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ABSTRACT
Click models allow us to interpret user click behavior in search
interactions and to remove various types of bias from user clicks.
Existing studies on click models consider a static scenario where
user click behavior does not change over time. We show empirically
that click models deteriorate over time if retraining is avoided. We
then adapt online expectation-maximization (EM) techniques to
e�ciently incorporate new click/skip observations into a trained
click model. Our instantiation of Online EM for click models is
orders of magnitude more e�cient than retraining the model from
scratch using standard EM, while loosing li�le in quality. To deal
with outdated click information, we propose a variant of online
EM called EM with Forge�ing, which surpasses the performance of
complete retraining while being as e�cient as Online EM.

CCS CONCEPTS
•Information systems →Web search engines; Information
retrieval; Retrieval models and ranking;

1 INTRODUCTION
Click models have been developed to interpret user click behav-
ior in search and to convert biased clicks on search results into
unbiased estimates of the results’ relevance [3]. Click models are
used in various information retrieval tasks, such as ranking [1, 4],
evaluation [2, 12] and user simulation [11, 16].

Existing studies of click models assume that user click behavior
does not change over time. In this static scenario, click models
are trained using a historical click log and evaluated on a limited
test set of “future” clicks. �is static assumption rarely holds in
practice [14]. User click behavior changes over time and it is, there-
fore, important to keep click models up to date. �is problem has
been identi�ed previously [9, 10], but has not yet been studied
extensively. We recognize two challenges in keeping click models
up to date. First, how to e�ciently incorporate newly observed
information into a trained click model? Second, how to remove
outdated information from a trained click model?
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We consider the most widely used and e�ective inference tech-
nique for click models, i.e., expectation-maximization, and study
it in an online scenario. We propose two methods to adapt EM
to online se�ings: Online EM, which e�ciently incorporates new
click information into click models, and EM with Forge�ing, which
deals with outdated clicks. We show experimentally that Online
EM is orders of magnitude more e�cient than complete retraining,
while loosing li�le in the quality of updated click models; EM with
Forge�ing can surpass the e�ectiveness of complete retraining.

2 BACKGROUND AND RELATEDWORK
Most click models operate with binary random variables and corre-
sponding probabilities, e.g., how a�ractive a document is given a
query, what the probability of examining a certain position on a
SERP is, etc. �ese probabilities are the parameters of click models
and they need to be estimated from observed clicks and skips.

�e parameters of clickmodels are usually calculated using either
maximum likelihood estimation (MLE) or expectation-maximization
(EM) [3]. MLE parameter estimation is used when a click model
does not have hidden random variables. MLE does a single pass
over a click log and calculates the model parameters directly based
on the observed clicks. �us, click models that use MLE are fast to
train and straightforward to update in online se�ings. However,
these models have been shown to perform worse than models that
require EM for parameter estimation [6].

EM parameter estimation is used when a click model has hidden
variables. EM estimates the model parameters iteratively. At each
iteration, the current values of the parameters are �xed and new
values are calculated based on user clicks and current values. At
the end of each iteration, the values of the parameters are updated.
Click models that use EM are much slower to train than ones that
use MLE, but display be�er performance [6]. However, click models
that use EM cannot be directly updated in online se�ings. When
new user clicks become available, such models have to be retrained
completely using all clicks observed so far. We address this problem
and solve it by adopting online EM algorithms [13, 15]. To the best
of our knowledge, no previous work has dealt with outdated clicks.

3 ONLINE EXPECTATION-MAXIMIZATION

Online scenario and EMwith Retraining. Various applications
of click models (e.g., ranking, model-based evaluation, etc.) operate
with click models trained using a historical click log. We assume
that we have a click modelM that is trained on n past observations
of clicks/skips. As time passes, new clicks/skips are observed that
can be used to update the trained modelM . We would like to update
M a�er observingm new clicks/skips, wherem ≥ 1. �e task of



online parameter estimation is, thus, to consider n+m observations
for training (or updating) the click modelM .

Completely re-training themodel parameters using EM inference
has a computational complexity of O ([n +m] · K ), where K is the
number of iterations. If we performT consecutive updates of sizem,
then the complexity becomesO ([n +m ·T ] ·K ) for theT -th update.
�us,T consecutive updates, each consideringm new observations,
have a complexity ofO ([n ·T +m ·∑Ti=1 i] ·K ) = O ([n ·T +m ·T 2] ·K ),
which is quadratic in the number of updates. In the rest of the paper,
we refer to this approach as EM with Retraining.
Online EM. Online (or incremental) EM reduces the computational
cost of EMwith Retraining by updating the model parameters using
only a part of the available data [13, 15]. Following this idea, we
adapt EM inference for click models so as to update the models’
parameters in online se�ings.

Most click models (and particularly those that use EM) consist
of Bernoulli-distributed random variables X ∼ Bernoulli(θ ), where
θ is a parameter corresponding to a random variable X . For ex-
ample, most click models have an a�ractiveness random variable
Aqd ∼ Bernoulli(αqd ) that is equal to 1 if, and only if, document d
is a�ractive to a user given query q. In a number of click models,
such as UBM, DBN, and CCM, this random variable is not observed
and so its corresponding parameter αqd has to be estimated using
EM inference.

In general, the parameter θ of a Bernoulli-distributed random
variable X is computed as the number of query sessions where
X = 1, divided by the number of query sessions where X is de�ned:

θ = 1
|SX |

∑
s ∈SX P (X (s ) = 1 | C(s ) ), (1)

where SX is the set of query sessions where random variable X is
de�ned, X (s ) is the value of X in a particular query session s and
C(s ) is the vector of clicks and skips observed in session s .

However, if a random variable X is not observed (e.g., Aqd is
not observed in UBM, DBN and CCM), the probability P (X (s ) =

1 | C(s ) ) cannot be computed directly from clicks C(s ) . Instead,
this probability should be estimated based both on the observed
clicks/skips C(s ) and the current values of all the parameters of
a click model (we will denote these values as Ψ(k ) , where k is
the iteration counter). �en, the parameter θ should be updated
iteratively as follows:

θ (k+1) = 1
|SX |

∑
s ∈SX P (X (s ) = 1 | C(s ) ,Ψ(k ) ). (2)

In an online scenario, we have a click modelM that is trained on n
past observations of clicks/skips. In other words, all the parameters
of M are already estimated, i.e., the sum in Eq. 2 is calculated
for all θ ’s. Let PX denote this sum. �en, the learned parameter,
denoted as θ (curr ) , can be wri�en as θ (curr ) = PX /|SX |. When
we observe a new query session s with clicks C(s ) , we need to
update the current value θ (curr ) taking into account both the already
calculated quantity PX and the new observations C(s ) . Iteratively
re-estimating all the parameters of the model M for every newly
observed query session is prohibitively slow in practice. Instead,
we adapt the online EM inference method [13, 15] and update the
value of the click model parameters as follows:

θ (new) =
PX + P (X

(s ) = 1 | C(s ) ,Ψ(k ) )

|SX | + 1
, (3)

where the probability added to PX is the same as in Eq. 2.
Eq. 3 allows us to update the model parameters instantly, moving

from the current values θ (curr ) to the new values θ (new) as soon as
new clicks/skips C(s ) are observed. For this reason, we call this
approach Online EM.

�e complexity of Online EM is linear with respect to the number
of observations, i.e., it is O (m) form new clicks/skips no ma�er
how many updates are performed. T consecutive updates, each
consideringm new observations, have a complexity of O (m · T ),
which is linear with respect to the number of updates. Moreover,
the complexity of this approach does not depend on the number of
past observations n (which could have a signi�cant impact on the
execution time in case n �m) and the number of iterations K .
EM with Forgetting. Online EM addresses the problem of how to
e�ciently update click models in an online scenario by considering
newly observed clicks/skips. �e second challenge here is how to
deal with past clicks, which may become outdated as time passes.
In this section we adopt the idea of “forge�ing” (or “aging”) [8,
13] and propose the EM with Forge�ing method that discounts
past observations depending on their age. In particular, during
every update of the model parameters, a certain percentage of past
observations, denoted η here, can be “forgo�en” as follows:

θ (new) =
PX · (1 − η) + P (X (s ) = 1 | C(s ) ,Ψ(k ) )

|SX | · (1 − η) + 1
. (4)

�e forge�ing ratio η has the following interpretation. Assume
that a�er observingm new clicks/skips and performingm updates
for a particular query-document pair, we need to forget x% of past
observation. �en (1 − η)m = 1 − x , so η = 1 − m√1 − x . E.g., if we
would like to forget 50% of past observations a�er 20 updates, then
η ≈ 0.034. To forget 10% a�er 10 updates, we need to set η ≈ 0.01.

�e computational complexity of this approach is the same as
for Online EM, i.e.,O (m) for a single update of sizem andO (m ·T )
for T consecutive updates.

4 EXPERIMENTAL SETUP
Dataset. �ere exist several publicly available datasets with click
logs [3]. �e one suitable for our task is the Yandex personalized
web search challenge dataset (PWSC),1 because it contains both the
click/skip and time information. �e timestamps provided are at the
level of days. We use the �rst two weeks of the dataset, consisting
of 33,310,079 query sessions, as historical data and the next 13 days,
consisting of 31,862,774 query sessions, to simulate the incoming
click stream.
Methodology. To evaluate our proposed online EM methods, we
use the following experimental protocol:
(1) Consider a click modelM , trained on days 1, . . . ,x of the click

log. Initially, x = 14.
(2) EvaluateM using the click log of day x + 1.
(3) UpdateM using data collected on day x + 1.
(4) Increment x and repeat steps 1–3 until all days of the dataset

have been considered, i.e., x + 1 = 27.
Since the online scenario for click models has not been studied yet,
there are no standard baselines to compare against for online click
modeling. To get an understanding of the relative e�ciency and
1h�ps://www.kaggle.com/c/yandex-personalized-web-search-challenge
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Table 1: Performance of click models with EM inference
trained on the �rst two weeks of the click log and evaluated
on the next 13 days. M denotes the best click model with sta-
tistically signi�cant di�erences compared to other models.

Model Log-likelihood Perplexity

UBM –0.2204M 1.2825M
DBN –0.3523 1.3135
CCM –0.3534 1.3176

e�ectiveness of our online EM updating strategies, we compare
them to two extreme cases:
(i) Static, where a click model that has been trained once is kept

unchanged, i.e., step 3 of the above protocol is not performed.
(ii) EM with Retraining, where a click model is re-trained from

scratch every day, using historical and newly observed click-
through data, i.e., in step 3 of the above protocol instead of
updating the model, we retrain it using all data from days
{1, . . . ,x + 1}.

Metrics. We are interested in assessing two aspects of our proposed
strategies for updating click models: e�ciency and e�ectiveness.
We assess e�ciency by the time it takes to update click models. And
we measure e�ectiveness of our click model updating strategies
using standard metrics, namely log-likelihood and perplexity [3,
5, 7]. Statistical signi�cance of observed di�erences is determined
using a paired Student t-test at the 0.01 level.

When measuring perplexity and log-likelihood, we use all avail-
able data to train and test click models. In this case, training is
performed on a MapReduce cluster. To measure execution time, we
use a part of the dataset that can be processed on a single machine
with 2.00GHz CPU and 64Gb RAM (because we cannot control the
cluster load and distribution of our jobs). In particular, we use the
�rst 100K query sessions of each day to measure the time it takes
to train and update click models.
Click models. To assess the impact of online EM on click models,
we need to select one or more click models that require EM for their
inference. DBN [1], UBM [5], and CCM [7] are the standard click
models of this kind [3]. Table 1 shows performance of the above
models when trained on the �rst two weeks of the PWSC dataset
and evaluated on the next 13 days.

We see from Table 1 that UBM signi�cantly outperforms both
DBN and CCM, a �nding that is in line with other results reported
on the Yandex relevance prediction challenge dataset [3, 6].2 For
this reason, we use the UBM model in our experiments.

5 RESULTS AND DISCUSSION
E�ciency. In Section 3 we show that Online EM and EM with
Forge�ing have lower computational complexity than EM with Re-
training. Here, we show that the gains from the reduced complexity
are also practically important. To do that, we measure the time it
takes for Online EM, EM with Forge�ing and EM with Retraining
to update the trained UBM model once a day using days 15–27 of
the PWSC dataset. (As explained in the previous section, we use
the �rst 100K query sessions of each day.)

2See also h�ps://academy.yandex.ru/events/data analysis/relpred2011/

Table 2: Execution time in minutes of EM with Retraining,
Online EM and EM with Forgetting when updating UBM on
days 15–27 of the PWSC dataset. Time is measured on a sub-
set of the click log (�rst 100K query sessions of each day).
Update strategy Min Max Average Total

(day 15) (day 27)
EM with Retraining 28.1 49.6 39.7 516.1
Online EM 0.3 0.3 0.3 3.9
EM with Forge�ing 0.3 0.3 0.3 3.9

Table 2 lists the execution times of EM with Retraining, Online
EM, and EM with Forge�ing. Online EM and EM with Forge�ing
are 130 times more e�cient than EMwith Retraining. �is improve-
ment can be explained by the fact that EM with Retraining does
K passes over n +m observations, while Online EM (and EM with
Forge�ing) does only 1 pass overm observations. Also, Online EM
(and EM with Forge�ing) requires constant time to incorporatem
observations (18 seconds), while the time for EM with Retraining
grows from 28 minutes (for day 15) to 50 minutes (for day 27).
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(a) Log-likelihood (lower is be�er)
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(b) Perplexity (higher is be�er)

Figure 1: Di�erence in log-likelihood and perplexity be-
tween EM with Retraining (oracle) and other methods. EM
with Forgetting uses η = 0.001.

E�ectiveness of Online EM. Next, we compare the e�ectiveness
of Online EM, which incorporates newly observed click information
on the �y, to the Static approach, which ignores newly observed
clicks, and to EM with Retraining, which trains click models from
scratch every day using historical data and newly observed clicks.
In particular, we aim to answer the following questions: (i) Does
Online EM achieve higher e�ectiveness compared to the Static
approach? (ii) Does Online EM achieve a comparable e�ectiveness
to the one of EM with Retraining? To answer these questions, we
measure the log-likelihood and perplexity of the UBM model a�er
daily updates using days 15–27 of the PWSC dataset.

We consider EM with Retraining as an oracle and plot the perfor-
mance of the Static and Online EM approaches with respect to this
oracle (Fig. 1). Note that the perplexity deltas are negative, because
lower values of perplexity indicate higher e�ectiveness. In addition,
we report the average values of log-likelihood and perplexity in
Table 3 (top half).

Fig. 1 shows that EM with Retraining, which trains click models
from scratch every day, achieves the best e�ectiveness. Online EM
signi�cantly improves the quality of click models over the Static

https://academy.yandex.ru/events/data_analysis/relpred2011/


Table 3: Average e�ectiveness of di�erent update strategies.
All update strategies are signi�cantly better than the Static
approach. M/O denote statistically signi�cant di�erences
with respect to EM with Retraining; N/H denote statistically
signi�cant di�erences with respect to Online EM.
Update strategy Log-likelihood Perplexity

EM with Retraining –0.2180 1.2783
Static –0.2204O 1.2825O
Online EM –0.2188O 1.2796O

EM with Forge�ing, η = 0.001 –0.2178 N 1.2777MN

EM with Forge�ing, η = 0.005 –0.2180 N 1.2775MN

EM with Forge�ing, η = 0.01 –0.2183ON 1.2775MN

approach, because it utilizes additional information, i.e., newly
observed clicks/skips, to update the model parameters. However,
the e�ectiveness of Online EM does not reach the e�ectiveness of
EM with Retraining, while being close to it (see Table 3).

Note that, as opposed to Online EM, EM with Retraining �rst col-
lects a number of click/skip observations and then uses all available
information to update the model parameters. �is way it uses more
information than Online EM and, thus, achieves higher e�ective-
ness but at substantially higher computational costs. In particular,
EM with Retraining cannot be used to continuously update click
models in online se�ings.
E�ectiveness of EM with Forgetting. Here, we evaluate the
e�ectiveness of EM with Forge�ing, which deals with outdated
click information. We aim to answer the following question: Does
EM with Forge�ing, which discounts past click/skip observations,
improve the e�ectiveness of Online EM, which does not do any dis-
counting? To answer this question, we measure the log-likelihood
and perplexity of UBM that is updated using EM with Forge�ing
during days 15–27 of the PWSC dataset.

We use forge�ing rates η of 0.001, 0.005 and 0.01 in our experi-
ments. Lower values of η did not result in any changes in e�ective-
ness, while larger values did degrade the performance. �e average
absolute values of log-likelihood and perplexity are presented in
Table 3 (bo�om half), where all di�erences between EM with For-
ge�ing and Online EM are statistically signi�cant. �e relative
performance of EM with Forge�ing (η = 0.001) compared to EM
with Retraining is presented in Fig. 1.

First, we see that EM with Forge�ing signi�cantly improves the
e�ectiveness of Online EM. �is con�rms our intuition that click
information becomes outdated over time and past observations
need to be discounted. Second, EM with Forge�ing for η = 0.001
and η = 0.005 reaches the same e�ectiveness as EMwith Retraining
in terms of log-likelihood and signi�cantly outperforms the la�er
in terms of perplexity for all forge�ing rates. Hence, EM with
Forge�ing is at least as e�ective as EM with Retraining, while being
orders of magnitude more e�cient. �is result suggests that in
online scenarios EM with Forge�ing should be preferred over both
Online EM and EM with Retraining.

6 CONCLUSIONS
We have studied click models in an online scenario, where a search
engine deals with a stream of click/skip observations. We have

shown that the e�ectiveness of once trained click models degrades
over time and, thus, these models must be constantly updated to
keep up with the click stream.

We have proposed Online EM to e�ciently update click models
on the �y using readily available EM equations as well as the EM
with Forge�ing method to deal with outdated click information by
discounting past observations depending on their age. We have
shown experimentally that the proposed methods are orders of
magnitude more e�cient than complete retraining and, as opposed
to the la�er, always keep click models up to date. We have also
shown that Online EM and EM with Forge�ing have signi�cantly
higher e�ectiveness than the static approach with no updates.

With this work we aim to move click modeling research closer
to more real-world se�ings. As to future work, we plan to study
the e�ect of the forge�ing rate on di�erent click model parameters;
and to develop methods for dealing with outdated click information
for other inference methods (e.g., probit).
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