with T5-based, QuReTeC-based, and human-written query rewrites). Warm-up means the QPP method is first
pre-trained on the training set of OR-QuAC for one epoch. All coefficients are statistically significant (t-test, 𝑝 < 0.05) except
the ones in italics. The best value in each column is marked in bold, and the second best is underlined.

T5+BM25 QuReTeC+BM25 Human+BM25

Datasets QPP methods P-𝜌 K-𝜏 S-𝜌 P-𝜌 K-𝜏 S-𝜌 P-𝜌 K-𝜏 S-𝜌

CAsT-19

Clarity 0.321 0.234 0.330 0.327 0.211 0.304 0.359 0.231 0.335
WIG 0.436 0.232 0.452 0.354 0.250 0.356 0.409 0.293 0.414
NQC 0.348 0.246 0.354 0.286 0.190 0.275 0.334 0.234 0.335
𝜎𝑚𝑎𝑥 0.442 0.354 0.501 0.351 0.251 0.357 0.410 0.312 0.441
n(𝜎𝑥%) 0.430 0.332 0.466 0.348 0.259 0.364 0.407 0.307 0.430
SMV 0.344 0.250 0.360 0.289 0.188 0.273 0.326 0.230 0.333
NQA-QPP 0.188 0.047 0.072 -0.016 0.010 0.014 0.152 0.069 0.099
BERTQPP 0.440 0.307 0.424 0.352 0.272 0.395 0.270 0.188 0.271
qppBERT-PL 0.414 0.296 0.421 0.392 0.298 0.406 0.292 0.196 0.280
NQA-QPP (warm-up) 0.538 0.357 0.510 0.420 0.301 0.428 0.331 0.230 0.336
BERTQPP (warm-up) 0.526 0.357 0.503 0.369 0.264 0.384 0.418 0.282 0.411
qppBERT-PL (warm-up) 0.317 0.218 0.313 0.330 0.232 0.326 0.297 0.190 0.277

CAsT-20

Clarity 0.258 0.191 0.259 0.099 0.061 0.085 0.127 0.089 0.121
WIG 0.248 0.251 0.339 0.245 0.163 0.222 0.307 0.222 0.317
NQC 0.150 0.235 0.316 0.198 0.189 0.259 0.286 0.266 0.370
𝜎𝑚𝑎𝑥 0.179 0.221 0.304 0.207 0.168 0.230 0.241 0.199 0.283
n(𝜎𝑥%) 0.178 0.225 0.304 0.182 0.133 0.181 0.213 0.167 0.237
SMV 0.139 0.219 0.298 0.189 0.163 0.227 0.264 0.260 0.363
NQA-QPP 0.001 0.067 0.093 -0.064 -0.082 -0.111 0.086 -0.011 -0.012
BERTQPP 0.042 -0.009 -0.007 0.172 0.145 0.196 0.194 0.110 0.159
qppBERT-PL 0.131 0.125 0.159 0.175 0.150 0.185 0.043 0.015 0.021
NQA-QPP (warm-up) 0.274 0.170 0.227 0.190 0.149 0.201 0.231 0.155 0.222
BERTQPP (warm-up) 0.207 0.171 0.236 0.403 0.301 0.409 0.336 0.227 0.318
qppBERT-PL (warm-up) 0.228 0.213 0.275 0.317 0.268 0.335 0.094 0.095 0.130

OR-QuAC

Clarity 0.090 0.085 0.110 0.110 0.103 0.133 0.076 0.069 0.091
WIG 0.247 0.235 0.304 0.290 0.270 0.350 0.257 0.241 0.316
NQC 0.251 0.274 0.355 0.290 0.311 0.404 0.276 0.291 0.381
𝜎𝑚𝑎𝑥 0.317 0.279 0.359 0.367 0.316 0.406 0.412 0.367 0.474
n(𝜎𝑥%) 0.181 0.172 0.223 0.229 0.209 0.270 0.245 0.193 0.252
SMV 0.204 0.239 0.310 0.239 0.273 0.355 0.194 0.232 0.304
NQA-QPP 0.781 0.566 0.695 0.792 0.591 0.725 0.809 0.621 0.767
BERTQPP 0.678 0.434 0.546 0.692 0.476 0.598 0.725 0.527 0.666
qppBERT-PL 0.594 0.507 0.576 0.617 0.526 0.597 0.618 0.525 0.600

impact of query understanding. The performance of qppBERT-PL
drops after warming up on OR-QuAC in most cases. We speculate
that this is due to the distribution shift between CAsT and OR-
QuAC: qppBERT-PL predicts the number of relevant documents in
each chunk of a ranked list, and the number of relevant documents
for each query in CAsT is significantly larger than in OR-QuAC.
Therefore, after warming up, qppBERT-PL’s prediction of the rel-
evant document count is biased towards the number of relevant
documents in OR-QuAC.

Second, in most cases, point-wise supervised QPP methods such
as NQA-QPP and BERTQPP outperform the list-wise supervised
method qppBERT-PL. Without considering warming up, qppBERT-
PL has a slight advantage over its point-wise counterparts. E.g.,

qppBERT-PL achieves a better performance in predicting the per-
formance of QuReTeC+BM25, Human+BM25 on CAsT-19, and
T5+BM25, QuReTeC+BM25 on CAsT-20. qppBERT-PL’s list-wise
training scheme learns from interactions between a query and all
documents in a ranked list, providing the model with more training
signals and better use of limited training data.

4.1.2 Turn-wise QPP effectiveness. We study the QPP effectiveness
on each turn of conversation on CAsT-19; we report the turn-wise
effectiveness of 2 unsupervised (WIG, NQC) and 2 supervised meth-
ods (NQA-QPP with warm-up, BERT-QPP with warm-up) when
they assess BM25 with T5-based and human-written query rewrites.
The results are presented in the two leftmost subfigures in Figure 1.
We also introduce the turn-wise actual retrieval quality in terms of
nDCG@3 in each subfigure. As illustrated in both subfigures, all
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Figure 1: QPP effectiveness on each turn of conversations in CAsT-19. Pearson’s 𝑟 correlation between the actual nDCG@3
scores of the queries with the same turn number and their estimated retrieval quality is calculated per turn.

QPP methods exhibit lower performance at the first turn and at the
deeper turn 8. There is a correlation between actual retrieval quality
and QPP effectiveness: BERT-QPP effectiveness always drops as the
actual retrieval quality drops; in contrast, in the case of T5+BM25,
NQA-QPP performs better as the actual retrieval quality drops at
turn 6; in the case of human+BM25, WIG and NQC show better
performance as the actual retrieval quality drops at turn 5.

4.2 Assessing conversational dense retrieval
4.2.1 Overall performance. To answer (RQ2), we examine the re-
sults of E2. We apply QPP methods fed with three types of query
rewrites to estimate the retrieval quality of the conversational dense
retrieval method ConvDR. See Table 4. Note that the results of NQC,
𝜎𝑚𝑎𝑥 and SMV are invariant to different types of query rewrites
because they only depend on retrieval scores; Clarity is also invari-
ant to query rewrites because we use the Clarity variant from [47];
see Section 3.3 for more information about implementation details.
We have four main observations.

First, retrieval score-based methods NQC/WIG show high effec-
tiveness in estimating the retrieval quality of ConvDR, achieving
the best performance in most cases on CAsT-19 and CAsT-20. Com-
pared to Table 3, the performance of NQC/WIG is even better than
their effectiveness in assessing BM25. It contradicts the previous
findings [14, 22]: Datta et al. [14] found that the retrieval scores
from neural-based retrievers, such as ColBERT [27], are restricted
within a shorter range compared to lexical-based retrievers, which
may limit the performance of score-based unsupervised QPP meth-
ods. We speculate that there are two reasons. First, the effectiveness
of score-based methods depends on the retrieval score distribution
of a specific retriever, regardless of whether they assess a lexical-
based or a neural-based retriever. Figure 2 illustrates the retrieval
score distributions of ConvDR and BM25 with three kinds of query
rewrites in the three datasets. The retrieval score distribution of
ConvDR displays a higher variance. A higher standard deviation
indicates that the score ranges varymore, and so the top-ranked doc-
uments are more distinguishable from the rest. Thus, ConvDR has a
higher potential to be predicted more accurately using score-based
QPP methods. Second, as discussed in Section 4.1.1, score-based
QPP methods do not depend on the input queries and tend to be
less impacted by the query understanding challenge in CS. Thus,
score-based unsupervised methods show more effectiveness when
assessing ConvDR compared to other supervised methods.

Second, supervised QPP methods tend to exhibit better perfor-
mance when fed with human-written query rewrites, especially on

CAsT-20, where query rewriting is much harder than CAsT-19. It
highlights the importance of query rewriting quality.

Third, similar to our results for (RQ1), supervised QPP methods
distinctly outperform all unsupervised QPP methods on the OR-
QuAC dataset where a large amount of training data is available.
NQA-QPP remains the state-of-the-art method on OR-QuAC.

Fourth, as with the results for (RQ1), point-wise supervised
methods outperform qppBERT-PL in most cases (on CAsT-20 and
OR-QuAC). On CAsT-19, qppBERT-PL trained using five-fold cross-
validation outperforms its point-wise counterparts warming up
from OR-QuAC, showing its potential in a few-shot setting.

4.2.2 Turn-wise QPP effectiveness. Similar to Section 4.1.2, here
we report the turn-wise effectiveness of the same QPP methods
when they are fed with T5-based and human-written query rewrites
to assess ConvDR. See the two rightmost subfigures in Figure 1.
As shown in both subfigures, the effectiveness of the score-based
unsupervisedmethods (WIG/NQC) first exhibits lower performance
at the first turn, and then shows an upward trend as conversations
go on. In contrast, in the middle of conversations, the supervised
QPP methods are more sensitive to the actual retrieval quality;
their effectiveness drops sharply as the actual retrieval quality
drops. Especially, NQA-QPP/BERT-QPP effectiveness shows a more
dramatic drop from turn 4 to 6 when they are fed with T5-based
query rewrites, compared to when they are fed with human-written
ones. It shows the importance of improving query rewriting quality
again. Interestingly, there is a sharp drop from turn 7 to 8 for all
QPP methods, showing the QPP difficulty at deeper turns.

4.3 Top ranks vs. deeper ranked lists
To answer (RQ3), we report the results of E3 in Table 5, i.e., QPP
results in terms of nDCG@3, nDCG@100, and Recall@100. Due to
space limitations, for supervised QPP methods, we only show them
in the warm-up setting. Since qppBERT-PL works better without
warm-up, we consider it both with and without a warm-up round.
We have three main observations.

First, all QPP methods generally perform better when predicting
the retrieval quality for deeper-ranked lists. The estimated perfor-
mance by various QPP methods achieves a higher correlation with
the actual nDCG@100/Recall@100 values in comparison with the
nDCG@3 values, which is in line with [56], that found predicting
NDCG@20 to be harder than AP@1000.

Second, unsupervised QPP methods get a higher correlation
with nDCG@100 and Recall@100 on CAsT-19 and CAsT-20, show-
ing high effectiveness in estimating the retrieval quality of deeper
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Table 4: Outcomes of Experiment E2. Performance of QPPmethods on three CS datasets: Pearson’s 𝑟 , Kendall’s 𝜏 , and Spearman’s
𝜌 correlation coefficients with nDCG@3, for estimating the retrieval quality of ConvDR (fed with T5-based, QuReTeC-based,
and human-written query rewrites). All coefficients are statistically significant (t-test, 𝑝 < 0.05) except the ones in italics. The
best value in each column is marked in bold, and the second best is underlined.

T5 QuReTeC Human

Datasets QPP methods P-𝜌 K-𝜏 S-𝜌 P-𝜌 K-𝜏 S-𝜌 P-𝜌 K-𝜏 S-𝜌

CAsT-19

Clarity 0.257 0.176 0.257 0.257 0.176 0.257 0.257 0.176 0.257
WIG 0.387 0.274 0.395 0.388 0.266 0.381 0.412 0.285 0.408
NQC 0.431 0.307 0.438 0.431 0.307 0.438 0.431 0.307 0.438
𝜎𝑚𝑎𝑥 0.378 0.267 0.381 0.378 0.267 0.381 0.378 0.267 0.381
n(𝜎𝑥%) 0.187 0.175 0.262 0.181 0.170 0.256 0.216 0.196 0.288
SMV 0.386 0.285 0.405 0.386 0.285 0.405 0.386 0.285 0.405
NQA-QPP 0.121 0.075 0.115 0.118 0.073 0.109 0.150 0.109 0.153
BERTQPP 0.167 0.107 0.169 0.220 0.145 0.217 0.298 0.193 0.296
qppBERT-PL 0.344 0.225 0.324 0.316 0.197 0.284 0.276 0.178 0.255
NQA-QPP (warm-up) 0.187 0.128 0.186 0.161 0.107 0.157 0.287 0.191 0.282
BERTQPP (warm-up) 0.282 0.187 0.277 0.234 0.157 0.233 0.371 0.251 0.361
qppBERT-PL (warm-up) 0.212 0.151 0.213 0.167 0.117 0.170 0.172 0.115 0.154

CAsT-20

Clarity 0.126 0.088 0.127 0.126 0.088 0.127 0.126 0.088 0.127
WIG 0.377 0.277 0.386 0.377 0.263 0.373 0.384 0.264 0.368
NQC 0.339 0.261 0.360 0.339 0.261 0.360 0.339 0.261 0.360
𝜎𝑚𝑎𝑥 0.282 0.219 0.310 0.282 0.219 0.310 0.282 0.219 0.310
n(𝜎𝑥%) 0.199 0.168 0.236 0.197 0.156 0.224 0.201 0.156 0.220
SMV 0.275 0.216 0.299 0.275 0.216 0.299 0.275 0.216 0.299
NQA-QPP -0.037 -0.037 -0.058 -0.081 -0.063 -0.092 0.059 0.023 0.032
BERTQPP 0.223 0.157 0.226 0.216 0.146 0.212 0.404 0.281 0.395
qppBERT-PL 0.185 0.144 0.191 0.029 0.023 0.031 0.251 0.171 0.232
NQA-QPP (warm-up) 0.315 0.218 0.313 0.240 0.178 0.245 0.374 0.267 0.375
BERTQPP (warm-up) 0.253 0.183 0.257 0.320 0.236 0.338 0.349 0.244 0.346
qppBERT-PL (warm-up) 0.218 0.164 0.227 0.140 0.115 0.157 0.348 0.268 0.376

OR-QuAC

Clarity -0.050 -0.029 -0.038 -0.050 -0.029 -0.038 -0.050 -0.029 -0.038
WIG 0.137 0.107 0.145 0.116 0.088 0.120 0.140 0.111 0.149
NQC 0.227 0.163 0.221 0.227 0.163 0.221 0.227 0.163 0.221
𝜎𝑚𝑎𝑥 0.442 0.339 0.443 0.442 0.339 0.443 0.442 0.339 0.443
n(𝜎𝑥%) -0.032 -0.003 -0.004 -0.073 -0.035 -0.045 -0.022 0.008 0.011
SMV 0.098 0.076 0.106 0.098 0.076 0.106 0.098 0.076 0.106
NQA-QPP 0.615 0.479 0.615 0.639 0.499 0.638 0.600 0.470 0.601
BERTQPP 0.481 0.417 0.541 0.505 0.435 0.563 0.481 0.408 0.529
qppBERT-PL 0.391 0.250 0.287 0.424 0.294 0.335 0.437 0.306 0.349
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Figure 2: Distributions of retrieval scores for ConvDR and BM25 with three different rewriters on the three datasets. For the
sake of comparison, we normalize the retrieval scores of a pipeline for all queries in a dataset by min-max normalization.

ranked lists. On OR-QuAC, where training data is ample, super-
vised QPP methods still keep the lead in terms of all metrics, in line
with the results shown in Table 3 and Table 4.

Third, in some cases, list-wise supervised methods outperform
their point-wise counterparts when estimating the retrieval quality
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Table 5: Outcomes of Experiment E3. Performance of QPPmethods on three CS datasets: Pearson’s 𝑟 , Kendall’s 𝜏 , and Spearman’s
𝜌 correlation coefficients with nDCG@3, nDCG@100 and Recall@100, for estimating the retrieval quality of BM25 fed with
T5-based query rewrites and ConvDR. All coefficients are statistically significant (t-test, 𝑝 < 0.05) except the ones in italics. The
best value in each column is marked in bold, and the second best is underlined.

T5 + BM25 ConvDR (QPP fed with T5 query rewrites)

nDCG@3 nDCG@100 Recall@100 nDCG@3 nDCG@100 Recall@100

QPP methods P-𝜌 K-𝜏 P-𝜌 K-𝜏 P-𝜌 K-𝜏 P-𝜌 K-𝜏 P-𝜌 K-𝜏 P-𝜌 K-𝜏

CA
sT
-1
9

Clarity 0.321 0.234 0.326 0.257 0.214 0.187 0.257 0.176 0.342 0.227 0.335 0.216
WIG 0.436 0.232 0.608 0.429 0.579 0.426 0.387 0.274 0.542 0.398 0.451 0.347
NQC 0.348 0.246 0.548 0.397 0.545 0.444 0.431 0.307 0.647 0.481 0.557 0.421
𝜎𝑚𝑎𝑥 0.442 0.354 0.574 0.433 0.494 0.399 0.378 0.267 0.637 0.456 0.591 0.441
n(𝜎𝑥%) 0.430 0.332 0.569 0.406 0.505 0.365 0.187 0.175 0.358 0.292 0.362 0.288
SMV 0.344 0.250 0.548 0.417 0.541 0.466 0.386 0.285 0.619 0.471 0.556 0.423
NQA-QPP (warm-up) 0.538 0.357 0.542 0.392 0.537 0.377 0.187 0.128 0.401 0.275 0.364 0.263
BERTQPP (warm-up) 0.526 0.357 0.532 0.391 0.463 0.325 0.282 0.187 0.378 0.249 0.261 0.194
qppBERT-PL (warm-up) 0.317 0.218 0.412 0.279 0.363 0.263 0.212 0.151 0.354 0.233 0.345 0.249
qppBERT-PL 0.414 0.296 0.509 0.358 0.452 0.312 0.344 0.225 0.461 0.310 0.455 0.327

CA
sT
-2
0

Clarity 0.258 0.191 0.452 0.343 0.467 0.332 0.126 0.088 0.270 0.195 0.264 0.178
WIG 0.248 0.251 0.494 0.453 0.478 0.438 0.377 0.277 0.549 0.389 0.465 0.320
NQC 0.150 0.235 0.363 0.399 0.320 0.380 0.339 0.261 0.544 0.404 0.463 0.357
𝜎𝑚𝑎𝑥 0.179 0.221 0.339 0.372 0.339 0.382 0.282 0.219 0.496 0.364 0.440 0.328
n(𝜎𝑥%) 0.178 0.225 0.413 0.422 0.420 0.410 0.199 0.168 0.409 0.309 0.397 0.285
SMV 0.139 0.219 0.362 0.400 0.333 0.387 0.275 0.216 0.503 0.380 0.454 0.352
NQA-QPP (warm-up) 0.274 0.170 0.471 0.362 0.466 0.370 0.315 0.218 0.310 0.237 0.324 0.223
BERTQPP (warm-up) 0.207 0.171 0.404 0.301 0.364 0.246 0.253 0.183 0.349 0.242 0.221 0.133
qppBERT-PL (warm-up) 0.228 0.213 0.367 0.305 0.312 0.287 0.218 0.164 0.378 0.272 0.313 0.229
qppBERT-PL 0.131 0.125 0.310 0.251 0.363 0.275 0.185 0.144 0.301 0.217 0.263 0.196

O
R-
Q
uA

C

Clarity 0.090 0.085 0.197 0.196 0.362 0.312 -0.050 -0.029 -0.029 -0.015 0.053 0.057
WIG 0.247 0.235 0.376 0.370 0.482 0.450 0.137 0.107 0.195 0.130 0.298 0.261
NQC 0.251 0.274 0.356 0.409 0.414 0.461 0.227 0.163 0.302 0.194 0.402 0.333
𝜎𝑚𝑎𝑥 0.317 0.279 0.418 0.393 0.438 0.437 0.442 0.339 0.490 0.359 0.434 0.370
n(𝜎𝑥%) 0.181 0.172 0.295 0.302 0.415 0.401 -0.032 -0.003 -0.001 0.010 0.102 0.106
SMV 0.204 0.239 0.311 0.383 0.396 0.456 0.098 0.076 0.170 0.109 0.313 0.277
NQA-QPP 0.781 0.566 0.783 0.602 0.603 0.486 0.615 0.479 0.644 0.475 0.446 0.323
BERTQPP 0.678 0.434 0.767 0.551 0.589 0.484 0.481 0.417 0.595 0.453 0.447 0.313
qppBERT-PL 0.594 0.507 0.655 0.552 0.451 0.440 0.391 0.250 0.449 0.277 0.455 0.383

in terms of deeper ranked lists. E.g., qppBERT-PL without warm-up
outperforms other point-wise methods (NQA-QPP and BERTQPP
with warm-up) on CAsT-19 when assessing ConvDR in terms of
nDCG@100 and Recall@100. Also, qppBERT-PL achieves the best
performance when predicting the performance of ConvDR in terms
of Recall@100 on OR-QuAC. The gains indicate that modeling a
list of retrieved items has the potential of benefiting the retrieval
quality estimation for deeper-ranked lists.

5 RELATEDWORK
Query performance prediction. The query performance pre-
diction (QPP) task is to estimate the retrieval quality of a search
system in response to a user query without relevance judgments
[6, 25]. QPP methods have shown a high correlation with the re-
trieval quality in the context of ad-hoc retrieval. They can help
to obtain better-performing retrieval pipelines in different ways,
including query routing [45]. Moreover, query difficulty signals

have been used to provide direct feedback to users, allowing them
to reformulate queries or seek alternative information sources if
the results are expected to be poor.

Typically, QPP methods can be classified into pre- and post-
retrieval methods [6]. Pre-retrieval methods estimate query per-
formance based on the query and corpus statistics before retrieval
takes place. Post-retrieval methods use additional information from
the ranked list to predict query performance after retrieval. In this
paper, we focus on post-retrieval QPP methods because they have
shown superior performance compared to pre-retrieval methods
in most cases. Post-retrieval QPP methods include both supervised
and unsupervised methods.

Traditional QPP methods have mostly relied on an unsupervised
approach where query term frequency and corpus statistics are
used as indicators for query performance [23–26, 46, 47, 59]. More
recent studies model QPP by deep learning-based models. These
studies have shown that supervised methods for QPP are more
effective than unsupervised QPP approaches in an ad-hoc retrieval
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setting. These supervised methods require a significant amount
of data and training instances, such as the MS MARCO dataset
[40], to perform QPP effectively [4, 15, 22, 56]. To the best of our
knowledge, QPP has mostly been limited to ad-hoc retrieval tasks.
Hashemi et al. [22] explore the ability of QPP methods to predict
performance for non-factoid question answering. Studies of the
performance of QPP methods in CS, have been limited.
Conversational search. Conversational search (CS) is the task of
retrieving relevant passages in response to user queries in a multi-
turn conversation [12]. A unique challenge in CS is that a user query
in a conversation is context-dependent, i.e., it may contain omis-
sions, coreferences, or ambiguities, making it challenging for ad-hoc
search methods to capture the underlying information need [43].
Recovering the underlying information need from the conversa-
tional history is crucial [33]. To address this challenge, there are
two main groups of CS methods, namely, query-rewriting-based
retrieval and conversational dense retrieval. Query-rewriting-based
retrieval methods first rewrite a query that is part of a conver-
sation into a self-contained query and then feed it to an ad-hoc
retriever [32, 35, 49, 51, 52, 54]. Query rewriting can be conducted
by either term expansion or sequence generation. The former adds
terms from the conversational history to the current query, e.g., by
designing rules [35] or training a binary term classifier [49], while
the latter directly generates the reformulated queries using pre-
trained generative language models, e.g., GPT-2 [54] and T5 [32].

Conversational dense retrieval methods train a query encoder
to encode the current query and the conversational history into
a contextualized query embedding; the contextualized query em-
bedding is expected to implicitly represent the information need
of the current query in a latent space [28, 31, 33, 34, 42, 55]. Lin
et al. [31] train the query encoder by optimizing a ranking loss
over a large number of pseudo-relevance judgments. Yu et al. [55]
train the query encoder to mimic the embeddings of human-written
queries output by the query encoder of the ad-hoc dense retriever
ANCE [53]. Mao et al. [33] train the query encoder to denoise noisy
turns in the conversation history by contrastive learning.

Little research has been done into QPP for CS. Arabzadeh et al.
[5], Roitman et al. [44] explore QPP in single-turn CS, where they
use QPP to help a CS system take the next appropriate action given
a user query. Specifically, they use QPP to assess the retrieved
answer quality to determine whether the system should return the
answer to the user. Al-Thani et al. [1], Lin et al. [32] use QPP to
improve the retrieval quality of a CS system. Lin et al. [32] use
a QPP method to determine whether the current query should
be expanded with keywords from the previous turns. Al-Thani
et al. [1] use QPP methods to select the better query rewrite from
different ones. Meng et al. [36] investigate the performance of pre-
retrieval QPP methods when they estimate the retrieval quality of
BM25 fed with T5-generated query rewrites. Also, Meng et al. [36]
propose to incorporate query rewriting quality to improve QPP
effectiveness. Additionally, Vlachou and Macdonald [50] explore
QPP in the context of conversational fashion recommendation,
which differs from CS.

What we add to the studies listed above, is a comprehensive
reproducibility study where we reproduce various QPP methods
designed for ad-hoc search systems in the setting of multi-turn CS.

6 CONCLUSION
In this reproducibility study, we examined whether three key find-
ings for QPP in ad-hoc search hold in CS. We experimented with
QPPmethods designed for ad-hoc search in three CS settings: (i) pre-
dicting the retrieval quality of BM25 while studying the impact of
query rewriting; (ii) predicting the retrieval quality of a conversa-
tional dense retrieval method, namely ConvDR; and (iii) predicting
the retrieval quality for top ranks vs. deeper-ranked lists.

We found that the three findings on QPP for ad-hoc search do
not generalize to CS very well. Specifically, we found (i) supervised
QPP methods distinctly outperform their unsupervised counter-
parts only when a large amount of training data is available, while
unsupervised QPP methods show strong performance when being
in a few-shot setting and predicting the retrieval quality for deeper
ranked lists; (ii) point-wise supervised QPP methods outperform
their list-wise counterparts in most cases; however, list-wise QPP
methods are more data-efficient, show a slight advantage in predict-
ing the retrieval quality for deeper ranked lists; and (iii) retrieval
score-based unsupervised QPP methods show high effectiveness in
estimating the retrieval quality of a conversational dense retrieval
method, ConvDR, either for top ranks or deeper ranked lists; the
effectiveness of score-based methods relies on the retrieval score
distribution of a specific retriever, regardless of whether they assess
a lexical-based or a neural-based retriever.

Our paper reveals that feeding T5 or QuReTeC query rewrites
into QPP methods to estimate the retrieval quality of CS methods
exhibits great performance. We also identify the drawbacks of QPP
methods designed for ad-hoc search in the context of CS, motivating
the next direction for the modeling of QPP for CS. We show that
the quality of query rewriting is of great importance, highlighting
the need to improve query writing quality. It also shows the need to
develop a mechanism of conversational context understanding for
QPP methods to directly understand raw historical utterances. Also,
we reveal that the data sparsity problem in CS severely reduces
the performance of supervised QPP methods. Thus, designing QPP
methods using few-shot learning techniques is one possible way.

We point to two limitations of our study, namely, (i) we only con-
sider estimating the retrieval quality of one conversational dense
retrieval method, and (ii) we only use correlation metrics to eval-
uate the performance of QPP methods. In future work, we plan
to (i) consider more conversational dense retrieval methods such
as CQE [31] as well as other dense retrieval methods for CS, such
as T5-based rewriter+ANCE [53], and (ii) introduce QPP-specific
evaluation metrics, such as scaled Absolute Ranking Error (sARE)
and scaled Mean Absolute Ranking Error (sMARE) [19, 20].
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