
Best-Match Querying from Document-Centric XML

Jaap Kamps
∗

Maarten Marx Maarten de Rijke Börkur Sigurbjörnsson
Informatics Institute, University of Amsterdam

Kruislaan 403, 1098SJ Amsterdam, The Netherlands
{kamps,marx,mdr,borkur}@science.uva.nl

ABSTRACT
On the Web, there is a pervasive use of XML to give light-
weight semantics to textual collections. Such document-
centric XML collections require a query language that can
gracefully handle structural constraints as well as constraints
on the free text of the documents. Our main contributions
are three-fold. First, we outline two fragments of XPath tai-
lored to users that have varying degrees of understanding of
the XML structure used, and give both syntactic and seman-
tic characterizations of these fragments. Second, we extend
XPath with an about function having a best-match seman-
tics based on the relevance of the document component for
the expressed information need. Third, we evaluate the re-
sulting query language using the INEX 2003 test suite, and
show that best-match approaches outperform exact-match
approaches for evaluating content-and-structure queries.

General Terms
Full-text XML querying, XPath, XML Retrieval

1. INTRODUCTION
There is an ever growing availability of semi-structured

information on the Web. Increasingly, Web users have ac-
cess to text documents, equipped with some semantic hints
through XML-markup. How can we query data of this kind?
We could adopt a standard information retrieval approach:
perform best match querying using plain text queries. But
this would not allow users to specify constraints on the doc-
ument structure. Alternatively, we could query the docu-
ments using a database approach: perform exact-match us-
ing XPath queries. The disadvantage here is that effective
query formulation is non-trivial and recall is often too low.

Within the INitiative for the Evaluation of XML Retrieval
(INEX) [8], the above shortcomings are being addressed by
combining the two approaches. Free text search functional-
ity is added to XPath, in the form of a new function, the
about function. It has the same syntax as the standard
contains function. The about function has three main fea-
tures: (1) it allows us to formulate information needs in
terms of a mixture of content and structure requirements;

∗Currently at Archives and Information Studies, Faculty of
Humanities, University of Amsterdam.

Copyright is held by the author/owner.
Seventh International Workshop on the Web and Databases (WebDB 2004),
June 17–18, 2004, Paris, France

(2) it allows us to use best-match querying of document-
centric XML; and (3) it has a standard syntax.

User oriented studies from INEX have shown that full
XPath is too complex for querying document-centric XML
documents, not just for average users but also for experts.
Moreover, it is unrealistic to assume that Web users have
full knowledge of the structure of the documents they want
to query. We discuss several XPath fragments (extended
with about) that are simpler and, we believe, more effective
for querying document-centric XML for users.

Proposals for new query languages should be subjected
to a number of sanity checks: we need to understand their
expressive power, and we need to assess their effectiveness
with respect to the information need they are meant to ad-
dress. To address the former we relate the query languages
to logical structures, for which expressiveness results are
well-known. To address the latter, we discuss several ways
in which a search engine can process queries formulated in
the language, in order to satisfy a user’s information need.
We perform a user-oriented evaluation of the approaches,
using test suites made available through INEX.

In Section 2 we provide background on querying docu-
ment-centric XML. In Section 3 we discuss content-oriented
flavors of XPath and provide them with semantic character-
izations of their expressive power. Section 4 describes the
set-up for our user-oriented evaluation, whose results are
discussed in Section 5. We conclude in Section 6.

2. QUERYING XML
XML can be used to mark up content in various ways.

Based on the content, XML documents are often broken
down into two categories: data-centric and document-centric.
Data-centric documents are highly structured data marked
up with XML tags. An example of data-centric XML is Ge-
ographic data in XML [10]. Document-centric documents
are loosely structured documents (often text) marked-up
with XML. An example of document-centric XML is an
electronic journal in XML. Document-centric XML is some-
times referred to as narrative XML, reflecting that the order
in which XML elements occur is crucial. For our exper-
iments we use the document-centric XML collection that
comes with the INEX test suite [8]. It contains over 12,000
computer science articles from 21 IEEE Computer Society
journals. The articles are marked up with XML tags. On
average an article contains 1532 elements and the average
element depth is 6.9. About 170 tag names are used, such
as articles 〈article〉, sections 〈sec〉, author names 〈au〉, affili-
ations 〈aff〉, etc.



Whereas currently emerging standards for querying XML,
such as XPath and XQuery, can be very effective for query-
ing data-centric XML, another approach may be needed for
querying document-centric XML. The latter task is a nat-
ural meeting point of two disciplines: the XML nature of
the documents calls for methods from the database field for
querying structure, and the textual nature of the documents
calls for approaches from the field of information retrieval
(IR) (cf. [14, Section 5]). It is interesting to contrast the two
subtasks. As to querying structure, XML query languages
such as XPath have a definite semantics. Judging whether
an element satisfies an XPath query can be done by a com-
puter (XPath processor), based on the pattern appearing
in the XML document, using an exact match approach. It
is clearly defined which nodes or elements match a given
query. An XPath processor will return precisely these ele-
ments with no inherent ranking of results. As to querying
text, on the other hand, IR uses free text queries. These
can be keywords or full sentences describing an information
need. An IR system uses a best match approach: it attempts
to rank the nodes or elements by their topical relevance to
the user’s query, and returns the results, ordered by esti-
mated relevance.

In IR, queries are not taken literally but as an expression
of an implicit, underlying information need. Users generally
lack an intimate knowledge of the sorts of documents that
may satisfy their information need. As a result, they often
have problems formulating precise queries for their informa-
tion need [1]. E.g., a document that talks about macintosh
computers might be considered as a valid response to a query
about apple computers. To a general user macintosh com-
puters will convey the same information as apple computers.
Note that this problem is aggravated in the context of query-
ing document-centric XML; is it realistic to assume that ev-
ery user is familiar with the document structure used?

Determining whether a document or element answers a
query is not a clearly defined mechanical process, but a judg-
ment made by a human assessor based on the rather vague
notion of relevance [12]. System performance is evaluated
experimentally using a test-set consisting of (1) a collection
of documents; (2) a number of queries; and (3) human-made
relevance judgments that determine which documents or el-
ements answer particular queries. The quality of an IR sys-
tem is measured in terms of how accurately the system was
able to imitate the human assessors.

3. CONTENT ORIENTED XPATH
To query document-centric XML documents we need a

hybrid query language, in which content and structural re-
quirements can be expressed and mixed. At INEX, an XPath-
like query language is suggested, which is appropriate for
XML information retrieval. The syntax of the language
looks like XPath, but does not have the same strict seman-
tics. It can be seen as an extension of a subset of XPath.

In this section, we will first motivate why XPath needs to
be restricted and examine some fragments of XPath (Sec-
tion 3.1). We will then motivate why those fragments need
to be extended with the about function (Section 3.2). We
put everything together, by briefly discussing the query for-
mat used at INEX (Section 3.3).

3.1 Restricting XPath
Experience from INEX has shown that people—in this

case, academics familiar with query languages—have great
difficulties in using (the navigational part of) XPath to for-
mulate queries that combine content and structural aspects
[11]. The restriction to navigational XPath was originally
motivated by the fact that it is a widely used technology,
whence it was assumed that it would be easily learnable.
This assumption proved to be wrong.

Based on the extensive data described in [11], we argue
that the cause of users’ difficulties in writing content-and-
structure queries is located in a combination of two related
items: (1) Users have no, or only incomplete, knowledge
of the structure of the documents, that is, of the DTD.1

(2) Users have problems handling the expressive power of
XPath. In particular, the fact that the same query can
be expressed in several fundamentally different ways proved
problematic for users. These observations lead to two con-
straints for XPath fragments: it should be possible to for-
mulate information needs even with limited knowledge of
the DTD, and the expressive power should be restricted.

A user’s knowledge about a set of documents can be natu-
rally formalized in terms of an indiscernibility relation over
the elements selected by an XPath query: a binary relation
that identifies elements in a document. What does such a
relation have to do with query languages? We say that a
language is safe or well-designed if indiscernible elements
cannot be distinguished by an expression in the query lan-
guage. This design criterion will help us single out natural
XPath fragments. In fact, the fragments discussed below
have a perfect fit with two user profiles formalized by an in-
discernibility relation: not only are they safe, they are also
complete in the sense that every first-order definable set of
indiscernible elements can be defined in the language.

Below, we define two user profiles, both capturing users
with limited knowledge of the DTD. First, we consider, what
we call, ignorant users who only know the tag names. Sec-
ond, we consider semi-ignorant users, who know the tag
names and have some clue about the hierarchal structure of
the elements, without knowing the full details. For both pro-
files we will design fragments that are safe for the sketched
user profiles; we interpret this as saying that the chance
that a user makes a semantic mistake when describing his
information need in terms of XPath is minimal. For clarity,
in this subsection we only consider the navigational part of
XPath. The next subsection deals with the about function.

Ignorant Users.Users formulating queries at INEX did
not have a clear idea of the DTD of the collection [11].
Typically, they browsed the documents and picked up some
knowledge about the available tags in this manner. For users
who know (a subset of) the tag names, but do not (want to)
know the structure of the documents, we create an XPath
fragment which exactly fits their knowledge. Specifically,
our ignorant user is able to ask questions like: “Give me
sections about weather forecasting where an author is affil-
iated in California”. In XPath this could be written as:

//sec[about(.,’weather forecasting’) and
//aff[about(.,’California’)]

More generally, the user can express his information need
as a conjunction of two boolean formulas: one restricting

1The DTD of the INEX XML document collection was extremely
complex. There were 192 different content types, including 11
different tag names for representing paragraphs.



the element of interest, and the other restricting the sur-
rounding document. The following syntax, which we call
non-structure aware XPath allows this. A query is of the
form //::tag[P], where tag is either the wild card * or a
tag name, and P is a predicate created using ‘and,’ ‘or,’ and
‘not’ from location paths of the form //::tag. Note that
when // :: t is used in a filter it means “there exists a de-
scendant of the root with tag t”. I.e., //::t simply says
that somewhere in the document there is a t element.

We turn to a semantic characterization of this fragment.
In social network theory [15] several indiscernibility relations
have been proposed, including the useful and robust notion
of bisimulation (a.k.a. ‘regular equivalence’). We need the
following special “structurally unaware” version.

Definition 1. Let D, D′ be documents and B a non-
empty binary relation between the elements of D and D′.
We call B a structure unaware bisimulation if, whenever
xBy, then

1. x and y have the same tag name;
2. if there exists an x′ ∈ D, then there exists a y′ ∈ D′

such that x′By′;
3. conversely for y′ ∈ D′.

Let φ(x) be a first-order formula (in one free variable) in a
suitable vocabulary; φ(x) is invariant under bisimulations
whenever the following holds: for any a, b and bisimulation
B, if φ(a) and aBb hold, then φ(b) holds as well.

A few comments. First, since we are usually comparing
elements within a single document, our notion of indiscerni-
bility relation is an auto-bisimulation, where D and D′ in
Definition 1 are the same document. Secondly, in the usual
definition of bisimulation, the clauses in items 2 and 3 above
are conditioned on x′ (and y′) being “structurally” related
to x (and y, respectively); but our ignorant user is not aware
of the structure, hence we omitted these conditions.

Theorem 2. 1. Elements that are related by a struc-
ture unaware bisimulation cannot be distinguished by a
non-structure aware XPath expression.

2. Every first-order formula that is invariant under
structure unaware bisimulations is definable by a non-
structure aware XPath expression.

We can conclude that this language fits perfectly to the
sketched user profile: the first part of the theorem states
that it is safe, the second that it is complete.

Semi-ignorant Users.For semi-ignorant users, we will de-
fine two equivalent XPath fragments. One coincides with
the fragment proposed in [11] and is supported by the query
working group at INEX 2003 [13]. We will show that these
fragments have a meaningful semantic characterization. The
fact that this fragment fits a common user profile is strong
evidence for its naturalness.

Semi-ignorant users have some ideas about the hierarchi-
cal structure of the documents. E.g., they know that para-
graphs are below sections but, as pointed out in [11], they
need not know that there can be elements in between. For
this reason, [11] proposes Positive Descendant XPath: the
fragment of XPath in which only the descendant axis may
be used and the booleans in the predicates are restricted to
“and” and “or”.

We sketch two possible ways in which semi-ignorant users
might pose queries. Suppose a user is interested in ‘bisimu-

lation’ theorems which appear in sections about ‘XPath.’ He
knows about the theorem tag 〈theorem〉 and the section tag
〈sec〉; he also knows that theorems can be nested somewhere
inside sections. This user might ask:

//sec[about(.,’XPath’)]//theorem[about(.,(1)
’bisimulation’)]

Another user might formulate the same need as:

//theorem[about(.,’bisimulation’) and(2)
ancestor::sec[about(.,’XPath’)]

The two users seem to engage in different mental processes
when formulating their queries. The first thinks top-down:
zoom in on a relevant section and then specify what sort
of information should be retrieved from that section. The
second approaches the problem bottom-up: determine a seg-
ment of interest and then think about sections that might
contain the segment. The authors of this paper disagree on
which scenario is more natural. Both scenarios can be cap-
tured in an XPath fragment, and we will show that the two
fragments are equivalent.

To admit formulation (2) above, we need to allow both
descendant and ancestor relations. We provide O’Keefe and
Trotman’s fragment [11] with a double characterization: a
semantic one in terms of simulations, and a syntactic one,
as a fragment of a well-known language in computer science,
the temporal logic CTL. First, we need some definitions.

Definition 3. Positive Temporal XPath consists of
queries of the form //tag[P], where P is in the following
restriction of navigational XPath:

– the only axis relations are descendant and ancestor;
– only boolean and and or can be used in filters.

As none of the above two XPath fragments contains nega-
tions, bisimulation is too strong a notion [9]. As a general
fact, positive fragments correspond to simulations, which are
bisimulations from which one of the directions is dropped.
We use < to denote the descendant relation between ele-
ments; i.e., x < y means that y is a descendant of x.

Definition 4. Let D, D′ be documents and B a non-
empty binary relation between the elements of D and D′.
We call B a temporal simulation if, whenever xBy, then

1. x and y have the same tag names;
2. if there exists an x′ ∈ D such that x < x′, then there
exists a y′ ∈ D′ such that y < y′ and x′By′;

3. similarly when x′ < x.

Temporal simulations correspond to users that know the el-
ement hierarchy: note that both elements below and above
have to be simulated. The next theorem is an analogue of
Theorem 2 for Positive Descendant XPath: it is both safe
and complete for semi-ignorant users.

Theorem 5. Let X be a set of nodes. The following are
equivalent on trees.

1. X is definable by a first-order formula in one free
variable in the signature with < and unary predicates
which is preserved under temporal simulations.

2. X is definable as the answer set of a Positive De-
scendant XPath formula.

3. X is definable as the answer set of a Positive Tem-
poral XPath query.



The proof uses ideas from modal logic [3, Theorem 2.78]
together with ideas from [2, Theorem 3.2]. We conjecture
that the language in item 3 of Theorem 5 is exponentially
more succinct than the language in item 2.

3.2 Extending XPath
Now that we have looked at restrictions of the navigational

part of XPath to “manageable” fragments, we look at exten-
sions with the about function. Although about has the same
syntax as the XPath function contains, their semantics are
radically different. Because of its strict, boolean character,
contains is not suitable for text rich documents. The se-
mantics of about is meant to be very liberal. Consider the el-
ement <aff>’Stanford University’</aff>. A human as-
sessor will likely decide that about(.//aff,’California’)

returns true if that element is below the node of evaluation;
but an XPath processor equipped only with contains would
have difficulties trying to do the same. As a more elaborate
example, look at the following query (against a collection
containing several articles):

Find articles where the author is affiliated in Cal-
ifornia. From those articles return sections about
weather forecasting systems.

In a hybrid syntax, mixing content and structure, this would
be something like

//article[about(.//au//aff,’California’)]//sec[
about(.,’weather forecasting systems’)]

This query has two content-based restrictions, linked by a
structural constraint. The semantics of this query is not
strict. I.e., while the navigational XPath constraint on the
resulting node set is to be interpreted strictly, the semantics
of about is necessarily vague. In the spirit of information
retrieval, the ultimate decision of relevance is in the hands of
a human assessor, who may bring lots of context and world
knowledge to his judgment. E.g., a human assessor is likely
to judge a section about ‘storm prediction systems’ to be
relevant to the information need expressed above.

3.3 INEX query format
At INEX, navigational XPath extended with the about

function and attribute-value comparisons is used to express
so-called Content-And-Structure (CAS) topics.2 These top-
ics contain the same three parts as traditional IR topics [6,
4]: title, description and narrative. The description and
narrative describe the information need in natural language.
The title describes the information need using XPath and
the about function. At INEX 2003, full XPath was allowed.
At INEX 2004 descendant positive XPath (i.e., the restricted
fragment for semi-ignorant users) is used [13].

At INEX, relevance is assessed by humans, solely on the
basis of the narrative, using a best-match approach. How-
ever, the granularity constraint of the results is evaluated
using an exact-match approach. In the case of our example
topic above, only elements exactly matching the XPath ex-
pression //article//sec can possibly be relevant. Further
relevance assessments of the sections are made by a human
assessor, i.e., the judgement whether the sections are written
by Californians and are about weather forecasting systems.

2“Topic” is IR parlance for a formal expression of an information
need.

4. EXPERIMENTAL SETUP
We turn to evaluation and comparison of several meth-

ods of giving answers to the queries. Specifically, our aim
is to compare two opposing views of query processing with
respect to their effectiveness in satisfying users’ informa-
tion needs. First, we use an exact match approach which
performs somewhat strict XPath processing. Second, we
use a best-match approach. For our evaluation, we use the
INEX 2003 test suite, consisting of 30 content-and-structure
queries (together with human assessments that we use to
score systems’ outputs). First,we explain the retrieval meth-
ods used, and in Section 5 we present and discuss our results.

4.1 Indexing the collection
For both the exact match approach and the best-match

approach we will work with an indexed version of the docu-
ments in the collection. Since we are interested in informa-
tion needs that combine structural and content aspects, we
index both the text and the XML structure of the collection.

Inverted indexes are efficient for testing whether a term
occurs in a document or element [16]. We build an inverted
element index, a mapping from words to the elements con-
taining the word. Each XML element is indexed separately.
That is, for each element, all text nested inside it is indexed.
Hence the indexing units overlap. Text appearing in a nested
XML element is not only indexed as part of that element,
but also as part of all its ancestor elements.

To index the XML trees we use pre-order and post-order
information of the nodes in the XML trees [5].

4.2 Exact match approaches
Our task is to return a (ranked) list of relevant elements,

given a query expressed in the INEX query language. In
exact match approaches to this task we want to answer the
queries using an XPath processor. Thus, we need to trans-
late the about function into XPath. The straightforward so-
lution is to replace about with the contains function. The
queries can then be processed using an XPath processing
engine. Note, however, that the text part of the about func-
tion is often a list of potentially helpful keywords, and it
is very unlikely that any element would contain this partic-
ular list of keywords as a substring. Therefore, we break
the about function up into either a conjunction or disjunc-
tion of contains functions, one for each word. E.g., using
conjunctions we translate the query:

//article[about(.//au//aff,’California’)]//sec[(3)
about(.,’weather forecasting systems’)]

into the query

//article[contains(.//au//aff,’California’)]//sec[
contains(., ’weather’) and contains(.,

’forecasting’) and contains(.,’systems’)].

In the disjunctive translation, or’s are used instead of and’s;
in our experiments, we made runs with both types of trans-
lation (conjunctive and disjunctive). Note that the retrieval
is boolean, and, moreover, that XPath provides no means
for ordering the results; the ordering that we used in the
lists of elements returned in response to a query is random.

4.3 Best-match approaches
How do we process INEX queries using a best-match ap-

proach? Best-match approaches as used in IR allow us to



estimate to which extent an element answers a textual query.
In particular, we can estimate to which extent an element
fulfills an about function. Briefly, we break up each XPath
query into several textual queries, one for each about func-
tion. For our running example (3) we get the queries

(Q3a) California
(Q3b) weather forecasting systems,

which we refer to as partial content queries. We refer to the
concatenation of those queries

(Q3) California weather forecasting systems
as the full content query. Our element-based retrieval sys-
tem can assign scores to elements, by estimating how well
an element answers the information need expressed in the
query. We refer to the path //article//sec as the tar-
get constraint. And to the paths //article//au//aff and
//article//sec as the path constraints of the respective
about functions. We use our retrieval system to define se-
mantics for the about function. An element is in the answer
set of the about function if it fulfills the path constraint of
the function, and our retrieval system judges its content to
be relevant to a given (partial) content query.

More precisely, we view the problem of answering an INEX
XPath query as a multi-faceted problem, involving elements,
as well as the documents containing those elements and the
environment of those elements (i.e., other elements in the
same document that may contain hints about their con-
tents). For each of those aspects, we generate a separate
retrieval run, thus obtaining, for each (target) element e,
scores scoreele(e), scoredoc(e), and scoreenv(e), and these
scores are then combined to produce a final score scoremix(e)
for every element e. The retrieval model used in all of our
runs is the so-called multinomial language model [7].

We will now discuss the three separate retrieval runs.
First, the element-based run is a content-based run, produc-
ing a ranked list of elements, where the target restriction is
the only structural constraint which is satisfied. Scoring is
based solely on the content of the target element. In the
case of our running example (3) we can think of this as a
run that evaluates the query

//article//sec[about(.,full content query)]

For a given query, elements are assigned their own retrieval
score; that is, for an element e, the score obtained in the
element-based run, is simply scoreele(e) := score(e), where
the latter denotes the so-called retrieval status value re-
turned by the system for e.

Second, our document-based retrieval run is a content-
based run, outputting a ranked list of elements, where, again,
the target restriction is the only structural constraint that
is enforced. An element receives the retrieval status value
of the article that contains it.3 In the case of our running
example (3) think of this as a run that evaluates the query

//article[about(.,full content query)]//sec

In sum, an element is assigned the retrieval status value
returned by the system for the document that contains the
element: scoredoc(e) := score(d).

Third, in the environment-based run we consider, given a
query and a document, all elements e′ in the document that
are contained in the node set of a path constraint in one of

3We consider this to be our baseline run; it illustrates what can
be achieved with a document retrieval system and simple path
filtering.

Run MAP Recall
Conjunction run 0.1081 0.2461
Disjunction run 0.0243 -77.5% 0.0601

Table 1: Results for exact-match approaches,
change is measured relative to the conjunction run

Run MAP Recall
Document-based run 0.2372 0.6094
Element-based run 0.3033 +27.9% 0.5966
Environment-based run 0.3090 +30.3% 0.5966
Mix-doc-ele-env 0.3330 +40.4% 0.5966

Table 2: Results for best-match approaches, change
is measured relative to the document-based run

the about predicates in the query; those elements e′, then,
constitute the environment. The score of an element e that
satisfies the target constraint is the sum of two things: first,
e’s score on the partial content query in the about restriction
on the target;4 second, the sum over all other about pred-
icates in the query of the maximum score achieved by any
element e′ in the environment on the partial content query
contained in that about statement. In our running example
(3), about(.//au//aff,’California’) identifies elements
in the environment, and about(.,’weather forecasting

systems’) is the restriction on the target. More formally, we
reorder the elements of the element based run by assigning
them the score

scoreenv(e) := scoretarget about(e) +
X

a

max
e′

score(e′),

where “target about” is the target about restriction used to
select e, and where a ranges over all other about functions
in the query, and e′ is in the environment.

Finally, we combine the scores defined so far. We perform
a simple combination, where we re-order the elements of the
element-based run, by assigning them a new score:

scoremix(e) = scoreele(e) + scoredoc(e) + scoreenv(e).

5. EXPERIMENTAL RESULTS
We evaluate the runs described in Section 4 using the stan-

dard recall and precision-based measures [6]. Table 1 shows
the results for the exact-match approaches. The mean av-
erage precision (MAP) score of the conjunction run is much
higher than the score of the disjunction run. This is not sur-
prising, as the run using conjunctions is much more selective:
it returns few, but mostly relevant elements. This leads to
reasonable precision, but fairly low recall. Perhaps some-
what counterintuitively, the disjunction run does not “fix”
the recall problem; the recall of this run is actually less than
that to the conjunction run. This can be explained by the
fact that an exact-match approach does not order the re-
sult set. Given that the retrieval task is to retrieve for each
query maximally 1000 elements, this becomes a particularly
limited strategy. The disjunction approach usually finds far
more than 1000 elements and is forced to randomly choose
1000 elements from the result set.

Table 2 shows the results for the best-match approaches.
The document-based run serves as a baseline for our best-

4By the definition of the INEX query format, such about restric-
tions always exist.



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on
Disjunction run
Conjunction run
Document based run
Element based run
Environment based run
Mixture run

Figure 1: Precision-recall curves for all experiments

match approaches, i.e., as a lower bound on the effective-
ness of a document-based retrieval system. Similarly, the
element-based run serves as a lower bound on the effec-
tiveness of element-based retrieval system. We see that
the element-based approach scores significantly better than
the document-based approach. The environment-based run
faithfully implementing the queries leads to a mild further
improvement. Figure 1 shows the precision-recall graphs for
all runs. Although the environment-based run does not score
significantly better than the element-based run, we can see
that the run gives better performance at low recall levels.
The combination of all three best-match approaches leads
to further improvement of retrieval effectiveness.

The performance of the best-match approaches is much
better than the exact-match approaches, both in terms of
MAP and recall.

6. CONCLUSIONS
The widespread use of XML to mark-up textual docu-

ments prompts the need for appropriate query languages.
Querying document-centric XML is the natural meeting place
of two fields. The structure of the documents asks for ap-
proaches from the database field, whereas the textual con-
tent of the documents asks for approaches from the field
of information retrieval. This suggests a query language
that mixes constraints on the content with constraints on
the structure. While it is unrealistic to assume that arbi-
trary users of a Web collection are fully aware of the precise
XML-structure of the documents, we do want to allow users
to make use of their (limited) knowledge of the structure.

We outlined two fragments of XPath tailored to users that
have varying degrees of understanding of the used XML
structure—one for “ignorant” users that only know (some
of) the tags; and one for “semi-ignorant” users that only
know (some of) the valid nestings between tags—and gave
both syntactic and semantic characterizations of these frag-
ments. As for the content part, we do not want to interpret
textual queries literally, but as expressions of the underlying
information needs. This is realized by adding an about func-
tion to XPath, having the exact same syntax as contains.
The semantics of the about function is radically different,
it is a best-match semantics based on the relevance of the
document component for the expressed information need.

We evaluated querying document-centric XML collections

from a user perspective using the INEX 2003 test-suite. The
run combining evidence from all elements, the documents
that contain them, and the surrounding elements (the en-
vironment) leads to the best performance; this can be in-
terpreted as a sign that taking both content and structure
into account helps performance. We showed that best-match
approaches outperform exact-match approaches for evaluat-
ing content-and-structure queries. This suggests that users
querying document-centric XML will likely be more satisfied
using a best-match query language, rather than an exact
match query language such as standard XPath.

7. ACKNOWLEDGMENTS
Jaap Kamps was supported by the Netherlands Organi-

zation for Scientific Research (NWO) under project number
612.066.302. Maarten Marx was supported by NWO, under
project number 612.000.106. Maarten de Rijke was sup-
ported by NWO, under project numbers 612-13-001, 365-
20-005, 612.069.006, 612.000.106, 220-80-001, 612.000.207,
and 612.066.302.

8. REFERENCES
[1] N. J. Belkin, R. N. Oddy, and H. M. Brooks. ASK for

Information Retrieval: Part I. Background and
Theory. Journal of Documentation, 38(2):61–71, 1982.

[2] M. Benedikt, W. Fan, and G. Kuper. Structural
Properties of XPath Fragments. In Proc. ICDT, 2003.

[3] P. Blackburn, M. de Rijke, and Y. Venema. Modal
Logic. Cambridge University Press, 2001.

[4] CLEF. Cross-Language Evaluation Forum, 2003.
http://www.clef-campaign.org.

[5] T. Grust. Accelerating XPath Location Steps. In Proc.
SIGMOD, pages 109–120. ACM Press, 2002.

[6] D. Harman. Overview of the First Text REtrieval
Conference (TREC-1). In Proc. TREC-1, 1993.

[7] D. Hiemstra. Using Language Models for Information
Retrieval. PhD thesis, University of Twente, 2001.

[8] INitiative for the Evaluation of XML Retrieval, 2003.
http://inex.is.informatik.uni-duisburg.de:2003/.

[9] N. Kurtonina and M. de Rijke. Expressiveness of
concept expressions in first-order description logics.
Artificial Intelligence, 107(2):303–333, 1999.

[10] W. May. Information extraction and integration with
Florid: The Mondial case study. Technical report,
Universität Freiburg, Institut für Informatik, 1999.

[11] R. A. O’Keefe and A. Trotman. The Simplest Query
Language That Could Possibly Work. In Proceedings
of the 2nd INEX Workshop, 2004.

[12] T. Saracevic. Relevance: A review of and a framework
for the thinking on the notion in information science.
JASIS, 26:321–343, 1975.

[13] B. Sigurbjörnsson and A. Trotman. Queries, INEX
2003 working group report. In Proceedings of the 2nd
INEX Workshop, 2004.

[14] V. Vianu. A Web odyssey: from Codd to XML. In
Proc. PODS, pages 1–15. ACM Press, 2001.

[15] S. Wasserman and K. Faust. Social Network Analysis.
Cambridge University Press, 1994.

[16] I. Witten, A. Moffat, and T. Bell. Managing
Gigabytes. Morgan Kaufmann, 1999.

http://www.clef-campaign.org
http://inex.is.informatik.uni-duisburg.de:2003/

	1 Introduction
	2 Querying XML
	3 Content oriented XPath
	3.1 Restricting XPath
	3.2 Extending XPath
	3.3 INEX query format

	4 Experimental Setup
	4.1 Indexing the collection
	4.2 Exact match approaches
	4.3 Best-match approaches

	5 Experimental Results
	6 Conclusions
	7 Acknowledgments
	8 REFERENCES -9pt 

