
Cascading Hybrid Bandits: Online Learning to Rank for
Relevance and Diversity

Chang Li

University of Amsterdam

c.li@uva.nl

Haoyun Feng

Bloomberg

hfeng19@bloomberg.net

Maarten de Rijke

University of Amsterdam

Ahold Delhaize

m.derijke@uva.nl

ABSTRACT
Relevance ranking and result diversification are two core areas in

modern recommender systems. Relevance ranking aims at building

a ranked list sorted in decreasing order of item relevance, while

result diversification focuses on generating a ranked list of items

that covers a broad range of topics. In this paper, we study an on-

line learning setting that aims to recommend a ranked list with

K items that maximizes the ranking utility, i.e., a list whose items

are relevant and whose topics are diverse. We formulate it as the

cascade hybrid bandits (CHB) problem. CHB assumes the cascad-

ing user behavior, where a user browses the displayed list from

top to bottom, clicks the first attractive item, and stops browsing

the rest. We propose a hybrid contextual bandit approach, called

CascadeHybrid, for solving this problem. CascadeHybrid models

item relevance and topical diversity using two independent func-

tions and simultaneously learns those functions from user click

feedback. We conduct experiments to evaluate CascadeHybrid on

two real-world recommendation datasets: MovieLens and Yahoo

music datasets. Our experimental results show that CascadeHybrid
outperforms the baselines. In addition, we prove theoretical guar-

antees on the n-step performance demonstrating the soundness of

CascadeHybrid.

CCS CONCEPTS
• Information systems→ Learning to rank; • Theory of com-
putation→ Online learning algorithms.
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1 INTRODUCTION
Ranking is at the heart of modern interactive systems, such as

recommender and search systems. Learning to rank (LTR) addresses

the ranking problem in such systems by using machine learning

approaches [23]. Traditionally, LTR has been studied in an offline

fashion, in which human labeled data is required [23]. Human

labeled data is expensive to obtain, cannot capture future changes

in user preferences, and may not well align with user needs [13]. To

circumvent these limitations, recent work has shifted to learning

directly from users’ interaction feedback, e.g., clicks [12, 14, 34].

User feedback is abundantly available in interactive systems

and is a valuable source for training online LTR algorithms [9].

When designing an algorithm to learn from this source, three chal-

lenges need to be addressed: (1) The learning algorithm should

address position bias (the phenomenon that higher ranked items

are more likely be observed than lower ranked items); (2) The learn-

ing algorithm should infer item relevance from user feedback and

recommend lists containing relevant items (relevance ranking);

(3) The recommended list should contain no redundant items and

cover a broad range of topics (result diversification).

To address the position bias, a common approach is to make

assumptions on the user’s click behavior and model the behavior

using a click model [6]. The cascade model (CM) [7] is a simple

but effective click model to explain user behavior. It makes the

so-called cascade assumption, which assumes that a user browses

the list from the first ranked item to the last one and clicks on

the first attractive item and then stops browsing. The clicked item

is considered to be positive, items before the click are treated as

negative and items after the click will be ignored. Previous work

has shown that the cascade assumption can explain the position

bias effectively and several algorithms have been proposed under

this assumption [11, 16, 18, 35].

In online LTR, the implicit signal that is inferred from user in-

teractions is noisy [13]. If the learning algorithm only learns from

these signals, it may reach a suboptimal solution where the opti-

mal ranking is ignored simply because it is never exposed to users.

This problem can be tackled by exploring new solutions, where

the learning algorithm displays some potentially “good” rankings

to users and obtains more signals. This behavior is called explo-
ration. However, exploration may hurt the user experience. Thus,

learning algorithms face an exploration vs. exploitation dilemma.

Multi-armed bandit (MAB) [5, 17] algorithms are commonly used

to address this dilemma. Along this line, multiple algorithms have

been proposed [12, 19, 21, 25]. They all address the dilemma in

elegant ways and aim at recommending the top-K most relevant

items to users. However, only recommending the most relevant
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items may result in a list with redundant items, which diminishes

the utility of the list and decreases user satisfaction [3, 32].

The submodular coverage model [24] can capture the pattern of

diminishing utility and has been used in online LTR for diversified

ranking. One assumption in this line of work is that items can be

represented by a set of topics.
1
The task, then, is to recommend a list

of items that ensures amaximal coverage of topics. Yue andGuestrin

[32] develop an online feature-based diverse LTR algorithm by

optimizing submodular utility models [32]. Hiranandani et al. [11]

improve online diverse LTR by bringing the cascading assumption

into the objective function. However, we argue that not all features

that are used in a LTR setting can be represented by topics [23].

Previous online diverse LTR algorithms tend to ignore the relevance

of individual items and may recommend a diversified list with less

relevant items.

In this work, we address the aforementioned challenges and

make four contributions:

(1) We focus on a novel online LTR setting that targets both

relevance ranking and result diversification. We formulate it

as a cascade hybrid bandits (CHB) problem, where the goal

is to select K items from a large candidate set that maximize

the utility of the ranked list (Section 3.1).

(2) We propose CascadeHybrid, which utilizes a hybrid model,

to solve this problem (Section 3.3).

(3) We evaluateCascadeHybrid on two real-world recommenda-

tion datasets:MovieLens and Yahoo and show thatCascadeHybrid
outperforms state-of-the-art baselines (Section 4).

(4) We theoretically analyze the performance of CascadeHybrid
and provide guarantees on its proper behavior; moreover, we

are the first to show that the regret bounds on feature-based

ranking algorithms with the cascade assumption are linear

in

√
K .

The rest of the paper is organized as follows. We recapitulate the

background knowledge in Section 2. In Section 3, we formulate

the learning problem and propose our CascadeHybrid algorithm

that optimizes both item relevance and list diversity. Section 4

contains our empirical evaluations of CascadeHybrid, comparing

it with several state-of-the-art baselines. An analysis of the upper

bound on the n-step performance of CascadeHybrid is presented

in Section 5. In Section 6, we review related work. Conclusions are

formulated in Section 7.

2 BACKGROUND
In this section, we recapitulate the cascade model (CM), cascading

bandits (CB), and the submodular coverage model. Throughout the

paper, we consider the ranking problem of L candidate items and

K positions with K ≤ L. We denote {1, . . . ,n} by [n] and for the

collection of items we write D = [L]. A ranked list contains K ≤ L
items and is denoted by R ∈ ΠK (D), where ΠK (D) is the set of all

permutations of K distinct items from the collection D. The item

at the k-th position of the list is denoted by R(k) and, if R contains

an item i , the position of this item in R is denoted by R−1(i). All
vectors are column vectors. We use bold font to indicate a vector

1
In general, each topic may only capture a tiny aspect of the information of an item,

e.g., a single phrase of a news title or a singer of a song [3, 32].

and bold font with a capital letter to indicate a matrix. We write Id
to denote the d ×d identity matrix and 0d×m the d ×m zero matrix.

2.1 Cascade model
Click models have been widely used to interpret user’s interactive

click behavior; cf. [6]. Briefly, a user is shown a ranked list R, and

then browses the list and leaves click feedback. Every click model

makes unique assumptions and models a type of user interaction

behavior. In this paper, we consider a simple but widely used click

model, the cascade model [7, 16, 18], which makes the cascade

assumption about user behavior. Under the cascade assumption, a

user browses a ranked list R from the first item to the last one by

one and clicks the first attractive item. After the click, the user stops

browsing the remaining items. A click on an examined item R(i)
can be modeled as a Bernoulli random variable with a probability

of α(R(i)), which is also called the attraction probability. Here,
the cascade model (CM) assumes that each item attracts the user

independent of other items in R. Thus, the CM is parametrized

by a set of attraction probabilities α ∈ [0, 1]L . The examination

probability of item R(i) is 1 if i = 1, otherwise 1−
∏i−1

j=1
(1−α(R(j))).

With the CM, we translate the implicit feedback to training labels

as follows: Given a ranked list, items ranked below the clicked item

are ignored since none of them are browsed. Items ranked above

the clicked item are negative samples and the clicked item is the

positive sample. If no item is clicked, we know that all items are

browsed but not clicked. Thus, all of them are negative samples.

The vanilla CM is only able to capture the first click in a session,

and there are various extensions of CM to model multi-click sce-

narios; cf. [6]. However, we still focus on the CM, because it has

been shown in multiple publications that the CM achieves good

performance in both online and offline setups [6, 16, 19].

2.2 Cascading bandits
Cascading bandits (CB) are a type of online variant of the CM [16].

A CB is represented by a tuple (D,K , P), where P is a binary dis-

tribution over {0, 1}L . The learning agent interacts with the CB

and learns from the feedback. At each step t , the agent generates a
ranked list Rt ∈ ΠK (D) depending on observations in the previous

t − 1 steps and shows it to the user. The user browses the list with

cascading behavior and leaves click feedback. Since the CM accepts

at most one click, we write ct ∈ [K + 1] as the click indicator,

where ct indicates the position of the click and ct = K + 1 indicates

no click. Let At ∈ {0, 1}
L
be the attraction indicator, where At is

drawn from P and At (Rt (i)) = 1 indicates that item Rt (i) attracts
the user at step t . The number of clicks at step t is considered as

the reward and computed as follows:

r (Rt ,At ) = 1 −

K∏
i=1

(1 −At (Rt (i))). (1)

Then, we assume that the attraction indicators of items are dis-

tributed independently as Bernoulli variables:

P(A) =
∏
i ∈D

Pα (i)(A(i)), (2)

where Pα (i)(·) is the Bernoulli distribution with mean α(i). The
expected number of clicks at step t is computed as E [r (Rt ,At )] =
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r (Rt ,α ). The goal of the agent is to maximize the expected number

of clicks in n steps or minimize the expected n-step regret:

R(n) =
n∑
t=1

E

[
max

R∈ΠK (D)
r (R,α ) − r (Rt ,At )

]
. (3)

CB has several variants depending on assumptions on the attraction

probability α . Briefly, cascade linear bandits [35] assume that an

item a is represented by a feature vector za ∈ Rm and that the

attraction probability of an item a to a user is a linear combination

of features: α(a) ≈ zTa β∗, where β∗ ∈ Rm is an unknown parame-

ter. With this assumption, the attraction probability of an item is

independent of other items in the list, and this assumption is used

in relevance ranking problems. CascadeLinUCB has been proposed

to solve this problem. For other problems, Hiranandani et al. [11]

assume the attraction probability to be submodular, and propose

CascadeLSB to solve result diversification.

2.3 Submodular coverage model
Before we recapitulate the submodular function, we introduce two

properties of a diversified ranking. Different from the relevance

ranking, in a diversified ranking, the utility of an item depends on

other items in the list. Suppose we focus on news recommendation.

Items that we want to rank are news itms, and each news item

covers a set of topics, e.g., weather, sports, politics, a celebrity,

etc. We want to recommend a list that covers a broad range of

topics. Intuitively, adding a news item to a list does not decrease

the number of topics that are covered by the list, but adding a news

item to a list that covers highly overlapping topics might not bring

much extra benefit to the list. The first property can be thought

of as a monotonicity property, and the second one is the notion

of diminishing gain in the utility. They can be captured by the

submodular function [32].

We introduce two properties of submodular functions. Let д(·)
be a set function, which maps a set to a real value. We say that

д(·) is monotone and submodular if given two item sets A and B,

where B ⊆ A, and an item a, д(·) has the following two properties:

monotonicity : д(A ∪ {a}) ≥ д(A);

submodularity : д(B ∪ {a}) − д(B) ≥ д(A ∪ {a}) − д(A).

In other words, the gain in utility of adding an item a to a subset

of A is larger than or equal to that of adding an item to A, and

adding an item a to A does not decreases the utility. Monotonic-

ity and submodularity together provide a natural framework to

capture the properties of a diversified ranking. The shrewd reader

may notice that a linear function is a special case of submodular

functions, where only the inequalities in monotonicity and submod-
ularity hold. However, as discussed above, the linear model assumes

that the attraction probability of an item is independent of other

items: it cannot capture the diminishing gain in the result diversi-

fication. In the rest of this section, we introduce the probabilistic
coverage model, which is a widely used submodular function for

result diversification [3, 4, 11, 28, 32].

Suppose that an item a ∈ D is represented by a d-dimensional

vector xa ∈ [0, 1]d . Each entry of the vector xa (j) describes the
probability of item a covering topic j . Given a listA, the probability

of A covering topic j is

дj (A) = 1 −
∏
a∈A
(1 − xa (j)). (4)

The gain in topic coverage of adding an item a to A is:

∆(a | A) = (∆1(a | A), . . . ,∆d (a | A)), (5)

where ∆j (a | A) = дj (A ∪ {a}) − дj (A). With this model, the

attraction probability of the i-th item in a ranked list R is defined

as:

α(R(i)) = ωT
R(i)θ

∗, (6)

where ωR(i) = ∆(R(i) | (R(1), . . . ,R(i − 1))) and θ∗ is the un-

known user preference to different topics [11]. In Eq. (6), the attrac-

tion probability of an item depends on the items ranked above it;

α(R(i)) is small if R(i) covers similar topics as higher ranked items.

CascadeLSB [11] has been proposed to solve cascading bandits

with this type of attraction probability and aims at building diverse

ranked lists.

3 ALGORITHM
In this section, we first formulate our online learning to rank prob-

lem, and then propose CascadeHybrid to solve it.

3.1 Problem formulation
We study a variant of cascading bandits, where the attraction prob-

ability of an item in a ranked list depends on two aspects: item

relevance and item novelty. Item relevance is independent of other

items in the list. Novelty of an item depends on the topics covered

by higher ranked items; a novel item brings a large gain in the topic

coverage of the list, i.e., a large value in Eq. (6). Thus, given a ranked

list R, the attraction probability of item R(i) is defined as follows:

α(R(i)) = zT
R(i)β

∗ +ωT
R(i)θ

∗, (7)

where ωR(i) = ∆(R(i) | (R(1), . . . ,R(i − 1)) is the topic coverage

gain discussed in Section 2.3, and zR(i) ∈ Rm is the relevance

feature, θ∗ ∈ Rd and β∗ ∈ Rm are two unknown parameters that

characterize the user preference. In other words, the attraction

probability is a hybrid of a modular (linear) function parameterized

by β∗ and a submodular function parameterized by θ∗.
Now, we define our learning problem, cascade hybrid bandits

(CHB), as a tuple (D,θ∗, β∗,K). Here,D = [L] is the item candidate

set and each item a can be represented by a feature vector [xTa , zTa ]T ,
where xa ∈ [0, 1]d is the topic coverage of item a discussed in

Section 2.3. K is the number of positions. The action space for the

problem are all permutations ofK individual items fromD, ΠK (D).

The reward of an action at step t is the number of clicks, defined in

Eq. (1). Together with Eqs. (1), (2) and (7), the expectation of reward

at step t is computed as follows:

E [r (Rt ,At )] = 1 −
∏
a∈Rt

(1 − zTa β
∗ −ωT

a θ
∗). (8)

In the rest of the paper, we write r (Rt ) = E [r (Rt ,At )] for short.
And the goal of the learning agent is to maximize the reward or,

equivalently, to minimize the n-step regret defined as follow:

R(n) =
n∑
t=1

[
max

R∈ΠK (D)
r (R) − r (Rt )

]
. (9)
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The previously proposed CascadeLinUCB [35] cannot solve CHB

since it only handles the linear part of the attraction probability.

CascadeLSB [11] cannot solve CHB, either, because it only uses

one submodular function and handles the submodular part of the

attraction probability. Thus, we need to extend the previous models

or, in other words, propose a new hybrid model that can handle

both linear and submodular properties in the attraction probability.

3.2 Competing with a greedy benchmark
Finding the optimal set that maximizes the utility of a submodular

function is an NP-hard problem [24]. In our setup, the attraction

probability of each item also depends on the order in the list. To

the best of our knowledge, we cannot find the optimal ranking

R∗ = arg max

R∈ΠK (D)
r (R) (10)

efficiently. Thus, we compete with a greedy benchmark that approx-

imates the optimal ranking R∗. The greedy benchmark chooses the

items that have the highest attraction probability given the higher

ranked items: for any positions k ∈ [K],

˜R(k) = arg max

a∈D\{ ˜R(1), ..., ˜R(k−1)}

zTa β
∗ +ωT

a θ
∗, (11)

where
˜R(k) is the ranked list generated by the benchmark.

This greedy benchmark has been used in previous literature [11,

32]. As shown by Hiranandani et al. [11], in the CM, the greedy

benchmark is at least a η-approximation of R∗. That is, r ( ˜R) ≥

ηr (R∗) where η = (1 − 1

e )max{ 1

K , 1 −
K−1

2
αmax } with αmax =

maxa∈D zTa β∗ + xTaθ∗. In the rest of the paper, we focus on com-

peting with this greedy benchmark.

3.3 CascadeHybrid
We proposeCascadeHybrid to solve the CHB. As the name suggests,

the algorithm is a hybrid of a linear function and a submodular func-

tion. The linear function is used to capture item relevance and the

submodular function to capture diversity in topics. CascadeHybrid
has access to item features, [xTa , zTa ]T , and uses the probabilistic

coverage model to compute the gains in topic coverage. The user

preferences θ∗ and β∗ are unknown to CascadeHybrid. They are

estimated from interactions with users. The only tunable hyperpa-

rameter for CascadeHybrid is γ ∈ R+, which controls exploration:

a larger value of γ means more exploration.

The details ofCascadeHybrid are provided in Algorithm 1. At the

beginning of each step t (line 5), CascadeHybrid estimates the user

preference as
ˆθt and ˆβt based on the previous t−1 step observations.

ˆθt and ˆβt can be viewed as maximum likelihood estimators on the

rewards,
2
where Mt ,Ht ,Bt and yt , ut summarize the features and

click feedback of all observed items in the previous t −1 steps. Then,

CascadeHybrid builds the ranked list Rt , sequentially (line 7–16).

In particular, for each position k , we recalculate the topic coverage
gain of each item (line 7). The new gains are used to estimate the

attraction probability of items. CascadeHybridmakes an optimistic

estimate of the attraction probability of each item (line 9–12) and

chooses the one with the highest estimated attraction probability

2
The derivation is based on matrix block-wise inversion. We omit the derivation since

it is not a major contribution of this paper.

Algorithm 1 CascadeHybrid

Input: γ
1: // Initialization

2: H1 ← Id , u1 ← 0d ,M1 ← Im , y1 ← 0m ,B1 = 0d×m
3: for t = 1, 2, . . . ,n do
4: // Estimate parameters

5:
ˆθt ← H−1

t ut , ˆβt ← M−1

t (yt − B
T
t H
−1

t ut )
6: // Build ranked list

7: S0 ← ∅

8: for k = 1, 2, . . .K do
9: for a ∈ D \ Sk−1

do
10: ωa ← ∆(xa |Sk−1

) // Recalculate the topic coverage

gain.

11: µa ← Eq. (12) // Compute UCBs.

12: end for
13: atk ← arg max

a∈D\Sk−1

µa

14: Sk ← Sk−1
+ atk

15: end for
16: Rt = (a

t
1
, . . . ,atK ) // Ranked list

17: Display Rt and observe click feedback ct ∈ [K + 1]

18: kt ← min(K , ct )
19: // Update statistics

20: Ht ← Ht + BtM−1

t BTt , ut ← ut + BtM−1

t yt
21: for a ∈ Rt (1 : kt ) do
22: Mt+1 ← Mt + zazTa , Bt+1 ← Bt +ωazTa , Ht ← Ht +

ωaωT
a

23: end for
24: if ct ≤ K then
25: yt+1 ← yt + zRt (ct ), ut ← ut +ωRt (ct )
26: end if
27: Ht+1 ← Ht − Bt+1M−1

t+1
BTt+1

, ut+1 ← ut − Bt+1M−1

t+1
yt+1

28: end for

(line 13). This is known as the principle of optimism in the face of

uncertainty [5], and the estimator for an item a is called the upper

confidence bound (UCB):

µa = ωT
a

ˆθt + zTa ˆβt + γ
√
sa , (12)

with

sa = ωT
aH
−1

t ωa − 2ωT
aH
−1

t BtM−1

t za + zaM−1

t za
+zaM−1

t BTt H
−1

t BtM−1

t za . (13)

Finally, CascadeHybrid displays the ranked list Rt to the user

and collects click feedback (line 17–27). Since CascadeHybrid only

accepts one click, we use ct ∈ [K + 1] to indicate the position of

the click;
3 ct = K + 1 indicates that no item in Rt is clicked.

3.4 Computational complexity
The main computational cost of Algorithm 1 is incurred by comput-

ing matrix inverses, which is cubic in the dimensions of the matrix.

However, in practice, we can use the Woodbury matrix identity [8]

to update H−1

t andM−1

t instead of Ht andMt , which is square in

the dimensions of the matrix. Thus, computing the UCB of each

3
For multiple-click cases, we only consider the first click and keep the rest of

CascadeHybrid the same.
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item is O(m2 + d2). As CascadeHybrid greedily chooses K items

out of L, the per-step computational complexity of CascadeHybrid
is O(LK(m2 + d2)).

4 EXPERIMENTS
This section starts with the experimental setup, where we first

introduce the datasets, click simulator and baselines. After that we

report our experimental results.

4.1 Experimental setup
Off-policy evaluation [21] is an approach to evaluate interaction

algorithms without live experiments. However, in our problem, the

action space is exponential in K , which is too large for commonly

used off-policy evaluation methods. As an alternative, we evaluate

the CascadeHybrid in a simulated interaction environment, where

the simulator is built based on offline datasets. This is a commonly

used evaluation setup in the literature [11, 16, 35].

Datasets.We evaluate CascadeHybrid on two datasets: MovieLens

20M [10] and Yahoo.
4
The MovieLens dataset contains 20M ratings

on 27k movies by 138k users, with 20 genres.
5
Each movie belongs

to at least one genre. The Yahoo dataset contains over 700M ratings

of 136k songs given by 1.8Musers and genre attributes of each song;

we consider the top level attribute, which has 20 different genres;

each song belongs to a single genre. All the ratings in the two

datasets are on a 5-point scale. All movies and songs are considered

as items and genres are considered as topics.

Data preprocessing. We follow the data preprocessing approach

in [11, 22, 35]. First, we extract the 1k most active users and the 1k

most rated items. LetU = [1000] be the user set, and D = [1000]

be the item set. Then, the ratings are mapped onto a binary scale:

rating 5 is converted to 1 and others to 0. After this mapping, in

the MovieLens dataset, about 7% of the user-item pairs get rating 1,

and, in the Yahoo dataset, about 11% of user-item pairs get rating 1.

Then, we use the matrix F ∈ {0, 1} |U |×|D | to capture the converted
ratings and G ∈ {0, 1} |D |×d to record the items and topics, where

d is the number of topics and each entry Gjk = 1 indicates that

item j belongs to topic k .

Click simulator. In our experiments, the click simulator follows

the cascade assumption, and considers both item relevance and

diversity of the list. To design such a simulator, we combine the sim-

ulators used in [22] and [11]. Because of the cascading assumption,

we only need to define the way of computing attraction probabilities

of items in a list.

We first divide the users into training and test groups evenly, i.e.,

Ftrain and Ftest . The training group is used to estimate features of

items used by online algorithms, while the test group are used to

define the click simulator. This is to mimic the real-world scenarios

that online algorithms estimate user preferences without knowing

the perfect topic coverage of items. Then, we follow [22] to obtain

the relevance part of the attraction probability, i.e., z and β∗, and
the process in [11] to get the topic coverage of items, x, and the

user preferences on topics, θ∗.

4
R2 - Yahoo! Music User Ratings of Songs with Artist, Album, and Genre Meta Infor-

mation, v. 1.0 https://webscope.sandbox.yahoo.com/catalog.php?datatype=r

5
In both datasets, one of the 20 genres is called unknown.

In particular, the relevance features z are obtained by conducting
singular-value decomposition on Ftrain . We pick the 10 largest

singular values and thus the dimension of relevance features is

m = 10. Then, we normalize each relevance feature by the trans-

formation: za ←
za
∥za ∥2

, where ∥za ∥2 is the L2 norm of za . The
user preference β∗ is computed by solving the least square on Ftest
and then β∗ is normalized by the same transformation. Note that

∀a ∈ D : zTa β∗ ∈ [0, 1], since ∥za ∥2 = 1 and ∥β∗∥
2
= 1.

Then, we follow the process in [11]. If item a belongs to topic j,
we compute the topic coverage of item a to topic j as the quotient
of the number of users rating item a to be attractive to the number

of users who rate at least one item in topic j to be attractive:

xa, j =
∑
u ∈U Fu,aGa, j∑

u ∈U 1{∃a′ ∈ D : Fu,a′Ga′, j > 0}
. (14)

Given user u, the preference for topic j is computed as the number

of items rated to be attractive in topic j over the number of items

in all topics rated by u to be attractive:

θ∗j =

∑
a∈D Fu,aGa, j∑

j′∈[d ]
∑
a′∈D Fu,a′Ga′, j′

. (15)

For some cases, we may have ∃a :

∑
j ∈[d ] xa, j > 1 and thus

xTaθ∗ > 1. However, given the high sparsity in our datasets, we

have xTaθ∗ ∈ [0, 1] for all items during our experiments.

Finally, we combine the two parts and obtain the attraction

probability used in our click simulator. To simulate different types

of user preferences, we introduce a trade-off parameter λ ∈ [0, 1],
which is unknown to online algorithms, and compute the attraction

probability of the ith item in R as follows:

α(R(i)) = λzT
R(i)β

∗ + (1 − λ)ωT
R(i)θ

∗. (16)

By changing the value of λ, we simulate different types of user

preference: a larger value of λ means that the user prefers items

to be relevant; a smaller value of λ means that the user prefers the

topics in the ranked list to be diverse.

Baselines.We compare CascadeHybrid to two online algorithms,

each of which has two configurations. In total, we have four base-

lines, namely CascadeLinUCB and CascadeLinUCBFull [35], and
CascadeLSB and CascadeLSBFull [11]. The first two only con-

sider relevance ranking. The differences are that CascadeLinUCB
takes z as the features, while CascadeLinUCBFull takes {x, z}
as the features. CascadeLSB and CascadeLSBFull only consider

the result diversification, where CascadeLSB takes x as features,

while CascadeLSBFull takes {x, z} as features. We expect that

CascadeLinUCB and CascadeLinUCBFull perform well when λ→
1, and that CascadeLSB and CascadeLSBFull perform well when

λ → 0. For all baselines, we set the exploration parameter γ = 1

and the learning rate to 1. This parameter setup is used in [32],

which leads to better empirical performance. We also set γ = 1 for

CascadeHybrid.
We report the cumulative regret, Eq. (9), within 50k steps, called

n-step regret. The n-step regret is commonly used to evaluate bandit

algorithms [11, 18, 32, 35]. In our setup, it measures the difference

in number of received clicks between the oracle that knows the

ideal β∗ and θ∗ and the online algorithm, e.g., CascadeHybrid, in
n steps. The lower regret means the more clicks received by the

algorithm. We conduct our experiments with 500 users from the
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test group and 2 repeats per user. In total, the results are averaged

over 1k repeats. We also include the standard errors of our esti-

mates. To show the impact of different factors on the performance

of online LTR algorithms, we choose λ ∈ {0.0, 0.1, . . . , 1.0}, the
number of positions K ∈ {5, 10, 15, 20}, and the number of topics

d ∈ {5, 10, 15, 20}. For the number of topics d , we choose the topics
with the maximum number of items.

4.2 Experimental results
We first study the movie recommendation task on the MovieLens

dataset and show the results in Fig. 1. The top row shows the impact

of λ, where we fix K = 10 and d = 20. λ is a trade-off parameter in

our simulation. It balances the relevance and diversity, and is un-

known to online algorithms. Choosing a small λ, the simulated user

prefers recommended movies in the list to be relevant, while choos-

ing a large λ, the simulated user prefers the recommended movies

to be diverse. As shown in the top row, CascadeHybrid outperforms

all baselines when λ ∈ {0.1, 0.2, . . . 0.8}, and only loses to the partic-
ularly designed baselines (CascadeLSB and CascadeLinUCB) with
small gaps in some extreme cases where they benefit most. This is

reasonable since they have fewer parameters to be estimated than

CascadeHybrid. In all cases, CascadeHybrid has lower regret than

CascadeLinUCBFull and CascadeLSBFull that work with the same

features as CascadeHybrid. This result indicates that including
more features in CascadeLSB and CascadeLinUCB is not sufficient

to capture both item relevance and result diversification.

The second row in Fig. 1 shows the impact of different numbers of

topics, where we fix λ = 0.5 andK = 10. We see thatCascadeHybrid
outperforms all baselines with large gaps. In the last plot of the

middle row, we see that the gap of regret between CascadeHybrid
and CascadeLinUCBFull decreases with larger values of d . This is
because, on the MovieLens dataset, when d is small, a user tends to

prefer a diverse ranked list: when d is small, an item is more likely

to belong to only one topic, and each entry of θ∗j becomes relatively

larger since

∑
j ∈[d ] θ

∗
j = 1. And given an item a and a set S, the dif-

ference between ∆(a |S)Tθ∗ and ∆(a |∅)Tθ∗ is large. This behavior
is also confirmed by the fact that CascadeLinUCBFull outperforms

CascadeLSBFull for large d while they perform similarly for small

d . Finally, we study the impact of the number of positions on the

regret. The results are displayed in the bottom row in Fig. 1, where

we choose λ = 0.5 and d = 20. Again, we see that CascadeHybrid
outperforms baselines with large gaps.

Next, we report the results on the Yahoo dataset in Fig. 2. We

follow the same setup as for the MovieLens dataset and observe

a similar behavior. CascadeHybrid has slightly higher regret than

the best performing baselines in three cases: CascadeLSB when

λ = 0 and CascadeLinUCB when λ ∈ {0.9, 1}. Note that these are
relatively extreme cases, where the particularly designed baselines

can benefit most. Meanwhile, CascadeLSB and CascadeLinUCB do

not generalize well with different λs. In all setups, CascadeHybrid
has lower regret than CascadeLSBFull and CascadeLinUCBFull,
which confirms our hypothesis that the hybrid model has benefit

in capturing both relevance and diversity.

5 ANALYSIS
5.1 Performance guarantee
Since CascadeHybrid competes with the greedy benchmark, we

focus on the η-scaled expected n-step regret which is defined as:

Rη (n) =
n∑
t=1

E
[
ηr (R∗,α ) − r (Rt ,At )

]
, (17)

where η = (1 − 1

e )max{ 1

K , 1 −
K−1

2
αmax }. This is a reasonable

metric, since computing the optimal R∗ is computationally ineffi-

cient. A similar scaled regret has previously been used in diversity

problems [11, 27, 32]. For simplicity, we write w∗ = [θ∗T , β∗T ]T .
Then, we bound the η-scaled regret of CascadeHybrid as follows:

Theorem 1. For ∥w∗∥
2
≤ 1 and any

γ ≥

√
(m + d) log

(
1 +

nK

m + d

)
+ 2 log(n) +



w∗


2
, (18)

we have

Rη (n) ≤ 2γ

√
2nK(m + d) log

(
1 +

nK

m + d

)
+ 1. (19)

Combining Eqs. (18) and (19), we have Rη (n) = Õ((m + d)
√
Kn),

where the Õ notation ignores logarithmic factors. Our bound has

three characteristics: (1) Theorem 1 states a gap-free bound, where

the factor

√
n is considered near optimal; (2) This bound is linear in

the number of features, which is a common dependence in learning

bandit algorithms [1]; and (3) Our bound is Õ(
√
K) lower than other

bounds for linear bandit algorithms in CB [11, 35]. We include a

proof of Theorem 1 in Section 5.2. We use a similar strategy to

decompose the regret as in [11, 35], but we have a better analysis

on how to sum up the regret of individual items. Thus, our bound

depends on Õ(
√
K) rather than Õ(K). We believe that our analysis

can be applied to both CascadeLinUCB and CascadeLSB, and then

show that their regret is actually bounded by Õ(
√
K) rather than

Õ(K).

5.2 Proof of Theorem 1
Wefirst define some additional notation.Wewritew∗ = [θ∗T , β∗T ]T .
Given a ranked list R and a = R(i), we write ϕa = [ωT

a , zTa ]T .
With the ϕa and w∗ notation, CascadeHybrid can be viewed as

an extension of CascadeLSB, where two submodular functions in-

stead of one are used in a single model. We write Ot = Im+d +∑t−1

i=1

∑
a∈Oi ϕaϕ

T
a as the collected features in t steps, and Ht

as the collected features and clicks up to step t . We write Ri =

(R(1), . . . ,R(i)). Then, the confidence bound in Section 3.3 on the

i-th item in R can be re-written as:

s(Ri ) = ϕT
R(i)O

−1

t ϕR(i). (20)

Let Π(D) =
⋃L
i=1

Πi (D) be the set of all ranked lists of D with

length [L], and κ : Π(D) → [0, 1] be an arbitrary list function. For

any R ∈ Π(D) and any κ, we define

f (R,κ) = 1 −

|R |∏
i=1

(1 − κ(Ri )). (21)
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Figure 1: n-step regret on the MovieLens dataset. Results are averaged over 500 users with 2 repeats per user. Lower regret
means more clicks received by the algorithm during the online learning. Shaded areas are the standard errors of estimates.

We define upper and lower confidence bounds, and κ as:

ut (R) = F[0,1][ϕ
T
R(l )ŵt + s(R

l )]

lt (R) = F[0,1][ϕ
T
R(l )ŵt − s(R

l )]

κ(R) = ϕT
R(l )w

∗,

(22)

where l = |R | and F[0,1][·] = max(0,min(1, ·)). With the definitions

in Eq. (22), f (R,κ) = r (R,α ) is the reward of list R.

Proof. Let дt = {lt (R) ≤ κ(R) ≤ ut (R),∀R ∈ Π(D)} be the
event that the attraction probabilities are bounded by the lower and

upper confidence bound, and д̄t be the complement of дt . We have

E
[
ηr (R∗,α ) − r (Rt ,At )

]
= E

[
η f (R∗,κ) − f (Rt ,κ)

]
(a)
≤ P(дt )E

[
η f (R∗,κ) − f (Rt ,κ)

]
+ P(д̄t )

(b)
≤ P(дt )E

[
η f (R∗,ut ) − f (Rt ,κ)

]
+ P(д̄t )

(c)
≤ P(дt )E [f (Rt ,ut ) − f (Rt ,κ)] + P(д̄t ),

(23)

where (a) holds because E [η f (R∗,κ) − f (Rt ,κ)] ≤ 1, (b) holds
because under event дt we have f (R, lt ) ≤ f (R,κ) ≤ f (R,ut ),
∀R ∈ Π(D), and (c) holds by the definition of the η-approximation,

where we have

η f (R∗,ut ) ≤ max

R∈ΠK (D)
η f (R,ut ) ≤ f (Rt ,ut ). (24)

By the definition of the list function f (·, ·) in Eq. (21), we have

f (Rt ,ut ) − f (Rt ,κ)

=

K∏
k=1

(1 − κ(Rkt )) −
K∏
k=1

(1 − ut (R
k
t ))

(a)
=

K∑
k=1

[k−1∏
i=1

(1 − κ(Rit ))

]
(ut (R

k
t ) − κ(R

k
t ))


K∏

j=k+1

(1 − u(R
j
t ))


(b)
≤

K∑
k=1

[k−1∏
i=1

(1 − κ(Rit ))

]
(ut (R

k
t ) − κ(R

k
t )),

(25)

where (a) follows from Lemma 1 in [35] and (b) is because of the
fact that 0 ≤ κ(Rt ) ≤ ut (Rt ) ≤ 1. We then define the event ht i =
{item Rt (i) is observed}, where we have E [1(ht i )] =

∏i−1

k=1
(1 −

κ(Rkt )). For anyHt such that дt holds, we have

E [f (Rt ,ut ) − f (Rt ,κ) | Ht ]

≤

K∑
i=1

E [1(ht i ) | Ht ] (ut (R
i
t ) − lt (R

i
t ))

(a)
≤ 2γE

[
1(ht i )

K∑
i=1

√
s(Rit ) | Ht

]
(b)
≤ 2γE


min(K,ct )∑

i=1

√
s(Rit ) | Ht

 ,
(26)

where inequality (a) follows from the definition of ut and lt in

Eq. (22), and inequality (b) follows from the definition of ht i . Now,
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Figure 2: n-step regret on the Yahoo dataset. Results are averaged over 500 users with 2 repeats per user. Lower regret means
more clicks received by the algorithm during the online learning. Shaded areas are the standard errors of estimates.

together with Eqs. (17) and (26) and Section 5.2, we have

Rη (n) =
n∑
t=1

E
[
ηr (R∗,α ) − r (Rt ,At )

]
≤

n∑
t=1

2γE

min(K,ct )∑

i=1

√
s(Rit ) | дt

 P(дt ) + P(д̄t )


≤ 2γE

[ n∑
t=1

K∑
i=1

√
s(Rit )

]
+

n∑
t=1

p(д̄t ).

(27)

For the first term in Eq. (27), we have

n∑
t=1

K∑
i=1

√
s(Rit )

(a)
≤

√√√
nK

n∑
t=1

K∑
i=1

s(Rit )
(b)
≤

√
nK2 logdet(Ot ), (28)

where inequality (a) follows from the Cauchy-Schwarz inequality

and (b) follows from Lemma 5 in [32]. Note that logdet(Ot ) ≤ (m+
d) log(K(1+n/(m+d))), which can be obtained by the determinant

and trace inequality, and together with Eq. (28):

n∑
t=1

K∑
i=1

√
s(Rit ) ≤

√
2nK(m + d) log(K(1 +

n

m + d
)). (29)

For the second term in Eq. (27), by Lemma 3 in [11], we have

P(д̄t ) ≤ 1/n for any γ that satisfies Eq. (18). Thus, together with

Eqs. (27) to (29), we have

Rη (n) ≤ 2γ

√
2nK(m + d) log(1 +

nK

m + d
) + 1.

This concludes the proof of Theorem 1. □

6 RELATEDWORK
The literature on offline learning to rank (LTR) methods that ac-

count for position bias and diversity is too broad to review in detail.

We refer readers to [2] for an overview. In this section, we mainly

review online LTR papers that are closely related to our work, i.e.,

stochastic click bandit models.

Online LTR in a stochastic clickmodels has beenwell-studied [15,

16, 18, 19, 22, 29, 30, 32, 33, 35]. Previous work can be categorized

into two groups: feature-free models and feature-rich models. Al-

gorithms from the former group use a tabular representation on

items and maintain an estimator for each item. They learn ineffi-

ciently and are limited to the problem with a small number of item

candidates. In this paper, we focus on the ranking problem with a

large number of items. Thus, we do not consider feature-free model

in the experiments.

Feature-rich models learn efficiently in terms of the number of

items. They are suitable for large-scale ranking problems. Among

them, ranked bandits [29, 30] are early approaches to online LTR.

In ranked bandits, each position is model as a MAB and diversity of

results is addressed in the sense that items ranked at lower positions
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are less likely to be clicked than those at higher positions, which

is different from the topical diversity as we study. Also, ranked

bandits do not consider the position bias and are suboptimal in

the problem where a user browse different possition unevenly,

e.g., CM [16]. LSBGreedy [32] and C2UCB [27] use submodular

functions to solve the online diverse LTR problem. They assume

that the user browses all displayed items and, thus, do not consider

the position bias either.

Our work is closely related to CascadeLinUCB [35] and

CascadeLSB [11], the baselines in our experiments, and can be

viewed as a combination of both. CascadeLinUCB solves the rele-

vance ranking in the CM and assumes the attraction probability is

a linear combination of features. CascadeLSB is designed for result

diversification and assumes that the attraction probability is com-

puted as a submodular function; see Eq. (6). In our CascadeHybrid,
the attraction probability is a hybrid of both; see Eq. (7). Thus,

CascadeHybrid handles both relevance ranking and result diversi-

fication. RecuRank [22] is a recently proposed algorithm that aims

at learning the optimal list in term of item relevance in most click

models. However, to achieve this task, RecuRank requires a lot of

randomly shuffled lists and is outperformed by CascadeLinUCB in

the CM [22].

The hybrid of a linear function and a submodular function has

been used in solving combinatorial semi-bandits. Perrault et al.

[26] use a linear set function to model the expected reward of arm,

and use the submodular function to compute the exploration bonus.
This is different from our hybrid model, where both the linear and

submodular functions are used to model the attraction probability

and the confident bound is used as the exploration bonus.

7 CONCLUSION
In real world interactive systems, both relevance of individual items

and topical diversity of result lists are critical factors in user satisfac-

tion. In order to better meet users’ information needs, we propose a

novel online LTR algorithm that optimizes both factors in a hybrid

fashion. We formulate the problem as cascade hybrid bandits (CHB),

where the attraction probability is a hybrid function that combines

a function of relevance features and a submodular function of topic

features. CascadeHybrid utilizes a hybrid model as a scoring func-

tion and the UCB policy for exploration. We provide a gap-free

bound on the η-scaled n-step regret of CascadeHybrid, and con-

duct experiments on two real-world datasets. Our empirical study

shows that CascadeHybrid outperforms two existing online LTR

algorithms that exclusively consider either relevance ranking or

result diversification.

In futurework, we intend to conduct experiments on live systems,

where feedback is obtained frommultiple users so as to test whether

CascadeHybrid can learn across users. Another direction is to adapt
Thompson sampling [31] to our hybrid model, since Thompson

sampling generally outperforms UCB-based algorithms [20, 35].
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