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We consider the problem of search result diversification for streams of short texts. Diversifying search
results in short text streams is more challenging than in the case of long documents, as it is difficult to
capture the latent topics of short documents. To capture the changes of topics and the probabilities of
documents for a given query at a specific time in a short text stream, we propose a dynamic Dirichlet
multinomial mixture topic model, called D2M3, as well as a Gibbs sampling algorithm for the inference.
We also propose a streaming diversification algorithm, SDA, that integrates the information captured by
D2M3 with our proposed modified version of the PM-2 (Proportionality-based diversification Method –
second version) diversification algorithm. We conduct experiments on a Twitter dataset and find that SDA
statistically significantly outperforms state-of-the-art non-streaming retrieval methods, plain streaming
retrieval methods, as well as streaming diversification methods that use other dynamic topic models.
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1. INTRODUCTION

Search result diversification has been widely studied as a method to tackle query ambi-
guity [38]. Instead of trying to identify the “correct” interpretation behind an ambigu-
ous query, a diverse ranker identifies the probable “aspects” (also called “subtopics”)
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of the ambiguous query, retrieves documents for each of these aspects, and makes the
search results more diverse. The underlying aspects of queries can be identified in
various ways, for example, by query reformation with the help of a commercial search
engine [37], by clustering search results [18], or by mining query logs, anchor texts, or
the contents of the top-ranked documents, and so on [38]. By diversifying the search
results, in the absence of any knowledge of user context or preferences, the chance
that any user issuing an ambiguous query will find at least one of these results to be
relevant is maximized [8].

To diversify search results, methods such as xQuAD (explicit Query Aspect
Diversification) [37], query-specific clustering [18], and PM-2 (proportionality-based
diversification Method – second version) [13] identify the underlying aspects of the
query, compute the weights of each aspect and the probabilities of each document cov-
ering the aspects. With this information, these techniques select documents based on
a combination of their relevance to the ambiguous query and relevance to the aspects.
These approaches perform well in a large, static set of long documents. However, the
problem of how to identify new or emerging aspects, compute their weights and ob-
tain the probabilities of incoming documents in a stream of short texts to retrieve a
diversified ranking of documents still needs to be further explored.

We address the problem of search result diversification for streams of short texts given
an ambiguous query at a certain point in time. The input consists of an ambiguous query
while the output varies over time and is a diversified ranked list of short documents cov-
ering as many recent aspects of the query as possible. Diversifying search results given
a query in short text streams is of importance and has many applications. For instance,
top-k publish/subscribe systems for tweets [7, 39] are required to return to a subscriber
the top-k recent tweets that are relevant and diversified given a subscribed keyword.
The problem of diversifying search results in long text streams has previously been
investigated by Refs. [7, 33]. Both models penalize redundancy in a ranked list of doc-
uments in a stream, where redundancy is directly measured as a sum of pairwise simi-
larities between any two documents. However, determining redundancy in a set of short
documents, such as tweets or weibos, is challenging precisely because the documents
are short [47]. Topic models seem a natural solution to this problem, but in the case of
text streams the probabilities of aspects relevant to a given query may change over time.

We develop a dynamic Dirichlet multinomial mixture topic model (D2M3) that is
able to capture the evolution of latent topics in a sequentially organized corpus of
short documents. We propose a collapsed Gibbs sampling algorithm to infer latent
topics for an ambiguous query, their dynamic weights (probabilities) of being relevant
to the query, and the probability of a short document being relevant to the topics. Our
dynamic mixture model does not assume the explicit availability of dynamic query
aspects but infers these as well as the latent prior for a given query via the top-
ranked short documents returned by a time-sensitive language model [12]. We also
introduce an algorithm to diversify search results for short text streams that uses the
information generated by our dynamic topic model. Instead of directly diversifying the
search results based on document similarity, we use the dynamic weights of latent
topics and the distribution of topics over documents in a text stream.

We evaluate our proposed algorithm for search result diversification in short text
streams on a large dataset consisting of a three-month sample of Twitter and compare
it to three types of search result diversification methods: (1) algorithms that do not
consider data streams, such as xQuAD; (2) streaming diversification methods that
work with data streams but that have been developed for long documents, such as
in Refs. [7, 33]; and (3) algorithms that combine existing dynamic topic models with
effective diversification retrieval models that have not been designed to work with text
streams. Our approach outperforms state-of-the-art diversification methods in terms
of a range of diversification metrics.
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The main contributions of our work are as follows:

(i) We propose a dynamic Dirichlet multinomial mixture topic model that can track
the changes of aspects of a given query and the multinomial distribution of aspects
over documents.

(ii) We propose a collapsed Gibbs sampling algorithm for our dynamic Dirichlet multi-
nomial mixture topic model to perform inference for search result diversification
in text streams.

(iii) We propose a streaming version of the PM-2 diversification algorithm to perform
diversification in response to a query at a certain point in time based on the
dynamic information captured by our dynamic topic model.

(iv) We systematically analyze the proposed streaming diversification algorithm for
short text streams and find that it significantly outperforms state-of-the-art
streaming and non-streaming diversification algorithms.

The remainder of this article is organized as follows. Section 2 discusses related
work. Section 3 provides an overview of the way we perform diversification in streams.
Section 4 details the dynamic Dirichlet multinomial mixture model. Section 5 presents
a modification of the PM-2 algorithm for diversification in text streams. Section 6
describes our experimental setup. Section 7 discusses our experimental results, and,
finally, Section 8 concludes the article.

2. RELATED WORK

We discuss two lines of related work: search result diversification (streaming or not)
and topic modeling (dynamic or not).

2.1. Search Result Diversification

Search result diversification has been studied as a task of re-ranking an initial ranking
of documents retrieved for a query. The goal is to produce a more-diverse ranked list
with respect to a set of aspects associated with the query [2, 13, 14]. Search result
diversification is similar to ad hoc search but differs in its judgment criteria and
evaluation measures [38]. The basic premise is that the relevance of a set of documents
depends not only on the relevance of its individual members but also on how they
relate to one another [2]. Ideally, users can find at least one relevant document to the
underlying information need.

Non-streaming Diversification. Non-streaming approaches to search result diver-
sification work with a collection of documents where the dynamic characteristics of
the underlying aspects and the latent topic distribution over documents are usually
ignored.

Implicit approaches to search result diversification promote diversity by selecting a
document that differs from the documents appearing before it in terms of vocabulary.
An early influential article on implicit diversification concerns the Maximal Marginal
Relevance (MMR) model [5], which reduces redundancy while maintaining query rele-
vance when selecting a document. Zhai et al. [49] present an implicit subtopic retrieval
model where the utility of a document is dependent on other documents in the rank-
ing, and documents that cover many different subtopics of a query are found. Chen
and Karger [6] describe a retrieval method incorporating negative feedback in which
documents are assumed to be non-relevant once they are included in the result list. He
et al. [18] propose a result diversification framework based on query-specific clustering
and cluster ranking, in which diversification is restricted to documents belonging to
clusters that potentially contain a high percentage of relevant documents. More recent
implicit work includes set-based recommendation of diverse articles [1], term-level di-
versification [14], diversified data fusion [26], and neural-network-based diversification
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model [46]. Abbar et al. [1] address the problem of providing diverse news recommen-
dations related to an input article by leveraging user-generated data to refine lists of
related articles. They explore different diversity distances that rely on the content of
user comments on articles such as sentiments and entities. Instead of trying to recover
the topics for an ambiguous query, Dang and Croft [14] propose to use a simple greedy
multi-document summarization algorithm for identifying topic terms for search result
diversification from the initial ranking of documents. Liang et al. [26] start from the
hypothesis that data fusion can improve performance in terms of diversity metrics,
examine the impact of standard data fusion methods on search result diversification,
and propose a diversified data fusion algorithm to infer latent topics of a query using
topic modeling model for diversification. Xia et al. [46] propose to model the novelty of
a document with a neural tensor network and learn a nonlinear novelty function based
on the preliminary representation of the candidate document and other documents for
diversification.

Explicit approaches to diversification assume that a set of query aspects are available
and return documents for each of them. Well-known examples include xQuAD [37],
RxQuAD [41], IA-select [2], PM-2 [13], and learning models for diversification [25, 27,
45]. Instead of modeling a set of aspects implicitly, these algorithms obtain a set of
aspects either manually, for example, from aspect descriptions [9, 11], or they create
them directly from, for example, suggested queries generated by commercial search
engines [13, 37], or predefined aspect categories [40] or directly utilize the human
judged labels of aspects for learning [25, 27, 45].

In contrast to previous algorithms, our proposed streaming diversification method
is an implicit one and does not assume that aspects of the query are available but
does assume that the underlying topics and the dynamic relevance of each topic can be
inferred for search result diversification.

Streaming Diversification. Streaming approaches diversify search results in a text
stream. To the best of our knowledge, only Minack et al. [33] and Chen and Cong
[7] have previously investigated this problem. Minack et al. [33] propose two incre-
mental diversification algorithms for data streams: MAXMININCREMENTAL and MAXSUM-
INCREMENTAL. Chen and Cong [7] propose a diversification algorithm for text streams
called Diversity-Aware top-k Subscription (DAS). These methods process the input
as a stream of documents and continuously maintain a diverse subset of documents
at each position of the stream. They work with the same objective and try to main-
tain a set of k diversified documents d in a text stream that maximizes the function
fdiv(d | q) = (1 − λ) f1(d | q) + λ f2(d), where f1(d | q) measures the relevance of the set
of documents to the query and f2(d) measures the dissimilarities of the documents as
a set. These three streaming diversification methods differ in the way they compute
f1(d | q) and f2(d). To decide whether an incoming document should replace an old
document, MAXMININCREMENTAL only considers the minimum relevance of a document
in the diversified document set to the query and the minimum pairwise distance in the
set. MAXSUMINCREMENTAL computes an average of the sum of dissimilarities between
this candidate document and other documents and the average of the relevance scores
to the query. DAS uses the same objective function as MAXSUMINCREMENTAL for diversi-
fying the top-k subscription for a query. All of the algorithms assume that the content
of documents is rich, and it is easy to compute the similarities of document pairs for
the objective function.

2.2. Topic Models

Topic models have been proposed for reducing the high dimensionality of words ap-
pearing in documents into low-dimensional “latent topics.” From the first work on topic
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models, the Probabilistic LSI model [19], they have received significant attention [4,
17] and have been used in many retrieval tasks [26, 43].

Non-dynamic Topic Models. Non-dynamic topic models infer the topics in a static
set of documents, the best-known of which is Latent Dirichlet Allocation (LDA) [4].
LDA represents each document as a finite mixture over “latent” topics where each
topic is represented as a finite mixture over words in that document. Based on LDA,
many extensions have been proposed, for example, to handle users’ connections with
particular documents and topics [36], to learn relations among different topics [23, 24],
for topics over time [42], for ad hoc retrieval [43], or for rank aggregation [26]. LDA has
also been extended to clustering [48] and tweet summarization [35]. The static topic
model, Gibbs Sampling Dirichlet Multinomial Mixture model (GSDMM), for clustering
proposed by Yin and Wang [48] is of particular interest for us, as this model works with
static set of short documents, such as those in Twitter, infers a topic distribution for
clustering, and represents each short document through a single topic. How to apply
this previous method to streams of short document streams and do the inference is
unknown.

Dynamic Topic Models. The Topic over Time (ToT) model [42] infers topics for offline
documents with timestamps, makes the assumption that all the documents can only
appear in a specific time interval (the time period is fixed), and normalizes the distri-
bution of the timestamps before the inference. The Dynamic Topic Model (DTM) [3]
captures the evolution of topics in a sequentially organized corpus of documents. It
uses Gaussian series on the natural parameters of the multinomial topics and logis-
tic normal topic proportion models and assumes that the mixture distributions of the
documents have a Dirichlet prior that evolves over time. Unlike DTM and ToT, the
Dynamic Mixture Model (DMM) [44] assumes that the mixture distribution for each
document in streams does not have a Dirichlet prior, and, instead, such a distribution
is directly dependent on the mixture distribution of the previous documents. The Topic
Tracking Model (TTM) [21] and the online multi-scale topic model track time-varying
consumer purchase behavior, in which consumers’ interests and items’ trends change
over time. The Dynamic Clustering Topic (DCT) model [29] aims at clustering short
documents rather than diversifying search results by a dynamic topic model, where
topic distributions of the documents are assumed to change over time. The dynamic
User Clustering Topic (UCT) model [51] and User Collaborative Interest Tracking
(UCIT) model [28] propose to tackle the problems of user clustering in the context of
streaming short texts by topic models. Twitter-LDA [50] is a topical keyphrase extrac-
tion LDA-based topic model and assumes that the content of documents generated
from Twitter is rich enough for the inference of topic distributions. However, until now
all dynamic topic models except DCT, UCT, UCIT, and Twitter-LDA make the strong
assumption that documents arriving in a data stream are relatively long documents
and provide a rich context for inference. DCT, UCT, and UCIT do work with streaming
short text documents, but the goal of DCT is to cluster documents in streams and the
goals of UCT and UCIT are to cluster users in the streams, respectively, rather than
dynamically diversify search results for an ambiguous query. The goal of Twitter-LDA
is to extract keyphrases from short texts in streams only. Thus, how to automatically
diversify search results is still unknown. Our proposed topic model works with a large
number of short text documents and is able to perform topic inference for dynamic
diversification in streams.

3. DIVERSIFICATION FOR SHORT TEXT STREAMS

We first review our main notation and terminology.
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Table I. Main Notations Used in Our Topic Model

Notation Gloss
q query
d document
z topic
t time
w word
V number of unique words in vocabulary
Z number of latent topics
zd topic assigned to document d
|d| length of document d
d′

t documents arriving at time t
dt document stream up to time t
Lt ranking of documents at time t
αt parameter of topic Dirichlet prior at time t
βt parameter of word Dirichlet prior at time t
�t dynamic topic distribution at time t
�t dynamic word distribution at time t
mt number of documents up to time t
mt,z number of documents assigned to topic z up to time t
nt,z,v number of words v assigned to topic z up to time t
Nd,v number of words v in document d
Nd length of document d
nt,z,−d number of words assigned to topic z up to time t except those in d
mt,z,−d number of documents assigned to topic z up to time t except document d

3.1. Notation and Terminology

We summarize our main notation in Table I. We distinguish among queries, aspects,
and topics. A query is an expression of an information need. An aspect (sometimes
called a subtopic of a query at the TREC Web track [11]) is an interpretation of an
information need. For an ambiguous query, it usually has at least two aspects. We
use topic to refer to latent topics as identified by a topic modeling method [4]. We
refer to the method that we propose for diversification in short text streams as the
streaming diversification algorithm (SDA); it builds on the proposed D2M3 (referred to
as a dynamic topic model) and a modification of the PM-2 diversification algorithm.

3.2. The Diversification Task

The search result diversification task we address is this: Given a query q and a short
text stream, retrieve a ranking of documents that covers as many aspects of the query
as possible and that are relevant to the query. Specifically, we seek a ranking function
f that satisfies

dt = {. . . , d′
t−2, d′

t−1, d′
t}, q

f−→ Lt,

where dt is a sequentially organized corpus of short documents, with d′
t being the most

recent set of documents arriving at (the current) time t, Lt is a ranking of diversified
documents in response to query q at time t. A short text stream dt comprises a se-
quence of short text documents, each denoted by a tuple d = 〈wd, td〉, where wd is a
sequence of words appearing in document d from the vocabulary V = {v1, v2, . . . , vV }
and the size of wd is no more than a specific predefined small number like in Twitter
(where tweets are limited to 140 characters), and td is the creation time of d. We also
consider the creation time of documents as the time they appear in the streams.
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ALGORITHM 1: Streaming Diversification Algorithm
Input: A query q

A time point t
A short document stream up to t, dt
Number of latent topics Z
Original hyperparameters α0, β0

Output: A final diversified list of tweets Lt.
/* Part I: Infer latent topics */

1 Infer latent topics and their probabilities to q at time t
2 Infer tweets’ probabilities to each topic at time t
/* Part II: Perform diversification */

3 Obtain top-k recent and relevant tweets
4 Diversify the top-k tweets to construct Lt

3.3. Overview of the Diversification Algorithm

We propose a search result diversification method for a short text streams, SDA, that
can return a ranking of short documents that are recent and relevant to the query
and cover as many aspects of the query as possible. Our diversification algorithm
consists of two main parts: (i) infer latent topics by the proposed dynamic Dirichlet
multinomial mixture model (discussed in Section 4) and (ii) perform diversification
(discussed in Section 5); see Algorithm 1. In Part I in Algorithm 1, the diversification
algorithm uses the proposed dynamic Dirichlet multinomial mixture model to infer
latent topics of the input query and their current probabilities to the query (line 1 in
Algorithm 1). These probabilities are likely to change over time, that is, some latent
topics become more important but others not. The dynamic mixture model can also
infer the relevance probabilities over topics specific to each document in the stream
(line 2). In Part II in Algorithm 1, we first apply a time-sensitive retrieval model to
obtain the top-k relevant documents (line 3) and then rerank the top-k documents by
our proposed diversification algorithm based on PM-2 and the output of the proposed
topic model, that is, the dynamic probabilities of latent topics and the probabilities over
topics specific to each document (line 4).

Below we describe how to infer latent topics in Section 4, and in Section 5, we show
how we use the information generated from latent topics to get a diversified ranking
of documents in response to the query.

4. D2M3: A DYNAMIC DIRICHLET MULTINOMIAL MIXTURE TOPIC MODEL

Explicitly computing the probabilities of aspects of a query can improve diversification
performance [2, 14, 37]. Following Ref. [26], we do not assume that aspect information
is explicitly available; instead, we infer latent topics and their probabilities of being
relevant using our proposed dynamic Dirichlet multinomial mixture topic model. We
describe the details of the D2M3 model in the following.

Preliminaries. The goal of applying a dynamic model is to infer the dynamics of
topics and the dynamics of documents’ probabilities for each current topic z at time
t. That is, we want to infer the dynamic probabilities of topics for a query q at time
t, P(z | t, q), and the dynamic probabilities of documents being relevant to the topics
and q at time t, P(d | t, z, q). For convenience and consistency with the notations used
in many topic modeling approaches [3, 4, 21], we put �t = {θt,z}Z

z=1, where �t is the
dynamic topic distribution at time t with an element θt,z = P(z|t, q) > 0,

∑Z
z=1 θt,z = 1,

and Z is the total number of latent topics. We also let �t = {φt,z}Z
z=1, where �t is the word

distribution over topics at time t, φt,z is the multinomial distribution of words specific
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to topic z at time t, the probability of v belonging to z at t, φt,z,v > 0, and
∑V

v=1 φt,z,v = 1.
Here, v is a word, and V is the total number of different words in the vocabulary V.
In many non-dynamic LDA-style topic models, it is assumed that current topics are
independent of the past topics and have a Dirichlet prior. With these assumptions, �t
can be assumed to have the following Dirichlet prior:

P(�t | κ) ∝
Z∏

z=1

θ
κz−1
t,z , (1)

where κ = {κz}Z
z=1 (κz > 0) is a set of static Dirichlet parameters, and φt,z can be assumed

to have the following Dirichlet prior:

P(φt,z | γ ) ∝
V∏

v=1

φ
γv−1
t,z,v , (2)

where γ = {γv}V
v=1 (γv > 0) is a set of static Dirichlet parameters.

Capturing Previous Dependencies. The assumptions made in Equations (1) and (2)
are not appropriate when it comes to a streaming datasetting, as the distributions
at time t are independent on the past distributions. To model the dynamics of the
topics underlying the ambiguous query q, following most dynamic topic models [21,
22, 44], we let the mean of the topics at the current time t be the same as those at a
previous time unless otherwise confirmed by the set of newly arriving short documents
d′

t. Accordingly, we apply the following Dirichlet distribution for the prior of topics’
current trends �t,

P(�t | �t−1, αt) ∝
Z∏
z

θ
αt,zθt−1,z−1
t,z , (3)

where the Dirichlet prior κ in Equation (1) is factorized into the mean and precision
κ = αt�t−1, and αt = {αt,z}Z

z=1 is a set of Dirichlet parameters αt,z at time t. Here
αt,z represents the topic persistency, which is a measure of how consistently topic z
maintains its relevance to query at time t compared with that at the previous time
t − 1. As the relevance of each topic is dynamic, we estimate αt,z for each time period
that depends on both t and z. This is a conjugate prior, and the inference can be done
by Gibbs sampling [31]. We detail our inference procedure later in this section.

To model the dynamic changes of the multinomial distribution of words specific to
topic z, we use the following Dirichlet distribution for the prior of the trends φt,z =
{φt,z,v}V

v=1:

P(φt,z | φt−1,z, βt,z) ∝
V∏

v=1

φ
βt,z,vφt−1,z,v−1
t,z,v , (4)

where the Dirichlet prior γ in Equation (2) is factorized into the mean and precision
γ = βt,zφt−1,z, βt,z = {βt,z,v}V

v=1 is a set of Dirichlet parameters βt,z,v at time t for word
v and topic z, and βt = {βt,z}Z

z=1. Here, βt,z,v represents the topic persistency of word v,
which is a measure of how consistently word v maintains its probability of belonging
to topic z at time t compared to that at time t − 1. We detail inference for βt later in
this section.

Suppose we already have the distribution of topics at the previous time t − 1, �t−1,
and the word distribution over topics at t − 1, �t−1. Our proposed dynamic Dirichlet
multinomial mixture topic model is a generative process model that builds on �t−1 and
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Fig. 1. Graphical representation of D2M3. Green shaded nodes indicate observed variables.

�t−1. For t = 0, we can simply let θ0,z = 1/Z and φ0,z,v = 1/V as initialization. The
generative process used in Gibbs sampling for parameter estimation for documents in
stream dt at time t is

(i) Draw a multinomial �t from a Dirichlet prior αt�t−1;
(ii) Draw Z multinomials φt,z from a Dirichlet prior βt,zφt−1,z, one for each topic z;

(iii) For each document d ∈ dt at time t, draw a topic zd for a document d from multi-
nomial �t; then for each word vdi in document d:
(a) Draw a word vdi from multinomial φt,zd.

A graphical representation of this generative process is given in Figure 1. In the process,
there is a fixed number of latent topics, Z, although a non-parametric Bayes version of
our dynamic topic model that automatically integrates over the number of topics would
certainly be possible. In the experiments, we set Z as follows: We vary the number of
topics from 2 to 20 in the training dataset. The optimal number of topics is chosen
based on the validation dataset and evaluated on the test dataset. See Section 6.5 for
more details. We find that when the number of topics is equal to or greater than 8,
the performance seems to level off. See Section 7.2 for more details. The posterior
distribution of topics depends on the words in the documents. The parameterization of
the proposed model is as follows:

�t ∼ Dirichlet(αt�t−1)
φt,z|βt,zφt−1,z ∼ Dirichlet(βt,zφt−1,z)

zd ∼ Multinomial(�t)
vdi|φt,zd ∼ Multinomial(φt,zd).

Inference. Inference is intractable in D2M3. Following References [17, 26, 42], we
employ collapsed Gibbs sampling [17] to perform approximate inference. We adopt a
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conjugate prior (Dirichlet) for the multinomial distributions, and thus we can integrate
out φt,z and �t, analytically capturing the uncertainty associated with them. Thus, we
do need not to sample φt,z and �t.

In the Gibbs sampling procedure at time t, we need to calculate the conditional
distribution P(zd | zt,−d, dt,�t−1,�t−1, αt, βt), where zt,−d represents the topic assign-
ments for all documents in dt except document d. We begin with the joint probability of
the current document set dt, and, using the chain rule, we can obtain the conditional
probability conveniently as

P(zd | zt,−d, dt,�t−1,�t−1, αt, βt)

∝ mt,z + αt,zθt−1,z − 1∑Z
z=1(mt,z + αt,zθt−1,z) − 1

(5)

×
∏

v∈d
∏Nd,v

j=1(nt,z,v,−d + βt,z,vφt−1,z,v + j − 1)∏Nd
i=1(nt,z,−d + i − 1 + ∑V

v=1 βt,z,vφt−1,z,v)
,

where mt,z is the total number of documents in dt assigned to topic z, v is a word, Nd,v

is the total number of the word v in document d, and nt,z,v,−d is the total number of the
word v assigned to topic z at t except that in d. Note that in Equation (5), we consider
the problem of documents being short in our setting. We tackle it by simply sampling
one topic for all words in the same document, which is unlike previous dynamic topic
models such as the TTM [21] and DTM [3] that sample different topics for different
words in the same document. Previous topic models [48, 50] working with static short
text datasets have shown that the strategy of sampling only one topic for the whole
document when it is short is simple but effective.

The assumption that short documents tend to be about a single topic and the strategy
that each short document is assigned to a single topic is also made and applied in other
areas of information retrieval. For instance, Efron et al. [15] build on this assumption
to improve the retrieval performance of short texts: Documents are expanded with a
set of top-k short documents that are assumed to be about a single topic only. A detailed
derivation of Gibbs sampling for our proposed D2M3 model is provided in Appendix A.
In the sampling at each iteration, the persistency parameters αt and βt can be estimated
by maximizing the joint distribution P(dt, zt | �t−1,�t−1, αt, βt).

We apply fixed-point iteration to get the optimal αt and βt at time t. The update rule
for αt for maximizing the joint distribution in our fixed-point iteration is derived by
using two bounds in [34]

αt,z ← αt,z(	(mt,z + αt,zθt−1,z) − 	(αt,zθt−1,z))

	(
∑Z

z=1 mt,z + αt,zθt−1,z) − 	(
∑Z

z=1 αt,zθt−1,z)
,

where 	(x) = ∂ log �(x)
∂x is the digamma function. To be able to specify the update rule for

βt, we introduce the following abbreviation: φ = φt−1,z,v. Then, the update rule for βt is

βt,z,v ← βt,z,v(	(nt,z,v + βt,z,vφ) − 	(βt,z,vφ))

	(
∑V

v=1 nt,z,v + βt,z,vφ) − 	(
∑V

v=1 βt,z,vφ)
,

where nt,z,v is the number of words v assigned to topic z in stream dt. Our derivation
of the update rules for αt and βt and the two bounds used in deriving the update rules
are detailed in Appendix B. An overview of our collapsed Gibbs sampling algorithm,
including its input and output and the processes, is given in Algorithm 2.

After the Gibbs sampling procedure, with the fact that a Dirichlet distribution is con-
jugate to a multinomial distribution, we can easily infer the dynamic topic distribution
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ALGORITHM 2: Inference for D2M3 at Time t
Input: Previous topic distribution �t−1

Previous word distribution specific to topics �t−1
A set of short documents dt at time t
Initialized αt and βt
Number of iterations Niter

Output: Current topic distribution �t
Current word distribution specific to topics �t
Probabilities of topics relevant to query q at time t,
P(z | t, q)
Documents’ probabilities to each topic at time t,
P(z | t, d, q)

1 Initialize topic assignment randomly for all documents in dt
2 for iter = 1 to Niter do
3 for d = 1 to |dt| do
4 draw zd from P(zd|zt,−d, dt, �t−1, �t−1, αt, βt)
5 update mt,zd and nt,zd,v

6 update αt and βt

7 Compute the posterior estimates �t and �t
8 Compute P(z | t, q) and P(z | t, d, q)

at time t, �t as

θt,z = mt,z + αt,zθt−1,z∑Z
z=1 mt,z + αt,zθt−1,z

= mt,z + αt,zθt−1,z

mt + ∑Z
z=1 αt,zθt−1,z

, (6)

where mt = |dt| is the total number of documents in dt, and infer multinomial distri-
butions over words for topic z at time t as

φt,z,v = nt,z,v + βt,z,vφ∑V
v=1 nt,z,v + βt,z,vφ

= nt,z,v + βt,z,vφ

nt,z + ∑V
v=1 βt,z,vφ

,

where nt,z is the number of words assigned to topic z at time t.
For convenience, we write P(z | t, q) (the probability of topic z being relevant to q at

time t) to denote θt,z. After the iterations, each short document is assigned to a specific
topic z. To compute the probability of a topic z being relevant to a document d given a
query q and t, that is, P(z | t, d, q), instead of directly setting P(z | t, d, q) = 1 if d is
assigned to z by P(zd | zt,−d, dt,�t−1,�t−1, αt, βt) as defined in Equation (5), we set

P(z | t, d, q) = P(z | zt,−d, dt,�t−1,�t−1, αt, βt)∑Z
z′=1 P(z′ | zt,−d, dt,�t−1,�t−1, αt, βt)

. (7)

Online Computational Efficiency Analysis of D2M3. In practice, the retrieval system
is required to quickly retrieve a rank list of documents in respond to a given query.
Instead of inferring P(z|t, d) for all documents streaming in at query time t using the
proposed Gibbs sampling online before in response to the query, we approximately infer
P(z | t, d) as

P(z | t, d) = 1
E

∏
v∈d

P(z | t − 1, v) = 1
E

∏
v∈d

φt−1,z,v,

with computational complexity O(|d′
t|), which is linear in the number of streaming doc-

uments, |d′
t|, at time slice t, where E = ∑Z

z′=1
∏

v∈d P(z′ | t −1, v) = ∑Z
z′=1

∏
v∈d φt−1,z′,v is

a normalization constant. Here φt−1,z,v can be exactly inferred using the proposed Gibbs
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Fig. 2. Graphical representation of the TTM. Fig. 3. Graphical representation of the DMM.

sampling algorithm offline before the query time t. In other words, D2M3 can track
topic changes over time offline until at least time slice t −1, and on the basis of this the
current topic changes can be approximately inferred by previous time slices. Tracking
topic changes offline is acceptable in many applications such as top-k publish/subscribe
for text stream [7], in which the diversified subscription results are only required to be
presented to a subscriber once he logs into the system.

Comparison between D2M3 and other Dynamic Topic Models. To further understand
our proposed topic model, D2M3, we compare D2M3 with two well-known and effective
dynamic topic models that are used as baselines in our experiments, the TTM [21]
and DMM [44], the graphical representations of which are shown in Figure 2 and
Figure 3, respectively. As can be seen in Figure 2 and Figure 3, compared to the
graphical representation of D2M3 in Figure 1, both the TTM and DMM assume that
documents are long enough for topic inference, and thus each document is modelled
to be a mixture of multiple topics. The generative process of TTM is as follows: At
time t, for each document d ∈ dt, TTM first draws a multinomial θt,d from a Dirichlet
distribution with parameter αt�t−1, and then for each word v in the document, draws a
topic z from the multinomial θt,d and draws the word v from the multinomial φt,z that is
drawn from a Dirichlet distribution βt�t−1. In contrast, the generative process of DMM
is as follows: at time t, for each document d ∈ dt, DMM first draws a multinomial θt,d
from a multinomial distribution with expectation θt−1,d and then, for each word v in
the document, draws a topic z from the multinomial θt,d and draws the word v from the
static multinomial φz that is drawn from a Dirichlet distribution with parameter β. The
main difference, then, between D2M3 and TTM and DMM is that D2M3 works with
short documents and thus assumes that words in the same document share a single
topic only. Previous work has found that short documents are likely to talk about a
single topic only and topic models that assign a single topic to each short document
work better than those that assign multiple topics [48]. As the graphical model of D2M3
differs from other dynamic topic models, inference for D2M3 differs as well.
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5. SDA: A STREAMING DIVERSIFICATION ALGORITHM

In this section, we provide a way to diversify documents in a stream of short text
documents in response to a query. In Section 5.1, we briefly describe how PM-2 works
for diversification in a static set of documents. In Section 5.2, we detail our proposed
streaming version of PM-2, which performs diversification in response to a query at
time t based on the dynamic information captured by D2M3.

5.1. A Diversification Method: PM-2

Before we discuss our proposed modification of the PM-2 diversification algorithm,
we briefly describe PM-2 [13, 14]. PM-2 is an election-based approach to search result
diversification. It is a probabilistic adaptation of the Sainte-Laguë method for assigning
seats (positions in the final ranked list) to members of competing political parties
(aspects) such that the number of seats for each party is proportional to the votes
(aspect popularity or aspect probabilities, that is, P(z | q)) they receive.

PM-2 starts with a ranked list L f with k empty seats, and a set of top-k documents,
R, returned by a retrieval model in response to q. For each of the seats, it computes
the quotient qt[z|q] for each topic z given q following the Sainte-Laguë formula:

qt[z|q] = vz|q
2sz|q + 1

, (8)

where vz|q is the probability of topic z given q, that is, P(z | q), and sz|q is the “number” of
seats occupied by topic z (in initialization, sz|q is set to 0 for all topics). According to the
Sainte-Laguë method, seats should be awarded to the topic with the largest quotient
to best maintain the proportionality of the list. Therefore, PM-2 assigns the current
seat to the topic z∗ with the largest quotient. The document d∗ to fill this seat is the
one that is not only relevant to z∗ but to other topics as well:

d∗ = arg max
d∈R

⎛
⎝λ · qt[z∗|q] · P(d | z∗, q) + (1 − λ)

∑
z�=z∗

qt[z|q] · P(d | z, q)

⎞
⎠ , (9)

where P(d | z, q) is the probability of d talking about topic z for a given q. After the
document d∗ is selected, PM-2 adds d∗ as a result document, that is, L f ← L f ∪ {d∗};
removes it from R, that is, R ← R\{d∗}; and increases the “number” of seats occupied
by each of the topics z by its normalized relevance to d∗:

sz|q ← sz|q + P(d∗ | z, q)∑
z′ P(d∗ | z′, q)

.

This process repeats until we get k documents for L f or we are out of candidate docu-
ments. The order in which a document is appended to L f determines its ranking.

5.2. Integrating PM-2 and D2M3

We face three challenges in PM-2: (1) It does not take the changes of distributions of
aspects over time into account; (2) it is non-trivial to get the aspect probability vz|q,
which is often set to be uniform; and (3) it is non-trivial to compute P(d | z, q), which
usually requires explicit access to additional information.

We add time as a new component into PM-2 and make it time sensitive to address
the first challenge. The model is described in Algorithm 3. In our time-sensitive version
of PM-2, to address the second challenge, we compute vz|t,q by (6), that is, vz|t,q = P(z |
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ALGORITHM 3: Modified Version of PM-2. The Differences with the Original Version of
PM-2 Are: (1) It Can Diversify Results in Streams; (2) It Can Infer the Aspect Probability to
q at t; and (3) It Can Compute Document Probabilities Given Aspects of q at t.

Input: A query q
A set of streaming short documents dt
Current topic distribution �t
Current word distribution specific to topics �t
Probabilities of topics relevant to query q at time t,
P(z | t, q)
Documents’ probabilities to each topic at time t,
P(z | t, d, q)

Output: A diversified ranking of documents Lt
1 Lt ← ∅

2 R ← dt
3 for d = 1, . . . , |dt| do
4 Compute P(d | t, q) by a time-sensitive language model

5 for z = 1, . . . , Z do
6 vz|t,q ← P(z | t, q)

7 for all positions in the ranked list Lt do
8 for z = 1, . . . , Z do
9 qt[z|t, q] = vz|t,q

2sz|t,q + 1
10 z∗ ← arg maxz qt[z|t, q]
11 d∗ ← arg maxd∈R λ × qt[z∗|t, q] × P(d | t, z∗, q) + (1 − λ)

∑
z�=z∗ qt[z|t, q] × P(d | t, z, q)

12 Lt ← Lt ∪ {d∗} /* append d∗ to Lf */
13 R ← R\{d∗}
14 for z = 1, 2, . . . , T do

15 sz|q ← sz|q + P(d∗ | t, z, q)∑Z
z′=1 P(d∗ | t, z′, q)

t, q) = θt,z, such that (8) at time t is changed to

qt[z|t, q] = P(z | t, q)
2sz|t,q + 1

= mt,z + αt,zθt−1,z

(2sz|t,q + 1) · (mt + ∑Z
z αt,zθt−1,z)

,

where qt[z|t, q] is the quotient for topic z given q at time t, sz|t,q is the “number” of seats
occupied by topic z given q at time t (in initialization, sz|t,q is set to 0 for all topics).

For the third challenge, instead of explicitly computing the probability of document
d being relevant to topic z at time t, P(d | t, z, q), we apply Bayes’ Theorem so

P(d | t, z, q) = P(z | t, d, q)P(d | t, q)
P(z | t, q)

= P(z | t, d, q)P(d | t, q)
vz|t,q

, (10)

where P(d | t, q) is the probability of d being relevant to q at time t obtained by a
time-sensitive language model, and, similarly, vz|t,q is the probability of topic z relevant
to q at time t, that is, vz|t,q = P(z | t, q). As a result, after applying Equation (10) to
Equation (9) (replacing P(d | z, q) in Equation (9) by P(d | t, z, q) in Equation (10)), we
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select a candidate document by

d∗ = arg max
d∈R

λ · qt[z∗|t, q] · P(z∗ | t, d, q) · P(d | t, q)
vz∗|t,q

+ (1 − λ) ·
∑
z�=z∗

qt[z|t, q] · P(z | t, d, q) · P(d | t, q)
vz|t,q

,

(11)

where P(z | t, d, q) is the probability of document d belonging to topic z in re-
sponse to q at time t, which can easily be inferred in our dynamic mixture model
by Equation (7). Now, let M(x) abbreviate mt,x + αt,xθt−1,x and let P(x) abbreviate
P(x | zt,−d, dt,�t−1,�t−1, αt, βt). Then, after applying Equation (6) and Equation (7),
Equation (11) can be rewritten as

d∗ = arg max
d∈R

λ · qt[z∗|t, q] · P(z∗) · P(d | t, q)

M(x) · ∑Z
z′ P(z′)

+ (1 − λ) ·
∑
z�=z∗

qt[z|t, q] · P(z) · P(d | t, q)

M(z) · ∑Z
z′ P(z′)

,

(12)

where we ignore the constant term mt + ∑Z
z=1 αt,zθt−1,z, as it has no impact on selecting

the candidate document d∗.
We use SDA to refer to our streaming diversification method as described in Algo-

rithm 1, with D2M3 and modified version of PM-2 as detailed in Algorithms 2 and 3,
respectively.

6. EXPERIMENTAL SETUP

6.1. Research Questions

The research questions guiding the remainder of the article are as follows.
Concerning the performance of SDA:

RQ1 How does SDA compare against a baseline time-sensitive retrieval run, against
non-streaming diversification methods, and against streaming diversification
methods on short text streams, in terms of traditional retrieval measures?

RQ2 How does SDA compare against a baseline time-sensitive retrieval run, against
non-streaming diversification methods, and against streaming diversification
methods on short text streams, in terms of diversity measures?

Concerning the contribution of D2M3 to SDA:

RQ3 How does the contribution of our topic model D2M3 to the overall performance
of SDA compare to the contribution of other topic models, in terms of traditional
retrieval measures?

RQ4 Do the latent topics generated by D2M3 enhance the diversity performance of
SDA compared to other topic models?

RQ5 How does the contribution of our topic model D2M3 to the overall performance
of SDA compare to the contribution of other topic models, in terms of diversity
measures?

RQ6 Can our SDA retrieve a competitive number of subtopics per query?
RQ7 Does our SDA outperform the best diversification baseline method on each query?
RQ8 Is the performance of SDA and the baseline models sensitive to the number of

latent topics?
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To answer RQ1 and RQ2, we run a series of contrastive experiments, see Section 7.1,
and report on the outcomes in terms of relevance and diversity retrieval performance
measures. To answer RQ3–RQ8, we modify SDA, replace D2M3 with other topic mod-
els, report on relevance, clustering, and diversity retrieval performance, and analyze
the outcomes per query and in terms of subtopics retrieved and sensitivity to the
number of latent topics; see Section 7.2.

6.2. Dataset

There are publicly available labeled corpora, such as the Tweets 2011 and Tweets 2013
datasets, that have been used for ad hoc retrieval in the TREC 2011–2015 Microblog
track [30]. However, they have not been created for a diversification task, the queries
that make up the datasets are too long and specific, and no aspects of the queries have
been identified for evaluation purposes. Furthermore, the timespan of the collection is
relatively small and the ground truth is static for all the queries over the time. Thus
they are unsuitable for our experimental purposes.

We work with publicly downloadable posts that were a 1% sample from Twitter as
a short text stream.1 The tweets were posted between February 1, 2015, and April 30,
2015, covering a period of about 90 days. Most tweets are written in English. We
remove non-English tweets and retweets (which increase redundancy in the retrieved
documents for a given query), leaving us with 396 million tweets.

To evaluate the performance of our proposed diversification algorithm, SDA, and the
baseline algorithms, we need to manually create a set of queries, their corresponding
aspects, and the ground-truth judgments, that is, whether a document is relevant to a
given query and to which aspect of the query. To create the ground truth, we follow the
process in Reference [16] to generate ambiguous queries that contain no more than two
keywords, the aspects and the relevant documents specific to the aspects. The process
we used is as follows:

(1) Generate a set of ambiguous queries by manual selection from a list of hashtags
in the whole dataset. Hashtags related to topics of general interest were selected.
This created a list of hashtags such as “#Apple” and “#Egypt.” Text queries were
created from these tags manually, resulting in queries such as “Apple” and “Egypt”
that will be used for the whole time period.

(2) For each query at time t, find a list of k associated hashtags. This was done by simply
identifying the tags with co-occurrence with the hashtag that was the basis of the
query. Aspects were manually generated based on these k associated hashtags,
resulting in 2 to at most 10 aspects for this query at time t.

(3) Given a query at time t, manually labeled the top-k documents retrieved by a
time-sensitive language model (see Section 6.3) for its aspects, resulting in the
query-aspect-document ground truth used in our experiments.

As the way we generated our ground truth is time consuming, for each query we
only manually labeled the data every 20 days, resulting in 5 sets of ground truth, for
February 9, March 1, March 21, April 10, and April 30, 2015, respectively. To complete
the process for generating the ground truth, 23 students with different backgrounds
but all in possession of intermediate or high-level English certifications at a Chinese
university were invited as annotators to label the data. They were given a list of
ambiguous queries generated in step 1 in the process across the whole days and were
asked to pick up queries based on the hashtags they were interested in. After that, on
each day, that is, February 9, March 1, March 21, April 10, and April 30, 2015, for each

1The dataset can be downloaded from https://archive.org/details/twitterstream.
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Table II. Aspects Used to Evaluate the Ranking of Documents in Response to Three Example Ambiguous
Queries over the 5 Evaluation Days, February 9, March 1, March 21, April 10, and April 30, 2015, Respectively

Queries Aspects on
Feb. 9, 2015

Aspects on
Mar. 1, 2015

Aspects on
Mar. 21, 2015

Aspects on
Apr. 10, 2015

Aspects on
Apr. 30, 2015

Boston Snow, Job,
News,
Education,
Sports,
Business

Snow, Chinese-
newyear, Job,
News,
Education,
Sports,
Business

Bombing, Snow,
Job, News,
Education, Sports,
Business

Boston2024, Job,
News, Education,
Sports, Business

Boston2024, Job,
News, Education,
Sports, Business

Apple Report,
Macbook, Food,
iPhone, iPad

Investment,
Update,
Macbook, Food,
iPhone, iPad

ResearchKit,
AppleWatch,
Macbook, Food,
iPhone, iPad

CareKit,
AppleWatch,
Macbook, Food,
iPhone, iPad

Conference,
Update,
AppleWatch,
Macbook, Food,
iPhone, iPad

Obama Germany,
Jordan,
NHLChampion,
BilateralMeet-
ing

Law, Remark,
Qatar, Liberia,
BilateralMeet-
ing

WhiteHouse, Law,
BilateralMeeting,
Ireland,
videoconference

memorandum,
Iraq, Panama,
CARICOM,
Afghanistan

Remark, Energy,
WhiteHouse,
Japan, Honor,
BilateralMeeting

query a result list consisting of the top-500 retrieved documents produced by our time-
sensitive language model (LM) as a baseline algorithm was provided to the annotators,
respectively. Annotators were required to identify a number of associated tags with co-
occurrence with the hashtag that was the basis of the query as aspects of the queries in
step 2, based on the content of the top-k retrieved documents and the associated tags.
They produced judgements on whether the documents were relevant to the queries and
to which aspects in step 3 in the process. Hence, for a specific date, the annotators only
saw the tweets up to that date, and the tags obtained by the annotators only represent
the aspects specific to that date, as desired. In our evaluation, for all the baselines
and our SDA algorithm, we assume that any documents that were not observed by
annotators in the labeling process, that is, documents that were ranked lower than the
top-500 position by the LM baseline, are non-relevant. To reduce annotators’ workload
for the labeling task, all tweets retrieved in response to a query at a specific time for a
given aspect were labeled once.

The process resulted in a total of 107 ambiguous queries on each test day. For some
queries, new aspects may appear and old ones may be ignored by the annotators and
the decision of which were made by annotators themselves. The number of aspects per
query changes over time. On average, we have 3.7, 4.4, 5.2, 6.0, and 6.8 aspects per
query on the 5 selected dates, respectively.

Table II shows dynamic aspects of three ambiguous queries over the 5 test days.
Aspects used to evaluate the ranking of documents in response to the ambiguous query
“Boston” over the 5 different test days were generated by the annotators based on
the following events: It was snowing heavily in Boston in February and the seasonal
snowfall record was broken with 108.6 inches on March 16, 2015. Many people talked
about the Chinese new year festival that started from February 19 and ended around
March 1, 2015, in Boston. Dzhokhar Tsarnaev was found guilty on all charges in the
Boston Marathon bombing event on April 8, 2015, and afterwards people recalled and
discussed the bombing event that happened in Boston in 2013. In early 2015, Boston
was chosen by the United States Olympic Committee to compete with other candidates
around the world to bid for the 2024 Summer Olympics. News about Boston 2024
became popular from April 2015.
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Table III. Our Diversification Methods and the Baselines Used for Comparison

Acronym Gloss
The proposed streaming diversification methods integrating with different topic models

SDA Streaming diversification algorithm integrating with D2M3
SDATTM Streaming diversification algorithm integrating with TTM
SDADMM Streaming diversification algorithm integrating with DMM

Non-streaming diversification methods
LM Time-sensitive language model

MMR Maximal marginal relevance model
xQuAD Explicit query aspect diversification model
PM-2 An election-based approach to search result diversification model

Traditional streaming diversification methods
MMINC Incremental diversification algorithm with MAXMIN objective
MSINC Incremental diversification algorithm with MAXSUM objective

PM-2 framework-based diversification methods integrating with different topic models
PM-2GSDMM PM-2 diversification method integrating with GSDMM

PM-2LDA PM-2 diversification method integrating with LDA

6.3. Baselines

We list our proposed diversification methods and the baselines that we consider for com-
parison in Table III. To address RQ1 and RQ2, we compare SDA to (1) a non-streaming
non-diversified retrieval baseline, viz. a time-sensitive language model (LM) [12];
(2) three non-streaming diversification baselines, viz. MMR [5], xQuAD [37], and
PM-2 [13]; and (3) two state-of-the art streaming diversification algorithms, MMINC,
which abbreviates MAXMININCREMENTAL, and MSINC, which abbreviates MAXSUMINCRE-
MENTAL [33]. Diversity-Aware top-k Subscription (DAS) [7] uses the same objective
function as MSINC for diversifying the top-k subscription for a query and generates the
same results; hence, we do not report on experimental results for DAS.

To address RQ3–RQ8, we contrast SDA (with D2M3) with two variations of SDA ob-
tained by swapping out D2M3: SDATTM and SDADMM. SDATTM first utilizes a dynamic
topic model, viz. the TTM [21], to infer the multinomial distribution of topics specific
to each document in the top-k results returned by the LM model and then applies the
modified PM-2 algorithm to diversify the top-k results. SDADMM utilizes the dynamic
topic model, DMM [44], to infer topics for the top-k documents returned by LM and
then applies the modified PM-2 method for diversification. To understand whether dy-
namic topic modeling is more effective than static topic modeling when using the same
diversification framework, that is, the PM-2 framework in RQ2, and whether the perfor-
mance improvement of SDA is simply due to amelioration of vocabulary mismatch, we
consider two additional baseline diversification algorithms PM-2GSDMM and PM-2LDA.
Here, PM-2GSDMM and PM-2LDA first apply static topic models, the GSDMM [48] and
the LDA, to the top-k documents retrieved by our LM baseline, respectively. Then,
they diversify the top-k documents2 by Equation (9), where P(d | z∗, q) is set to be the
distribution θz,d inferred by GSDMM and LDA, respectively.

6.4. Evaluation Metrics

For evaluating regular retrieval performance, we use nDCG, ERR, Prec@k, and MAP.
We use the following diversity metrics for evaluation, most of which have been used
as official evaluation metrics at the TREC Web track [11] and in the literature on
search result diversification: normalized discounted cumulative gain at k (α-nDCG@k)
[8], subtopic recall at k (S-Recall@k) [49], intent-aware expected reciprocal rank at k

2We let k = 500 in our experiments and found that when k ≥ 300 the performance levels off.
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(ERR-IA@k) [2, 13], intent-aware precision at k (Prec-IA@k) [2], intent-aware MAP at
k (MAP-IA@k) [2], and novelty- and rank-biased precision (NRBP) [10].

For evaluating the quality of the latent topics generated by our D2M3 topic model,
we use Purity [32], Normalized Mutual Information (NMI) [32], and Adjusted Rank
Index (ARI) [32], which are widely used in the literature of traditional clustering. Let
X = {x1, . . . , xi, . . . , xG} be a set of ground-truth clusters (aspects that the documents
are assigned to according to the ground truth) and Y = {y1, . . . , y j, . . . , yZ} be the set of
output clusters (topics that the documents are assigned to by D2M3) at time t, where G
and Z are the total number of the clusters in the ground truth and the output clusters,
respectively. Then, these metrics can be computed as follows:

Purity. To compute purity, each output cluster y is assigned to the ground-truth cluster
x that is most frequent in the cluster, and the the accuracy of this assignment is
measured by counting the number of correctly assigned documents and dividing by N.
Here, N is the total number of documents in X. Formally it is defined as

Purity(X, Y) = 1
N

∑
j

max
i

|y j ∩ xi|,

where |y j ∩ xi| is the number of documents in the intersection y j ∩ xi.

NMI. High purity is easy to achieve when the number of clusters is large. In particular,
purity is 1.0 if each document gets its own cluster. Thus, we cannot simply use purity to
trade off the quality of the clustering against the number of clusters. NMI is a measure
that does allow us to make this tradeoff:

NMI(X, Y) = I(X; Y)
[E(X) + E(Y)]/2

=
∑

i, j
|y j∩xi |

N log N|y j∩xi |
|y j ||xi |(

−∑
i

|xi |
N log |xi |

N − ∑
j

|y j |
N log |y j |

N

)/
2

,

where I(X; Y), E(X), and E(Y) are the mutual information, the entropy of X and of Y,
respectively. According to NMI, when Y is the same to X, NMI achieves a value of 1,
its largest value.

ARI. Consider a situation where one clusters documents based on a series of pairwise
decisions. If two documents both in the same cluster are aggregated into the same
cluster and two documents in different clusters are aggregated into different clusters,
then the decision is considered to be correct. The Rand index shows the percentage of
decisions that are correct while the adjusted Rand index is the corrected-for-chance
version of the Rand index [20]. The maximum value is 1 for an exact match; larger
values mean better performance for clustering. ARI(X, Y) is computed as

ARI(X, Y) =
∑

i, j

(|y j∩xi |
2

) −
[∑

j

(|y j |
2

) ∑
i

(|xi |
2

)]/(N
2

)
1
2

[∑
j

(|y j |
2

) + ∑
i

(|xi |
2

)] −
[∑

j

(|y j |
2

) ∑
i

(|xi |
2

)]/(N
2

) .

We assign only one topic z = arg maxz P(z | t, d, q) to document d when we evaluate
the quality of the topics generated by the underlying topic model (for the purpose of
getting the purity, NMI, and ARI evaluation results only).

We follow previous work [11, 13, 26, 46] on search result diversification and compute
the metric scores at depth 20. We report on scores per day and on scores averaged over
the 5 days.
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Statistical significance of observed differences between the performance of two runs
is tested using a two-tailed paired t-test and is denoted using � (or �) for significant
differences for α = .01 or � (and �) for α = .05.

6.5. Training and Parameter Settings

For the time-sensitive language model baseline, LM, we rank the documents by P(d |
t, q) = P(d | q) · b−(t−td), where b is a base parameter that determines the rate of
the recency decay and td is the creation time of document d. The other baselines also
adopt this setting to compute P(d | t, q) to obtain the relevance of a document to a
query at time t. For our diversification model for short text streams, SDA, we perform
the proposed dynamic Dirichlet multinomial mixture topic model, D2M3, on the top-k
documents (we found that the performance of utilizing more than top 100 documents
is almost the same; we use the top-500 documents for inference in our experiments)
retrieved by the time-sensitive language model LM at time t from the short text stream
dt up to time t.

For evaluation purposes, for our proposed algorithm SDA and all the baseline al-
gorithms, we use a 60/30/10 split of all the 107 ambiguous queries for our training,
validation, and test sets, respectively. Specifically, on each test day, for each split of
the 107 ambiguous queries, we conduct our training using the queries in the training
set that make up 60% of the ambiguous queries and all tweets posted on or before the
test day; we validate the algorithms using the queries in the validation set consisting
of 30% of the ambiguous queries and the posts on or before the day, and we report
the performance of the algorithms using the remainder of the queries, that is, 10% of
the ambiguous queries and the posts on or before the day. We also report the mean
performance of all these 5 test days when necessary in the analysis.

We train SDA, the baseline PM-2, and the variants SDATTM, SDADMM, PM-2GSDMM,
and PM-2LDA using values of λ (see Equations (9) and (12)) varying from 0 to 1.0 and
varying the number of topics from 2 to 20. The best λ value and the number of topics
are then chosen based on the validation set and evaluated on the test queries.

Similarly, for the baseline MMR, in the training we vary the parameter λ from 0 to
1.0; recall that it governs the linear mixture of a candidate document’s relevance to the
input query and the minimal similarity of the candidate document to the previously
selected documents. The best λ value is then chosen based on the validation set and
evaluated on the test queries.

For the baseline xQuAD, we vary the parameter λ from 0 to 1.0 that governs the
probability of a candidate document’s relevance to the input query and p(d, S̄|q), that
is, the probability of observing the candidate document but not the documents already
in the previous selected document set S. Again, the best λ value is then chosen based
on the validation set and evaluated on the test queries. The same setting is applied for
parameter λ used in the two streaming diversification algorithms, MMINC and MSINC.

In terms of aspects used for each query in the baseline xQuAD, we follow Ref. [37]
and apply query reformulation techniques for the aspect generation. Specifically, we
directly append each aspect of the initial query that is manually identified in the ground
truth at time t to the initial ambiguous query q itself as a sub-query qi,t in xQuAD.
We estimate the sub-query importance component, p(qi,t|q), in our baseline xQuAD as
p(qi,t|q) = 1

|Qt,q| , where Qt,q is the set of sub-queries for query q at time t. There are a
number of ways to estimate p(qi,t|q) as indicated in Ref. [37], but we found that this is
the most effective way in our experiments.

In the baseline PM-2, we also directly append each aspect of the initial query that is
manually identified in the ground truth at t to the initial ambiguous query q itself as
a sub-query. Other settings for PM-2 are the same as in Ref. [13].
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Table IV. Mean Performance of SDA and the Baselines on Relevance
Metrics. The Best Performance Per Metric Is in Bold. Statistically

Significant Differences between SDA and the Best Baseline, PM-2,
Are Marked in the Upper Right-Hand Corner of SDA’s Scores

nDCG ERR Prec MAP
LM .4287 .9624 .3835 .2108
MMR .4058 .9466 .3663 .1950
MSINC .4363 .9614 .3907 .2177
MMINC .4440 .9614 .3962 .2240
xQuAD .4527 .9660 .4041 .2370
PM-2 .4781 .9798 .4194 .2502
SDA .5408� .9869 .4728� .2954�

Table V. Mean of Performance of SDA and the Baselines on Diversification Metrics. The Best
Performance per Metric Is in Bold. Statistically Significant Differences Between SDA and
the Best Baseline, PM-2, Are Marked in the Upper Right-Hand Corner of SDA’s Scores

α-nDCG S-Recall ERR-IA Prec-IA MAP-IA NRBP
LM .2560 .7548 .1749 .0604 .1079 .1075
MMR .2714 .7826 .1816 .0642 .1135 .1114
MSINC .2760 .7873 .1864 .0675 .1193 .1182
MMINC .2856 .8009 .1983 .0739 .1283 .1296
xQuAD .2977 .8300 .2132 .0807 .1402 .1460
PM-2 .3262 .8503 .2272 .0874 .1491 .1587
SDA .3783� .9214� .2610� .1074� .1676� .1886�

For SDA and all the baselines, the training/validation/test splits are permuted until
all 107 queries have been chosen once for the test set. We repeat the experiments 10
times and report the average evaluation results.

7. RESULTS

We start by comparing the retrieval (RQ1) and diversity (RQ2) performance of SDA
against that of the other methods. We then examine the retrieval (RQ3), clustering
(RQ4), and diversity (RQ5) performance of SDA integrated with D2M3 and other topic
models and analyze their outcomes per query (RQ6) in terms of subtopics retrieved
(RQ7) and sensitivity to the number of latent topics (RQ8).

7.1. The Performance of SDA

RQ1: Retrieval Performance. To start, we contrast the retrieval performance of SDA
against the baselines in terms of traditional relevance-oriented evaluation metrics.
Table IV shows the performance averaged over all 5 test days.

Except for ERR, for every relevance metric, we find the following order between
methods: SDA > PM-2 > xQuAD ∼ MMINC ∼ MSINC ∼ LM > MMR. Here > denotes
statistically significantly higher performance and A ∼ B denotes that we did not ob-
serve a significant differences between A and B. For ERR we observe the following
partial order: SDA > PM-2 > xQuAD > MMINC ∼ MSINC ∼ LM > MMR. This rel-
ative ordering of methods is mostly consistent across the 5 testing days. In addition,
LM outperforms MMR, and the differences are statistically significant. We observe the
same relative order of methods (in terms of performance) for each of the 5 individual
test dates.
RQ2: Diversification Performance. We start by considering the average diversification
performance of SDA and our baselines across the 5 testing days. See Table V. SDA
outperforms all baselines, on all metrics, and significantly so. LM, not MMR, is the
worst-performing method now. The performance of MSINC and MMInc is similar to
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that of MMR. This is because these methods are quite similar: They work with an
objective that tries to return a set of relevant and diversified documents by directly
computing the relevance of the documents and their similarities. Although xQuAD
and PM-2 are non-streaming diversification methods, they outperform the stream-
ing diversification methods, MSINC and MMINC. The reason is that both xQuAD and
PM-2 model the underlying aspects of the queries and try to maintain a diversified and
relevant document set, while MSINC and MMINC simply try to make the content of the
documents in the returned set differ from each other. SDA statistically significantly
outperforms xQuAD and PM-2: It not only tries to maintain a relevant and diversified
document set but also updates the probabilities of latent topics to the query, which can
be utilized for the online diversification process.

Next, we turn to the diversification performance per day. Rather than presenting five
copies of Table V, one per day, we present six heat maps, one per metric, so the relative
performance per method and per day can be observed. See Figure 4. The relative order
of methods is the same as in Table V. One interesting thing that can be found in these
tables is that, as time goes by, in terms of the performance evaluated by some metrics,
SDA is more likely to beat the performance of the best baseline, PM-2. For instance,
on February 9, 2015, the difference in α-nDCG scores between SDA and PM-2 is only
2.2% (0.4607–0.4387), while the difference on April 30, 2015 is 7.4% (0.3115–0.2374),
which is significant at a level of 0.99. The reason is obvious: As time goes by, more
aspects are associated with each test topic (see Section 6.2), which provides more room
for improvement as evidenced by SDA. In addition, in the heat maps in Figure 4, we
find that the performance of the methods diminish over the 5 testing days on all the
metrics. The reason is that as time moves forward, on average there are more aspects
per query. Recall that on average we have 3.7, 4.4, 5.2, 6.0, and 6.8 aspects per query
on the 5 testing dates, respectively. Diversification performance of the representative
methods, SDA, PM-2, and xQuAD, and the average number of aspects per query across
the 5 testing days are shown in Figure 5.

The answers to research questions RQ1 and RQ2 are clear. SDA outperforms state-
of-the-art streaming diversification algorithms on short text streams, non-streaming
ones, and time-sensitive language models on both relevance and diversity-oriented
evaluation metrics.

7.2. Contribution of D2M3 to SDA

We compare SDA against variants with a different topic model.
RQ3: Retrieval Performance. We report on the retrieval performance, averaged over
the 5 test days, of SDA, SDATTM, SDADMM, PM-2GSDMM, and PM-2LDA in Table VI.
SDA significantly outperforms SDATTM and SDADMM that integrate the dynamic topic
models TTM and DMM, respectively, and PM-2GSDMM and PM-2LDA that integrate the
static topic models GSDMM and LDA, respectively, on all metrics except ERR, where
SDA does not significantly differ from SDATTM and SDADMM but does significantly differ
from PM-2GSDMM and PM-2LDA. Thus, D2M3’s contribution to the retrieval performance
of SDA is bigger than that of the dynamic topic models TTM and DMM and the static
topic models GSDMM and LDA.

RQ4: Clustering Performance. To compare the clustering performance, given a query,
we regard relevant documents associated with the same aspect according to the ground
truth as being in the same cluster. We further regard the documents assigned to the
same topic z = arg maxz P(z | t, d, q) (for this purpose only, see Section 6.4) by the
underlying topic model as being in the same cluster. The comparison result is shown
in Table VII. SDA again significantly outperforms SDATTM, SDADMM, PM-2GSDMM, and
PM-2LDA on all clustering evaluation metrics, which indicates that the quality of latent
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Fig. 4. Heat maps of diversification performance. One heat map per metric; columns represent days (Febru-
ary 9, March 1, March 21, April 10, and April 30, 2015, from left to right); rows represent methods (SDA,
PM-2, xQuAD, MMINC, MSINC, MMR, LM, from top to bottom).
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Fig. 5. Diversification performance of the representative methods, SDA, PM-2, and xQuAD, and the average
number of aspects per query across the 5 testing days (February 9, March 1, March 21, April 10, and April 30,
2015, respectively). One plot per metric. In each plot, the Y-axes on the left- and right-hand sides are for
diversification performance and the average number of aspects per query, respectively. Figures are best
viewed in color.
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Table VI. Mean Performance of SDA and Alternative Versions of SDA
with D2M3 Replaced by the Dynamic Topic Model TTM or DMM, and

PM-2 with Static Topic Model GSDMM or LDA, Using Relevance Metrics.
The Best Performance Per Metric Is in Bold. Statistically Significant

Differences Between SDA and the Best Performing Alternative System,
SDATTM, Are Marked in the Upper Right-Hand Corner of the SDA Scores

nDCG ERR Prec MAP
PM-2LDA .4482 .9631 .3975 .2293
PM-2GSDMM .4523 .9677 .4052 .2412
SDADMM .5030 .9856 .4397 .2640
SDATTM .5198 .9813 .4512 .2770
SDA .5408� .9869 .4728� .2954�

Table VII. Mean Performance of SDA and Alternative Versions of SDA
with D2M3 Replaced by Dynamic Topic Model TTM or DMM, and PM-2

with Static Topic Model GSDMM or LDA, Using Clustering Metrics.
The Best Performance per Metric Is in Bold. Statistically Significant

Differences Between SDA and the Best Performing Alternative System,
SDATTM, Are Marked in the Upper Right-Hand Corner of the SDA Scores

Purity NMI ARI
PM-2LDA .3174 .7024 .6047
PM-2GSDMM .3425 .7234 .6352
SDADMM .3689 .7616 .6957
SDATTM .3749 .7828 .7210
SDA .3936� .8560 .7742�

Table VIII. Mean Performance of SDA and Alternative Versions of SDA
with D2M3 Replaced by Dynamic Topic Model TTM or DMM, and PM-2
with Static Topic Model GSDMM or LDA, Using Diversification Metrics.

The Best Performance per Metric Is in Bold. Statistically Significant
Differences Between SDA and the Best-Performing Alternative System,

SDATTM, Are Marked in the Upper Right-Hand Corner of the SDA Scores

α-nDCG S-Recall ERR-IA Prec-IA MAP-IA NRBP
PM-2LDA .2937 .8274 .2031 .0784 .1354 .1433
PM-2GSDMM .3151 .8425 .2174 .0843 .1470 .1537
SDADMM .3486 .8700 .2402 .0974 .1579 .1724
SDATTM .3593 .8828 .2500 .0996 .1633 .1818
SDA .3783� .9214� .2610� .1074� .1676� .1886�

topics produced by D2M3 for SDA is better than that of the two dynamic topic models
TTM and DMM and the two static topic models GSDMM and LDA.
RQ5: Diversification Performance. Table VIII lists the diversity scores of SDA, SDATTM,
SDADMM, PM-2GSDMM, and PM-2LDA, averaged over the 5 test days. SDA significantly
outperforms PM-2GSDMM, which ignores time information of the documents during in-
ference and assigns one single topic to each document, and PM-2LDA, which also ignores
time information of the documents in the inference and, in contrast, assumes that each
document is a mixture of multiple latent topics. SDA also outperforms SDADMM and
SDATTM, in which the dynamic topic models, DMM and TTM, respectively, assume that
topics are changed over time, and update the probabilities of topics to the queries, but
assume that each document is long enough for inference. We omit per test day results;
they show qualitatively similar trends as Table VIII. Also, as visualized in Figure 4
for the baseline approaches, the relative differences between SDA on the one hand and
SDATTM and SDADMM on the other grow from the first test day (February 9) to the last
(April 30), albeit not as dramatically as between SDA and PM-2: from 0.7% to 3%.
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Fig. 6. Per-query performance differences between SDA and SDATTM, diversity measures, averaged over
all test days. One plot per metric. A bar extending above the center of a plot indicates that SDA outperforms
SDATTM and vice versa for bars extending below the center. Figures are not to the same scale.

In the analyses that we provide below, we contrast SDA with the best-performing
alternative, SDATTM.
RQ6: Query-level Analysis. To begin, we take a closer look at per-test query improve-
ments of SDA vs. SDATTM. Figure 6 shows the per-query performance differences be-
tween SDA and SDATTM in terms of the diversity metrics, averaged over all test days.
The number of queries on which SDA outperforms SDATTM is larger than the number of
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queries on which SDATTM outperforms SDA for every metric. This again illustrates that
the integration of time information, for example, changes of probabilities of topics to a
query captured by D2M3, is able to enhance the diversification performance in short
text streams. In a very small number of cases, SDA is outperformed by SDATTM. This
appears to be due to the fact that SDA sometimes promotes non-relevant documents
when it tries to retrieve as many subtopics as possible for a given query.
RQ7: Subtopic-level Analysis. Next, we focus on the fractions of subtopics retrieved by
SDA and SDATTM. Figures 7 and 8 show the fractions of subtopics retrieved by both
SDA and SDATTM, only SDA, only SDATTM, or neither of the two. Figure 7 shows how
runs produced by SDA and SDATTM differ in terms of subtopic retrieval on all the test
days at depth k = 5, 10, 15, and 20, respectively. Clearly, on average, as we go deeper
down the result lists, the fraction of subtopics retrieved by both methods increases. For
example, on April 30, in the top 5 the fraction is 26.5%, while in the top 20 the fraction
goes up to 71.5%. However, the fraction of subtopics retrieved by SDA only seems to
remain stable: At the top 5 the fraction is 13.1% and at the top 15 the fraction is almost
the same, 12.3%; the fraction for SDATTM only drops down, from 6.4% at the top 5 to
2.6% for the top 15. This shows that, on average, SDA is able to return more subtopics
and maintain a stable improvement over SDATTM as we go down the result lists, while
maintaining the relevance.

In Figure 8 we fix another dimension, looking only at the top 20, and contrast different
dates, February 9, March 1 and 21, and April 10 and 30, 2015. As time progresses, the
fraction of subtopics not retrieved by either SDA or SDATTM increases. This is because
more new subtopics appear as time progresses, which makes the diversification task
harder. It is interesting to see that the documents returned by SDA cover more subtopics
than those returned by SDATTM, especially during later days. On March 1, SDA covers
only 4.6% more subtopics than SDATTM, while on April 30 it covers as many as 9.3%
more subtopics. These findings confirm that considering dynamic changes as integrated
in D2M3 can improve the performance of diversification in short text streams.
RQ8: Effect of the Number of Topics. Finally, we examine the effect on the overall
performance of the number of latent topics used in SDA and the baselines SDATTM,
SDADMM, and PM-2. We vary the number of latent topics used in SDA and the alter-
natives just listed, and examine their performnce using diversity metrics. The results
are shown in Figure 9, where we take April 30 as representative (findings on other
days are qualitatively similar). When only two latent topics are used, the performance
of the four methods is almost the same. With 4 to 8 latent topics, the performance of
all four increases dramatically. And when the number of latent topics varies between
8 and 16, the performance of both SDA and the baselines seems to level off. A similar
pattern was found in many LDA-based topic models (the models integrated into SDA
and the baselines here are also LDA-based) in terms of, for example, generalization
performance measured by perplexity, where generalization performance becomes bet-
ter when more latent topics are applied and then levels off when the number of topics
applied is large enough [4], and thus it is no surprise to see a similar pattern in terms
of diversification performance. This shows the merit of the proposed streaming version
of the PM-2 algorithm: It is robust and insensitive to the number of latent topics once
this is “large enough.”

Importantly, SDA, which integrates D2M3, outperforms SDATTM and SDADMM,
which integrate the tracking topic model and dynamic mixture model, respectively.
Latent topics can enhance the performance, and the findings confirm the merit of the
proposed dynamic topic model D2M3, that is, it beats the TTM and the DMM when
applied in a short text stream for diversification.
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Fig. 7. Fraction of subtopics retrieved by both SDA and SDATTM, only SDA, only SDATTM, or neither.
Results for (a) February 9, (b) March 1, (c) March 21, (d) April 10, and (e) April 30, 2015, averaged over all
queries for different top N’s, respectively. The figures are best viewed in color.
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Fig. 8. Fraction of subtopics retrieved by both SDA and SDATTM, only SDA, only SDATTM, or neither.
Results for the top 20, averaged over all queries, for different days. The figure is best viewed in color.

The answers to research questions RQ2–RQ8 are clear. In terms of both retrieval
and diversification performance, our topic model D2M3 as integrated in our SDA works
better than any other topic model that we have considered for diversification on short
text streams, including state-of-the-art dynamic and non-dynamic topic models.

8. CONCLUSION

We have studied the problem of diversifying search results in short text streams and
have proposed a streaming diversification algorithm, SDA, to deal with the problem.
Specifically, we propose a dynamic Dirichlet multinomial mixture model, D2M3, to
capture the evolution of latent topics in a sequentially organized corpus of short docu-
ments and a collapsed Gibbs sampling algorithm to infer the probabilities of topics and
documents for a given query. To diversify search results in a stream, we have proposed
a modification of the PM-2 diversification algorithm in which the dynamic information
of latent topics and the probabilities of documents inferred by D2M3 are integrated
while diversifying results.

We have conduced experiments on a Twitter dataset. Our evaluation results have
shown that SDA outperforms state-of-the-art non-streaming diversification algorithms,
plain streaming diversification methods, as well as variants that integrate other dy-
namic topic models instead of D2M3. We have found that D2M3 is able to capture the
dynamic weights of topics, their probability of relevance to the query, and the proba-
bility of documents of being relevant to the query. Moreover, we have found that the
proposed modified PM-2 algorithm does aid the performance of diversification in short
text streams. Our proposed model works better than the baselines for most queries and
is able to return more subtopics. We also found that SDA and the baselines SDATTM,
SDADMM, and PM-2 are insensitive to the number of latent topics of a query, once a
sufficiently large number was chosen.

As to future work, we aim to automatically estimate the dynamic number of as-
pects to set the number of latent topics in our dynamic Dirichlet multinomial mixture
topic model and let the number of latent topics utilized in modeling documents change
from one query to another, as restricting a uniform number of latent topics in our
proposed topic model for all the queries may not be the best option. We plan to utilize
alternative diversification algorithms instead of the modified PM-2 diversification algo-
rithm in SDA and apply other machine-learning technologies such as deep learning for
diversification in short text streams. Also, we intend to apply our SDA to other search
applications such as diversifying search results in academic search using article ab-
stracts only but not the full text of the articles. Until now, no streaming long document
datasets have been available for dynamic search result diversification; in the future,
we plan to collect such a dataset and test whether SDA is also effective for streaming
long documents. We also plan to test our model on a larger dataset with short text
streams.
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Fig. 9. Comparisons among SDA, SDATTM, SDADMM, and PM-2 when varying the number of latent topics,
for (a) α-nDCG, (b) S-Recall, (c) ERR-IA, (d) Prec-IA, (e) MAP-IA, and (f) NRBP, respectively, averaged over
all test days. Figures are not to the same scale. Figures are best viewed in color.
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APPENDIXES

A. GIBBS SAMPLING DERIVATION FOR D2M3

We begin with the joint distribution P(dt, zt|�t−1,�t−1, αt, βt). We can take advantage
of conjugate priors to simplify the integrals. All other symbols are defined in Sections 3
and 4.

P(dt, zt|�t−1,�t−1, αt, βt) = P(dt|zt,�t−1, βt)P(zt|�t−1, αt)

=
∫

P(dt|zt,�t)P(�t|�t−1, βt)d�t

∫
P(zt|�t)P(�t|�t−1, αt)d�t

=
∫ |dt|∏

d=1

Nd∏
i=1

P(vt,di|φt,zdi )
Z∏

z=1

P(φt,z|φt−1,z, βt)d�t ×
∫ |dt|∏

d=1

P(zt,d|θt)P(θt|θt−1, αt)d
t

=
∫ Z∏

z=1

V∏
v=1

φ
nt,z,v
t,z,v

Z∏
z=1

P(φt,z|φt−1,z, βt)d�t ×
∫ |dt|∏

d=1

P(zt,d|θt)P(θt|θt−1, αt)d
t

=
∫ Z∏

z=1

V∏
v=1

φ
nt,z,v
t,z,v

Z∏
z=1

(
�

( ∑V
v=1 βt,z,vφ

)
∏V

v=1 �(βt,z,vφ)

V∏
v=1

φ
βt,z,vφ−1
t,z,v

)
d�t

×
∫ Z∏

z=1

θ
mt,z
t,z

(
�

( ∑Z
z=1 αt,zθt−1,z

)
∏Z

z=1 �(αt,zθt−1,z)

)
Z∏

z=1

θ
αt,zθt−1,z−1
t,z d
t

=
Z∏

z=1

�
( ∑V

v=1 βt,z,vφ
)

∏V
v=1 �(βt,z,vφ)

Z∏
z=1

∫ V∏
v=1

φ
nt,z,v+βt,z,vφ−1
t,z,v d�t

×�
(∑Z

z=1 αt,zθt−1,z
)

∏Z
z=1 �(αt,zθt−1,z)

∫ Z∏
z=1

θ
mt,z+αt,zθt−1,z−1
t,z d
t

=
Z∏

z=1

�
( ∑V

v=1 βt,z,vφ
)

∏V
v=1 �(βt,z,vφ)

Z∏
z=1

∏V
v=1 �(nt,z,v + βt,z,vφ)

�
( ∑V

v=1 nt,z,v + βt,z,vφ
)

×�
(∑Z

z=1 αt,zθt−1,z
)

∏Z
z=1 �(αt,zθt−1,z)

∏Z
z=1 �(mt,z + αt,zθt−1,z)

�
( ∑Z

z=1 mt,z + αt,zθt−1,z
) .

Applying the chain rule, we can obtain the following conditional probability:

P(zd = z|zt,−d, dt,�t−1,�t−1, αt, βt) = P(zt,dt|�t−1,�t−1,αt,βt)
P(zt,−d,dt|�t−1,�t−1,αt,βt)

∝ P(zt, dt|�t−1,�t−1, αt, βt)
P(zt,−d, dt,−d|�t−1,�t−1, αt, βt)

=
Z∏

z=1

∏V
v=1 �(nt,z,v + βt,z,vφ)

�
( ∑V

v=1 nt,z,v + βt,z,vφ
) ×

∏Z
z=1 �(mt,z + αt,zθt−1,z)

�
( ∑Z

z=1 mt,z + αt,zθt−1,z
)/

Z∏
z=1

∏V
v=1 �(nt,z,v,−d + βt,z,vφ)

�
( ∑V

v=1 nt,z,v,−d + βt,z,vφ
) ×

∏Z
z=1 �(mt,z,−d + αt,zθt−1,z)

�
(∑Z

z=1 mt,z,−d + αt,zθt−1,z
) .

Because document d is associated with its own topic z, it becomes
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=
∏V

v=1 �(nt,z,v + βt,z,vφ)

�
( ∑V

v=1 nt,z,v + βt,z,vφ
) × �(mt,z + αt,zθt−1,z)

�
(∑Z

z=1 mt,z + αt,zθt−1,z
)/

∏V
v=1 �(nt,z,v,−d + βt,z,vφ)

�
( ∑V

v=1 nt,z,v,−d + βt,z,vφ
) × �(mt,z,−d + αt,zθt−1,z)

�
( ∑Z

z=1 mt,z,−d + αt,zθt−1,z
)

= �(mt,z + αt,zθt−1,z)
�(mt,z + αt,zθt−1,z − 1)

�
( ∑Z

z=1(mt,z + αt,zθt−1,z) − 1
)

�
( ∑Z

z=1 mt,z + αt,zθt−1,z
)

×
∏V

v=1 �(nt,z,v + βt,z,vφ)∏V
v=1 �(nt,z,v,−d + βt,z,vφ)

�
(∑V

v=1 nt,z,v,−d + βt,z,vφ
)

�
(∑V

v=1 nt,z,v + βt,z,vφ
)

= �(mt,z + αt,zθt−1,z)
�(mt,z + αt,zθt−1,z − 1)

�
( ∑Z

z=1(mt,z + αt,zθt−1,z) − 1
)

�
( ∑Z

z=1 mt,z + αt,zθt−1,z
)

×
∏

v∈d �(nt,z,v + βt,z,v)∏
v∈d �(nt,z,v,−d + βt,z,v)

�
(
nt,z,−d + ∑V

v=1 βt,z,vφ
)

�
(
nt,z,−d + Nd + ∑V

v=1 βt,z,vφ
) .

Applying �(x) = (x − 1)�(x − 1) and �(x + m) = ∏m
i=1(x + i − 1)�(x), the above becomes

= mt,z + αt,zθt−1,z − 1∑Z
z=1(mt,z + αt,zθt−1,z) − 1

∏
v∈d �(nt,z,v+βt,z,vφ)∏

v∈d �(nt,z,v,−d+βt,z,vφ)∏Nd
i=1

(
nt,z,−d + i − 1 + ∑V

v=1 βt,z,vφ
)

= mt,z + αt,zθt−1,z − 1∑Z
z=1(mt,z + αt,zθt−1,z) − 1

∏
v∈d

∏Nd,v

j=1(nt,z,v,−d + βt,z,vφ + j − 1)∏Nd
i=1

(
nt,z,−d + i − 1 + ∑V

v=1 βt,z,vφ
) .

B. DERIVATION OF THE UPDATE RULES

We apply a fixed-point iteration for estimating the parameters αt and βt by maximiz-
ing the joint distribution P(dt, zt|�t−1,�t−1, αt, βt). Instead of maximizing the joint
distribution directly, we try to maximize the following:

log P(dt, zt|�t−1,�t−1, αt, βt)

=
Z∑

z=1

log �

(
V∑

v=1

βt,z,vφ

)
−

Z∑
z=1

log �

(
V∑

v=1

nt,z,v + βt,z,vφ

)

+
Z∑

z=1

V∑
v=1

log �(nt,z,v + βt,z,vφ) −
Z∑

z=1

V∑
v=1

log �(βt,z,vφ)

+ log �

(
Z∑

z=1

αt,zθt−1,z,v

)
− log �

(
Z∑

z=1

mt,z + αt,zθt−1,z

)

+
Z∑

z=1

log �(mt,z + αt,zθt−1,z) −
Z∑

z=1

log �(αt,zθt−1,z).

Using the bounds [34]: For any x∗ ∈ R
+, n ∈ Z

+, and x∗’s estimation x,

log �(x∗) − log �(x∗ + n) ≥ log �(x) − log �(x + n) + (	(x + n) − 	(x))(x − x∗)

and

log �(x∗ + n) − log �(x∗) ≥ log �(x + n) − log �(x) + x(log x∗ − log x),
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supposing α∗
t,z is the optimal parameter in the next fixed-point iteration, it follows that

log P(dt, zt|�t−1,�t−1, {αt,1, . . . α
∗
t,z, . . . , αt,Z}, βt) ≥ B(α∗

t,z)

= αt,zθt−1,z(	(mt,z + αt,zθt−1,z) − 	(αt,zθt−1,z)) log α∗
t,zθt−1,z

− α∗
t,zθt−1,z

(
	

(
Z∑

z=1

mt,z + αt,zθt−1,z

))
+ C,

where C is function not containing the term α∗
t,z and thus will be integrated out by

taking ∂(·)
∂α∗

t,z
to α∗

t,z. Then, we let

∂ B(α∗
t,z)

∂α∗
t,z

= αt,zθt−1,z(	(mt,z + αt,zθt−1,z) − 	(αt,zθt−1,z))
α∗

t,z

− θt−1,z

(
	

(
Z∑

z=1

mt,z + αt,zθt−1,z

)
− 	

(
Z∑

z=1

αt,zθt−1,z

))
,

= 0,

which results in

α∗
t,z = αt,z(	(mt,z + αt,zθt−1,z) − 	(αt,zθt−1,z))

	
( ∑Z

z=1 mt,z + αt,zθt−1,z
) − 	

( ∑Z
z=1 αt,zθt−1,z

) ,

where 	(·) is the digamma function defined by 	(x) = ∂ log �(x)
∂x .

Following the same derivation, again supposed β∗
t,z,v is the optimal parameter in the

next fixed-point iteration, we have

β∗
t,z,v = βt,z,v(	(nt,z,v + βt,z,vφ) − 	(βt,z,vφ))

	
( ∑V

v=1 nt,z,v + βt,z,vφ
) − 	

( ∑V
v=1 βt,z,vφ

) .
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