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ABSTRACT
The task of fashion recommendation includes two main challenges:
visual understanding and visual matching. Visual understanding
aims to extract effective visual features. Visual matching aims to
model a human notion of compatibility to compute amatch between
fashion items. Most previous studies rely on recommendation loss
alone to guide visual understanding and matching. Although the
features captured by these methods describe basic characteristics
(e.g., color, texture, shape) of the input items, they are not directly
related to the visual signals of the output items (to be recommended).
This is problematic because the aesthetic characteristics (e.g., style,
design), based on which we can directly infer the output items, are
lacking. Features are learned under the recommendation loss alone,
where the supervision signal is simply whether the given two items
are matched or not.

To address this problem, we propose a neural co-supervision
learning framework, called the FAshion Recommendation Machine
(FARM). FARM improves visual understanding by incorporating
the supervision of generation loss, which we hypothesize to be
able to better encode aesthetic information. FARM enhances visual
matching by introducing a novel layer-to-layer matching mecha-
nism to fuse aesthetic information more effectively, and meanwhile
avoiding paying too much attention to the generation quality and
ignoring the recommendation performance.

Extensive experiments on two publicly available datasets show
that FARM outperforms state-of-the-art models on outfit recom-
mendation, in terms of AUC and MRR. Detailed analyses of gener-
ated and recommended items demonstrate that FARM can encode
better features and generate high quality images as references to
improve recommendation performance.
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• Information systems→ Recommender systems.
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1 INTRODUCTION
Fashion recommendation has attracted increasing attention [14,
18, 20] for its potentially wide applications in fashion-oriented
online communities such as, e.g., Polyvore1 and Chictopia.2 By
recommending fashionable items that people may be interested in,
fashion recommendation can promote the development of online
retail by stimulating people’s interests and participation in online
shopping. In this paper, we target outfit recommendation, that is,
given a top (i.e., upper garment), we need to recommend a list of
bottoms (e.g., trousers or skirts) from a large collection that best
match the top, and vice versa. Specifically, we allow users to provide
some descriptions as conditions that the recommended items should
accord with as much as possible.

Unlike conventional recommendation tasks, outfit recommen-
dation faces two main challenges: visual understanding and visual
matching. Visual understanding aims to extract effective features
by building a deep understanding of fashion item images. Visual
matching requires modeling a human notion of the compatibil-
ity between fashion items [41], which involves matching features
such as color and shape etc. Early studies into outfit recommen-
dation rely on feature engineering for visual understanding and
traditional machine learning for visual matching [16]. For example,
Iwata et al. [15] define three types of feature, i.e., color, texture and
local descriptors such as Scale Invariant Feature Transform (SIFT)
(for visual understanding), and propose a recommendation model
based on Graphical Models (GM) (for visual matching). Liu et al.
[29] define five types of feature including Histograms of Oriented
Gradient (HOG) [9], Local Binary Pattern (LBP) [1], color moment,
color histogram and skin descriptor [5] (for visual understanding),
and propose a latent Support Vector Machine (SVM) based recom-
mendation model (for visual matching).

1http://www.polyvore.com/
2http://www.chictopia.com/
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Recently, neural networks have been applied to address the chal-
lenges of fashion recommendation: Song et al. [41] use a pre-trained
Convolutional Neural Network (CNN) (on ImageNet) to extract
visual features (for visual understanding). Then, they employ a
separate Bayesian Personalized Ranking (BPR) [35] method to ex-
ploit pairwise preferences between tops and bottoms (for visual
matching). Lin et al. [28] propose to train feature extraction (for
visual understanding) and preference prediction (for visual match-
ing) in a single back-propagation scheme. They introduce a mutual
attention mechanism into CNN to improve feature extraction. The
visual features captured by these methods only describe basic char-
acteristics (e.g., color, texture, shape) of the input items, which lack
aesthetic characteristics (e.g., style, design) to describe the output
items (to be recommended). Visual understanding and matching
are conducted based on recommendation loss alone, where the su-
pervision signal is just whether two given items are matched or
not and no supervision is available to directly connect the visual
signals of the fashion items. Recently, some studies have realized
the importance of modeling aesthetic information. For example,
Ma et al. [30] build a universal taxonomy to quantitatively describe
aesthetic characteristics of clothing. Yu et al. [46] propose to encode
aesthetic information by pre-training models on aesthetic assess-
ment datasets. However, none of them is for outfit recommendation
and none improves visual understanding and matching like we do.

In this paper, we address the challenges of outfit recommendation
from a novel perspective by proposing a neural co-supervision learn-
ing framework, called FAshion Recommendation Machine (FARM).
FARM enhances visual understanding and visual matching with the
joint supervision of generation and recommendation learning. Let
us explain. By incorporating the generation process as a supervi-
sion signal, FARM is able to encode more aesthetic characteristics,
based on which we can directly generate the output items. FARM
enhances visual matching by incorporating a novel layer-to-layer
matching mechanism to evaluate the matching score of generated
and candidate items at different neural layers; in this manner FARM
fuses the generation features from different visual levels to improve
the recommendation performance. This layer-to-layer matching
mechanism also ensures that FARM avoids paying too much atten-
tion to the generation quality and ignoring the recommendation
performance. To the best of our knowledge, FARM is the first end-
to-end learning framework that improves outfit recommendation
with joint modeling of fashion generation.

Extensive experimental results conducted on two publicly avail-
able datasets show that FARM outperforms state-of-the-art models
on outfit recommendation, in terms of AUC and MRR. To further
demonstrate the advantages of FARM, we conduct several analyses
and case studies.

To sum up, our contributions can be summarized as follows:
• We propose a neural co-supervision learning framework, FARM,
for outfit recommendation that simultaneously yields recommen-
dation and generation.

• We propose a layer-to-layer matching mechanism that acts as a
bridge between generation and recommendation, and improves
recommendation by leveraging generation features.

• Our proposed approach is shown to be effective in experiments
on two large-scale datasets.

2 RELATEDWORK
We survey related work on fashion recommendation by focusing
on the two main challenges in the area: visual understanding and
visual matching.

2.1 Visual understanding
One branch of studies aims at extracting better features to improve
the visual understanding of fashion items.

For instance, Iwata et al. [15] propose a recommender system
for clothing coordinates using full-body photographs from fash-
ion magazines. They extract visual features, such as color, texture
and local descriptors such as SIFT, and use a probabilistic topic
model for visual understanding of coordinates from these features.
Liu et al. [29] target occasion-oriented clothing recommendation.
Given a user-input event, e.g., wedding, shopping or dating, their
model recommends the most suitable clothing from the user’s own
clothing photo album. They adopt clothing attributes (e.g., clothing
category, color, pattern) for better visual understanding. Jagadeesh
et al. [16] describe a visual recommendation system for street fash-
ion images. They mainly focus on color modeling in terms of visual
understanding.

The studies listed above achieve visual understanding mostly
based on feature engineering and conventional machine learning
techniques. With the availability of large scale fashion recommen-
dation datasets and the rapid development of deep learning models,
several recent publications turn to neural networks for fashion
recommendation. CNNs are certainly widely employed [26, 31].
Ma et al. [30] build a taxonomy based on a theory of aesthetics
to describe aesthetic features of fashion items quantitatively and
universally. Then they capture the internal correlation in clothing
collocations by a novel fashion-oriented multi-modal deep learning
based model. Song et al. [41] use a pre-trained CNN on ImageNet to
extract visual features. Then, to improve visual understanding with
contextual information (such as titles and categories), they propose
to use multi-modal auto-encoders to exploit the latent compatibil-
ity of visual and contextual features. Han et al. [11] enrich visual
understanding by incorporating sequential information by using
a Bidirectional Long Short-Term Memory Network (Bi-LSTM) to
predict the next item conditioned on previous ones. They further
inject attribute and category information as a kind of regularization
to learn a visual-semantic space by regressing visual features to
their semantic representations. Kang et al. [20] use a CNN-F [7]
to learn image representations and train a personalized fashion
recommendation system jointly. Besides, they devise a personal-
ized fashion design system based on the learned CNN-F and user
representations. Yu et al. [46] propose to introduce aesthetic infor-
mation into fashion recommendation. To achieve this, they extract
aesthetic features using a pre-trained brain-inspired deep structure
on the aesthetic assessment task. Lin et al. [28] enhance visual
understanding by jointly modeling fashion recommendation and
user comment generation, where the visual features learned with
a CNN are enriched because they are related to the generation of
user comments.

Even though there is a growing number of studies on better
visual understanding for fashion recommendation, none of them
takes fashion generation into account like we do in this paper.



Figure 1: Overview of FARM. The fashion generator (top) uses a variational transformer to learn a special Gaussian distribution
for a given top image It and a given bottom description d. It then generates a bottom image Iд to match It and d. The fashion
recommender (bottom) evaluates the matching score between the recommended bottom image Ib and (It , d) pair from three
angles, i.e., visual matching, description matching, and layer-to-layer matching.

2.2 Visual matching
Early studies into visual matching are based on conventional ma-
chine learning methods. Iwata et al. [15] use a topic model to learn
the relation between photographs and recommend a bottom that
has the closest topic proportions to those of the given top. Liu
et al. [29] employ an SVM for recommendation, which has a term
describing the relationship between visual features and attributes
of tops and bottoms. Simo-Serra et al. [38] predict the popularity
of an outfit to implicitly learn its compatibility by a Conditional
Random Field (CRF) model. McAuley et al. [31] measure the com-
patibility between clothes by learning a distance metric with pre-
trained CNN features. Hu et al. [14] propose a functional pairwise
interaction tensor factorization method to model the interactions
between fashion items of different categories. Hsiao and Grauman
[13] develop a submodular objective function to capture the key
ingredients of visual compatibility in outfits. They propose a topic
model namely Correlated Topic Models (CTM) to generate com-
patible outfits learned from unlabeled images of people wearing
outfits.

Recently, deep learning methods have been used widely in the
fashion recommendation community. Veit et al. [43] train an end-to-
end Siamese CNN network to learn a feature transformation from
images to a latent compatibility space. Oramas and Tuytelaars [33]
mine mid-level elements from CNNs to model the compatibility
of clothes. Li et al. [26] use a Recurrent Neural Network (RNN) to
predict whether an outfit is popular, which also implicitly learns the

compatibility relation between fashion items. Han et al. [11] further
train a Bi-LSTM to sequentially predict the next item conditioned on
the previous ones for learning their compatibility relationship. Song
et al. [41] employ a dual auto-encoder network to learn the latent
compatibility space where they use the BPR model to jointly model
the relation between visual and contextual modalities and implicit
preferences among fashion items. Song et al. [40] consider the
knowledge about clothing matching and follow a teacher-student
scheme to encode the fashion domain knowledge in a traditional
neural network. And they introduce an attentive scheme to the
knowledge distillation procedure to flexibly assign rule confidence.
Nakamura and Goto [32] present an architecture containing three
subnetworks, i.e., VSE (Visual-Semantic Embedding), Bi-LSTM and
SE (Style Embedding) modules, to model the matching relation
between different items to generate outfits. Lin et al. [28] propose a
mutual attention mechanism into CNNs to model the compatibility
between different parts of images of fashion items.

Although there are many studies on improving visual matching,
none of them considers connecting it with fashion generation.

3 NEURAL FASHION RECOMMENDATION
3.1 Overview
Given a top t from a pool T = {t1, t2, . . . , tNt } and a user’s de-
scription d for the target bottom, the bottom recommendation task
is to recommend a list of bottoms from a candidate pool B =



(a) Encoder

(b) Generator

Figure 2: Details of the encoder and the generator in FARM,wherek represents kernel size,n represents the number of channels,
s represents strides and p represents padding.

{b1,b2, . . . ,bNb }. Similarly, the top recommendation task is to rec-
ommend a ranked list of tops for a given bottom and top description
pair. Here, we use bottom recommendation as the setup to introduce
our framework FARM.

As shown in Figure 1, FARM consists of two parts, i.e., a fashion
generator (for visual understanding) and a fashion recommender
(for visual matching), where the fashion generator is actually an
auxiliary module for recommendation. For the fashion generator,
we use a CNN as the top encoder to extract the visual features
from a given top image It . We learn the semantic representation
for the bag-of-words vector d of a given bottom description. Then
we use a variational transformer to learn the mapping from the
bottom distribution to a specific Gaussian distribution that is based
on the visual features of It and the semantic representation of d.
Finally, we sample a random vector from the Gaussian distribution
and input it to a DeConvolutional Neural Network (DCNN) [48]
(as bottom generator) to generate a bottom image Iд that matches
It and d, which explicitly forces the top encoder to encode more
aesthetic matching information into the visual features. For the
fashion recommender, we also employ a CNN as the bottom encoder
to extract the visual features from a candidate bottom image Ib .
Then we evaluate the matching score between Ib and (It , d) pair
from three angles, namely the visual matching between Ib and
It , the description matching between Ib and d, and the layer-to-
layer matching between Ib and Iд which leverages the generation
information to improve the recommendation. FARM jointly trains
the fashion generator and fashion recommender. Next we will detail
each of these two main parts.

3.2 Fashion generator
Given an image It of a top t and the bag-of-words vector d of a
bottom description d , the fashion generator needs to generate a
bottom image Iд that not only matches It , but also meets d as much
as possible. We enforce the extracted visual features from It to
contain the information about its matching bottom by using the
generator as a supervision signal. The generated image can be seen
as a reference for recommendation.

Specifically, for a generated bottom image Iд that matches It
and d, the aim of the fashion generator is to maximize Eq. 1:

p(Iд |It , d) =
∫
z
p(Iд |z, It , d)p(z|It , d)dz, (1)

where p(z|It , d) is the top encoder, p(Iд |z, It , d) is the bottom gener-
ator, and z is the latent variable. Because the integral of the marginal
likelihood shown in Eq. 1 is intractable, inspired by variational in-
ference [4], we first find the Evidence Lower BOund (ELBO) of
p(Iд |It , d), as shown in Eq. 2:

ELBO = Ez∼q(z |It ,d)[logp(Iд |z, It , d)]
−KL[q(z|It , d)∥p(z|It , d)], (2)

where q(z|It , d) is the approximation of the intractable true poste-
rior p(z|Iд, It , d). The following inequality holds for the ELBO:

logp(Iд |It , d) ⩾ ELBO. (3)

Hence, we can maximize the ELBO so as to maximize logp(Iд |It , d).
The ELBO contains three components: q(z|It , d), p(z|It , d) and
p(Iд |z, It , d). Below we explain each component in detail.



3.2.1 q(z|It ,d) andp(z|It ,d). Wepropose a variational transformer
(as shown in Figure 1) to model these two components, which trans-
forms It , d into a latent variable z. As with previous work [23, 37],
we assume that q(z|It , d) and p(z|It , d) are Gaussian distributions,
i.e.,

q(z|It , d) ∼ N(z; µ,σ2), p(z|It , d) ∼ N(0, 1), (4)
where µ and σ denote the variational mean and standard devia-
tion respectively, which are calculated with our top encoder and
variational transformer as follows.

Specifically, for a top image It of size 128 × 128 with 3 channels,
we first use a CNN, i.e., the top encoder (as shown in Figure 2(a)) to
extract visual features Ft :

Ft = CNN(It ), (5)

where Ft ∈ RW ×H×D ,W and H are the width and height of the
output feature maps, respectively, and D is the number of output
feature maps. And we flatten Ft into a vector ft ∈ RN , where
N =W × H × D, and project ft to the visual representation vt :

vt = sigmoid(Wvt ft + bvt ), (6)

where Wvt ∈ Re×N , vt and bvt ∈ Re , and e is the size of the
representation.

Besides the top image, FARM also allows users to give a natural
language description d, which describes the ideal bottom they want.
In order to take into account the description d, we follow Eq. 7 to
get the semantic representation vd :

vd = sigmoid(Wdd), (7)

where vd ∈ Re , d ∈ RDd , Dd is the vocabulary size, and Wd ∈

Re×Dd is the visual semantic word embedding matrix [32], which
transforms words from the textual space to the visual space. Spe-
cially, when d is an empty description, vd is a zero vector.

Then the variational transformer uses the visual representation
vt and the semantic representation vd to calculate the mean µ and
standard deviation σ for q(z|It , d):

µ =Wµtvt +Wµdvd + bµ

logσ2 =Wσ tvt +Wσdvd + bσ ,
(8)

whereWµt ,Wµd ,Wσ t andWσd ∈ Rk×e , µ, σ , bµ and bσ ∈ Rk ,
and k is the size of latent variable z. The latent variable z can be
calculated by the reparameterization trick [23, 37]:

ϵ ∼ N(0, 1), z = µ + σ ⊗ ϵ, (9)

where ϵ and z ∈ Rk , and ϵ is the auxiliary noise variable. By
the reparameterization trick, we make sure z is a random vector
sampled from N(z; µ,σ2).

3.2.2 p(Iд |z, It ,d). We use the bottom generator (as shown in
Figure 2(b)) to generate Iд from the variable z. We also assume
p(Iд |z, It , d) is a Gaussian distribution [23, 37], i.e.,

p(Iд |z, It , d) ∼ N(д(z, It , d),σ2), (10)

where д is the bottom generator.
Specifically, we first follow Eq. 11 to obtain the basic visual

feature vector fд :

fд = relu(Wдzz +Wдtvt +Wдdvd + bд), (11)

where fд and bд ∈ RN ,WдzR
N×k ,Wдt andWдd ∈ RN×e . Then

we reshape fд into a 3-D tensor Fд ∈ RW ×H×D , which is the reverse
operation to what we do for Ft . Finally, we use a DCNN, i.e., the
bottom generator to generate the bottom image Iд :

Iд = DCNN(Fд), (12)

where Iд ∈ R128×128×3. To avoid generating blurry images [3],
we divide the process of image generation into two stages [6, 49].
The first stage is an ordinary deconvolutional neural network that
generates low-resolution images. The second stage is similar to the
super-resolution residual network (SRResNet) [24], which accepts
the images from the first stage and refines them to generate high
quality ones. The DCNN is meant to capture high-level aesthetic
features of the bottoms to be recommended [47, 48]. Besides, in
order to generate the bottom, the generation process also forces
the top encoder to capture more aesthetic information.

During training, we first sample a z from q(z|It , d). Then we
generate Iд with д(z, It , d). During testing, in order to avoid the
randomness introduced by ϵ , we directly generate Iд by д(z =
µ, It , d).

3.3 Fashion recommender
Given the image Ib of a bottom b, the fashion recommender needs
to evaluate the matching score between Ib and the pair (It , d).
Specifically, we first use the bottom encoder (as shown in Figure 2(a)),
which has the same structure as the top encoder (parameters not
shared), to extract visual features Fb ∈ RW ×H×D from Ib . Then
we flatten Fb into a vector fb ∈ RN and project fb to the visual
representation vb . Next, we calculate the matching score between
Ib and the pair (It , d) in three ways.

3.3.1 Visual matching. We propose visual matching to evaluate
the compatibility between Ib and It based on their visual features.
Specifically, we calculate the visual matching score sv between Ib
and It by Eq. 13:

sv = vTb vt . (13)

3.3.2 Description matching. For evaluating thematching degree be-
tween Ib and d, we propose to match descriptions. The description
matching score sd between Ib and d is calculated by Eq. 14:

sd = vTb vd . (14)

Note that if d does not contain any word, sd equals 0.

3.3.3 Layer-to-layer matching. As we will demonstrate in our ex-
periments in Section 6.2, a simple combination of generation and
recommendation is not able to improve the recommendation per-
formance. The reason is that there is no direct connection between
generation and recommendation, which results in two issues. First,
the aesthetic information from the generation process cannot be
used effectively. Second, the generation process might introduce fea-
tures that are only helpful for generation while unhelpful for recom-
mendation. To overcome these issues, we propose a layer-to-layer
matching mechanism. Specifically, we denote the visual features
of the l-th CNN layer in the bottom encoder as Flb ∈ RW

l×H l×Dl
.

And we denote the visual features of the corresponding DCNN
layer, which has the same size as Flb , in the bottom generator as



Flд ∈ RW
l×H l×Dl

. Then, we reshape Flb = [flb ,1, . . . , f
l
b ,S ] by flat-

tening the width and height of the original Flb , where S =W
l ×H l

and flb ,i ∈ R
Dl

. And we can consider flb ,i as the visual features of
the i-th location of Ib . We perform global-average-pooling in Flb to

get the global visual features flb ∈ RD
l
:

flb =
1
S

S∑
i=1

flb ,i . (15)

We project flb to the visual representation vlb ∈ Re :

vlb = sigmoid(Wl
vb f

l
b + b

l
vb ), (16)

where Wl
vb ∈ Re×D

l
and blvb ∈ Re . The same operations apply to

Flд to get vlд . Then we calculate the dot product between vlb and
vlд , which represents the matching degree slд between Ib and Iд in
the l-th visual level:

slд = vlb
T
vlд . (17)

For different visual levels, we sum all slд to get the matching score
sд between Ib and Iд :

sд =
∑
l ∈L

slд, (18)

where L is the selected CNN layer set for layer-to-layer matching.
Finally, the total matching score s between Ib and the pair (It , d)

is defined as follows:

s = sv + sd + sд . (19)

3.4 Co-supervision learning framework
For FARM, we train the fashion generator and the fashion recom-
mender jointly with a co-supervision learning framework.

Specifically, for the generation part, we regard the image Ip of
a positive bottom p, which not only matches the given top It but
also meets the given description d, as the generation target. And
we denote the generated bottom image in the first stage as I1д , and
denote the generated bottom image in the second stage as I2д . Then,
the first loss is to maximize the first term in ELBO, which is Eq. 20:

Lgen(t,d,p) =
1
2
∥I1д − Ip ∥22 + ∥I2д − Ip ∥. (20)

The second loss is to minimize the second term in ELBO, which is
Eq. 21:

Lkl(t,d,p) =
1
2

k∑
i=1

(1 + logσ2
i − µ2i − σ2

i ), (21)

where µi and σi are the i-th elements in µ and σ respectively.
For the recommendation part, we employ BPR [35] as the loss:

Lbpr (t,d,p,n) = − log(sigmoid(sp − sn )), (22)

where sp and sn are the matching scores of a positive bottom Ip
and a negative bottom In , respectively (calculated with Eq. 19). In
(image of bottom n) is randomly sampled.

The total loss function can be defined as follows:

L =
∑

(t ,d ,p,n)∈D

Lgen(t,d,p) + Lkl(t,d,p) + Lbpr (t,d,p,n), (23)

where D = {(t,d,p,n)|t ∈ T ,d ∈ Db ,p ∈ Bt ,d ,n ∈ B \ Bt ,d },
Db is the bottom description set, Bt ,d is the positive bottom set
for the pair (It , d) and B \ Bt ,d is the negative bottom set for the
pair (It , d). The whole framework can be efficiently trained using
back-propagation in an end-to-end paradigm.

For top recommendation, we follow the same way to build and
train the model, but exchange the roles of tops and bottoms.

4 EXPERIMENTAL SETUP
We set up a series of experiments to evaluate the recommendation
performance of FARM. Details of our experimental settings are
listed below. All code and data used to run the experiments in this
paper are available at https://bitbucket.org/Jay_Ren/www2019_
fashionrecommendation_yujie/src/master/farm/.

4.1 Datasets
Existing fashion datasets include WoW [29], Exact Street2Shop [21],
Fashion-136K [16], FashionVC [41] and ExpFashion [28].WoW, Exact
Street2Shop, and Fashion-136K have been collected from street pho-
tos3 on the web and involve (visual) parsing of clothing, which
still remains a great challenge in the computer vision domain
[41, 44, 45] and which is beyond the scope of this paper. FashionVC
and ExpFashion have been collected from the fashion-oriented
online community Polyvore4 and contain both images and texts.
The images are of good quality and the texts include descriptions
like names and categories. For our experiments, we choose Fash-
ionVC and ExpFashion. The statistics of the two datasets are given
in Table 1. We preprocess FashionVC or ExpFashion with the fol-

Table 1: Dataset statistics.
Dataset Tops Bottoms Outfits

FashionVC [41] 14,871 13,663 20,726
ExpFashion [28] 168,682 117,668 853,991

lowing steps, taking bottom recommendation as an example. For
each tuple (top, top description, bottom, bottom description), we re-
gard (top, bottom description) as input and the bottom as the ground
truth output. We follow existing studies [41] and randomly select
bottoms to generate 100 candidates along with the ground truth
bottoms in the validation and test set. Similar processing steps are
used for top recommendation.

4.2 Implementation details
The parametersW , H , D and N of the encoder and the generator
are set to 1, 1, 1024 and 1024, respectively. The size e of the visual
semantic word embedding, the semantic representation and the
visual representation is set to 100. And the latent variable size k is
set to 100 too. The 7th, the 6th and the 5th layers of the encoder
CNN are adopted to compute the layer-to-layer matching with the
input, the 1st and the 2nd layers of the generator DCNN. To build
descriptions, we first filter out words whose frequency is less than
100. Then, we manually go through the rest to only keep words that
can describe tops or bottoms. Finally, the remaining vocabulary

3http://www.tamaraberg.com/street2shop/
4http://www.polyvore.com/

https://bitbucket.org/Jay_Ren/www2019_fashionrecommendation_yujie/src/master/farm/
https://bitbucket.org/Jay_Ren/www2019_fashionrecommendation_yujie/src/master/farm/
http://www.tamaraberg.com/street2shop/
http://www.polyvore.com/


size Dd is 547. During training, we initialize model parameters
randomly with the Xavier method [10]. We choose Adam [22]
as our optimization algorithm. For the hyper-parameters of the
Adam optimizer, we set the learning rate α = 0.001, two momentum
parameters β1 = 0.9 and β2 = 0.999, and ϵ = 10−8. We apply dropout
[42] to the output of our encoder and set the rate to 0.5. We also
apply gradient clipping [34] with range [−5, 5] during training.
We use a mini-batch size 64 by grid search to both speed up the
training and converge quickly. We test the model performance on
the validation set for every epoch. Our framework is implemented
with MXNet [8]. All experiments are conducted on a single Titan X
GPU.

4.3 Methods used for comparison
We choose the following methods for comparison.
• LR: Logistic Regression (LR) is a standard machine learning
method [17]. We use it to predict whether a candidate bottom
matches a given (top, bottom description) pair or not. Specifically,
we employ a pre-trained CNN to extract visual features from im-
ages. Then we follow Eq. 24 to calculate the matching probability
p:

p = sigmoid(wT
t vt +w

T
b vb +w

T
d d), (24)

where vt and vb ∈ RDv are the visual features of the top and
the bottom respectively, wt and wb ∈ RDv , and wd ∈ RDd . Dv
is set to 4096 in our experiments.

• IBRd : IBR [31] learns a visual style space in which related objects
are close and unrelated objects are far. In order to consider the
given descriptions at the same time, we modify IBR by projecting
descriptions to the visual style space. As a result, we can evaluate
the matching degree between objects and descriptions by their
distance in the space. Specifically, the distance function between
the candidate bottom b and the given (top, bottom description)
pair (t,d) is as follows:

mtdb = ∥Wvvt −Wvvb ∥
2
2 + ∥Wdvd −Wvd∥22 , (25)

where Wv ∈ RK×Dv , Wd ∈ RK×Dd , vt and vb ∈ RDv are
the visual features extracted by a pre-trained CNN, and K is the
dimension of the visual style space. Dv is 4096, and K is 100 in
our experiments. We refer to the modified version as IBRd .

• BPR-DAEd : BPR-DAE [41] can jointly model the implicit match-
ing preference between items in visual and textual modalities
and the coherence relation between different modalities of items.
In our task, we do not have other text information except de-
scriptions, so we first remove the part of BPR-DAE that is related
to text information. Then, for evaluating the matching score be-
tween the given description and the candidate item, we project
the description representation and the item representation to the
same latent space:

v′d = sigmoid(Wdd), v′i = sigmoid(Wvvi ), (26)

where Wd ∈ RK×Dd , Wv ∈ RK×Dv , and vi ∈ RDv is the latent
representation of item i learned by BPR-DAE. Finally, we follow
Eq. 27 to evaluate the compatibility between a candidate bottom
b and a given (top, bottom description) pair (t,d):

mtdb = vTt vb + v
′T
d v′b . (27)

We set Dv = 512, and K = 100 in experiments. We refer to the
modified version as BPR-DAEd .

• DVBPRd : DVBPR [20] learns the image representations and trains
the recommender system jointly to recommend fashion items for
users. We adopt DVBPR to our task and refer to it as DVBPRd .
Specifically, we first follow DVBPR to use a CNN-F to learn
image representations of tops and bottoms. Then we calculate
the matching score between a bottom and the given (top, bottom
description) pair by Eq. 28:

mtdb = vTt vb + v
T
d vb , (28)

where vt and vb ∈ RK are the image representations of the top
and bottom respectively, vd ∈ RK is the description represen-
tation learned in the same way as FARM, and K is set to 100 in
experiments.

4.4 Evaluation metrics
We employ Mean Reciprocal Rank (MRR) and Area Under the ROC
Curve (AUC) to evaluate the recommendation performance, which
are widely used in recommender systems [25, 36, 50].

In the case of bottom recommendations, for example, MRR and
AUC are calculated as follows:

MRR =
1

|Qtd |

|Qtd |∑
i=1

1
ranki

, (29)

where Qtd is the (top, bottom description) collection as queries, and
ranki refers to the rank position of the first positive bottom for the
i-th (top, bottom description) pair. Furthermore,

AUC =
1

|Qtd |

∑
(t ,d )∈Qtd

1
|E(t,d)|

∑
(p,n)∈E(t ,d )

δ (sp > sn ), (30)

where E(t,d) is the set of all positive and negative candidate bottoms
for the given top t and the given bottom description d , sp is the
matching score of a positive bottom p, sn is the matching score of
a negative bottom n, and δ (α) is an indicator function that equals 1
if α is true and 0 otherwise.

5 RESULTS
The recommendation results on the FashionVC and ExpFashion
datasets of FARM and the methods used for comparison are shown
in Table 2. We can see that FARM consistently outperforms all
baselines in terms of AUC and MRR on both datasets. We have five
main observations from Table 2.
(1) FARM significantly outperforms all baselines and achieves the

best results on all metrics. There are three main reasons. First,
FARM contains a fashion generator as an auxiliary module for
recommendation. With its co-supervision learning framework,
FARM can encode more aesthetic characteristics and use this ex-
tra information to improve recommendation performance; see
Section 6.1 for further analysis. Second, we propose a layer-to-
layer matching scheme to make sure that FARM can effectively
use the aesthetic features in the fashion generator to improve
recommendation results; see Section 6.2 for a further analysis.
Third, LR, IBRd and BPR-DAEd employ pre-trained CNNs (all



Table 2: Recommendation results on the FashionVC and
ExpFashion datasets (%).

Method

FashionVC

Top Bottom

AUC MRR AUC MRR

LR 48.7 4.5 46.4 4.4
IBRd 52.8 6.1 62.9 10.3
BPR-DAEd 62.9 8.6 70.2 10.9
DVBPRd 64.6 9.1 76.9 13.0
FARM 71.2∗ 12.6∗ 77.8 15.3∗

Method

ExpFashion

Top Bottom

AUC MRR AUC MRR

LR 50.5 5.4 48.4 4.4
IBRd 56.1 7.1 68.9 12.0
BPR-DAEd 73.0 12.3 79.9 14.7
DVBPRd 82.4 18.5 83.7 15.4
FARM 85.2∗ 25.1∗ 88.4∗ 24.3∗

The superscript ∗ indicates that FARM significantly outperforms DVBPRd ,
using a paired t-test with p < 0.05.

AlexNet [19] trained on ImageNet5) to extract visual features
from images, but they do not fine-tune the CNNs during exper-
iments. However, in FARM, we jointly train the top encoder,
the bottom encoder and the top/bottom generator, which can
extract better visual features.

(2) DVBPRd performs better than other baseline methods. The rea-
son is that DVBPRd employs a CNN-F to jointly learn image
representations during recommendation. Hence, it can extract
more effective visual features to improve recommendation per-
formance.

(3) Although BPR-DAEd , IBRd and LR all use visual features ex-
tracted by a pre-trained CNN as input, BPR-DAEd performs
much better than the other two. This is because BPR-DAEd
learns a more sophisticated latent space using an auto-encoder
neural network to represent the fashion items. However, IBRd
only applies a linear transformation to inputs, which restricts
the expressive ability of the visual style space. And LR directly
uses the visual features and the bag-of-words vectors as inputs,
making it hard to learn an effective matching relation.

(4) The performance of all methods on the ExpFashion dataset
is better than on the FashionVC dataset. The most important
reason is that the average length of the descriptions in the
ExpFashion dataset is 5.6 words, however, it is only 3.7 words
in the FashionVC dataset. That means that the descriptions in
the ExpFashion dataset contain more details that can provide
more information for recommendation and generation, which
boosts the recommendation performance.

(5) The bottom recommendation performance is better than the top
recommendation performance for most methods. The number
of tops is larger than the number of bottoms and the styles of
tops are also richer than those of bottoms on both datasets. That
makes bottom recommendation and bottom generation easier.

5http://www.image-net.org/

Table 3: Analysis of co-supervision learning. Recommenda-
tion results on the FashionVC and ExpFashion datasets (%).

Method

FashionVC

Top Bottom

AUC MRR AUC MRR

FARM-G 54.8 8.4 60.9 9.8
FARM-R 68.0 9.8 77.2 12.8
FARM 71.2∗ 12.6∗ 77.8 15.3∗

Method

ExpFashion

Top Bottom

AUC MRR AUC MRR

FARM-G 64.4 14.2 72.4 21.3
FARM-R 82.3 18.9 84.2 15.2
FARM 85.2∗ 25.1∗ 88.4∗ 24.3∗

The superscript ∗ indicates that FARM significantly outperforms FARM-R,
using a paired t-test with p < 0.05.

In summary, FARM significantly outperforms state-of-the-art meth-
ods on both datasets. The improvements mainly come from the
co-supervision of generation and the layer-to-layer mechanism,
which we will demonstrate in the next section.

6 ANALYSIS
We provide two types of analyses (concerning co-supervision learn-
ing and layer-to-layer matching) and two cases studies (recommen-
dation and generation).

6.1 Co-supervision learning
To demonstrate the superiority of incorporating the extra supervi-
sion of the generator, we compare FARM with FARM-G and FARM-
R, where FARM-G is FARM without the recommendation part and
FARM-R is FARM without the generation part. The results are
shown in Table 3. To be able to apply FARM-G to the recommenda-
tion task, we first use FARM-G to generate a bottom image for a
given (top, bottom description) pair. Then, similar to [2, 27], we use
a pre-trained AlexNet to get the representations of the generated
bottom and the candidate bottoms. Finally, we compute the similar-
ity between the generated bottom and a candidate bottom based
on their representations.

From Table 3, we can see that FARM achieves significant im-
provements over FARM-R. On the FashionVC dataset, for top rec-
ommendation, AUC increases by 3.2%, MRR increases by 2.8%, and
for bottom recommendation, AUC increases by 0.6%, MRR increases
by 2.5%. On the ExpFashion dataset, for top recommendation, AUC
increases by 2.9%, MRR increases by 6.2%, and for bottom recom-
mendation, AUC increases by 4.2%, MRR increases by 9.1%. Thus,
FARM is able to improve recommendation performance by using
the generator as a supervision signal.

Comparing FARM-G with all baselines, we notice that FARM-G
achieves better performance, and especially it performs better than
IBRd in most settings. Hence, the images generated by FARM-G
and FARM reflect some key factors of the items to be recommended,
which is why the generator can help improve recommendation.

http://www.image-net.org/


Table 4: Analysis of layer-to-layer matching. Recommenda-
tion results on the FashionVC and ExpFashion datasets (%).

Method

FashionVC

Top Bottom

AUC MRR AUC MRR

FARM-WL 59.8 7.6 67.8 8.2
FARM 71.2∗ 12.6∗ 77.8∗ 15.3∗

Method

ExpFashion

Top Bottom

AUC MRR AUC MRR

FARM-WL 68.6 9.9 74.3 10.3
FARM 85.2∗ 25.1∗ 88.4∗ 24.3∗

The superscript ∗ indicates that FARM significantly outperforms FARM-WL,
using a paired t-test with p < 0.05.

Additionally, we find that FARM-R outperforms LR, IBRd and
BPR-DAEd . And it achieves comparable performancewithDVBPRd ,
whose difference against FARM-R is mainly in the CNN part. If
FARM employs more powerful CNN architectures such as VGG [39]
or ResNet [12], it should perform even better.

6.2 Layer-to-layer matching
To analyze the effect of the layer-to-layer matching scheme, we
compare FARM with FARM-WL which only uses the visual match-
ing and the description matching to evaluate the matching degree.
We can see from Table 4 that FARM performs significantly better
than FARM-WL according to all metrics on both datasets, which
confirms that layer-to-layer matching does indeed improve the
performance of recommendation.

To help understand the effect of layer-to-layer matching, we list
some real and generated images in Figure 3. FARM generates good
quality images that are similar to real images. This means that the
generated images can tell us what kind of bottoms can match the
given (top, bottom description) pair from the perspective of gener-
ation, so layer-to-layer matching can direct the recommender by
evaluating the matching degree between the candidate images and
the generated images. That is why layer-to-layer matching is able
to improve the performance of recommendation.

Additionally, we notice that FARM-WL performs worse than
FARM-R, which means that a simple combination of recommenda-
tion and generation is not able to improve recommendation perfor-
mance significantly. This may be because, without layer-to-layer
matching, FARM-WL pays too much attention to the generation
quality and ignores recommendation performance. We are able to
improve this situation with layer-to-layer matching. Layer-to-layer
matching builds a connection between the bottom generator and the
bottom encoder in different layers. As a result, the bottom encoder
pushes the bottom generator to learn useful matching information
for improving recommendation performance.

6.3 Recommendation case studies
We list some recommendation produced by FARM in Figure 4. For
each input, we list the top-10 recommended items. We highlight
the positive items with red boxes. We can see that most recom-

(a) Top generation.

(b) Bottom generation.

Figure 3: Comparison between real and generated images.

(a) Top recommendation.

(b) Bottom recommendation.

Figure 4: Case studies of recommendation. The items high-
lighted in the red boxes are the positive ones.

mended items not only match the given items, but also meet the
given descriptions. For example, in the second case of the top rec-
ommendation, the given top description is “sleeve black blazer
outerwear jackets,” so most recommended tops are jackets, and
especially almost all recommended tops are black. Also in the first
case of the bottom recommendation, the given bottom description
is “distressed straight leg jean,” so the recommended bottoms are
all jeans, most of which are straight leg and some are distressed.
By comparing the generated items with the recommended items,
such as in the first case of the top recommendation and the second



case of the bottom recommendation, we can see that the generated
images are able to provide good guidance for the recommendation.

We also notice that not all recommended items meet the given
description, mostly because FARM recommends items not only
based on the given description, but also based on the given item.
For example, in the third case of the bottom recommendation, the
sixth recommended bottom is a denim jeans instead of a daydress.
The given top is a denim coat, which makes FARM believe that
recommending a denim jeans is also reasonable. Besides, not all
positive items are ranked in the first position. See, e.g., the third
case of the top recommendation., where the top recommended
item and the given bottom have the same color green, which looks
more compatible. In these failure cases, the quality of the generated
images is poor so they are likely less helpful for recommendation.

6.4 Generation case studies
Although this paper focuses on improving recommendation by
incorporating generation, we also list some generation cases in Fig-
ure 5. Overall, the generated items are able to match the given input.
For example, in the sixth case of the top generation, the generated
navy blouse with the yellow keen length skirt looks beautiful and
elegant. Although there are many kinds of navy blouses like sailor

(a) Top generation.

(b) Bottom generation.

Figure 5: Case studies of generation. Each case is in the form:
“given description + given item = generated item”.

suits, the style of the generated top seems to be more suitable for the
given bottom. And in the eighth case of the bottom generation, the
given description does not give the specific pattern of the generated
bottom. But the generated bottom has a flame-like pattern, which
makes it more compatible with the bright yellow camisole. From
these samples we can see that FARM is able to generate fashion
items based on the relation between the visual features of different
fashion items.

The generated items can accord with the given descriptions no
matter what they are about. For example, in the second case of the

top generation, the description is “grey wool coats,” so the generated
top is a grey coat which also looks like wool. And in the fourth case,
the description is “gold fur trim puffer jackets”, so the generated
jacket has fur in its collar and cuff. In the bottom generation, we
also observe that FARM is able to distinguish between skinny jeans
and bootcut jeans from the first and the second cases. Another
example is the sixth case, where the description contains “floral
print.” FARM generates a black long pencil skirt with flower pattern.
In short, FARM is able to build a cross-modal connection between
text and images in order to generate fashion items.

Generation is a challenging process, which means that powerful
features are needed in order to generate amatching item.We can see
from the examples provided that FARM is able to generate aestheti-
cally matching outfits. FARM is able to improve recommendation
performance through jointly modeling generation.

7 CONCLUSION
In this paper, we have studied the task of outfit recommendation,
which has two main challenges: visual understanding and visual
matching. To tackle these challenges, we propose a co-supervision
learning framework, namely FARM. For visual understanding, FARM
captures aesthetic characteristics with the supervision of generation
learning. For visual matching, FARM incorporates a layer-to-layer
matching mechanism to evaluate the matching score at different
neural layers.

We have conducted experiments to confirm the effectiveness of
FARM. It achieves significant improvements over state-of-the-art
baselines in terms of AUC and MRR. We also show that the pro-
posed layer-to-layer matching mechanism can make effective use of
generation information to improve recommendation performance.
We further exhibit some cases to analyze the performance of FARM.

Our results can be used to improve users’ experience in fashion-
oriented online communities by providing better recommendation
and to promote the research into fashion generation by demonstrat-
ing a novel application in outfit recommendation.

A limitation of FARM is that its recommendation performance is
affected by the quality of the generated images. If the quality of the
generated images is not high, the generation part cannot provide
effective guidance for the recommendation part.

As to future work, we plan to improve the recommendation and
the generation of FARM when the descriptions are lacking. And we
want to extend FARM to recommend and generate whole outfits that
not only contain tops and bottoms but also include shoes and hats,
etc. We will also try more powerful CNN and DCNN architectures
for recommendation and generation.
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