
The University of Amsterdam
at the TREC 2003 Question Answering Track

Valentin Jijkoun Gilad Mishne Christof Monz ∗

Maarten de Rijke Stefan Schlobach Oren Tsur†

Language & Inference Technology Group
University of Amsterdam

http://lit.science.uva.nl/

Abstract: We describe our participation in the
TREC 2003 Question Answering track. We ex-
plain the ideas underlying our approaches to the
task, report on our results, provide an error anal-
ysis, and give a summary of our findings so far.

1 Introduction

The aim for our participation in the Question Answering
track at TREC 2003 was to experiment with a new multi-
stream architecture, in which we implemented 6 separate
subsystems that each try to answer questions in different
ways. We also wanted to experiment with a dedicated bi-
ography question module that is currently in development.

Our experiments exploited the home-grownFlexIR doc-
ument retrieval system [9]. The main goal underlying
FlexIR’s design is to facilitate flexible experimentation
with a wide variety of retrieval components and tech-
niques; we usedFlexIR’s implementations of theLnu.ltc
weighting scheme, various language models, as well as
the Okapi scheme.

Current Question Answering (QA) systems, as re-
flected by the TREC QA track participants, can be divided
into two categories:knowledge-intensivesystems, that
make use of various linguistic tools for the question an-
swering process, andredundancy-basedsystems, that rely
on very high volumes of data (in many cases, the Web)

∗Now at the Institute for Advanced Computer Studies, University
of Maryland, 3161 A.V. Williams Building, College Park, MD 20742,
USA. Email:christof@umiacs.umd.edu.

†Now at Bar-Ilan University, Ramat Gan, Israel. Email:tsuror@
cs.biu.ac.il.

and take a more shallow approach to text analysis. Until
last year, we were focused on the first approach, concen-
trating our QA efforts exclusively onTequesta[10, 11].
This approach may be successful for some types of ques-
tions, but for others more shallow approaches seem more
beneficial. This year we expanded our QA work and
implemented amulti-streamapproach. While maintain-
ing Tequesta as one of the approaches, we developed ad-
ditional systems that compete which each other to find
the correct answer. These systems, or “streams,” employ
a range of redundancy-based and knowledge-intensive
techniques. We took part in the main QA task and in the
passage QA task. For our participation in the main task
we employed our new multi-stream architecture; for the
passage task we relied on the Tequesta stream only.

The rest of this paper is organized as follows. In two
(largely self-contained) sections we describe our work for
the main task and the passage task. Finally, we summarize
our findings in a concluding section.

2 The Main Task

2.1 System Description

We now describe the approach we adopted for the main
QA task; we devote separate subsections to factoid ques-
tions on the one hand, and list questions and definition
questions on the other. The system consists of 6 sepa-
rate QA streams and a final answer selection module that
combines the results of all streams and produces the fi-
nal answers. An important benefit of this architecture is
easy modification, maintenance, and testing of the dif-

http://lit.science.uva.nl/
christof@umiacs.umd.edu
tsuror@cs.biu.ac.il
tsuror@cs.biu.ac.il

ferent subsystems as well as easy integration of multiple
sources of information. Evaluation of the contribution of
each stream to the entire QA process becomes a relatively
simple task too. We now describe the streams.

Table Lookup. This stream uses specialized knowledge
bases constructed by preprocessing the collection, similar
in spirit to [4]. The stream exploits the fact that certain
types of information (such as country capitals, abbrevia-
tions, and names of political leaders) tend to occur in a
small number of fixed patterns. When a question type in-
dicates that the question might potentially have an answer
in these tables, a lookup is performed in the appropriate
table and answers found are assigned high confidence.

We hand-crafted a small number of regular expres-
sions for extracting information about the categories listed
in Table 1. For instance, the “Location” category con-
cerns geographic information of the following type “Amu
Darya, river, Turkmenistan, XIE19990811.0277,” where
the first field indicates a location, the second its type, the
third a country or region in which it is located, and the
fourth the identifier for the document from which it was
extracted. “Geography” contains similar information, but
without the type; “Leaders” has information of the fol-
lowing kind “Dutch, Foreign Minister, Jozias van Aart-
sen, XIE19991027.0270”, and “Roles” generalizes this to
also include other roles besides government-related ones.

Table 1: Facts extracted from the AQUAINT corpus.
Category # Facts Category # Facts
Abbreviations 31737 Birthdates 9156
Capitals 1273 Currencies 231
Dates 9331 Deathdates 1510
Geography 70363 Height 15603
Inhabitants 2025 Languages 853
Leaders 18073 Locations 1348
Manners of death 857 Organizations 98758
Roles 396558

When a question is classified as possibly having an an-
swer in a table, we first identify the question keywords
that will be used in the table search. Next, a line matching
all of the words in the order they appeared in the question
is searched; if no line matches, we look again for a line
containing all words, this time in any word order. If there
is still no match, we start removing words from the list of
words to match; the order of removal is based on the fre-

quency of words in the language (i.e., common words are
removed first) and part-of-speech tags (e.g., superlatives
like fastest, largest are removed last). We do this until
some threshold is reached (percentage of lookup words
out of total keywords in the question). When a matching
line is found, we return the text in the column that is de-
clared to contain the information required as the answer.

Pattern Matching. This stream exploits the fact that
in some cases, the contextual format of an answer to
a question can be back-generated from the question it-
self. For example, an answer to a question such as2257.
What is the richest country in the world?will possibly
match the pattern<Capitalized-Words>(,| is) the
richest country in the world. In these cases, the
position of the answer within the context is also known
when generating the context pattern; in the given exam-
ple, it would be the capitalized word or words (and indeed,
in document XIE19980302.0146, this pattern matches
against “. . . Although the United States is the richest coun-
try in the world, 20 percent of its population . . . ”).

The Pattern Matching stream consists of three stages:
Generation, Document Prefetchand Matching. In the
Generation stage, the question is analyzed and possi-
ble answer patterns are generated. For questions like
2347. Where is Mount Olympus?the question type
and focus (both provided by the question classifier) are
sufficient for generating a number of answer patterns.
For other questions (e.g.,2375. What date did Thomas
Jefferson die?) we also use a set of manually cre-
ated rules based on part-of-speech tags of the ques-
tion words and a dictionary of word forms, in order to
rewrite the question into declarative forms (e.g.,Thomas
Jefferson (died|dies) (on|in) <answer>). In the
Prefetch stage, for each generated pattern a query contain-
ing words from it is formed, and documents are retrieved
from the collection using the query. In the final stage, the
patterns are matched against the retrieved documents, and
answers are extracted from the matches.

Two variations of this stream were implemented,Web
Pattern MatchingandCollection Pattern Matching. For
the first variation the text collection was the Web, and for
the second, the local AQUAINT corpus. For the prefetch
stage we used the top-ranking documents from Google
(for the Web variation) and all matching documents re-
trieved using a boolean query to our document retrieval
engineFlexIR against the AQUAINT corpus.

Ngram Mining. This stream, similar in spirit to [2, 3],
constructs a weighted list of queries for each question us-
ing a shallow reformulation process, similar to the Pattern
Match stream. The queries are then sent to a large docu-
ment collection; we implemented two variations for this
stream,Web Ngram MiningandCollection Ngram Min-
ing, using the Web and the local AQUAINT corpus, re-
spectively. For Web searches, we used Google, and for lo-
cal searchesFlexIR, with theLnu.ltc weighting scheme.
Then, we looked at word ngrams in the relevant retrieved
document paragraphs (for the Web we used the snippets
provided by Google, and for the collection we used a win-
dow of 200 bytes around the query). The ngrams were
ranked according to the weight of the query that generated
them, their frequency in the paragraphs, their NE type, the
proximity to the query keywords and more parameters,
and the top-ranking ngrams were considered answer can-
didates. To find justification for the answer in the local
corpus, we constructed a query with keywords from the
question and the answer, and considered the top-ranking
document for this query to be the justification, this time
using an Okapi model as this tends to do well on early
high precision in our experience.

Tequesta. As mentioned before, this is a stream that im-
plements a linguistically informed approach to QA. We
defer a discussion of this stream to Section 3 where we
describe our strategy for the passage task.

Many components are shared by all streams, including a
locally developed named entity tagger and the following:

Question Classifier. An incoming question is first an-
alyzed for its type (e.g.,date-of-birth), expected an-
swer type (e.g.,location) and focus (thecore of the
question, used e.g., for answer pattern generation). Cur-
rently our system recognizes 37 question types. The ques-
tion analysis is based on surface and part-of-speech pat-
terns. We also use hierarchical relations in WordNet to
identify semantic classes of question focus words (e.g.,
this allows us to assign the typeperson-ident to the
question1943. What is the name of Ling Ling’s mate?).

Web Ranking. The answer candidates produced by the
streams have different confidence levels, generated by
stream-specific parameters and measuring methods. To
compare these levels, a uniform way of ranking the candi-

dates was required. To this end we implemented a search
engine hit count module, similar to [6].

Answer Selection. Each of our streams produces a pool
of answer candidates, with normalized confidence scores.
After filtering the candidates to remove obvious noise, we
create a joint pool of answers, adjusting each candidate’s
score by a factor that reflects the past performance of its
stream on questions of the same type. We tried differ-
ent ways of assigning these stream/question-type weights:
manually (i.e., based on human intuition about how good
different streams perform on different questions) and au-
tomatic (using Machine Learning to find weights that op-
timize the performance of the system on a training set of
questions) [5]. In the joint pool of answer candidates we
identify identical or similar (small edit distance) answers,
merge and add their confidence scores. Finally, a candi-
date with the highest score is returned.

List and Definition Questions

Because of time constraints, we were unable to imple-
ment a proper module for handling list questions. All list
questions were automatically rewritten into factoids us-
ing rule-based transformations (e.g.,2097. Which coun-
tries were visited by first lady Hillary Clinton?was trans-
formed toWhich country was visited by first lady Hillary
Clinton?) and fed to our multi-stream QA system. The
topN candidate answers to this factoid question were sub-
mitted as answers to the original list question. We ex-
perimented with different values ofN (10 and 20 in our
official runs) and with different numbers of retrieved doc-
uments used during answer selection (both for collection-
and web-based QA streams).

In contrast to list questions, we did invest a serious
effort in developing a component for handling defini-
tion questions. More precisely, we piggybacked on on-
going inhouse activities aimed at developing a QA sys-
tem for handling “biography oriented” definitions on the
web [13]. The main steps in our handling of definition
questions are Question Analysis (very similar to the anal-
ysis carried out for factoids), Answer Retrieval (always
from external resources), Answer Filtering, and Answer
Justification (very similar to the justification performed
for externally found answers to factoid questions).

For concept definition questions we followed a

WordNet-based strategy as discussed in the literature [12].
Given a question that asks for a definition of a concept,
we simply consult WordNet. As our primary strategy
for handling person definition questions, we also con-
sulted an external resource. The main resource used is
biography.com. However, in many cases no biography
could be found in this resource. In such cases we backed
off to using Google, with queries obtained by combin-
ing the name of the person in question with varying sub-
sets of a predefined set of hand-crafted features (includ-
ing “born”, “graduated”, “suffered”, etc.) For questions
asking for definitions of organizations the latter was the
strategy used (with a set of “organization features”).

As a final fallback option for each type of defini-
tion question, if the use of the strategies mentioned ear-
lier returned no satisfactory results, we simply submitted
<question term> is a to Google and mined the snip-
pets returned. This method worked surprisingly well for
questions like2385. What is the Kama Sutra?.

Given a set of candidate answer snippets, we performed
two more steps before carrying out the final answer jus-
tification step: we separated junk snippets from valuable
snippets and we identified snippets whose content is very
similar. We addressed the first step by analyzing the dis-
tances between query terms submitted to the search en-
gine and the sets of features, and by means of shallow
syntactic aspects of the different features such as sentence
boundaries. To address the second step we developed
a snippet similarity metric based on edit distance, stem-
ming, stopword removal, and keyword overlap.

2.2 Runs

We submitted 3 runs. These runs used the exact same
strategies and settings for definition questions. They
did differ in their settings for factoids and list questions.
Here’s a brief description:

UAmsT03M1For factoids, the answer selection module
used automatically learned stream/question weights;
answers coming only from external sources (streams
based on Web) were justified against the AQUAINT
collection using the Okapi model. For each list ques-
tion the top 10 answers to its factoid counterpart
were submitted.

UAmsT03M2For factoids, the weights for answer selec-
tion were learned automatically; external answers
were discarded. For list questions the number of col-
lection and web documents used for answer mining
was increased, and the top 20 answers were submit-
ted for each question.

UAmsT03M3Manually assigned weights were used for
answer selection; external answers were discarded.
The number of documents for answering list ques-
tions was as inUAmsT03M2, but only top 10 answers
were submitted.

Our three runs allowed us to compare the impact of jus-
tification, and the impact of using manually assigned ver-
sus learned weights for our answer selection. For the list
questions we wanted to evaluate the effect ofusing more
dataand ofgiving more answerson the final performance.

2.3 Results

Table 2 gives the detailed results of our system for the 413
factoid questions: accuracy and the number of correct (R),
unsupported (U), inexact (X) and wrong (W) answers.

Table 2: Results for the QA track (factoid questions).
Run identifier Accuracy R U X W
UAmsT03M1 0.136 56 22 32 303
UAmsT03M2 0.145 60 20 26 307
UAmsT03M3 0.128 53 24 30 306

2.4 Error Analysis

Analyzing errors made by a QA system is a complex task.
In [7], such an analysis is based on examination of the
outputs of every module in the process separately, and at-
tributing the error to the first malfunctioning module. In
many cases an error in one of the earlier stages of the QA
pipeline (for example, the question classification module)
does indeed cause cascaded errors later. But when di-
agnosing a system with multiple independent approaches
such as ours, this does not necessarily hold; we found in-
correctly classified questions which were still answered
correctly due to the redundancy-based modules, and many
other counter-examples to the “cascaded errors” assump-
tion. Therefore, we chose to examine the incorrect an-
swers produced by the system, and associate each of them

with amain error type, the dominant reason for producing
this incorrect answer.

Table 3 shows the most common error types for
run UAmsT03M1; for each incorrectly answered question
(counting inexact or unsupported answers as incorrect),
we examined the candidate answer list produced by our
system (the list contains less than 10 candidates on aver-
age). If the correct answer was in this list, we classified
the error types of the candidates that received a higher
rank than it; otherwise, we classified the top 3 ranking
candidates. Since we examined more than one answer per
question, there may be multiple error types for a specific
question.

Table 3: Frequent Error Types in UAmsT03M1.
Error Type Frequency
Answer Selection 134 (38%)
Named-Entity 78 (22%)
Question Classification 67 (19%)
Justification 58 (16%)
Unit Error 53 (15%)

A brief explanation of main error types follows:

• Answer Selectionerrors describe an incorrect answer
with the correct named entity or concept type which
typically appears in relevant documents. An exam-
ple is the answerGeorge Bush for 2391. What pres-
ident created social security?– the answer type is
correct, and is very frequent in relevant documents
(both in the local collection and on the web).

• Named-Entityerrors result from an incorrect classi-
fication of a phrase as a named entity which matches
the expected answer type. An example is the answer
Springsteen for 2001. What rock band sang “A
Whole Lotta Love”?.

• Question Classificationerrors are cascaded errors
originating from an incorrect question type assigned
to the question at an early stage of the QA pipeline,
or failure to assign any question type to it.

• Justificationerrors are correct answers which were
obtained using external resources, and were not pro-
jected correctly to the local corpus.

• Unit Errors are answers of the correct named en-
tity type, but incorrect granularity (i.e. state in-
stead of city) or out of range (according to world-

knowledge). An example is the answerabout 2
billion dollar for 2302. How much did the first
Barbie cost?(referring to profits rather than costs).

While our analysis revealed many technical issues that
need to be addressed – such as over-tiling of ngrams,
resulting in inexact answers (Colombia country South
America instead ofColombia) – most of the errors stem
from the shallow answer-selection techniques used by our
system. We currently use mostly frequency counts and
proximity measures to select the answer candidates; this
works for questions which have a large amount of rele-
vant documents, but for other questions deeper analysis
is required. An alternative approach, still relying on re-
dundancy methods, is to expand the number of retrieved
documents using query expansion methods (both for the
local corpus and the web) – an approach which is also
almost not used in our system. Our main conclusion is
that while we continue to see redundancy-based methods
as our basic strategy for QA, shallow NLP and reasoning
methods should be selectively used throughout the pro-
cess, especially when the number of retrieved documents
is low.

A few more remarks are worth making. First, al-
though the run with the automatically learned weights
for answer selection from multiple streams (UAmsT03M2)
outperformed the run with manually assigned weights
(UAmsT03M3), our subsequent experiments revealed that
whereas a small difference exists, it is not statistically sig-
nificant. However, both runs improve significantly over a
baseline system with equal weights to all streams.

We also evaluated the contribution of different streams
to the performance of the system on the factoids (using
unofficial answer patterns). Table 4 gives the results (the
number of “correct” answers, i.e., those that match the
patterns) for the whole system, for separate streams and
for the system with one of the streams turned off. As ex-
pected, each of the six streams answered some questions
correctly and more interestingly, each stream contributed
to the overall performance of the system. The two “worst”
performing streams (predictably, collection-based pattern
matching and ngram mining) brought one more answer
each either at the top rank or in the top 5. Surprisingly,
the “winner” among the streams is equivocal: whileTable
Lookupallows the system to answer 15 questions more,
Web Ngramsaccounts for more (35 vs. 19) unique correct

Table 4: Contribution of different streams.
Configuration # correct # correct in top 5
All streams 98 165
Collection ngrams 39 42
Without collection ngrams 98 164
Web ngrams 65 115
Without Web ngrams 89 130
Collection patterns 39 39
Without collection patterns 97 165
Web patterns 51 59
Without Web patterns 94 163
Table lookup 71 77
Without table lookup 83 146
Tequesta 63 102
Without Tequesta 91 140

answer candidates in the top 5.
Table 5 gives the combined results for the 3 QA tasks

(accuracy for factoids, F score for list and definition ques-
tions) and the final scores of our runs. The results for the

Table 5: Results for the QA track.
Run identifier A (Fact) F (List) F (Def) Overall
UAmsT03M1 0.136 0.054 0.315 0.160
UAmsT03M2 0.145 0.042 0.308 0.160
UAmsT03M3 0.128 0.035 0.292 0.146

list questions suggest that using more retrieved documents
for answer extraction and submitting more answer candi-
dates hurts performance: the increase in recall does not
compensate for the drop in precision.

Turning to definition questions now, recall that there
is no difference between the three runs listed in Table 5
as far as definition questions are concerned, despite the
different scores in the table. The differences are due to in-
consistencies in the judgments provided by NIST. Table 6
provides a breakdown of the scores for the different types
of definition questions; the highest scores are obtained
for person definitions, which reflects the fact that those
are the type of definition questions in which we put most
work. As an aside, in our submission we foundnoanswer

Table 6: Breakdown of F scores for definition questions.
Run identifier Concept Person Org. Overall
UAmsT03M1 0.150 0.392 0.268 0.315

for 19 of the 50 definition questions. If we compute the

F score not over all 50 question but only over questions
with a positive F score, we obtain an average of 0.527.
In post-submission experiments we changed the subsets
of features we use in the queries sent to Google as well
as the number of queries/subsets we use. The snippets-
similarity threshold was also tuned in order to filter more
snippets. This resulted in a reduction of unanswered defi-
nition questions to 6 instead of 19. Using our own (unof-
ficial) assessment, this yielded an F score of 0.688. Those
changes also reflected in the average answer length. After
the parameters tuning the average length was half of the
average TREC submission answer, improving precision
and contributing to the F score.

2.5 Conclusions for the Main Task

Our general conclusion on answering factoid questions is
that our new multi-stream approach helped answer con-
siderably more questions than our “old” single-stream
Tequesta system. This year’s questions seemmuchharder
than those of previous years. A preliminary error analy-
sis shows that retrieval, named entity recognition, and an-
swer selection all require further attention. Our main con-
clusion on answering definition questions is that external
dictionary-like resources are crucial, but a feature-based
approach offers an effective strategy if such resources are
absent or too sparse. Following an analysis of our TREC
results, we investigated the use of trainable text classifiers
as a pre-processing stage instead of the features vectors,
treating the web as a ‘noisy’ external knowledge source,
and using the text classifier to filter out the noise. Initial
results show that using text classifiers greatly improves
the F score and the coherence of answers.

3 The Passage Task

The aim of the passage task was to return an excerpt
from a document rather than an exact answer. Excerpts
had to be unmodified snippets from a document in the
AQUAINT collection, and were not allowed to be longer
than 250 characters. For the passage task only the fac-
toid questions from the main task were used, i.e., list and
definition questions were not included.

3.1 System Description

For the passage task, we used a modification of the
Tequesta question answering system, which has remained
largely unchanged since TREC 2002 [10, 11]. We
dropped the exact answer output feature, and included
some of the context surrounding the answer identified by
Tequesta. We added the use of minimal span weighting
for identifying documents that are likely to contain an
answer to a given question. We used minimal matching
spans as the snippets in which to find the exact answer.

Minimal span weighting takes the positions of match-
ing terms into account, but does so in a more flexi-
ble way than passage-based retrieval; see [8] for de-
tails. Intuitively, a minimal matching span is the small-
est text excerpt from a document that contains all terms
which occur in the query and the document. More for-
mally, given a queryq and a documentd, the function
term at posd(p) returns the term occurring at positionp
in d. A matching span(ms) is a set of positions that
contains at least one position of each matching term, i.e.⋃

p∈msterm at posd(p) = q∩d.
Then, given a matching span ms, letbd (the begin-

ning of the excerpt) be the minimal value in ms, i.e.,
bd = min(ms), anded (the end of the excerpt) be the max-
imal value in ms, i.e.,ed = max(ms). A matching span
ms is aminimal matching span(mms) if there is no other
matching span ms′ with b′d = min(ms′), e′d = max(ms′),
such thatbd 6= b′d or ed 6= e′d, andbd ≤ b′d ≤ e′d ≤ ed.

Minimal span weighting depends on three factors.

1. document similarity: The document similarity is
computed using the Lnu.ltc weighting scheme Buck-
ley et al. [1] for the whole document. Similarity
scores are normalized with respect to the maximal
similarity score for a query.

2. span size ratio: The span size ratio is the number
of unique matching terms in the span over the total
number of tokens in the span.

3. matching term ratio: The matching term ratio is the
number of unique matching terms over the number of
unique terms in the query, after stop word removal.

The msw score is the sum of two weighted components:
the normalized original retrieval status value (RSV),
which measuresglobal similarity and the spanning fac-
tor which measureslocal similarity. Given a queryq, the

original retrieval status values are normalized with respect
to the highest retrieval status value for that query:

RSVn(q,d) =
RSV(q,d)

maxdRSV(q,d)
.

The spanning factor is the product of two components: the
span size ratio, which is weighted byα, and the matching
term ratio, which is weighted byβ. Global and local sim-
ilarity are weighted byλ. The optimal values of the three
parametersλ, α, andβ were found to beλ = 0.4, α = 1/8,
andβ = 1 by empirical means. Parameter estimation was
done using the TREC-9 data collection only, but it proved
to be the best parameter setting for all collections.

The final retrieval status value (RSV’) based on min-
imal span weighting is defined as follows, where| · | is
the number of elements in a set: If|q∩d| > 1 (that is, if
the document and the query have more than one term in
common), then

RSV’(q,d) = λ ·RSVn(q,d)+

(1−λ) ·
(

|q∩d|
1+max(mms)−min(mms)

)α
·
(
|q∩d|
|q|

)β
.

If |q∩d| = 1 then RSV’(q,d) = RSVn(q,d).
Given a minimal matching span, the document analysis

component of Tequesta tries to identify a phrase which is
of the appropriate type. All phrases that are of the appro-
priate type are considered candidate answers. Tequesta
selects answers by considering the frequency of a candi-
date answer and relying on linking a candidate answer to
the question by proximity. Hence, all candidate answers
are weighted equally. But there is one exception. If the
question is of typewhat-np, candidate answers that are
in a WordNet hypernym relationship with the question fo-
cus receive a higher weight than candidate answers that
are identified by means of the fallback strategy.

Once an answer has been selected, the correspond-
ing minimal matching span from which the answer has
been extracted is returned as the answer passage, trimmed
down to 250 characters if necessary.

3.2 Runs, Results and Conclusion for the
Passage Task

We submitted one run to the passage task, run id
UAmsT03P1. The results are shown in Table 7. (R) stands

for passages that contained a correct and exact answer,
(U) for passages that contained the correct answer, but
were not supported by the corresponding document, and
(W) stands for wrong answers. The passage track does

Table 7: Results for the QA passage track
Run identifier Accuracy R U W
UAmsT03P1 0.111 46 6 361

not make a distinction between exact and inexact (X) an-
swers, as in the main task. Here, an inexact answer is
simply judged wrong (W).

The results were quite disappointing. At this point we
are not sure what caused this rather bad performance. Be-
fore submitting this year’s run to the passage track, we
conducted some experiments on the question sets from
previous TRECs, and these results were substantially bet-
ter. Therefore, one explanation could be that this year’s
question set was much harder than the previous ones, but
a more detailed error analysis remains to be done.

4 Conclusions

We have described our participation in the TREC 2003
Question Answering Track. This year, our work was
largely motivated by our move to a new, multi-stream ar-
chitecture. Although a further and more detailed analy-
sis of the performance of the system remains to be done,
our preliminary results show that different approaches to
the QA process do produce answers to different question
types. Our combined use of external resources and hand-
crafted feature sets proved to be a successful approach for
answering definition questions.

Acknowledgments

Thank you to B̈orkur Sigurbj̈ornsson for useful sugges-
tions and discussion. We thank Raffaella Bernardi for
help on the question classifier and table extraction com-
ponents, and Karin M̈uller and Detlef Prescher for help
with our named entity recognizer. Many thanks to Henry
Chinaski for sanity checks and inspiration.

Valentin Jijkoun, Gilad Mishne, and Stefan Schlobach
were supported by the Netherlands Organization for Sci-
entific Research (NWO) under project number 220-80-
001. Christof Monz was supported by NWO under project

numbers 612-13-001 and 220-80-001. Maarten de Rijke
was supported by NWO under project numbers 612-13-
001, 365-20-005, 612.069.006, 612.000.106, 220-80-001,
612.000.207, and 612.066.302.

References
[1] C. Buckley, A. Singhal, and M. Mitra. New retrieval ap-

proaches using SMART: TREC 4. InThe Fourth Text RE-
trieval Conference (TREC-4), 1996.

[2] C. Clarke, G. Cormack, and T. Lynam. Exploiting redun-
dancy in question answering. In D. H. Kraft, W. B. Croft,
D. J. Harper, and J. Zobel, editors,Proceedings of SIGIR
2001, pages 358–365, 2001.

[3] S. Dumais, M. Banko, E. Brill, J. Lin, and A. Ng. Web
question answering: Is more always better? In P. Bennett,
S. Dumais, and E. Horvitz, editors,Proceedings of SIGIR
2002, pages 291–298, 2002.

[4] M. Fleischman, E. H. Hovy, and A. Echihabi. Offline
strategies for online question answering: Answering ques-
tions before they are asked. InProceedings of ACL 2003.

[5] V. Jijkoun and M. de Rijke. Answer selection in a multi-
stream open domain question answering system. InPro-
ceedings of ECIR’04, 2004.

[6] B. Magnini, M. Negri, R. Prevete, and H. Tanev. Is it the
right answer? exploiting web redundancy for answer vali-
dation. InProceedings of ACL 2002, pages 425–432, 2002.

[7] D. Moldovan, M. Pasca, S. Harabagiu, and M. Surdeanu.
Performance issues and error analysis in an open-domain
question answering system.ACM Trans. Inf. Syst., 21(2):
133–154, 2003.

[8] C. Monz. From Document Retrieval to Question Answer-
ing. PhD thesis, University of Amsterdam, 2003.

[9] C. Monz and M. de Rijke. Shallow morphological analysis
in monolingual information retrieval for Dutch, German
and Italian. In C. Peters, M. Braschler, J. Gonzalo, and
M. Kluck, editors,Proceedings CLEF 2001, 2002.

[10] C. Monz and M. de Rijke. Tequesta: The University
of Amsterdam’s textual question answering system. In
Voorhees and Harman [14], pages 519–528.

[11] C. Monz, J. Kamps, and M. de Rijke. The University of
Amsterdam at TREC 2002. In E. M. Voorhees and L. P.
Buckland, editors,The Eleventh Text REtrieval Conference
(TREC 2002), pages 603–614, 2003.

[12] J. Prager, J. Chu-Carroll, and K. Czuba. Use of Wordnet
hypernyms for answering what-is questions. In Voorhees
and Harman [14], pages 250–257.

[13] O. Tsur. Definitional question answering using trainable
classifiers. M.Sc thesis, University of Amsterdam, 2003.

[14] E. M. Voorhees and D. K. Harman, editors.The Tenth Text
REtrieval Conference (TREC 2001), 2002.

	1 Introduction
	2 The Main Task
	2.1 System Description
	2.2 Runs
	2.3 Results
	2.4 Error Analysis
	2.5 Conclusions for the Main Task

	3 The Passage Task
	3.1 System Description
	3.2 Runs, Results and Conclusion for the Passage Task

	4 Conclusions

