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ABSTRACT

XML retrieval is a departure from standard document re-
trieval in which each individual XML element, ranging from
italicized words or phrases to full blown articles, is a po-
tentially retrievable unit. The distribution of XML element
lengths is unlike what we usually observe in standard docu-
ment collections, prompting us to revisit the issue of docu-
ment length normalization. We perform a comparative anal-
ysis of arbitrary elements versus relevant elements, and show
the importance of length as a parameter for XML retrieval.
Within the language modeling framework, we investigate
a range of techniques that deal with length either directly
or indirectly. We observe a length bias introduced by the
amount of smoothing, and show the importance of extreme
length priors for XML retrieval. We also show that simply
removing shorter elements from the index (by introducing
a cut-off value) does not create an appropriate document
length normalization. Even after increasing the minimal size
of XML elements occurring in the index, the importance of
an extreme length bias remains.
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1. INTRODUCTION

The importance of document length normalization is a
recurring theme in information retrieval (IR). In the early
days of IR, test collections were based on abstracts, resulting
in short documents about a single topic. Here, taking into
account parts of the document not about the topic at hand
(negative information) was as important as accounting for
positive information [29]. This motivated techniques like the
standard SMART method of document length normalization
using a cosine function. The advent of TREC in 1992 intro-
duced large-scale test collections with full-text documents.
Documents in these collections were much longer, and had
more length variety than the collections based on abstracts.
Full-text documents usually have multiple subtopics, frus-
trating the use of negative information [4]. As a result, full-
text retrieval necessitated a revision of document length nor-
malization [32]. The introduction of XML retrieval marks a
similar revolution in IR. Although a text collection of XML
documents may have a similar number of articles as stan-
dard TREC-sized collections, the number of XML elements
in the collection takes us to quite a different scale. There are
millions of XML elements that can potentially be retrieved
as an answer to a query, having a great variety in length
(ranging from single words or phrases put in italics or in
titles, to full-blown articles). XML retrieval prompts us to
revisit the issue of length normalization.

The task on which we focus in this paper is XML ele-
ment retrieval. Here, each of the text elements into which
XML documents are divided, is an object that can in prin-
ciple be returned in response to a query. Thus, XML ele-
ment retrieval is one of several recent retrieval tasks aimed
at pinpointing highly relevant information; other examples
include question answering [34] and the novelty track [33].
The INitiative for the Evaluation of XML retrieval (INEX)
was launched in 2002 to assess the effectiveness of retrieval
methods for XML document and element retrieval [16]. We
focus on so-called content-only (CO) topics, which are tra-
ditional IR topics written in natural language. Length-wise
there are several noteworthy aspects of the INEX test col-
lection. First, the collection has over 12,000 articles, but
nearly 7,000,000 XML elements. Second, the XML element
length distribution is much more skewed than normal docu-
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Although we could have applied the methodology of Sing-
hal et al. [32] directly to the problem of XML retrieval, we



follow a somewhat different approach. The reasons for this
are twofold. First, we do not want to rely on a particular
retrieval system for our analysis, since there is no consensus
yet on what the default settings for XML retrieval are. In
fact, systems using standard settings from ad hoc retrieval
do not perform impressively. Second, we want to address
the problem within the language modeling framework, fo-
cusing on techniques that address length either directly or
indirectly. No matter which retrieval model one uses, main
components that affect the importance of a term in a text
are the term frequency, the inverse document frequency, and
document length. In the generative language modeling ap-
proach that we adopt in this paper, these three aspects are
captured by the model(s), smoothing procedures, and pri-
ors [26]. Our overall motivation is to identify effective XML
retrieval methods that are highly portable across XML col-
lections in the sense that they only exploit statistical aspects
(both content and non-content) of XML documents, and do
not depend on specific schemas or tag sets. Specifically, in
this paper we aim to understand how priors and smooth-
ing affect XML element retrieval performance. We address
these two issues in the following manner.

For the priors aspect, we need to bridge the gap between
the average element length and average relevant element
length. Since we want to balance the “pinpointing” nature
of the XML element retrieval task with the (apparent) im-
portance of long elements, we want to do something more
intelligent than only returning the longest possible elements
(i.e., articles) in the collection. One of the important con-
tributions of language modeling in IR is the recognition of
parameter estimation as a fundamental issue in IR [12]. An
unbiased estimator need not be the best estimator; for a
number of applications it can be highly advantageous to ac-
cept a certain degree of estimation bias if in return there
is a reduction in estimation variance. Document priors and
smoothing provide a convenient way of biasing estimates [3|
26]. Priors allow one to import “non-content” features of
documents (or elements) into the scoring mechanism. Doc-
ument length is a good example of information about a doc-
ument that is not directly related to its contents, but might
still be related to the possible relevance of the document.
Singhal et al. [32] showed that for ad hoc document retrieval,
there is a correlation between document length and a priori
probability of relevance.

Our other main issue in this paper is smoothing for XML
element retrieval. Since document (and element) language
models may suffer from inaccuracy due to data sparseness,
a core issue in language modeling is smoothing, which refers
to adjusting the maximum likelihood estimator for the doc-
ument (or element) language model by combining it with
a background language model. Two things are at stake:
first, since element scores are constructed from very short
amounts of text, improving the probability estimates is very
important. Second, smoothing facilitates the generation of
common terms (a tf - idf like function). Smoothing is known
to be task dependent. Language models for ad hoc retrieval,
and other tasks assessed in terms of mean average precision
scores, tend to perform better if much smoothing is done |18
13]. In contrast, language models for high precision tasks
such as web retrieval tasks seem to perform better if very
little smoothing is applied [19]. Smoothing plays a special
role in XML retrieval: With smoothing, short elements con-
taining only one or a few of the query terms will receive

a high relevance score. Without smoothing, only elements
containing all query terms will be returned. So within the
language modeling framework, the amount of smoothing is
a factor that may affect the length of retrieved elements.

The rest of this paper is organized as follows. We discuss
related work in Section[2l In Section 3] we take a closer look
at length features of the INEX 2002 and 2003 test suites.
Section {] details our retrieval model, and describes our ex-
periments with the effect of length priors and smoothing on
XML element retrieval performance, and in Section [5| we
discuss the results of our experiments. Section |§| concludes
the paper.

2. RELATED WORK

Related work comes in several kinds; here we discuss lan-
guage modeling and XML retrieval.

2.1 Language Modeling

Language modeling approaches to IR provide a promis-
ing formal framework for describing a range of retrieval
processes, such as web retrieval [19] and cross-lingual re-
trieval [13]. Language models provide a natural setting for
modeling structured documents. The basic idea is to esti-
mate a language model for each document, and then rank
documents by the likelihood of the query according to the
estimated model. Since the document (or element) score
is generally a sum of logarithms of the probability of a
word given a document (or element) model, the retrieval
performance is generally sensitive to the smoothing parame-
ters [37]. A simple, yet effective smoothing procedure, which
has been successfully used for ad hoc and other retrieval
tasks alike (and which we also use in this paper) is linear
interpolation |26}, |37].

Working in the language modeling setting, Hiemstra and
Kraaij [15] show that document length serves as a helpful
prior for the ad hoc task at TREC, but others have not
found document priors to make a significant difference for
ad hoc tasks [21]. Miller et al. [26] combined information in
their document priors, including document length. In the
setting of web retrieval, Kraaij et al. [20] used priors based
on the depth of the URL.

2.2 XML Retrieval

Early work by Wilkinson on structured documents showed
that extracting XML elements from a ranked list of docu-
ments is a poor strategy [36]; one of the positive outcomes,
however, was that exploiting the structure of documents
can lead to improved document retrieval performance. At
INEX 2002 |8] and 2003 9], a broad spectrum of techniques
was used to exploit non-content aspects of XML documents
in addressing the XML element retrieval task. For instance,
the JuruXML system by Mass et al. |25 |5] extends the tradi-
tional vector space model by allowing XML collections to be
searched through so-called “XML fragments” which combine
content and structure features. Similarly, Govert et al. [10]
exploit content and structure features to identify relevant el-
ements and to redistribute relevancy from elements to their
enclosing elements.

Several teams have used a language modeling approach
to XML element retrieval. E.g., Ogilvie and Callan [27] [28]
use a tree-based generative language model for ranking doc-
uments and components. Nodes in the tree correspond to
document components, and at each node in the document
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Figure 1: Length distribution of XML elements.

tree, there is a language model. The language model for a
leaf node is estimated from the component associated with
the node; inner nodes are estimated using a linear inter-
polation among the children nodes. List and De Vries [22]
use a language modeling approach where structural prop-
erties of documents are mapped to dimensions of relevance
and these dimensions are used for retrieval purposes. Hiem-
stra |14] presents a complex architecture, catering for XPath
queries and traditional IR-style statements of an information
need, based on a language modeling component for the IR
part; one of his findings is that “it is beneficial to assign
a higher prior probability of relevance to bigger fragments
of XML data than to smaller XML fragments.” At INEX
2003, Abolhassani et al. [1] experimented with adaptations
of a language model based on Amati’s divergence from ran-
domness [2] to XML element retrieval. Finally, the TIJAH
XML-IR system by List et al. |23] follows a ‘standard’ lay-
ered database architecture in which the conceptual level is
built around a language modeling approach to information
retrieval.

3. XML ELEMENT LENGTH

To better understand the importance of element length
for XML retrieval, we analyze the length of XML elements
versus the length of relevant XML elements. We do this
by ordering the elements in the INEX collection by length,
and dividing them into several “bins” [32]. We calculate
length by the number of term occurrences in an element.
Following [20], we use exponential-sized bins. Specifically,
we use 20 bins on an exponential scale ranging from 10° (=1)
to 10*® (=31,623). We only look at text-carrying elements
as they occur in our index, which are shorter due to stopword
removal.

Figure a) shows the number of XML elements for each
of the bins. The distribution of elements is heavily skewed
toward short elements, such as italics. The average XML
element is short, with a length of 29, while the median
length is only 2. We also investigate the length of relevant
XML elements, by using the strict assessments of INEX 2002
and 2003 CO topics. Figure b) shows the number of rele-
vant XML elements over all INEX 2002 and 2003 CO topics.
Apart from the shortest elements, say shorter than 10, the
distribution of elements is fairly even over the bins. The
two topic sets are, qualitatively, quite similar, although rel-
atively fewer of the longest elements are relevant for the 2003
topic set. There is a radical difference between the length

distributions of relevant XML elements and of all XML el-
ements in the collection. The average relevant element is
substantially longer than the average element in the collec-
tion. For the 2002 topic set, the mean length is 1,484 and
the median length 221. For the 2003 topic sets, the mean
length is 1,010 with a median of 226.

We can further investigate the observed difference by es-
timating the prior probability of relevance of XML elements
in each of the bins. Figure [Ifc) shows the probability that
an XML element in each of the bins is relevant for any of the
INEX CO topics. The distribution is heavily skewed toward
long elements, such as full articles. The main difference be-
tween the 2002 and 2003 topic sets is in the longest elements
having thousands of terms; considering that the average ar-
ticle has length 3,234 (with a median of 2,737) these are
mostly long articles or their bodies. The difference between
the probability of relevance curves in Figure c) and the
XML element length curve in Figure a) could hardly be
more striking. If we do XML retrieval that is unbiased with
respect to length, our retrieved elements will be distributed
like in Figure[Ia). Given the prior probability of relevance,
this is far from optimal. This clearly shows that XML ele-
ment length is a crucial parameter for XML retrieval.

4. EXPERIMENTS

4.1 Collection and Metrics

We evaluate our methods against the INEX 2002 and 2003
XML information retrieval test-suites [11]. The INEX doc-
ument collection contains over 12,000 articles (consisting of
nearly 7,000,000 elements) from 21 IEEE Computer Society
journals, with layout marked up with XML tags. The collec-
tion contains around 170 different tag-names, representing
units as diverse as complete articles (article), sections (sec),
paragraphs (p) and italics font (it).

In the INEX initiative, relevance is assessed at the el-
ement level. Elements are assessed on a two dimensional
graded relevance scale, with one dimension for topic rele-
vance (or exhaustiveness) and another for element coverage
(or specificity). Relevance or exhaustiveness measures the
extent to which an element covers or discusses the topic
at hand, while coverage or specificity measures the extent
to which the element focuses on the topic at hand (see [8}
p. 184] or 9, p. 204] for details). We evaluate our method
on a strict scale, considering an element relevant if, and only
if, it is judged highly relevant (exhaustive) with exact cover-



2002 topic set

2003 topic set

A 6 N MAP Change A S N MAP  Change

Normal ad hoc settings 02 1.0 0 0.0409 (baseline) 0.2 1.0 0 0.0832 (baseline)
Optimal smoothing 09 10 0 0.0598  +46%*** 06 1.0 0 0.0916 +10%
Extreme length prior 02 20 0 0.0682 +67%** 02 20 0 0.1457 +75%**

0.2 3.0 0 0.0839 +105%*** 0.2 3.0 0 0.1329 +60%*
Cut-off 0.9 0.0 40 0.0551 +35%** 0.6 0.0 20 0.0915 +10%
Cut-off + length prior 0.2 2.0 40 0.0781 +91%*** 0.2 2.0 40 0.1530 +84%**

0.2 3.0 40 0.0883 +115%*** 0.2 3.0 40 0.1364 +64%*

Table 1:

age (highly specific). We use version 1.8 of the INEX 2002
relevance assessments and version 2.4 of the INEX 2003 as-
sessments. There are assessments for 23 topics (2002) and
26 topics (2003), the average number of relevant elements
per topic is 61 (2002) and 56 (2003).

Evaluation is done using the trec_eval program. For
the task we are evaluating the trec_eval program gives
the same results as the inex_eval program provided by the
INEX initiative |8} [9]. We choose to use trec_eval since
it has been thoroughly tested and since it allows us to use
our previously developed tools for result analysis and signif-
icance testing.

4.2 Retrieval Framework

Since individual XML elements are the unit of retrieval,
we treat each element as a separate indexing unit. For each
element we index all the text that is contained within it,
including the text within its descendants. Hence we cre-
ate an overlapping index, since the text nested at depth n
in the XML tree is indexed as part of n different indexing
units. We do not apply a stemming algorithm, but lower-
case all text and remove stop-words. Our index contains
6,779,686 text-carrying elements, 12,107 of which are the
articles. This index is highly redundant with 196,960,033
terms, while the non-overlapping article elements contain
only 39,155,803 terms (a factor of 5 smaller).

All our retrieval runs are based on a multinomial lan-
guage model, with tunable length prior and Jelinek-Mercer
smoothing [13]. We estimate a language model for each
XML element in the collection. For a given query we rank
the elements with respect to the likelihood that the element
language models generate the query. This can be viewed as
estimating the probability P(e,q),

(1) P(e,q) = P(e) - P(qle)

where e is an element and ¢ is the query. Thus we need
to estimate two probabilities: the prior probability of the
element, P(e); and the probability of generating the query,
P(qle). We will explore several ways estimating the prior
probability of an element as a function of its length. For the
probability of the query we assume the terms to be indepen-
dent, and we use a linear interpolation of an element model
and a collection model to estimate the probability of a query
term. The probability of a query t1,...,t, is estimated as,

n

ctale) = [TV Ptile) + (1= A) - P(t),

=1

2)  P(t,..

where P(t;]e) is the probability of observing a term in an
element, and P(t;) is the probability of observing the term

Comparison between different retrieval methods and topic sets.

in the collection. Both probabilities are estimated using
maximum likelihood estimation. The parameter A is the so-
called smoothing parameter. The calculation of probabilities
can be reduced to the scoring formula for an indexing unit
e and query t1,...,tn,

s(eytiy. .. tn) =0 log <Z tf(t,e))
3 + ilog <1+ (

A tf(tive) : (Zt df(t))

L= X)-df(t:) - (2, tf(t,e))
where tf (¢, €) is the frequency of term ¢ in unit e; df (¢) is the
count of units in which term ¢ occurs; and \ is the weight
given to the element language model when smoothing with
the collection model. Our introduction of the parameter
B serves as a handy knob to turn when trying to bridge
the length gap between an average element and an average
relevant element. For 8 = 0 this results in a uniform distri-
bution over length or using no length prior, for 8 = 1 this
results in a normal length prior, for 8 = 2 a squared length
prior (the prior probability of an element is proportional to
the square of its length), etcetera.

Another way to try to bridge the length gap between av-
erage elements and average relevant elements is to restrict
the view of the index to the elements that are the most
likely to be relevant to a query. T'wo approaches to this aim
have been proposed. One is to index only elements whose
tag names are from a predefined list of tag names. The list
can be compiled after careful analysis of tag name seman-
tics [10] or by using existing relevance assessments [24]. The
other way is to restrict the view to elements that pass a cer-
tain length threshold, or a cut-off value N. We will explore
the latter option since we want to explore retrieval methods
that do not rely on specific schemas or tag sets. We ap-
ply the index cut-off value N after building the index, but
also prune the statistics accordingly, making it equivalent to
having only indexed elements of size at least V.

4.3 Runs

Our runs are made using only the title and description
fields of the topics. The topics are processed as the collec-
tion; the text is lower-cased and stop-words are removed.

To determine the effect of smoothing we experiment with
a range of values for the smoothing parameter A from the
interval [0.1,0.9]. To determine the importance of the length
prior, B, we experiment with values ranging from 0.0 to 5.0.
In order to examine the interplay between the smoothing
parameter and the length prior we run experiments on the
two-dimensional search space determined by A and (.
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Figure 2: Mean average precision for different length priors (3, plotted against the smoothing parameter \.

As we want to compare the effect of the length prior and
the effect of index cut-off, we perform similar experiments
for different index cut-off values as we do for different length
prior values. Hence, we explore the two dimensional search
space determined by A and IV, where the index cut-off values
N range from 0 to 60.

The length prior and the index cut-off value have the same
aim; to draw the attention from the very many, very short el-
ements in the collection, to the fewer, longer elements appre-
ciated by assessors. To find out whether these two methods
complement each other we explore the search space deter-
mined by 8 and N. Here, we will limit the search space to
key values of the length prior and cut-off parameters.

5. RESULTS AND DISCUSSION

Table [I] shows a summary of the results we will discuss
in this section. As our baseline we choose a retrieval run
with parameter settings that are considered traditional for
ad hoc retrieval. That is, we use a low value for the smooth-
ing parameter (A = 0.2) and we use a normal length prior
(8 = 1.0). To determine statistical significance we use the
bootstrapping method, a non-parametric inference test [6}
7). The method has previously been applied to retrieval eval-
uation by, e.g., [35] and [30]. We take 100,000 re-samples
and look for improvements (one-tailed) at significance levels
0.95 (*), 0.99 (**), and 0.999 (***). Because of the bewil-
dering size, the parameter space has not been fully explored
to find the optimal parameter for each method.

5.1 Smoothing for Length Bias

Figure |2| shows the mean average precision for different
values of the length prior and different values of the smooth-
ing parameter. To determine the effect of smoothing we look
at the curves where there is no length prior (8 = 0.0) or
where the normal length prior is used (8 = 1.0). We see
that, for both topic sets, the optimal value of the smooth-
ing parameter A is in the higher end. This is surprising
since these are settings normally applied for high-precision
retrieval tasks. The XML retrieval task, in contrast, is an ad
hoc retrieval task evaluated with mean average precision. A
closer look at the retrieved elements shows that, on average,

longer elements are returned when a higher value is given to
the smoothing parameter A. The average length of retrieved
elements can be seen in Figure[3] The figure shows the runs
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Figure 3: Average length of retrieved elements, for
different length priors (3, plotted against the smooth-
ing parameter ). (Using the 2002 topics.)

for the 2002 topic set, the plot for the 2003 topic set is nearly
identical. A high value of A means that the presence of a
query term in an element is rewarded (we are approaching
coordination level matching). Since long elements are more
likely to contain many of the query terms, high values of A
have the required length bias effect.

Comparing the two topic sets we see that the optimal
value for the smoothing parameter \ is slightly different.
The optimal value is 0.9 for the 2002 collection but 0.6 for
the 2003 collection. This can be explained by the fact that
the 2003 assessments seem to have slightly less bias toward
long elements than the 2002 assessments do (see Figure [1f).
By increasing the smoothing parameter we get an improve-
ment of +46% (***) and +10% (7) over the standard ad hoc
settings, respectively for the 2002 and 2003 topic sets.
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5.2 Length Priors

To determine the effect of the length prior we look at the
curves for 8 = 2.0 and 8 = 3.0 in Figure[2} In the remain-
der of this paper, we will refer to either of these values of
the length prior as extreme length priors. For both topic
sets, the score improves over the normal length prior set-
tings. Also, the optimal value for the smoothing parameter
A moves to the lower portion of the search space. The opti-
mal value for the smoothing parameter is now in line with
other tasks evaluated using mean average precision. This
is because the smoothing parameter no longer works as a
length bias. That function is taken care of by the extreme
length priors. See Figure[3|for the average length of retrieved
elements. Even higher values of the smoothing parameter
did not result in improved scoring.

Comparing the two topic sets we see that the optimal
value for the length prior § is different. While the runs
using the 2002 topic set peak at § = 3.0, the runs using the
2003 topic set peak at § = 2.0. The fact that a less extreme
length prior is needed for the 2003 topic set is, again, in line
with the observations on length bias for the INEX topics
in Section Increasing the length prior 8 up to 3.0 gives
us an improvement of +105% (***) over the baseline for
the 2002 topic sets and +60% (*) for the 2003 topic set.
Although we are not using the optimal value for the 2003
topic set, we still get a statistically significant result. If we
look at the optimal value for the 2003 topic set, 8 = 2.0,
the improvement is +67% (***) for the 2002 topic set and
+75% (***) for the 2003 topic set. The optimal value for
the length prior changes between topic sets. However, for
both topic sets we get quite remarkable and statistically
significant improvements, even when we use the sub-optimal
length prior learned from experiments on the other topic
set. This tells us that length must be taken seriously when
retrieving XML elements, and extreme length priors are of
great importance.

Finally, we have seen that the smoothing parameter is
dependent on the length prior. In the absence of a length
prior, the smoothing parameter introduces a length bias.
However, when we do use an extreme length prior for the
length bias, the smoothing parameter can go back to what

it does best, namely smoothing.

5.3 Element Length Cut-offs

The length priors have a dual effect: on the one hand they
make it effectively impossible to retrieve short elements, and
on the other hand they influence the relative ranking of
longer elements. We investigate now the relative importance
of these two effects, restricting the minimal size of XML el-
ements in our index. That is, we explore the effect of dif-
ferent values for the index cut-off, N, using no length prior
(8 = 0.0), but different values for the smoothing parameter
A. Remember that using an index cut-off N is equivalent to
using an index where we only index elements containing N
or more terms.

Figure [4] shows the effect of a few cut-off settings on both
the INEX 2002 and INEX 2003 topic sets. Using cut-offs
does indeed improve scoring. There is not much difference
in performance between different cut-off values in the inter-
val from 20 to 50. As the cut-off value further increases,
the performance tapers off and starts to drop, since we are
simply leaving out too many relevant elements from our in-
dex (see Figure . Again we see a slight difference in the
optimal value for the two test sets: the 2002 topic set peaks
at N =40 and X = 0.9 with +35% (**), and the 2003 topic
set peaks at N = 20 and A = 0.6 with +10% (7). The per-
formance for the 2002 topics drops only slightly when going
from N = 40 to N = 60. The performance for the 2003 top-
ics drops already when going from N = 20 to N = 40. This
difference can again be explained by the different length bias
in the two assessment sets.

For both topic sets, the cut-off improves scoring by far less
than the extreme length priors. Cut-off does help to get rid
of the very many very short elements, but we still need an
explicit length bias to distinguish between the longer and
shorter elements remaining in our index. Figure [f] shows
the average length of retrieved elements for different cut-off
values. It is interesting to note that the curves for the cut-
off, with no length prior, are very similar to the curve for the
single length prior in Figure It is plausible that the reason
why the single length prior does not perform good enough
is that its only effect might be to downplay the very many,
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smoothing parameter . (Using the 2002 topics.)

very short elements, but it does not introduce enough bias
toward the relatively long elements considered meaningful
by assessors.

5.4 Length Prior plus Cut-off Value

We have seen that although extreme length priors and
a cut-off value can both lead to improved scoring, the two
methods do not behave in the same way. While the extreme
length priors introduce a bias toward longer elements within
an index, the cut-off merely keeps the very short elements
outside of the index. Furthermore, the extreme length prior
leads to far greater improvements than the cut-off. There-
fore, it is interesting to see whether the extreme length prior
runs can improve further when applied on a cut-off index.

To demonstrate this effect we choose to apply the extreme
length prior together with an index cut-off N = 40. There
is, however, hardly any difference in performance between
choosing different cut-off values in the interval from 20 to 50.
Combining a value of 3.0 for length prior 8 with a value of 40
for cut-off N does indeed give us further improvements. For
the 2002 topic set the improvement is +115% (***) over the
normal baseline and we get +5.2% (*) improvement over the
length prior (8 = 3.0) alone; both improvements are statis-
tically significant. For the 2003 topic set the improvement
is +64% (*) over the normal baseline and +2.6% (7) over
the length prior alone; here, only the improvement over the
baseline is statistically significant. Using 8 = 2.0 for the
length prior and N = 40 for the cut-off also improves the
results. For the 2002 topic set the improvement is +91%
(***) over the normal baseline and and +15% (**) over the
length prior (8 = 2.0) alone. For the 2003 topic set the im-
provement is +84% (**) over the normal baseline and +5%
(7) over the length prior alone.

The improvement effect of index cut-off is not as clear
as the effect of the extreme length prior. Alone, it is by
far inferior to the extreme length priors. Combining length
prior and cut-off does improve over the use of length prior
alone, but the improvement is statistically significant only
for one of the two topic sets.

6. CONCLUSION

This paper revisited document length normalization in the
context of an XML element retrieval task. We performed
a comparative analysis of the length of arbitrary elements
versus that of relevant elements, and highlighted the impor-
tance of length as a parameter for XML retrieval. Within the
language modeling framework, we investigated techniques
that deal with length either directly or indirectly: length
priors, index cut-off, and the amount of smoothing. We ob-
served a length bias introduced by the amount of smooth-
ing, and showed the importance of extreme length priors for
XML retrieval. When used with extreme length priors, the
smoothing parameter regains its normal function of control-
ling term importance. Furthermore, we showed that simply
removing shorter elements from the index (by introducing
a cut-off value) does not create an appropriate document
length normalization. After restricting the minimal size of
XML elements occurring in the index, the importance of
an extreme length bias remains. The combination of length
priors with index cut-off does lead to a slight further im-
provement.

The importance of extreme length normalization in XML
retrieval should not be interpreted as a general claim that
long XML elements are inherently more relevant than short
elements. Rather, it is a way to counterbalance the heav-
ily skewed length distribution of elements in the collection.
Our analysis showed that relevant elements are fairly evenly
distributed over length. We need the extreme length nor-
malization in order to retrieve a distribution of elements that
is not skewed over length. Based on these observations, we
postulated that accounting for these length aspects of XML
retrieval leads to improvement of performance, which was
confirmed by our experiments.

Although we find convincing evidence for our findings on
the INEX collection, and although the value of the approach
has been demonstrated by the top ranking results of a sys-
tem implementing the approach at the INEX 2003 work-
shop [31], the usual disclaimers apply. As with any exper-
imental result, there is no guarantee that these results will
carry over to every other collection. XML collections can
have great variety in structure, potentially very different
from that in full-text digital libraries like the IEEE Com-
puter Society. Furthermore, the INEX test-suite is based on
peer-assessments by one judge per topic (leading to consider-
able variety in judgments especially between topics) and fa-
cilitated by a particular interface (potentially creating some
biases, e.g., elements are presented within the context of the
full article). By the same token, it is clear that the observed
length effects are not unique for XML retrieval. Similar ef-
fects may be observed in every collection where the distribu-
tion of lengths of documents is very skewed. Arguably, some
of these effects, such as the length-bias introduced through
smoothing, play a role with every collection, be it to a lesser
extent than in the case of XML retrieval.
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