
10

Who Will Purchase This Item Next? Reverse Next Period
Recommendation in Grocery Shopping

MING LI and MOZHDEH ARIANNEZHAD, AIRLab, University of Amsterdam, The Netherlands

ANDREW YATES and MAARTEN DE RIJKE, University of Amsterdam, The Netherlands

Recommender systems have become an essential instrument to connect people to the items that they need.

Online grocery shopping is one scenario where this is very clear. So-called user-centered recommendations

take a user as input and suggest items based on the user’s preferences. Such user-centered recommendations

have received significant attention and uptake. Instead, we focus on an item-centered recommendation task,

again in the grocery-shopping scenario. In the reverse next-period recommendation (RNPR) task, we are given

an item and have to identify potential users who would like to consume it in the next period.

We consider three sub-tasks of the overall reverse next-period recommendation (RNPR) task,

(i) Expl-RNPR, (ii) Rep-RNPR, and (iii) Mixed-RNPR, where we consider different types of target

users, i.e., (i) explore users, who are new to a given item, (ii) repeat users, who previously purchased a

given item, and (iii) both explore users and repeat users. To address the Expl-RNPR task, we propose a

habit-interest fusion model that employs frequency information to capture the repetition-exploration habits

of users and that uses pre-trained item embeddings to model the user’s interests. For the Mixed-RNPR

task, we propose a repetition-exploration user ranking algorithm to decouple the repetition and exploration

task and investigate the tradeoff between targeting different types of users for a given item. Furthermore,

to reduce the computational cost at inference, we analyze the repetition behavior from both user and item

perspectives and then introduce a repetition-based candidate filtering method for each sub-task. We conduct

experiments on two public grocery-shopping datasets. Our experimental results not only demonstrate the

difference between repetition and exploration, but also the effectiveness of the proposed methods.

CCS Concepts: • Information systems→ Recommender systems;

Additional Key Words and Phrases: Reverse next period recommendation, item-centered recommendation,

repetition-exploration

ACM Reference format:

Ming Li, Mozhdeh Ariannezhad, Andrew Yates, and Maarten de Rijke. 2023. Who Will Purchase This Item

Next? Reverse Next Period Recommendation in Grocery Shopping. ACM Trans. Recomm. Syst. 1, 2, Article 10

(June 2023), 32 pages.

https://doi.org/10.1145/3595384

This research was partially supported by Ahold Delhaize, the China Scholarship Council (grant #20190607154), and the

Hybrid Intelligence Center, a 10-year program funded by the Dutch Ministry of Education, Culture and Science through

the Netherlands Organisation for Scientific Research, https://hybrid-intelligence-centre.nl.

Authors’ addresses: M. Li and M. Ariannezhad, AIRLab, University of Amsterdam, Science Park 900, Amsterdam, The

Netherlands; emails: m.li@uva.nl, m.ariannezhad@uva.nl; A. Yates and M. de Rijke, University of Amsterdam, Science

Park 900, Amsterdam, The Netherlands; emails: a.c.yates@uva.nl, m.derijke@uva.nl.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).

2770-6699/2023/06-ART10 $15.00

https://doi.org/10.1145/3595384

ACM Transactions on Recommender Systems, Vol. 1, No. 2, Article 10. Publication date: June 2023.

https://orcid.org/0000-0001-7430-4961
https://orcid.org/0000-0002-1113-8094
https://orcid.org/0000-0002-5970-880X
https://orcid.org/0000-0002-1086-0202
https://doi.org/10.1145/3595384
https://hybrid-intelligence-centre.nl
https://doi.org/10.1145/3595384
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3595384&domain=pdf&date_stamp=2023-06-12

10:2 M. Li et al.

1 INTRODUCTION

Recommendation systems are an important instrument to connect users and items in many on-
line services, such as e-commerce [6, 23, 52], grocery shopping [42], music/movie streaming plat-
forms [7, 9], and news [27, 43]. Unlike the top-n recommendation scenario, where the assumption
is that there is no temporal information about past interactions [10, 19, 50], sequential recommen-
dation systems keep track of users’ historical interactions. This allows the recommender system to
model users’ preferences over time and recommend items for their next interactions [45]. Various
types of sequential recommendation tasks have been well investigated in recent years, such as
next-item recommendation [13, 49] and next-basket recommendation [17, 22, 31, 32, 53, 54]. What
unites these tasks is their user-centered focus: Given a user and their profile, these tasks aim to
suggest relevant items that meet the user’s preferences.

1.1 Item-centered Recommendations

In this article, we focus on a less studied item-centered task, where the recommender system is
given an item and needs to identify users who are most likely to consume it. Examples of such
item-centered tasks emerge when advertising products [37], reducing waste [51], or promoting a
healthy lifestyle [34]. For example, if a supermarket wants to sell bread that will expire soon to
reduce waste, then simply recommending the bread to all users will not only lead to high service
costs, but it will also harm users’ experience for those who do not like bread. As a result, item-
centered recommendation algorithms have to identify specific top-k users who have an interest
and may consume a given item. We define a novel “item-centered” recommendation problem in a
sequential setting, namely, reverse next-period recommendation (RNPR)1:

Given an item and historical transactions of all users, the reverse next-period recom-
mendation task is to find potential users who have an interest in the item in the next
time period.

Somewhat related to our item-centered focus, Wang et al. [46] have recently formulated
the task of selecting potential “adopters” for a free-trial item to increase the exposure of the
long-tail items. However, despite the similarity to our item-centered task, Wang et al. still focus
on user-side performance.

While some previous studies have considered item-centered recommendation problems, their
focus has typically been on improving efficiency in this setting rather than designing recommen-
dation algorithms tailored to the new item-centered setting. Two related approaches that focus
on efficiency are reverse maximum inner product search [reverse k-MIPS, 1] and reverse top-k
queries [40, 41, 56]. These approaches do not consider the temporal information and assume that
the user and item representation vectors are known or can be pre-computed in advance. As a result,
they are not able to handle the RNPR task effectively.

In this article, we are specifically interested in the grocery-shopping scenario, where historical
interactions consist of baskets (multi-sets of items), for the following reasons: (i) the demand for
item-centered recommendation is very clear in the grocery-shopping scenario, e.g., to help reduce
food waste2 or to promote healthy lifestyles3; (ii) repetition behavior and exploration behavior
both appear in the grocery-shopping scenario, which allows us to understand the imbalance be-
tween repetition and exploration in the item-centered recommendation scenario. Specifically, we

1While conventional recommendation systems concentrate on recommending items to users, the term “reverse” marks a

shift in focus by recommending users to items.
2https://www.aholddelhaize.com/sustainability/our-position-on-societal-and-environmental-topics/food-waste/.
3https://www.aholddelhaize.com/en/sustainability/healthier-choices/.

ACM Transactions on Recommender Systems, Vol. 1, No. 2, Article 10. Publication date: June 2023.

https://www.aholddelhaize.com/sustainability/our-position-on-societal-and-environmental-topics/food-waste/
https://www.aholddelhaize.com/en/sustainability/healthier-choices/

Reverse Next Period Recommendation in Grocery Shopping 10:3

regard the next n baskets after the historical interactions to be “the next time period.” We consider
three key aspects of the RNPR task in this work: (i) user-centered methods for item-centered
tasks, (ii) repetition vs. exploration behavior of users, and (iii) efficiency.

1.1.1 User-centered Methods for Item-centered Tasks. Various sequential recommendation al-
gorithms [11, 17, 53, 54] have been proposed and shown to achieve good performance in user-
centered sequential recommendation. Even though these models are user-centered, they can also
be adapted to the RNPR task, for instance, by computing scores from the user’s side and ranking
from the item’s side. An intuitive solution to adapt these models for RNPR task is that, for a given
item, the model computes a score for every candidate user that reflects the user’s preference for it
and then selects the top-k highest-scoring users.

Before we design task-specific solutions for RNPR, it is of interest to answer the following ques-
tion: What are the performance and limitations of these user-centered sequential recommendation
methods in an item-centered RNPR setting? Since we focus on the grocery-shopping scenario, we
assess and investigate the performance of several representative next-basket recommendation al-
gorithms [17, 54] on the RNPR task, and we find that the performance of state-of-the-art NBR

methods does not always generalize to the RNPR, even though they do model the temporal de-
pendencies present in sequential recommendation (Section 8.1).

1.1.2 Repetition vs. Exploration. In a user-centered sequential recommendation scenario,
namely, next-basket recommendation, a recent study [25] separates the candidate items into
repeat items for a user, that is, items that the user has interacted with before, and explore items for
a user, which are items that are new for the user. Similarly, for the RNPR task, given an item, we
can also split its candidate users into repeat users, who have previously interacted with the given
item, and explore users, who have never interacted with the given item before. We consider three
sub-tasks of the RNPR problem:

Expl-RNPR: find possible new users (i.e., explore users), who will purchase the given item in the
next period;

Rep-RNPR: find possible repeat users (i.e., repeat users), who will repurchase the given item in
the next period; and

Mixed-RNPR: find all possible users (i.e., both repeat users and explore users), who will purchase
the given item in the next period.

To address the Expl-RNPR task, we propose a habit-interest fusion (HIF) model that uses
pre-trained embeddings to model a user’s interests and employs frequency information to capture
the repetition-exploration habits of the user. To train HIF effectively, we use an item-wise pairwise
ranking loss and propose two strategies to construct the training samples: positive augmentation
and negative adjustment. To address the Rep-RNPR task, we employ a simple time-aware fre-
quency method, which only leverages users’ direct interactions with a given item. To address the
Mixed-RNPR task, we introduce a repetition-exploration user ranking (REUR) algorithm, which
decouples repetition, i.e., recommending users who have purchased the given item before, from
exploration, i.e., recommending users who have not purchased the given item, and then tries to
find the optimal combination of repeat users and explore users. Importantly, repetition-exploration
user ranking (REUR) allows us to investigate the tradeoff between recommending repeat users
and explore users. We find that recommending repeat users for a given item is much easier than
finding potential explore users for a given item (Section 8.4).

1.1.3 Efficiency. Real-world e-commerce applications usually have a large number of users and
items [1], making it computationally expensive to compute every single user’s score for a given

ACM Transactions on Recommender Systems, Vol. 1, No. 2, Article 10. Publication date: June 2023.

10:4 M. Li et al.

item to identify the top-k users. In addition, an item-centered recommender system needs to oper-
ate in an ad hoc fashion, where it is not known up front which item needs to be recommended [1].
Therefore, it is important to reduce the computational costs of RNPR. To this end, we propose
repetition-based methods to reduce the number of candidate users for a given item. Specifically,
we first analyze the statistics of users’ repetition behavior on both item and category level, from
both the item and user perspective, and then propose two repetition-rule based candidate fil-

tering methods (RRBF), which select candidate users for a given item based on users’ item level
(RRBF-item) and category level (RRBF-cat) repetition behaviors. For the Expl-RNPR task, we pro-
pose a candidate filtering model (CFM) to predict whether a user will purchase a specific category
in the next period based on the temporal category information, which can further reduce the
computational costs on top of RRBF-cat. We find that both the rule-based method (RRBF) and the
model-based method (CFM) can effectively reduce the computational costs of RNPR (Section 8.5).

1.2 Main Contributions

The main contributions of our article are as follows:

• We define and investigate the problem of reverse next-period recommendation (RNPR), in-
troducing the Expl-RNPR, Rep-RNPR, and Mixed-RNPR sub-tasks that consider different
types of users, i.e., repeat users and explore users. To the best of our knowledge, this is the
first work to study this problem.
• We investigate several sequential NBR recommendation algorithms applied to the RNPR

problem and find that their performance cannot be generalized in some cases for the Expl-
RNPR task and that they are more complex than needed for the Mixed-RNPR task.
• For the Expl-RNPR task, we propose a habit-interest fusion (HIF) model to capture users’

habits and interests w.r.t. a given item, and we propose two training sample construction
strategies for HIF.
• For the Mixed-RNPR task, we propose an REUR algorithm to decouple the repetition task

and exploration task; and we investigate the tradeoff between repetition and exploration via
the REUR algorithm.
• We analyze users’ repetition behavior on different levels from both a user and item perspec-

tive and propose several repetition-based user candidate filtering methods to reduce the
computational cost at inference time.
• We conduct experiments on two publicly available grocery-shopping datasets, i.e., Dunn-

humby and Instacart. The results demonstrate the effectiveness of the strategies we propose
in this article.

The remainder of the article is organized as follows: We discuss related work in Section 2. Section 3
is devoted to formulated the reverse next-period recommendation problem. In Section 4, we ana-
lyze users’ repeat behavior. Then, in Section 5, we introduce the HIF for addressing the RNPR task.
Methods for candidate filtering are introduced in Section 6. Our experimental setup is described
in Section 7 and our experimental results in Section 8. We conclude in Section 9.

2 RELATED WORK

2.1 User-centered Recommendation

Sequential item recommendation tasks have been investigated for many years. The purpose of
such tasks is to consider users and their preferences and to recommend the next item according
to those preferences. Recurrent neural networks (RNNs) [8, 15] and transformers [39] have
shown strong performance in modeling sequential information, and they have been widely used
to learn representations of historical behavior in session-based recommendation. GRU4Rec [14]

ACM Transactions on Recommender Systems, Vol. 1, No. 2, Article 10. Publication date: June 2023.

Reverse Next Period Recommendation in Grocery Shopping 10:5

leverages GRUs to model user sequences and then optimize a ranking-based loss for session-based
recommendation. An updated version, GRURec+ [13], has a new ranking loss and sampling strat-
egy. NARM [24] couples a GRU with an attention mechanism to make the recommendation model
focus more on recent baskets. SASRec [20] employs a self-attention-based method to capture the
temporal dynamics of sequential recommendations in an efficient way.

In addition to RNN- and transformer-based models, several deep learning techniques have been
applied to this area. Memory networks are applied by STAMP [28] to capture a user’s general in-
terests and current interests. SR-GNN [49] models a session sequence as a graph and then uses
a graph neural network [33] to capture item transactions and learn an accurate item embedding.
Tang and Wang [38] propose a CNN-based method to capture general interests and sequential pat-
terns via vertical and horizontal filtering. Yuan et al. [55] introduce a generative model to improve
the performance. Pre-trained models (such as BERT) [35] and knowledge graphs are also being
applied to user-centered recommendations [18, 48].

In grocery shopping, both the sequences of historical interactions and the output of recommen-
dations are sets (or rather, multisets) of items, so-called baskets, and the next-basket recommenda-

tion (NBR) task is a user-centered sequential recommendation task that caters to this scenario.
Over the years, many dedicated NBR methods have been proposed [25]. These include Markov

chain (MC)-based methods [32, 44], deep learning-based methods [2, 4, 16, 22, 47, 53, 54], and
frequency neighbor-based methods [11, 17]. An analysis conducted by Li et al. [25] assesses and
evaluates the NBR performance from a new repetition and exploration perspective; their compar-
isons show that recommending repeat items (items that a user has interacted with previously) is an
easier task than recommending explore items (items that a user has never interacted with before).

All of the sequential recommendation methods mentioned above focus on the user perspective,
whereas we propose the reverse next-period recommendation (RNPR) problem that focuses on
the item perspective.

2.2 Item-centered Recommendations

Item-centered recommendations focus on the item perspective. That is, they aim to recommend
suitable users for a given item that are likely to interact positively with it (i.e., purchase it in a
grocery-shopping setting, listen to it in a music recommendation setting, download and read it
in a book recommendation setting, etc.). Early proposals of item-centered recommendation date
back at least to the so-called reverse top-k query problem [40, 41, 56]. Early publications on this
problem typically consider Euclidean spaces with low-dimensional (often, around 5) user and item
vectors.

In recent years, recommender systems have benefited from the development of deep learning
techniques, which can construct high-dimensional representations and embeddings of users
and items. For example, Amagata and Hara [1] propose reverse top-k maximum inner product
search (reverse k-MIPS), which assumes that d-dimensional representations of users and items
are obtained via matrix factorization [21]. Interestingly, previous work on item-centered recom-
mendations only focuses on efficiency (i.e., on reducing the computational costs) rather than on
improving the performance on the item-centered recommendation task. Furthermore, they do not
consider temporal dependencies between historical items, which is a key aspect of the sequential
recommendation task. Recently, Wang et al. [46] have formulated a user selection problem for
free-trial items, which aims to increase item exposure and retain user-side performance.

Unlike previous work, we formulate the RNPR problem in a sequential setting. We aim to
find users who will purchase a given item and focus on item-side performance. Moreover, we do
not only focus on the efficiency aspect, but also try to improve the performance on the RNPR

task.

ACM Transactions on Recommender Systems, Vol. 1, No. 2, Article 10. Publication date: June 2023.

10:6 M. Li et al.

Table 1. Notation Used in the Article

Symbol Description

U Set of all users, i.e., U = {u1,u2, . . . ,uo }.
I Set of all items, i.e., I = {i1, i2, . . . , im }
C Set of all categories, i.e., C = {c1, c2, . . . , cq }
I c Set of all items belongs to category c , i.e., a subset of I .
Bt

u t th basket purchased by user u at time t , which is a set of items i ∈ I
Sh

u Sequence of historical baskets for user u, i.e., Sh
u = {B1

u ,B
2
u , . . . ,B

t
u }

Sn
u Sequence of future (next-period) baskets for user u, i.e., Sn

u = {Bt+1
u ,B

t+2
u , . . . ,B

t+n
u }

Ih
u Set of historical items purchased by user u
In
u Set of items that user u will purchase during next period (n baskets)

Ch
u Set of categories from which user u has purchased items before

Cn
u Set of categories from which user u will purchase items during next period (n baskets)

U
r ep
i Set of repeat users u

r ep
i who have purchased item i , i.e., i ∈ Ih

u
r ep
i

U
expl
i Set of explore users u

expl
i who have not purchased item i , i.e., i � Ih

u
expl
i

U
r ep
c Set of repeat users u

r ep
c who have purchased an item in category c , i.e., c ∈ Ch

u
r ep
c

U
expl
c Set of explore users u

expl
c who have not purchased an item in category c , i.e., c � Ch

u
expl
c

U t
i Set of the target users for item i

Û t
i Set of the candidate users for item i

Ti Set of ground-truth users u who will purchase item i in next period, i.e., i ∈ In
u

T
rep
i Set of ground-truth repeat users u

r ep,∗
i for item i , i.e., i ∈ In

u
r ep,∗
i

and i ∈ Ih

u
r ep,∗
i

T
expl
i Set of ground-truth explore users u

expl,∗
i for item i , i.e., i ∈ In

u
expl,∗
i

and i � Ih

u
r ep,∗
i

Pn
i Predicted top-k users for item i , i.e., Pn

i = [u
p
1 ,u

p
2 , . . . ,u

p

k
]

f (·) Reverse next period recommendation (RNPR) algorithm
д(·) Candidate filtering algorithm

3 PROBLEM FORMULATION

In this section, we describe two types of users, i.e., repeat users and explore users, formalize the
reverse next-period recommendation task, and associate three sub-tasks with it, i.e., Expl-RNPR,
Rep-RNPR, and Mixed-RNPR. We also introduce the candidate filtering task for reverse next-
period recommendation. The notation used in this article is shown in Table 1.

3.1 Reverse Next-period Recommendation

Assume we have a set of users and a set of items, denoted as U = {u1,u2, . . . ,uo } and I =
{i1, i2, . . . , im }, respectively. Each item belongs to a category c ∈ C = {c1, c2, . . . , cq }. Bt

u denotes

user u’s basket at timestep t , where Bt
u consists of a set of items i ∈ I . Sh

u = {B1
u ,B

2
u , . . . ,B

t
u } repre-

sents the sequence of historical interactions for user u, and Sn
u = {Bt+1

u ,B
t+2
u , . . . ,B

t+n
u } represents

the sequence of the next n interactions for user u. Then, Ih
u = {i1, i2, . . . , iz } and In

u = {i1, i2, . . . , ie }
represent the item set that user u has purchased before and will purchase in the next n baskets,
i.e., next period, respectively. Ch

u = {c1, c2, . . . , cv } represents the category set in which user u
has purchased items before, Cn

u = {c1, c2, . . . , cw } represents the category set in which user u will
purchase items in the next n baskets.

Given a specific item i , the users in U can be divided into repeat users and explore users based
on the historical interaction with the item i:

ACM Transactions on Recommender Systems, Vol. 1, No. 2, Article 10. Publication date: June 2023.

Reverse Next Period Recommendation in Grocery Shopping 10:7

Repeat users U
rep
i for item i are the users u who have purchased the item i before, that is, users

u such that i ∈ Ih
u .

Explore users U
expl
i for item i are the users u who have not purchased product i before, that is,

users u such that i � Ih
u .

Similarly, given a specific category c , the users in U can also be divided as follows:

Repeat users U
rep
c for category c are the users u who have purchased an item in category c be-

fore, that is, users u such that c ∈ Ch
u .

Explore users U
expl
c for category c are the users u who have not purchased category an item in

c before, that is, users u such that c � Ch
u .

Given a specific item i and historical interactions Sh = {Sh
1 , S

h
2 , . . . , S

h
m } of target usersu1, . . . ,um ∈

U t
i , the goal of the reverse next-period recommendation (RNPR) task is to predict the top-k users

Pn
i ⊆ U t

i , who will purchase the given item i in one of the nextn baskets. To address the RNPR task,

we seek to define a function f that takes item i and historical interactions Sh = {Sh
1 , S

h
2 , . . . , S

h
m }

of target users u1, . . . ,um as input and returns Pn
i :

Pn
i =

[
u

p
1 ,u

p
2 , . . . ,u

p

k

]
= f

(
i,
{
Sh

1 , S
h
2 , . . . , S

h
m

})
, (1)

where Pn
i is a predicted ranked list, which contains top-k users for item i . Considering the differ-

ence types of users that we have defined above, we define three sub-tasks for RNPR:

Expl-RNPR: To find the top-k explore users who are most likely to purchase the given item i ,

that is, U t
i = U

expl
i .

Rep-RNPR: To find top-k repeat users who are most likely to repurchase the given item i , that
is, U t

i = U
rep
i .

Mixed-RNPR: To find the top-k users who are most likely to purchase the given item i , that is,

the target users are simply the set of all users: U t
i = U = U

expl
i ∪U rep

i .

3.2 Candidate Filtering

Given a specific item i and its target users U t
i for the RNPR task, the goal of candidate filtering

is to select a subset of candidate users Û t
i ⊆ U t

i based on their historical interactions Sh . More
formally, we seek to define a candidate filtering function д such that

Û t
i =

{
uc

1 ,u
c
2 , . . . ,u

c
q

}
= д

(
i, Sh

1 , S
h
2 , . . . , S

h
m

)
. (2)

Given a filtered set of candidate users Û t
i for item i , we only compute item scores for users in this

filtered set of users Û t
i instead of all candidate users U t

i .

4 REPETITION ANALYSIS

People often have regular habits and display repetition behavior in grocery shopping [3, 25, 26, 42].
Li et al. [25] analyze the repetition behavior from the user side on the item level. That is, how many
of the items that the user will purchase next are repeat items that they have purchased before.
However, repetition behavior at the category level and from the item side remain unknown. In
particular, (i) at the category level, how many of the categories from which the user will purchase
an item are categories that they have previously purchased an item from? And (ii) from the item

side, among the users who will purchase the given item or from the given category, what is the
proportion of users who have already purchased the given item or from the given category in their
previous interactions?

ACM Transactions on Recommender Systems, Vol. 1, No. 2, Article 10. Publication date: June 2023.

10:8 M. Li et al.

Table 2. Repeat Ratios at the Item Level and Category Level, from the Item

Perspective and the User Perspective

Dataset Instacart Dunnhumby

Perspective Item level Category level Item level Category level

User side 0.6822 0.8791 0.4264 0.8737
Item side 0.6111 0.7751 0.4374 0.6649

To better understand users’ repetition behavior in grocery shopping, we analyze both the item-
and category-level repetition behavior from both the item side and the user side.4 Specifically, we
analyze four types of repeat ratio RepR, i.e., user-side item-level RepRitem

u , user-side category-level
RepRcat

u , item-side item-level RepRitem
i , and item-side category-level RepRcat

i , defined as follows:

RepRitem
u =

1

N

N∑
n=1

#repeat items i ∈ Ih
un

the user un will purchase

#all items the user un will purchase
(3)

RepRcat
u =

1

N

N∑
n=1

#repeat categories c ∈ Ch
un

the user un will purchase items from

#all categories the user un will purchase items from
(4)

RepRitem
i =

1

M

M∑
m=1

#repeat users u ∈ U rep
i who will purchase the given item im

#all users who will purchase the given item im
(5)

RepRcat
i =

1

Q

Q∑
q=1

#repeat users u ∈ U rep
c who will purchase items from the given category cq

#all users who will purchase items from the given category cq
, (6)

where N , M , and Q are the number of users, items, and categories, respectively. We compute
these four ratios for each of the two datasets that we will be using in this article, Instacart and
Dunnhumby (see Section 7.2). See Table 2.

From the user side (the first row in Table 2), we can observe that both the item-level repeat ratio
RepRitem

u and category-level repeat ratio RepRcat
u are high, ranging from 0.4264 to 0.8791. The results

indicate that a large proportion of items/categories the users will purchase in the next period is
made up from items/categories that the users have purchased before. The category-level repeat
ratio RepRcat

u is relatively high, which shows that the repetition behavior at the category level is
more stable than item level in grocery shopping. For example, a user might like to buy fruits every
time, but the user might alternate between different types of fruits as time passes.

From the item side, we can also see that both datasets have considerable repeat ratios, i.e.,
RepRitem

i and RepRcat
i , ranging from 0.4374 to 0.7751. Similarly, the category-level repeat ratio

RepRcat
i is also higher than the item-level repeat ratio RepRitem

i . The results indicate that a con-
siderable proportion of the users in our datasets are repeat users.

The results presented above indicate that, in grocery shopping, people have regular habits and
that repetition behavior is a strong signal that can be used to address the item-centered RNPR

problem from several angles: (i) with the habit module to model users’ category level exploration
behavior in HIF model (Section 5); (ii) with the REUR algorithm, which decouples the repetition
task and exploration task (Section 5.3); and (iii) with the repetition-rule-based candidate filtering
methods (Section 6.1) and the CFM model to model category-level repetition behavior (Section 6.2)
for reducing candidate users.

4We perform this analysis by splitting the data into historical baskets and future baskets, which is the same as the experi-

mental setting in Section 7.2.

ACM Transactions on Recommender Systems, Vol. 1, No. 2, Article 10. Publication date: June 2023.

Reverse Next Period Recommendation in Grocery Shopping 10:9

Fig. 1. Overall architecture of the HIF model.

5 REVERSE NEXT-PERIOD RECOMMENDATION

In this section, we introduce the habit-interest fusion (HIF) model and corresponding training
strategies for the Expl-RNPR task, describe a simple time-aware frequency model for the Rep-
RNPR task, and finally describe the REUR algorithm for the Mixed-RNPR task.

5.1 Habit-interest Fusion Model for Expl-RNPR

The objective of a user-centered recommendation model is to rank positive items higher than
the negative items, i.e., giving a higher prediction score to positive items, where the prediction
score for an item may not represent the user’s absolute preference on this item, as this prediction
score can be influenced by other items in the catalog and the item distribution in the dataset, e.g.,
popularity. User-centered recommendation models usually only take a user.s historical interactions
and learn the general interest of the user, but may not track the users. interest w.r.t. a specific given
item as time goes by. To achieve accurate item-centered recommendations, there are two things
that should be taken into consideration: (i) the prediction of the model should be appropriate and
meaningful for ranking users for a given item; and (ii) apart from a user’s historical interactions,
the recommendation model should also take the given item as input and be able to track user’s
interests or habits w.r.t. the given item as time goes by.

5.1.1 Model. Recall from Section 3.1 that the Expl-RNPR task is to find the top-k explore users
who are most likely to purchase a given item i . To address the Expl-RNPR task, we propose a
habit-interest fusion (HIF) model, which leverages frequency information to model category-level
repetition and exploration habits and pre-trained item representations to model user’s interests.
Figure 1 illustrates the architecture of the HIF model.

Pre-trained embedding. In the context of NLP, the skip-gram framework [29, 30] has been
proposed to learn word representations via predicting the surrounding words within the context.
Several recent publications [5, 12, 42] leverage skip-gram techniques to learn item/product
representations in an e-commerce scenario. In this article, we assume that the items within the

ACM Transactions on Recommender Systems, Vol. 1, No. 2, Article 10. Publication date: June 2023.

10:10 M. Li et al.

same basket share similar semantics and use basket-level skip-grams to derive the embeddings
of items. We regard a particular item as a target item i ∈ I and regard the other items in the
same basket as context items i ′ ∈ I i

b
. Then, the learning objective is to maximize the following

function:

L =
∑
i ∈I

∑
i′ ∈I i

b

logp (i ′ | i), (7)

where p (i ′ | i) denotes the probability of observing a context item i ′ ∈ Iv
b

given the current/target
item i . It is defined by a softmax function:

p (i ′ | i) =
exp(EmbT

i · Embi′)∑M
m=1 exp(EmbT

i · Embi′m)
, (8)

where Embi and Embi′ are vector representations of the current item i and the context item i ′,
respectively. M represents the number of items in the item catalog. After pre-training on historical
data, we can get a vector representation (a.k.a. embedding) of each item.

Interest module. Suppose that a user u has a sequence of historical baskets Sh = {B1,B2, . . . ,Bt }.
We first get pre-trained item embeddings Embi for each item i within each basket Bt . Note that
baskets may have different sizes, so we aggregate item embeddings within the same basket by a
pooling strategy (max pooling or average pooling) to generate the basket representation Embt

b at
each timestamp t . Given the target item i we want to recommend, we compute the cosine similarity
Simt

u,i between its embedding Embi and basket embedding Embt
b at each timestamp and then get

the similarity vector Simu,i , which reflects user’s interests in the given item i across different
timestamps. That is:

Embt
b = Pooling

(
Embi t

1
, Embi t

2
, . . . , Embi t

n

)
(9)

Simt
u,i = cos

(
Embi , Embt

b

)
=

Embi · Embt
b

|Embi | |Embt
b |

(10)

Simu,i =
[
Sim1

u,i , Sim2
u,i , . . . , Simt

u,i

]
. (11)

To model users’ dynamic interests, we introduce two types of time-aware weight embeddings,
i.e., (i) a category-specific time-aware weight embedding TW c

e , which can only be trained by the
samples of the corresponding category c , and (ii) a global time-aware weight embedding TW

д
e ,

which is shared across categories and can be trained by all training samples.5 For a given item

i and user u ∈ U
expl
i , we compute the dot products of the similarity vector Simu,i and two time-

aware weight embeddings, i.e., TW c
e and TW

д
e , to get time-aware interests features, i.e., SimFc

u,i

and SimF
д
u,i . Finally, we concat SimFc

u,i and SimF
д
u,i with a trainable category embedding Embinte

c

to get a hybrid representation, which will be fed into a two-layer fully connected network to get
the final interests score Scoreinte

u,i , that is:

SimFc
u,i = TW c

e · Simu,i (12)

SimF
д
u,i = TW

д
e · Simu,i (13)

Scoreinte
u,i = FFN

(
SimFc

u,i ⊕ SimF
д
u,i ⊕ Embinte

c

)
. (14)

5Note that the time-aware weight embeddings throughout the article will be first initialized using a uniform distribution

and then updated during the training process.

ACM Transactions on Recommender Systems, Vol. 1, No. 2, Article 10. Publication date: June 2023.

Reverse Next Period Recommendation in Grocery Shopping 10:11

Habit module. In the Expl-RNPR task, we aim to find possible explore users for a given item.

However, there are no direct interactions between the given item i and explore users U
expl
i , so

we cannot directly model explore users’ habits w.r.t. the item i . In the grocery-shopping scenario,
every item belongs to a category, and a category can contain many items. We notice that if an

item i will be purchased by the user u ∈ U expl
i , then it indicates that the user u will purchase and

explore the items in category ci in the next period. Therefore, we aim to model users’ repetition
and exploration habits w.r.t. the target category ci of the given item i .

The users’ repetition habits within a category can be dynamic across time. Besides, the purchase
frequency within a category can also indicate demands of the user. Specifically, to capture the
user’s repetition habits, we create a category-level repetition frequency vector RepVec for category
ci ∈ C for the user u by considering both temporal information and frequency information. That
is,

RepVecu,c i =

[√
|I c i ∩ B1 |,

√
|I c i ∩ B2 |, . . . ,

√
|I c i ∩ Bt |

]
, (15)

where I c i
is the item set within category ci ; Bt is a set of items (basket) that user u purchased

at timestamp t . Note that the square root operation is applied to address the problem of varying
sizes of baskets in recommendation systems. By taking the square root, the impact of baskets that
are too large is reduced, leading to more equitable and balanced frequency information. Then, we
derive time-aware category repetition feature RepFc

u,c i and global repetition feature RepF
д

u,c i as

follows:

RepFc
u,c i = TW c

rep · RepVecu,c i (16)

RepF
д

u,c i = TW
д
rep · RepVecu,c i , (17)

where TW c
rep and TW

д
rep are a category time-aware weight embedding and a global time-aware

weight embedding, respectively, for modeling repetition behavior.
Note that the user might be loyal to a specific item [42] and uninterested in exploring new

items within the same category, e.g., someone might only purchase a specific brand of milk. To
model a user’s exploration habits within a category, we also create an exploration frequency vector
ExplVecu,c i considering the temporal orders, that is:

ExplVecu,c i =

[√
|I c i ∩ B1

expl
|,
√
|I c i ∩ B2

expl
|, . . . ,

√
|I c i ∩ Bt

expl
|
]
, (18)

where Bt
expl

is a set of explore items (new items) that the user u purchased at timestamp t .

Similarly, we compute the category exploration feature ExplFc
u,c i and global exploration feature

ExplF
д

u,c i as follows:

ExplFc
u,c i = TW c

expl · ExplVecu,c i (19)

ExplF
д

u,c i = TW
д

expl
· ExplVecu,c i , (20)

where TW c
expl

and TW
д

expl
are the category time-aware weight embedding and the global time-

aware weight embedding, respectively, for modeling exploration behavior. Finally, we concatenate
repetition features, i.e., RepFc

u,c i and RepF
д

u,c i , exploration features, i.e., ExplFc
u,c i and ExplF

д

u,c i , and

a trainable category-specific embedding Embhab
c to get a feature vector, which will be fed into a

two-layer fully connected network to get the habit score Scorehab
u,i . That is,

Scorehab
u,i = FFN

(
RepFc

u,c i ⊕ RepF
д

u,c i ⊕ ExplFc
u,c i ⊕ ExplF

д

u,c i ⊕ Embhab
c

)
. (21)

ACM Transactions on Recommender Systems, Vol. 1, No. 2, Article 10. Publication date: June 2023.

10:12 M. Li et al.

Fusion. We compute the fusion score by:

Score
fusion
u,i = Sigmoid

(
Scorehab

u,i

)
· Scoreinte

u,i . (22)

5.1.2 Training. In a conventional user-centered scenario, a recommendation model is optimized
based on a user-wise loss, which is computed based on all items for each user. Since we focus on
item-centered recommendations to rank users for the given item, we propose an item-wise ranking
loss to train our model. Specifically, positive users and negative users are sampled for each item,
and then the training objective is to minimize the following loss function:

Li = −
1

N

N∑
k=1

log

(
1

1 + e
−(Scorek

pos,i−Scorek
neg,i)

)
, (23)

where Scorepos,i and Scoreneg,i represent the predicted fusion scores for positive users and negative
users, respectively. By minimizing the proposed item-wise ranking loss, the model will maximize
the difference in predicted preference (fusion) scores between the positive and negative users, such
that positive users are ranked higher in the predicted user ranking list. Even though the definition
of item-wise ranking loss is straightforward, we identify two major issues w.r.t. the training process
of the Expl-RNPR model using item-wise ranking loss.

First, as illustrated in Figure 2(a), a typical positive sample for Expl-RNPR is an explore user who
only purchased the given item i in the last period of the historical sequence. However, as shown
in Table 3, items have a small number of such positive samples (i.e., new users) if we only consider
the last period of the historical sequence. Therefore, we need to augment the positive samples, i.e.,
include more users who explore the target item for the first time. According to an intuitive reading
of the Expl-RNPR task, we should not select a repeat user who has already purchased the given
item as a positive training sample for the given item, since Expl-RNPR is targeting explore users.
However, repeat users of the target item should have a sub-sequence of interactions, i.e., a basket
sequence before their first purchase, that could be regarded as a positive sample for Expl-RNPR

training (shown in Figure 2(a)).
Second, a typical negative sample for Expl-RNPR is an explore user who did not purchase the

given item i in the last period sequence. However, as illustrated in Figure 2(b), if a user u is a new
user of a given item i , i.e., i ∈ In

u , the user has not purchased this item in previous interactions,

i.e., i � Ih
u , and this means that the user should also be regarded as a negative sample for the item

i during the training process. In this case, when we use a leave-one/few-out splitting strategy to
construct a historical (training) dataset and a future (test) dataset, the positive samples (i.e., the
ground-truth) in the test set will be the negative sample in the training set, even though they may
share a long overlap between two input sequences. To avoid the negative impact of this case, we
propose a negative sample adjustment strategy, which eliminates the potential overlap between
positive and negative sequences by truncating a sub-sequence from the original negative samples.
Note that we perform the truncation action on all negative samples, since we do not know which
one is the positive sample in the future (test) dataset.

5.2 Time-aware Frequency Model for Rep-RNPR

The task of Rep-RNPR is to help a given item find repeat users. Different from explore users, repeat

users have previously had direct interactions with the item that we want to recommend. Therefore,
we employ a simple time-aware frequency model, which only uses users’ direct interactions with
the given item instead of using item-item correlations and complex representations. Formally,

Scoreu,i =

m∑
j=1

Fu,i, j · βT−j , (24)

ACM Transactions on Recommender Systems, Vol. 1, No. 2, Article 10. Publication date: June 2023.

Reverse Next Period Recommendation in Grocery Shopping 10:13

Fig. 2. Training samples construction strategies.

Table 3. The Number of Training Samples for Expl-RNPR

Dataset Avg. #negative
samples per item

Avg. #positive
samples per item

Avg. #positive samples per
item after positive augmentation

Instacart 1,307.9 5.8 31.9
Dunnhumby 667.9 6.0 73.6

where Fu,i, j denotes the user’s u purchase frequency of item i at timestamp j, β denotes the time-
decay factor, which emphasizes the impact of recent interactions. We find the optimal β based on
the historical data.

5.3 The REUR Algorithm for Mixed-RNPR

Different from the Expl-RNPR task in Section 5.1 and the Rep-RNPR task in Section 5.2, the Mixed-
RNPR task considers both repeat users and explore users for the items that are to be recommended.
Theoretically, a model for Expl-RNPR can also be applied to Mixed-RNPR without excluding
repeat users in the final prediction stage. A recent analysis [25] shows that the repetition and

ACM Transactions on Recommender Systems, Vol. 1, No. 2, Article 10. Publication date: June 2023.

10:14 M. Li et al.

ALGORITHM 1: Repetition-exploration user ranking algorithm

Data: User set U , item set I , basket sequences S , user list size k , combination/repeat ratio α
Result: Predicted top-k users Pn

i for item i .

1 Get repetition model Mrep by finding optimal time-decay factor β on the dataset;

2 Get exploration model Mexpl via training the HIF model on the dataset until converge;

3 for each given item i do

4 Get repeat users U
rep
i and explore users U

expl
i ;

5 Rank repeat users u ∈ U rep
i via Mrep (Su , i);

6 Rank explore users u ∈ U expl
i via Mexpl (Su , i);

7 Decide number of repeat users, i.e., m = k · α , and explore users, i.e., n = k −m;

8 Construct the top-k users Pn
i using top-m repeat users and top-n explore users;

9 end

exploration tasks in the (user-centered) NBR problem have different levels of difficulty, where the
repetition task, i.e., recommending repeat items to a user, is a much easier task. In an item-centered
recommendation scenario, we mainly use item-to-item relations to infer explore users’ interests for
the target item, since explore users do not have any previous interactions with it. Yet, we can address
repeat users prediction via the users’ direct interactions with the target item.

Considering the above differences between the repetition and exploration tasks in Mixed-RNPR,
we propose a repetition-exploration user ranking (REUR) algorithm to decouple the two tasks
and investigate the tradeoff between repetition and exploration in an item-centered setting. Specif-
ically, as is shown in Algorithm 1, we use separate models for the repetition and exploration tasks.6

Note that the models designed in Section 5.1 and Section 5.2 can be used for ranking explore users

and ranking repeat users, respectively. For a given item, we rank repeat users and explore users

according to the scores derived from the repetition model M rep and exploration model Mexpl , re-
spectively. Then, REUR generates the final ranked list of users Pn

i by combining the above two
ranked lists. We define a combination (repeat) ratio α , which controls the proportions of repeat

users and explore users. Assume that we want to recommend a given item to k users. Then, REUR
first selects the top-m highest-score repeat users and then fills any remaining slots with the top-n
highest-scoring explore users, wherem = k · α and n = k −m.

As we will see, one simple way to achieve good performance on the Mixed-RNPR task is to
find a global optimal combination ratio α for all items. We notice that different items might have
different repurchase tendencies, i.e., the repurchase tendency of a pan is likely to be smaller than
that of the milk that is cooked in it, which might influence the optimal combination ratio. The
repurchase tendency is defined by:

RTi =
#users who repurchase item i

#users who bought item i before
. (25)

We also cluster items according to their repurchase tendency RTi ∈ [0, 0.2), [0.2, 0.4), [0.4, 0.6),
[0.6, 0.8), [0.8, 1.0], and try to find the optimal combination ratio α for each cluster. We sweep the
combination ratio α and select the optimal α based on the performance of the validation set.

Apart from achieving good performance on the Mixed-RNPR task, another important task is to
investigate the tradeoff between repetition and exploration to make sure that we gain an in-depth
understanding of the potential imbalances in the RNPR task. With the REUR algorithm, we can
also easily investigate the tradeoff by setting different combination ratios (see Section 8.4).

6For a given item, the repetition task is to find repeat users, whereas the exploration task is to find new users.

ACM Transactions on Recommender Systems, Vol. 1, No. 2, Article 10. Publication date: June 2023.

Reverse Next Period Recommendation in Grocery Shopping 10:15

6 CANDIDATE FILTERING

Given a specific item i , an intuitive solution to an item-centered recommendation task is to com-
pute scores for every user in the target user set U t

i . However, this is usually computationally ex-
pensive. The goal of candidate filtering is to select a group of users as candidates, which is a subset

of target users, i.e., Ûi ∈ U t
i . After candidate filtering, we can reduce the computational costs by

only considering users within the candidate set.

6.1 Repetition-rule-based Candidate Filtering

According to the repetition analysis in Section 4, users have regular habits in grocery shopping
and category-level repetition behavior seems more stable and prominent than item-level repetition
behavior. Next, we first propose two repetition rule-based candidate filtering methods, i.e., RRBF-
item and RRBF-cat. Formally,

RRBF-item: For a given item i , we only select the repeat users U
rep
i to form up the candidate

set, that is, Ûi = U
rep
i . This method is designed for Mixed-RNPR, which helps to reduce

Mixed-RNPR to Rep-RNPR.7

RRBF-cat: For a given item i , we get its corresponding category ci and only select the explore

users U
expl
i who have previously purchased items from ci to form the candidate set, that is,

Ûi = U
rep
c ∩U expl

i . Note that RRBF-cat is used in the Expl-RNPR task.

6.2 Model-based Candidate Filtering

Repetition-rule based filtering (RRBF) does not consider the temporal information and is static.
To further reduce the number of candidates on top of RRBF-cat, we propose a candidate filtering

model (CFM) to predict whether a user likes to repurchase the category or not, then select the
users who would like to purchase the category of the given item. The architecture of the candidate
filtering model is shown in Figure 3. Note that the category catalog is relatively stable and small
compared to the item catalog, and the items within the same category can share the same set of
candidate users.

Candidate filtering model (CFM) predicts users’ repurchase behavior by modeling their dynamic
demands within the target category. For the sake of simplicity, we do not consider dependen-
cies among different categories. Specifically, we use the category-level repetition frequency vector
RepVec of category c ∈ C (defined in Equation (15)), which contains both temporal information
and frequency information.

Different categories might have different characteristics w.r.t. repurchase behavior. For exam-
ple, daily necessities like fruit might be purchased during every visit to the grocery store, whereas
users are less likely to repurchase household items like dish soap right after their previous purchase
of dish soap. Therefore, we introduce a category-specific time-aware weight embedding TW c

cf
to

model temporal dependencies. In addition, we introduce a global time-aware weight embedding
TW

д

cf
that can be shared and trained by all categories, so different categories can benefit from the

training samples of each other. Given a useu and a category c , we first derive the category-specific
repetition feature RepFc

u,c and the general repetition feature RepF
д
u,c , then we concat RepFc

u,c and

RepF
д
u,c with a category embedding Embc

cf , and feed it to a two layer fully connected neural net-

work, that is:

RepFc
u,c = TW c

cf · RepVecu,c (26)

7RRBF-item cannot be used for Expl-RNPR, since it only selects repeat users as candidates.

ACM Transactions on Recommender Systems, Vol. 1, No. 2, Article 10. Publication date: June 2023.

10:16 M. Li et al.

Fig. 3. The architecture of candidate filtering model (left) and the overall pipeline (right) of Expl-RNPR task.

RepF
д
u,c = TW

д

cf
· RepVecu,c (27)

pu,c = Sigmoid
(
FFN

(
RepFc

u,c ⊕ RepF
д
u,c ⊕ Embc

cf

))
, (28)

where pu,c is the probability that user u will purchase items within the category c; ⊕ denotes the
concatenation operation.

Once we obtain the repurchase probabilities pu,c of the target users, we can set a filtering thresh-
old λ to filter candidates. For a given item i ∈ I c , we only select users whose pu,c is above the
filtering threshold λ as candidates. The overall pipeline of Expl-RNPR is shown in Figure 3.

6.2.1 Training. In the training set, every user has a ground-truth label for each category, i.e.,
whether the user has repurchased from the category or not. Conversely, for a specific category,
we can split users into positive users and negative users. However, positive users and negative
users within a category might be imbalanced. Besides, the positive users are unevenly distributed
across all categories, e.g., a popular category is likely to have more positive users than a less
popular category.

To overcome the problems of imbalanced data listed above, we sample the same number of
training instances (users) U c for each category in every epoch instead of using all users, and we
balance the number of positive users and negative users within each category. Then, we use binary
cross-entropy loss to train our model:

Lc = −
1

|U c |
∑

u ∈U c

yu,c log(pu,c) + (1 − yu,c) log(1 − pu,c), (29)

whereyu,c and pu,c denote the ground-truth of category c and the probability of c being purchased
by user u in the next period.

7 EXPERIMENTAL SETUP

In this section, we describe our experimental settings, including our research questions, datasets,
constructed baselines, parameter settings, and evaluation metrics.

ACM Transactions on Recommender Systems, Vol. 1, No. 2, Article 10. Publication date: June 2023.

Reverse Next Period Recommendation in Grocery Shopping 10:17

Table 4. Dataset Statistics after Preprocessing

Dataset Users Categories Target
items

Avg. #items
per basket

Avg. #baskets
per user

Avg. #item
per user

Avg. #target users
per target item

Instacart 30,134 134 1,369 10.19 49.47 142.38 442.47
Dunnhumby 1,991 307 866 11.77 77.44 528.53 39.27

7.1 Research Questions

To better understand the RNPR problem and investigate the effectiveness of the proposed methods,
we intend to answer the following questions through our experiments:

(RQ1) How do user-centered state-of-the-art NBR methods perform on the RNPR task?
(RQ2) What is the effectiveness of our newly proposed methods? Do they outperform existing

baselines?
(RQ3) What is the effectiveness of our training strategies for the HIF model in Expl-RNPR?
(RQ4) What are the differences and tradeoffs between the repetition and exploration tasks in

Mixed-RNPR?
(RQ5) Do the proposed candidate filtering strategies help to reduce computational costs at in-

ference time? How does the candidate filtering process influence the performance of our
models?

7.2 Datasets

To ensure the reproducibility of our study, we conduct our experiments on two publicly available
real-world datasets:

Dunnhumby: covers two years of household-level transactions at a retailer from a group of 2,500
households. All products bought by the same customer in the same transaction are treated
as a basket.8

Instacart: contains over three million grocery orders of Instacart users. We treat all items pur-
chased in the same order as a basket.9

In each dataset, we sample active users with at least 30 baskets in the dataset and truncate a basket
sequence to 100 baskets. We follow a strategy that is similar to the widely used leave-one-out
approach to split the dataset. Specifically, for each user, the last 10 baskets are regarded as future
baskets, and all remaining baskets are regarded as historical baskets. The statistics of the processed
datasets are summarized in Table 4. All training is conducted using the historical data. We select
target items according to their frequency in the ground-truth (a.k.a. future data) to ensure there are
new users for this item in the next period, otherwise, we can only add zero to the evaluation metrics.
Note that using the explore users’ frequency in the ground-truth instead of the repeat users’ not
only allows us to address the Expl-RNPR task, but also to make a fair comparison between the
Expl-RNPR task and the Mixed-RNPR task. Considering the number of users in each dataset, the
minimum number of future new users’ for an item is set to 50 for the Instacart dataset, and 10 for
the Dunnhumby dataset. Since we use category information in our model, splitting across items
has a risk of information leakage. So, we split the items into validation and test dataset according
to their corresponding category [11], 50% categories for validation, and 50% categories for testing.
We repeat the split 5 times and report the average performance w.r.t. metrics over the 5 splits.

8https://www.dunnhumby.com/source-files/.
9https://www.kaggle.com/c/instacart-market-basket-analysis/data.

ACM Transactions on Recommender Systems, Vol. 1, No. 2, Article 10. Publication date: June 2023.

https://www.dunnhumby.com/source-files/
https://www.kaggle.com/c/instacart-market-basket-analysis/data

10:18 M. Li et al.

7.3 Methods Used for Comparison

We construct three simple methods, i.e., Random, I-TopFreq, and C-TopFreq, two pre-training-
based methods, i.e., Basket2Vec and User2Vec, and select three SOTA NBR methods according
to References [25] and [2], i.e., DNNTSP [54], TIFUKNN [17], and ReCANet [2], as baseline meth-
ods for comparison:

7.3.1 Simple Methods. We select three simple baseline models:

• Random selects the users for the given item at random.
• I-TopFreq ranks users according to their historical purchase frequency of the given input

item and selects users with the top-k highest purchase frequency. Since this method can
only select repeat users, it will not be used in the Expl-RNPR task.10

• C-TopFreq ranks users according to their historical purchase frequency of different items
within the given item’s category and selects users who prefer to purchase a lot of different
items within the input item’s category. This method is designed for the Expl-RNPR task,
and it will not be used in the Rep-RNPR task.

7.3.2 Pre-training-based Methods. We select two pre-training-based methods:

• Basket2Vec [42] pre-trains the item embeddings at the basket level, uses the average embed-
ding of the items in historical baskets to represent the user, computes similarity between the
user and the given item, and finally selects the top-k users who have the highest similarity
with the given item.
• User2Vec [42] pre-trains the item embeddings on the user level, uses the average embedding

of the items in historical baskets to represent the user, computes similarity between the user
and the given item, and finally selects the top-k users who have the highest similarity with
the given item.

7.3.3 Next-basket Recommendation Methods. We select three next-basket recommendation
(NBR) methods as baselines:

• DNNTSP [54] is a state-of-the-art NBR method, which encodes the item-item relation via
a GNN and models temporal dependencies via self-attention techniques. After training
DNNTSP, we first derive the target users’ purchase probability of the items and then select
the top-k users with the highest purchase probability of the given item.11

• TIFUKNN [17] is a state-of-the-art NBR method, which constructs personal item fre-

quency information (PIF) for each user and leverages a KNN-based method based on
PIF. We first get target users’ scores of the item, then select the top-k users with the highest
purchase score of the given item.
• ReCANet [2] is a state-of-the-art NBR method, which builds a neural-based temporal model

to focus on recommending repeat items to the user in the NBR task. After training ReCANet,

10Repeat users play a vital role in Rep-RNPR and Mixed-RNPR, and item frequency serves as a reliable signal for identifying

them for a particular item. We evaluated a similar category frequency-based method, but found that it did not outperform I-

TopFreq w.r.t. Rep-RNPR and Mixed-RNPR, since using category frequency could result in noise and dilute the significance

of item frequency information.
11When training DNNTSP, we use the binary cross-entropy loss from the original paper [54] rather than devising a new

user-centered loss compatible with their approach. There are several reasons for this. First, we want to explore the perfor-

mance of user-centered model in the item-centered setting. Second, our proposed item-wise loss will only sample some of

the users for training, which would be unfair for the DNNTSP model, since the HIF model can use all available users in

its pre-training stage. Third, DNNTSP will learn and update item embeddings during the training process, which makes it

hard to pre-compute user features to speed up training process and item-wise loss can only use one item’s loss information

at each backpropagation step, so training DNNTSP model via the proposed item-wise loss is extremely slow.

ACM Transactions on Recommender Systems, Vol. 1, No. 2, Article 10. Publication date: June 2023.

Reverse Next Period Recommendation in Grocery Shopping 10:19

we first derive the target users’ purchase probabilities of items and then select the top-k users
with the highest purchase probability of the given item.

7.4 Evaluation Metrics

To assess the performance of RNPR methods, we extend three widely used user-centered metrics
to the item-centered setting and arrive at the following metrics: Recall@K , nDCG@K , and IHN@K .

Recall measures the ability to find all users who will purchase the given item in the next period:

Recall@K =
1

N

N∑
j=1

|Pi j
∩Ti j
|

|Ti j
| , (30)

where Pi j
are the top-K predicted users for item i j , and Ti j

denotes ground-truth users for item i j .
nDCG is a ranking metric that also considers the order of the users:

nDCG@K =
1

N

N∑
j=1

∑K
k=1 pk/ log2 (k + 1)

∑min(K, |Tij |)
k=1

1/ log2 (k + 1)
, (31)

where pk equals 1 if Pk
i j
∈ Ti j

, otherwise pk = 0. Pk
i j

denotes the kth user in the predicted user list

Pi j
for item i j .

IHN represents the average number of correct users the model can find for each item, that is:

IHN@K =
1

N

N∑
j=1

Pi j
∩Ti j

 . (32)

Since the two datasets that we use, Instacart and Dunnhumby, have different numbers of users,
when we evaluate the Expl-RNPR and Mixed-RNPR performance, the value ofK for the Instacart
dataset is set to 100 and 200, the value of K for the Dunnhumby dataset is set to 50 and 100. Since
the number of repeat user candidates is limited, the K is set to 20 and 50 for Rep-RNPR task.

7.5 Configuration

For all experiments, we set the next period size to 5 and 10 baskets. For Basket2Vec and User2Vec
the embedding size is set to 100 for all datasets. For TIFUKNN, the number of neighbors is se-
lected from [100, 200, 300, 400, 500], the fusion weight and time-decay factor are selected from
[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9], and the window size is set to the next period size, i.e., 5 or
10.

DNNTSP and ReCANet are used with the same parameter settings as in References [54] and [2],
respectively. For HIF, we use the same pre-trained item embeddings as Basket2Vec to make
a fair comparison with it. For both the HIF model and CFM model, the hidden layer of the
fully connected network is set to 32, the maximum user sequence is set to 30. For REUR, the
time-decay factor β is chosen from [0.5, 0.6, 0.7, 0.8, 0.9], we sweep the combination ratio α in
[0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0] to investigate the tradeoff and find the optimal α for
Mixed-RNPR. We use Adam optimizer with 0.001 as learning rate and 256 as batch size to train
our models.

We use PyTorch to implement our model and train it using a TITAN X GPU with 12 G memory.
We repeat our experiments five times and report the average results. The code for the HIF model
and CFM model is based on PyTorch,12 and we share the code and parameters in a public GitHub
repository.13

12https://pytorch.org/.
13https://github.com/liming-7/RNPR-Rec.

ACM Transactions on Recommender Systems, Vol. 1, No. 2, Article 10. Publication date: June 2023.

https://pytorch.org/
https://github.com/liming-7/RNPR-Rec

10:20 M. Li et al.

Table 5. Exlp-RNPR Results of HIF Compared against the Baselines

D
at

as
et

P
er

io
d Baselines Ours

Metric Random C-TopFreq Basket
2Vec

User
2Vec

DNNTSP TIFUKNN HIF-max HIF-mean
(�%)

In
st

ac
ar

t

5

Recall@100 0.0036 0.0068 0.0211 0.0119 0.0035 0.0148 0.0161 0.0251†(19.0)

nDCG@100 0.0055 0.0079 0.0276 0.0146 0.0055 0.0232 0.0213 0.0346†(25.4)

IHN@100 0.4909 0.6932 2.3655 1.2823 0.4962 2.0027 1.9109 2.9315†(23.9)

Recall@200 0.0067 0.0135 0.0388 0.0237 0.0070 0.0268 0.0307 0.0444†(14.4)

nDCG@200 0.0067 0.0114 0.0359 0.0207 0.0071 0.0275 0.0281 0.0427†(15.9)

IHN@200 0.9708 1.4125 4.4617 2.5971 1.0163 3.6394 3.6685 5.2537†(17.8)

10

Recall@100 0.0033 0.0096 0.0206 0.0115 0.0039 0.0147 0.0158 0.0237†(15.0)

nDCG@100 0.0092 0.0134 0.0453 0.0237 0.0104 0.0389 0.0412 0.0566†(24.9)

IHN@100 0.9142 1.1718 4.4471 2.4161 1.0094 3.7418 3.9003 5.3562†(20.4)

Recall@200 0.0072 0.0182 0.0376 0.0225 0.0071 0.0266 0.0295 0.0423†(12.5)

nDCG@200 0.0107 0.0173 0.0490 0.0274 0.0109 0.0396 0.0431 0.0582†(18.7)

IHN@200 1.9561 2.2505 8.3443 4.8073 1.9528 6.8362 7.2453 9.6829†(16.0)

D
u

n
n

h
u

m
b
y

5

Recall@50 0.0292 0.0420 0.0623 0.0286 0.0284 0.0647 0.0756 0.0841†(30.0)

nDCG@50 0.0193 0.0270 0.0410 0.0174 0.0185 0.0442 0.0530 0.0600†(35.7)

IHN@50 0.4690 0.5893 1.0022 0.4506 0.4548 1.0305 1.1617 1.3001†(26.2)

Recall@100 0.0569 0.0786 0.1134 0.0637 0.0560 0.1146 0.1323 0.1514†(32.1)

nDCG@100 0.0304 0.0416 0.0620 0.0320 0.0298 0.0648 0.0763 0.0877†(26.1)

IHN@100 0.9154 1.1224 1.8280 1.0329 0.9055 1.8261 2.0620 2.3643†(22.7)

10

Recall@50 0.0290 0.0423 0.0584 0.0305 0.0278 0.0642 0.0753 0.0848†(32.1)

nDCG@50 0.0247 0.0351 0.0493 0.0244 0.0233 0.0578 0.0657 0.0773†(33.7)

IHN@50 0.8952 1.3482 1.7667 0.9280 0.8506 1.9304 2.1937 2.5056†(29.8)

Recall@100 0.0562 0.0791 0.1128 0.0643 0.0566 0.1168 0.1319 0.1490†(27.6)

nDCG@100 0.0374 0.0569 0.0761 0.0410 0.0369 0.0829 0.0912 0.1082†(30.5)

IHN@100 1.7369 2.681 3.4384 1.9602 1.7557 3.4876 3.9814 4.4191†(26.7)

Boldface and underline indicate the best performing model and the best performing baseline, respectively. Significant

improvements of HIF over the best performing baseline results are marked with † (paired t-test, p < 0.05). �% shows the

improvements of HIF against the best performing baseline.

8 EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we report on the experimental results to answer the research questions listed in
Section 7.1.

8.1 RQ1: Performance Comparison of Existing “User-centered” Methods

Tables 5, 6, and 7 show the performance of all approaches for the Expl-RNPR task, Rep-RNPR

task and the Mixed-RNPR task, respectively. We have several findings based on the experimental
results. As expected, the performance of Random is always among the lowest in terms of all metrics
for all tasks, as it just randomly selects users. C-TopFreq outperforms Random on the Expl-RNPR

task, since it models users’ interests w.r.t. the category of the target item. I-TopFreq achieves com-
petitive or even better performance compared to other approaches on both the Rep-RNPR and
Mixed-RNPR task, which confirms that item repetition frequency information is important and
only considering repeat users can achieve quite good performance on the Mixed-RNPR task.

Among the two pre-training based methods, Basket2Vec always achieves better performance
than User2Vec in all cases, which indicates that basket-level pre-training can get better item

ACM Transactions on Recommender Systems, Vol. 1, No. 2, Article 10. Publication date: June 2023.

Reverse Next Period Recommendation in Grocery Shopping 10:21

Table 6. Rep-RNPR Results of the Simple Time-aware Frequency Model (SimpleTF) and the Baselines

D
at

as
et

P
er

io
d

Metric Random I-TopFreq Basket
2Vec

User
2Vec

DNNTSP TIFUKNN ReCANet SimpleTF
(�%)

In
st

ac
ar

t

5

Recall@20 0.0262 0.0975 0.0535 0.0408 0.1020 0.1050 0.1092 0.1129†(3.4)

nDCG@20 0.1949 0.6928 0.4528 0.3589 0.7545 0.7598 0.7692 0.7972†(3.6)

IHN@20 3.9027 13.3096 8.5759 6.8230 14.5037 14.6265 14.8567 15.3445†(3.2)

Recall@50 0.0661 0.1987 0.1165 0.0919 0.2071 0.2124 0.2191 0.2264†(3.3)

nDCG@50 0.1983 0.6319 0.4125 0.3296 0.6845 0.6886 0.7024 0.7249†(3.2)

IHN@50 9.7476 29.2964 19.1395 15.3787 31.8664 32.0061 32.5761 33.6926†(3.4)

10

Recall@20 0.0265 0.0806 0.0486 0.0383 0.0808 0.0842 0.0893 0.0922†(3.3)

nDCG@20 0.2714 0.7795 0.5421 0.4441 0.8205 0.8292 0.8458 0.8617 (1.8)

IHN@20 5.4067 15.1624 10.4104 8.5298 15.9418 16.1461 16.4628 16.9079†(2.7)

Recall@50 0.0656 0.1715 0.1083 0.0883 0.1718 0.1778 0.1838 0.1897†(3.2)

nDCG@50 0.2707 0.7230 0.5005 0.4136 0.7566 0.7644 0.7841 0.7998 (2.0)

IHN@50 13.4393 34.4646 23.7418 19.7032 36.1090 36.4683 37.2163 38.2577†(2.8)

D
u

n
n

h
u

m
b
y

5

Recall@20 0.0845 0.2674 0.1374 0.1027 0.2205 0.2183 0.2670 0.2821†(5.4)

nDCG@20 0.1072 0.4047 0.1973 0.1394 0.3457 0.3252 0.4051 0.4283†(5.7)

IHN@20 1.9041 6.4474 3.3213 2.3951 5.4764 5.2513 6.4471 6.8007†(5.5)

Recall@50 0.2081 0.4516 0.2944 0.2383 0.3983 0.4116 0.4500 0.4734†(4.8)

nDCG@50 0.1580 0.4481 0.2534 0.1944 0.3896 0.3825 0.4479 0.4711†(5.1)

IHN@50 4.7051 11.5646 7.1853 5.7145 10.1565 10.1866 11.4604 12.0355†(4.1)

10

Recall@20 0.1076 0.2854 0.1618 0.1219 0.2379 0.2436 0.2867 0.3049†(6.3)

nDCG@20 0.1575 0.4767 0.2544 0.1785 0.4017 0.3875 0.4783 0.5077†(6.1)

IHN@20 2.9360 7.8469 4.4430 3.2380 6.6009 6.5305 7.8477 8.3416†(6.2)

Recall@50 0.2647 0.4860 0.3564 0.2932 0.4430 0.4587 0.4856 0.5096†(4.8)

nDCG@50 0.2206 0.5097 0.3197 0.2463 0.4463 0.4442 0.5092 0.5379†(5.5)

IHN@50 7.1424 14.3655 9.7911 7.8676 12.7583 12.9982 14.3637 14.9963†(4.3)

Boldface and underline indicate the best and the second best performing model, respectively. Significant improvements

of SimpleTF over the best performing baseline results are marked with † (paired t-test, p < 0.05). �% shows the

improvements of SimpleTF against the best performing baseline.

representations than user-level pre-training. We suspect that this is because users’ interests are
dynamic and items purchased at the same time have more similarity. Basket2Vec is the best
performing approach on the Expl-RNPR task, but Basket2Vec is inferior to I-TopFreq on both
the Rep-RNPR and Mixed-RNPR task, which suggests that the item-item correlation is less
important than the item repetition frequency information in these two tasks.

Surprisingly, the state-of-the-art DNNTSP method performs poorly on the Expl-RNPR task;
its performance is in the same range as that of Random. DNNTSP is supposed to capture item-
item correlations effectively, as it leverages advanced techniques, i.e., a GNN and self-attention
mechanism. The ReCANet method achieves quite good performance on the Rep-RNPR task and
the Mixed-RNPR task, which further emphasizes the importance of modeling repeat users in the
Mixed-RNPR task. However, ReCANet does not outperform the SimpleTF method w.r.t. these two
item-centered tasks. A plausible reason is that the user-wise binary cross entropy loss tries to dis-
tinguish items for a given user, which is sub-optimal for “item-centered” recommendations, where
the goal is to distinguish users for a given item. Compared to DNNTSP, the relatively simple TI-
FUKNN is more robust on the Expl-RNPR task and even achieves the best performance (among
the baselines) on the Dunnhumby dataset and the second best performance on the Instacart dataset.

ACM Transactions on Recommender Systems, Vol. 1, No. 2, Article 10. Publication date: June 2023.

10:22 M. Li et al.

Table 7. Mixed-RNPR Results of the REUR Algorithm and the Baselines

D
at

as
et

P
er

io
d

Metric Random I-TopFreq C-TopFreq Basket
2Vec

User
2Vec

DNNTSP ReCANet TIFUKNN REUR
(�%)

In
st

ac
ar

t

5

Recall@100 0.0034 0.1794 0.0170 0.0542 0.0243 0.1904 0.1933 0.1941 0.2037†(4.9)
nDCG@100 0.0158 0.5490 0.0650 0.2332 0.1223 0.5933 0.5983 0.5999 0.6270†(5.9)
IHN@100 1.5835 50.8376 6.2624 20.7245 10.9495 54.7954 55.2954 55.4311 57.9105†(4.5)

Recall@200 0.0066 0.2764 0.0309 0.0871 0.0420 0.2920 0.2965 0.2982 0.3074†(3.1)
nDCG@200 0.0162 0.4929 0.0630 0.2030 0.1098 0.5288 0.5316 0.5360 0.5568†(3.9)
IHN@200 3.1285 83.8501 11.5067 34.6381 19.2747 89.7975 90.1346 91.0450 94.3099†(3.6)

10

Recall@100 0.0033 0.1409 0.0163 0.0448 0.0208 0.1446 0.1463 0.1477 0.1560†(5.6)
nDCG@100 0.0238 0.6511 0.0956 0.2829 0.1500 0.6794 0.6809 0.6871 0.7206†(4.9)
IHN@100 2.3681 61.5801 9.2279 25.6278 13.6983 64.0579 64.2261 64.8748 68.1811†(5.1)

Recall@200 0.0065 0.2262 0.0294 0.0736 0.0369 0.2328 0.2356 0.2380 0.2471†(3.8)
nDCG@200 0.0239 0.5685 0.0889 0.2434 0.1341 0.5913 0.5946 0.5999 0.6252†(4.2)
IHN@200 4.7845 104.8940 16.9723 43.7287 24.6122 108.8507 109.6201 110.6156 115.1574†(4.1)

D
u

n
n

h
u

m
b
y

5

Recall@50 0.0254 0.2190 0.0810 0.0726 0.0302 0.1937 0.2187 0.2054 0.2333†(6.5)
nDCG@50 0.0250 0.2612 0.0774 0.0772 0.0310 0.2271 0.2613 0.2234 0.2821†(8.0)
IHN@50 0.9308 7.5279 2.6521 2.7403 1.2303 6.7633 7.5267 6.8094 8.0548†(7.0)

Recall@100 0.0508 0.3025 0.1436 0.1259 0.0633 0.2597 0.3022 0.2996 0.3248†(7.4)
nDCG@100 0.0357 0.2910 0.1051 0.0990 0.0456 0.2505 0.2907 0.2615 0.3150†(8.2)
IHN@100 1.8140 10.8553 4.7957 4.7572 2.5121 9.7879 10.8014 10.4737 11.7091†(7.9)

10

Recall@50 0.0256 0.2037 0.0758 0.0677 0.0292 0.1784 0.2042 0.1921 0.2171†(6.6)
nDCG@50 0.0356 0.3162 0.1018 0.1015 0.0427 0.2746 0.3166 0.2723 0.3402†(7.5)
IHN@50 1.6067 11.7383 4.3820 4.3947 2.0023 10.4649 11.7391 10.6945 12.5645†(7.0)

Recall@100 0.0496 0.2876 0.1369 0.1206 0.0620 0.2420 0.2870 0.2868 0.3089†(7.4)
nDCG@100 0.0451 0.3280 0.1262 0.1191 0.0571 0.2802 0.3274 0.2977 0.3536†(7.8)
IHN@100 3.1421 17.3898 8.0764 7.8467 4.1466 15.4814 17.3895 16.8825 18.7001†(7.5)

Boldface and underline indicate the best and the second best performing model, respectively. Significant

improvements of REUR over the best performing baseline results are marked with †(paired t-test, p < 0.05). �%

shows the improvements of REUR against the best performing baseline.

For the Rep-RNPR task and Mixed-RNPR task, TIFUKNN achieves good performance on the In-
stacart dataset, as it adopts personal item frequency information. However, it performs worse than
the simple I-TopFreq on Dunnhumby; we suspect that the underlying reason is that the KNN mod-
ule has a negative impact on finding repeat users in the Rep-RNPR task and Mixed-RNPR task.

To sum up, the performance of the state-of-the-art NBR methods does not always generalize to
the Expl-RNPR task, and they are overly complex for the Rep-RNPR task and the Mixed-RNPR

task.

8.2 RQ2: Performance of Our Proposed Methods

For the Expl-RNPR task, the performance of the HIF model is shown in Table 5 and Figure 4(a).
We can make two main observations based on the results. First, HIF with average pooling strategy
(HIF-mean) significantly outperforms all existing approaches on both datasets across all metrics,
with improvements ranging from 14.4% to 35.7%, since HIF models users’ interests via item-item
correlations and models habits via frequency information at the same time.14 Second, the perfor-
mance of HIF is different when using different basket pooling strategies, and the average pooling
strategy has a clear advantage over the max pooling strategy on both datasets. This result indicates

14All occurrences of HIF, unless otherwise stated, refer to HIF-mean, i.e., the HIF model with average pooling strategy.

ACM Transactions on Recommender Systems, Vol. 1, No. 2, Article 10. Publication date: June 2023.

Reverse Next Period Recommendation in Grocery Shopping 10:23

Fig. 4. The Recall@K performance of various methods with K ranging from 20 to 500.

that the average pooling retains more useful information and leads to better basket representations
in the HIF model.

For the Rep-RNPR task, the performance of SimpleTF is shown in Table 6.15 Surprisingly,
the SimpleTF method outperforms many complex neural/representation-based methods, with im-
provements ranging from 1.8% to 6.3%. This result indicates that not all user-centered techniques,
e.g., learning item representations and leveraging neighbor information, are helpful in the item-
centered recommendation setting.

For the Mixed-RNPR task, the performance of REUR is shown in Table 7 and Figure 4(b). REUR
achieves the best performance on both datasets through the combination of repeat users ranking
(derived from a simple time-aware frequency model) and explore users ranking (derived from the
HIF model). The improvements range from 3.1% to 8.2% over the best baseline methods. Besides
achieving the best performance, an important advantage of the REUR algorithm is that we can
explicitly investigate the tradeoff between repetition and exploration, which will be discussed in
Section 8.4. Note that REUR decouples repetition and exploration, which allows it to benefit
from the candidate filtering part by only considering repeat users, which we will discuss later in
Section 8.5.3.

To sum up, the HIF model, SimpleTF model, and REUR algorithm are the state-of-the-art meth-
ods on the Expl-RNPR, Rep-RNPR, and Mixed-RNPR tasks, respectively.

8.3 RQ3: Ablation Study of HIF

To analyze the effectiveness of our proposed training strategies and components, we conduct an
ablation study on the two datasets. Specifically, we compare the performance of the full HIF model
with the following four settings:

15It is not meaningful to evaluate the Recall@K for large values of K in the Rep-RNPR task, as the number of repeat user

candidates is limited.

ACM Transactions on Recommender Systems, Vol. 1, No. 2, Article 10. Publication date: June 2023.

10:24 M. Li et al.

Table 8. Expl-RNPR Ablation Study Results

Dataset Metric HIF w/o hab
(�%)

w/o aug-pos
(�%)

w/o adj-neg
(�%)

w/o aug-pos
adj-neg(�%)

In
st

ac
ar

t

Recall@100 0.0251 0.0237‡(5.9) 0.0233‡(7.2) 0.0198‡(21.1) 0.0206‡(17.9)

nDCG@100 0.0346 0.0311‡(10.1) 0.0310‡(10.4) 0.0282‡(18.5) 0.0289‡(16.5)

IHN@100 2.9315 2.6538‡(9.5) 2.6365‡(10.1) 2.3985‡(18.2) 2.4994‡(14.7)

Recall@200 0.0444 0.0422‡(5.0) 0.0426‡(4.1) 0.0363‡(18.2) 0.0390‡(12.2)

nDCG@200 0.0427 0.0394‡(7.7) 0.0401‡(6.1) 0.0350‡(18.0) 0.0369‡(13.6)

IHN@200 5.2537 4.8525‡(7.6) 4.9452‡(5.9) 4.4325‡(15.6) 4.7102‡(10.3)

D
u

n
n

h
u

m
b
y

Recall@50 0.0841 0.0718‡(14.6) 0.0833 (1.0) 0.0791‡(5.9) 0.0808‡(3.9)

nDCG@50 0.0600 0.0480‡(20.0) 0.0589 (1.8) 0.0565‡(5.8) 0.0583‡(2.8)

IHN@50 1.3001 1.1472‡(11.8) 1.2984 (0.1) 1.2388‡(4.7) 1.2919 (0.6)

Recall@100 0.1514 0.1281‡(15.4) 0.1456‡(3.8) 0.1376‡(9.1) 0.1436‡(5.1)

nDCG@100 0.0877 0.0710‡(19.0) 0.0845‡(3.6) 0.0806‡(8.1) 0.0832‡(5.1)

IHN@100 2.3643 2.0351‡(13.9) 2.2834‡(3.4) 2.1659‡(8.4) 2.2777‡(3.6)

Boldface indicates the best performing model, i.e., HIF with average pooling. Significant deteriorations compared

to HIF are marked with ‡ (paired t-test, p < 0.05). �% shows the drop in performance compared to HIF.

(1) No habits module (HIF w/o hab).
(2) No positive augmentation strategy (HIF w/o aug-pos).
(3) No negative adjustment strategy (HIF w/o adj-neg).
(4) No postive augmentation strategy and no negative adjustment strategy (HIF w/o aug-pos

and adj-neg).

The results of the ablation study are shown in Table 8. The results show that both the habits captur-
ing module and two strategies are beneficial for the HIF, because removing any of them will lead
to a decrease in performance. Without habits module, the performance of HIF decreases, ranging
from 5% to 20%, which indicates that the frequency information is valuable and the designed habits
module is able to leverage this information to model users’ shopping habits. Furthermore, HIF w/o
hab still outperforms the Basket2Vec baseline (in Table 5), which indicates that the interest module
of HIF can capture users’ dynamic interests by modeling the dynamic user preferences.

When we employ the positive augmentation strategy, repeat users will be sampled and truncated
for training. Without positive augmentation, the performance of HIF drops significantly on the
Instacart dataset w.r.t. all metrics, ranging from 4.1% to 10.4%, while the drop is not significant
in terms of several metrics, i.e., Recall@50, nDCG@50, and IHN@50, on the Dunnhumby dataset.
A plausible reason for this result is that the Instacart dataset has more users to be ranked, which
means that the Expl-RNPR task is more difficult on Instacart dataset, so HIF can benefit more
from the augmented postive samples on the Instacart dataset but the original training samples are
enough for finding the top-50 users on the Dunnhumby dataset. Training HIF without negative
adjustment strategy results in 4.7% to 21.1% drops in performance. This indicates that avoiding the
overlap between training input and prediction input is important and effective in training the HIF
model for the Expl-RNPR task. Interestingly, training HIF without both sampling strategies (HIF
w/o aug-pos and adj-neg) achieves better performance than training without negative adjustment
strategy. The positive augmentation strategy can help us generate more positive samples, which
means that the HIF model will also leverage more negative samples during training, and this
will increase the probability of using the historical data of the ground-truth users. As a result,
negative adjustment is especially important when using positive augmentation strategy, and HIF
w/o adj-neg is inferior to other variants of HIF.

ACM Transactions on Recommender Systems, Vol. 1, No. 2, Article 10. Publication date: June 2023.

Reverse Next Period Recommendation in Grocery Shopping 10:25

Fig. 5. Repetition-exploration tradeoff analysis.

8.4 RQ4: Tradeoff Analysis for Mixed-RNPR

To investigate the tradeoff between repetition and exploration in the Mixed-RNPR task, we use
the proposed REUR algorithm and sweep its combination (repeat) ratio α . Figure 5(a) shows the
repetition and exploration tradeoff on different datasets when using the same combination ratio α .
As the proportion of repeat users increases in the recommendation, the performance of REUR on the
Mixed-RNPR task increases. REUR achieves its best performance when the combination ratio is
1.0, which indicates that REUR has more confidence in the last user in the repeat user ranking than
in the first user in the explore user ranking. This suggests that the repetition task is much easier
than the exploration task in the “item-centered” recommendation that we consider in this article.

As mentioned before, the repurchase tendency RT of an item can potentially influence the trade-
off. To further understand the repetition and exploration tradeoff, we also investigate this tradeoff
on different groups items. To ensure there are enough items within the group, we explore three
groups of items, i.e., RT ∈ [0, 0.2), [0.2, 0.4), [0.4, 0.6) on the Dunnhumby dataset and four groups
RT ∈ [0, 0.2), [0.2, 0.4), [0.4, 0.6), [0.6, 0.8) on the Instacart dataset. The results are shown in
Figure 5(b). Interestingly, we observe the same trend in all groups of items, the performance in-
creases when the repeat ratio α increases, even in the group with a very low repurchase tendency,
i.e., RT ∈ [0, 0.2). This result once again confirms the large gap in difficulty between the repetition
task and the exploration task.

8.5 RQ5: Candidate Filtering

In this subsection, we first evaluate the effectiveness of candidate filtering and then discuss the
influence on the Expl-RNPR task and insights on the Mixed-RNPR task.

8.5.1 Effectiveness of Candidate Filtering. To reduce the computational costs at inference time,
the candidate filtering process selects a subset of users from the whole user set, which might

ACM Transactions on Recommender Systems, Vol. 1, No. 2, Article 10. Publication date: June 2023.

10:26 M. Li et al.

Fig. 6. The relation of actual computation cost and proportion of users that HIF model computes.

Table 9. The Proportion of Ground-truth Users (PoG) and Computational

Costs (CP) of RRBF

Methods RRBF-cat for Expl-RNPR RRBF-item for Mixed-RNPR

Dataset PoG Computation (CP) PoG Computation (CP)

Instacart 77.70% 60.08% 61.11% 4.5%
Dunnhumby 87.54% 76.12% 43.74% 11.3%

remove some of the ground-truth users. A good candidate filtering strategy should reduce compu-
tational costs, i.e., exclude users who have a low purchase probability w.r.t. the given item, while
keeping a large proportion of the ground-truth users PoG, i.e., retain as many ground-truth users
as possible. Therefore, we analyze the proportion of ground-truth users PoG among the candidate
users that are left after filtering to evaluate their performance, that is:

PoG =
1

|I t |
∑
i ∈I t

|Ti ∩ Û t
i |

|Ti |
,

where I t is a set of items we want to recommend,Ti denotes the ground-truth users, Û t
i denotes the

set of candidate users for item i after candidate filtering. Note that the computationCP represents
a percentage of the original computational costs, that is:

CP =

∑
i ∈I t |U t

i |∑
i ∈I t |Û t

i |
.

Intuitively, we expect the computational costs to increase linearly with the number of item-user
scores the model needs to calculate. To validate this, we conduct experiments to investigate the
correlation between actual inference times and the defined computational costs CP . As shown in
Figure 6, a linear correlation between the actual inference times andCP is generally observed, and
we believe that the minor deviations are a result of the varying lengths of users’ historical bas-
kets.16 Table 9 shows the experimental results for the two repetition rule-based candidate filtering
methods introduced in Section 6, i.e., RRBF-cat and RRBF-item. Theoretically, the PoG of a random
candidate filtering strategy, i.e., randomly selecting a subset of target users as candidates, should
be proportional to its computational cost CP . Clearly, both RRBF-cat and RRBF-item are effective,
since they have a higher left proportion of ground-truth users PoG in the candidate user set than
using a random strategy. RRBF-cat reaches 77.7% and 87.54% w.r.t. Expl-RNPR PoG on Instacart
and Dunnhumby, respectively. This result indicates that a large proportion of ground-truth explore

16The computation cost is normalized by the total computation cost by using all users as candidates for each item.

ACM Transactions on Recommender Systems, Vol. 1, No. 2, Article 10. Publication date: June 2023.

Reverse Next Period Recommendation in Grocery Shopping 10:27

Fig. 7. Proportion of ground-truth users with the CFM filtering threshold changing from 0 to 1. RRBF-cat

represents the random strategy within the RRBF-cat candidates.

Fig. 8. Computational costs (left) and actual computational cost (right) with the CFM filtering threshold

changing from 0 to 1.

users, who will explore the given item in the next period, should have already purchased some other
items within the given item’s category. RRBF-item retains a high proportion of ground-truth users
PoG w.r.t. Mixed-RNPR on both datasets, while it only has 4.5% and 11.3% of the original compu-
tational costs on the Instacart and Dunnhumby datasets, respectively.

In practice, if the prediction results of the CFM model cannot be reused in other tasks in
the platform, then the computational costs of the CFM model should also be factored into the
item-centered recommendation computational costs. We also conduct experiments to compare
the actual inference time of the HIF model and CFM model. We find that the average inference
times for the CFM model to compute one user-category score is 0.15ms on the Instacart dataset
and 0.21ms on the Dunnhumby dataset, whereas the average inference time for the HIF model
to compute one item-user score is 3.3ms on the Dunnhumby dataset and 2.1ms on the Instacart
dataset. Considering that the number of categories is limited and the CFM model is much lighter
than the HIF model, we also evaluated the actual computational costs compared to the original
computational costs without candidate filtering and find that the total inference time of the
CFM model constitutes only 0.31% and 0.78% of the original inference time on the Instacart and
Dunnhumby datasets, respectively. Figures 7 and 8 show the results of model-based candidate

filtering method (CFM) on the Expl-RNPR task. As the filtering threshold increases, both
the computation CP and the left proportion of ground-truth users PoG decreases, since more
ground-truth users are removed from the candidate set with a higher filtering threshold. We
can also observe that CFM has a higher Expl-RNPR PoG than using a random strategy within
the candidate set of RRBF-cat in both datasets. This result indicates that CFM can further filter
candidates effectively on top of RRBF-cat by considering temporal information.

8.5.2 Influence on the Expl-RNPR Task. To understand the influence of candidate filtering on
the performance of HIF for the Expl-RNPR task, we analyze the sensitivity of the performance of

ACM Transactions on Recommender Systems, Vol. 1, No. 2, Article 10. Publication date: June 2023.

10:28 M. Li et al.

Fig. 9. The Recall performance of HIF with the CFM filtering threshold changing from 0 to 1. The dashed

line is the performance of using all target users.

HIF w.r.t. the candidate filtering threshold of CFM. The experimental results are shown in Figure 9.
Note that the performance of HIF when using RRBF-cat is equal to the performance when using
CFM with the filtering threshold 0, since they have the same set of candidates. We can observe that
HIF with RRBF-cat can achieve same or even higher performance than computing on all target
users, while HIF with RRBF-cat only needs 60.08% and 76.12% of the original computational costs
on Instacart and Dunnhumby, respectively.

Increasing the CFM filtering threshold leads to a decrease in computational costs (see Figure 9),
however, the performance of HIF remains at the same level as RRBF-cat until 0.5 and then decreases
gradually, as there are fewer candidate users left for each item. This result suggests that the CFM
model can help HIF to remove a lot of users who have low probability of purchasing a given item by
considering category-level repurchase behavior. With 0.5 as candidate filtering threshold, the CFM
model is able to further reduce by 50% (Instacart) and 60.5% (Dunnhumby) the computational costs
on top of RRBF-cat, while achieving the same level of performance as using RRBF-cat candidates
or, indeed, using all users.

8.5.3 Insights on the Mixed-RNPR Task. The tradeoff analysis in Section 8.4 suggests that the
repetition task is much easier than the exploration task and that repeat users dominate the final
recommendation set in REUR. Table 9 shows that only considering the repeat users, i.e., RRBF-
item, can substantially reduce the computational costs. Besides, the repetition task can be solved
by a simple time-aware frequency model, however, the exploration task requires a model to infer
users’ interests in the given item by using item-item correlations and complex representations.
Considering the above facts, it is reasonable to ask: Can we ignore explore users and only consider
repeat users in the Mixed-RNPR task? The answer might be different, depending on different
assumptions: (i) If there is no special demand for addressing the need of explore users and only
focusing on optimizing the accuracy aspect, then we believe that reducing the Mixed-RNPR task
to the Rep-RNPR task, which simply recommends users who have purchased the given item be-
fore is an efficient and effective solution.17 We believe this is an important point to make, even
though this makes the Mixed-RNPR a less challenging algorithmic problem. (ii) An important
goal of a recommender system is to connect items with new customers, if beyond accuracy met-
rics need to be considered, e.g., the long-term recommendation effect, the explore users should
not be ignored and we should consider the balance between repeat users and explore users in the
recommendation.18

17For instance, some bread might be close to its “best by date,” and the supermarket may want to sell the bread without

caring whom they sell it to.
18For instance, the supermarket wants to promote a certain product, so the item-centered recommender model not only

needs to find repeat users, which is important for the short-term profit, but also find potential new users, who might

account for long-term profit.

ACM Transactions on Recommender Systems, Vol. 1, No. 2, Article 10. Publication date: June 2023.

Reverse Next Period Recommendation in Grocery Shopping 10:29

9 CONCLUSION

In this article, we have studied an item-centered sequential recommendation problem, i.e., reverse
next-period recommendation (RNPR), which aims to help a given item find top-k users in the
next period. We have introduced three-subtasks for RNPR, i.e., Expl-RNPR, Rep-RNPR, and
Mixed-RNPR, considering the differences in types of target users. For the Expl-RNPR task, we
propose a habit-interest fusion model (HIF), which leverages frequency information to model
users’ habits and pre-trained embeddings to model users’ interests. For training the HIF model,
we propose two strategies to construct training samples, i.e., a positive augmentation strategy
and a negative adjustment strategy, to construct training samples. For the Rep-RNPR task, we
employ a simple time-aware frequency model, which only uses the users’ direct interactions
with the given item. For the Mixed-RNPR task, we propose a repetition-exploration ranking

user (REUR) algorithm to decouple the repetition task and exploration task and generate
the final ranking by combining two ranked lists. In addition, we examined how to reduce the
computational costs of our approaches without losing performance. Specifically, we proposed two
repetition-rule based filtering methods, i.e., RRBF-cat and RRBF-item, and a model-based candi-

date filtering method (CFM) to further reduce the computational costs of the HIF model during
inference.

Main findings and implications. We have performed extensive experiments on two publicly avail-
able grocery-shopping datasets and the experimental results demonstrate the effectiveness of our
proposed methods and strategies. The repetition analysis shows that people have stable repetition
behavior at the category level in grocery shopping, which is a strong indicator that can be used
to find potential top-k users for a given item. Besides, our experiments further show that filtering
out some target users using candidate filtering methods, i.e., RRBF and CFM, can effectively reduce
computational costs without sacrificing performance.

Apart from proposing solutions, we have also investigated the performance of state-of-the-art
user-centered NBR models on the RNPR problem and found that their performance cannot always
be generalized to the RNPR task, even though they are good at helping users find top-k items.
This result suggests that we should not directly use user-centered recommendation (NBR) methods
for the item-centered recommendation (RNPR) task, and that task-specific algorithms should be
designed to cater for the RNPR task.

With the proposed REUR algorithm, we also investigated the tradeoff between repetition and
exploration in Mixed-RNPR. We found that the repetition task, i.e., finding repeat users, is much
easier than the exploration task, i.e., finding explore users, in item-centered sequential recommen-
dation, and only recommending repeat users is an effective and efficient approach for the Mixed-
RNPR task. This imbalance in difficulty can also be found in the user-centered NBR task [25]. A
broader implication of this finding is that it is necessary to consider and investigate the differences
and tradeoffs between repetition and exploration in various recommendation scenarios.

Limitations. Despite the effectiveness of the proposed methods, one limitation of the HIF model
is that it cannot be applied to find users for cold-start items currently. Even though we avoid
using item-specific trainable parameters in the HIF model, it is still difficult to derive meaningful
representations for cold-start items with limited interactions. One possible solution for cold-start
items in the RNPR task is to employ a cold-start item representations learning method (see, e.g.,
Reference [36]).

Future work. Work on the RNPR task can be extended in a number of ways. For simplicity,
we have employed a simple time-aware frequency model for the repetition task in this article.
We intend to consider item characteristics and correlations to further improve the repetition

ACM Transactions on Recommender Systems, Vol. 1, No. 2, Article 10. Publication date: June 2023.

10:30 M. Li et al.

performance. Second, we have used a conventional skip-gram algorithm to obtain pre-trained
item embeddings in this article. Instead, we want to try and use recent graph neural networks
to learn better representations for RNPR as a potential future work. Third, different items might
have different numbers of potential users in the next period, so it is interesting to address the
RNPR task with a dynamic number of users to recommend. Fourth, we have concentrated on
maximizing accuracy, specifically in identifying the correct users for a given item, without
considering the potential impact of recommending either repeat users or explore users. It would
be interesting to examine the differences in the causal effect between repetition and exploration
and to contemplate a way to achieve a balance between them. Finally, we have only focused on
the RNPR problem itself in this article; it is of interest to investigate additional dimensions, such
as its potential influence on user satisfaction or fairness among items.

REPRODUCIBILITY

To facilitate the reproducibility of the reported results, this work only uses publicly available data,
and our source code is publicly available at https://github.com/liming-7/RNPR-Rec.

ACKNOWLEDGMENTS

We would like to thank our reviewers and associate editor for their constructive feedback. All
content represents the opinion of the authors, which is not necessarily shared or endorsed by
their respective employers and/or sponsors.

REFERENCES

[1] Daichi Amagata and Takahiro Hara. 2021. Reverse maximum inner product search: How to efficiently find users who

would like to buy my item? In Proceedings of the 15th ACM Conference on Recommender Systems. 273–281.

[2] Mozhdeh Ariannezhad, Sami Jullien, Ming Li, Min Fang, Sebastian Schelter, and Maarten de Rijke. 2022. ReCANet: A

repeat consumption-aware neural network for next basket recommendation in grocery shopping. In Proceedings of

the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’22). ACM,

1240–1250.

[3] Mozhdeh Ariannezhad, Ming Li, Sebastian Schelter, and Maarten de Rijke. 2023. A personalized neighborhood-based

model for within-basket recommendation in grocery shopping. In Proceedings of the 16th International Conference on

Web Search and Data Mining (WSDM’23). ACM, 87–95.

[4] Ting Bai, Jian-Yun Nie, Wayne Xin Zhao, Yutao Zhu, Pan Du, and Ji-Rong Wen. 2018. An attribute-aware neural

attentive model for next basket recommendation. In Proceedings of the 41st International ACM SIGIR Conference on

Research and Development in Information Retrieval. 1201–1204.

[5] Oren Barkan and Noam Koenigstein. 2016. Item2vec: Neural item embedding for collaborative filtering. In Proceedings

of the IEEE 26th International Workshop on Machine Learning for Signal Processing (MLSP). 1–6.

[6] Rahul Bhagat, Srevatsan Muralidharan, Alex Lobzhanidze, and Shankar Vishwanath. 2018. Buy it again: Modeling

repeat purchase recommendations. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining. 62–70.

[7] Oscar Celma. 2010. Music recommendation. In Music Recommendation and Discovery. Springer, 43–85.

[8] Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. 2014. On the properties of neural

machine translation: Encoder-decoder approaches. arXiv preprint arXiv:1409.1259 (2014).

[9] James Davidson, Benjamin Liebald, Junning Liu, Palash Nandy, Taylor Van Vleet, Ullas Gargi, Sujoy Gupta, Yu He,

Mike Lambert, Blake Livingston, and Dasarathi Sampath. 2010. The YouTube video recommendation system. In Pro-

ceedings of the 4th ACM Conference on Recommender Systems. 293–296.

[10] Mukund Deshpande and George Karypis. 2004. Item-based top-n recommendation algorithms. ACM Trans. Inf. Syst.

22, 1 (2004), 143–177.

[11] Guglielmo Faggioli, Mirko Polato, and Fabio Aiolli. 2020. Recency aware collaborative filtering for next basket recom-

mendation. In Proceedings of the 28th ACM Conference on User Modeling, Adaptation and Personalization. 80–87.

[12] Mihajlo Grbovic, Vladan Radosavljevic, Nemanja Djuric, Narayan Bhamidipati, Jaikit Savla, Varun Bhagwan, and

Doug Sharp. 2015. E-commerce in your inbox: Product recommendations at scale. In Proceedings of the 21st ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining. 1809–1818.

ACM Transactions on Recommender Systems, Vol. 1, No. 2, Article 10. Publication date: June 2023.

https://github.com/liming-7/RNPR-Rec

Reverse Next Period Recommendation in Grocery Shopping 10:31

[13] Balázs Hidasi and Alexandros Karatzoglou. 2018. Recurrent neural networks with top-k gains for session-based rec-

ommendations. In Proceedings of the 27th ACM International Conference on Information and Knowledge Management.

843–852.

[14] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk. 2015. Session-based recommendations

with recurrent neural networks. arXiv preprint arXiv:1511.06939 (2015).

[15] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural Computat. 9 (1997), 1735–1780.

[16] Haoji Hu and Xiangnan He. 2019. Sets2Sets: Learning from sequential sets with neural Networks. In Proceedings of

the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 1491–1499.

[17] Haoji Hu, Xiangnan He, Jinyang Gao, and Zhi-Li Zhang. 2020. Modeling personalized item frequency information for

next-basket recommendation. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Develop-

ment in Information Retrieval. 1071–1080.

[18] Xiaowen Huang, Quan Fang, Shengsheng Qian, Jitao Sang, Yan Li, and Changsheng Xu. 2019. Explainable interaction-

driven user modeling over knowledge graph for sequential recommendation. In Proceedings of the 27th ACM Interna-

tional Conference on Multimedia. 548–556.

[19] Santosh Kabbur, Xia Ning, and George Karypis. 2013. FISM: Factored item similarity models for top-n recommender

systems. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.

659–667.

[20] Wang-Cheng Kang and Julian McAuley. 2018. Self-attentive sequential recommendation. In Proceedings of the IEEE

International Conference on Data Mining (ICDM’18). 197–206.

[21] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization techniques for recommender systems. Com-

puter 42, 8 (2009), 30–37.

[22] Duc-Trong Le, Hady W. Lauw, and Yuan Fang. 2019. Correlation-sensitive next-basket recommendation. In Proceedings

of the 28th International Joint Conference on Artificial Intelligence. 2808–2814.

[23] Lukas Lerche, Dietmar Jannach, and Malte Ludewig. 2016. On the value of reminders within e-commerce recommen-

dations. In Proceedings of the Conference on User Modeling Adaptation and Personalization. 27–35.

[24] Jing Li, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Tao Lian, and Jun Ma. 2017. Neural attentive session-based rec-

ommendation. In Proceedings of the ACM Conference on Information and Knowledge Management. 1419–1428.

[25] Ming Li, Sami Jullien, Mozhdeh Ariannezhad, and Maarten de Rijke. 2023. A next basket recommendation reality

check. ACM Trans. Inf. Syst. 41, 4 (2023).

[26] Ming Li, Ali Vardasbi, Andrew Yates, and Maarten de Rijke. 2023. Repetition and Exploration in sequential recom-

mendation: A reproducibility study. In Proceedings of the 46th International ACM SIGIR Conference on Research and

Development in Information Retrieval. ACM.

[27] Jiahui Liu, Peter Dolan, and Elin Rønby Pedersen. 2010. Personalized news recommendation based on click behavior.

In Proceedings of the 15th International Conference on Intelligent User Interfaces. 31–40.

[28] Qiao Liu, Yifu Zeng, Refuoe Mokhosi, and Haibin Zhang. 2018. STAMP: Short-term attention/memory priority model

for session-based recommendation. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining. 1831–1839.

[29] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient estimation of word representations in vector

space. arXiv preprint arXiv:1301.3781 (2013).

[30] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Corrado, and Jeff Dean. 2013. Distributed representations of words

and phrases and their compositionality. In Proceedings of the 43rd Conference on Advances in Neural Information Pro-

cessing Systems.

[31] Yuqi Qin, Pengfei Wang, and Chenliang Li. 2021. The world is binary: Contrastive learning for denoising next bas-

ket recommendation. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in

Information Retrieval. 859–868.

[32] Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. 2010. Factorizing personalized Markov chains for

next-basket recommendation. In Proceedings of the 19th International Conference on World Wide Web. 811–820.

[33] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. 2008. The graph neural

network model. IEEE Trans. Neural Netw. 20, 1 (2008), 61–80.

[34] V. Subramaniyaswamy, Gunasekaran Manogaran, R. Logesh, V. Vijayakumar, Naveen Chilamkurti, D. Malathi, and

N. Senthilselvan. 2019. An ontology-driven personalized food recommendation in IoT-based healthcare system. J.

Supercomput. 75, 6 (2019), 3184–3216.

[35] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang. 2019. BERT4Rec: Sequential recom-

mendation with bidirectional encoder representations from transformer. In Proceedings of the 28th ACM International

Conference on Information and Knowledge Management. 1441–1450.

[36] Jacopo Tagliabue, Bingqing Yu, and Federico Bianchi. 2020. The embeddings that came in from the cold: Improv-

ing vectors for new and rare products with content-based inference. In Proceedings of the 14th ACM Conference on

Recommender Systems. 577–578.

ACM Transactions on Recommender Systems, Vol. 1, No. 2, Article 10. Publication date: June 2023.

10:32 M. Li et al.

[37] Pei Jie Tan, Arry Tanusondjaja, Armando Corsi, Larry Lockshin, Christopher Villani, and Svetlana Bogomolova. 2022.

Audit and benchmarking of supermarket catalog composition in five countries. Int. J. Advert. 42, 3 (2022), 1–28.

[38] Jiaxi Tang and Ke Wang. 2018. Personalized top-n sequential recommendation via convolutional sequence embedding.

In Proceedings of the 11th ACM International Conference on Web Search and Data Mining. 565–573.

[39] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia

Polosukhin. 2017. Attention is all you need. Adv. Neural Inf. Process. Syst. 30 (2017).

[40] Akrivi Vlachou, Christos Doulkeridis, Yannis Kotidis, and Kjetil Nørvåg. 2010. Reverse top-k queries. In Proceedings

of the IEEE 26th International Conference on Data Engineering (ICDE’10). 365–376.

[41] Akrivi Vlachou, Christos Doulkeridis, Yannis Kotidis, and Kjetil Norvag. 2011. Monochromatic and bichromatic re-

verse top-k queries. IEEE Trans. Knowl. Data Eng. 23, 8 (2011), 1215–1229.

[42] Mengting Wan, Di Wang, Jie Liu, Paul Bennett, and Julian McAuley. 2018. Representing and recommending shopping

baskets with complementarity, compatibility and loyalty. In Proceedings of the 27th ACM International Conference on

Information and Knowledge Management. 1133–1142.

[43] Hongwei Wang, Fuzheng Zhang, Xing Xie, and Minyi Guo. 2018. DKN: Deep knowledge-aware network for news

recommendation. In Proceedings of the World Wide Web Conference. 1835–1844.

[44] Pengfei Wang, Jiafeng Guo, Yanyan Lan, Jun Xu, Shengxian Wan, and Xueqi Cheng. 2015. Learning hierarchical

representation model for next basket recommendation. In Proceedings of the 38th International ACM SIGIR Conference

on Research and Development in Information Retrieval. 403–412.

[45] Shoujin Wang, Longbing Cao, Yan Wang, Quan Z. Sheng, Mehmet A. Orgun, and Defu Lian. 2021. A survey on session-

based recommender systems. ACM Comput. Surv. 54, 7 (2021), 1–38.

[46] Shiqi Wang, Chongming Gao, Min Gao, Junliang Yu, Zongwei Wang, and Hongzhi Yin. 2022. Who are the best

adopters? User selection model for free trial item promotion. arXiv preprint arXiv:2202.09508 (2022).

[47] Shoujin Wang, Liang Hu, Yan Wang, Quan Z. Sheng, Mehmet Orgun, and Longbing Cao. 2020. Intention nets:

Psychology-inspired user choice behavior modeling for next-basket prediction. In Proceedings of the 34th AAAI Con-

ference on Artificial Intelligence. 6259–6266.

[48] Xiang Wang, Dingxian Wang, Canran Xu, Xiangnan He, Yixin Cao, and Tat-Seng Chua. 2019. Explainable reasoning

over knowledge graphs for recommendation. In Proceedings of the 33rd AAAI Conference on Artificial Intelligence.

5329–5336.

[49] Shu Wu, Yuyuan Tang, Yanqiao Zhu, Liang Wang, Xing Xie, and Tieniu Tan. 2019. Session-based recommendation

with graph neural Networks. In Proceedings of the AAAI Conference on Artificial Intelligence. 346–353.

[50] Yao Wu, Christopher DuBois, Alice X. Zheng, and Martin Ester. 2016. Collaborative denoising auto-encoders for top-

n recommender systems. In Proceedings of the 9th ACM International Conference on Web Search and Data Mining.

153–162.

[51] Fulya Yalvaç, Veranika Lim, Jun Hu, Mathias Funk, and Matthias Rauterberg. 2014. Social recipe recommendation to

reduce food waste. In CHI’14 Extended Abstracts on Human Factors in Computing Systems. 2431–2436. https://dl.acm.

org/doi/pdf/10.1145/3595384

[52] Ghim-Eng Yap, Xiao-Li Li, and Philip S. Yu. 2012. Effective next-items recommendation via personalized sequential

pattern mining. In Proceedings of the International Conference on Database Systems for Advanced Applications. 48–64.

[53] Feng Yu, Qiang Liu, Shu Wu, Liang Wang, and Tieniu Tan. 2016. A dynamic recurrent model for next basket recom-

mendation. In Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information

Retrieval. 729–732.

[54] Le Yu, Leilei Sun, Bowen Du, Chuanren Liu, Hui Xiong, and Weifeng Lv. 2020. Predicting temporal sets with deep

neural Networks. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining. 1083–1091.

[55] Fajie Yuan, Alexandros Karatzoglou, Ioannis Arapakis, Joemon M. Jose, and Xiangnan He. 2019. A simple convolu-

tional generative network for next item recommendation. In Proceedings of the 12th ACM International Conference on

Web Search and Data Mining. 582–590.

[56] Zhao Zhang, Cheqing Jin, and Qiangqiang Kang. 2014. Reverse k-ranks query. Proc. VLDB Endow. 7, 10 (2014), 785–796.

Received 2 August 2022; revised 13 February 2023; accepted 12 April 2023

ACM Transactions on Recommender Systems, Vol. 1, No. 2, Article 10. Publication date: June 2023.

https://dl.acm.org/doi/pdf/10.1145/3595384

