
A Self-Correcting Sequential Recommender
Yujie Lin Chenyang Wang Zhumin Chen

Shandong University Shandong University Shandong University
Qingdao, China Qingdao, China Qingdao, China

yu.jie.lin@outlook.com 201900122032@mail.sdu.edu.cn chenzhumin@sdu.edu.cn

Zhaochun Ren Xin Xin Qiang Yan
Shandong University Shandong University WeChat, Tencent

Qingdao, China Qingdao, China Guangzhou, China
zhaochun.ren@sdu.edu.cn xinxin@sdu.edu.cn rolanyan@tencent.com

Maarten ∗ de Rijke Xiuzhen Cheng Pengjie Ren

University of Amsterdam Shandong University Shandong University
Amsterdam, The Netherlands Qingdao, China Qingdao, China

m.derijke@uva.nl xzcheng@sdu.edu.cn renpengjie@sdu.edu.cn

ABSTRACT
Sequential recommendations aim to capture users’ preferences
from their historical interactions so as to predict the next item that
they will interact with. Sequential recommendation methods usu-
ally assume that all items in a user’s historical interactions refect
her/his preferences and transition patterns between items. How-
ever, real-world interaction data is imperfect in that (i) users might
erroneously click on items, i.e., so-called misclicks on irrelevant
items, and (ii) users might miss items, i.e., unexposed relevant items
due to inaccurate recommendations.

To tackle the two issues listed above, we propose STEAM, a
Self-correcTing sEquentiAl recoMmender. STEAM frst corrects
an input item sequence by adjusting the misclicked and/or missed
items. It then uses the corrected item sequence to train a recom-
mender and make the next item prediction. We design an item-wise
corrector that can adaptively select one type of operation for each
item in the sequence. The operation types are ‘keep’, ‘delete’ and
‘insert.’ In order to train the item-wise corrector without requiring
additional labeling, we design two self-supervised learning mecha-
nisms: (i) deletion correction (i.e., deleting randomly inserted items),
and (ii) insertion correction (i.e., predicting randomly deleted items).
We integrate the corrector with the recommender by sharing the
encoder and by training them jointly. We conduct extensive exper-
iments on three real-world datasets and the experimental results
demonstrate that STEAM outperforms state-of-the-art sequential
recommendation baselines. Our in-depth analyses confrm that
STEAM benefts from learning to correct the raw item sequences.

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specifc permission
and/or a fee. Request permissions from permissions@acm.org.
WWW ’23, April 30–May 04, 2023, Austin, TX, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9416-1/23/04. . . $15.00
https://doi.org/10.1145/3543507.3583479

CCS CONCEPTS
• Information systems → Recommender systems.

KEYWORDS
Sequential recommendation, Sequence correction, Self-supervised
learning

ACM Reference Format:
Yujie Lin, Chenyang Wang, Zhumin Chen, Zhaochun Ren, Xin Xin, Qiang
Yan, Maarten de Rijke, Xiuzhen Cheng, and Pengjie Ren. 2023. A Self-
Correcting Sequential Recommender. In Proceedings of the ACM Web Con-
ference 2023 (WWW ’23), April 30–May 04, 2023, Austin, TX, USA. ACM, New
York, NY, USA, 11 pages. https://doi.org/10.1145/3543507.3583479

1 INTRODUCTION
An important challenge of sequential recommendation is how to
capture a user’s preferences as accurately as possible by mod-
eling the sequential dependencies of a user’s historical interac-
tion sequences [6, 40, 41]. There is a considerable body of prior
work towards this goal. Early models are based on the Markov
chain (MC) assumption that the next item only depends on its adja-
cent items to learn transition relationships [9, 11, 31]. Later, deep
learning-based methods have been applied to sequential recommen-
dation tasks for modeling more complex relations, such as recurrent
neural networks (RNNs) [12, 24, 30, 47], convolutional neural net-
works (CNNs) [35, 37, 53], memory networks [4, 14, 39], transform-
ers [15, 34, 48], and graph neural networks (GNNs) [2, 49, 54]. More
recently, self-supervised learning (SSL) has been introduced to se-
quential recommendation for extracting robust item correlations
by semi-automatically exploiting raw item sequences [23, 50–52].

Most prior work ignores the fact that user-item interaction se-
quences may be imperfect, which means that they do not always
accurately refect user preferences and the transition patterns be-
tween items. As illustrated in Fig. 1, there may be two kinds of
imperfections in item sequences: (i) The user may erroneously click
on irrelevant items, so the item sequence may contain misclicked
items. For example, in Fig. 1(b), the user mistakenly clicks �6, which
is a book about computer basics. As a result, the recommendation
model may recommend another book about computer science, i.e.,

1283

https://orcid.org/0000-0002-2146-0626
https://orcid.org/0000-0001-6853-2116
https://orcid.org/0000-0003-4592-4074
https://orcid.org/0000-0002-9076-6565
https://orcid.org/0000-0001-6116-9115
https://orcid.org/0000-0002-7328-2278
https://orcid.org/0000-0002-1086-0202
https://orcid.org/0000-0001-9998-2398
https://orcid.org/0000-0003-2964-6422
https://doi.org/10.1145/3543507.3583479
https://doi.org/10.1145/3543507.3583479
mailto:permissions@acm.org
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3543507.3583479&domain=pdf&date_stamp=2023-04-30

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Lin et al.

Figure 1: Examples for two kinds of imperfect item sequences.
Sub-fgure (a) is an ideal item sequence without any imper-
fection. Sub-fgure (b) is an imperfect item sequence that
contains a misclicked item (i.e., �6). Sub-fgure (c) is an imper-
fect sequence that lacks a missed item (i.e., �4).

�7, which is actually not interesting for the user. (ii) Some relevant
items may not be exposed to the user, so the user may not be aware
of them and thus will not click them. As a result, the item sequence
may lack some missed items. For instance, in Fig. 1(c), the user
cannot interact with �4, because �4 is not exposed to the user. Ac-
cordingly, the recommendation model may not further recommend
�5, a mouse pad, but may recommend �8 which is an earphone. For
the frst kind of imperfection, misclicked items can be considered
as noise in item sequences. Some studies have addressed capturing
and eliminating noise from user-item interaction sequences [28, 57].
These denoising sequential methods take the raw sequence as the
input to train the model and predict the next item without explicitly
modifying the given sequence. Besides, they neglect the second
kind of imperfection, which means they cannot recall missed and/or
unexposed items.

Blindly learning a model on the raw data without considering its
inherent imperfections may fail to capture a user’s true preferences,
and harm the user experience and downgrade recommendation
performance. To this end, we enable a recommendation model to
learn to correct the raw item sequence before making recommenda-
tions. There are two main challenges to realize this correction. First,
the raw item sequence may mix diferent kinds of imperfections
and contain multiple imperfections in multiple positions. Hence,
the frst challenge is how to simultaneously apply diferent and
multiple correction operations to the item sequence. Second, it is
difcult to identify the misclicked items and complement the missed
items manually. Therefore, the second challenge is how to train the
corrector model without additional labeling.

We propose a novel sequential recommendation model, called
self-correcting sequential recommender (STEAM), which frst cor-
rects the input item sequence using a corrector, and then uses the
corrected item sequence to train a recommender and make the next
item prediction. Specifcally, we propose an item-wise corrector
that can adaptively apply ‘keep’, ‘delete’ and ‘insert’ operations to
the items in an input item sequence. If the selected operation is ‘in-
sert’, the corrector will further use a reverse generator to generate
the inserted sequence which will be inserted reversely before the
item. For misclicked items, the corrector can delete them, while

for missed items, the corrector can insert them. We design two
self-supervised tasks to generate imperfect sequences and super-
vised signals automatically: (i) deletion correction, and (ii) insertion
correction. The former randomly inserts items to the raw item se-
quence and makes the model learn to delete them, while the latter
randomly deletes items from the raw item sequence and recalls
them afterwards. We integrate the item-wise corrector and a recom-
mender in STEAM by sharing the encoder. For the recommender,
we use the raw item sequence and the corrected item sequence to
train it by the masked item prediction task [34]. We use the joint
loss from the corrector and the recommender to train the whole
STEAM. We conduct experiments on three real-world datasets. The
results show that STEAM signifcantly outperforms state-of-the-art
sequential recommendation baselines. We fnd that STEAM benefts
from learning to correct input sequences for better recommenda-
tion performance. We also carry out experiments on simulated test
sets by randomly inserting and deleting items, demonstrating that
STEAM is more robust than most baselines on more noisy data.

The main contributions of this work are as follows:
• We propose a self-correcting sequential recommender (STEAM)
that is able to correct the raw item sequence before conducting
recommendation.

• We design an item-wise corrector to correct the raw item se-
quence and two self-supervised learning mechanisms, deletion
correction and insertion correction, to train the corrector.

• We conduct extensive experiments to demonstrate the state-
of-the-art performance of STEAM. To facilitate reproducibility,
we release the code and data at https://github.com/TempSDU/
STEAM.

2 RELATED WORK

2.1 Sequential recommendation
Early work on sequential recommendation adopts MC to capture
the dynamic transition of user interactions. Rendle et al. [31] com-
bine frst-order MCs and matrix factorization (MF) to predict the
subsequent user action. He and McAuley [11] employ the high-
order MCs to consider more preceding items and mine more com-
plicated patterns. With the development of deep learning, neural
networks have been introduced to address sequential recommen-
dation. Hidasi et al. [13] adopt gated recurrent units (GRUs) [5] to
build a sequential recommendation model. Li et al. [19] enhance
the GRU-based sequential recommendation model with an atten-
tion mechanism [3] to more accurately capture the user’s current
preference. Tang and Wang [35] propose a CNN-based model to
model sequential patterns in neighbors. Later, more advanced neu-
ral networks have been applied. Chen et al. [4] introduce a memory
mechanism [46] to design a memory-augmented neural network
for leveraging users’ historical records more efectively. Kang and
McAuley [15] employ the unidirectional transformer [38] to cap-
ture long-range correlations between items. Sun et al. [34] further
use a bidirectional transformer and the masked item prediction task
for sequential recommendation. Wu et al. [49] utilize the GNN [45]
to model more complex item transition patterns in user sequences.

Recently, self-supervised learning has demonstrated its efec-
tiveness in extracting contextual features by constructing training
signals from the raw data with dedicated tasks [20]; it has been

1284

https://github.com/TempSDU/STEAM
https://github.com/TempSDU/STEAM

A Self-Correcting Sequential Recommender WWW ’23, April 30–May 04, 2023, Austin, TX, USA

introduced to sequential recommendation as well. Zhou et al. [56]
propose four auxiliary self-supervised tasks to maximize the mutual
information among attributes, items, and sequences. Xia et al. [50]
propose to maximize the mutual information between sequence
representations learned via hypergraph-based GNNs. Xie et al. [51]
use item crop, item mask, and item reorder as data augmentation
approaches to construct self-supervision signals. Liu et al. [21]
propose data augmentation methods to construct self-supervised
signals for better exploiting item correlations. Qiu et al. [29] per-
form contrastive self-supervised learning based on dropout [33].

The studies listed above train models on the raw item sequences
neglecting the fact that the raw sequences might be noisy due to
users’ casual click or inaccurate recommendations due to system
exposure bias.

2.2 Denoising recommendation
Denoising recommendation aims to improve recommendation per-
formance by alleviating the noisy data issue. Prior work exploits
additional user behavior and auxiliary item features to identify the
noisy data, such as ‘skip’ [7], ‘dwell time’ [16], ‘gaze’ [55], ‘like’ [1]
and item side information [22]. These methods need extra feedback
and manual labeling, which hinders their practical application. Re-
cently, another line of work has been dedicated to eliminating the
efect of noisy data without introducing external signals. Wang et al.
[42] observe that noisy data usually leads to large loss values in the
early stage of training, and design two adaptive loss functions to
down-weight noisy samples. Wang et al. [44] propose an iterative
relabeling framework to identify the noise by exploiting the self-
training principle. Wang et al. [43] assume that predictions on noisy
items vary across diferent recommendation models and propose
an ensemble method to minimize the KL-divergence between the
two models’ predictions. Gao et al. [8] argue that the models are
prone to memorize easy and clean patterns at the early stage of
training, so they collect memorized interactions at the early stage
as guidance for the following training.

Most denoising recommendation methods focus on non-
sequential recommendation. There are a few studies targeting de-
noising for sequential recommendation. Qin et al. [28] design a
denoising generator for next basket recommendation that is based
on contrastive learning to determine whether an item in a his-
torical basket is related to the target item. Tong et al. [36] mine
sequential patterns as the prior knowledge to guide a contrastive
policy learning model for denoising and recommendation. Inspired
by fast Fourier transforms (FFTs) [32], Zhou et al. [57] propose
an all-MLP model with learnable flters for denoising sequential
recommendation.

However, existing denoising recommendation methods do not
correct the raw data explicitly. Besides, they do not recall the missed
items due to system exposure bias.

3 METHOD

3.1 Overview
We denote the item set as I, and |I | is the number of items. We
denote an item sequence as � = [�1, . . . , � |� |], where �� ∈ I is the
interacted item at the �-th position of � and |� | is the sequence
length. We denote a subsequence [� � , . . . , ��] of � as � � :� . Especially,

we denote a raw item sequence as �� . For training STEAM with
deletion and insertion correction, we randomly modify �� and then
ask STEAM to recover it. For each item in �� , we keep it with
probability �� , insert one item before it with probability �� , or
delete it with probability �� , where �� + �� + �� = 1. Note that
we can keep inserting more items with �� , which are all sampled
uniformly from I\� . For the last item in �� , we would not delete
it to avoid confusion with the next item prediction. The randomly
modifed sequence is denoted as �� . We have an operation sequence
to mark the ground-truth correction operations on the items of �� ,
denoted as � = [�1, . . . , � |�� |], where � ∈ {‘keep’, ‘delete’, ‘insert’}.
Note that we do not consider ‘replace’ as it can be achieved by
the combination of ‘delete’ and ‘insert.’ We denote all items in ��

whose ground-truth correction operations are ‘insert’ as � ��� . For
each item � ∈ � ��� , we denote the ground-truth inserted sequence as
�<� = [�1, . . . , � |� <� |−1, [���]], which should be inserted in reverse
order before � , where [���] ∈ I is a special token representing the
ending. Note that the order is [� |� <� |−1, . . . , �1, �] after insertion. We
revise �� using the corrector to get the corrected sequence, which
is denoted as �� . To train STEAM with the masked item prediction,
we randomly mask some items in �� or �� with a special token
[����] ∈ I with probability �� , and then ask STEAM to predict
masked items. The masked �� (��) and its masked items are denoted
as �e� (�e�) and e�� (e��).

The deletion and insertion correction tasks are to maximize
� (�� |��) = � (� |��) ×

Î
� ∈� ��� � (�<� |��). The masked item pre-

diction task is to maximize � (e�� |�e�) and � (e�� |�e�). The sequen-
tial recommendation task aims to predict the next item based
on � (� |�� |+1 |��) or � (� |�� |+1 |��), which is equivalent to predict
a masked item appending to the last position of �� or �� .

An overview of STEAM is shown in Fig. 2. STEAM has three
main modules: (i) a shared encoder, (ii) an item-wise corrector,
and (iii) a recommender. The encoder is used to encode the input
sequence. The item-wise corrector frst predicts the correction oper-
ations on all items. Then, the items whose correction operations are
‘delete’ will be deleted. For the items whose correction operations
are ‘insert’, the item-wise corrector uses the reverse generator to
generate all inserted sequences. The recommender aims to predict
the masked items in item sequences. To train the corrector, we take
the randomly modifed item sequence as input and ask the corrector
to recover it. To train the recommender, we frst use the corrector
to get the corrected item sequence. Then, we randomly mask some
items in the corrected item sequence or the raw item sequence, and
use the recommender to predict them. Finally, we use the joint loss
to optimize STEAM. During testing, we append a [����] to the last
position of the raw item sequence or the corrected item sequence,
and use STEAM to predict the next item.

Next, we provide the details of STEAM.

3.2 Encoder
The target of the encoder is to encode the input item sequence to
get the hidden representations of all positions of the item sequence.
The encoder is shared by the corrector and recommender, whose
output will be the input of the two other modules.

Specifcally, the encoder frst maintains an item embedding ma-
trix E ∈ R� ×|I | to project the high-dimensional one-hot vector of

1285

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Lin et al.

Figure 2: An overview of STEAM. For training the corrector, the item-wise corrector is asked to perform deletion correction
and insertion correction on items to recover the raw item sequence that has been randomly modifed. The raw item sequence
with its corrected version are both used to train the recommender using the masked item prediction task. Finally, STEAM is
optimized by the joint loss from the corrector and the recommender.

an item to a low-dimensional dense vector. For each item �� in a
given sequence � , we follow Eq. 1 to project it:

e� = Ei� , (1)

where i� ∈ R | I | is the one-hot vector of �� , e� ∈ R� is the item
embedding of �� , and � is the embedding size. We inject the position
information into the model by adding the position embeddings:

h�
0 = e� + p� , (2)

∈ R� where p� is the learnable position embedding of the � -th
∈ R� position and h0 is the initial hidden representation of �� .�

Moreover, we follow [15] to apply dropout to h�
0. We further stack

the initial hidden representations of all items in � to get an initial
� ∈ R |� |×� hidden representation matrix H0 .

Then, the encoder employs a bidirectional transformer with ��
layers to update H0

where Trmbi denotes a bidirectional transformer block; please refer
to [34, 38] for details. H� ∈ R |� |×� is the hidden representation�
matrix at the �-th layer. H�� is the last hidden representation ma-�
trix, which will be the input of the item-wise corrector and the
recommender. For convenience, we ignore the superscript of H��

�
(i.e., H�) in the following modules.

3.3 Item-wise corrector
The item-wise corrector aims to execute correction operations at
the item level. It selects one type of correction operation from ‘keep’,
‘delete’ and ‘insert’ for each item in the raw item sequence. If the
selected correction operation is ‘insert’ for an item, the item-wise
corrector further uses a generator to generate the inserted sequence.

∈ R� Given an item �� with its hidden representation h� in-
dexed from the input H� , we follow Eq. 4 to obtain the probability

distribution � (�̂� | �) for the corresponding correction operation
�� :

� (�̂� | �) = sofmax(Wh�), (4)
where �̂� is the predicted version of �� , W ∈ R3×� is the projection
matrix. When testing, the operation with the maximum probability
in � (�̂� | �) will be applied to the item �� .

Assuming that we have to insert items before the item �� of �
and its currently generated inserted sequence is �1:

<
�
��
−1, the reverse

generator frst follows the same way in the encoder to get the item
embeddings of all items in �1:

<
�
��
−1. Note that the item embedding

matrix is shared between the encoder and the corrector.
Then, we stack the hidden representation h� of �� obtained from

H� with all item embeddings {e1, . . . , e�−1} of �1:
<
�
��
−1:

� , as shown in Eq. 3:

H� = Trmbi (H� −1), (3)� �

H� = Trmuni (H� −1), (6)� �

where Trmuni represents a unidirectional transformer block; again,
please see [15, 38] for details. H�

� ∈ R�×� is the hidden representa-
tion matrix at the �-th layer. H�� is the last hidden representation�
matrix, and we denote it as H� for short.

Finally, we calculate the probability distribution � (�̂� | �1:
<
�
��
−1, �)

for the next inserted item �� by Eq. 7:

� (�̂� | �1:
<
�
��
−1, �) = sofmax(E⊤h�), (7)

H𝑐
0 =


h𝑡 + p1
e1 + p2

.

.

.

e𝑛−1 + p𝑛


, (5)

where H𝑐
0 ∈ R𝑛×𝑒 is the initial hidden representation matrix for

the reverse generator. We also add the position embeddings here,
which are shared between the encoder and the corrector too. We
apply dropout to H𝑐

0 as we do in the encoder.
Next, the reverse generator uses a unidirectional transformer

with 𝐿𝑐 layers to update H𝑐
0 as Eq. 6:

1286

A Self-Correcting Sequential Recommender WWW ’23, April 30–May 04, 2023, Austin, TX, USA

∈ R� where E is the item embedding matrix, h� is the hidden
representation at the last position of H� . In particulare, the frst
inserted item �1 is generated based on H0 = [h� + p1], so we defne�
� (�̂1 | �<�� 1:0 , �) = � (�̂1 | �).

Since we have the complete ground-truth inserted sequence �<��

when training, we can use the hidden representations of all posi-
tions of H� to calculate � (�̂�+1 | �<�� , �) for all � at one time. When1:�
testing, we will generate inserted items one by one with greedy
search until generating [���] or achieving a maximum length.

3.4 Recommender
The recommender is to predict the masked items in �e� or �e� , and
to recommend the next item for �� or �� .

Given the hidden representation matrix H� of the input sequence
∈ R |� |×� � from the encoder, we let H0 = H� , where H0 is the� �

initial hidden representation matrix for the recommender. First, the
recommender utilizes a bidirectional transformer with �� layers to
update H�

0, as shown in Eq. 8:

H� = Trmbi (H� −1), (8)� �

where H�
� ∈ R |� |×� is the hidden representation matrix at the �-th

layer. H�� is the last hidden representation matrix, and we also�
denote it as H� for short.

Then, assuming that we mask item �� in � and we obtain its
hidden representation h� ∈ R� from H� , the recommender follows
Eq. 9 to calculate the probability distribution � (�̂� |�) for �� :

� (�̂� | �) = sofmax(E⊤h�), (9)

where E is the item embedding matrix, which is also used in the
encoder and the corrector. When training, the item �� ∈ e�� (e��)
and the sequence � is �e� (�e�). When testing, the item �� is � |�� |+1
(� |�� |+1) and the sequence � is �� (��), so we can get � (� |�� |+1 | ��)
(� (� |�� |+1 | ��)) for recommending the next item.

3.5 Joint learning
We train STEAM with the deletion correction task, the insertion
correction task, and the masked item prediction task.

For the correction tasks, we frst randomly insert or delete items
in a raw sequence �� to get a modifed sequence �� , then we ask
STEAM to delete the inserted items and insert the deleted items for
�� . Through the deletion correction task and the insertion correc-
tion task, we can obtain self-supervised signals for correcting raw
input sequences without additional manual labeling. Specifcally,
our goal is to minimize the negative log-likelihood of � (�� | ��),
as shown in Eq. 10:

Beauty 22,362 12,101 194,682 8.7 99.93%
Sports 35,597 18,357 294,483 8.3 99.95%
Yelp 22,844 16,552 236,999 10.4 99.94%

𝐿1=− log 𝑃 (𝑆𝑟 |𝑆𝑚)(
=− log 𝑃 (𝑂 |𝑆𝑚) +

∑︁
𝑖∈𝐼 𝑖𝑛𝑠

log 𝑃 (𝑆<𝑖 |𝑆𝑚)
)

=− ©­«
|𝑆∑︁𝑚 |

𝑡=1
log 𝑃 (𝑜𝑡 = 𝑜𝑡 |𝑆𝑚)+

∑︁
𝑖∈𝐼 𝑖𝑛𝑠

|𝑆∑︁<𝑖 |

𝑛=1
log 𝑃 (𝑖𝑛 = 𝑖𝑛 |𝑆1:

<𝑖
𝑛−1, 𝑆

𝑚)ª®¬ ,
(10)

where 𝐿1 is the loss for the corrector.
In the masked item prediction task, we first employ STEAM to

correct 𝑆𝑟 to get the corrected item sequence 𝑆𝑐 , then randomly

𝐼

𝐼

mask items in 𝑆𝑟 and 𝑆𝑐 , and use STEAM to predict the masked
items. We also minimize the negative log-likelihood of 𝑃 (𝑟̃ | 𝑆𝑟)
and 𝑃 (𝑐̃ | 𝑆𝑐), i.e., Eq. 11:

𝐿2 = −
(

𝐼 𝐼log 𝑃 (𝑟̃ | 𝑆𝑟) + log 𝑃 (𝑐̃ | 𝑆𝑐)
)

= − ©­∑︁
𝐼

log 𝑃 (𝑖 = 𝑖 | 𝑆𝑟) +
∑︁
𝐼

log 𝑃 (𝑖 = 𝑖 | 𝑆𝑐)ª® , (11)

«𝑖∈ 𝑟̃ 𝑖∈ 𝑐̃ ¬
where 𝐿2 is the loss for the recommender.

Finally, we use the joint loss 𝐿 shown in Eq. 12 to optimize the
parameters of STEAM:

𝐿 = 𝐿1 + 𝐿2 . (12)

Here, 𝐿 is minimized by the standard backpropagation algorithm.

4 EXPERIMENTAL SETUP
4.1 Research questions
We seek to answer the following research questions: (RQ1) How
does STEAM perform compared with the state-of-the-art sequential
recommendation methods? (RQ2) What benefits can the recom-
mender in STEAM obtain from the corrector in STEAM? (RQ3)
How does STEAM perform with different levels of noise?

4.2 Datasets
We evaluate STEAM on three datasets with varying domains.
Beauty and Sports belong to a series of product review datasets
crawled from Amazon.com byMcAuley et al. [25]. We select Beauty
and Sports subcategories in this work following Zhou et al. [57].
Yelp is a dataset for business recommendation released by Yelp.com.
As it is very large, we only use the transaction records between
“2019-01-01” and “2019-12-31.”

We follow common practices [15, 57] to preprocess all datasets.
We remove users and items whose interactions are less than 5. We
sort each user’s interactions by time to construct an item sequence.
For each item sequence, we use the last item for testing, the sec-
ond last item for validation, and the remaining items for training.
We pair the ground-truth item for testing or validation with 99
randomly sampled negative items that the user has not interacted
with.

For each dataset, we also construct a simulated test set, which
is different from the real test set by randomly modifying test se-
quences to introduce more imperfections. For each item in a test
sequence excluding the ground-truth item, we will keep it with
probability 0.8, insert one item before it (simulating misclicks on
irrelevant items) or delete it (simulating unexposed relevant items
due to inaccurate recommendations) with probability 0.1. We limit
the count of continuous insertion operations less than 5. The in-
serted item is sampled uniformly from the item set. The statistics
of the processed datasets are summarized in Table 1.

Table 1: Statistics of the datasets after preprocessing.
Dataset #Users #Items #Actions Avg. length Sparsity

1287

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Lin et al.

4.3 Baselines
We compare STEAM with the following representative baselines,
which can be grouped into (i) vanilla sequential recommendation
models, (ii) SSL-based sequential recommendation models, and
(iii) denoising sequential recommendation models. For each group,
we only consider the recent state-of-the-art methods.
• Vanilla sequential recommendation models:
– GRU4Rec [13] employs a GRU to model sequential patterns
between items for sequential recommendation.

– SASRec [15] uses a unidirectional transformer to model item
sequences for predicting next items.

– BERT4Rec [34] adopts a bidirectional transformer trained on
the masked item prediction task.

– SRGNN [49] models item sequences using a GNN with an
attention network.

• SSL-based sequential recommendation models:
– CL4SRec [51] uses three self-supervised tasks based on item
crop, item mask, and item reorder respectively to train a
transfor-mer-based sequential recommendation model.

– DuoRec [29] is the state-of-the-art SSL-based sequential
method that employs a model-level augmentation approach
based on dropout and a novel sampling strategy to construct
contrastive self-supervised signals.

• Denoising sequential recommendation models:
– FMLP-Rec [57] integrates FFT with an all-MLP architecture
for denoising in sequential recommendation. There are few
research on denoising for sequential recommendation work.
We select FMLP-Rec as it is the latest state-of-the-art one.

We also report “Recommender”, which is a variant of the recom-
mender in STEAM that is trained by the masked item prediction
task without joint training with the corrector. For STEAM, we re-
port its performance on corrected item sequences by default.

4.4 Metrics and implementation
We adopt two widely used evaluation metrics to evaluate the per-
formances of all sequential recommendation methods: HR@� (hit
ratio) and MRR@� (mean reciprocal rank) [6], where � ∈ {5, 10}.

For all baselines and STEAM, we initialize the trainable parame-
ters randomly with Xavier method [10]. We optimize all methods
with the Adam optimizer [17] for 300 epochs, with a learning rate
of 0.001 and a batch size of 256. We also apply gradient clipping
[27] with range [−5, 5] during training. We set the maximum raw
item sequence length to 50, the maximum item sequence length
after correction to 60, and the maximum number of continuous
inserted items to 5.

For all baselines, we follow the instructions from their original
papers to set the hyper-parameters. For the hyper-parameters of
STEAM, we set the embedding size � to 64, the number of heads
in transformer to 1, and the number of layers �� , �� and �� to 1.
We set the dropout rate to 0.5. During training, the keep probabil-
ity �� , insertion probability �� , deletion probability �� , and mask
probability �� are set to 0.4, 0.1, 0.5, and 0.5, respectively.

5 EXPERIMENTAL RESULTS

5.1 Overall performance
To answer RQ1, we compare STEAM against the baselines listed
in Section 4.3 on the real test sets specifed in Section 4.2. Table 2

lists the evaluation results of all methods. Based on these results,
we have the following observations.

First, STEAM consistently outperforms all baselines by a large
margin on most evaluation metrics of all datasets. Although STEAM
only achieves the second best performance in terms of MRR@5
and MRR@10 on the Beauty dataset, it is almost comparable with
the best result. Compared with the baselines using single recom-
mendation models, STEAM jointly trains the recommender and
the item-wise corrector, which shares the encoder and item embed-
dings. On the one hand, the deletion and insertion correction tasks
for the corrector can provide the recommender with powerful self-
supervised signals to obtain better item representations and robust
item correlations. On the other hand, the corrector can correct the
input sequence to reduce imperfections so that the recommender in
STEAM predicts the next item more accurately. A detailed analysis
can be found in the following sections.

Second, the SSL-based models CL4SRec and DuoRec perform
better than the vanilla models on all metrics and datasets. Especially,
DuoRec achieves the second best performance on most metrics, and
achieves the best performance in terms of MRR@5 and MRR@10 on
the Beauty dataset. This demonstrates that self-supervised learning
can improve the performance of sequential recommendation by
deriving extra supervision signals from item sequences themselves.
The performance of DuoRec is obviously better than CL4SRec,
which confrms the efectiveness of the model-level augmentation
method and the sampling strategy proposed in DuoRec.

Third, although the denoising model FMLP-Rec is an all-MLP
model, it shows superior performance compared to the vanilla
models that adopt more complex architectures like the transformer.
This is because FMLP-Rec can flter out noisy information in item
sequences by FFT, while the vanilla models may overft on the noisy
data due to their over-parameterized architectures [18, 26]. FMLP-
Rec performs worse than DuoRec and is comparable to CL4SRec.
Self-supervised learning improves the robustness of DuoRec and
CL4SRec to resist the infuence of imperfections including noise in
item sequences [21, 52], so they can fully exploit the power of the
transformer to model sequences.

5.2 Benefts of the corrector
To answer RQ2, we analyze the efect of the item-wise corrector
and the self-supervised correction tasks.

We frst compare the performance of STEAM and its recom-
mender in Table 2. We observe that STEAM signifcantly outper-
forms its recommender in terms of all evaluation metrics on all
datasets. Therefore, we can attribute the improvement of STEAM on
sequential recommendation to the integration of the recommender
with the item-wise corrector. Moreover, by comparing the recom-
mender of STEAM and BERT4Rec, we fnd that they have almost
similar performance. Because we train the recommender of STEAM
by the masked item prediction task separately, the recommender
of STEAM is equivalent to BERT4Rec in this case.

As shown in Table 3, we use Overall-R and Overall-C to denote
the performances of STEAM on the raw item sequences and the
corrected item sequences of the real test sets, respectively. We see
that Overall-C is slightly better than Overall-R on most evaluation

1288

A Self-Correcting Sequential Recommender WWW ’23, April 30–May 04, 2023, Austin, TX, USA

Table 2: Performance comparison of diferent methods on the real test sets. The best performance and the second best
performance are denoted in bold and underlined fonts respectively. ∗ indicates that the performance gain of STEAM against
the best baseline is statistically signifcant based on a two-sided paired t-test with � < 0.05.

Real Beauty Real Sports Real Yelp

Model HR@5 HR@10 MRR@5 MRR@10 HR@5 HR@10 MRR@5 MRR@10 HR@5 HR@10 MRR@5 MRR@10

GRU4Rec 32.95 42.59 21.63 22.90 30.58 42.85 18.35 19.97 55.40 76.57 32.23 35.05
SASRec 36.58 45.57 25.43 26.62 34.51 46.20 21.91 23.46 58.24 77.96 35.07 37.72
BERT4Rec 36.67 47.28 23.38 24.79 35.16 47.91 21.54 23.24 61.18 79.72 37.64 40.13
SRGNN 37.33 47.65 25.15 26.52 35.92 48.32 22.44 24.08 59.86 78.96 36.74 39.30

CL4SRec 39.29 48.75 27.59 28.84 37.91 49.83 24.53 26.11 62.15 80.16 39.29 41.70
DuoRec 40.95 50.78 28.84 30.15 39.80 51.93 25.97 27.58 64.01 82.63 40.85 43.34

FMLP-Rec 39.69 48.72 28.01 29.20 37.67 49.32 24.66 26.21 61.85 80.76 38.38 40.92

Recommender 35.73 46.47 22.84 24.27 35.02 47.78 21.34 23.03 61.41 80.57 37.67 40.22
STEAM 42.57∗ 52.89∗ 28.75 30.14 42.14∗ 55.16∗ 26.87∗ 28.61∗ 67.22∗ 84.49∗ 43.45∗ 45.77∗

Table 3: Performance analysis of STEAM on diferent groups of the real test sets. Overall-R (Overall-C) is the performance on
all raw (corrected) test item sequences. Changed-R (Changed-C) is the performance on the raw (corrected) test item sequences
of the changed sequence group. Unchanged is the performance on the test item sequences of the unchanged sequence group.

Real Beauty Real Sports Real Yelp

STEAM HR@5 HR@10 MRR@5 MRR@10 HR@5 HR@10 MRR@5 MRR@10 HR@5 HR@10 MRR@5 MRR@10

Overall-R 42.21 52.75 28.27 29.68 42.03 55.04 26.75 28.48 67.19 84.49 43.42 45.75
Overall-C 42.57 52.89 28.75 30.14 42.14 55.16 26.87 28.61 67.22 84.49 43.45 45.77

Changed-R 41.35 51.59 27.04 28.40 35.04 47.64 21.56 23.23 56.05 74.19 34.36 36.80
Changed-C 42.56 52.06 28.66 29.94 35.54 48.12 22.08 23.76 57.46 74.40 35.45 37.73

Unchanged 42.58 53.25 28.79 30.22 44.21 57.36 28.37 30.12 67.44 84.71 43.62 45.95

Table 4: Statistics of correction operations by STEAM on the
real test sets. #Changed is the percentage of the changed test
item sequences after correction. #Keep, #Delete and #Insert
are the percentages of diferent types of correction opera-
tions during correction.

Dataset #Changed #Keep #Delete #Insert

Real Beauty
Real Sports
Real Yelp

29.91
23.82
2.17

88.60
95.72
99.63

4.03
4.21
0.15

7.37
0.07
0.22

metrics, but the superiority of Overall-C is not obvious. We think
the reason is that not all test sequences are changed after correction,
so we count the percentage of changed test sequences, see Table 4.
We can verify that most test item sequences do not change after cor-
rection, especially on the Yelp dataset. Based on the observation in
Table 4, we group test item sequences into two groups: the changed
sequence group whose corrected item sequences are diferent from
the raw item sequences, and the unchanged sequence group where
the raw item sequences remain the same after correction. We eval-
uate the performance of STEAM on the two groups, separately. As
shown in Table 3, for the changed item sequence group, we use
Changed-R and Changed-C to denote the performance of STEAM
on the raw item sequences and the corrected sequences, respec-
tively. We see that Changed-C is better than Changed-R, and the
diference between them is bigger than that between Overall-C
and Overall-R. Therefore, we can confrm that the corrector helps
the recommender achieve better performance by correcting input
sequences.

Next, we compare Overall-R in Table 3 with all baselines in Table
2. The comparison shows that STEAM can signifcantly outperform
all baselines even based on the raw sequences. We also conclude
that the joint learning with the corrector accounts for most of the
improvement of STEAM over existing methods. This is because
the recommender and the corrector share the encoder and item
embeddings. The item representations and the item correlations
learned by the self-supervised deletion correction and insertion
correction tasks can be transferred to the recommender, which can
enable the recommender to obtain better recommendation results
and a robust performance on imperfect sequences.

Finally, we count the percentages of diferent correction oper-
ations performed by STEAM during correction. See Table 4. We
observe that STEAM chooses to keep items in most cases. This is
reasonable because most item sequences refect normal user be-
havior data without noise. Therefore, STEAM tends to keep most
sequences and items unmodifed. Based on the statistics, we see
that STEAM is not only able to delete items but also insert items,
which is a key diference from denoising methods like FMLP-Rec.

We also conduct ablation studies to analyze the efectiveness of
each self-supervised task and each correction operation, please see
Appendix A and B for details.

5.3 Robustness analysis
To answer RQ3, we conduct experiments and analyses on the simu-
lated test sets defned in Section 4.2 by randomly inserting and/or
deleting items. The experimental results are shown in Table 5.

The main observations from Table 5 are similar to those from
Table 2. The performance for most baselines decreases as most of

1289

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Lin et al.

Table 5: Performance comparison of diferent methods on the simulated test sets.
Simulated Beauty Simulated Sports Simulated Yelp

Model HR@5 HR@10 MRR@5 MRR@10 HR@5 HR@10 MRR@5 MRR@10 HR@5 HR@10 MRR@5 MRR@10

GRU4Rec 32.22 42.13 21.28 22.59 29.96 42.26 17.99 19.61 54.64 75.87 31.66 34.49
SASRec 35.97 45.26 24.97 26.20 33.63 45.23 21.47 23.01 57.71 77.12 34.64 37.23
BERT4Rec 35.83 46.79 22.79 24.25 34.10 46.49 20.62 22.26 59.46 78.07 36.36 38.85
SRGNN 36.64 46.81 24.50 25.85 35.39 47.55 22.00 23.60 57.55 76.82 35.09 37.68

CL4SRec 38.66 48.22 26.96 28.23 37.10 48.93 23.95 25.52 61.08 78.99 38.48 40.88
DuoRec 40.26 50.13 28.39 29.71 38.87 50.95 25.36 26.96 63.06 82.07 40.24 42.78

FMLP-Rec 39.38 48.47 27.85 29.06 37.23 48.86 24.33 25.87 61.17 80.37 37.97 40.56

Recommender 35.14 45.96 22.22 23.66 33.70 46.40 20.38 22.06 60.33 79.08 36.52 39.03
STEAM 42.09∗ 52.21∗ 28.45 29.81 41.72∗ 54.82∗ 26.43∗ 28.17∗ 66.46∗ 84.05∗ 42.83∗ 45.19∗

Table 6: Robustness analysis of diferent models. Each value is a performance disturbance.
Beauty Sports Yelp

Model HR@5 HR@10 MRR@5 MRR@10 HR@5 HR@10 MRR@5 MRR@10 HR@5 HR@10 MRR@5 MRR@10

GRU4Rec -2.21% -1.08% -1.62% -1.35% -2.03% -1.38% -1.96% -1.80% -1.37% -0.91% -1.77% -1.60%
SASRec -1.67% -0.68% -1.81% -1.58% -2.55% -2.10% -2.01% -1.92% -0.91% -1.08% -1.23% -1.30%
BERT4Rec -2.29% -1.04% -2.52% -2.18% -3.01% -2.96% -4.27% -4.22% -2.81% -2.07% -3.40% -3.19%
SRGNN -1.85% -1.76% -2.58% -2.53% -1.48% -1.59% -1.96% -1.99% -3.86% -2.71% -4.49% -4.12%

CL4SRec -1.60% -1.09% -2.28% -2.12% -2.14% -1.81% -2.36% -2.26% -1.72% -1.46% -2.06% -1.97%
DuoRec -1.68% -1.28% -1.56% -1.46% -2.34% -1.89% -2.35% -2.25% -1.48% -0.68% -1.49% -1.29%

FMLP-Rec -0.78% -0.51% -0.57% -0.48% -1.17% -0.93% -1.34% -1.30% -1.10% -0.48% -1.07% -0.88%

Recommender -1.65% -1.10% -2.71% -2.51% -3.77% -2.89% -4.50% -4.21% -1.76% -1.85% -3.05% -2.96%
STEAM -0.28% -1.02% +0.64% +0.44% -0.74% -0.40% -1.20% -1.09% -1.09% -0.52% -1.36% -1.22%

them cannot handle noisy and missed items. It is worth noting that
STEAM achieves better MRR@5 and MRR@10 than DuoRec on the
simulated Beauty test set, which indicates that the superiority of
STEAM becomes more obvious with more imperfect cases.

To further analyze the robustness of diferent models, we com-
pare their performance on the real test set (see Table 2) and the
simulated test set (see Table 5) and calculate the performance dis-
turbance with ���� = (���� −�)���� /����� , where ���� represents the
disturbance, ����� is the metric value on the real test set, and ����
is the metric value on the simulated test set. Especially, for STEAM,
����� is the metric value on the raw item sequences of the real test
set (see Overall-R in Table 2), while ���� is the metric value on the
corrected sequences of the simulated test set by default. As we hope
to evaluate how STEAM handles the simulated imperfections added
into the real test set, we consider the performance of STEAM on the
raw item sequences without correcting the inherent imperfections
in the real test set.

The performance disturbance of all models is listed in Table 6.
First, we can fnd that most performance disturbance values are
minus, which illustrates that sequence imperfections will degrade
model performance. Second, FMLP-Rec shows competitive robust-
ness and performs better than STEAM on the Yelp dataset, which
confrms its efectiveness at denoising. Finally, STEAM achieves
most of the best results on the Beauty and Sports datasets and most
of the second best results on the Yelp dataset, proving its robustness.
The disturbance values of STEAM on MRR@5 and MRR@10 on
the Beauty dataset are even positive, which illustrates that STEAM
cannot only correct the simulated imperfections but also correct
some inherent imperfections. Although FMLP-Rec is more robust

than STEAM on the Yelp dataset, it may sacrifce recommendation
performance for robustness. Similarly, SASRec obtains better values
on some metrics, but its recommendation performance is relatively
inferior. In contrast, DuoRec is the best baseline in recommenda-
tion performance, but its robustness is worse than FMLP-Rec and
STEAM. We conclude that STEAM strikes a better balance between
recommendation performance and robustness than other methods.

6 CONCLUSION AND FUTURE WORK
We have presented STEAM, a self-correcting sequential recom-
mender that can learn to correct the raw item sequence before mak-
ing recommendations by identifying users’ misclicks on irrelevant
items and/or recalling unexposed relevant items due to inaccurate
recommendations. In order to train the corrector without manual
labeling work, we have proposed two self-supervised tasks, the
deletion correction and the insertion correction, which randomly
insert or delete items and ask the corrector to recover them. We
have conducted extensive experiments on three real-world datasets
to show STEAM consistently outperforms state-of-the-art sequen-
tial recommendation baselines and achieves robust performance
on simulated test sets with more imperfect cases.

STEAM has the following limitations: (i) it cannot execute ‘delete’
and ‘insert’ on the same item simultaneously; and (ii) it can only
insert items before the chosen item. As to future work, we plan
to design a more fexible corrector by repeating the correction
process with multiple iterations. We would also like to combine
the corrector with other recommendation models and tasks besides
BERT4Rec and the masked item prediction task.

1290

A Self-Correcting Sequential Recommender WWW ’23, April 30–May 04, 2023, Austin, TX, USA

ACKNOWLEDGMENTS
We thank our anonymous reviewers for their helpful comments.
This research was supported by the National Key R&D Program of
China with grant (No.2022YFC3303004, No.2020YFB1406704), the
Natural Science Foundation of China (62102234, 62272274, 62202271,
61902219, 61972234, 62072279), the Key Scientifc and Technologi-
cal Innovation Program of Shandong Province (2019JZZY010129),
the Tencent WeChat Rhino-Bird Focused Research Program (JR-
WXG-2021411), the Fundamental Research Funds of Shandong
University, and the Hybrid Intelligence Center, a 10-year pro-
gram funded by the Dutch Ministry of Education, Culture and
Science through the Netherlands Organisation for Scientifc Re-
search, https://hybrid-intelligence-centre.nl. All content represents
the opinion of the authors, which is not necessarily shared or en-
dorsed by their respective employers and/or sponsors.

REFERENCES
[1] Zhi Bian, Shaojun Zhou, Hao Fu, Qihong Yang, Zhenqi Sun, Junjie Tang, Guiquan

Liu, Kaikui Liu, and Xiaolong Li. 2021. Denoising user-aware memory network
for recommendation. In ACM Conference on Recommender Systems. 400–410.

[2] Jianxin Chang, Chen Gao, Yu Zheng, Yiqun Hui, Yanan Niu, Yang Song, Depeng
Jin, and Yong Li. 2021. Sequential recommendation with graph neural networks. In
International ACM SIGIR Conference on Research and Development in Information
Retrieval. 378–387.

[3] Sneha Chaudhari, Varun Mithal, Gungor Polatkan, and Rohan Ramanath. 2021.
An attentive survey of attention models. ACM Transactions on Intelligent Systems
and Technology 12, 5 (2021), 1–32.

[4] Xu Chen, Hongteng Xu, Yongfeng Zhang, Jiaxi Tang, Yixin Cao, Zheng Qin, and
Hongyuan Zha. 2018. Sequential recommendation with user memory networks.
In International Conference on Web Search and Data Mining. 108–116.

[5] Kyunghyun Cho, B van Merrienboer, Caglar Gulcehre, F Bougares, H Schwenk,
and Yoshua Bengio. 2014. Learning phrase representations using RNN encoder-
decoder for statistical machine translation. In Conference on Empirical Methods
in Natural Language Processing.

[6] Hui Fang, Danning Zhang, Yiheng Shu, and Guibing Guo. 2020. Deep learning
for sequential recommendation: Algorithms, infuential factors, and evaluations.
ACM Transactions on Information Systems 39, 1 (2020), 1–42.

[7] Steve Fox, Kuldeep Karnawat, Mark Mydland, Susan Dumais, and Thomas White.
2005. Evaluating implicit measures to improve web search. ACM Transactions on
Information Systems 23, 2 (2005), 147–168.

[8] Yunjun Gao, Yuntao Du, Yujia Hu, Lu Chen, Xinjun Zhu, Ziquan Fang, and Baihua
Zheng. 2022. Self-guided learning to denoise for robust recommendation. In
International ACM SIGIR Conference on Research and Development in Information
Retrieval. 1412–1422.

[9] Florent Garcin, Christos Dimitrakakis, and Boi Faltings. 2013. Personalized news
recommendation with context trees. In ACM Conference on Recommender Systems.
105–112.

[10] Xavier Glorot and Yoshua Bengio. 2010. Understanding the difculty of training
deep feedforward neural networks. In Proceedings of the International Conference
on Artifcial Intelligence and Statistics. 249–256.

[11] Ruining He and Julian McAuley. 2016. Fusing similarity models with markov
chains for sparse sequential recommendation. In International Conference on Data
Mining. 191–200.

[12] Balázs Hidasi and Alexandros Karatzoglou. 2018. Recurrent neural networks with
top-k gains for session-based recommendations. In Conference on Information
and Knowledge Management. 843–852.

[13] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
2016. Session-based recommendations with recurrent neural networks. In Inter-
national Conference on Learning Representations.

[14] Jin Huang, Wayne Xin Zhao, Hongjian Dou, Ji-Rong Wen, and Edward Y Chang.
2018. Improving sequential recommendation with knowledge-enhanced memory
networks. In International ACM SIGIR Conference on Research and Development
in Information Retrieval. 505–514.

[15] Wang-Cheng Kang and Julian McAuley. 2018. Self-attentive sequential recom-
mendation. In International Conference on Data Mining. 197–206.

[16] Youngho Kim, Ahmed Hassan, Ryen W White, and Imed Zitouni. 2014. Modeling
dwell time to predict click-level satisfaction. In International Conference on Web
Search and Data Mining. 193–202.

[17] Diederik P Kingma and Jimmy Ba. 2015. Adam: A method for stochastic opti-
mization. In International Conference on Learning Representations.

[18] Jake Lever, Martin Krzywinski, and Naomi Altman. 2016. Points of signifcance:
Model selection and overftting. Nature Methods 13, 9 (2016), 703–705.

[19] Jing Li, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Tao Lian, and Jun Ma. 2017.
Neural attentive session-based recommendation. In Conference on Information
and Knowledge Management. 1419–1428.

[20] Xiao Liu, Fanjin Zhang, Zhenyu Hou, Li Mian, Zhaoyu Wang, Jing Zhang, and Jie
Tang. 2021. Self-supervised learning: Generative or contrastive. IEEE Transactions
on Knowledge and Data Engineering (2021).

[21] Zhiwei Liu, Yongjun Chen, Jia Li, Philip S Yu, Julian McAuley, and Caiming
Xiong. 2021. Contrastive self-supervised sequential recommendation with robust
augmentation. arXiv preprint arXiv:2108.06479 (2021).

[22] Hongyu Lu, Min Zhang, and Shaoping Ma. 2018. Between clicks and satisfaction:
Study on multi-phase user preferences and satisfaction for online news reading. In
International ACM SIGIR Conference on Research and Development in Information
Retrieval. 435–444.

[23] Muyang Ma, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Huasheng Liang, Jun
Ma, and Maarten de Rijke. 2022. Improving transformer-based sequential recom-
menders through preference editing. ACM Transactions on Information Systems
(2022).

[24] Muyang Ma, Pengjie Ren, Yujie Lin, Zhumin Chen, Jun Ma, and Maarten de Rijke.
2019. � -net: A parallel information-sharing network for shared-account cross-
domain sequential recommendations. In International ACM SIGIR Conference on
Research and Development in Information Retrieval. 685–694.

[25] Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel.
2015. Image-based recommendations on styles and substitutes. In International
ACM SIGIR Conference on Research and Development in Information Retrieval.
43–52.

[26] Sachin Mehta, Marjan Ghazvininejad, Srinivasan Iyer, Luke Zettlemoyer, and
Hannaneh Hajishirzi. 2020. DeLighT: Deep and light-weight transformer. In
International Conference on Learning Representations.

[27] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. 2013. On the difculty
of training recurrent neural networks. In International Conference on Machine
Learning. 1310–1318.

[28] Yuqi Qin, Pengfei Wang, and Chenliang Li. 2021. The world is binary: Contrastive
learning for denoising next basket recommendation. In International ACM SIGIR
Conference on Research and Development in Information Retrieval. 859–868.

[29] Ruihong Qiu, Zi Huang, Hongzhi Yin, and Zijian Wang. 2022. Contrastive
learning for representation degeneration problem in sequential recommendation.
In International Conference on Web Search and Data Mining. 813–823.

[30] Pengjie Ren, Zhumin Chen, Jing Li, Zhaochun Ren, Jun Ma, and Maarten De Rijke.
2019. Repeatnet: A repeat aware neural recommendation machine for session-
based recommendation. In Proceedings of the AAAI Conference on Artifcial Intel-
ligence, Vol. 33. 4806–4813.

[31] Stefen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. 2010. Factor-
izing personalized markov chains for next-basket recommendation. In The Web
Conference. 811–820.

[32] Samir S Soliman and Mandyam D Srinath. 1990. Continuous and discrete signals
and systems. Englewood Clifs (1990).

[33] Nitish Srivastava, Geofrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: A simple way to prevent neural networks from
overftting. The Journal of Machine Learning Research 15, 1 (2014), 1929–1958.

[34] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang.
2019. BERT4Rec: Sequential recommendation with bidirectional encoder rep-
resentations from transformer. In Conference on Information and Knowledge
Management. 1441–1450.

[35] Jiaxi Tang and Ke Wang. 2018. Personalized top-n sequential recommendation
via convolutional sequence embedding. In International Conference on Web Search
and Data Mining. 565–573.

[36] Xiaohai Tong, Pengfei Wang, Chenliang Li, Long Xia, and ShaoZhang Niu. 2021.
Pattern-enhanced contrastive policy learning network for sequential recommen-
dation. In International Joint Conference on Artifcial Intelligence.

[37] Trinh Xuan Tuan and Tu Minh Phuong. 2017. 3D convolutional networks for
session-based recommendation with content features. In ACM Conference on
Recommender Systems. 138–146.

[38] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Neural Information Processing Systems. 6000–6010.

[39] Meirui Wang, Pengjie Ren, Lei Mei, Zhumin Chen, Jun Ma, and Maarten de
Rijke. 2019. A collaborative session-based recommendation approach with par-
allel memory modules. In International ACM SIGIR Conference on Research and
Development in Information Retrieval. 345–354.

[40] Shoujin Wang, Longbing Cao, Yan Wang, Quan Z Sheng, Mehmet A Orgun, and
Defu Lian. 2021. A survey on session-based recommender systems. Comput.
Surveys 54, 7 (2021), 1–38.

[41] Shoujin Wang, Liang Hu, Yan Wang, Longbing Cao, Quan Z Sheng, and Mehmet
Orgun. 2019. Sequential recommender systems: Challenges, progress and
prospects. In International Joint Conference on Artifcial Intelligence. 6332–6338.

[42] Wenjie Wang, Fuli Feng, Xiangnan He, Liqiang Nie, and Tat-Seng Chua. 2021.
Denoising implicit feedback for recommendation. In International Conference on

1291

https://hybrid-intelligence-centre.nl

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Lin et al.

Web Search and Data Mining. 373–381.
[43] Yu Wang, Xin Xin, Zaiqiao Meng, Joemon M Jose, Fuli Feng, and Xiangnan He.

2022. Learning robust recommenders through cross-model agreement. In The
Web Conference. 2015–2025.

[44] Zitai Wang, Qianqian Xu, Zhiyong Yang, Xiaochun Cao, and Qingming Huang.
2021. Implicit feedbacks are not always favorable: Iterative relabeled one-class
collaborative fltering against noisy interactions. In ACM International Conference
on Multimedia. 3070–3078.

[45] Max Welling and Thomas N Kipf. 2017. Semi-supervised classifcation with graph
convolutional networks. In International Conference on Learning Representations.

[46] Jason Weston, Sumit Chopra, and Antoine Bordes. 2015. Memory networks. In
International Conference on Learning Representations.

[47] Chao-Yuan Wu, Amr Ahmed, Alex Beutel, Alexander J Smola, and How Jing.
2017. Recurrent recommender networks. In International Conference on Web
Search and Data Mining. 495–503.

[48] Liwei Wu, Shuqing Li, Cho-Jui Hsieh, and James Sharpnack. 2020. SSE-PT:
Sequential recommendation via personalized transformer. In ACM Conference on
Recommender Systems. 328–337.

[49] Shu Wu, Yuyuan Tang, Yanqiao Zhu, Liang Wang, Xing Xie, and Tieniu Tan. 2019.
Session-based recommendation with graph neural networks. In Proceedings of
the AAAI Conference on Artifcial Intelligence, Vol. 33. 346–353.

[50] Xin Xia, Hongzhi Yin, Junliang Yu, Qinyong Wang, Lizhen Cui, and Xiangliang
Zhang. 2021. Self-supervised hypergraph convolutional networks for session-
based recommendation. In Proceedings of the AAAI Conference on Artifcial Intel-
ligence, Vol. 35. 4503–4511.

[51] Xu Xie, Fei Sun, Zhaoyang Liu, Shiwen Wu, Jinyang Gao, Jiandong Zhang, Bolin
Ding, and Bin Cui. 2022. Contrastive learning for sequential recommendation. In
International Conference on Data Engineering. 1259–1273.

[52] Junliang Yu, Hongzhi Yin, Xin Xia, Tong Chen, Jundong Li, and Zi Huang. 2022.
Self-supervised learning for recommender systems: A survey. arXiv preprint
arXiv:2203.15876 (2022).

[53] Fajie Yuan, Alexandros Karatzoglou, Ioannis Arapakis, Joemon M Jose, and Xi-
angnan He. 2019. A simple convolutional generative network for next item
recommendation. In International Conference on Web Search and Data Mining.
582–590.

[54] Mengqi Zhang, Shu Wu, Xueli Yu, Qiang Liu, and Liang Wang. 2022. Dynamic
graph neural networks for sequential recommendation. IEEE Transactions on
Knowledge and Data Engineering (2022).

[55] Qian Zhao, Shuo Chang, F Maxwell Harper, and Joseph A Konstan. 2016. Gaze pre-
diction for recommender systems. In ACM Conference on Recommender Systems.
131–138.

[56] Kun Zhou, Hui Wang, Wayne Xin Zhao, Yutao Zhu, Sirui Wang, Fuzheng Zhang,
Zhongyuan Wang, and Ji-Rong Wen. 2020. S3-rec: Self-supervised learning for se-
quential recommendation with mutual information maximization. In Conference
on Information and Knowledge Management. 1893–1902.

[57] Kun Zhou, Hui Yu, Wayne Xin Zhao, and Ji-Rong Wen. 2022. Filter-enhanced
MLP is all you need for sequential recommendation. In The Web Conference.
2388–2399.

1292

A Self-Correcting Sequential Recommender WWW ’23, April 30–May 04, 2023, Austin, TX, USA

Table 7: Ablation study for self-supervised tasks on the real test sets, where STEAM-DC is the variant of STEAM trained by
the deletion correction task and the masked item prediction task, STEAM-IC is the variant of STEAM trained by the insertion
correction task and the masked item prediction task.

Real Beauty Real Sports Real Yelp

Model HR@5 HR@10 MRR@5 MRR@10 HR@5 HR@10 MRR@5 MRR@10 HR@5 HR@10 MRR@5 MRR@10

Recommender 35.73 46.47 22.84 24.27 35.02 47.78 21.34 23.03 61.41 80.57 37.67 40.22
STEAM-DC 41.56 51.93 27.94 29.32 41.33 54.48 26.22 27.97 66.82 83.97 43.08 45.39
STEAM-IC 41.77 52.23 28.15 29.54 41.19 54.06 26.14 27.85 66.87 83.75 42.96 45.36
STEAM 42.57 52.89 28.75 30.14 42.14 55.16 26.87 28.61 67.22 84.49 43.45 45.77

Table 8: Ablation study for self-supervised tasks on the simulated test sets.
Simulated Beauty Simulated Sports Simulated Yelp

Model HR@5 HR@10 MRR@5 MRR@10 HR@5 HR@10 MRR@5 MRR@10 HR@5 HR@10 MRR@5 MRR@10

Recommender 35.14 45.96 22.22 23.66 33.70 46.40 20.38 22.06 60.33 79.08 36.52 39.03
STEAM-DC 40.94 50.93 27.54 28.87 40.73 53.77 25.71 27.45 66.02 83.48 42.22 44.57
STEAM-IC 40.87 51.47 27.43 28.83 40.33 53.29 25.41 27.14 65.75 83.04 41.86 44.31
STEAM 42.09 52.21 28.45 29.81 41.72 54.82 26.43 28.17 66.46 84.05 42.83 45.19

Table 9: Ablation study for the ‘delete’ operation on the real test sets, where STEAM-DK is the variant of STEAM that
‘delete’ and ‘keep’ operations only.

Real Beauty Real Sports Real Yelp

executes

STEAM-DK HR@5 HR@10 MRR@5 MRR@10 HR@5 HR@10 MRR@5 MRR@10 HR@5 HR@10 MRR@5 MRR@10

Changed-R 32.08 43.56 20.01 21.53 34.89 47.46 21.48 23.15 53.36 69.32 33.35 35.63
Changed-C 32.92 43.86 20.56 22.03 35.41 47.92 21.98 23.64 55.12 69.96 34.81 36.80

Table 10: Ablation study for the ‘insert’ operation on the real test sets, where STEAM-IK is the variant of STEAM that
‘insert’ and ‘keep’ operations only.

Real Beauty Real Sports Real Yelp

executes

STEAM-IK HR@5 HR@10 MRR@5 MRR@10 HR@5 HR@10 MRR@5 MRR@10 HR@5 HR@10 MRR@5 MRR@10

Changed-R 73.36 79.27 51.62 52.44 46.79 60.29 27.92 29.59 59.11 78.22 34.83 37.36
Changed-C 75.29 80.21 55.98 56.65 47.06 61.76 28.95 31.03 60.00 79.11 35.47 38.05

A ABLATION STUDY FOR SELF-SUPERVISED
TASKS

To analyze the efectiveness of each self-supervised task, we carry
out experiments with two variants of STEAM, i.e., STEAM-DC
and STEAM-IC. STEAM-DC is trained by the deletion correction
task and the masked item prediction task. STEAM-IC is trained by
the insertion correction task and the masked item prediction task.
The experimental results are shown in Table 7 and 8. We observe
that both STEAM-DC and STEAM-IC perform better than Recom-
mender, so we can confrm that using the single deletion correction
mechanism or insertion correction mechanism improves the se-
quential recommendation performance. We also see that STEAM
outperforms STEAM-DC and STEAM-IC, which proves it is neces-
sary to combine these two self-supervised mechanisms to improve
model performance.

B ABLATION STUDY FOR CORRECTION
OPERATIONS

To evaluate the efectiveness of each correction operation, we carry
out experiments with two variants of STEAM, i.e., STEAM-DK and
STEAM-IK. STEAM-DK executes ‘delete’ and ‘keep’ operations,
while STEAM-IK executes ‘insert’ and ‘keep’ operations. We fo-
cus on the changed sequence group, and report the Changed-R
and Changed-C of STEAM-DK and STEAM-IK on the real test sets.
The results are shown in Table 9 and 10. The result of Changed-C
are better than those of Changed-R, in both tables. It illustrates
that both deleting items and inserting items are useful, which can
make the corrected sequence better for sequential recommendation.
Moreover, the results of Changed-R in Table 9 and 10 are difer-
ent, which suggests that the sequences corrected by the ‘delete’
operation are diferent from those corrected by the ‘insert’ oper-
ation. Therefore, STEAM should employ both ‘delete’ and ‘insert’
operations to correct item sequences.

1293

	Abstract
	1 Introduction
	2 Related Work
	2.1 Sequential recommendation
	2.2 Denoising recommendation

	3 Method
	3.1 Overview
	3.2 Encoder
	3.3 Item-wise corrector
	3.4 Recommender
	3.5 Joint learning

	4 Experimental Setup
	4.1 Research questions
	4.2 Datasets
	4.3 Baselines
	4.4 Metrics and implementation

	5 Experimental Results
	5.1 Overall performance
	5.2 Benefits of the corrector
	5.3 Robustness analysis

	6 Conclusion and Future Work
	Acknowledgments
	References
	A Ablation study for self-supervised tasks
	B Ablation study for correction operations

