
Semantic Characterizations of Navigational XPath

Maarten Marx and Maarten de Rijke
Informatics Institute

University of Amsterdam
{marx,mdr}@science.uva.nl

ABSTRACT
We give semantic characterizations of the expressive power
of navigational XPath (also called Core XPath) in terms of
first order logic. XPath can be used to specify sets of nodes
and to specify sets of paths in a document tree. We con-
sider both uses. For sets of nodes, we show that first order
logic in two variables is equally expressive as XPath. For
paths, we show that XPath can be defined using four sim-
ple connectives, which together yield the class of first order
definable relations which are safe for bisimulation. Further-
more, we give a characterization of the XPath expressible
paths in terms of conjunctive queries.

1. INTRODUCTION
XPath 1.0 [6] is a variable free language used for selecting

nodes from XML documents. XPath plays a crucial role in
other XML technologies such as XSLT [10], XQuery [9] and
XML schema constraints, e.g., [8]. The recently proposed
XPath 2.0 language [7] is much more expressive and is close
to being a full fledged tree query language. It contains vari-
ables which are used in if-then-else, for, and quantified ex-
pressions. The available axis relations are the same in both
versions of XPath. What is missing at present is a clear char-
acterization of the expressive power of XPath, be it either
semantical or with reference to some well established exist-
ing (logical) formalism. As far as we know, Benedikt, Fan
and Kuper were the first and only to give characterizations,
but only for positive fragments of XPath, and without con-
sidering the sibling axis relations. Their analysis can rather
simply be expanded with the sibling axis, but adding nega-
tion asks for a different approach. This paper aims at filling
this gap.

Characterizations of the kind we are after are useful in un-
derstanding and further designing the language. They are
also useful because they allow us to transfer already known
results and techniques to the world of XPath. Vianu [21]
provides several examples to this effect. All characteriza-
tions we give with respect to other languages are construc-
tive and given in terms of translations. An important issue
in such comparisons is the succinctness of one language with
respect to another. We only touch on this briefly.

We use the abstraction to the logical core of XPath 1.0
(called Core XPath) developed in [12, 14]. ¿From now on
we will simply speak of XPath instead of Core XPath. Core

Copyright is held by the author/owner.
ACM 0-89791-88-6/97/05.

XPath is interpreted on XML document tree models. The
central expression in XPath is the location path

axis :: node label [filter],

which, when evaluated at node n, yields an answer set con-
sisting of nodes n′ such that the axis relation goes from n to
n′, the node tag of n′ is node label , and the expression filter
evaluates to true at n′. Alternatively, axis :: node label [filter]
can be viewed as denoting a binary relation, consisting of all
nodes (n, n′) which stand in the above relation.

XPath serves two purposes. First and formost it is used
to select nodes from a document. This use is formalized by
the notion of answer set. We study the expressive power of
XPath with respect to defining answer sets in Section 3. Our
main result is that Core XPath is as expressive as first order
logic restricted to two variables in the signature with three
binary relations corresponding to the child, descendant

and following sibling axis relations and unary predicates
corresponding to the node tags.

The second use of XPath is as a set of binary atoms in
more expressive languages with variables such as XQuery.
For instance, we might want to select all nodes x satisfying

∃y(x descendant :: A y ∧(1)

¬ x descendant :: B/descendant :: ∗ y).

That is, the set of all points from which there starts a path
without B nodes ending in an A node. We study this use
in Sections 4 and 5. With respect to the expressive power
of the relations expressed by Core XPath we establish the
following:

1. The set of relations expressible in Core XPath is closed
under intersection but not under complementation.

2. The Core XPath definable relations are exactly those
that are definable as unions of conjunctive queries whose
atoms correspond to the XPath axis relations and to
XPath’s filter expressions.

3. The Core XPath definable relations coincide with the
first order definable relations which are safe for bisim-
ulations respecting the Core XPath axis relations.1

1Informally, the notion of “safety” means the following. A
bisimulation relation is always defined with respect to a
certain signature consisting of unary predicates and binary
transition relations. A relation between the domains of two
models (e.g., transition systems, or in our case trees) is a
bisimulation if (1) bisimilar elements satisfy the same unary
predicates and (2) moves along the transition relations in

4. All Core XPath relations can be defined from its axis
and node-tag tests by composition, union, and taking
the counterdomain2 of a relation.

The paper is organized as follows. We finish this introduc-
tion by recalling related work. The next section defines Core
XPath. Sections 3 and 4 are about the expressive power of
XPath for selecting sets of nodes, and selecting sets of paths,
respectively. Section 5 establishes a minimal set of connec-
tives for XPath.

Related work
The paper most closely related to this work is the already
mentioned [2], which characterizes positive XPath without
sibling axis as existential positive first order logic. Charac-
terizations in terms of automata models have been given in
[3, 19, 17, 18].

Connections with temporal logic have been observed by
[12, 16] which sketch an embedding of the forward looking
fragment of XPath into CTL. [1] exploits embeddings of sub-
sets of XPath into computation tree logic to enable the use
of model checking for query evaluation. [15] discusses an
extension of XPath in which every first order definable set
of nodes can be expressed. Several authors have considered
extensions far beyond XPath 1.0, trying to capture all of
monadic second order logic.

2. CORE XPATH
[14] proposes a fragment of XPath 1.0 which can be seen

as its logical core, but lacks much of the functionality that
accounts for little expressive power. In effect, it supports all
XPath’s axis relations, except for the attribute and name-
space axis relations,3 it allows sequencing and taking unions
of path expressions and full booleans in the filter expres-
sions. It is called Core XPath, also referred to as naviga-
tional XPath. A similar logical abstraction is made in [2].
As the focus of this paper is expressive power, we focus also
XPath restricted to its logical core.

For the definition of the XPath language and its seman-
tics, we follow the presentation of XPath in [14]. The ex-
pressions obey the standard W3C unabbreviated XPath 1.0
syntax. The semantics is as in [2, 13], which is in line with
the standard XPath semantics [22].

Definition 1. The syntax of the Core XPath language
is defined by the grammar

the signature in one model are matched by a corresponding
move in the other model. We say that a binary relation α is
safe for bisimulations if this second clause also holds for α.
For instance, if the signature contains R and S, then R ◦ S,
R∗ and even (R ◦ S)∗ are all safe for bisimulations.
2The counterdomain of a binary relation R (notation: ∼R)
is the set {(x, y) | x = y ∧ ¬∃z xRz}.
3This is without loss of generality, as instead of modeling
attributes as distinct axes, as in the standard XML model,
we may assign multiple labels to each node, representing
whether a certain attribute-value pair is true at that node.

locpath ::= axis ‘::’ntst | axis ‘::’ ntst ‘[’fexpr‘]’ |
‘/’ locpath | locpath ‘/’ locpath |
locpath ‘|’ locpath

fexpr ::= locpath | not fexpr | fexpr and fexpr |
fexpr or fexpr

axis ::= self | child | parent |
descendant | descendant or self |
ancestor | ancestor or self |
following sibling | preceding sibling |
following | preceding,

where “locpath” (pronounced as location path) is the start
production, “axis” denotes axis relations and “ntst” denotes
tags labeling document nodes or the star ‘*’ that matches all
tags (these are called node tests). The “fexpr” will be called
filter expressions after their use as filters in location paths.
By an XPath expression we always mean a “locpath.”

The semantics of XPath expressions is given with respect to
an XML document modeled as a finite node labeled sibling
ordered tree4 (tree for short). Each node in the tree is labeled
with a set of primitive symbols from some alphabet. Sib-
ling ordered trees come with two binary relations, the child
relation, denoted by R⇓, and the immediate right sibling re-
lation, denoted by R⇒. Together with their inverses R⇑ and
R⇐ they are used to interpret the axis relations. We denote
such trees as first order structures (N, R⇓, R⇒, Pi)i∈Λ.

Each location path denotes a binary relation (a set of
paths). The meaning of the filter expressions is given by the
predicate E(n, fexpr) which assigns a boolean value. Thus a
filter expression fexpr is most naturally viewed as denoting a
set of nodes: all n such that E(n, fexpr) is true. For examples,
we refer to [14]. Given a tree M and an expression R, the
denotation or meaning of R in M is written as [[R]]M. Table 1
contains the definition of [[·]]M.

As discussed, one of the purposes of XPath is to select
sets of nodes. For this purpose the notion of an answer set
is defined. For R an XPath expression, and M a model,
answerM(R) = {n | ∃n′(n′, n) ∈ [[R]]M}. Thus the answer
set of R consists of all nodes which are reachable by the path
R from some point in the tree.

3. THE ANSWER SETS OF CORE XPATH
We show that on ordered trees, Core XPath is equally ex-

pressive as first order logic in two variables over the signature
with predicates corresponding to the child, descendant,
and following sibling axis relations. More precisely, we
show that for every XPath expression R, there exists an
XPath filter expression A such that, on every model M,

(2) answerM(R) = {n | EM(n, A) = true}.

Then, we show that every first order formula φ(x) in the
signature just mentioned is equivalent to an XPath filter
expression A in the sense that for every model M, and for
every node n,

(3) M |= φ(n) if and only if EM(n, A) = true.

First, though, we fix our terminology.

4A sibling ordered tree is a structure isomorphic to
(N, R⇓, R⇒) where N is a set of finite sequences of natural
numbers closed under taking initial segments, and for any
sequence s, if s · k ∈ N , then either k = 0 or s · k − 1 ∈ N .
For n, n′ ∈ N , nR⇓n′ holds iff n′ = n · k for k a natural
number; nR⇒n′ holds iff n = s · k and n′ = s · k + 1.

[[axis :: Pi]]M = {(n, n′) | n[[axis]]Mn′ and Pi(n
′)}

[[axis :: Pi[e]]]M = {(n, n′) | n[[axis]]Mn′ and Pi(n
′) and EM(n′, e)}

[[/locpath]]M = {(n, n′) | (root, n′) ∈ [[locpath]]M}
[[locpath/locpath]]M = [[locpath]]M ◦ [[locpath]]M

[[locpath | locpath]]M = [[locpath]]M ∪ [[locpath]]M

[[self]]M := {(x, y) | x = y}
[[child]]M := R⇓

[[parent]]M := [[child]]M
−1

[[descendant]]M := [[child]]M
+

[[descendant or self]]M := [[child]]M
∗

[[ancestor]]M := [[descendant]]M
−1

[[ancestor or self]]M := [[descendant or self]]M
−1

[[following sibling]]M := R+
⇒

[[preceding sibling]]M := [[following sibling]]M
−1

[[following]]M := [[ancestor or self]]M ◦ [[following sibling]]M ◦
[[descendant or self]]M

[[preceding]]M := [[ancestor or self]]M ◦ [[preceding sibling]]M ◦
[[descendant or self]]M

EM(n, locpath) = true ⇐⇒ ∃n′ : (n, n′) ∈ [[locpath]]M
EM(n, fexpr1 and fexpr2) = true ⇐⇒ EM(n, fexpr1) = true and EM(n, fexpr2) = true
EM(n, fexpr1 or fexpr2) = true ⇐⇒ EM(n, fexpr1) = true or EM(n, fexpr2) = true

EM(n, not fexpr) = true ⇐⇒ EM(n, fexpr) = false.

Table 1: The semantics of Core Xpath.

We work with first order logic over node labeled ordered
trees in a signature with unary predicates from Λ = {P1, P2,
. . .} and with a number of binary predicates correspond-
ing to “moves” in a tree. We use the predicates child,
descendant and following sibling. For moves a subset
of these three moves, we use FO2[moves] to denote the set
of first order formulas φ(x) in which at most x occurs free,
and which contain at most two variables in all of φ. More-
over, φ(x) is written in the signature consisting of Λ and
moves. When interpreted on a tree, a FO2[moves] formula
φ(x) denotes a set of nodes.

Theorem 2. For X a set of nodes in an ordered tree, the
following are equivalent:

• X is the answer set of some Core XPath expression;

• X is definable by a formula in FO2[descendant, child,
following sibling] in one free variable.

More precisely, for every formula φ(x) in FO2[descendant,
child, following sibling] with unary predicates from Λ,
there exists a Core XPath expression R written with node
tags Λ, such that on every tree M, answerM(R) = {n |
M |= φ(n)}, and conversely.

The equivalence can be proved by translations, given in Lem-
mas 3–5 below. The hard direction follows more or less di-
rectly from the argument used to show a similar statement
made for linear orders, characterizing temporal logic with
only unary temporal connectives by Etessami, Vardi and
Wilke [11].

Lemma 3 below shows that Core XPath is equally ex-
pressive as its filter expressions. Interestingly, Core XPath’s

filter expressions were introduced already in [5] for exactly
the same purpose as the XPath language: specifying sets
of nodes in finite ordered trees. The only difference is that
the language of [5] does not have the asymmetry between
the vertical and the horizontal axis relations: the immedi-
ate left and right sibling relations are also present. They
provide a complete axiomatization, in a logic called LOFT
(Logic Of Finite Trees), which might be of interest for query
rewriting.

Lemma 3. For any Core XPath expression R there exists
a Core XPath filter expression A without following and
preceding axis and without absolute expressions such that
for each model M,

answerM(R) = {n | EM(n, A) = true}.

The size of A is linear in the size of R.

Proof. Consider an arbitrary XPath expression. First per-
form the following substitutions, from left to right:

following :: Pi[A] ≡ ancestor or self :: ∗(4)

/following sibling :: ∗
/descendant or self :: Pi[A]

preceding :: Pi[A] ≡ ancestor or self :: ∗(5)

/preceding sibling :: ∗
/descendant or self :: Pi[A]

/R ≡(6)

ancestor or self :: ∗[not parent :: ∗]/R

The result is an equivalent formula without following and
preceding axis and without absolute expressions. Let R be

the result. Now obtain A by applying the converse operator
(·)−1 as follows:

(S | T)−1 ≡ S−1 | T−1

(S/T)−1 ≡ T−1/S−1

(axis :: Pi[B])−1 ≡ self :: Pi[B]/axis−1 :: ∗,

with axis−1 having the obvious meaning. Note that it is
crucial that the Core XPath axis relations are closed under
taking converses. Then, for each node n, n ∈ answerM(R)
iff5 E(n, A) equals true. Whence the lemma. qed

Lemma 4. The answer set of any Core XPath expres-
sion can be defined by a formula of FO2[descendant, child,
following sibling] in one free variable.

Proof. Let R be a Core XPath expression. Let A be the
filter expression obtained in Lemma 3. Apply the standard
translation well known from modal logic to A to obtain the
desired first order formula (cf., Vardi [20] which takes care to
use only two variables). The translation is just the definition
of E from Table 1 written in first order logic. qed

With this we have shown the easy side of Theorem 2. Now
we discuss the other side, following [11].

Lemma 5. Every set of nodes defined by a formula in
FO2[descendant, child, following sibling] with one free
variable can be defined as the answer set of an absolute Core
XPath expression.

We note that, as in [11], the size of the filter expression is
exponential in the size of the first order formula. [11] show
that on finite linear structures already this is unavoidable,
so also on trees this bound is tight.

Proof. Let φ(x) be the first order formula. We will provide
an XPath filter expression A such that (3) holds. Whence
descendant or self :: ∗[A] is the desired absolute XPath
expression. The proof is a copy of the one for linear temporal
logic in Theorem 1 in [11]. The only real change needed is in
the set of order types: they are given in the right hand side
of Table 2, together with the needed translations (A′ denotes
the translation of A). The other change is rather cosmetic.
For A an atom, A(x) needs to be translated using the self
axis as self :: A. Thus, for instance, ∃y(y childx ∧ A(x))
translates to parent :: ∗ [self :: A]. Translating φ(x),
the result of this process is a filter expression A for which
in any model, for every node n, M, E(n, A) equals true iff
M |= φ(n). qed

Remark 6. Just as in [11], it is straightforward to apply
the argument to XPath fragments with less or more axis re-
lations, as long as the axis are closed under taking converses.
The argumentation in Table 2 is modular in the operators.
Care has to be taken with the axis used in defining away the
following and preceding axis and the absolute expressions.
In some cases, the signature of the first order language has
to be expanded.

5Because n ∈ answerM(R) iff by definition there exists n′

such that n′Rn iff there exists n′ such that nR−1n′ iff, by
definition, E(n, A) equals true.

4. THE PATHS OF CORE XPATH
In the previous section we characterized the answer sets of

XPath. We now turn to the sets of paths that can be defined
in XPath; they too admit an elegant characterization which
we provide here. First, we define the appropriate first order
language.

A conjunctive path query is a conjunctive query of the
form

Q(x, y) :− R1 ∧ . . . ∧Rn ∧ φ1 ∧ . . . ∧ φm,

in which the Ri are relations from the signature {descendant,
child, following sibling} and all of the φi are formulas
in FO2[descendant, child, following sibling] in one free
variable. An example is provided by

Q(x, y) : − z descendantx, z following sibling z′,

z′ descendant y, P1(z), P2(y),

which is equivalent to the XPath expression

ancestor :: P1/following sibling :: ∗/descendant :: P2.

With a union of conjunctive path queries we mean a dis-
junction of such queries with all of them the same two free
variables x and y. For example,

descendant :: P2 | parent :: ∗/ancestor :: P1

is equivalent to the union of the two queries

Q(x, y) : −x descendant y, P2(y)

and

Q(x, y) : −z childx, z ancestor y, p1(y).

¿From Lemma 4 and some simple syntactic manipulation we
immediately obtain

Proposition 7. Every XPath expression is equivalent to
a union of conjunctive path queries.

The converse also holds, which gives us a characterization
of the XPath definable sets of paths.

Theorem 8. For every union of conjunctive path queries
Q(x, y) there exists a Core XPath expression R such that for
every model M, {(n, n′) | M |= Q(n, n′)} = [[R]]M.

For lack of space we can only give a sketch of the proof.
The theorem can be shown using (3) and an extension of the
argument as used in [2], where Benedikt, Fan, and Kuper
show that positive XPath without sibling axis is equivalent
to positive existential first order logic.

4.1 Structural properties of XPath
Benedikt, Fan and Kuper [2] have given an in depth anal-

ysis of a number of structural properties of fragments of
XPath. Their fragments are all positive (no negations in-
side the filters) and restricted to the “vertical” axis relations
defined along the tree order. All their fragments allowing fil-
ter expressions are closed under intersection, while none is
closed under complementation. Here, we show that this is
also true for full XPath.

Theorem 9. Core XPath is closed under intersections.
That is, for every two Core XPath expressions A, B, there
exists a Core XPath expression C such that on every model
M, [[A]]M ∩ [[B]]M = [[C]]M.

τ(x, y) ∃y(τ(x, y) ∧A(y))

x = y self :: ∗ [A′]
x child y child :: ∗ [A′]
y childx parent :: ∗ [A′]

x following sibling y following sibling :: ∗ [A′]
y following siblingx preceding sibling :: ∗ [A′]

x descendant y ∧ ¬x child y child :: ∗/descendant :: ∗ [A′]
y descendantx ∧ ¬y childx parent :: ∗/ancestor :: ∗ [A′].

Table 2: Order types and their translation

Proof. This follows immediately from Theorem 8 and
Proposition 7. qed

Theorem 10. Core XPath is not closed under comple-
mentation.

Proof. Suppose it was. We will derive a contradiction.
Then (1) would be expressible. (1) is equivalent to the first-
order formula

∃y(x descendant y ∧A(y) ∧(7)

∀z((x descendant z ∧ z descendant y) → ¬B(z))).

A standard argument shows that this set cannot be specified
using less then three variables. This contradicts Theorem 2
which states that the answer set of every XPath expression
is equivalent to a first order formula in two variables. qed

5. THE CONNECTIVES OF XPATH
In this section we look at the connectives of XPath and

argue that they are very well chosen. We disregard the fol-
lowing and preceding axis relations as well as absolute ex-
pressions (those are expressions starting with a /) as they
are definable anyway (cf. Lemma 3 above). What are the
connectives of XPath? This question is not trivial. Clearly,
there is composition (‘/’) and union (‘|’) of paths. Then
there is composition with a filter expression (‘[F]’). And
inside the filter expressions all boolean connectives are al-
lowed. It turns out that this rather messy set can be stream-
lined.

Consider the following definition of path formulas:

(8) R ::= axis | ?Pi | R/R | R|R | ∼R,

for axis one of Core XPath’s axis relations, for Pi a tag-
name, and the following meaning for the two new connec-
tives:

[[?Pi]]M = {(x, x) | the tag of x is Pi}
[[∼R]]M = {(x, y) | x = y and ¬∃z x[[R]]Mz}.

We call this language SCX (short for short core xpath). ?Pi

simply tests whether a node has tag Pi. Thus child :: Pi

can be written as child/?Pi. The unary operator ∼ is some-
times called counterdomain. For instance ∼child defines
the set of all pairs (x, x) for x a leaf, and ∼parent the sin-
gleton {(root, root)}.

Below we explain why this set of connectives is so nice.
First we show that this definition is equivalent in a very
strong sense to that of Core XPath.

Theorem 11. There exist linear translations t1, t2 with
t1 : Core XPath −→ SCX and t2 : SCX −→ Core XPath
such that for all models M, the following hold:

• for every XPath expression R, [[R]]M = [[t1(R)]]M,

• for every SCX expression R, [[R]]M = [[t2(R)]]M.

Proof. Because the counterdomain of a relation R is defin-
able in XPath as self :: ∗[not R], every relation defined in
(8) can be expressed as a Core XPath formula. For the other
side, first observe that axis :: Pi and axis/?Pi are equiva-
lent. As both languages are closed under composition and
union, we only have to show that all filter expressions are
expressible. With the following equivalences we can extend
? to all filter expressions (cf. Lemma 2.82 in [4]):

?(axis :: Pi) ≡ ∼∼(axis/?Pi)
?(axis :: ∗) ≡ ∼∼(axis/(?Pi ∪ ∼?Pi)

?(axis :: Pi[A]) ≡ ∼∼(axis/?Pi/?A)
?(not A) ≡ ∼?A

?(A and B) ≡ ?A/?B
?(A or B) ≡ ?A |?B.

A simple semantic argument shows the correctness of these
equations. qed

So we can conclude that the “true” set of XPath connectives
consists of testing a node tag, composition, union and coun-
terdomain. This set of connectives between binary relations
is closely connected to the notion of bisimulation, as exem-
plified in Theorem 12 below. Before we state it we need a
couple of definitions.

For P a set of tag names, and R a set of relation names,
let BP,R denote the P, R bisimulation relation. Let D, D′

be XML tree models and BP,R a non-empty binary relation
between the nodes of D and D′. We call BP,R a P R bisim-
ulation if, whenever xBP,Ry, then the following conditions
hold, for all relations S ∈ R,

tag x and y have the same tag names, for all tag names in
P ;

forth if there exists an x′ ∈ D such that xSx′, then there
exists a y′ ∈ D′ such that ySy′ and x′By′;

back similarly for y′ ∈ D′.

Let α(x, y) be a first order formula in the signature with
unary predicates P and binary relations R. We say that
α(x, y) is safe for P, R bisimulations if the back and forth
clauses of the bisimulation definition hold for α(x, y), for all
P, R bisimulations. In words, if α(x, y) is safe for bisimula-
tions, it acts lack a morphism with respect to bisimulations.
It is easy to see that all relations defined in (8) are safe for
bisimulations respecting the node tags and the atomic axis
relations. The other direction is known as van Benthem’s
safety theorem (see [4] Theorem 2.83):

Theorem 12 (van Benthem). Let α(x, y) be as above.
If α(x, y) is safe for P, R bisimulations it can be defined by
the grammar in (8).

Why is this result so important? XPath is a language in
which we can specify relations between nodes, and in sev-
eral applications (like XQuery) it is used in this way. Theo-
rems 12 and 11 together guarantee that XPath is in a well de-
fined sense complete: every relation which is safe for bisimu-
lations respecting node tags and XPath’s axis relations can
be defined in XPath.

6. CONCLUSIONS
We have given semantic characterizations of navigational

XPath in terms of natural fragments of first order logic. Be-
sides that, we looked at the connectives of XPath and also
argued that they are nicely chosen. We can conclude that
the navigational part of XPath is a very well designed lan-
guage. On ordered trees it corresponds to a natural fragment
of first order logic. This holds both for the sets of nodes and
the sets of paths definable in XPath. The characterization in
terms of conjunctive queries seems especially useful, as this
is a very natural and user-friendly way to specify relations.

The only negative aspect we discovered concerning XPath
is that it is not closed under complementation. We turn
to that now, by considering two obvious points we did not
address here yet:

• Is every first order definable set of nodes definable in
XPath?

• Is every first order definable set of paths definable in
XPath?

By Theorem 10, both questions are answered negatively. [15]
showed that expanding XPath with conditional axis rela-
tions6 yields expressive completeness for answer sets. In an
unpublihed manuscript we have also shown that the same
language is complete for expressing every first order defin-
able set of paths.

Further investigations are needed for fragments not con-
taining all the Booleans and we are working on that.

7. ACKNOWLEDGMENTS
We want thank Loredana Afanasiev, Jan Hidders, and

Petrucio Viana for valuable feedback.
Maarten Marx was supported by the Netherlands Orga-

nization for Scientific Research (NWO), under project num-
ber 612.000.106. Maarten de Rijke was supported by grants
from NWO, under project numbers 365-20-005, 612.069.006,
612.000.106, 220-80-001, 612.000.207, and 612.066.302.

8. REFERENCES
[1] L. Afanasiev, M. Francheschet, M. Marx, and

M. de Rijke. CTL Model Checking for Processing
Simple XPath Queries. In Proceedings Temporal
Representation and Reasoning (TIME 2004), 2004.

6A conditional axis relation is of the form
(child :: ntst[fexpr])∗ which denotes the reflexive and tran-
sitive closure of the relations denoted by child :: ntst[fexpr].
Using this we can express the set of nodes in (1) by

self :: ∗[(child :: ∗[not self :: B])∗/child :: A].

[2] M. Benedikt, W. Fan, and G. Kuper. Structural
properties of XPath fragments. In Proceedings. ICDT
2003, 2003.

[3] G. Bex, S. Maneth, and F. Neven. A formal model for
an expressive fragment of XSLT. Information Systems,
27(1):21–39, 2002.

[4] P. Blackburn, M. de Rijke, and Y. Venema. Modal
Logic. Cambridge University Press, 2001.

[5] P. Blackburn, W. Meyer-Viol, and M. de Rijke. A
proof system for finite trees. In H. Kleine Büning,
editor, Computer Science Logic, volume 1092 of
LNCS, pages 86–105. Springer, 1996.

[6] World-Wide Web Consortium. XML path language
(XPath): Version 1.0.
http://www.w3.org/TR/xpath.html.

[7] World-Wide Web Consortium. XML path language
(XPath): Version 2.0.
http://www.w3.org/TR/xpath20/.

[8] World-Wide Web Consortium. XML schema part 1:
Structures. http://www.w3.org/TR/xmlschema-1.

[9] World-Wide Web Consortium. XQuery 1.0: A query
language for XML. http://www.w3.org/TR//xquery/.

[10] World-Wide Web Consortium. XSL transformations
language (XSLT): Version 2.0.
http://www.w3.org/TR/xslt20/.

[11] K. Etessami, M. Vardi, and Th. Wilke. First-order
logic with two variables and unary temporal logic. In
Proceedings 12th Annual IEEE Symposium on Logic in
Computer Science, pages 228–235, Warsaw, Poland,
1997. IEEE.

[12] G. Gottlob and C. Koch. Monadic queries over
tree-structured data. In Proc. LICS, Copenhagen,
2002.

[13] G. Gottlob, C. Koch, and R. Pichler. Efficient
algorithms for processing XPath queries. In Proc. of
the 28th International Conference on Very Large Data
Bases (VLDB 2002), 2002.

[14] G. Gottlob, C. Koch, and R. Pichler. The complexity
of XPath query evaluation. In PODS 2003, pages
179–190, 2003.

[15] M. Marx. Conditional XPath, the first order complete
XPath dialect. In Proceedings of PODS’04, 2004.

[16] G. Miklau and D. Suciu. Containment and equivalence
for an XPath fragment. In Proc. PODS’02, pages
65–76, 2002.

[17] T. Milo, D. Suciu, and V. Vianu. Typechecking for
XML transformers. In Proceedings PODS, pages
11–22. ACM, 2000.

[18] M. Murata. Extended path expressions for XML. In
Proceedings PODS, 2001.

[19] F. Neven and T. Schwentick. Expressive and efficient
pattern languages for tree-structured data. In Proc.
PODS, pages 145–156. ACM, 2000.

[20] M. Vardi. Why is modal logic so robustly decidable?
In DIMACS Series in Discrete Mathematics and
Theoretical Computer Science 31, pages 149–184.
American Math. Society, 1997.

[21] V. Vianu. A Web odyssey: from Codd to XML. In
Proc. PODS, pages 1–15. ACM Press, 2001.

[22] P. Wadler. Two semantics for XPath. Technical
report, Bell Labs, 2000.

http://www.w3.org/TR/xpath.html
http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xmlschema-1
http://www.w3.org/TR//xquery/
http://www.w3.org/TR/xslt20/

	1 Introduction
	2 Core XPath
	3 The answer sets of Core XPath
	4 The paths of Core XPath
	4.1 Structural properties of XPath

	5 The connectives of XPath
	6 Conclusions
	7 Acknowledgments
	8 REFERENCES -9pt

