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ABSTRACT
Systematic reviews constitute the cornerstone of Evidence-based
Medicine. They can provide guidance to medical policy-making by
synthesizing all available studies regarding a certain topic. How-
ever, conducting systematic reviews has become a laborious and
time-consuming task due to the large amount and rapid growth
of published literature. The TAR approaches aim to accelerate the
screening stage of systematic reviews by combining machine learn-
ing algorithms and human relevance feedback. In this work, we
built an online active search system for systematic reviews, named
APS, by applying an state-of-the-art TAR approach – Continuous
Active Learning. The system is built on the top of the PubMed
collection, which is a widely used database of biomedical literature.
It allows users to conduct the abstract screening for systematic
reviews. We demonstrate the effectiveness and robustness of the
APS in detecting relevant literature and reducing workload for
systematic reviews using the CLEF TAR 2017 benchmark.
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1 INTRODUCTION
Evidence-Based Medicine (EBM) plays a significant role in health
care and policy-making [7–9, 12]. The cornerstone of EBM is the
synthesis of evidence presented in scientific publications through
systematic reviews. Systematic reviews appraise, summarize, and
synthesize all available evidence or studies regarding a certain topic
(e.g., a treatment or a diagnostic test) [7–9]. However, conducting
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a systematic reviews has become a laborious task due to the large
amount and rapid growth of published literature. The average time
to conduct a systematic review is around 67 weeks from registration
to publication, equal to more than 1000 hours of manual labor [2].

To write a systematic review, researchers have to conduct several
searches that will retrieve all relevant studies and screen these
studies for potential inclusion in the review. Existing databases for
searching include PubMed, Medline and Embase etc. The searches
typically identify thousands of potential relevant studies, which
are screened on the basis of their title and abstract, and with the
vast majority excluded from the final review. Studies that are not
excluded during the title & abstract screening, are assessed on
the basis of their full-text. The title & abstract screening phase is
the most time-consuming step in the systematic review process.
Hence, the need for automation in this process becomes of utmost
importance.

In general, the Technology-Assisted Review (TAR) approaches
retrieve a substantial number (or all) of the relevant studies by
iteratively training machine learning models on the basis of human
relevance feedback. We call it the TAR process. The Continuous
Active Learning (CAL) approaches have been demonstrated one
of the highly effective TAR approaches [3–6]. Given a document
collection and a query, a ranker is trained to identify documents to
be shown to reviewers for relevance assessment. Then, the assessed
documents are used as training data to re-train the ranker. As more
and more documents are identified by the ranker and assessed by
the reviewers, the training data is further populated with more
examples, which leads to more effective ranker. The TAR process
continues until “enough” relevant documents have been found.
The Baseline Model Implementation approach is a state-of-the-art
version of CAL [3, 4]. Abualsaud et al. [1] further built a TAR system
based on the CAL approach.

In this paper we describe an online active search system we
developed specifically for systematic reviews in biomedical domain,
named Active PubMed Search (APS). Our main contributions are
(1) an new publicly available search system built on the top of
the PubMed collection, for conducting systematic reviews; (2) a
demonstration of the effectiveness of the system in detecting rele-
vant literature and reducing workload for conducting systematic
reviews; (3) a comparison with the Wolters Kluwer Ovid search
system for conducting systematic reviews.

2 SYSTEM ARCHITECTURE
Figure 1 shows an overview of the TAR process with a focus on the
interaction between the users and the APS system. As in any typical
search, the user submits a query to the system with the intention
to collect as many relevant studies as possible with minimal effort
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Figure 1: An Overview of the interaction between users and the APS system.

Figure 2: The interface of the APS system. In the example,
the user starts with query breast cancer, and interacts with
the system by clicking or not clicking the checkboxes on
the right side. The user clicks the Submit button to return
a batch of assessments to the system and the Stop button
to stop the screening process. The system supports the user
to continue the previous query with the Continue saved
query button when they re-open the browser.

spent in screening irrelevant ones. The system retrieves the the top-
𝑘 most relevant studies (see Initial Retrieval), with 𝑘 in this paper
set to 100,000, and then iteratively displays the top-10 studies from
this subset to the user and collects relevance feedback to update its
relevance prediction model (See CAL). The PubMed collection in
the initial retrieval module is indexed in advance and this is done
offline (See PubMed Index). The TAR process continues as long
as the user clicks the Submit button to submit his/her relevance

feedback, and stops when the user clicks the Stop button. In the
end, the user gets a list of relevant studies to include in his/her
target systematic review.

The system is designed in a modular manner so that it enables
easy extension. It is logically composed of an initial retrieval mod-
ule and a CAL module. Furthermore, the initial retrieval consists of
query transformation and PubMed index; the CAL consists of query
representation, document representation and ranking model. The
default configuration of the current implementation is designed for
the convenience of biomedical experts in conducting systematic
reviews, which can be found in the later paragraphs. Possible ex-
tensions of the system could be: (1) for the query transformation
module, support Medical Subject Heading (MeSH) queries which
is designed for indexing studies in PubMed; (2) for the document
representation module, support contextual semantic representation
using BioBERT [10]; (3) for the ranking model, support ranking
model based on BioBERT [10] etc. We describe the default configu-
ration of the current implementation in the rest paragraphs.

PubMed Index. PubMed comprises more than 30million studies
for biomedical literature. Once a year, a complete (baseline) set of
PubMed citation records in XML format is released for downloading
from their ftp servers. Incremental update files which include new,
revised, and deleted citations are released daily.

We use the repository last updated on 04/11/2019. The PubMed
studies we downloaded includes 30,262,491 unique records, among
which 19,798,457 records contain title and abstract, and the rest
10,464,034 records only contain title. The full text is not available
for all the records. As suggested by two biomedical experts (also the
potential users of APS) that it is less likely to include studies with
only title in a systematic review, we use the 19,798,457 studies with
both title and abstract in our PubMed collection.We ignore the other
metadata such as authors and the journal, and we only use the title
and abstract as the text of the studies. Figure 3 shows the text length
distribution in our collection. We fit a Mixture Gaussian model to
the data. As seen in the figure, the length of studies do not vary
much as the text of studies (title and abstract) are homogeneous. As
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a consequence, it is the fact that whether a study lexically matches
the topic, instead of the length, will mostly account for its relevance
score.

We use Anserini [11] to index the collection. We use the default
setting: porter stemmer and removing stopwords. The indexing
process takes 10 minutes and 26 seconds to be completed with 32
cores (Intel Xeon Gold 5118 CPU @ 2.30GHz). Since systematic
review articles explicitly mention the date their search was per-
formed, there is no need to update the index and we stick to the
aforementioned repository on 04/11/2019.

0 100 200 300 400 500

Document length

0

200000

400000

600000

800000

F
re

q
u
e
n
c
y

Figure 3: Document length distribution in our collection.
The colors indicate which fitted Gaussian distribution a
study length belongs to: N(𝜇 = 63, 𝜎2 = 638) (blue), N(𝜇 =

191, 𝜎2 = 5239) (orange).

Initial Retrieval. Anserini provides several ranking models in-
cluding BM25, query likelihood (QL) with Dirichlet (Dir) or Jelinek-
Mercer (JM) smoothing. We have tested all the aforementioned
models to generate an initial ranked list of PubMed in order to pick
the best one to use. We integrate this initial retrieval module in APS
because the training of the ranking model in CAL over 30 million
studies is unacceptably slow. In Section 4, we empirically show that
the system best trades off between efficiency and effectiveness with
a cutoff of the top 100,000 studies.

CAL. We adapt the state-of-the-art version of CAL [3, 4], summa-
rized in Algorithm 1, for our implementation. The major difference
is that (1) we use the query as the pseudo relevant document when
making the first training dataset; and (2) we use scikit-learn1 for
the implementation of the Logistic Regression model in CAL.

3 DEMO
The web interface of the APS system is implemented using Django,
a Python web framework. Figure 2 shows the interface. The system
can be visited via http://ilps-aps.science.uva.nl.

4 EXPERIMENTS
In this section we aim to answer whether APS can achieve bet-
ter recall with lower screening cost compared to PubMed
Search. We use an existing dataset to simulate the relevance feed-
back from users.

4.1 Experiment Setup
Dataset.TheCLEF technology-assisted reviews in empirical medicine
(CLEF TAR) dataset is a benchmark to evaluate search algorithms
1https://scikit-learn.org/

Algorithm 1: CAL algorithm

Input: Topic 𝑞; document collection C𝑞 .
1 t = 0, L0 = {pseudo relevant document 𝑑0}
2 while not stop do
3 t += 1, b_t = 1.
4 Temporarily augment L𝑡 by uniformly sampling 100

documents from U𝑡 , labeled non-relevant.
5 Train a logistic regression ranking model on L𝑡 and

rank all the documents in C𝑞 .
6 Select the top 𝑏𝑡 documents from the ranked list and

render their relevance assessments.
7 Remove the 100 temporary documents from L𝑡 . Place

the 𝑏𝑡 assessed documents in L𝑡 , and remove them
from U𝑡 .

8 𝑏𝑡+1 = 𝑏𝑡 + [𝑏𝑡10 ].
9 end while

that seek to identify all studies relevant for conducting a systematic
review. We use the 42 topics in the dataset to evaluate our system.
For each topic, the following are provided: a topic description, a
subset of the studies in the PubMed collection which are related to
the topic and needs to be ranked, and the relevance assessments of
the studies in this set.

Evaluation metrics. Following [13], we use gain curve to eval-
uate the effectiveness of the system. Gain curve is defined as re-
call as a function of effort, where cost is the number of documents
reviewed by the user and recall is the percentage of relevant doc-
uments among reviewed documents. Besides, for the evaluation
of the initial retrieval module, we also report recall, mean average
precision (MAP) and mean R-precision (RP) metrics.

Baseline. We define PubMed Search (PS) system the Wolters
Kluwer Ovid system2. It is a widely used medical research platform
to search PubMed. There are two major differences between PS and
APS: (1) PS supports queries of theMeSH format which are designed
for indexing studies in PubMed, while APS supports key word or
natural language queries. (2) PS is static while APS is dynamic in
the sense that the search system is updated with user interactions.

All the experiments are conducted on the complete 42 topics
with 32 cores (Intel Xeon Gold 5118 CPU @ 2.30GHz).

4.2 Results
We first investigate the effectiveness of initial retrieval. In Table 1,
we compare 6 ranking models in the initial retrieval module: BM25,
QLDir and QLJM, as well as the corresponding extensions using
the query expansion model RM3. BM25+RM3 performs the best for
the initial ranking. It achieves recall of 0.8871 at cutoff 100,000. In
Figure 4, we further examine how the performance of the retrieval
model varies over different topics and cutoffs. Themedian andmean
value become stable when cutoff exceeds 30,000, indicating that it
is quite safe to set cutoff at 100,000 with respect to effectiveness.

In Figure 5, we investigate the effectiveness of CAL by compar-
ing the performance of APS and PS. The ranked list of documents
produced by APS is based on the aforementioned best method BM25
2http://demo.ovid.com/demo/ovidsptools/launcher.htm
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Table 1: Performance of initial retrieval models at cutoff
100,000.

Method BM25 QLDir QLJM BM25 QLDir QLJM
+RM3 +RM3 +RM3

Recall 0.8688 0.8652 0.8457 0.8871 0.8762 0.8780
MAP 0.0581 0.0508 0.0507 0.0700 0.0575 0.0690
RP 0.1976 0.2354 0.1893 0.2440 0.2689 0.2453
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Figure 4: Boxplot of the best model BM25+RM3 at differ-
ent cutoffs. Red line is median value, green triangle is mean
value over topics.

+ RM3 with a cutoff of 100,000. It can be observed that APS per-
forms very well at the beginning and achieves very high recall after
screening 5000 studies, while PS needs 10,000 or more studies to
achieve the same recall. Note that when collecting relevance labels
in the CLEF TAR dataset, the organisers used MeSH query and PS
to create a study pool for each topic, which may be missing relevant
studies that are retrieved by APS. Therefore, the true performance
of APS could even be higher than in Figure 5.
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Figure 5: Gain curve of APS and PS.

Despite it’s complexity the speed of APS is not a bottleneck
when conducting systematic reviews. In the aforementioned exper-
iments, the time to get the returned articles after the user clicks the
search button is less than 1 second. Then every time the user clicks
submit, the time to get the returned articles is much less than 1
second.

5 CONCLUSION
In this paper, we described the design of an online active search
system for systematic review – the APS system. The system can

assist systematic review practitioners to conduct system reviews
and conduct comparative studies with the PS system. The modular
design also makes it to serve as a platform to study TAR approaches
for researchers. The experiment with simulated interaction demon-
strated its effectiveness in detecting relevant literature and reducing
workload for systematic reviews.

This work has two key limitations: (a) we did not conducted
an actual systematic review with the developed system, and (b)
the developed system does not allow for multiple users to use it
concurrently.
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