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ABSTRACT
Managing the data for Information Retrieval (IR) experiments can
be challenging. Dataset documentation is scattered across the In-
ternet and once one obtains a copy of the data, there are numerous
different data formats to work with. Even basic formats can have
subtle dataset-specific nuances that need to be considered for proper
use. To help mitigate these challenges, we introduce a new robust
and lightweight tool (ir_datasets) for acquiring, managing, and
performing typical operations over datasets used in IR. We pri-
marily focus on textual datasets used for ad-hoc search. This tool
provides both a Python and command line interface to numerous
IR datasets and benchmarks. To our knowledge, this is the most
extensive tool of its kind. Integrations with popular IR indexing
and experimentation toolkits demonstrate the tool’s utility. We also
provide documentation of these datasets through the ir_datasets
catalog: https://ir-datasets.com/. The catalog acts as a hub for in-
formation on datasets used in IR, providing core information about
what data each benchmark provides as well as links to more detailed
information. We welcome community contributions and intend to
continue to maintain and grow this tool.
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1 INTRODUCTION
The datasets and benchmarks we use are a cornerstone of Informa-
tion Retrieval (IR) research. Unfortunately, many of these datasets
remain frustrating to find and manage. Once obtained, the variety
of data formats can be a challenge to work with. Even data formats
that seem simple can hide subtle problems. For example, the TSV
files used by the MS-MARCO [66] has a double-encoding problem
that affects special characters in roughly 20% of documents.

Recently, several tools have begun to incorporate automatic
dataset acquisition. These include Capreolus [93], PyTerrier [58]
and OpenNIR [55]. These reduce the user burden of finding the
dataset source files and figuring out how to parse them correctly.
However, the dataset coverage of each individually is patchy, as
shown in Table 1. Further, using the dataset interfaces outside
of these tools can be difficult, as they are often tightly coupled
with the tool’s primary functionality. Finally, each of these tools
keep their own copy of data, leading to wasted storage. Thus, it
is advantageous to have a lightweight tool that focuses on data
acquisition, management, and typical operations like lookups.

Many tools rely on manual instructions for downloading, ex-
tracting, and processing datasets.1 We believe providing a tool to
automatically perform as much of this work as possible is clearly
preferable to this approach since it ensures proper processing of
data. A common automatic tool has additional advantages, such as
reducing redundant copies of datasets and easily allowing tools to
be run on alternative or custom datasets with little effort.

Anserini [91] and its Python interface Pyserini [53] use a hybrid
approach by distributing copies of queries and relevance judgments
in the package itself and primarily relying on manual instructions
for document processing. Sometimes Anserini provides document
content via downloadable indices.

Other dataset distribution tools are not well-suited for IR tasks.
For instance, packages like HuggingFace Datasets [90] and Ten-
sorFlow Datasets [3] take a record-centric approach that is not
well-suited for relational data like documents, queries, and query-
document relevance assessments. Furthermore, IR work involves ad-
ditional important use cases whenworking with datasets, such as ef-
ficiently looking up a document by ID, for which the designs of prior
libraries is not conducive. Dataset schemata, such as DCAT and
schema.org, provide a common format machine-readable dataset
documentation, which could be supported in the future.

1Such as https://github.com/castorini/anserini/blob/master/docs/experiments-
msmarco-passage.md, https://github.com/thunlp/OpenMatch/blob/master/docs/
experiments-msmarco.md, https://github.com/microsoft/ANCE#data-download, etc.
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Table 1: Dataset support in Capreolus [93] (Cap.), PyTer-
rier [58] (PT), OpenNIR [55] (ONIR), Anserini [91] (Ans.),
and ir_datasets (IRDS). " indicates built-in support that
automatically provides documents, queries, and query rele-
vance judgments (i.e., as an automatic download). ♢ indicates
support for a dataset with some manual effort (e.g., spec-
ifying the document parser and settings to use). Datasets
marked with * have licenses that require manual effort (e.g.,
requesting from NIST), and therefore can at most have ♢.

Dataset/Benchmark Cap. PT ONIR Ans. IRDS
News
NYT* [57, 75] ♢ ♢ ♢ ♢
TREC Arabic* [33–35] ♢ ♢ ♢ ♢
TREC Common Core* [7] ♢ ♢ ♢
TREC Mandarin* [73, 78, 89] ♢ ♢ ♢ ♢
TREC News* [79, 80] ♢ ♢ ♢
TREC Robust* [83, 85] ♢ ♢ ♢ ♢ ♢
TREC Spanish* [36, 37, 74] ♢ ♢ ♢ ♢

Question Answering
ANTIQUE [38] " ♢ " ♢ "

MS-MARCO Doc. [66] " ♢ " "

MS-MARCO Pass. [66] " " " " "

MS-MARCO QnA [66] "

Natural Questions [48, 50] ♢ "

TREC CAR [28, 29] " ♢ "

TREC DL [25, 26] " " " " "

TREC DL-Hard [59] ♢ ♢ ♢ "

TriviaQA [47, 48] ♢ "

Scientific, Bio-medical, Health
Cranfield [1] "
CLEF eHealth* [64, 94] ♢ ♢ ♢

NFCorpus [9] " "

TREC CDS [71, 72, 77] "

TREC COVID [84, 88] " " " " "

TREC Genomics [40–43] "
TREC Health Misinfo.* [4] ♢ ♢ ♢

TREC PM [68–70] ♢ "
TripClick* [67] ♢ ♢ ♢

Vaswani [2] " "

Web
NTCIR WWW* [54, 62] ♢ ♢ ♢

ORCAS [21] ♢ ♢ ♢ "
TREC Million Query* [5, 6, 11] ♢ ♢ ♢
TREC Terabyte* [10, 12, 13] ♢ ♢ ♢
TREC Web* [14–17, 19, 20, 22–24] ♢ ♢ ♢

Other/Miscellaneous
BEIR [8, 9, 18, 30, 39, 44, 50, 60, 66, 81, 82, 84, 86–88, 92] "

CodeSearchNet [45] " "

TREC Microblog [51, 52, 76] ♢ "

WikIR [31, 32] " "

In this work, we present ir_datasets, a tool to aid IR researchers
in the discovery, acquisition, and management of a variety of IR
datasets. The tool provides a simple and lightweight Python and
command line interface (see Figure 1) allowing users to iterate
the documents, queries, relevance assessments, and other relations
provided by a dataset. This is useful for indexing, retrieval, and
evaluation of ad-hoc retrieval systems. A document lookup API
provides fast access to source documents, which is useful for recent
text-based ranking models, such as those that use BERT [27]. PyTer-
rier [58], Capreolus [93], and OpenNIR [55] recently added support
for ir_datasets, greatly expanding the number of datasets they
support, and other tools like Anserini [91] can utilize our tool using
the command line interface. Finally, the ir_datasets catalog2 acts
as a documentation hub, making it easy to find datasets and learn
about their characteristics. We intend to continue to backfill prior
datasets and add support for new datasets as they are released. The
package is open source,3 and we welcome contributions.

2 IR_DATASETS
ir_datasets is a lightweight tool focused on providing easy access
to a variety of IR datasets and benchmarks. It provides both a Python
and command line interface (see Figure 1), allowing it to be easily
used by a variety of toolkits, or simply for ad-hoc data exploration.

To achieve these goals, ir_datasets adheres to several design
principles. First, to stay lightweight, the tool is focused on core
dataset operations, such as downloading content, iterating through
queries or documents, and performing document lookups by ID.
This policy explicitly leaves functionality like full-text indexing or
neural network processing to other tools. Further, to be practical
in a variety of environments, ir_datasets attempts to keep a
low memory footprint by using inexpensive data structures and
iterators. Finally, in order to leave maximum flexibility to the tool’s
users, we attempt to perform “just enough” processing of the data
to account for various formats, while not removing information
that is potentially useful. We hope that this commitment to being
lightweight and flexible makes ir_datasets an attractive tool to
jump-start or enhance other tools for doing IR research.

2.1 Dataset Identifiers
Since no standard identifiers (IDs) exist for datasets in IR, we pro-
pose hierarchical dataset IDs. These IDs allow datasets to be looked
up in the Python API, command line interface, and online docu-
mentation. IDs are usually in the format of corpus/benchmark. For
instance, the TREC COVID [84] benchmark uses the CORD-19 [88]
document corpus and is given an ID of cord19/trec-covid. In
this case, cord19 provides documents, while cord19/trec-covid
provides queries and relevance judgments for those documents.

2.2 Simple & Memorable Python API
A dataset object can be obtained simply by calling:
import ir_datasets
ds = ir_datasets.load("dataset-id")

Each dataset objects provides access to a number of entity types
(see Table 2). Dataset objects are stateless; they simply define the
2https://ir-datasets.com/
3https://github.com/allenai/ir_datasets/
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Table 2: Entity types in ir_datasets.

Entity Type Python API Example Description
docs ds.docs_iter() A document (or passage for passage retrieval). Contains a doc_id and one or more text fields.
queries ds.queries_iter() A query (topic). Contains a query_id and one or more text fields.
qrels ds.qrels_iter() A query relevance assessment. Maps a query_id and doc_id to a relevance score or other

human assessments.
scoreddocs ds.scoreddocs_iter() (uncommon) A scored document (akin to a line from a run file). Maps a query_id and doc_id

to a ranking score from a system. Available for datasets that provide an initial ranking (for
testing reranking systems).

docpairs ds.docpairs_iter() (uncommon) A pair of documents (useful for training). Maps a query_id to two or more
doc_ids. Available for datasets that provide suggested training pairs.

1 import i r _ d a t a s e t s
2 da t a s e t = i r _ d a t a s e t s . l oad ( 'msmarco− passage / t r a i n ' )
3 f o r doc in d a t a s e t s . d o c s _ i t e r ( ) : # documents
4 print ( doc )
5 ↣ # Gener icDoc ( doc_ id = ' 0 ' , t e x t = ' The p r e s ence o f commun . . .
6 ↣ # Gener icDoc ( doc_ id = ' 1 ' , t e x t = ' The Manhattan P r o j e c t . . .
7 ↣ # . . .
8
9 f o r query in d a t a s e t . q u e r i e s _ i t e r ( ) : # q u e r i e s
10 print ( query )
11 ↣ # Gener icQuery ( que ry_ id = ' 1 2 1 3 5 2 ' , t e x t = ' d e f i n e extreme ' )
12 ↣ # Gener icQuery ( que ry_ id = ' 6 3 4 3 0 6 ' , t e x t = 'what does cha t t . . .
13 ↣ # . . .
14
15 f o r q r e l i n d a t a s e t . q r e l s _ i t e r ( ) : # r e l e v a n c e judgments
16 print ( q r e l s )
17 ↣ # T r e cQre l ( que ry_ id = ' 1 1 8 5 8 6 9 ' , doc_ id = ' 0 ' , r e l e v a n c e =1 )
18 ↣ # T r e cQre l ( que ry_ id = ' 1 1 8 5 8 6 8 ' , doc_ id = ' 1 6 ' , r e l e v a n c e =1 )
19 ↣ # . . .
20
21 # Look up documents by ID
22 do c s _ s t o r e = da t a s e t . d o c s _ s t o r e ( )
23 do c s _ s t o r e . ge t ( " 16 " )
24 ↣ # Gener icDoc ( doc_ id = ' 1 6 ' , t e x t = ' The approach i s based . . .

1 $ i r _ d a t a s e t s export msmarco− passage docs
2 ↣ # 0 The p r e s ence o f communication amid s c i e n t i f i c . . .
3 ↣ # 1 The Manhattan P r o j e c t and i t s atomic bomb he l . . .
4 ↣ # . . .
5
6 $ i r _ d a t a s e t s export msmarco− passage / t r a i n q u e r i e s
7 ↣ # 121352 d e f i n e extreme
8 ↣ # 634306 what does c h a t t e l mean on c r e d i t h i s t o r y
9 ↣ # . . .
10
11 $ i r _ d a t a s e t s export msmarco− passage / t r a i n q r e l s
12 ↣ # 1185869 0 0 1
13 ↣ # 1185868 0 16 1
14 ↣ # . . .
15
16 # Look up documents by ID
17 $ i r _ d a t a s e t s lookup msmarco− passage / t r a i n 16
18 ↣ # 16 The approach i s based on a theo ry o f j u s t i c e . . .

Figure 1: Parallel examples of common use cases in
ir_datasets using Python and the command line interface.

capabilities and the procedures for obtaining and processing the
data.

Most ad-hoc retrieval datasets consist of 3 main entity types:
documents (docs), queries/topics (queries), and query relevance
assessments (qrels). In the spirit of being simple, lightweight, and
low-memory, entities are provided as namedtuple instances from
iterators. For each entity type provided by a particular dataset, there

is a corresponding ds.{entity}_iter() function that returns an
iterator (e.g., ds.docs_iter()). Since the particular attributes re-
turned for an entity differ between datasets (e.g., some provide only
an ID and text for a document, while others also include a title field),
type definitions can be accessed via ds.{entity}_cls(). The type
definitions include type annotations for each field, and try to adhere
to conventions when possible (e.g., the ID of documents is the first
field and named doc_id).

The iterator approach is versatile. In some cases, it is only nec-
essary to operate over a single entity at a time, minimizing the
memory overhead. In other cases, particularly in neural networks,
operations happen in batches, which can also be accomplished triv-
ially through an iterator. And finally, in cases where all data needs
to be loaded, all entities can be easily loaded, e.g., by passing the it-
erator into the Python list constructor, or the dataframe constructor
in Pandas [65].

Some datasets provide other entity types, such as sample doc-
ument rankings or training sequences. For the former, we have
a scoreddocs entity type, which by default is a tuple containing
a query ID, a document ID, and a score. For the latter, we have a
docpairs entity, which consists of a query and a pair of contrasting
document IDs (e.g., one relevant and one non-relevant).

2.3 Command Line Interface
ir_datasets also provides a Command Line Interface (CLI) for per-
forming basic operations over supported datasets. This is helpful for
integration with tools not written in Python, or simply for ad-hoc
data exploration. The primary operations of the CLI are export (cor-
responding to Python’s dataset.*_iter() functions) and lookup
(corresponding to Python’s docstore.get_many_iter()). Exam-
ples of these operations are shown in right-hand side of Figure 1.
The command line interface supports multiple output formats, in-
cluding TSV and JSON lines. The output fields can also be specified,
if only certain data is desired.

2.4 Data Acquisition
When possible, ir_datasets downloads content automatically
from the original public sources as needed. In cases where a data
usage agreement exists, the user is notified before the file is down-
loaded. The download process is robust; it verifies the integrity of
the downloaded content via a hash and is resilient to interrupted
downloads by re-issuing the request if the connection is broken
(using Range HTTP requests, if supported by the server). Further,
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the access to and integrity of downloadable content is automatically
checked periodically using a continuous integration job so that if
access to some resources are lost (e.g., a file is moved) the problem
can be quickly investigated and fixed. There are nearly 350 down-
loadable files supporting the current datasets in ir_datasets, each
validated weekly.

Some data are not publicly available. For instance, due to its
size, the ClueWeb 2009 and 2012 collections (used for tasks like
the TREC WebTrack and NTCIR WWW tasks) are obtained via
hard drives. Other datasets, like the Arabic Newswire collection
(used for the TREC Arabic tasks) contain copyrighted material and
are only available with a usage agreement and subscription to the
Linguistic Data Consortium. In these cases, the user is presented
with instructions on how to acquire the dataset and where to put
it. Once acquired by the user, ir_datasets will take care of any
remaining processing. There are currently 12 document collections
that require a manual process to acquire.

2.5 Supported datasets
ir_datasets supports a wide variety of datasets (see Table 1).
These include some of the most popular evaluation benchmarks
(e.g., TREC Robust [83]), large-scale shallow datasets (e.g., MS-
MARCO [66]), biomedical datasets (e.g., TREC CDS [71, 72, 77]),
multi- and cross-lingual datasets (e.g., TREC Arabic [33, 34]), a
content-based weak supervision dataset (NYT [57]), a large-scale
click dataset (ORCAS [21]), and a ranking benchmark suite (BEIR [81]).
To our knowledge, this represents the largest collection and variety
of IR datasets supported by any tool. To facilitate experiments with
custom datasets, the Python API provides an easy mechanism to
build a dataset object from files that use simple data formats:
ds = ir_datasets.create_dataset(docs_tsv="path/docs.tsv",

queries_tsv="path/queries.tsv", qrels_trec="path/qrels")

2.6 Document lookups
It is a common task to look up documents by their ID. For instance,
when training or running a neural IR model, it is often necessary
to fetch the text of the current document to perform processing.
Another example would be a researcher who is looking into cases
in which their model fails may want to see the text of the offending
documents.

One option is to load all documents into an in-memory hashmap.
This may be appropriate in some cases, such a long-running process
where the large upfront cost is negligible and memory is plentiful
(enough for the entire collection). Building an in-memory hashmap
for a collection is trivial with the Python interface:
doc_map = {doc.doc_id: doc for doc in dataset.docs_iter()}

To support other cases, ir_datasets provides a docs_store
API that simplifies the process of looking up documents from disk.
This API supports fetching individual or multiple documents by
their ID:
docs_store = dataset.docs_store()
docs_store.get_many(['D1', 'D2'])
# {'D1': GenericDoc('D1', ...), 'D2': GenericDoc('D2', ...)}
it = docs_store.get_many_iter(['D1', 'D2'])
# An iterator of D1 and D2 (order not guaranteed)

Table 3: Document lookup benchmarks on small datasets.

Time/query
System HDD SSD Warm Size
msmarco-passage/trec-dl-2019 (avg. 949 docs/query)
ir_datasets 2.34 s 66 ms 7 ms 2.8 GB
MongoDB 3.62 s 130 ms 14 ms 2.7 GB
SQLite 3.72 s 94 ms 27 ms 4.1 GB
Pyserini 2.34 s 85 ms 51 ms 2.4 GB
PyTerrier 3.40 s 138 ms 68 ms 2.3 GB
cord19/fulltext/trec-covid (avg. 1,386 docs/query)
ir_datasets 1.19 s 0.11 s 36 ms 1.3 GB
MongoDB 3.65 s 0.19 s 65 ms 1.8 GB
SQLite 5.99 s 0.19 s 50 ms 2.8 GB
Pyserini 2.05 s 0.32 s 51 ms 1.5 GB
PyTerrier 3.72 s 1.70 s 1,620 ms 4.2 GB

Table 4: Document lookup benchmarks on large datasets.
Storage costs are listed as space beyond the source files.

Time/query
Strategy HDD Warm Size

clueweb12/trec-web-2014 (avg. 289 docs/query)
ir_datasets 44.4 s 14 ms 4.5 GB

(w/o checkpoints) 369.4 s 14 ms 0.3 GB
Pyserini 19.7 s 1,210 ms 6,041.5 GB
tweets2013-ia/trec-mb-2013 (avg. 1,188 docs/query)
ir_datasets 23.3 s 24 ms 120 GB
Pyserini 17.6 s 115 ms 323 GB

The implementation of docs_store() varies based on the dataset.
For many small datasets (those with up to a few million documents),
we build a specialized lookup structure for the entire collection on
disk as needed. A specialized structure was built for this package to
provide a good trade-off between lookup speed and storage costs.
All documents are compressed using lz4 and stored in sequence.
A separate sorted document ID and corresponding index offset
structure is also built on disk. Although simple, we found that this
structure enables lookups that exceed the performance of leading
indexes and databases (see Table 3). In this experiment, we used the
metadata lookup functionality of Anserini [91] and Terrier [63] and
key-value storage with SQLite and MongoDB. The average dura-
tion was computed per query for TREC DL 2019 passage task [26]
(with the official set of reranking documents), and for TREC COVID
complete [84] (using the judged documents). We also find that the
storage cost is reasonable, with a total storage size comparable to
MongoDB for the MS-MARCO passage collection and smaller than
all others for the CORD19 collection.

For large collections, it is impractical and undesirable to make a
copy of all documents. For instance, the ClueWeb09 and ClueWeb12
collections (for TREC Web Track) are several TB in size, even when
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heavily compressed. Luckily, for these datasets, their directory struc-
ture mimics the structure of the document IDs, which allows the
desired source file containing a given document ID to be easily iden-
tified. To speed up lookups within a given file, we use zlib-state 4

to take periodic checkpoints of the zlib decoding state of the source
files. This eliminates the need to read all the source file contents
up to the desired document and greatly speeds up lookups of docu-
ments that appear late in the source files. The pre-built checkpoints
are automatically downloaded and used when appropriate. Fur-
thermore, we cache fetched documents on disk for even faster
subsequent lookups. Different approaches are taken for other large
collections, such as Tweets2013-ia [76] (for the TREC Microblog
task [51, 52]). See Table 4 for a comparison between document
lookup times using ir_datasets and Pyserini (from stored docu-
ment source). Even though ir_datasets is slower than Pyserini
on the first lookup, the cache greatly speeds up subsequent fetches
(see “Warm”). Since experiments in neural IR frequently only work
with a small subset of documents, this is very beneficial for these
pipelines. We also observe that the checkpoint files for ClueWeb12
speed up lookups considerably, without adding much overhead in
terms of storage; since Anserini keeps a copy of all documents, it
accumulates around 6TB of storage overhead, compared to 4.5GB
using ir_datasets. Note that the other approaches explored in Ta-
ble 1 would accumulate similar storage overheads, as they also copy
the data. Tweets2013-ia accumulates considerable storage costs, as
the source hierarchy is not conducive to document lookups. In this
case, ir_datasets builds an ID-based lookup file hierarchy.

2.7 Fancy slicing
In many cases, it is beneficial to select a segment of a document
collection. For instance, some techniques involve pre-computing
neural document representations to speed up reranking [56] or
for performing first-stage retrieval [49]. In this case, dividing the
operation over multiple GPUs or machines can yield substantial
speed gains, as the process is embarrassingly parallel. To divide up
the work, it is helpful to be able to select ranges of the document
collection for processing.

The Python standard library islice function is not ideal for this
task because I/O and processing of documents would be performed
for skipped indices. Instead, all objects returned form doc_iter
can themselves be sliced directly. The implementation of the slic-
ing depends on the particular dataset, but in all implementations
avoid unnecessary I/O and processing by seeking to the appropri-
ate location in the source file. This fancy slicing implementation
mostly follows typical Python slicing semantics, allow for different
workers to be assigned specific ranges of documents:
dataset.docs_iter()[:10] # the first 10 docs
dataset.docs_iter()[-10:] # the last 10 docs
dataset.docs_iter()[100:110] # 10 docs starting at index 100
dataset.docs_iter()[3::5] # every 5 docs, starting at index 3
dataset.docs_iter()[:1/3] # the first third of the collection

2.8 Documentation
Documentation about datasets are available from the ir_datasets
catalog.4 An overview list shows all available datasets and their

4https://github.com/seanmacavaney/zlib-state

Figure 2: Example from the ir_datasets catalog. Users can
easily check which datasets are available for automatic
downloads (green checkbox) and those that require obtain-
ing data from a third party (yellow triangle).

Figure 3: Example documentation for cord19/trec-covid.

capabilities (Figure 2). The documentation page for each individual
dataset includes a brief description, relevant links (e.g., to shared
task website and paper), supported relations, citations, and code
samples. An example is shown in Figure 3 for the TREC COVID
dataset [84].

2.9 Automated Testing
ir_datasets includes several suites of automated tests to ensure
the package works as expected, functionality does not regress as
changes are made, and to ensure that downloaded content remains
available and unchanged. The automated testing suite includes
include unit tests, integration/regression tests, and tests to ensure
downloadable content remains available and unchanged.

3 INTEGRATIONWITH OTHER TOOLS
The CLI makes ir_datasets easy to use with various tools (e.g., the
PISA engine [61] can index using the document export). However,
deeper integration can provide further functionality, as we demon-
strate in this section with four tools. Note that ir_datasets does
not depend on any of these tools; instead they use ir_datasets.

Resource Paper II  SIGIR ’21, July 11–15, 2021, Virtual Event, Canada

2433

https://github.com/seanmacavaney/zlib-state


Capreolus [93] is a toolkit for training and evaluating neural
learning-to-rank models through Python and command line in-
terfaces. In terms of data, it includes components for “collections“
(sets of documents) and “benchmarks” (sets of queries and qrels).
Though it has some built-in datasets, it also supports all datasets
available from ir_datasets in its pipelines:

import capreolus as cap
collection, benchmark = cap.get_irds("pmc/v2/trec-cds-2016",

fields=["abstract"], query_type="summary")
index = cap.AnseriniIndex({"stemmer": None}, collection)
index.create_index()
benchmark.qrels
benchmark.queries

PyTerrier [58] is a Python interface to the Terrier search en-
gine [63] that enables the creation of flexible retrieval pipelines.
It has a native dataset API, but it now also automatically adds all
datasets from ir_datasets, expanding the number of available
datasets. They can be accessed via the dataset ID with an irds:
prefix, and then used seamlessly with the rest of PyTerrier:

import pyterrier as pt
pt.init()
ds = pt.get_dataset('irds:cord19/trec-covid')
indexer = pt.index.IterDictIndexer('./cord19')
indexer.index(ds.get_corpus_iter(), fields=('abstract',))
topics = ds.get_topics(variant="description")
qrels = ds.get_qrels()

OpenNIR [55] provides a command line neural reranking pipeline
for several standard IR benchmarks. OpenNIR supports ir_datasets
for its training, validation, and testing dataset components. Queries
and qrels are trivially fed into the training and validation pro-
cesses. Documents are automatically indexed with Anserini for
first-stage retrieval, and document lookups are used to fetch the
text when training and scoring. Here is an example testing on the
TREC COVID dataset:

$ scripts/pipeline.sh test_ds=irds test_ds.ds=cord19/trec-covid

Anserini [91], and its Python-wrapper counterpart Pyserini [53]
focus on reproducibility in IR. They provide a wrapper and suite of
tools around a Lucene index. As such, operations on datasets in this
tool are tightly coupled with the Lucene and Anserini packages.
Though it has support for a wide variety of query and relevance as-
sessments (distributed with the package), the support for document
content is sparse, since only a few collections have automatically-
downloadable indices. The remainder rely on manual instructions.
Queries and qrels from ir_datasets can be used with Anserini by
using the export CLI (as TSV or TREC format). The CLI can also
efficiently output documents in a format it can index in parallel:

$ ir_datasets doc_fifos medline/2017
# To index with Anserini, run:
# IndexCollection -collection JsonCollection -input
# /tmp/tmp6sope5gr -threads 23 -index <your_index_path>

DiffIR [46] is a tool that enables the visualization and qualitative
comparison of search results. Using ir_datasets, it shows the
textual content of the top results for queries and highlights model-
specific impactful text spans.

4 COMMUNITY CONTRIBUTIONS
We welcome (and encourage) community contributions. Extending
ir_datasets as a separate package is straightforward,5 and we
also welcome pull requests to the main package.

To maintain quality in ir_datasets, we require considerations
of ease-of-use, efficiency, data integrity, and documentation. We
request that issues are opened before implementation to ensure
proper consideration of these aspects. ir_datasets provides tools
for handling typical data formats (e.g., TREC, TSV, CSV), making the
process relatively straightforward. Atypical formats likely require
special processing. There are plenty of examples to help guide the
contributor.

5 FUTURE APPLICATIONS
We envision ir_datasets enabling a variety of useful applications.

Training/evaluation in private settings. This tool could fa-
cilitate experiments and tasks that involve keeping data private.
This is a realistic setting in several circumstances. For instance, a
shared task involving searching through clinical notes would likely
face challenges distributing this collection due to patient privacy
concerns. Or a company may want to offer a shared task using a
proprietary document collection or query log. In both these cases,
a version of ir_datasets could be built that provides this data
that is only available in a secure environment (e.g., one where net-
working is disabled). Participants could feel confident that their
code is processing the data correctly, given that it supports the
ir_datasets API; their code can switch to this dataset simply by
using the dataset ID of the private dataset.

Dataset exploration GUI. Performing ad-hoc data analysis
using ir_datasets is an improvement over prior approaches. The
user experience could be further improved through a graphical
user interface that facilitate common dataset exploration tasks. For
instance, this tool could graphically present the list of queries and
link to the text of judged documents. Though this functionality is
easy through the Python and command line interfaces, a graphical
interface would further reduce friction and ease exploration.

6 CONCLUSION
We presented ir_datasets, a tool that provides access to a vari-
ety of datasets and benchmarks for search engines. The tool au-
tomatically downloads and verifies content when possible, to aid
in reproducibility. Through Python and command-line interfaces,
users can iterate over documents, queries, and relevance judgments,
and perform lookups of documents by ID. The utility of these func-
tionalities are demonstrated through integration with several tools
for performing IR experiments. The ir_datasets catalog can help
users discover datasets and acts as a hub of information with links
and citations to relevant literature. We hope that ir_datasets re-
duces researcher burden, helps reduce redundant copies of datasets
across toolkits, and enables the creation of new tools.
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