
Graph Transformations
for Natural Language Processing

Copyright c© 2006 by Valentin Jijkoun

Printed and bound by Print Partners Ipskamp B.V.

ISBN-10: 90-9021296-5
ISBN-13: 978-90-9021296-8

Graph Transformations
for Natural Language Processing

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Universiteit van Amsterdam

op gezag van de Rector Magnificus
prof.mr. P.F. van der Heijden

ten overstaan van een door het college voor
promoties ingestelde commissie, in het openbaar

te verdedigen in de Aula der Universiteit
op dinsdag 28 november 2006, te 11.00 uur

door

Valentin Borisovich Zhizhkun

geboren te Sint-Petersburg, Rusland

Promotor: Prof.dr. M. de Rijke
Faculteit: Faculteit der Natuurwetenschappen, Wiskunde en Informatica

SIKS Dissertation Series No. 2006-18
The research reported in this thesis has been carried out under the auspices
of SIKS, the Dutch Research School for Information and Knowledge Sys-
tems.

The investigations were supported by the Netherlands Organization for Sci-
entific Research (NWO) under project number 220-80-001.

!"#$

Acknowledgments

I began my doctoral studies in Amsterdam in 2002, when I joined the Language
and Inference Technology (LIT) group led by Maarten de Rijke, at that time a part
of the Institute for Logic, Language and Computation (ILLC). I started to work
within the ambitious and exciting project Computing with Meaning, and compu-
tational logic and automated reasoning for description and hybrid logics were my
main topics. Amsterdam was just the right place to do research in this area! It
was impossible for me not to get thrilled by the beauty of modal and hybrid log-
ics, with so many enthusiastic logicians right across the corridor: Carlos Areces,
Juan Heguiabehere, Maarten Marx, Maarten de Rijke, Stefan Schlobach, and with
the ILLC headquarters just across the canal. My affair with logic, however, turned
out not to be a lasting one, which I blame on the amazing versatility of LIT and
ILLC. I became interested in computational semantics of natural language, and
soon found myself writing my first paper on a particular problem in natural lan-
guage processing—the field that I discovered in Amsterdam with much help of my
colleagues at LIT.

During my PhD years at LIT and, later, at the Information and Language Pro-
cessing Systems group (ILPS), I had an opportunity to work on natural language
processing tasks ranging from syntactic and semantic text analysis to Information
Retrieval and Question Answering. I learned how to set up experiments and ana-
lyze results, how to write papers and give talks, how to find the right questions and
how to search for answers. I am grateful to my colleagues at LIT and ILPS who
taught me this and who continue to teach a lot more.

I’m grateful to my teachers in Russia, without whom I would never have started
my PhD: to Elena Barashko for making me seek solutions, to Galina Frolova for
always challenging me, to Lidia Volkhonskaya for teaching me to think for myself,
to Tamara Prokofieva for teaching me to speak for myself, to Andrey Terekhov for
turning programming into a science and a fun for me, and to Vladimir Orevkov for
eliminating big cuts in my understanding of proofs.

I would not have been be able to keep trying and working on my thesis with-
out my friends and colleagues in Amsterdam, Gatchina, Moscow, St.-Petersburg,

The Hague: Andrea who designed the cover and made my life so much brighter,
Irina whose warm home became mine, Iuliana who can magically share my ups
and downs, Joris who can help with anything, even with the Dutch Samenvatting,
Juan who welcomed me in Amsterdam, Khalil who introduced me to the world of
language processing, Kseniya who makes me feel soaring and quiet, Lenka who
should eat and write more, Maarten (Marx) whose picky remarks always hit the
mark, Oksana and Lida who keep Russia a warm home for me, Tanya who is al-
ways near even when far away, Vlad with his incorrigible optimism.

I’m very grateful to the members of my reading committee: Pieter Adriaans,
Johan Bos, Walter Daelemans, Eduard Hovy, Maarten Marx and Remko Scha.
Their comments and suggestions helped me have a look at my work from several
different angles and make my ideas clearer.

Finally, I would like to thank my supervisor Maarten de Rijke without whom
my thesis would never have been finished. I’m very grateful for his patience and
support, for letting me find my own way in science, but always being ready to help
when it gets hard, for countless inspiring conversations and nice chats. All imper-
fections in the thesis are mine, but for many of the thoughts, ideas and remarks in
the thesis I’m indebted to Maarten.

Valentin Jijkoun
Amsterdam, October 2006

Contents

1 Introduction 13
1.1 Research questions . 14
1.2 Main contributions . 16
1.3 Organization of the thesis . 16
1.4 Paths through the thesis . 18
1.5 Origins . 18

2 Linguistic Analysis and Graphs 19
2.1 Syntactic structures as graphs . 20

2.1.1 Evaluation of syntactic parsers 21
2.1.2 From phrase structures to dependency structures 21
2.1.3 Dependency-based evaluation of phrase structure parsers . 23

2.2 Encoding other linguistic information 25
2.3 Linguistic analysis and graph transformations 25
2.4 Conclusions . 28

3 Graphs and Graph Transformations 31
3.1 Graphs, patterns, occurrences . 32
3.2 Graph rewrite rules . 34
3.3 Graphs with partial node ordering 36
3.4 Dependency and phrase structure graphs 37
3.5 Comparing graphs . 40

3.5.1 Graph alignment . 40
3.5.2 Graph merges . 42
3.5.3 Finding graph alignments 43

3.6 Learning graph transformations: an outline 44
3.7 Conclusions . 45

4 Identifying Predicate Argument Structure 47
4.1 Motivation . 48
4.2 Related work . 50

4.2.1 Recovery of function tags 50
4.2.2 Recovery of non-local dependencies 50

4.3 PAS identification and graph transformations 52
4.4 Transforming graphs . 53
4.5 Step 1: Changing dependency labels 55

4.5.1 Comparison to earlier work 56
4.6 Step 2: Adding missing nodes 57

4.6.1 Comparison to earlier work 59
4.7 Step 3: Adding missing dependencies 59

4.7.1 Comparison to earlier work 61
4.8 Analysis and conclusions . 62

5 Learning Graph Transformations 65
5.1 Motivation . 66
5.2 Outline of the graph transformation method 67
5.3 Comparing pairs of graphs in the corpora 67
5.4 Identifying possible rewrite rules 69

5.4.1 Rewrite rules: changing object attributes 69
5.4.2 Rewrite rules: adding subgraphs 71
5.4.3 Rewrite rules: removing subgraphs 76

5.5 Selecting rewrite rules . 77
5.6 Training the constraints for rewrite rules 78

5.6.1 Encoding pattern occurrences 79
5.6.2 Classification task . 82

5.7 Applying rewrite rules . 83
5.8 Practical considerations and refinements 84

5.8.1 Magic constants . 84
5.8.2 Rule selection . 85
5.8.3 Definition of patterns . 85

5.9 Related work . 85
5.10 Conclusions . 87

6 Graph Transformations for Predicate Argument Structure Identifica-
tion 89
6.1 Motivation . 90
6.2 Graphs and transformations: a recap 92
6.3 Identifying PAS using dependency graphs 94

6.3.1 Learning transformations 94
6.3.2 Extracted transformations: a closer look 100

6.4 Identifying PAS using phrase structures 103
6.4.1 Definition of the task . 104
6.4.2 Learning transformations 105
6.4.3 Evaluation measures . 107
6.4.4 Results and comparison to previous work 108
6.4.5 Extracted transformations: a closer look 111

6.5 Conclusions . 113

7 Transforming Syntactic Structures 115
7.1 Motivation . 116
7.2 Related work . 118
7.3 Problem description . 119
7.4 Experimental setting . 121
7.5 Results . 124
7.6 Extracted transformations: a close look 125
7.7 Conclusions and future work . 130

8 Identifying Semantic Roles 133
8.1 Background and motivation . 134
8.2 PropBank: an annotated corpus of semantic roles 135
8.3 Related work . 137
8.4 Encoding PropBank using graphs 138
8.5 PropBank-based parsing via graph transformations 142

8.5.1 Results and analysis . 144
8.5.2 Extracted transformations: a closer look 144

8.6 Experiments with FrameNet . 144
8.6.1 Encoding FrameNet using dependency graphs 145
8.6.2 Learning to add FrameNet edges 148
8.6.3 Evaluation results . 150
8.6.4 Analysis and further experiments 151

8.7 Conclusions . 152

9 Conclusions 153
9.1 Main findings . 153
9.2 Strengths and weaknesses of our approach 154
9.3 Conclusions on the tasks . 155
9.4 Further work . 156

A Penn Treebank II Annotation: Function Tags and Empty Nodes 157
A.1 Function tags . 157
A.2 Empty nodes . 158

Bibliography 159

Chapter 1

Introduction

There is a growing need for effective and robust, wide-coverage yet focused access
to the constantly increasing volume of textual information available on the Web,
in digital libraries and other text repositories. Complex information access tasks,
such as Question Answering (Voorhees and Trang Dang, 2006), provide the Natural
Language Processing (NLP) community with new and deep challenges. Such tasks
require efficient language processing tools that are capable of recovering complex,
deep structure in natural language texts, ranging from part-of-speech tags, syntactic
chunks and named entities to syntactic, semantic and pragmatic analyses of text
(Bouma et al., 2005; Jijkoun et al., 2004; Moldovan et al., 2003a; Webber et al.,
2002).

The increased attention to deeper levels of text processing has led to an explo-
sion of methods, each addressing a specific problem and each defined for specific
syntactic and/or semantic formalisms. While many of the approaches are similar
in their use of well-established statistical techniques, differences pertaining to the
tasks addressed and to the language resources used often make it difficult to identify
these similarities, to compare the techniques, and to re-use the ideas or the actual
software for other, but related problems. This raises several important questions.
Can approaches developed for particular tasks, operating with specific syntactic
and semantic formalisms be transferred to other similar tasks? How important are
the details of a particular syntactic representation (e.g., syntactic constituency trees
or syntactic dependency structures) for the success of a particular semantically ori-
ented task? How would using a different syntactic parser, based on a different set
of syntactic labels, or even different syntactic formalism, affect the performance
of a specific method? How do we combine several different types of linguistic
analysis, making all of them easily available to applications?

In this thesis we bring together several NLP tasks related to the syntactic and

14 CHAPTER 1. INTRODUCTION

semantic analysis of English sentences, namely, identification of predicate argu-
ment structure, extraction of semantic propositions and arguments, and converting
between different syntactic formalisms. These tasks operate with different types of
linguistic information about a given text, they aim at identifying different types of
linguistic structures, and they are traditionally solved using fairly different meth-
ods. The aim of this thesis is to describe a uniform framework that allows us to
represent and process different linguistic structures. More specifically, we will
advocate a graph-based approach to language technology: various linguistic struc-
tures will be viewed as labeled directed graphs and language processing tasks will
be cast as graph transformation (rewriting) problems. This uniform view will allow
us, on the one hand, to elucidate similarities between different language process-
ing tasks, and on the other hand, to identify and make explicit the parameters and
biases needed for our general language processing method to perform well on the
specific tasks: particular details of the graph-based representation, types of re-
quired graph transformations, types of features used to automatically learn these
transformations.

1.1 Research questions

The questions listed in the previous section are often difficult to answer, since the
NLP methods described in the literature assume a specific kind of syntactic input
(e.g., constituency or dependency trees, with specific labels), and they often de-
pend on the details of the input. Changing the syntactic analyzer for such methods
can result in redesigning at least some parts of the employed processing models,
whether statistical or symbolic. This motivates the following question, the main
research question of this thesis:

Main Research Question 1
Can a general framework and a processing method be developed, that can be ef-
ficiently applied to a broad range of natural language processing problems, but
are as independent as possible from the specifics of the representation of linguis-
tic information and from the exact details of the language processing tasks being
addressed?

In the thesis we will answer the question positively and propose such a single,
unified approach to language processing. Specifically, we will propose to em-
bed various types of linguistic structures and several language processing tasks
into a framework based on graphs and graph transformations: linguistic struc-
tures are represented as directed labeled graphs, and NLP tasks are formulated
as graph transformation problems: automatically transforming graphs of one kind

1.1 RESEARCH QUESTIONS 15

into graphs of another, for example, graphs representing syntactic structure of sen-
tences into graphs that also contain semantic information. Moreover, we will de-
scribe a general graph transformation method that allows us to automatically learn
a sequence of graph rewrite rules for a given transformation problem.

Our answer to our main research question gives rise to a series of more specific
questions, which we detail below.

Research Question 2
How well is our proposed graph-based framework suited for representing various
types of linguistic structures?

We will address this question by presenting examples of encoding various types
of linguistic information as labeled directed graphs, considering syntactic depen-
dency, syntactic constituency, and semantic structures. We will also demonstrate
how such encodings enable us to combine different types of linguistic information
in one object, a single graph, making all of it accessible to the processing methods
in a uniform way.

Research Question 3
How well and how natural can different language processing tasks be formulated
as graph transformation problems, and what parameters and details of our graph
processing methods need fine-tuning for specific tasks?

In the course of the thesis we will consider several NLP tasks related to syntactic
and semantic analysis of text at different levels. We will demonstrate how a graph-
based encoding of linguistic structures makes it possible to re-cast these tasks as
instances of a general graph transformation problem. In particular, we will apply
our graph transformation-based method to the identification of predicate argument
structure, to the task of automatically converting between different syntactic for-
malisms, and to the identification of semantic arguments. For these experiments
we will use the same general settings of the method, which will allow us to address
the following research question.

Research Question 4
What are the limitations of the method?

We will analyze the performance of the method on several tasks, trying to deter-
mine weaknesses and possible workarounds. In particular, when defining our graph
transformation-based method for solving NLP tasks we hardwire a small number
of heuristics concerning the possible transformation rules it should consider. We

16 CHAPTER 1. INTRODUCTION

will show that, while these heuristics are generally effective for the types of tasks
that we consider, different types of tasks may call for different heuristics.

In addition, each of the case studies that we consider gives rise to specific con-
tributions on the task addressed in the case study, as detailed in the corresponding
chapters of the thesis.

1.2 Main contributions

The main contribution of the thesis is the introduction of a novel approach to NLP
problems based on supervised learning of graph transformations. We describe the
method in detail and demonstrate its applicability in a series of case studies:

• the automatic identification of predicate argument structures in the output of
a syntactic parser;

• automatically converting syntactic structures from one dependency formal-
ism to another;

• the automatic identification and labeling of semantic arguments.

For each of the case studies we formulate the task in terms of graph transforma-
tions. We show that our learning method is general enough to encompass all of
them and shows competitive performance for some of them.

1.3 Organization of the thesis

The thesis is organized in 9 chapters, and starts with the present introduction. Next
comes Chapter 2, which is a background chapter in which we give an overview
of the various types of linguistic information that we will work with in the thesis,
ranging from syntactic to shallow semantic, and we show how different linguistic
structures can be represented as labeled graphs and how NLP tasks operating with
these structures can be formulated as graph transformation problems. This chapter
provides answers to our Research Questions 2 and 3.

Chapter 3 gives formal definitions of the concepts that will be important in
the rest of the thesis: directed labeled graphs, graph patterns, graph rewrite rules,
and graph pair comparisons. The chapter also outlines an informal description
of the automatic graph transformation method that will be presented in detail in
Chapter 5.

Chapter 4 gives a first example of an application of our graph-based approach to
the task of identifying Penn Treebank-style predicate argument structure in English

1.3 ORGANIZATION OF THE THESIS 17

sentences analyzed by a syntactic parser. The purpose of this chapter is to show our
graph-based ideas at work at an early stage in the thesis. We describe the task and
our proposed method in detail, present the results and compare them to results in
the literature. The method of Chapter 4 is based on learning a predefined sequence
of simple graph transformations using an ad-hoc set of features extracted from
dependency graphs. After introducing the general graph transformation method
in Chapter 5, we will come back to this task in Chapter 6, removing the ad-hoc
choices to compare both solutions.

Chapter 5 is the core chapter of the thesis, and details our answer to the main
research question stated above. Here, we give a detailed description of our method
for learning graph transformations from a training corpus of pairs of input and
output graphs. The method is based on identifying local mismatches in the input
and output graphs and thereby producing a sequence of graph rewrite rules that
examine and changes local contexts. In the subsequent chapters we will apply the
method to several NLP tasks, re-casting them as graph transformation problems.

As a first case study, in Chapter 6, we describe an application of our general
method to the problem that was addressed by an ad-hoc method in Chapter 4: the
identification of Penn Treebank-style predicate argument structures (Bies et al.,
1995). Apart from giving the first example of our graph transformation-based me-
thod at work, the purpose of this chapter is to show that the generality of the me-
thod does not compromise the performance and, in fact, is beneficial for the task
in question, thus addressing Research Question 3. We also show that the method
can be equally well applied both to consistuency- and dependency-based syntactic
formalisms, which serves as another demonstration of its generality.

Chapter 7 presents a second case study. Here we apply our graph transforma-
tion method to another NLP task: converting between two different syntactic de-
pendency formalisms. Specifically, we consider the task of converting dependency
structures produced by Minipar, a syntactic parser of Lin (1994), to dependency
structures directly derived from the Penn Treebank. We report on the results of our
method for this task and examine the graph rewrite rules extracted by the method.

In Chapter 8 we show yet another application of our graph-based method to
the task of identifying semantic arguments, using the data of PropBank (Palmer
et al., 2005) and FrameNet (Baker et al., 1998). We will argue that graphs provide
a natural way of describing the information in the corpora, and the application of
our graph transformation method “out of the box” does demonstrate a reasonable
performance for PropBank-based shallow semantic parsing. We will also describe
a graph-based method for the task of FrameNet-based semantic role labeling. Our
analysis of the application of the method to these tasks, however, will indicate
several weak points: in particular, we will show that the default rule selection
criteria used successfully for other applications in the thesis, do not work well

18 CHAPTER 1. INTRODUCTION

for the identification of FrameNet roles. This negative result provides important
insights into our graph transformation method and will direct further research into
its applicability and effectiveness.

We conclude the thesis in Chapter 9 by re-examining our initial research ques-
tions, and reviewing our answers and contributions. We also identify a number of
important open research questions that follow up on our findings.

Finally, in Appendix A we give a list of function tags and empty node types
used in the annotations of the Penn Treebank II.

1.4 Paths through the thesis

We tried to make the chapters of the thesis as independent as possible and the
thesis as a whole accessible and interesting for readers with different backgrounds.
Therefore, there are different possible paths through the thesis. In particular, Chap-
ter 2 can be skipped by readers familiar with graph-based representations of lin-
guistic structures and with natural language processing. Chapter 3 is important in
that it introduces notation used in the rest of the thesis, however the formal defini-
tions of graph alignments and merges (Section 3.5) can be skimmed over. Chapter 4
can be skipped by readers with no special interest for the task of predicate argu-
ment structure identification. Chapter 5 is the core of the thesis and only relies on
the notation introduced in Chapter 3. Finally, Chapters 6, 7 and 8 can be read in
arbitrary order after Chapter 5.

1.5 Origins

The material in this thesis grew out of earlier publications and parallel research
activities. The modeling efforts in Chapter 2 find their origins in (Jijkoun, 2003).
Early versions of Chapter 4 were published in (Jijkoun, 2003; Jijkoun and de Rijke,
2004). Parts of the thesis (especially Chapters 6 and 8) grew out of (and feed
back in to) research on Question Answering, Textual Entailment and Information
Extraction (Ahn et al., 2006a,b; Jijkoun and de Rijke, 2005a,b, 2006; Jijkoun et al.,
2004). And, finally, part of the work presented in Chapter 8 was first described in
(Ahn et al., 2004).

Chapter 2

Linguistic Analysis and Graphs

In this chapter we give several examples of different types of linguistic structures
that are frequently in the focus of the NLP community. In later chapters of the
thesis, we will use these structures to formulate and provide solutions for various
NLP tasks. Now we will show how these types of structures can be easily and
naturally represented using directed labeled graphs, and, more importantly, how
combinations of these structures can be viewed as graphs as well.

In later chapters of the thesis we will heavily rely on the uniformity of our
graph-based representations and on the ability to combine linguistic information of
different nature and depth in a single graph. This type of uniformity will allow us
to treat different NLP tasks simply as instances of a general graph transformation
problem.

We start by considering two kinds of syntactic analysis of natural language sen-
tences: dependency structures and phrase trees. We describe both the formalisms
and the approaches to evaluating corresponding syntactic parsers. We believe that
although these two classes correspond to different views on the nature of syntactic
relations in text, they are often interchangeable and complementary. To illustrate
the relation between the two formalisms, we will briefly describe a well-known me-
thod for transforming phrase structures into dependency graphs. In later chapters of
the thesis we will consider NLP problems that involve either phrase or dependency
structures, or sometimes both of them.

Then, we describe how other linguistic structures, such as word sequences and
part-of-speech tags, predicate argument structures and semantic frames, can be
naturally represented as directed labeled graphs. We also show that the choice
of graphs as the underlying representation formalism allows for a straightforward
combination of different linguistic structures in a single graph.

Finally, we briefly describe concrete NLP tasks, such as recovery of non-local

20 CHAPTER 2. LINGUISTIC ANALYSIS AND GRAPHS

dependencies and grammatical and function tags in bare syntactic parses, identi-
fication of predicate argument structure and shallow semantic parsing, and show
how these different tasks can be viewed as specific types of graph transformation
problems. This transition, the re-casting of NLP tasks as graph transformation
problems, is one of the key elements of the method we are presenting in the thesis.

2.1 Syntactic structures as graphs

There are different ways to look at the syntax of a natural language. One may be
interested in how words group together, how resulting word groups form yet bigger
groups, eventually building up clauses and sentences. Or, one may be interested
in what relations exist between the words, how they depend on each other and
define each other’s properties. Phrase structures or dependency structures? None
of these two viewpoints is more “legitimate” that the other. In fact, they are far from
being mutually exclusive, and sometimes complement each other, as illustrated, for
example, by the success of head-lexicalized Probabilistic Context-Free Grammars
for English.

In this thesis we will work with both these types of syntactic representations.
Moreover, as we will see in Chapter 6, some of the language processing tasks
can be naturally formulated and effectively addressed using either formalism. In
particular, the core method of the present thesis, a method for learning graph trans-
formations that we will present in Chapter 5, is designed is such a way that it can
be easily parameterized for either phrase or dependency structures.

The main difference between the two formalisms is in the types of objects
they operate with, and the types of relations between these objects. For phrase
structure-based grammars the main objects are words and phrases and the main
relation in containment, or the child-parent relation. Labels, assigned to phrases
(constituents), distinguish various phrase types. Figure 2.1(b) shows an exam-
ple of a phrase tree: the constituency tree for the sentence “directors this month
planned to seek seats”. We will typically depict phrase structures with parents on
top. Sometimes we will also used arrows from parents to children.

Dependency-based grammars usually operate with objects of one type: words.
To balance the absence of phrases, relations (dependencies) vary much more and
are equipped with labels. Figure 2.1(b) shows an example of a labeled dependency
structure for the same sentence. When depicting dependency graphs we will use
arrows from heads to modifiers (dependents).

2.1 SYNTACTIC STRUCTURES AS GRAPHS 21

2.1.1 Evaluation of syntactic parsers

Since parsers, i.e., syntactic analyzers, exist for both formalisms, parser evaluation
schemes have also been defined for each of them. Specifically, the PARSEVAL
measure is typically used for comparison of sentence phrase trees produced by a
parser to the gold standard phrase trees. In PARSEVAL, one counts precision and
recall of correctly identified phrases:

Precision =
correctly identified phrases

phrases returned by the parser

Recall =
correctly identified phrases

phrases in the gold standard tree

F1-score =
2 · Precision · Recall

Precision + Recall
.

Here, a phrase is identified by the parser if it spans the same set of words of the
sentence and has the same label as some phrase in the gold standard parse of the
sentence.

For dependency parsers, or sometimes for phrase structure parser as well (Lin,
1998), it is common to compute either precision and recall of labeled dependency
relations (similarly to PARSEVAL, but now a dependency is correctly identified
by a parser if a dependency with the same head and modifier words and the same
label exist in the gold standard tree), or the error rate, the number of words that are
assigned different heads.

2.1.2 From phrase structures to dependency structures

As mentioned above, although phrase structures and dependency structures present
different views on similar linguistic information, it is possible to go from one to
the other. In this section we describe a common method for converting phrase
structures to dependency structures, described in detail in (Buchholz, 2002; Xia
and Palmer, 2001) among others. The conversion routine, described below, can
be applied both to the output of syntactic phrase structure parsers such as parsers
of Collins (1999) and Charniak (2000), and to corpora manually annotated with
syntactic phrase structures, such as the Penn Treebank. Note that in the latter case,
input structures of the conversion routine may contain richer information than the
structures obtained from the parsers. For example, the Penn Treebank, apart from
syntactic phrases with bare labels, provides indication of non-local dependencies
(subjects in control and raising, traces in WH-extraction, etc.). Our variant of the
conversion routine preserves as much of this additional information as possible,
whenever it is present.

22 CHAPTER 2. LINGUISTIC ANALYSIS AND GRAPHS

(a)

S

NP−SBJ VP

to seek NP

seats

*−1

directors

NP−SBJ−1

this month

NP−TMP

VP

planned

S

(b)

VP

to seek NP

seats

VP

planned

S

directors

this month

 NP

 NP S

(c)

planned

directors
VP|S

S|NP−SBJ

to

seek

seats
VP|NPmonth

 this

VP|TO

S|NP−TMP

NP|DT

S|NP−SBJ

(d)

planned

directors

VP|SS|NP

to

seek

seats
VP|NPmonth

 this

VP|TO

S|NP

NP|DT

Figure 2.1: Example of (a) the Penn Treebank WSJ annotation, (b) the output of
Charniak’s parser, and the results of the conversion to dependency structures of (c)
the Penn tree and of (d) the parser’s output.

First, for the Penn Treebank data (Bies et al., 1995), all non-local dependen-
cies, indicated using co-indexing of tree nodes, are resolved and corresponding
empty nodes are replaced with links to target constituents, so that syntactic trees
become directed graphs. For *ICH*, *RNR* and *EXP* traces (pseudo-attachments:
moved constituents, right node raising and it-extraposition, respectively) the target
constituent is removed from its original location. Second, for each constituent we
detect its head daughters (first conjunct in the case of conjunction) and recursively
identify lexical heads (headwords) of all constituents. Then, for each constituent
we output new dependencies between its lexical head and the lexical heads of its
non-head daughters. The label of every new dependency is the constituent’s phrase
label, stripped of all functional tags and co-indexing marks of the Treebank (if
present), conjoined with the label of the non-head daughter, with its functional
tags but without co-indexing marks.

Figure 2.1 shows an example of the original Penn annotation (a), the output of
Charniak’s parser (b) and the results of our conversion of these trees to dependency
structures (c and d). The interpretation of the dependency labels is straightforward:
e.g., the label S|NP-TMP appears when a sentence (phrase label S) is modified by
a temporal noun phrase (NP-TMP), as shown in the example.

2.1 SYNTACTIC STRUCTURES AS GRAPHS 23

Evaluation Parser
unlabeled bare labels with func. tags

P R f P R f P R f

PARSEVAL
Charniak 90.4 90.1 90.2 89.1 88.9 89.0 ---
Collins 89.8 89.3 89.5 88.5 88.0 88.2 ---

Dependencies
Charniak 89.9 83.9 86.8 85.9 80.1 82.9 68.0 63.5 65.7
Collins 90.4 83.7 87.0 86.7 80.3 83.4 68.4 63.4 65.8

Table 2.1: PARSEVAL scores and dependency-based evaluation of the parsers of
Collins (1999) and Charniak (2000) (section 23 of the Penn Treebank). The depen-
dency evaluation includes non-local dependencies.

The core of the conversion routine is the selection of head daughters of the
constituents. Following (Buchholz, 2002; Collins, 1999), we identified constituent
heads using a head percolation table, for every constituent label listing possible
constituent labels or part-of-speech tags of its head daughters. Our most notable
extension of the tables of Collins (1999) is the handling of conjunctions, which
are often left relatively flat in the Penn Treebank and, as a result, in the output of
parsers trained on the Penn Treebank data. Specifically, we used simple pattern-
based heuristics to detect conjuncts and mark the first conjunct as heads of the
conjunction and other conjuncts as dependents of the first conjunct, labeling the
new dependency with CONJ.

Moreover, after converting phrase trees using this method, we modify every
resulting dependency structure as follows:

• Auxiliary verbs (be, do, have) are made dependents of corresponding main
verbs (similar to modal verbs, which are handled by the head percolation
table);

• In order to fix a Penn Treebank inconsistency, we move the -LGS tag (indi-
cating logical subject of passive in a by-phrase) from the PP to its daughter
NP.

Our converter is available at http://www.science.uva.nl/˜jijkoun/
software.

2.1.3 Dependency-based evaluation of phrase structure parsers

To give a practical example of parser evaluation based on dependency relations,
we present such an evaluation for the phrase structure parsers of Collins (1999)
and Charniak (2000). We refer to (Bies et al., 1995) for a detailed description of
the Penn Treebank annotation.

24 CHAPTER 2. LINGUISTIC ANALYSIS AND GRAPHS

The phrase structures of the test section of the Penn Treebank Wall Street Jour-
nal corpus (section 23) and the parsers’ outputs for the sentences of section 23 are
converted to dependency structures as described in Section 2.1.2. Then we evaluate
the performance of the parsers by comparing the resulting dependency graphs with
the graphs derived from the corpus, using three different settings:

• on unlabeled dependencies;

• on dependencies, discarding all Penn function tags;

• on labeled dependencies with function tags.

Note that since neither Collins’ nor Charniak’s parser produce Penn function labels,
all dependencies with function labels in the gold corpus will be judged incorrect
in the third evaluation setting. The evaluation results on section 23 are shown in
Table 2.1, were we give the precision, the recall and the F1-score for the three
settings. For reference we also give the usual labeled and unlabeled PARSEVAL
scores for both parsers.

The dependency-based evaluation is more stringent than PARSEVAL in the
sense that the gold dependency corpus contains non-local dependencies (not di-
rectly identified by the parsers), whereas empty nodes and non-local dependencies
are ignored in the PARSEVAL evaluation. This accounts for the fact that the re-
call of dependency relations is substantially lower than the recall for constituents.
Moreover, as explained above, the low numbers for the dependency evaluation with
functional tags are expected, because the two parsers do not produce (and were not
intended to produce) function labels.

Interestingly, the relative ranking of the two parsers is different for the depen-
dency-based evaluation than for PARSEVAL: Charniak’s parser obtains a slightly
higher PARSEVAL score than Collins’ (89.0% vs. 88.2%), but slightly lower F1-
score on dependencies without functional tags (82.9% vs. 83.4%).

As the evaluation results show, both parsers perform with F1-score around 87%
on unlabeled dependencies. When evaluating on bare dependency labels (i.e., dis-
regarding functional tags) the performance drops to 83%. The new errors that
appear when taking labels into account come from different sources: incorrect
POS tags (NN vs. VBG), different degrees of flatness of analyses in gold and test
parses (JJ vs. ADJP, or CD vs. QP) and inconsistencies in the Penn annotation
(VP vs. RRC). Finally, the performance goes down to around 66% when taking
into account functional tags, which, again, are not produced by the parsers.

Having described two of the possible ways of representing syntactic structures,
phrase trees and dependency graphs, we now turn to graph-based representations
of other types of linguistic information.

2.2 ENCODING OTHER LINGUISTIC INFORMATION 25

2.2 Encoding other linguistic information

In the previous section we described two different approaches to representing nat-
ural language syntax: phrase and dependency structures. Both formalisms can
naturally be represented using directed node- and edge-labeled graphs. Now we
consider other possible types of linguistic analysis. Although each type provides
a different view on the linguistic data, we argue that different types of linguistic
information are essentially relational and thus allow a straightforward graph-based
representation.

To illustrate this, Figure 2.2 shows representations of different annotations of
the same sentence: part-of-speech tagging, syntactic parsing and two different
types of shallow semantic analysis (PropBank and FrameNet frames). The linguis-
tic structures in all cases are different, but it is fairly straightforward to combine all
of them in one graph.

Figure 2.3 gives an example of such a combination. Here we (arbitrarily) chose
to represent PropBank and FrameNet semantic arguments by largest corresponding
constituents and the target by the target word itself. Other combination schemes
are possible, and moreover, even different schemes can be put into the same graph.
Other useful linguistic analyses on various levels (morphology, chunking, named
entities, non-local syntactic relations, constituent heads, syntactic dependencies,
discourse information etc.) can also be added to such graph representation.

As we will show in the following chapters of the thesis, combining different lin-
guistic analyses in a single labeled graph facilitates straightforward simultaneous
access to all available information and simple and uniform definitions of different
NLP tasks. In fact, this uniformity will allow us to consider various NLP tasks as
instances of a generic graph transformation problem.

2.3 Linguistic analysis and graph transformations

As mentioned above, with the graph-centered view on linguistic data, many lan-
guage processing tasks can be defined in terms of graph transformations. In this
section we will briefly look at several possible tasks and the types of transforma-
tions they require.

Figure 2.4 gives an example of two similar but different linguistic analyses for
the sentence “asbestos was used in making paper in the 1950s” (this is a simplified
sentence from the Penn Treebank). Although the manual annotation (left) and
the parser’s output (right) both provide the basic phrase structure of the sentence,
the manual annotation also indicates a non-local dependency between used and
asbestos (the curve on the figure), empty nodes (PRO NP, the empty subject of

26 CHAPTER 2. LINGUISTIC ANALYSIS AND GRAPHS

(a)

asbestos was used in making

VBDNN VBN IN VBG

pos

next next next next next

pos pos pos pos

in

IN

next next

pos pos

1950s

CD

pos

thepaper

NN

pos

DT

next

(b)

VP

S

VP

VP

NP

 NP

 PP

 S

asbestos

NN VBD

was VBN

used IN

in

VBG

making NN

paper

IN NP

 PP

in

1950s

CD

the

DT

(c)

asbestos

used
ARGM−TMP

in making paper
ARG2−in

ARG1

in the 1950s

(d)

asbestos

used

in making paper

Time

Containing_event

Instrument

Using

frame−instance

in the 1950s

Figure 2.2: Different linguistic annotations of the sentence asbestos was used in
making paper in the 1950s: (a) word sequence and part-of-speech tagging; (b)
syntactic parse tree; (c) semantic propositions from PropBank; (d) FrameNet an-
notation of frame semantics.

2.3 LINGUISTIC ANALYSIS AND GRAPH TRANSFORMATIONS 27

ARG1

Instrument

VP

S

VP

 NP

asbestos

NN VBD

was VBN

used

Containing_event

ARG2−in

ARGM−TMP

Time

Using

frame−instance
VP

NP

 PP

 SIN

in

VBG

making NN

paper

IN NP

 PP

in

1950s

CDDT

the

Figure 2.3: Different linguistic annotations combined in one graph. For clarity
some arc labels and arc arrows are omitted.

(a)

NP−SBJ−1 VP

S

VPasbestos was

PP−TMP

NP

PP−LOC

in

NP

paper

S−NOM

NP−SBJ VP

*

in

making

NP
used

*−1

1950sthe

(b)

VP

S

VP

in NP

asbestos was

used

paper

in

making

VP

NP

 NP

 PP PP

 S

the 1950s

Figure 2.4: (a) the Penn Treebank annotation, (b) the output of Charniak’s parser
for the sentence asbestos was used in making paper in the 1950s.

28 CHAPTER 2. LINGUISTIC ANALYSIS AND GRAPHS

(a)

usedasbestos

in
PP|NP

1950s

was

making

* paper
S|NP−SBJ VP|NP

in
VP|NP VP|PP−TMP

PP|S−NOM

VP|PP−LOC

VP|VP

the
NP|DT

S|NP−SBJ

(b)

used

in

PP|NP

1950s

was

making

paper
VP|NP

in

VP|PP
VP|PP

PP|S

VP|VP

the
NP|DT

asbestos

 S|NP

Figure 2.5: Dependency graphs from (a) WSJ annotation, (b) the output of Char-
niak’s parser for the sentence asbestos was used in making paper in the 1950s.

making) and some additional functional and semantic information: phrase label
tags -TMP (temporal), -LOC (locative), -SBJ (subject), -NOM (nominative).

When we look at the structures as labeled directed graphs (nodes being words
and phrases and edges connecting parent and child phrases), we can view these
differences as mismatches between the two graphs: different node labels, miss-
ing edges, missing nodes, etc. The natural and useful task of adding the missing
treebank information to the output of the parser can be seen as the task of trans-
forming graph (b) in Figure 2.4 into graph (a). Moreover, we see that in this case
the transformation can be viewed as a sequence of simple graph transformation
steps, involving only single nodes and edges.

Similarly, Figure 2.5 displays two dependency graphs for the same sentence:
the graphs derived from Penn Treebank (left) and from the parser’s output (right).
Again, the mismatches in analysis between manual and automatic annotation of
the sentence correspond to “atomic” differences between the two graphs: edge la-
bels (PP|S-NOM and PP|S), one missing node (*, on the right graph), two missing
edges (between asbestos and used, and between making and *). As before, trans-
forming the parser’s output into the annotation from the corpus can be seen as a
chain of simple atomic graph transformations.

The transition from the structure in Figure 2.5(b) to the structure in Figure 2.5(a)
is a useful and non-trivial graph transformation. Essentially, it recovers informa-
tion not provided by a parser (empty nodes, non-local relations, functional tags),
adding it to the parser’s graph.

2.4 Conclusions

In this chapter we have given an overview of various types of linguistic structures
that we will come across later in the thesis and we have demonstrated how these

2.4 CONCLUSIONS 29

structures can easily be represented as graphs. We focused on syntactic phrase
structures, syntactic dependency graphs, predicate argument structure and frame
semantics. We showed that graphs provide a natural way to uniformly and simul-
taneously represent various linguistic analyses of the same natural language data,
and some NLP tasks can be viewed as graph transformations. In the following
chapters of the thesis we will use these representations to address concrete NLP
tasks. But before we go into linguistic applications, in the next chapter we make
a detour into Computer Science in order to make our notions of graphs and graph
transformations precise.

Chapter 3

Graphs and Graph
Transformations

In the previous chapter, we have already seen that various linguistic structures can
naturally be thought of and represented as directed labeled graphs, with nodes
corresponding to words, syntactic phrases and semantic units, and directed arcs
corresponding to linguistic relations. This view has a number of methodological
advantages. First, it provides us with unified simultaneous access to different types
of linguistic analysis. Second, it allows us to view NLP tasks as instances of graph
transformation problems, i.e., transforming graphs of one type to graphs of another
type, usually richer and more complex.

In this chapter we lay the basis for our subsequent work on developing such
NLP tools within our graph-based paradigm. We will formally introduce the no-
tions of directed labeled graphs, patterns, graph comparison and merging, graph
rewrite rules, that we will use throughout the thesis. Finally, we provide a first
sketch of our method for learning graph transformations, that will be fully de-
scribed in its more general form in Chapter 5.

In our presentation of the concepts related to graphs and graph transforma-
tions we will generally follow the logic-based approach to structure replacement
systems, described in detail in (Schürr, 1997). Of course, other approaches to
graph rewrite systems and graph grammars exist, most notably, algebraic, where
graphs are represented as sets of nodes and edges accompanied with labeling func-
tions, and graph rewrite rules are defined as node or edge replacements (Drewes
et al., 1997; Engelfriet and Rozenberg, 1997). The advantage of the logic-based
approach is that it allows us to formulate complex graph patterns, constraints and
rewrite rules using the familiar language of first-order predicate logic. Moreover,
representing graphs and patterns as sets of atomic predicates will allow us to define

32 CHAPTER 3. GRAPHS AND GRAPH TRANSFORMATIONS

graph rewrite rules as simple functions operating on these sets.
We start with basic definitions of graphs.

3.1 Graphs, patterns, occurrences

The main objects used throughout the thesis will be directed labeled graphs. In-
formally speaking, these are structures consisting of nodes and edges connecting
pairs of nodes, with each node and edge possibly assigned any number of named
attributes.

We will represent directed attributed graphs as sets of atomic formulas (atoms)
of first-order predicate logic with equality. Symbols a, b, c, n, e, . . . (which we
will call objects or object identifiers) refer to nodes and edges of graphs. Symbols
was, S|NP, pos, . . . (called domain constants or simply constants) refer to labels, at-
tribute names and values. Both objects and domain constants are considered 0-ary
function symbols. The predicate symbols node, edge and attr are used to describe
nodes, edges and their attributes. More precisely, the predicates are interpreted as
follows:

• node(n): defines n as a graph node;

• edge(e, n1, n2): defines e as a directed edge from n1 to n2;

• attr(b, attr, val): declares that the object b has an attribute with name attr and
value val; and

• b = c: declares the equality between objects b and c.

Thus, a graph is a set of such predicates, such that

• every object is either a node or edge, but not both;

• endpoints of every edge are declared as nodes;

• the object of an attribute declaration is either a node or an edge.

For a given graph G, we will use NG to denote the set of nodes of G and EG its set
of edges. Furthermore, OG = NG ∪ EG is the set of all objects of G.

We will interpret sets of formulas as conjunctions, and will use sets (with com-
mas between elements) and conjunctions (&) interchangeably. We will also use
the following shorthand to declare that e is an edge from n to m labeled with l:

edge(e, l, n,m)
def
= edge(e, n,m) & attr(e, label, l).

3.1 GRAPHS, PATTERNS, OCCURRENCES 33

was

she pushing

hard

VP|VP

VP|ADVP

S|NP

F =
{

node(n1), node(n2), node(n3), node(n4),

attr(n1, label, was), attr(n2, label, she),

attr(n3, label, pushing), attr(n4, label, hard),

edge(e1, S|NP, n1, n2),

edge(e2, VP|VP, n1, n3),

edge(e3, VP|ADVP, n3, n4)
}

Figure 3.1: Example of encoding a graph as a list of atomic formulas.

Figure 3.1 shows an example of a labeled graph and the corresponding set (con-
junction) of atoms. In the following we will use the term graph to refer both to the
actual structure with nodes and edges, to the set of atoms, and to the correspond-
ing logic formula (the conjunctions of atoms). Accordingly, the same statements
can be expressed in different ways. For example, for a graph F , the following are
equivalent:

• e is an edge of F ;

• edge(e, n1, n2) ∈ F for some n1 and n2; and

• F ` ∃x, y : edge(e, x, y).

For a graph F , an edge e and nodes n and m such that edge(e, n,m) ∈ F , we will
say that e is incident with both n and m, and e is an outgoing edge for n and an
incoming edge for m. Moreover, we will call n and m neighbor nodes.

Arbitrary attributes can be assigned to edges and nodes. For example, for graph
nodes that correspond to words of the text, we will indicate the part of speech tags
of the words using attributes of the type attr(n, pos, VBD). As another example,
in the graphs representing various kinds of linguistic structures used later in the
thesis, for each object (node or edge) we will use the attribute type to indicate the
type of the object: word nodes, constituent nodes, dependency edges, child edges
or antecedents in phrase trees, etc.

We will call a graph G a subgraph of a graph F iff G ⊂ F .
Now we introduce the main concepts needed to describe pattern matching on

graphs. For the sake of space and readability we omit some details and formal
definitions and refer to the in-depth description of Schürr (1997).

Patterns are simply arbitrary graphs, i.e., sets of atomic predicates. Consider,

34 CHAPTER 3. GRAPHS AND GRAPH TRANSFORMATIONS

for instance, the following graph pattern:

G =
{

node(a), node(b), edge(d, VP|VP, b, a)
}

.

This pattern contains two nodes, a and b, connected by an edge d with label VP|VP.
We can use the mapping u =

{

a 7→ n1, b 7→ n3, d 7→ e2

}

to embed G into the
graph F in Figure 3.1. The mapping specifies an occurrence of the pattern G in
the graph F . An embedding u associates objects of G with objects of F in such a
way that nodes are mapped to nodes and edges to edges. In this case we will also
say that u is an occurrence of a pattern G in F .

We will characterize u as an occurrence of G in the graph F by requiring that
u(G) ⊂ F . For our example this is true, since

u(G) =
{

node(n1), node(n3), edge(e2, VP|VP, n3, n1)
}

⊂ F.

Because we view graphs both as sets of atoms and as logic formulas, yet another
way to check that u is an embedding of G into F is to prove F ` u(G) using
some complete first-order predicate calculus. This view opens an opportunity to
generalize the notion of patterns and embeddings to arbitrary sets of formulas, not
only sets of atoms (i.e., graphs). Allowing such more complex patterns, however,
would require that we introduce explicit closed-world assumptions and additional
constraints on graph representation, as discussed in (Schürr, 1997). Throughout
the thesis we will only use simple patterns: sets of atoms.

We are ready now to define graph rewrite rules, which will be our main instru-
ment for transforming graphs.

3.2 Graph rewrite rules

While patterns allow us to locate certain subgraphs by finding occurrences of pat-
terns, graph rewrite rules will allow us not only to query graphs, but also to trans-
form them. Basically, a rewrite rule defines a basic, atomic graph transformation:
locating a certain subgraph and replacing it with another subgraph.

Formally, a graph rewrite rule is a triple p = (L,C,R), where:

• L, the left-hand side of the rule (LHS for short) is a pattern;

• C , the constraint of the rule, is an arbitrary formula (or even an arbitrary
boolean function) that only uses the objects of L; and

• R, the right-hand side (RHS for short) is a graph that might use some objects
of L and some new objects.

3.2 GRAPH REWRITE RULES 35

For a rule p we will also use LHS (p), C(p) and RHS (p) to denote its LHS, con-
straint and RHS, respectively.

When applying a rewrite rule p = (L,C,R) to a graph F , we need to find all
occurrences of the pattern L such that the constraint C is satisfied (i.e., the logic
formula or the boolean function evaluates to true). For such an occurrence u, we
remove from F all atoms (i.e., nodes, edges, attributes) that are in L but not in R

and, moreover, add all atoms that are in R but not in L. In other words, we replace
an occurrence of L with an occurrence of R, provided that a constraint C holds.
As a result of such a replacement, some nodes and edges may be deleted or added,
and those common to L and R remain.

More formally, a graph F ′ is derivable from graph F by applying rule p (we
write F

p
→ F ′) iff:

(1) there is an embedding u of L ∪ C into F ;

(2) there is an embedding w of R into F ′;

(3) u and w map all common objects of L and R into common objects; and

(4) F ′ is obtained from F by

(a) removing all atoms that are in u(L);
(b) adding all atoms that are in w(R); and
(c) removing atoms that use objects occurring in u(L) but not occurring in

w(R).

As an example, consider the following rewrite rule rintr:

LHS(rintr) =
{

edge(e, S|NP, a, b)
}

C(rintr) =
{

¬∃x, y : edge(x, VP|NP, y, b)
}

RHS(rintr) =
{

edge(e, S|NP, a, b), node(c), attr(c, label, intr),

edge(g, subj, c, a), edge(h, verb, c, b)
}

.

An occurrence u of the rule’s LHS and constraint in a graph G locates a node u(b)
with incoming edge labeled S|NP and no incoming edges labeled VP|NP, i.e., a word
having a subject dependent but no object dependents. For every such occurrence,
the rule keeps the original edge and adds a new node u(c) (labeled intr) with two
outgoing edges: one pointing to u(b) and labeled verb and another pointing to
the subject dependent of b and labeled subj. In a way, the rule finds and marks
intransitive uses of verbs (in practice, we would also add to C(rintr) a requirement
that b is indeed a verb, e.g., attr(b, pos, VBD)). An example of applying the rewrite
rule rintr to a graph is shown in Figure 3.2.

36 CHAPTER 3. GRAPHS AND GRAPH TRANSFORMATIONS

was

she pushing

hard

VP|VP

VP|ADVP

S|NP

rintr

−−−→

was

she pushing

hard

VP|VP

VP|ADVP

S|NP

verb
subj

intr

Figure 3.2: The result of applying the rewrite rule rintr.

In the definition above we assumed that constraints of graph rewrite rules are
logical formulas. However, in later chapters of the thesis we will often use rewrite
rules with constraints defined as arbitrary boolean functions that map an occurrence
of an LHS to either true or false, where these boolean functions are implemented
using machine learning classifiers. The modification of the definition for this spe-
cial case is straightforward.

3.3 Graphs with partial node ordering

Throughout the thesis, graphs representing linguistic information will be accom-
panied by some natural partial order on the set of nodes, e.g., when the nodes
correspond to words or constituents of a text. Consider, for instance, the examples
in Figure 2.2 on page 26, where:

• the set of all word nodes of the sentence is linearly ordered from left to right;
and moreover,

• sets of children for every constituent are ordered in a natural left-to-right
order, thus, defining a partial order on the set of all word and constituent
nodes.

Let’s recall that a partial order (we will denote it with “≺”) is an irreflexive, asym-
metric, transitive relation (it is partial because there may exist a and b with neither
a ≺ b nor b ≺ a). For each partial order, there exists a (generally not unique)
minimal relation ≺0 such that ≺ is its transitive closure. For example, given a sen-
tence S = w1 . . . wk, and a graph with nodes n1, . . . , nk, nk+1, . . . with node ni

corresponding to word wi for i = 1, . . . k, the relations ≺0 and ≺ can be defined as

ni ≺ nj ⇐⇒ i < j ≤ k

ni ≺0 nj ⇐⇒ i + 1 = j ≤ k.

A graph with a partial order is a graph F containing edges that define a partial
order ≺ and its corresponding Hasse diagram ≺0 as follows:

3.4 DEPENDENCY AND PHRASE STRUCTURE GRAPHS 37

• whenever n1 ≺0 n2, graph F contains an edge from n1 to n2 with the label
next and the type attribute equal to ord; and

• whenever n1 ≺ n2, graph F contains an edge from n1 to n2 with label after

and the type attribute equal to ord.

We will also use “≺” and “≺0” as shorthands for the corresponding formulas:

n1 ≺0 n2
def
= edge(e′, n1, n2) & attr(e′, type, order) & label(e′, next)

n1 ≺ n2
def
= edge(e′′, n1, n2) & attr(e′′, type, order) & label(e′′, after),

where e′ and e′′ are new object identifiers. Below is an example of a syntactic
phrase tree represented as a graph with a partial order using the new types of edges:

NP

 PP

VP

used

1950s

in

VP

NP

 PP

 Sin

paper

making

The partial order here is induced by the natural word order and the order of the
constituents’ children. We only show next edges as dotted arrows.

In later chapters we will mainly encounter graphs of two types, both with a par-
tially ordered set of nodes: syntactic dependency graphs and syntactic phrase struc-
ture graphs. In the next section we formally describe these two types of graphs.

3.4 Dependency and phrase structure graphs

In Chapter 2 we have informally introduced the two types of syntactic structures
that we will use for addressing several NLP tasks later in the thesis. Now, having
formally defined directed labeled graphs with partial node ordering, we can for-
mally introduce these two notions: dependency graphs and phrase structure graphs.

A dependency graph is a directed graph with nodes labeled with words they
represent and their part of speech tags (e.g., node(n), attr(n, word, was), attr(n, label,

VBD)), edges going from dependents to heads and labeled with names of corre-
sponding dependency relations. To distinguish these edges from those representing

38 CHAPTER 3. GRAPHS AND GRAPH TRANSFORMATIONS

objs
subj

MaryJohn
pos=Npos=N

pos=V
loves

pos=C
fin

i

F =
{

node(n1), attr(n1, word, fin), attr(n1, label, C),

node(n2), attr(n2, word, loves), attr(n2, label, V),

node(n3), attr(n3, word, John), attr(n3, label, N),

node(n4), attr(n4, label, Mary), attr(n4, label, N),

edge(e1, i, n2, n1), attr(e1, type, dep),

edge(e2, subj, n3, n2), attr(e2, type, dep),

edge(e3, s, n3, n2), attr(e3, type, dep),

edge(e4, obj, n4, n2), attr(e4, type, dep),

edge(e5, next, n3, n2), attr(e5, type, ord),

edge(e6, after, n3, n2), attr(e6, type, ord),

edge(e7, next, n2, n4), attr(e7, type, ord),

edge(e8, after, n2, n4), attr(e8, type, ord),

edge(e9, after, n3, n4), attr(e9, type, ord)
}

Figure 3.3: Dependency graph, the output of Minipar for the sentence “John loves
Mary” and its representation as a first-order logic formula.

the partial order, we will add the attribute type with value dep and use the term de-
pendency edges. For uniformity with phrase structure graphs (see below), we will
also add type attributes to all nodes of dependency graphs (e.g., attr(n, type, word)).

Figure 3.3 gives an example of a dependency graph, the output of Minipar (Lin,
1994), for a simple sentence. Note that the parser produces an additional node fin,
marking a finite clause, that is not included in the partial order. Minipar outputs
two dependency relations between the words John and loves: subj for subject of a
verb and s for surface subject (see Lin (1994) for details). In the figure, ≺0-edges
(i.e., those labeled next) are shown as dashed arrows, ≺-edges (labeled after) as
dotted arrows, and some edge attributes are omitted.

A phrase structure graph is a node-ordered graph, with nodes representing ei-
ther constituents (e.g., node(n), attr(n, label, NP), attr(n, type, phrase)) or individual
words (e.g., node(n), attr(n, word, loves), attr(n, type, word)). Word nodes are also
labeled with part of speech tags (e.g., attr(n, pos, VBZ)). Unlabeled edges go from
constituent nodes to their children; we will use the term constituent edges and mark
these edges using attribute type with value child. The partial order (≺ and ≺0) re-
flects the natural left-to-right ordering of words and ordering of children of every
constituent.

3.4 DEPENDENCY AND PHRASE STRUCTURE GRAPHS 39

S

NP

John
pos=NNP

Mary
pos=NNP

NP

pos=VBZ
loves

VP

F =
{

node(n1), attr(n1, label, S),

node(n2), attr(n2, label, NP),

node(n3), attr(n3, label, VP),

node(n4), attr(n4, label, NP),

attr(n1, type, phrase), attr(n2, type, phrase),

attr(n3, type, phrase), attr(n4, type, phrase),

node(n5), attr(n5, word, John),

attr(n5, label, NNP), attr(n5, type, word),

node(n6), attr(n6, word, loves),

attr(n6, label, VBZ), attr(n6, type, word),

node(n7), attr(n7, word, Mary),

attr(n7, label, NNP), attr(n7, type, word),

edge(e1, n1, n2), attr(e1, type, child),

edge(e2, n1, n3), attr(e2, type, child),

edge(e3, n2, n5), attr(e3, type, child),

. . .
}

Figure 3.4: Phrase structure, the output of Charniak’s parser for the sentence “John
loves Mary” and its representation as a first-order logic formula.

Further, for phrase structure graphs we will sometimes also indicate head chil-
dren by adding the attribute attr(e, head, 1) to the child edge from a constituent to its
head child. We will also mark lexical heads by adding an edge from a constituent
node to the word node corresponding to the lexical head, labeling the edge with
the attribute attr(e, type, lexhead). Antecedent constituents of Penn Treebank empty
nodes will be indicated using edges from the empty node to its antecedent with the
attribute attr(e, type, antecedent).

Figure 3.4 presents an example of a phrase structure produced by the parser
of Charniak (2000), represented as a graph. Again, in the figure we omit some
node attributes, and use dashed and dotted arrows for edges labeled next and after,
respectively.

40 CHAPTER 3. GRAPHS AND GRAPH TRANSFORMATIONS

3.5 Comparing graphs

Throughout the thesis we will need to compare pairs of graphs, identifying what
two given graphs have in common and where they differ, and sometimes character-
ize the differences numerically. One obvious example is comparing the output of a
syntactic parser to syntactic structures annotated manually, e.g., as in Figure 2.4 on
page 27. For this and other examples we may be interested both in a quantitative
comparison of these structures (i.e., how many of their nodes, edges, labels are
shared by both graphs) and a qualitative comparison (i.e., what these differences
actually are). Throughout the thesis we will use quantitative graph comparisons
for the evaluation of systems that operate on graphs, and qualitative comparisons
for identifying frequent errors or mismatches in collections of graph pairs, as well
as for error analysis. In this section we introduce the apparatus that will allow us
to make such comparisons in our graph-based setting.

3.5.1 Graph alignment

An alignment of two disjoint graphs F and G is an injective partial mapping u :
OF → OG that maps nodes to nodes and edges to edges. We will sometimes rep-
resent an alignment of two graphs as a set of atoms and write u =

{

align(x1, y1),
. . . , align(xn, yn)

}

, where u(xi) = yi and align is a new predicate symbol. In other
words, an alignment is a one-to-one correspondence between some (not necessarily
all) nodes and edges of two graphs.

For u, an alignment of F and G, we will use u(F) to denote the graph obtained
from F by changing x to u(x) for all objects x such that u(x) is defined.

In general, we will only be interested in alignments of pairs of graphs that pre-
serve certain graph properties. An alignment schema is a constraint on the possible
alignments of two graphs. Formally, an alignment schema is a closed first-order
logic formula not containing object identifiers (i.e., containing only bound vari-
ables) that only uses predicates node, edge, attr and align. We will use schemata to
assert certain well-formedness criteria. An alignment u is consistent with align-
ment schema S iff F ∪ G ∪ u ` S. We will use S(F,G) to denote the set of all
alignments of F and G that are consistent with the schema S.

Throughout the thesis we will only consider alignments of graphs such that:

• if two edges are aligned, their respective end-points are aligned as well;

• there are no conflicts in the ordering of aligned nodes in the two graphs;

• alignments preserve types of the aligned objects (i.e., values of type attributes;

3.5 COMPARING GRAPHS 41

• alignments preserve words (i.e., values of word attributes) for graph nodes
that actually correspond to surface words on sentences (i.e., nodes with the
attribute type = word.

More specifically, we will only consider alignments satisfying the alignments schema
S = S0 & S≺ & Sw, with S0, S≺ and Sw defined below.

Definition 3.1 (Basic alignment schema S0)
The schema S0 states that whenever two edges are aligned, their incident nodes are
aligned as well:

S0
def
= ∀x1, x2, s, y1, y2, t :

(

edge(s, x1, x2) & edge(t, y1, y2) & align(s, t)

⇒ align(x1, y1) & align(x2, y2)
)

.

Definition 3.2 (Order-preserving alignment schema S≺)
The schema S≺ states that an alignment preserves a partial order on nodes (if de-
fined):

S≺
def
= ∀x1, x2, y1, y2 :

(

align(x1, y1) & align(x2, y2)

⇒ x1 ≺ x2 ⇔ ¬(y2 ≺ y1)
)

In other words, alignments consistent with S≺ should not introduce any conflicts
between the partial orders of the two aligned graphs.

In the course of the thesis we will only be comparing pairs of graphs that refer to
the same natural language sentence. Moreover, we will assume that tokenization
(i.e., splitting sentences into words) is similar in the two analyses that the graphs
represent. A natural additional constraint for the alignment of graphs annotating
the same sequence of words is that their word nodes are aligned. We introduce this
condition formally:

Definition 3.3 (Type and word-preserving alignment schema Sw)
The schema Sw states that the types of aligned objects are identical, as well as the
words of aligned word nodes:

Sw
def
=∀x, y :

(

align(x, y) ⇒ ∃t : attr(x, type, t) & attr(y, type, t)
)

&

∀x, y :
(

(

align(x, y) ∨ align(y, x)
)

⇒ ∀w :
(

attr(x, word, w) ⇒ attr(y, word, w)
)

)

42 CHAPTER 3. GRAPHS AND GRAPH TRANSFORMATIONS

3.5.2 Graph merges

Graph alignments allow us to identify pairs of nodes or edges in two graphs, e.g.,
two possibly different linguistic analyses of the same sentence: the output of a
parser and a treebank annotation, or even outputs of two different parsers. Graph
merges, structures introduced in this section, will allow us to view a pair of graphs
together with their alignment as a single object, in fact, as a single graph such
that each of its elements (nodes, edges, attributes) “knows” whether it belongs to
both aligned graphs or to only one of them. This view on graph pairs as graphs
will enable us to reuse the whole apparatus of graph pattern matching and graph
rewrite rules for aligned pairs of graphs.

Essentially, a graph merge of two aligned graphs F and G is a graph, with all
nodes, edges and attributes corresponding to nodes, edges and attributes of F and
G and split into three disjoint set: those pertaining to F only, to G only, and to both
graphs. We now give a formal definition.

Let F and G be two graphs with disjoint sets of objects, i.e., OF ∩ OG = ∅.
Let u be an alignment of F and G. A merge of F and G with respect to u is defined
as a disjoint union of three sets M = M(F,G, u) = Mleft ∪Mboth ∪Mright , such
that M = u(F) ∪ G and for any atom A ∈ M :

1. A ∈ Mleft iff A ∈ u(F) and A 6∈ G;

2. A ∈ Mboth iff A ∈ u(F) and A ∈ G; and

3. A ∈ Mright iff A 6∈ u(F) and A ∈ G.

In words, M(F,G, u) is obtained from G by adding to G all elements of F that
were not mapped into G using u. Intuitively, we merge F and G, identifying
aligned objects.

For a merge M , we will use the terms left (common and right) objects to refer
to objects from Mleft , Mboth and Mright , respectively.

Note that for any graphs F and G, alignment u and merge M = M(F,G, u),
both Mleft ∪ Mboth and Mboth ∪ Mright are always graphs, since by the definition
of a merge:

Mleft ∪ Mboth = u(F), and

Mboth ∪ Mright = G

On the other hand, the full merge, Mleft , Mboth and Mright is not necessarily a
graph, because F and G may have conflicting attributes for aligned objects.

Note that if the alignment u is empty (i.e., F and G are not aligned) the merge
M(F,G, u) is still defined and is simply the disjoint union of F and G, such that
Mleft = F , Mright = G and Mboth = ∅.

3.5 COMPARING GRAPHS 43

3.5.3 Finding graph alignments

As mentioned above, graph alignments and merges will be our main device for
comparing graphs, both numerically and qualitatively: we will use them for eval-
uation purposes and for detecting and describing systematic differences between
graphs. In this section we address an important practical question: how do we
find an alignment for a pair of graphs? For a given pair of graphs F and G and
a given alignment schema S, there may exist many possible alignments of F and
G consistent with S. For example, for any graph pair and any alignment schema,
an empty alignment (i.e., the one that does not align any nodes or edges) is always
a valid alignment. Moreover, for any alignment, any subset (i.e., the result of ex-
cluding some edge pairs and/or some node pairs with incident edge pairs) is a valid
alignment as well. On the other hand, some of the alignments for a given pair of
graphs may be truly different, e.g., assigning some node of F to different nodes
of G. Obviously, we are more interested in those alignments that make the two
graphs as similar as they can be made, i.e., that identify as many nodes and edges
as possible, without violating the validity criteria (the alignment schemata).

In principle, for two graphs F and G, the number of all possible alignments is
finite though super-exponential in the size of the graphs. Indeed, for any subset of
objects of F , K ⊂ OF , there are

(|OG|
|K|

)

many ways to align them to objects in G.
Since the number of all possible K ⊂ OF is exponential, we see that the number
of all possible alignments is super-exponential (note, though, that many of these
alignments will not satisfy the alignment schemata we defined above).

For the applications of graph methods to NLP problems, described in the the-
sis, the graphs we deal with are generated for English sentences, with nodes corre-
sponding to words, phrases, semantic arguments etc., which implies that the graphs
we are working with are not extremely large. For example, for our encoding of the
syntactic phrase structures in the Penn Treebank, the graphs have 45 nodes and
113 edges on average. Nevertheless, these sizes prohibit graph alignment methods
based on full enumeration of all possible alignments.

In this subsection we describe our heuristic method for aligning pairs of graphs,
that will be used for all NLP problems described in later chapters. Our method uses
the node ordering of our graphs and the properties of valid alignments (as defined
by the alignment schemata, Section 3.5.1).

In order to find an alignment for a given pair of graphs F and G, we use a
simple dynamic programming algorithm (Thomas H. Cormen and Stein, 2001)
that tries to find the best possible alignment of the nodes of the two graphs, by
maximizing a gain function:

gainalign(F,G)
def
=

∑

n,m:aligned

gainalign(n,m),

44 CHAPTER 3. GRAPHS AND GRAPH TRANSFORMATIONS

where the gain in aligning a pair of nodes, gainalign(n,m), is defined as follows:

• −∞ if n and m differ in the value of the type attribute. This allows us
to guarantee that words will only be aligned to words, syntactic phrases to
syntactic phrases, semantic elements to semantic elements, etc.

• if n and m are both words (i.e., the value of the type attribute is word),
then the gain is defined as 1 if the corresponding words are identical (i.e.,
attr(n, word, w) ∈ F and attr(m, word, w) ∈ G for some string w), and −∞
otherwise. Thus, we ensure that only word nodes with identical words are
aligned.

• if n and m are both phrases (i.e., the value of the type attribute is phrase), the
gain is defined as the degree of word overlap. More precisely, we compute
yields of both phrases in both graphs (the values of the word attribute of all
word-descendants when following child-edges) and compute the alignment
gain as the ratio of the number of words in common and the total number of
words in the two yields.

• for other nodes types, e.g., semantic elements, we define the alignment gain
in the same was as for phrases (i.e., based on the word yield), as in the rep-
resentations we consider in the thesis, semantic nodes always link to phrase
or word nodes.

We use the ordering of nodes (word and phrases) to run a dynamic programming al-
gorithm similar to the algorithm for the calculation of edit distance for strings (Lev-
enshtein, 1966).

Now, with all technicalities in place, we will give a brief high-level description
of our method to automatically learn a sequence of graph rewrite rules given a
corpus of aligned graphs.

3.6 Learning graph transformations: an outline

For some NLP tasks formulated as graph transformation problems, rather than
manually creating a list of transformation rules, we might prefer a system that
can learn such rules automatically. As we will show later in the thesis, this is often
possible if the system has access to a corpus annotated with the information rele-
vant to the transformations. Here we outline a general method for automatically
learning graph transformations. We postpone a fully detailed description of the
method until Chapter 5.

3.7 CONCLUSIONS 45

In order to learn how to transform graphs, our method uses a corpus of aligned
graph pairs

{

(Fi, Gi)
}

, where Fi exemplifies an input graph and Gi the ideal out-
put of the graph transformation engine to be learned. By comparing graphs in the
aligned pairs, our method identifies a sequence of useful graph rewrite rules that
can then be applied to previously unseen graphs.

More specifically, our method learns a sequence of rewrite rules of the form
(LHS,C,RHS): the left-hand side, the constraint and the right-hand side (see Sec-
tion 3.2). The rule specifies that all occurrences of the LHS should be found, for
which the constraint C is satisfied, and these occurrences should be replaced with
the RHS.

Our method is similar to Transformation-Based Learning (TBL) (Brill, 1995)
and is largely inspired by the TBL paradigm. In fact, the method can be considered
an extension of TBL, as we will show below.

Both for our own method and for TBL, the crucial ingredients are:
• the types of basic rewrite transformations considered by the system, i.e.,

types of possible LHS’s considered by the system;

• the mechanism for selecting the most promising transformations of a chosen
type;

• the realization of the constraint C . While in classic TBL all constraints are
typically included in the LHS (and thus, TBL uses straightforward pattern
matching and replacement: LHS → RHS), we will often use a more flexi-
ble and more sophisticated constraint implementation, where constraints are
realized by an off-the-shelf machine learning engine.

As in the classic TBL paradigm, the process of learning graph transformations is an
iteration of learning steps. At each step, a corpus of graph pairs is used to identify
possible rewrite rules of specific types and to select the most promising one(s) (i.e.,
those that reduce the total number of mismatches in the graphs most, according to
some target metric). Then, the selected rules are applied to the corpus of graph
pairs itself, thus making a corpus that will be used at the next iteration of the me-
thod to learn subsequent transformations. Thus, the structure of our transformation
method follows the structure of the Transformation Based Learning paradigm (see
Figure 3.5). As mentioned above, more details on the method and its comparison
to the TBL paradigm are presented in Chapter 5.

3.7 Conclusions

In this chapter we made precise the notions of graph, graph transformation and
graph comparison. In our formalization we followed the logic-based approach of

46 CHAPTER 3. GRAPHS AND GRAPH TRANSFORMATIONS

Compare

Apply

Extract rules

Aligned graphs

Compare

Apply

Extract rules

Aligned graphs

rules rulesrules

Ideal output graphsInput graphs

...

Iteration 1 Iteration 2 Iteration N

Compare

Apply

Extract rules

Aligned graphs

...

Figure 3.5: Outline of the graph transformation method. Arrows indicate data flow.
The method takes two corpora (input and output graphs, top) and produces a list of
rewrite rules (bottom).

Schürr (1997), where graphs are represented as first-order logic formulas, or, more
precisely, as sets (conjunctions) of atomic formulas defining nodes, edges and their
attributes, such as labels or part of speech tags. We also defined graph merges and
graph rewrite rules, which will be the main devices in the automatic graph transfor-
mation method we have briefly outlined here and will describe in full in Chapter 5.
But before we present this detailed description, it is time to put our formalization
to work. In the next chapter we give an example of how the idea of graph transfor-
mations can be used for addressing a concrete NLP problem: recovering non-local
dependencies and function tags in syntactic parses of sentences, or, putting it dif-
ferently, identifying Penn Treebank-style predicate argument structure.

Chapter 4

Identifying Predicate Argument
Structure

In this chapter we present the first example of a practical application of our graph-
based approach to NLP problems: namely, to the problem of identifying the pred-
icate argument structure of English sentences. There are different views on what
constitutes the predicate argument structure (PAS) of a sentence. In this chapter we
focus on one of them, taking the Penn Treebank II (Marcus et al., 1994), the largest
available syntactically annotated corpus of English, as our source of information
about PAS.

In particular, we formulate the predicate argument structure identification prob-
lem as a problem of transforming the output of a syntactic parser. Such a formu-
lation will allow us to embed the task into our general graph-based framework
and to demonstrate the applicability of our graph-based view on the linguistic in-
formation. We present our solution for a specific representation of parsers’ outputs
(namely, as dependency graphs) and a specific choice of types of graph transforma-
tions and graph features used to implement the transformations. Later in the thesis,
after presenting a general method for learning graph transformation in Chapter 5,
we will come back to the task of PAS identification in Chapter 6 and describe a
more systematic solution, applying the general method for this task with both de-
pendency graphs and phrase structures, and comparing the results to the system of
the present chapter.

The rest of the chapter is organized as follows. After providing some back-
ground and motivation for the PAS identification task in Section 4.1, we give a
general overview of our graph-based method in Section 4.4. The method consists
of three sequential steps, described in detail in Sections 4.5, 4.6 and 4.7. We discuss
the results in Section 4.8.

48 CHAPTER 4. IDENTIFYING PREDICATE ARGUMENT STRUCTURE

(a)

S

NP−SBJ VP

to seek NP

seats

*−1

directors

NP−SBJ−1

this month

NP−TMP

VP

planned

S

(b)

VP

to seek NP

seats

VP

planned

S

directors

this month

 NP

 NP S

Figure 4.1: Example of (a) the Penn Treebank WSJ annotation and (b) the output
of Charniak’s parser for the sentence “directors this month planned to seek more
seats.”

4.1 Motivation

State-of-the-art statistical phrase structure parsers, e.g., parsers trained on the Penn
Treebank, produce syntactic parse trees with bare phrase labels, such as NP, PP, S
(noun phrase, prepositional phrase, clause, resp., see Figure 4.1(b)), i.e., providing
classical surface grammatical analysis of sentences, even though the training cor-
pus is richer and contains additional grammatical and semantic information distin-
guishing various types of modifiers, complements, subjects, objects and specifying
non-local dependencies, i.e., relations between phrases not adjacent in the parse
tree (see Figure 4.1(a) which gives an example of the Penn Treebank annotation).
This information constitutes an essential part of the predicate argument structure,
which can be seen as a step up from syntactic constituent structure of text towards
semantic representation. For example, by only looking at bare phrase labels of a
parse tree, it is often not possible to distinguish complements and adjuncts as they
might be realized as phrases of the same type. In the example in Figure 4.1(b), both
noun phrases (NPs) “directors” and “this month” are in a similar syntactic position
in the sentence: they are children of an S constituent, and are not distinguishable
based only on the provided syntactic information (constituent labels). At the same
time, these NPs play very different roles in the PAS of the sentence: a subject and
a temporal adjunct.

As another example in the same sentence, consider the relation between the
verb “seek” and the noun phrase “directors”. Whereas in the Penn Treebank anno-
tation (Figure 4.1(a)) the fact that the NP is the subject of the verb (this is an exam-
ple of subject control) is explicitly indicated using an empty subject NP contain-
ing a trace co-indexed with “directors,” this information is missing in the parser’s
output. Such non-local dependencies obviously constitute a part of the predicate
argument structure.

4.1 MOTIVATION 49

Whereas the information about the entire predicate argument structure of the
sentences is explicitly annotated in the Penn Treebank, it is ignored by many state-
of-the-art parsers. One of the exceptions is the Combinatory Categorial Grammar
parser of Hockenmaier (2003), which incorporates non-local dependencies into
the parser’s statistical model, and thus not only produces these dependencies in
the output, but moreover, uses non-local relations during parsing. As another ex-
ception, the parser of Collins (1999) apart from bare constituency trees recovers
WH-extraction traces and provides a simple complement/adjunct distinction (by
adding the -A tag to labels of constituents that function as complements).

None of the known syntactic parsers, however, is capable of providing all in-
formation that is available in the Penn Treebank. The reason is that bringing in
more information, though helpful in principle, in practice often makes the under-
lying statistical parsing models more complicated: more parameters need to be
estimated and some independence assumptions (in particular, those used in proba-
bilistic context-free grammars (PCFGs)) may no longer hold. Klein and Manning
(2003), for example, report that using function tags of the Penn Treebank (tempo-
ral, location, subject, predicate, etc.) with a simple unlexicalized PCFG generally
had a negative effect on the parser’s performance. Similarly, Dienes (2004) report
that a combination of trace tagger and a trace-aware parser that extends one of the
models of Collins (1997), shows good results for the identification of non-local de-
pendencies, but a drop of accuracy on the constituent-based PARSEVAL measure.
Currently, there are no parsers trained on the Penn Treebank that use the structure
of the treebank in full and that are capable of producing syntactic or, rather, predi-
cate argument analysis that include all types of information information annotated
in the corpus.

In this chapter, we address the problem of recovering all types of information
that is annotated in the Penn Treebank, including semantic and grammatical tags,
empty nodes and non-local dependencies. We will describe a method that views
the output of a parser as a directed labeled graph and learns to add the missing
information by comparing graphs derived from the parser and graphs derived from
the Penn Treebank. In this graph-based setting, adding different types of infor-
mation corresponds to different simple graph modifications: identifying function
tags to edge labels correction, identifying empty nodes to adding nodes to graphs,
identifying non-local dependencies to adding new graph edges.

We will focus on the version of PAS based on the dependency syntax derived
from the Penn Treebank as described in Section 2.1.2. Later, in Chapter 6, we
will present the method for identification of predicate argument structure based on
phrase trees and on the original Penn Treebank.

50 CHAPTER 4. IDENTIFYING PREDICATE ARGUMENT STRUCTURE

4.2 Related work

In recent years there has been a substantial interest in getting more information
from parsers than just bare syntactic phrase trees. The approaches to this problem
can be divided into two groups: those aiming at identifying Penn Treebank function
tags and those addressing the recovery of empty nodes and traces.

4.2.1 Recovery of function tags

Blaheta and Charniak (2000) presented the first method for assigning Penn Tree-
bank function tags to constituents identified by a syntactic parser. The method,
further studied in (Blaheta, 2004), consists in formulating the function tag identi-
fication task as a classification problem: given a constituent produced by a parser,
assign a (possibly empty) function tag. Blaheta described experiments with three
classifiers: Maximum Entropy, Decision Trees and Perceptrons. All three learners
were provided with the set of features describing the constituent in question and its
neighborhood in the parse tree:

• labels of the constituent itself, its parent, grandparent and left and right sib-
lings in the parse tree;

• lexical heads of the constituent, its parent and its grandparent;

• part of speech tags of these heads;

• in case the constituent is a prepositional phrase (i.e., its label is PP), the head
of its object and its part of speech;

• for each of the labels and part of speech tags, its cluster: one of the three
manually created groups of labels;

• for each of the words, its cluster: word clusters were created automatically;
the number of clusters was not reported.

Experiments with the three classifiers and different subsets of features demon-
strated that the maximum entropy performed best for identification of the semantic
Penn function tags (manner, temporal, locative, etc.), while perceptron was best for
the identification of syntactic tags (subject, predicate, topicalization, etc.).

4.2.2 Recovery of non-local dependencies

Several methods have been applied to the task of identification of Penn Treebank
empty nodes and non-local dependencies (traces).

4.2 RELATED WORK 51

The first approach to the task was presented by Johnson (2002), who used a
simple pattern matching algorithm. From the training corpus, he extracted the
smallest fragments of the phrase trees that contained traces, i.e., empty nodes to-
gether with their antecedents, and used these fragments as tree patterns: whenever
such a pattern occurs in a phrase tree, an empty node is inserted in the tree and
linked to the antecedent as defined by the pattern.

We used a similar pattern-matching approach in (Jijkoun, 2003), applying it
to dependency rather than phrase trees, and extending the pattern-matcher with a
trained classifier that predicted whether for a given match an empty node and a
trace should be inserted. We used a Memory-Based Learner (Daelemans et al.,
2003) that had access to a number of features describing a match in a dependency
graph: words and their part of speech tags, presence of subject and object depen-
dents, finiteness of verb clusters. Machine learning was demonstrated to be useful
for the task.

Experiments described in (Dienes and Dubey, 2003a,b) show that the task of
recovering non-local dependencies can be successfully addressed using a combi-
nation of a preprocessing method and trace-aware syntactic parser. Their system
predicts positions of empty elements in sentences, before parsing, by training a
Maximum Entropy tagger with a set of features designed to capture aspects of the
context important for the task: surrounding words and their part of speech tags,
presence of passive, to-infinitive, complementizers, WH-pronouns, etc. Empty
elements detected by the tagger are reported to a lexicalized parser, that uses a
gap-threading mechanism similar to Model 3 of Collins (1997), to incorporate this
information into the parsing model. Furthermore, combining a preprocessor and a
parser in a single probabilistic architecture, Dienes (2004) shows an improvement
in the recovery of non-local dependencies. The experiments of Dienes show that
including non-local information in a PCFG parsing model allows one to achieve
high accuracy on the task of recovering non-local dependencies. However, this
seems to come at a price of a drop in the parsing accuracy: the PARSEVAL score
of the parser decreases from 88.0 to 87.1 when using non-locals in the parsing
model.

Levy and Manning (2004) describe another post-processing approach to the
task. They describe a linguistically-motivated algorithm that takes into account
specifics of the Penn Treebank annotation of non-local dependencies. Two clas-
sifiers based on log-linear models are used to identify extracted constituents, i.e.,
antecedents of empty nodes. This is different from the system of Dienes and Dubey
(2003a) where a classifier was used to detect empty elements themselves in sen-
tences before parsing. The results of the comparison of the two systems are in-
teresting: while Dienes and Dubey (2003a) seem to perform better specifically for
traces, Levy and Manning (2004) report better results for the dependency-based

52 CHAPTER 4. IDENTIFYING PREDICATE ARGUMENT STRUCTURE

(a)

usedasbestos

in
PP|NP

1950s

was

making

* paper
S|NP−SBJ VP|NP

in
VP|NP VP|PP−TMP

PP|S−NOM

VP|PP−LOC

VP|VP

the
NP|DT

S|NP−SBJ

(b)

used

in

PP|NP

1950s

was

making

paper
VP|NP

in

VP|PP
VP|PP

PP|S

VP|VP

the
NP|DT

asbestos

 S|NP

Figure 4.2: Dependency graphs derived from (a) the Penn Treebank annotation and
(b) the output of Charniak’s parser for the sentence “asbestos was used in making
paper in the 1950s.”

evaluation that considers both local and non-local dependencies.

4.3 PAS identification and graph transformations

As discussed above, in the present chapter we address the task of identifying pred-
icate argument structure in dependency graphs. More precisely, the task is to trans-
form dependency graphs derived from a parser in such a way that they contain all
information annotated in the Penn Treebank trees. This corresponds to adding Penn
function tags (e.g., -SBJ, -TMP, -LOC), empty nodes (e.g., empty complementiz-
ers) and non-local dependencies (control traces, WH-extraction, etc.). In terms of
dependency graphs these transformations can be seen as local modifications of the
graph structure: changing edge labels, adding new nodes and new edges.

For example, consider two dependency graphs in Figure 4.2, the result of the
conversion of phrase structures from (a) the Penn Treebank and (b) Charniak’s
parser (repeated here from Figure 2.5). We can identify the following mismatches
between the two graphs:

• different dependency labels: S|NP vs. S|NP-SBJ, VP|PP vs. VP|PP-TMP,
VP|PP vs. VP|PP-LOC and PP|S vs. PP|S-NOM;

• an empty node “*”, a dependent of making in the Penn Treebank graph; and

• an edge between asbestos and used, an object trace in the passive.

Our method for adding predicate argument information to the output of a parser,
described in the next section, is based on identifying such small local transforma-
tions.

4.4 TRANSFORMING GRAPHS 53

4.4 Transforming graphs

In this section we give a high-level overview of our method for transforming the
output of a parser. The steps of the method will be described in detail in the fol-
lowing sections.

We experimented with dependency structures automatically derived from the
output of two phrase structure parsers of Charniak (2000) and Collins (1999). For
Collins’ parser the text was tagged for part of speech before the parsing, using the
maximum entropy tagger of Ratnaparkhi (1996).

Our graph transformation method consists of two phases:

• training phase, which induces the necessary knowledge from existing data
sources; and

• application phase, which uses the induced knowledge to process previously
unseen data.

The training phase of the method consists in learning which transformations need
to be applied to the output of a parser to make it as similar to the data from the gold
standard as possible.

As a preliminary step, as mentioned above, we convert the constituency-based
Penn Treebank annotation of PAS to a dependency corpus without losing the anno-
tated information (constituent labels, function tags, empty nodes, non-local depen-
dencies). The same conversion is applied to the output of the parsers we consider
(we refer to Section 2.1.2 on page 21 for details).

Training proceeds by comparing graphs derived from a parser’s output with the
graphs from the dependency corpus (the corpus of predicate-argument structures),
detecting local graph mismatches, such as differing edge labels and missing or
incorrect nodes or edges.

We considered the following types of local transformations (rewrite rules),
defining the three steps of method:

1. changing edge labels, such as S|NP to S|NP-SBJ;

2. adding new nodes (e.g., empty nodes of the treebank annotation), together
with dependency edges that connect these nodes to a dependency graph; and

3. adding new edges, e.g., dependency edges corresponding to the Penn Tree-
bank annotation of non-local dependencies.

At the application phrase, our method transforms input dependency graphs, se-
quentially applying graph rewrite rules that implement transformations of these
three types. Obviously, other types of rewrite rules are possible and make sense

54 CHAPTER 4. IDENTIFYING PREDICATE ARGUMENT STRUCTURE

for our task, such as deleting edges or performing rewrites involving more that
one node. In Chapter 6, after the introduction of a general transformation learning
method, we will generalize the method by allowing arbitrary rewrites in arbitrary
sequence.

For the experiments, the corpus of gold standard dependency graphs (Penn
Treebank automatically converted to dependencies) was split into training (sections
02–21), development (sections 00–01) and test (section 23) corpora. During the
training phase of the method, for each of the steps 1, 2 and 3 we proceed as follows:

1. compare the training corpus to the output of the parser on the strings of the
corpus, after applying the transformations of the previous steps;

2. identify left-hand sides of possible beneficial transformations (which edge
labels need to be changed or at which positions in the graphs new nodes or
edges need to be added);

3. train a classifier to realize constraints and predict right-hand sides of trans-
formation rules, given an occurrence of a left-hand side and its context (i.e.,
information about the local structure of the dependency graph in the neigh-
borhood of the occurrence).

While the forms of left-hand sides, contexts and right-hand sides of the rules are
different for the three steps, the general structure of the method remains the same
at each stage. Sections 4.5, 4.6 and 4.7 describe the steps in detail.

For the application of the method to new, unseen data, we proceed similarly.
First, the output of the parser is converted to dependency graphs (Section 2.1.2),
then the learners trained during steps 1, 2 and 3 are applied consecutively to detect
graph transformations and the detected graph modifications are performed.

Apart from the conversion from phrase structures to dependency graphs and
the extraction of some linguistic features for the learning described in the follow-
ing sections, our method does not use any information about the details of the cor-
pus annotation or the parser’s output: it simply works with labeled directed graphs.
Thus, a similar method can potentially be applied to any graph transformation prob-
lem as long as the output of the parser and the training corpus are represented as
edge- and node-labeled graphs. We will support this claim after describing such a
more general method in Chapter 5.

In Table 4.1 the row labeled “initially” gives the evaluation results for the two
parsers we considered immediately after the conversion to dependency graphs, re-
peated here from Table 2.1 (see the discussion of these results in Section 2.1.1 on
page 21).

4.5 STEP 1: CHANGING DEPENDENCY LABELS 55

Evaluation Parser
unlabeled base labels with func. tags

P R f P R f P R f
initially Charniak 89.9 83.9 86.8 85.9 80.1 82.9 68.0 63.5 65.7

Collins 90.4 83.7 87.0 86.7 80.3 83.4 68.4 63.4 65.8
relabeling Charniak 89.9 83.9 86.8 86.3 80.5 83.3 83.8 78.2 80.9

(Section 4.5) Collins 90.4 83.7 87.0 87.0 80.6 83.7 84.6 78.4 81.4
adding nodes Charniak 90.1 85.4 87.7 86.5 82.0 84.2 84.1 79.8 81.9
(Section 4.6) Collins 90.6 85.3 87.9 87.2 82.1 84.6 84.9 79.9 82.3
adding edges Charniak 90.0 89.7 89.8 86.5 86.2 86.4 84.2 83.9 84.0
(Section 4.7) Collins 90.4 89.4 89.9 87.1 86.2 86.6 84.9 83.9 84.4

Table 4.1: Dependency-based evaluation of the transformation method for the out-
put of the parsers of Charniak (2000) and Collins (1999).

In the following sections we describe the three transformation steps, discuss
evaluation results and where appropriate compare our method to previously pub-
lished approaches.

4.5 Step 1: Changing dependency labels

Comparing dependencies produced by a parser to dependencies derived from the
Penn Treebank, we automatically identify possible relabelings. For Collins’ parser,
the following were found to be the most frequent relabelings in the training data:

• S|NP→S|NP-SBJ,

• PP|NP-A→PP|NP,

• VP|NP-A→VP|NP,

• S|NP-A→S|NP-SBJ, and

• VP|PP→VP|PP-CLR.

In total, around 30% of all the parser’s dependencies had different labels in the
Penn Treebank.

We learned simple rewrite rules that modify edge labels of dependency graphs,
implementing the constraints of the rules using TiMBL, a memory-based multi-
class classifier (Daelemans et al., 2003). The task of the learner was, given a
dependency edge in a graph, predict how its label should be changed. We provided
the learner with the following symbolic features for each dependency edge in a
dependency graph:

56 CHAPTER 4. IDENTIFYING PREDICATE ARGUMENT STRUCTURE

• the head (h), dependent (d) and their part of speech tags;

• the leftmost dependent of d, with respect to the surface word order, and its
part of speech tag;

• the head of h (h′), its part of speech and the label of the dependency h′ → h;

• the closest left and right siblings of d (dependents of h) and their part of
speech tags;

• the label of the dependency (h → d) as derived from the parser’s output.

When included in feature vectors, all dependency labels were split at ‘|’, e.g., the
label S|NP-A resulted in two symbolic features: S and NP-A.

Testing was done as follows. The test corpus (section 23) was also parsed, and
for each dependency, the features were extracted and the trained classifier used to
assign the corrected dependency label. After this transformation the outputs of the
parsers were evaluated, as before, on dependencies in the three settings.

The results of the evaluation at this step are shown in Table 4.1 (the row marked
“relabeling”). Obviously, relabeling does not change the unlabeled scores. The 1%
improvement for evaluation on bare labels suggests that our approach is capable
not only of adding function tags, but can also correct the parser’s phrase labels
and part of speech tags: for Collins’ parser the most frequent correct changes not
involving function labels were NP|NN→NP|JJ and NP|JJ→NP|VBN, fixing part of
speech tagging errors: NN (common singular noun) in place of JJ (adjective) and
JJ in place of VBN (past participle of a verb). A substantial increase of the labeled
score (from 66% to 81%), which is only 6% lower than unlabeled score, clearly
indicates that, although the parsers do not produce function labels, this information
is to a large extent implicitly present in trees and can be recovered.

4.5.1 Comparison to earlier work

The main effect of the relabeling procedure described above is the recovery of
Penn function tags. Thus, it is informative to compare our results with those re-
ported in (Blaheta and Charniak, 2000) and (Blaheta, 2004) for this task. Blaheta
measured the tagging accuracy and the precision/recall for function tag identifica-
tion only for constituents correctly identified by the parser (i.e., having the correct
span and constituent label). Since our method uses a dependency formalism, to
make a meaningful comparison we need to model the notion of a constituent being
correctly found by a parser. For a word w we say that the constituent corresponding
to its maximal projection is correctly identified if there exists h, the head of w, and
for the dependency w → h the right part of its label (e.g., NP-SBJ for S|NP-SBJ)

4.6 STEP 2: ADDING MISSING NODES 57

is a nonterminal (i.e., not a part of speech tag) and matches the right part of the
label in the gold standard dependency structure, after stripping function tags. In
other words, we require that the constituent’s label and headword are correct, but
not necessarily the span. Moreover, 2.5% of all constituents with function labels
(246 out of 9928 in section 23) are not maximal projections. Since our method
ignores function tags of such constituents (these tags disappear after the conver-
sion of phrase structures to dependency graphs), we consider them as errors, i.e.,
reducing our recall value.

Below, the tagging accuracy, precision and recall are evaluated on constituents
correctly identified by Charniak’s parser for section 23. The results of Blaheta
(2004) are shown only for one of their models that uses a Maximum Entropy clas-
sifier with a manually constructed feature tree. Their other MaxEnt models and
perceptrons with automatically selected feature sets show better results, but only
the scores for a subset of function tags are reported (namely, syntactic and semantic
tags). We will present a more detailed and straightforward comparison to the best
model of Blaheta (2004) in Chapter 6.

Method Accuracy P R F1

Blaheta and Charniak (2000) 98.6 87.2 87.4 87.3
Blaheta (2004) 98.9 87.9 88.6 88.6
Here 94.7 90.2 86.9 88.5

Our system shows better precision for the identification of Penn Treebank tags and
a comparable F1 score. The large difference in accuracy scores is due to two rea-
sons. First, because of the different definition of a correctly identified constituent
in the parser’s output, we apply our method to a larger portion of all labels pro-
duced by the parser (95% vs. 89% reported in (Blaheta and Charniak, 2000)). This
might make the task for our system more difficult. And second, whereas 22% of
all constituents in section 23 have a function tag, 36% of the maximal projections
have one. Since we apply our method only to labels of maximal projections, this
means that our accuracy baseline (i.e., never assign any tag) is lower.

In Chapter 6 we will present a system that is capable (among other) of re-
covering function tags in phrase trees, which will allow us to make a more direct
comparison with the results of Blaheta (2004).

4.6 Step 2: Adding missing nodes

As the “relabeling” row in Table 4.1 indicates, the recall is relatively low for both
parsers (6% lower than precision): while the Penn Treebank trees, and hence the
derived dependency structures, contain non-local dependencies and empty nodes,

58 CHAPTER 4. IDENTIFYING PREDICATE ARGUMENT STRUCTURE

the parsers simply do not provide this information. To make up for this, we con-
sidered two further transformations of the output of the parsers: adding new nodes
(corresponding to empty nodes in the Penn Treebank), and adding new labeled
edges. This section describes the first of these transformations.

As described in Section 2.1.2 on page 21, when converting Penn Treebank
trees to dependency structures, traces are resolved, their empty nodes removed and
new dependencies introduced. Of the remaining empty nodes (i.e., non-traces), the
most frequent in the Penn Treebank are: NP PRO, empty units, empty comple-
mentizers, empty relative pronouns (see Appendix A for details). In order to add
missing empty nodes to dependency graphs, we compare the output of the parsers
on the strings of the training corpus after converting it to dependency structures and
automatic relabeling of the dependency labels (Section 4.5). We trained a classifier
which, for every word in the parser’s output, had to decide whether an empty node
should be added as a new dependent of the word, and what its symbol (‘*’, ‘*T*’,
‘*U*’ or ‘0’ in the Penn Treebank), part of speech tag (always -NONE- in the Penn
Treebank) and the label of the new dependency connecting the new node to the
word (e.g., ‘S|NP-SBJ’ for NP PRO and ‘VP|SBAR’ for empty complementizers)
should be. This decision is conditioned on the word itself and its context. We used
the following features to describe the context of a word:

• the word and its part of speech tag,

• binary features indicating whether the word has any subject and object de-
pendents, and whether it is the head of a finite verb group;

• the same information for the word’s head (if any) and also the label of the
corresponding dependency;

• the same information for the rightmost and leftmost dependents of the word
(if exist) along with the corresponding dependency labels.

In total, we extracted 23 symbolic features for every word in the corpus. TiMBL
was trained on sections 02–21 and applied to the output of the parsers (after steps 0
and 1) on the test corpus (section 23), producing a list of empty nodes to be inserted
in the dependency graphs. After insertion of the empty nodes, the resulting graphs
were evaluated against section 23 of the gold dependency treebank. The results
are shown in Table 4.1 (the row “adding nodes”). For both parsers the insertion
of empty nodes improves the recall by 1.5%, resulting in a 1% increase of the
F1-score.

4.7 STEP 3: ADDING MISSING DEPENDENCIES 59

4.6.1 Comparison to earlier work

A procedure for empty node recovery was first described in (Johnson, 2002), along
with an evaluation criterion: an empty node is correct if its category and position in
the sentence are correct. Since our method works with dependency structures, not
phrase trees, we adopt a different but comparable criterion: an empty node should
be attached as a dependent to the correct word, and with the correct dependency
label. Unlike the first metric, our correctness criterion also requires that possible
attachment ambiguities are resolved correctly (e.g., as in the number of reports 0
they sent, where the empty relative pronoun may be attached either to number or
to reports).

Below we compare our results for the recovery of empty elements with the
system of Dienes and Dubey (2003a) and the best model of Dienes (2004). Note
that this evaluation does not include traces (i.e., empty elements with antecedents):
recovery of traces is described in Section 4.7.

Type
Dienes and Dubey (2003a) Dienes (2004) Here

P R F1 P R F1 P R F1

PRO-NP 68.7 70.4 69.5 74.7 68.1 71.3 73.1 63.9 68.1
COMP-SBAR 93.8 78.6 85.5 78.6 83.7 81.7 82.6 83.1 82.8
COMP-WHNP 67.2 38.3 48.8 70.4 35.5 47.2 65.3 40.0 49.6

UNIT 99.1 92.5 95.7 94.4 91.2 92.8 95.4 91.8 93.6

For comparison we use the notation of Dienes and Dubey: PRO-NP for uncontrolled
PROs (nodes ‘*’ in the Penn Treebank), COMP-SBAR for empty complementiz-
ers (nodes ‘0’ with dependency label VP|SBAR), COMP-WHNP for empty relative
pronouns (nodes ‘0’ with dependency label X|SBAR, where X6=VP) and UNIT for
empty units (nodes ‘*U*’).

Surprisingly, none of the methods outperform others on all empty node cate-
gories and the differences between the three are not large. Below, in Section 4.7
and in Chapter 6 we will present an overall evaluation of the methods, on all empty
elements, including traces.

4.7 Step 3: Adding missing dependencies

We now get to the third and final step of our transformation method: adding missing
edges to dependency graphs. The parsers we considered do not explicitly provide
information about non-local dependencies (control, WH-extraction) present in the
treebank. In this section we describe the insertion of missing dependencies.

60 CHAPTER 4. IDENTIFYING PREDICATE ARGUMENT STRUCTURE

Similar to the previous stages of our transformation method, we compare the
output of the parsers on the strings of the training corpus, converted to depen-
dencies and transformed using systems of steps 1 and 2 (edge label relabeling of
Section 4.5 and empty nodes insertion of Section 4.6), to the dependency struc-
tures in the training corpus. For every Penn Treebank dependency that is missing
in the parser’s output, we find the shortest undirected path in the dependency graph
connecting its head and dependent. These paths, connected sequences of labeled
dependencies, define the set of possible left-hand sides of rewrite rules. For our
experiments we only considered patterns occurring more than 100 times in the
training corpus. E.g., for Collins’ parser, 67 different patterns were found.

Consider the example in Figure 4.2, page 52. With the dependency VP|NP

between the words used and asbestos missing in the parser’s output, the shortest
path between used and asbestos consists of two edges: from was to used and from
was to asbestos. The following rewrite rule will therefore be extracted:

LHS =
{

node(n0), node(n1), node(n2),

edge(e0, n1, n0), edge(e1, n1, n2),

attr(e0, label, S|NP), attr(e1, label, VP|VP)
}

RHS =
{

node(n0), node(n1), node(n2),

edge(e0, n1, n0), edge(e1, n1, n2),

attr(e0, label, S|NP), attr(e1, label, VP|VP)

edge(e2, n2, n0), attr(e2, label, VP|NP)
}

n1

n2n0

VP|VPS|NP
n1

n2n0

VP|NP

VP|VPS|NP

Next, from the parsers’ output on the strings of the training corpus, we extracted
all occurrences of the left-hand sides of the identified rewrite rules, along with
information about the nodes involved. For every node in an occurrence of the left-
hand side of a rule we extracted symbolic features describing:

• the word and its part of speech tag;

• whether the word has subject and object dependents (i.e., outgoing edges
with labels S|NP-SBJ and VP|NP, respectively);

• whether the word is the head of a finite verb cluster.

4.7 STEP 3: ADDING MISSING DEPENDENCIES 61

We then trained TiMBL to predict the label of the missing dependency (or ‘none’),
given an occurrence of a pattern and the features of all the nodes of the occurrence.
We trained a separate classifier for each of the 67 identified pattern.

For application of the learned transformations to new dependency graphs, we
extract all occurrences of the left-hand sides of all patterns identified at the training
stage, and use TiMBL to predict whether for a given occurrence a new edge should
be added and if so, what its dependency label is.

We applied the learned transformations to the output of two parsers on the
strings of the test corpus, after modifying the dependency graphs with the rewrite
rules learned at steps 1 and 2 , i.e., after correcting dependency labels and adding
empty nodes (Sections 4.5 and 4.6). Then we compared the resulting dependency
graphs to the graphs of the test corpus. The results are shown in Table 4.1 (the
row “step 3”). As expected, adding missing dependencies substantially improves
the recall (by 4% for both parsers) and allows both parsers to achieve an 84% F1-
score on dependencies with function tags (90% on unlabeled dependencies). The
unlabeled F1-score 89.9% for Collins’ parser is close to the 90.9% reported in
(Collins, 1999) for the evaluation on unlabeled local dependencies only (without
empty nodes and traces). Since as many as 5% of all dependencies in the Penn
Treebank involve traces or empty nodes, the results in Table 4.1 are encouraging.

4.7.1 Comparison to earlier work

We evaluated the performance of the entire dependency graph transformation sys-
tem (i.e., executing steps 1, 2 and 3) on empty nodes and non-local dependencies.
As usual, a dependency is correctly found if its head, dependent, and label are
correct. The evaluation based on this criterion directly corresponds to the evalua-
tion using the head-based antecedent representation described in (Johnson, 2002);
for empty nodes without antecedents this is exactly the measure we used in Sec-
tion 4.6.1. To make our results comparable to other methods, we strip function
tags from the dependency labels before label comparison. Below are the overall
precision, recall, and F1-score for our method and the scores of the systems of
Dienes and Dubey (2003a) and Dienes (2004) for the antecedent recovery with an
lexicalized parser.

Method P R F1

Dienes and Dubey 81.5 68.7 74.6
Dienes (2004) 82.5 70.1 75.8
Here 82.8 67.8 74.6

The performance of the three methods is comparable, and the system of Dienes
(2004) based on a probabilistic combination of an empty element tagger and a

62 CHAPTER 4. IDENTIFYING PREDICATE ARGUMENT STRUCTURE

lexicalized parser outperforms both other systems by over 1%. In Chapter 6 we
will present another system for transforming a parser’s output, and come back to
this evaluation.

4.8 Analysis and conclusions

In this chapter we described an application of the graph-based approach to an NLP
task. In particular, we presented a method that allows us to automatically enrich
the output of a parser with information that is not provided by the parser itself, but
is available in a treebank. Using the method with two state-of-the-art statistical
parsers and the Penn Treebank allowed us to recover function tags, empty nodes
and non-local dependencies—essential aspects of the predicate argument structure
of sentences. The method is capable of providing all types of information avail-
able in the corpus, without modifying the parser, viewing it as a black box. The
evaluation against a dependency corpus derived from the Penn Treebank showed
that, after our post-processing, two state-of-the-art statistical parsers achieve 84%
accuracy on a fine-grained set of dependency labels.

We viewed the task of the PAS identification as a graph transformation prob-
lem: given a dependency graph derived from the output of a syntactic parser, trans-
form the graph to include information that defines the predicate argument structure.
Analyzing the resulting graph transformation problem, we found that the task can
be split into three simpler subtasks, each involving graph rewrite rules of only one
of the three type: changing edge labels, adding new nodes and adding new edges
between existing nodes. For each of the three subtasks, we trained memory-based
classifiers to predict whether a specific transformation should be applied at a spe-
cific position in an input dependency graph.

While the method of this chapter demonstrates that a particular NLP problem,
the identification of predicate argument structure, can be formulated as a problem
of transforming graphs, the method has a number of shortcomings. First, the types
of graph transformation we defined are determined based on our intuitions about
the task, and other transformation types could also be considered, such as removing
nodes or edges, or manipulating larger and more complex subgraphs. Second,
the order of the three select transformation types is fixed: we first correct edge
labels, then add new nodes with connecting edges, and finally, add new edges
between existing nodes. This order was also defined in an ad-hoc way and is not
necessarily optimal. Finally, the features we extracted from dependency graphs to
provide classifiers with information about contexts of occurrences of rules’ left-
hand sides, were defined based on our knowledge of the specifics of both input and
output graph corpora (the structures produced by a parser and the annotations in the

4.8 ANALYSIS AND CONCLUSIONS 63

Penn Treebank) and the task. Applying a similar method to graphs of a different
type (e.g., phrase trees, rather than dependency structures) or to different graph
transformation problems is, therefore, likely to require defining new transformation
types, choosing the order of the transformations and defining new features.

In order to address these shortcomings, we will propose a general method that
will allow us to automatically learn sequences of graph rewrite rules for a given
graph transformation task. We present the method in the next chapter, and later, in
Chapter 6 apply it to the same problem as in the present chapter, predicate argument
structure identification, and compare the resulting graph transformation system to
the system described above.

Chapter 5

Learning Graph Transformations

In the previous chapter we described a first application of our graph-based ap-
proach to the task of identifying predicate argument structure in syntactic depen-
dency structures. We viewed dependency structures as directed labeled graphs
and re-formulated the task as a graph transformation problem: given the output
of a parser, transform the graphs to include missing information about the pred-
icate argument structure. Moreover, we described a method that allowed us to
automatically learn this transformation. This method was, in fact, a task-specific
instantiation of the general approach to transforming graphs, outlined at the end of
Chapter 3 (in Section 5.2).

The purpose of the present chapter is to give a detailed description of a general
graph transformation method, that generalizes the approach that we have already
seen at work in Chapter 4. The method will be more general in that it allows
more complicated graph rewrite rules and does not require defining a task-specific
sequence of such rules, as well as defining a task-specific set of descriptive features
used by the method internally. Instead, our general method will allow us to learn
the sequence of rules that suits the task at hand, automatically.

In later chapters we will show how this general method works for specific NLP
tasks. In particular, in Chapter 6 we will apply the method introduced in this chap-
ter to the same problem of PAS identification, showing that the generality and
flexibility of the method do result in an improved performance for the task.

The chapter is organized as follows. We describe our motivation in detail in
Section 5.1 and give a high-level overview of the method in Section 5.2. We go
through the steps of the method in Sections 5.3 to 5.7, consider technical issues in
Section 5.8, discuss related work in Section 5.9 and conclude in 5.10.

66 CHAPTER 5. LEARNING GRAPH TRANSFORMATIONS

5.1 Motivation

In Chapter 4 we already re-cast one NLP problem, the identification of predicate-
argument structure, as a graph transformation task: automatically transforming
input graphs (the results of the syntactic analysis) into output graphs (syntactic
graphs with PAS information added). Our solution involved representing all struc-
tures as directed labeled graphs and splitting the full transformation problem into
three basic transformation steps, namely:

• changing labels of graph edges, which corresponds to adding function and
semantic tags to parser’s labels;

• adding new graph nodes, which corresponds to adding the Penn Treebank
empty nodes; and

• adding new graph edges, which corresponds to adding the Penn Treebank
non-local dependencies.

Each step involved the extraction of possible application points of the rule, classify-
ing such potential application points (to determine whether a transformation should
be applied or not) using an off-the-shelf machine learning engine, and inserting the
decisions of the learner back into the graphs.

Whereas this approach falls nicely into our general graph transformation frame-
work (i.e., using an existing corpus of input/output graph pairs to learn which trans-
formation should be applied), the realization proposed in the previous chapter is
rather task specific: we defined a sequence of three particular transformation types
and the set of features for each machine learning subtask, based only on our intu-
ition and understanding of the NLP problem under consideration. Obviously, there
is no guarantee that the selected sequence and the selected features are optimal or
even well-suited for the task.

Let us also try to abstract away from the particular task of PAS identification.
In order to apply our method to other tasks (e.g., identification of semantic roles
or automatic conversion between syntactic formalisms), we would need substan-
tial investments of time and resources to come up with appropriate definitions of
transformations and features for each of the new tasks. It is likely that the method
described in Chapter 4 does not work out of the box and requires a substantial
amount of fine-tuning to be applicable for other NLP problems.

The main purpose of this chapter is to present a more general method of learn-
ing to transform graphs. The method we propose is not specific to any particular
task and uses very little knowledge indeed about the linguistic nature of NLP prob-
lems, apart from what has been explicitly annotated using the structure of the graph

5.2 OUTLINE OF THE GRAPH TRANSFORMATION METHOD 67

(nodes, edges and attributes). To emphasize this, we will use example graphs with
abstract labels throughout this chapter.

5.2 Outline of the graph transformation method

Before going into the details of our method for learning graph transformations, let
us once again give a high-level overview.

The method starts with a corpus of input graphs and a corpus of corresponding
ideal output graphs. Our task is to create a system that is capable of converting
input to output graphs. Our method learns a sequence of graph rewrite rules, by
iterating the following steps:

1. compare pairs of graphs in the input and output corpora (Section 5.3),

2. identify possible graph rewrite rules (Section 5.4),

3. select best rewrite rules (Section 5.5),

4. train machine learners that implement constraints of the rules (Section 5.6),

5. apply the learned rules to the corpus and start again (Section 5.7).

Figure 5.1 shows the overall structure of the graph transformation method (it is
repeated here, for convenience, from Figure 3.5 in Chapter 3).

In the following sections we give a detailed description of the five steps that,
together, constitute each iteration of the method.

5.3 Comparing pairs of graphs in the corpora

To compare a pair of graphs from the input and output corpora, we build a merge
of the pair as described in Section 3.5.2 on page 42. Recall that a merge of two
graphs is a union of the graphs that tries to unify as many of their nodes and edges
as possible. The exact method for aligning a pair of graphs and constructing a
merge is heuristic and puts validity requirements on graph alignments that depend
on the linguistic nature of the graphs. Specifically,

• for dependency graphs, nodes are only aligned if they refer to the same word
of the sentence;

• for phrase structure graphs, aligned word nodes are required to refer to the
same word, and phrase nodes are aligned in such a way as to maximize the
overlap of their respective yields.

68 CHAPTER 5. LEARNING GRAPH TRANSFORMATIONS

Compare

Apply

Extract rules

Aligned graphs

Compare

Apply

Extract rules

Aligned graphs

rules rulesrules

Ideal output graphsInput graphs

...

Iteration 1 Iteration 2 Iteration N

Compare

Apply

Extract rules

Aligned graphs

...

Figure 5.1: Outline of the graph transformation method. Arrows indicate data flow.
The method takes two corpora (input and output graphs, top) and produces a list of
rewrite rules (bottom).

Moreover, merges are only created using alignments that preserve the order of
nodes in each graph (see Section 3.5.3 on page 43 for more details).

Let us also recall that a merge M of a graph pair (F,G) is a union of three
disjoint sets of graph elements, M = Mleft∪Mboth∪Mright , such that Mleft∪Mboth

is isomorphic to F and Mboth ∪ Mright is isomorphic to G. We interpret the three
sets as follows:

• Mleft (the set of left-only objects of M) consists of the elements that exist in
F but not in G; these elements need to be removed from F in order to make
it similar to G;

• Mright (the set of right-only objects of M) consists of the elements that exist
in G but not in F ; these elements need to be added to F in order to make it
similar to G; and

• finally, Mboth (the set of common objects of M) consists of graph elements
common to F and G (those aligned when creating the merge).

5.4 IDENTIFYING POSSIBLE REWRITE RULES 69

Figure 5.2 on the next page gives an example of F and G (left) and their merge M

(right). We show the graphs as well as their representations using our logic-based
graph formalism.

The first step of an iteration of our method for learning graph transformations,
i.e., comparing input and output graphs in the training corpus, results in a corpus
of graph pair merges. This corpus is used at the second step as detailed in the
following section.

5.4 Identifying possible rewrite rules

The second step of an iteration of our method consists in identifying which rewrite
rules are potentially applicable and useful for the task of transforming input graphs
to output graphs. We implement this by considering all graph merges in the corpus
and extracting all rewrite rules for each merge, as will be described in this section.
For a merge M = M(F,G) from the corpus we will assume that F is an input
graph of the transformation and G is an output graph, i.e., our method will need to
transform left graphs of merges into right graphs of merges.

In a given graph pair merge, we will identify possible graph rewrite rules of
three different types:

1. changing attributes of a single object (node or edge);

2. adding connected subgraphs with possible change of graph neighborhood;

3. removing a connected subgraph.

Below we describe the extraction of possible rules of these three types given a
graph merge.

5.4.1 Rewrite rules: changing object attributes

We start with the simplest possible graph rewrite rule: changing attributes of an
node or an edge. This rule will be extracted from a graph merge for objects that
belong to both left and right parts of the merge, but whose attributes in the two
parts are not identical.

We start with simple definitions. For a merge M and an object x ∈ Mboth , we
define left-attributes of x as follows:

Attr left(x)
def
=

{

attr(x, a, v) ∈ Mleft

}

.

The definition of right-attributes of x is similar:

Attr right(x)
def
=

{

attr(x, a, v) ∈ Mright

}

.

70 CHAPTER 5. LEARNING GRAPH TRANSFORMATIONS

F : nm

k

e
s

c f

G: nm

k

s
g

p

d

M = M(F,G): nm

k

s

p

g

e

c/d f

F =
{

node(x1),

node(x2), node(x3),

node(x4),

attr(x1, label, k),

attr(x2, label, s),

attr(x3, label, m),

attr(x4, label, n),

edge(y1, x3, x1),

attr(y1, label, c),

edge(y2, x2, x1),

edge(y3, x1, x4),

attr(y3, label, f),

edge(y4, x3, x2),

edge(y5, x4, x2),

attr(y5, label, e)
}

G =
{

node(z1),

node(z2), node(z3),

node(z4), node(z5),

attr(z1, label, k),

attr(z2, label, s),

attr(z3, label, m),

attr(z4, label, n),

attr(z5, label, p),

edge(w1, z3, z1),

attr(w1, label, d),

edge(w2, z2, z1),

edge(w4, z3, z2),

edge(w6, z4, z2),

attr(w6, label, g),

edge(w7, z3, z5),

edge(w8, z5, z2),

edge(w9, z5, z4),
}

Mboth =
{

node(u1),

node(u2), node(u3),

node(u4),

attr(u1, label, k),

attr(u2, label, s),

attr(u3, label, m),

attr(u4, label, n),

edge(v1, u3, u1),

edge(v2, u2, u1),

edge(v4, u3, u2)
}

Mleft =
{

attr(v1, label, c),

edge(v3, u1, u4),

attr(v3, label, f),

edge(v5, u4, u2),

attr(v5, label, e)
}

Mright =
{

node(u5),

attr(u5, label, p),

attr(v1, label, d),

edge(v6, u4, u2),

attr(v6, label, g),

edge(v7, u3, u5),

edge(v8, u5, u2),

edge(v9, u5, u4)
}

Figure 5.2: Two graphs (left) and their possible merge (right). In the diagram of
the merge, common objects are in bold, right-only objects are shown with dotted
lines.

5.4 IDENTIFYING POSSIBLE REWRITE RULES 71

We define Labelleft(x) to be a set containing the attribute attr(x, label, l) if
attr(x, label, l) ∈ Mleft ∪ Mboth , and containing the attribute attr(x, type, t) if
attr(x, type, t) ∈ Mleft ∪ Mboth . In other words, Labelleft (x) is the label and the
type of the object x in the left part of the merge (if those are defined). Similarly, we
define Labelright(x) to be the label and the type of x in the right part of the merge.

Whenever for an object x of a merge we have that Attr left(x) 6= Attr right(x),
i.e., attributes of x in the left and in the right parts of the merge differ, we consider
a possible rewrite rule: replacing the left-attributes of x with its right-attributes.
More precisely, we consider a potential rewrite rule rx:

LHS (rx) = Attr left(x) ∪ Labelleft(x)

RHS (rx) = Attr right(x) ∪ Labelright (x).

Note that either of Attr left(x) and Attr right(x) can be empty: in this case the
rewrite rule simply adds or removes some of the attributes. Note also that the label
of the object is always included in the left-hand side of the rewrite rule. This is
important for pattern selectivity: it avoids unlabeled patterns.

Consider the example in Figure 5.2. The only object in the merge that belongs
to both parts of the merge but has different left- and right-attributes is the edge v1

that goes from m to k. Indeed,

Attr left(v1) = attr(v1, label, c),whereas

Attr right(v1) = attr(v1, label, d).

Then according to our definitions above, the following rewrite rule rv1
will be

extracted from the merge in Figure 5.2:

LHS (rx) = attr(x, label, c),

RHS (rx) = attr(x, label, d).

This rule tells us to locate nodes with label c and change their labels to d.
We have now described the extraction of simple rewrite rules: changing object

attributes. Now we turn to the second, more complex type of graph rewrite rules.

5.4.2 Rewrite rules: adding subgraphs

We start with several technical definitions. We will first define right-subgraphs of
a merge as parts of its right graph that can be added to the left graph as one con-
nected chunk. These subgraphs will be used as candidates for right-hand sides of
graph rewrite rules. Then, we will define supports of a right-subgraph as connected

72 CHAPTER 5. LEARNING GRAPH TRANSFORMATIONS

chunks of the left graph of the merge, defining the attachment points of the right-
subgraph. Supports will be used as the candidates for left-hand sides of rewrite
rules.

More specifically, given a graph merge M = M(F,G), a connected subgraph
S ⊂ M is a right-subgraph iff:

1. S contains at least one right-only object, i.e., S ∩ Mright 6= ∅;

2. for each right-only node, S contains all its incident edges;

3. for every object in S, all its right-only attributes also belong to S, i.e., for
every x ∈ OS : attr(x, l, v) ∈ Mright ⇒ attr(x, l, v) ∈ S;

4. for every object x in S, elements of Label right also belong to S;

5. S is minimal, i.e., no objects can be removed from S without violating the
above conditions.

It is useful to think of right-subgraphs of a merge as being created in the following
way. We start from a subgraph consisting of a single right-only object (node or
edge) and add to it all right-only attributes, all incident nodes or edges, labels
and types of all objects, and all their right-only attributes. If there are right-only
objects among the added ones, we continue the graph extension in the same way,
until no more right-only objects are added. It is easy to see that all conditions for
the resulting subgraph are satisfied, and moreover, each right-only subgraph can be
constructed in this way, starting from any of its right-only objects.

Consider the example of a graph merge in Figure 5.2(right). Starting from the
right-only node u5 (p), we expand the right-subgraph to include its incident edges,
i.e., v7 (m → p), v8 (p → s) and v9 (p → n), together with their label and type

attributes (not present in this example). To make the resulting set a proper graph,
we also add all incident nodes of the newly added edges, i.e., the nodes u3 (m), u2

(s) and u4 (n), as well as their labels. Since no new right-only nodes have been
added, we stop the subgraph extension. The resulting right-subgraph of the merge
consists of the nodes labeled p, m, s and n and edges connecting p to the other
three nodes. This graph is shown in Figure 5.3 (graph S1). Note that the merge
M contains another right-subgraph, consisting of two nodes and one edge. This
right-subgraph is also shown in Figure 5.3 (graph S2)

For a right-subgraph S of a merge M , we define its border as the set of nodes
of S which are common objects of M , and its interior as all other nodes, edges and
attributes of S:

Brd(S)
def
= {node(n) ∈ S ∩ MBoth},

Int(S)
def
= S \ Brd(S).

5.4 IDENTIFYING POSSIBLE REWRITE RULES 73

For the example in Figure 5.2, considered above, the border of the right-subgraph
containing the node p (graph S1 in Figure 5.3) consists of three nodes: m, s and
n. In a sense, these are the nodes that “connect” the right-subgraph to the rest of
the graph. The interior of the subgraph consists of the node p and its three incident
edges.

A support of a right-subgraph S of a merge M is a subgraph of M such that

1. it is a connected graph;

2. it contains Brd(S) and does not contain any right-only objects;

3. it contains Label left(x) for all its objects x;

4. it is minimal, i.e., no elements can be removed from it without violating the
above conditions.

In words, a support of a right-subgraph S is a minimal connected subgraph of the
left graph of the merge, containing the border of S and containing labels and types
of all its objects (if they exist). A support of S can easily be computed by finding a
minimal connected extension of the Brd(S) not containing any right-only objects.

Intuitively, for a merge M(F,G), a right-subgraph S can be added to F “in
one move” by attaching its interior to the border nodes (which are already present
in F , by definition), while border nodes of S can be identified in F by finding
an occurrence of a support graph. Figure 5.3 shows two right-subgraphs for the
example in Figure 5.2 (S1 and S2) and their respective supports (S∗

1 and S∗
2).

We will consider right-subgraphs of a merge and their supports as defining
possible right- and left-hand sides of graph rewrite rules rules. More specifically,
for a merge M , a right-subgraph S and its support S∗ we define a rewrite rule rS

with left-hand side and right-hand side as follows:

LHS(rS) = S∗,

RHS(rS) = S ∪ (S∗ \ Mleft).

The rule rS says that we should find occurrences of the support S∗ and replace each
such occurrence with the right-subgraph S, leaving also parts of the support that
belong to the right graph of the merge. The effect of the rule is that the left-only
elements of each occurrence of the support S∗ are removed, and the interior of the
right-subgraph S is added to a graph.

Figure 5.4 shows the two rewrite rules generated in this way for the two right-
subgraphs and their supports in Figure 5.3.

Now, having described two types of rewrite rules that we will extract from
graph merges (changing attributes and adding subgraphs), we turn to the third and
last type.

74 CHAPTER 5. LEARNING GRAPH TRANSFORMATIONS

Right-subgraph S1: nm

s

p

Support S∗
1 : nm

s
e

S1 =
{

node(u2), node(u3),

node(u4), node(u5),

attr(u2, label, s),

attr(u3, label, m),

attr(u4, label, n),

attr(u5, label, p),

edge(v7, u3, u5), edge(v8, u5, u2),

edge(v9, u5, u4)
}

S∗
1 =

{

node(u2), node(u3),

node(u4),

attr(u2, label, s),

attr(u3, label, m),

attr(u4, label, n),

edge(v4, u3, u2),

edge(v5, u4, u2),

attr(v5, label, e)
}

Right subgraph S2:
n

s
g Support S∗

2 :
n

s

e

S2 =
{

node(u2), node(u4),

attr(u2, label, s),

attr(u4, label, n),

edge(v6, u4, u2),

attr(v6, label, g)
}

S∗
2 =

{

node(u2), node(u4),

attr(u2, label, s),

attr(u4, label, n),

edge(v5, u4, u2),

attr(v5, label, e)
}

Figure 5.3: Two add-subgraphs of the merge M in Figure 5.2 (S1 and S2) and
examples of their supports (S∗

1 and S∗
2 , respectively).

5.4 IDENTIFYING POSSIBLE REWRITE RULES 75

nm

s
e

−−−→

nm

s

p

LHS =
{

node(u2), node(u3),

node(u4),

attr(u2, label, s),

attr(u3, label, m),

attr(u4, label, n),

edge(v4, u3, u2),

edge(v5, u4, u2),

attr(v5, label, e)
}

RHS =
{

node(u2), node(u3),

node(u4), node(u5),

attr(u2, label, s),

attr(u3, label, m),

attr(u4, label, n),

attr(u5, label, p),

edge(v4, u3, u2),

edge(v7, u3, u5),

edge(v8, u5, u2),

edge(v9, u5, u4)
}

n

s

e
−−−→

n

s
g

LHS =
{

node(u2), node(u4),

attr(u2, label, s),

attr(u4, label, n),

edge(v5, u4, u2),

attr(v5, label, e)
}

RHS =
{

node(u2), node(u4),

attr(u2, label, s),

attr(u4, label, n),

edge(v6, u4, u2),

attr(v6, label, g)
}

Figure 5.4: Two rewrite rules extracted from the merge M in Figure 5.2 using
right-subgraphs and supports shown in Figure 5.3.

76 CHAPTER 5. LEARNING GRAPH TRANSFORMATIONS

5.4.3 Rewrite rules: removing subgraphs

In order to identify possible graph rewrite rules that involve removing whole sub-
graphs (but possibly without adding new graph elements), we first introduce the
notion of left-subgraphs in a way similar to the right-subgraphs in the previous
section. Left-subgraphs are the parts of graphs that can be removed as one chunk.

More precisely, for a graph merge M = M(F,G), a connected subgraph S ⊂
M is a left-subgraph if:

1. S contains at least one left-only object;

2. for each left-only node S contains all its incident edges;

3. for every object in S, all its left-only attributes also belong to S, i.e., for
every x ∈ OS : attr(x, l, v) ∈ Mright ⇒ attr(x, l, v) ∈ S;

4. for every object x in S, elements of Label left(x) also belong to S;

5. S is minimal, i.e., no objects can be removed from S without violating the
above conditions.

For a left-subgraph S of a merge M , we also define its border, Brd(S) as the set
of nodes of S which are common objects of M .

For example, the graph merge in Figure 5.2, considered above, contains two
left-subgraphs: R1, consisting of the edge labeled f going from k to n, and R2,
consisting of the edge e going from n to s:

R1 =
{

node(u1), attr(u1, label, k), node(u4), attr(u4, label, n),

edge(v3, u1, u4), attr(v3, label, f)
}

,

Brd(R1) =
{

node(u1), node(u4)
}

,

R2 =
{

node(u4), attr(u4, label, n), node(u2), attr(u2, label, s),

edge(v5, u4, u2), attr(v5, label, e)
}

,

Brd(R2) =
{

node(u4), node(u2)
}

For every S, a left-subgraph of a merge M , we define the following possible rewrite
rule:

LHS(rS) = S,

RHS(rS) = (S \ Mleft) ∪ Attr right

(

Brd(S)
)

.

5.5 SELECTING REWRITE RULES 77

Effectively, the extracted rule removes the left-only subgraph S, leaving only its
border nodes and adjusting their attributes. For example, the following rewrite
rules will be extracted for the left-subgraphs R1 and R2:

LHS (rR1
) =

{

node(u1), attr(u1, label, k), node(u4), attr(u4, label, n),

edge(v3, u1, u4), attr(v3, label, f)
}

,

RHS (rR1
) =

{

node(u1), node(u4)
}

,

LHS (rR1
) =

{

node(u4), attr(u4, label, n), node(u2), attr(u2, label, s),

edge(v5, u4, u2), attr(v5, label, e)
}

,

RHS (rR2
) =

{

node(u4), node(u2)
}

Note that for this example the right-hand sides of the rules coincide with the borders
of the respective left-subgraphs.

Let us briefly summarize Section 5.4. We have described three general types of
possible rewrite rules that can be extracted from a corpus of graph merges: chang-
ing arbitrary attributes of graph objects, adding connected subgraphs, and remov-
ing connected subgraphs. These types are defined for any graph merges and they
do not use any knowledge about the structure of the graphs, except for the special
treatment of the attributes type and label, which are always included in the left-hand
sides of the extracted rewrite rules.

Now, having described the extraction of possible rewrite patterns from graph
merges, we turn to the next step in an iteration of our method for learning graph
transformations.

5.5 Selecting rewrite rules

Given a set of all possible rewrite rules extracted from a corpus of graph pair
merges as described above, how do we select which of these rewrite rules should
be used at the current iteration of the transformation method?

In Transformation Based Learning, which uses the same iterative extract-apply
scheme, each extracted transformation rule is evaluated on the training corpus to es-
timate its effectiveness in reducing mismatches between input and output taggings.
Then the rewrite rule with the highest error reduction is selected (or, for efficiency
reasons, several best rules) at each iteration of the method, which corresponds to
hill-climbing search for the optimal sequence of transformation rules.

The advantage of this rule selection criterion is that the measure for estimating
a rule’s efficiency (error reduction) can be dependent on the task at hand and its

78 CHAPTER 5. LEARNING GRAPH TRANSFORMATIONS

evaluation metric. In typical applications of Transformation Based Learning (e.g.,
part-of-speech tagging), the estimate of the performance of a set of rules is often
based on reduction of accuracy errors (e.g., tagging accuracy).

In our graph-transformation setting such a criterion based on task-specific eval-
uation measures is difficult to apply for efficiency reasons. Applying a specific
rewrite rule to the entire training corpus and then calculating the error reduction is
very time-consuming as it involves an NP-complete subgraph isomorphism prob-
lem (graph pattern matching). Moreover, the candidate rewrite rules extracted from
the training corpus are incomplete: as described in Section 5.4, we only extract
possible left-hand sides and right-hand sides, while constraints are left to be imple-
mented later, using a machine learning engine. In principle, it would be possible
for each of the extracted candidate rewrite rules to train a machine learner that
implements its constraint, apply the resulting rules with constraint to the training
corpus and calculate the error reduction for each rule. However, the total number of
patterns extracted at one iteration is rather prohibitive: for different tasks described
later in the thesis it ranges from 3,000 to 80,000. Obviously, we need to back-off
to heuristic estimation of the effectiveness of the extracted rewrite rules.

For a heuristic, we take a simple frequency-based estimation of a rule’s effec-
tiveness. More precisely, in the set of all candidate rewrite rules extracted from the
training corpus, W =

{

(LHS i,RHS i)
}

, we identify the top NL most frequent (up
to graph isomorphism) left-hand sides: L =

{

LHS j

}

, where j = 1, . . . , NL.
Then, for each left-hand side LHSj ∈ L, we find the top NR most frequent
right-hand sides that that occur with LHSj in W: RHS1

j , . . . , RHS
NR

j . This
leaves us with the set Wbest =

{

(LHS j ,RHS k
j)

}

, where j = 1, . . . , NL and
k = 1, . . . , NR. The rules in Wbest constitute the result of our rule selection pro-
cedure.

In all experiments reported in the following chapters of the thesis, we arbitrarily
took NL = NR = 20, which gave us at most NL × NR = 400 rewrite rules per
iteration of the graph transformation method.

Once the set of rewrite rules has been determined, for each rule, we train a
separate machine learner that implements the constraint of the rule. This training
is described in the next section.

5.6 Training the constraints for rewrite rules

At this stage in every iteration of our graph transformation method we have ex-
tracted from the training corpus a list of left- and right-hand sides of potentially
useful rewrite rules (no more than 400, see the previous section). In this section we
describe how the constraints for these rewrite rules are implemented by training

5.6 TRAINING THE CONSTRAINTS FOR REWRITE RULES 79

machine learning classifiers. For each rule, the trained classifier (the constraint)
will determine whether or not the rewrite rule should be applied at a given occur-
rence of its left-hand side.

Training proceeds as follows. For every rule r = (LHS ,RHS), we extract all
occurrences of LHS in all graphs of the training corpus. For each such occurrence,
we encode the information about the occurrence and its immediate graph neigh-
borhood, as a vector of named scalar features (see below). For each occurrence we
also check whether it actually corresponds to an instance of r, i.e., whether r was
extracted from this position in the training corpus, in which case the occurrence is
a positive example for classifier being trained. This information, collected for all
occurrences of r, is used as a training base for a machine learning classifier. The
trained learner can then be used to classify feature vectors describing occurrences
of LHS into positive (the rule r should be applied) and negative (the occurrence
should be left intact).

The output of this step of an iteration of our graph transformation method is,
thus, a set of graph rewrite rules with constraints:

{

(LHS , C,RHS)}.
We describe the encoding of occurrences as feature vectors and the details of

training the classifier below in Sections 5.6.1 and 5.6.2.

5.6.1 Encoding pattern occurrences

As described above, for every unconstrained graph rewrite rule r = (LHS ,RHS)
we extract from the training corpus all occurrences of LHS that correspond both to
positive and negative instances of possible applications of r. The task of a classifier
will be to separate these cases.

Traditionally, in machine learning a classification task is defined as automati-
cally assigning instances to one class out of several possible classes, with instances
represented as vectors of scalar features. Moreover, some classifiers put additional
restrictions on the types of instance features (e.g., allowing only numerical or bi-
nary features). We will address the latter issue in Section 5.6.2.

How do we encode an occurrence of a graph pattern as a flat vector of scalar
features that can be given to a machine learning classifier?

In Chapter 4, when describing paths in graphs using feature vectors, we used a
pre-defined task-specific set of features: labels of nodes and edges, existence of in-
cident edges with certain labels, labels of their end points, etc. Obviously, a feature
set defined in this way depends not only on the exact graph transformation task we
are addressing, but also on the details of the graph representation. For example,
for the predicate argument structure identification task considered in Chapter 4,
changing the syntactic parser would require re-defining at least some of the fea-
tures. Here we describe a general method for encoding an occurrence of a pattern

80 CHAPTER 5. LEARNING GRAPH TRANSFORMATIONS

in a graph as a set of named scalar features, that is independent on the task being
addressed and on the exact nature of structures represented using graphs.

Let L be a pattern, and u its occurrence in a graph G, i.e., a one-to-one mapping
between the objects of L and a subset of the objects of G: u : OL → OG. We will
use u(x) to denote the object of G assigned to the object x of the pattern L, and
u(y) to denote the object of L which is mapped to y in the graph G (if such an
object exists). Moreover, u(L) is the entire image of L in G.

For an object x ∈ G we define dsc(x), the descriptor of x, as the string ob-
tained by concatenating values of its type and label attributes (using empty strings
in place of undefined attributes). For example, if

{node(x), attr(x, type, phrase), attr(x, type, NP)} ⊂ G,

then dsc(x) = phrase:NP.
We define the neighborhood of an occurrence u (notation: Nb(u)) as a set of

objects of G such that:

1. it contains all objects of the occurrence of the pattern: u(L) ⊂ Nb(u);

2. for every node of u(L) it contains all its incident edges and their end points;

3. it is the smallest set satisfying these conditions.

In other words, the neighborhood of an occurrence of a pattern contains only nodes
and edges of the occurrence, plus those one step away. When describing a pattern
occurrence as a set of features, we will only include information about the objects
in its neighborhood. Note that there is no general reason to include in the neigh-
borhood only objects one step away. We can also consider larger neighborhoods,
though it will dramatically increase the number of scalar features that are generated
for an occurrence.

When encoding a neighborhood using a set of scalar features, we will preserve
the information about how exactly a node or an edge of the neighborhood is related
to the objects of the pattern occurrence. We implement this using the set Paths(u)
that for each object of Nb(u) stores its possible relations (graph paths) to the nodes
and edges of the pattern occurrence. The set Paths(u) will consist of pairs (x, d),
where d will be used as the scalar (string) description of the object x with respect
to the occurrence u of the pattern L. More specifically, Paths(u) is a set such that:

1. for each x ∈ u(L), (x, u(x)) ∈ Paths(u); in other words, nodes and edges
of the pattern occurrence are described using their own preimages in the
pattern;

5.6 TRAINING THE CONSTRAINTS FOR REWRITE RULES 81

2. for an edge e ∈ Nb(u) \ u(L) from node x to node y, if (x, d) ∈ Paths(u)
for some string d, then (e, d:out:dsc(e)) ∈ Paths(u); in other words, all
neighboring edges are described by concatenating the description of one of
their end points with the direction of the edge (i.e., out) and the descriptor of
the edge;

3. similarly, if (y, d) ∈ Paths(u) for some string d, then (e, d:in:dsc(e)) ∈
Paths(u);

4. for a node x ∈ Nb(u) \ u(L), if x is an end point of some edge e such that
(e, d) ∈ Paths(u), then (x, d:node) ∈ Paths(u); in other words, neighbor-
ing nodes are described by concatenating the description of its connecting
edge with the fixed string node.

Consider the example in Figure 5.5: a graph G, a pattern L and its occurrence u in
G. For this example all objects of G fall into the neighborhood of the occurrence
as all objects are at most one step away from it:

Nb(u) =
{

k,m, n, p, d, a, b
}

.

Starting from the nodes and the edge of the occurrence, the following description
of the neighborhood is generated:

Paths(u) =
{

(k, x), (m, y), (d, z),

(a, x:in::A), (b, x:out::B), (c, y:out:T:C),

(n, x:in::A:node), (p, x:out::B:node), (p, y:out:T:C:node)
}

.

Note that for this example Paths(u) contains two different descriptions for the
node p, because the node is accessible from the occurrence of the pattern by fol-
lowing either edge b or edge c.

Let us now assume that for a given occurrence u of a pattern L in a graph G

we have computed the sets Nb(u) and Paths(u). The feature set Feat(u), con-
sisting of pairs (feature name, feature value) is defined so that for every (x, d) ∈
Paths(u):

(d, 1) ∈ Feat(u), and
(d:name, val) ∈ Feat(u) for every attr(x,name , val) ∈ G,

excluding label and type for edges.

In other words, for every description d of an object x in the neighborhood of the
occurrence, we generate one feature (with name d and value 1) that indicates the

82 CHAPTER 5. LEARNING GRAPH TRANSFORMATIONS

presence of the object, and then one more feature for every attribute of x, excluding
label and type attributes of edges, which are already implicitly indicated in feature
names.

Continuing our running example (see Figure 5.5), the following features will
be generated for Paths(u):

Feat(u) =
{

(x, 1), (y, 1), (z, 1),

(x:label, K), (y:label, M), (z:label, D),

(x:in::A, 1), (x:out::B, 1), (y:out:T:C, 1),

(n, x:in::A:node), (p, x:out::B:node), (p, y:out:T:C:node),

(x:in::A:node:label, N), (x:out::B:node:label, P), (y:out:T:C:node:label, P)
}

For a given occurrence of a pattern L in a graph G, the number of computed named
features depends on the size of the pattern (i.e., the number of nodes and edges)
and on the topology of the graph G, in particular, on the degrees (the number
of in- and out-edges) of the nodes in the occurrence, as well as on the number of
attributes that are associated with nodes and edges in the neighborhood. In practical
examples that we consider in later chapters, the number of named symbolic features
extracted for a single occurrence is typically not very large, between 20 and 30, but
for some patterns it can be as much as 130.

5.6.2 Classification task

Having extracted a set of named features for every occurrence of a pattern, i.e., the
left-hand side of a rewrite rule r = (LHS ,RHS), in a corpus, we first convert these
occurrences to feature vectors. We collect all feature names used in all feature sets
extracted from the training corpus and enumerate them sequentially. Since different
occurrences of the same pattern often correspond to differing sets of features (due
to the varying neighborhoods of the occurrences), the total number of features
extracted from the entire corpus can be much larger than for individual occurrences.

In order to avoid extremely large sets of features, we only considered those that
occur at least Nf = 20 times in the feature sets extracted from the training corpus.
In the applications of our transformation method considered in later chapters, for
a single pattern the number of features left after this thresholding was typically in
the range 100–3,000, though in some cases as large as 6,000.

After enumerating and thresholding the features for occurrences of a given
pattern, we convert each occurrence to a flat feature vector with symbolic features.
For statistical classifiers (e.g., SVM-Light, used in our applications later in the
thesis) that can only process numerical and binary features, we need to take an
additional step: binarization of feature values. Since some of the features used

5.7 APPLYING REWRITE RULES 83

n p
label=P

a
b

k

m

type=T
c

d

label=B

label=N

label=M

label=K

label=A

label=C
label=D

x

z
label=D

y

G =
{

node(n), attr(n, label, N),

node(p), attr(p, label, P),

node(k), attr(k, label, K),

node(m), attr(m, label, M),

edge(a, n, k), attr(a, label, A),

edge(b, k, p), attr(a, label, B),

edge(c,m, p), attr(a, label, C),

attr(c, type, T),

edge(d,m, k), attr(a, label, D)
}

L =
{

node(x), node(y),

edge(z, y, x),

attr(z, label, D)
}

u =
{

x 7→ k, y 7→ m, z 7→ d
}

Figure 5.5: Graph G (left), pattern L (right) and occurrence u of L in G.

in our NLP applications allow thousands of different values (e.g., lexical features,
such as words and lemmas), the binarization explodes the number of features even
further, making it as large as 460,000 in some cases.

Once all occurrences of LHS are described using feature vectors suitable for
the machine learner, we train a separate classifier for each rewrite rule r = (LHS ,

RHS), to predict, for an occurrence of LHS , whether the rewrite should be applied
or not.

5.7 Applying rewrite rules

As described above, at each iteration of the graph transformation method, a set of
rewrite rules is selected and classifiers that implement their constraints are trained.
The result of each iteration is a set of constrained rewrite rules W =

{

(LHS j ,C
k
j ,

RHS k
j)

}

(note that in general, there can be several possible right-hand sides for a

84 CHAPTER 5. LEARNING GRAPH TRANSFORMATIONS

single left-hand side, each with its own constraint).
We apply these rewrite rules to a corpus of graphs (whether to the training

corpus, as a preparation for the next iteration of the method, or to a previously
unseen test/application corpus) as follows. For each pattern LHS j , we extract all
its occurrences in the corpus and use the trained classifiers to evaluate the con-
straints

{

Ck
j

}

. We then select the right-hand side RHS k
j for which the classifier

of Ck
j produces the highest confidence score. Finally, we apply the rewrite rule

LHS j → RHS k
j to the occurrence, i.e., the occurrence of LHS j is removed from a

corresponding graph and an occurrence of RHS k
j is added instead (see Section 3.2

for the definition of the application of a rewrite rule).
For each LHS j , we select a corresponding RHS k

j and apply the rewrite rule to
the graphs independently.

5.8 Practical considerations and refinements

While describing the method we intentionally omitted or avoided discussing some
important but rather technical aspects. We summarize those below.

5.8.1 Magic constants

Our method is parameterized with several constants. Although formally they are
parameters it is not clear how to set their value. We selected the values once based
on our preliminary experiments and did not systematically experiment with differ-
ent ones.

• NL = 20 is the number of left-hand sides or rewrite rules considered at each
iteration of the learning cycle;

• NR = 20 is the maximum number of right-hand sides per one LHS. When
extracting rewrite rules, for each LHS we consider only at most NR most
frequent RHS’s;

• Nf = 20 is the minimum number of times a feature should occur in the
training data in order to be used for the training the classifier;

• δ = 0.1 is used in the application in later chapters for the learning termi-
nation criterion: the learning cycle is stopped as soon as the improvement
of some task-specific measure, as compared to the previous iteration, is less
than δ.

5.9 RELATED WORK 85

5.8.2 Rule selection

Graph rewrite rules are selected as described above, based on frequencies of their
left-hand sides among all extracted possible rewrites. In all applications later in the
thesis, for each learning task we disallow repetitions of left-hand sides at different
iterations of the learning. This was done in order to allow less frequent rules to be
selected. We did not systematically experiment with this feature to see its effect on
the performance.

5.8.3 Definition of patterns

Patterns are extracted from actual graphs. When including an object in a pattern,
we always include two of its attributes (if present): type and label. The former
defines the types of the object (word, phrase, dependency relation, sequential order
edge, etc.) and the latter determines the selectivity of the pattern: for a phrasal
node this is constituency label, for dependency relations this is the label of the
dependency.

Edges with type = ord, i.e., those defining the order of words or siblings in a
phrase tree, are never included in left-hand sides (patterns).

5.9 Related work

Our approach to learning graph transformations is largely inspired by Transforma-
tion-Based Error-Driven Learning (Brill, 1995; Curran and Wong, 2000), and can
be seen as a variant and extension of it.

Transformation-Based Learning (TBL) is a supervised learning method that
identifies a sequence of simple transformation rules to correct some initial annota-
tion of data, e.g., the results of some coarse-grained analyzer. The method starts
by comparing this initial annotation with the truth, e.g., a manually annotated gold
standard corpus. TBL considers a list of candidate transformations, usually speci-
fied using templates. Each transformation consists of a rewrite rule and a triggering
environment. Below is an example transformation from (Brill, 1995) for the task
of part of speech tagging:

Rewrite: Change the tag from modal to noun.
Trigger: The preceding word is a determiner.

A TBL application is defined by (1) an initial annotator, (2) a space of allowable
transformations, and (3) an objective function for comparing the corpus to the truth.
The method proceeds iteratively, at each iteration using the objective function to

86 CHAPTER 5. LEARNING GRAPH TRANSFORMATIONS

select the most promising transformation, appending the selected transformation to
the list, the result of the learning, and moreover, updating the training corpus using
this transformation. Iteration stops when no transformation is found that improves
the objective function of the training corpus.

Various refinements and improvements of the TBL learning process have been
suggested and studied. To give a few examples, Brill (1995) mentions learning with
a look-ahead window, that is, when several rules are evaluated in sequence when
selecting a rule at a given iteration; the rule that starts the best sequence is se-
lected, rather than the best rule, thereby making the greedy search more informed.
Williams et al. (2004) propose a different technique, a look-behind searcher: after
selecting a next transformation the system is allowed to try and reorder the last n

learned transformations so as to improve the objective function. Curran and Wong
(2000) describe learning with transformation template evolution: at later iterations
the system is allowed to consider more and more complex transformations, which
are less frequent and more time consuming.

Transformation-Based Learning has been successfully applied to a broad va-
riety of language processing tasks, from part of speech tagging (Brill, 1995), to
prepositional phrase attachment disambiguation (Brill and Resnik, 1994), gram-
matical relation finding (Ferro et al., 1999), document format processing (Curran
and Wong, 1999), grammar induction (Brill and Ngai, 2000), semantic role label-
ing (Williams et al., 2004) and parsing (Brill, 1996; Satta and Brill, 1996). The
main reasons for the popularity of TBL among computational linguists are:

• simplicity: the learning model is indeed very simple and clear;

• directness: the learning method works in a hill-climbing manner, optimizing
any given objective function, whether it is the number of tagging errors, F1-
score of precision and recall or some possibly exotic task-specific measure;

• efficiency: extracted rules are typically deterministic and simple, which al-
lows efficient implementations of the application of the rules, sometimes
even linear and independent of the number of rules (Roche and Schabes,
1995); highly efficient algorithms are known even for Transformation-Based
Parsing operating with subtree rewrite rules (Satta and Brill, 1996);

• interpretability: unlike many statistical learning methods, TBL produces lists
of simple transformation rules, typically not very long, that can be easily
examined manually, and indeed, often are linguistically meaningful.

Note that we follow the model of TBL fairly closely: we also extract transforma-
tions that consist of the rewrite part and a trigger (we call it constraint). Several
important differences, however, are worth noting:

5.10 CONCLUSIONS 87

• whereas in most applications of TBL transformation templates are fairly sim-
ple and predefined (cf. the example transformation above), our rewrite rules
in principle can be arbitrarily complex; remember that when considering
candidate rules, we extract maximal connected left-subgraphs; these sub-
graphs might be of very different sizes and topologies, as we will see in the
applications of our method in later chapters of the thesis;

• unlike TBL’s triggers, our constraints are complex functions implemented
by a machine learning classifier; this can be seen both as advantage (we use
more flexible, and hence, potentially more accurate rules) and a drawback (it
increases the application time of the rewrite rules, as each time a classifier
needs to be invoked to check the constraint);

• while classic TBL methods extract one best rule per iteration, we extract
rules in batches (20 in all applications in this thesis), mainly for the sake
of performance. We are not aware of any work in the TBL community that
studied possible effects of using TBL in such a batch mode.

Is it possible to run the classic TBL method for our graph transformation problems,
addressing the issues above and empirically comparing the effect of our deviation
from TBL?

While we cannot answer this question now, we believe that such a comparison
would be very helpful in understanding the inner operation of our method and
locating potential applications for TBL and its variants. We leave this question as
an important aspect of future work.

Another area of research directly related to our work is graph-based data min-
ing (Cook and Holder, 2000). Approaches developed within this fast-growing field
of data mining address at least two different problems: identifying frequent sub-
graphs in a big graph (Kuramochi and Karypis, 2001), and identifying subgraphs
maximizing specific information-theoretic measures (Yan and Han, 2002). Since
in our TBL-like setting we are interested both in finding frequent graph patterns
and in patterns that allow us to discriminate between different right-hand sides of
rewrite rules as accurately as possible, both of these tasks are relevant for provid-
ing potential improvements to our simple frequency-based pattern selection, and
moreover, they are important for a study of the relation between our method and
TBL in future work.

5.10 Conclusions

In this chapter we have described a general approach to the task of learning graph
transformations given a training corpora of input and output graphs. Our approach

88 CHAPTER 5. LEARNING GRAPH TRANSFORMATIONS

combines ideas from Transformation Based Learning with graph pattern matching
and conventional supervised machine learning. The method iteratively compares
input and output graphs, identifying useful rewrite rules and applying the rules to
the input graphs. The result of the learning method is a sequence of graph rewrite
rules that can be applied to previously unseen graphs.

In the following chapters of the thesis we will examine several instantiations
of the method to different NLP tasks. In particular, in later chapters we present
an application of our graph transformation method to the problem of recovering
predicate argument structure that was addressed by an ad-hoc graph-based method
in Chapter 4. We will show that the generality of the method does not reflect neg-
atively on the performance for this task and, on the contrary, allows us to improve
the results presented in Chapter 4. Moreover, we will illustrate the flexibility of
our method by considering a variant of this task that works with syntactic phrase
trees rather than with dependency structures, which will allow for a more direct
comparison of our results with the state-of-the-art.

Chapter 6

Graph Transformations for
Predicate Argument Structure
Identification

In Chapter 4 we defined the task of predicate argument structure (PAS) identifi-
cation as recovery of empty nodes, non-local dependencies and grammatical and
semantic tags in syntactic structures produced by a syntactic parser. The definition
of the task and the data used for solving it were based on the PAS information an-
notated in the Penn Treebank II (PennTB). We presented our first approach to the
task: a method to automatically learn graph transformations by comparing syntac-
tic dependency graphs produced by a parser to dependency graphs derived from
the Penn Treebank. Our method allowed us to learn a sequence of simple graph
rewrite rules: correcting labels of dependencies (graph edges), adding new graph
nodes and, finally, adding new graph edges.

In Chapter 5, the core chapter of the thesis, we described a more general, task-
independent method for learning graph transformations. In contrast to the approach
of Chapter 4, this method is not restricted to simple “one object at a time” trans-
formations and does not require pre-defining the order of the transformation se-
quence. Instead, given a corpus of graph pairs, the method learns a sequence of
graph rewrite rules that may involve arbitrary connected subgraphs. In Chapter 5
we gave general motivations for such a method. The purpose of the present chap-
ter is to demonstrate the method at work and thus to provide empirical support for
these motivations. In particular, we will apply the method to the task of PAS iden-
tification, compare its performance to the approach of Chapter 4, and show that
the generality of the method is actually beneficial for the task. We will also apply
our method to a variant of the task: PAS identification in constituency structures

90 CHAPTER 6. GRAPH TRANSFORMATIONS FOR PAS IDENTIFICATION

rather than in dependency graphs, demonstrating that the method is general enough
to operate with different syntactic representations. All in all, the experiments de-
scribed in this chapter will support our claim about the generality, flexibility and
effectiveness of the graph transformation method proposed in Chapter 5.

The chapter is organized as follows. We start in Section 6.1 by reviewing some
of the motivation stances from Chapter 5. Then, in Section 6.2 we recapitulate the
key issues of the task and the transformation method of Chapter 5. In Section 6.3
we apply the method to the task of predicate argument identification in dependency
structures, and in Section 6.4 to the same task for phrase trees. We conclude in
Section 6.5.

6.1 Motivation

In Chapter 4 we gave a detailed description of the task of identifying predicate
argument structure of English sentences in the output of a syntactic parser, and we
presented our first graph-based method for addressing the task. The method used
the Penn Treebank, a corpus with PAS annotation, to learn a sequence of atomic
graph rewritings that correspond to recovery of the PAS. In spite of the state-of-the-
art performance, this method for predicate-argument structure identification has a
number of drawbacks.

First of all, the method is task- and corpus-dependent. We defined the types of
possible graph transformations (changing edge labels, adding nodes, adding edges)
based on our knowledge of the task and experience with the data (Penn Treebank)
and syntactic parsers. The extraction of some of the features (such as verb sub-
jects and objects) used during the machine learning stages is also corpus-specific.
Applying a similar method to the output of a different parser, to a different syntac-
tic formalism (e.g., constituency trees in place of dependency structures), or to a
different corpus would require additional feature engineering.

In Chapter 4 we considered three graph transformation templates in sequence:
first, changing edge labels, then adding nodes, and finally, adding edges. Of course,
there is no guarantee that this particular sequence of transformations is indeed the
best possible one, and that other types of transformations (removing edges, manip-
ulating subgraphs with several nodes, etc.) do not suit the task better. Allowing
different or more complex transformations may well prove beneficial, and so may
changing the sequence of transformations, or using transformations of the same
type several times in the sequence.

Let us give an example of such transformations. Consider the two dependency
graphs in Figure 6.1, one derived from the output of Charniak’s parser and the
other from the Penn Treebank. Transforming the parser’s graph to the Penn Tree-

6.1 MOTIVATION 91

(a)

said

He

declined

proposal

the

they

S|NP
NP|SBAR

VP|NPS|NP

NP|DT

(b)

said

He

declined

proposal

the

they

VP|NP

NP|DT

0
NP|SBAR

SBAR|S

S|NP-SBJ

S|NP−SBJ

Figure 6.1: Example requiring a complex transformation: dependency structures
derived from (a) the output of Charniak’s parser and (b) the Penn Treebank, for the
sentence “He said they declined the proposal.”

bank graph involves inserting an empty complementizer (annotated as the empty
element “0” in the Penn Treebank) in the subordinate clause. This transformation
is most naturally described as a rewrite rule that removes an edge of a graph and
replaces it with another subgraph consisting of one node and two edges. This par-
ticular transformation can be quite useful as empty complementizers abound in the
Penn Treebank (constituting 10% of all empty elements). However, this natural
transformation cannot be implemented with the sequence of the tree simple trans-
formation templates used in Chapter 4. The method of Chapter 4 was capable of
inserting the empty complementizer by splitting this transformation into two sim-
pler ones (first adding 0 with the edge said→0 at the second iteration, and then
adding the edge 0→declined at the third iteration), but it was unable to remove the
remaining incorrect edge said→declined.

Yet another problem with the approach of Chapter 4 is that it strongly depends
on our choice of syntactic formalism: dependency structures. Indeed, while our
simple graph rewrite templates largely suffice for the PAS identification on depen-
dency graphs, transformations involving more complex subgraphs are required for
the task of PAS recovery in constituency trees (Johnson, 2002), which indicates
that the approach of Chapter 4 is not directly applicable for this variant of the task.

Our general approach to graph transformations, described in detail in Chap-
ter 5, allows us to address all these issues, as we will show in the course of the
present chapter. But first, in the next section, we will recap our notation for graphs
and patterns and the overall structure of our graph transformation method; this
section may be skipped by readers who have just read Chapter 5.

92 CHAPTER 6. GRAPH TRANSFORMATIONS FOR PAS IDENTIFICATION

6.2 Graphs and transformations: a recap

As described in detail in Chapter 3, we represent syntactic dependency structures
and phrase trees of English sentences as node- and edge-labeled, node-ordered
directed graphs, with nodes corresponding to words or constituents, and edges to
syntactic dependencies or parent-child edges in phrase trees; the ordering of nodes
reflects the left-to-right ordering of words and constituents (children of a single
parent).

We represent graphs as sets (conjunctions) of first-order atomic formulas (atoms):

• node(x): declares a graph node identified by x,

• edge(x, y, z): declares a graph edge with id x, directed from the node with
id y to the node with id z,

• attr(x, n, v): for the object (node or edge) with id x, declares an attribute
with name n and string value v. We will also use the notation n = v, when
x is clear from the context.

Nodes of a dependency graph correspond to words of the sentence and are labeled
using the attributes word, lemma and pos, which specify the word, its lemma and its
part of speech tag, respectively. Empty nodes derived from the Penn Treebank are
identified using the attribute empty = 1. Edges of a dependency graph correspond
to word-word dependencies. They are marked with the attribute type = dep and
labeled using the attribute label. Traces (non-local dependencies) derived from the
Penn TB are similar to dependency edges, but are additionally marked with the
attribute trace = 1. Nodes are ordered using edges with the attribute type = ord.

Nodes of constituency trees (phrase structures) correspond to terminals and
non-terminals of the trees. Terminals (words) are marked with the attribute type =
word and labeled using attributes word, lemma and pos, the word, its lemma and its
part of speech tag. Non-terminals (phrases) are identified by the attribute type =
ph and are labeled with label. Parent-child relations in the constituency tree are
represented by edges with type = child from parents to children, and traces derived
from the Penn Treebank by edges with type = trace. Empty nodes (terminals, as
well as non-terminals without any non-empty terminal descendants) are marked
with empty = 1. Terminal nodes are ordered according to the surface word order
using edges with type = ord and label = surf. Children of the same parent node are
ordered using type = ord and label = sibling. We refer to Section 3.4 on page 37 for
more details and examples of dependency and phrase structure graphs.

When comparing two graphs, two possibly different analyses of the same sen-
tence (e.g., one produced by a parser and another derived from a treebank), we

6.2 GRAPHS AND TRANSFORMATIONS: A RECAP 93

merge some of the nodes, edges and attributes of the two graphs as identical. The
resulting structure (a graph merge) is a graph such that each element (a node, edge
or attribute) stores information whether it belongs to only one of the graphs or to
both of them. See Section 3.5.2 on page 42 for more details.

As described in Chapter 5, we use a corpus of graph pair merges to automati-
cally learn which rewrite rules should be applied to input graphs to obtain output
graphs. Each graph rewrite rule involves a connected subgraph (i.e., a set of graph
elements, the left-hand side of the rule, LHS for short) that should be substituted in
a source graph with another subgraph (another set of atoms, the right-hand side of
the rule, RHS for short). The decision whether a specific occurrence of a left-hand
side of a rewrite rule should be replaced with the corresponding right-hand side,
is made by a machine learner. The machine learner uses a context of such an oc-
currence (i.e., information about the entire local neighborhood of the occurrence,
encoded as a feature vector) to make its decision. An LHS, an RHS and a trained
machine learner implementing the constraint together define a graph rewrite rule.

Our method for learning graph transformations (Chapter 5) works iteratively.
We start by comparing input and output graph pairs of the training corpora and
extracting possible left- and right-hand sides of rewrite rules. Next, we determine
the most frequent LHS’s and RHS’s and train a machine learner for each pair of
LHS and RHS. The resulting rewrite rules are stored and applied to the training
corpus, resulting in a new corpus of graph pair merges, which is, in turn, used for
the extraction of a next series of rewrite rules at the next iteration. The method
iterates until some task-specific convergence criterion is met. The result of the
learning method is, thus, a sequence of graph rewrite rules that can be applied to
new input graphs.

When extracting possible LHS’s and RHS’s from a corpus of graph merges, as
described in Chapter 5, we consider the following transformation types:

• Any possible modification of attributes of single objects (nodes and edges).
In this case, possible LHS’s and RHS’s are objects and the attributes that
need changing.

• Modifying (adding, removing, replacing) connected subgraphs. In this case,
LHS’s are connected subgraphs and RHS’s arbitrary subgraphs, specifying
nodes, edges, their types and labels (values of the type and label attributes),
along with all other attributes that are to be modified by a transformation
rule.

In this chapter we describe the application of our graph transformation method to
the two different flavors for the PAS identification task: one operating on depen-
dency structures and another that identifies PAS using constituency trees. We start

94 CHAPTER 6. GRAPH TRANSFORMATIONS FOR PAS IDENTIFICATION

with the PAS identification using dependency graphs in the next section.

6.3 Identifying PAS using dependency graphs

In Chapter 2 we introduced a procedure for converting constituency trees as they
are annotated in the Penn Treebank and produced by syntactic parsers of Charniak
(2000) and Collins (1999) to dependency graphs, with dependency labels derived
from the treebank’s or parser’s constituent labels. With this choice of the syntactic
formalism, we re-formulated the task of identifying PAS in a parser’s output as
a graph transformation problem: adding the missing information that defines the
predicate argument structure of a sentence. We refer to Chapter 2, and specifically
to Section 2.3 and Figure 2.5 on page 28 for more details and an example.

Now we describe an application of our method for learning graph transforma-
tions to the same task and the same data.

As in Chapter 4, we used the Penn Treebank annotations and the output of
Charniak’s parser on the strings of the corpus, both converted to dependency graphs,
to create a corpus of graph pair merges. To allow a meaningful comparison of the
results of our method to the approach of Chapter 4, we used the same standard
split of the corpus: Penn Treebank sections 02–21 were used for training, sections
00–01 for development and performance estimation during training, and section 23
was used once to obtain the final evaluation results.

6.3.1 Learning transformations

Starting with the training corpus of graph merges from sections 02–21, and the
held-out development corpus from sections 00–01, we iterated the graph transfor-
mation method of Chapter 5 as follows:

• At each iteration at most 20 most frequent LHS’s among all rewrite rules ex-
tracted from the current corpus of merges were selected as LHS’s of possible
transformations.

• For each selected LHS, at most 20 most frequent RHS’s were selected.

• For each of the resulting (LHS, RHS) pairs, a separate SVM classifier (we
used the SVM-Light package by Joachims (1999)) was trained using all oc-
currences of the LHS in the training corpus of the current iteration: each
classifier predicts whether a particular occurrence of the LHS should be re-
placed with the RHS.

6.3 IDENTIFYING PAS USING DEPENDENCY GRAPHS 95

Development corpus Test corpus
Stage unlab P / R lab P / R unlab P / R lab P / R
Initial 88.3 / 83.5 69.5 / 65.7 87.6 / 83.2 68.0 / 63.5

1 89.4 / 87.7 82.4 / 80.8 88.8 / 87.3 82.1 / 80.7
2 89.9 / 88.7 84.5 / 83.3 89.3 / 88.3 84.3 / 83.4
3 90.2 / 88.9 84.8 / 83.6 89.6 / 88.6 84.7 / 83.7
4 90.2 / 88.9 84.8 / 83.6 89.6 / 88.6 84.7 / 83.7

Table 6.1: Evaluation results for PAS identification in dependency graphs derived
from Charniak’s parser: labeled and unlabeled precision and recall of dependency
relations (including non-local dependencies).

• At each iteration, all rewrite rules were applied in parallel to the current train-
ing and development corpora to prepare for the next iteration. The resulting
new development corpus of graph merges was then evaluated on labeled de-
pendencies (Section 2.1.1 on page 21). We calculated the F1 score of preci-
sion and recall for all graph edges of type = dep on the development corpus.
In case the improvement of the F1 score over the score at the previous itera-
tion is smaller than 0.1%, the learning process was terminated. Otherwise a
new iteration was started.

Because of the convergence criterion (no increase in F1 score of at least 0.1%
on the development corpus), the application of the method stopped at the fourth
iteration. Table 6.1 shows labeled and unlabeled precision and recall, evaluated
both on the development and test corpora.

How does the performance of our general method at the PAS identification task
compare to the task-specific method of Chapter 4? Table 6.2 shows the labeled pre-
cision and recall scores for the two methods as they changed through the iterations.
Note that the method of Chapter 4 involved three iterations whereas the new me-
thod stopped after four iterations, each with patterns with 20 different left-hand
sides.

The two systems demonstrate a very similar performance at their final iter-
ations, with the system of Chapter 4 showing a slightly better recall (83.86 vs.
83.74), but lower precision (84.16 vs. 84.66). This results in a better F1 score for
our graph transformation-based system, though the differences between the two
are not statistically significant using the t-test with p = 0.05.

In Chapter 4, apart from providing the overall dependency evaluation results,
we gave a comparison of the performance of the system on several subtasks to
the related work: the recovery of the Penn Treebank function and grammatical

96 CHAPTER 6. GRAPH TRANSFORMATIONS FOR PAS IDENTIFICATION

Chapter 4 Here
Stage P R F1 P R F1

Initial 68.0 63.5 65.7 68.0 63.5 65.7
1 83.8 78.2 80.9 82.1 80.7 81.4
2 84.1 79.8 81.9 84.3 83.4 83.9
3 84.2 83.9 84.0 84.7 83.7 84.2
4 – – – 84.7 83.7 84.2

Table 6.2: Comparison of the results for PAS identification in dependency graphs
for the method of Chapter 4 and of this chapter.

tags (Blaheta and Charniak, 2000), empty nodes and non-local dependencies (Di-
enes, 2004; Dienes and Dubey, 2003a). We will not go into such a detailed analysis
in this section, since later in this chapter, in Section 6.4, we will describe our ap-
proach to the PAS identification on constituency trees, which allows for a much
more direct comparison to the results in literature, which are also presented for
constituency structures.

But before we turn to phrase structures, we will first have a closer look at the
rewrite rules that were automatically extracted by our system for the PAS identifi-
cation in dependency graphs. In the four iterations used by the method, in total 80
LHS’s of the rewrite rules were identified. Below is a summary of the sizes of the
LHS’s: the number of patterns containing 1 to 4 nodes (no patterns were extracted
with 5 or more nodes in the LHS).

Size of pattern (nodes) Number of patterns
1 25
2 49
3 4
4 2

As can be expected, most of the patterns are quite simple and correspond to chang-
ing edge (dependency) labels: 33 of the 49 two-node patterns were of this type.
The second most frequent transformation pattern involved single nodes: in most
cases this corresponds to the rewrite rules that only change node attributes.

In the following section we give examples and a detailed analysis of some of
the transformation rules extracted during the iterations of our method.

6.3 IDENTIFYING PAS USING DEPENDENCY GRAPHS 97

Left-hand side Count Right-hand sides Count Example
edge(e0, n0, n1),
attr(e0, label, S|NP)

67850 edge(e0, n0, n1),
attr(e0, label, S|NP-SBJ)

66649 Figure 6.2
edge(e0, n0, n1),
attr(e0, label, S|NP-TMP)

785 Figure 6.3

node(n0),
attr(n0, label, AUX)

34178 node(n0),
attr(n0, label, VBZ)

11952 Figure 6.4
node(n0),
attr(n0, label, VBD)

8120
node(n0),
attr(n0, label, VBP)

7956

edge(e0, n0, n1),
attr(e0, label, VP|PP)

37788 edge(e0, n0, n1),
attr(e0, label, VP|PP-CLR)

11171 Figure 6.2

— 9345
edge(e0, n0, n1),
attr(e0, label, VP|PP-TMP)

4307
edge(e0, n0, n1),
attr(e0, label, VP|PP-DIR)

4194 Figure 6.3

node(n0), node(n1),
edge(e0, n0, n1),
attr(e0, label, SBAR|S)

20300 — 12015 (see text)

node(n0), node(n1),
edge(e0, n0, n1),
attr(e0, label, SBAR|S),
edge(E1, n1, n0),
attr(E1, label, S|NP-SBJ)

5709 Figure 6.5

node(n0), node(n1),
edge(e0, n0, n1),
attr(e0, label, SBAR|S),
edge(E1, n1, n0),
attr(E1, label, VP|ADVP-TMP)

997 Figure 6.6

node(n0), node(n1),
edge(e0, n0, n1),
attr(e0, label, SBAR|S),
edge(E1, n1, n0),
attr(E1, label, VP|NP)

537

Table 6.3: Most frequent left-hand sides of extraction transformation rules, with
counts in the training corpus and several of the possible right-hand sides.

98 CHAPTER 6. GRAPH TRANSFORMATIONS FOR PAS IDENTIFICATION

join

board

the

asVinken

Peter director

VP|NP

VP|PP−CLRS|NP−SBJ
join

board

the

asVinken

Peter

S|NP

director

VP|NP

VP|PP

VP|PP VP|PP−CLRS|NP−SBJS|NP

*

*

*

* *

* *

*

Figure 6.2: Sentence “Pierre Vinken will join the board as director”: dependency
graphs (top) and the extracted transformations (bottom). Some dependency labels
omitted.

morning
buses

raced

Next

to
speedway

the

S|NP−TMP

morning
buses

raced

Next

to
speedway

the

S|NP

S|NP

VP|PP

S|NP−SBJ

VP|PP−DIR

*

*

*

*

VP|PP−DIRVP|PP

*

*

S|NP

*

*

S|NP−SBJ

*

*

S|NP

*

*

S|NP−TMP

Figure 6.3: Sentence “Next morning buses raced to the speedway”: dependency
graphs (top) and the extracted transformations (bottom). Some dependency labels
omitted.

6.3 IDENTIFYING PAS USING DEPENDENCY GRAPHS 99

*

*

S|NP

*

*
S|NP−SBJ* *

*

* *

*
VP|NP VP|NP−PRD

Vinken chairman

Mr.

is
S|NP−SBJ VP|NP−PRD

chairman

Mr.

S|NP
is

VP|NP

 (AUX) (VBZ)

 (AUX) (VBZ)

Vinken

Figure 6.4: Sentence “Mr. Vinken is chairman”: dependency graphs (top) and the
extracted transformations (bottom). Some dependency labels omitted. Parentheses
indicate node labels, representing part of speech tags.

those

whoall

wrote

NP|SBAR

SBAR|S

*

*

SBAR|S

*

*

SBAR|S

those

whoall

wrote

NP|SBAR

SBAR|S
S|NP−SBJ

S|NP−SBJ

Figure 6.5: Noun phrase “all those who wrote”: dependency graphs (top) and the
extracted transformations (bottom). Some dependency labels omitted.

100 CHAPTER 6. GRAPH TRANSFORMATIONS FOR PAS IDENTIFICATION

SBAR|SSBAR|S

law

tells

when

do

to

tells

law when

do

to

VP|SBAR VP|SBAR

VP|ADVP−TMP

*

*

SBAR|S

*

*

SBAR|S

VP|ADVP−TMP

it it

Figure 6.6: Sentence “law tells when to do it”: dependency graphs (top) and the
extracted transformations (bottom). Some dependency labels omitted.

6.3.2 Extracted transformations: a closer look

Table 6.3 on page 97 shows some of the frequent rewrite rules extracted from the
training corpus. The most frequent left-hand side is the pattern

{

edge(e0, n0,

n1), attr(e0, label, S|NP)
}

, the first group of rows in Table 6.3 on page 97. With
its right-hand sides, it defines changes of edge labels from S|NP to S|NP-SBJ,
S|NP-TMP (see the example in Figure 6.3 on page 98), S|NP-ADV, S|NP-VOC, all cor-
responding to adding functional tags (subject, temporal, adverbial, vocative, resp.).
Other right-hand sides for this LHS introduce transformations caused by more or
less systematic parsing errors. The most frequent such transformation is chang-
ing edge label S|NP to S|”, PRN|NP-SBJ, S|S-ADV, SINV|NP-SBJ, S|S-NOM-SBJ etc.
These transformations correspond to parsing errors such as incorrect constituent
labels (e.g., S in place of PRN, or NP in place of nominalized S).

The pattern
{

node(n0), attr(n0, label, AUX)
}

(the second left-hand side in Ta-
ble 6.3) defines changes of node labels, which correspond to part of speech tags of
words. Charniak’s parser assigns the part of speech tag AUX to auxiliary verbs be,
did, has, been etc., which are annotated as common verbs in the Penn Treebank
(tags VB, VBD, VBZ, VBN, respectively). The extracted transformation rules try to
fix these mismatches.

The third left-hand side in Table 6.3 is the pattern
{

edge(e0, n0, n1),
attr(e0, label, VP|PP)

}

that allows the system to add Penn functional tags to prepo-
sitional phrases (PP) attached to verb phrases (VP). The functional tags added by
these rules are: -CLR, -TMP, -DIR, -LOC, etc. (closely related, temporal, direction,

6.3 IDENTIFYING PAS USING DEPENDENCY GRAPHS 101

locative, resp.). Some of the PP’s in the Penn Treebank are not marked with func-
tional tags—these cases correspond to the empty right-hand side (“—”). There are
14 different possible functional tags detected by our system for VP|PP edges, each
defining a rule with the corresponding RHS.

Finally, the fourth group of rows in Table 6.3 is described by the LHS pattern
{

node(n0), node(n1), edge(e0, n0, n1), attr(e0, label, SBAR|S
}

and gives an exam-
ple of a more complicated transformation: adding a dependency relation between
a relative pronoun and the head of a relative or small clause (see examples in Fig-
ures 6.5 and 6.6). Apart from those mentioned in Table 6.3, there are several other
possible labels of the dependency relations added in the right-hand sides of the
transformations, such as VP|NP (object, as in “questions that we considered”) or
VP|ADVP-MNR (manner adjunct, as in “explain how to deal with it”).

Table 6.4 shows some other examples of left- and right-hand sides extracted
in the first iteration of the learning cycle. The pattern in the first group of rows
corresponds to subject control constructions (annotated in the Penn Treebank us-
ing empty nodes and co-indexing, and represented with dependency relations in
dependency graphs). Note that since our atomic transformations always involve
connected graphs with edge labels, the transformations introducing controlled sub-
jects also correct existing labels (e.g., changing S|NP to S|NP-SBJ, Figure 6.7),
thus possibly duplicating the effect of other, simpler transformations (e.g., see Fig-
ure 6.2). As a result, for a given edge, modifications such as changing edge labels
from S|NP to S|NP-SBJ can be identified more than once, by different rules with dif-
ferent left-hand sides. This does not lead to a clash when applying transformations
to actual data, as long as the modifications are not conflicting. Clashes (e.g., when
one pattern requires a change of a label to S|NP-SBJ and another to S|NP-TMP) are
resolved by ordering transformations according to frequencies of left-hand sides in
the training corpus. In other words, although several transformations are applied
in parallel at each iteration of the learning loop, the most frequent one wins in case
of conflict.

The second group of rows in Table 6.8 introduces transformations related to
passive constructions (see example in Figure 6.8). Similar to the control construc-
tion, a new edge (with label VP|NP, corresponding to verb object) is added to the
dependency graph.

In the current section we have described the application of the general graph
transformation method to the task of PAS identification in dependency graphs.
Now we turn to a related, but different application: PAS identification in phrase
structures.

102 CHAPTER 6. GRAPH TRANSFORMATIONS FOR PAS IDENTIFICATION

*

* *
S|NP VP|S

investors comment

had

proposals

onto

S|NP VP|S

*

* *
VP|S

investors comment

had

proposals

onto

VP|SS|NP−SBJ

S|NP−SBJ

S|NP−SBJ

S|NP−SBJ

Figure 6.7: Sentence “investors had to comment on proposals”: dependency graphs
(top) and the extracted transformations (bottom). Some dependency labels omitted.

S|NP

*

* *

S|NP−SBJ

S|NP−SBJ

was

attributed

to

was

attributed

to
herher

*

* *
S|NP VP|VP VP|VP

VP|NP

rolerole
VP|VP VP|VP

VP|NP

Figure 6.8: Sentence “role was attributed to her”: dependency graphs (top) and
the extracted transformations (bottom). Some dependency labels omitted.

6.4 IDENTIFYING PAS USING PHRASE STRUCTURES 103

Left-hand side Count Right-hand sides Count Ex.

node(n0), node(n1),
node(n2), edge(e0, n0, n1),
attr(e0, label, S|NP),
edge(e1, n0, n2),
attr(e1, label, VP|S)

9564

node(n0), node(n1),
node(n2), edge(e0, n0, n1),
attr(e0, label, S|NP-SBJ),
edge(e1, n0, n2),
attr(e1, label, VP|S)
edge(e2, n2, n1),
attr(e2, label, S|NP-SBJ)
attr(e2, trace, 1)

4067 Fig. 6.7

— 3654
node(n0), node(n1),
node(n2), edge(e0, n0, n1),
attr(e0, label, S|NP-SBJ),
edge(e1, n0, n2),
attr(e1, label, VP|S-ADV)
edge(e2, n2, n1),
attr(e2, label, S|NP-SBJ)
attr(e2, trace, 1)

761

node(n0), node(n1),
node(n2), edge(e0, n0, n1),
attr(e0, label, S|NP),
edge(e1, n0, n2),
attr(e1, label, VP|VP)

7433

node(n0), node(n1),
node(n2), edge(e0, n0, n1),
attr(e0, label, S|NP-SBJ),
edge(e1, n0, n2),
attr(e1, label, VP|VP)
edge(e2, n0, n2),
attr(e2, label, VP|NP)
attr(e2, trace, 1)

4005 Fig. 6.8

— 2028

Table 6.4: Some of the extracted patterns.

6.4 Identifying PAS using phrase structures

In Chapter 4 and in the previous section we presented two solutions for the problem
of identifying predicate argument structure (including function labels, empty nodes
and non-local dependencies) in dependency structures, using the Penn Treebank as
the source of the annotated PAS.

Both of our methods involved a conversion step: annotations of the Penn Tree-
bank, as well as the outputs of two phrase structure parsers, were first converted
to dependency graphs, using phrase labels and function tags to derive dependency
labels, and preserving information about empty nodes and non-local dependencies.
Although this conversion step allowed us to reduce the PAS identification task to

104 CHAPTER 6. GRAPH TRANSFORMATIONS FOR PAS IDENTIFICATION

a graph transformation problem with relatively simple local rewrite rules (such as
adding nodes or edges, or changing dependency labels), this approach based on
dependency graphs suffers from several methodological shortcomings.

One problematic issue with the conversion to dependencies is that our gold
standard corpus, the Penn Treebank, is modified both for training and for the eval-
uation of the systems using a set of imperfect heuristic rules that are bound to
make mistakes. As a result, it is not completely clear whether the comparison of
the output of our systems to the test section of this semi-automatically created gold
standard corpus actually reflects the performance: the gold standard data has not
been directly created by human annotators. In fact, our dependency-based evalu-
ation scores indicate how close our system gets to the data in a rather artificially
generated corpus.

Another methodological problem is comparing our results to the performance
of other systems that have addressed various sub-problems of the PAS identifica-
tion task: recovery of empty nodes and non-local dependencies (Dienes, 2004; Di-
enes and Dubey, 2003a; Johnson, 2002) and function tags (Blaheta, 2004; Blaheta
and Charniak, 2000). These systems also used the Penn Treebank as the training
corpus for their respective subtasks, but all of them were applied directly to the
corpus, annotated with constituency trees, and to the output of phrase structure
parsers. In Chapter 4 we gave a detailed analysis of the performance of our method
on specific subtasks, but the comparison to previous work was rather indirect due
to this mismatch of the syntactic representation formalisms (Sections 4.5.1, 4.6.1
and 4.7.1).

Can we use our general graph transformation method to address the PAS iden-
tification problem formulated in terms of phrase structures rather than dependency
graphs, in order to address these problems? In this section we will give a positive
answer to this question.

6.4.1 Definition of the task

We define the tasks of PAS identification in the output of a syntactic parser, as the
recovery of all of the information annotated in the Penn Treebank, including func-
tion and semantic tags of constituents, empty nodes and non-local dependencies.
We consider the annotation of the Penn Treebank and the output of a parser for
each sentence to be directed labeled phrase structure graphs (see Section 3.4 on
page 37), and use our automatic graph transformation method to map phrase trees
produced by a parser to the Penn Treebank annotation.

As described in Section 3.4, our representation of phrase structure graphs uses
nodes with attributes to represent terminals, non-terminals and empty elements,
and edges to represent parent-child relations, antecedents of traces, surface order

6.4 IDENTIFYING PAS USING PHRASE STRUCTURES 105

of the terminals and the order of children of each non-terminal. Figure 6.9 on
the following page shows the original Penn Treebank annotation of the sentence
“Directors this month planned to seek more seats” and the corresponding directed
labeled phrase structure graph. Figure 6.10 shows the output of Charniak’s parser
and the graph for the same sentence.

While converting the bracketed annotations of the Penn Treebank and the out-
put of a parser to our graph representation, the following modifications were made:

• We replaced Penn Treebank co-indexing information (e.g., “-1” in labels
NP-SBJ-1 and *-1 in Figure 6.9) with edges with type = antecedent, in order
to make the semantics of this Penn Treebank feature explicit in the graphs;

• parent-child edges connecting constituents with their head children were
marked with the attribute head = 1, and lexical heads of constituents were
indicated using edges with the attribute type = lexhead; we used the same
heuristic method for head identification and head lexicalization as before,
see Section 2.1.2 for details.

When Penn Treebank sentences and the output of the parser are encoded as di-
rected labeled graphs as described above, the task of PAS identification can be
formulated as transforming phrase structure graphs produced by a parser into the
Penn Treebank graphs.

6.4.2 Learning transformations

As before, we parse the strings of the Penn Treebank with Charniak’s parser and
then use the data from sections 02–21 of the Penn Treebank to training the graph
transformation system, sections 00–01 for development and section 23 for testing.

We iterated the transformation method as follows:

• At each iteration we only considered rewrite rules that involved non-local
dependencies or function tags; this was implemented by a simple filter that
only allowed rules whose RHS contains objects with the attribute empty = 1
(i.e., empty nodes) or objects with the label attribute containing a function
tag (as indicated by a dash, as in NP-TMP).

• Similar to Section 6.3, at each iteration we extracted at most 20 most frequent
LHS’s and for each of them 20 most frequent RHS’s of possible rewrite rules.

• We used the same classifier as before, SVM-Light (Joachims, 1999) to learn
constraints of each of the extracted transformation rules.

106 CHAPTER 6. GRAPH TRANSFORMATIONS FOR PAS IDENTIFICATION

(S
(NP-SBJ-1 (NNS Directors))
(NP-TMP ((DT this) (NN month))
(VP (VBD planned)

(S
(NP-SBJ (-NONE- *-1))
(VP (TO to) (VB seek)
(NP (JJR more)

(NNS seats))))))

VP

to seek NP

seats

VP

planned

S

directors S

NP−SBJthis month

NP−TMP

*

NP−SBJ

F =
{

node(n0), node(n1), . . . , node(n15),

attr(n0, type, phrase), attr(n0, label, S), attr(n1, type, phrase), attr(n1, label, NP-SBJ),

attr(n3, type, phrase), attr(n3, label, NP-TMP), attr(n6, type, phrase), attr(n6, label, VP),

attr(n2, type, word), attr(n2, word, directors), attr(n2, pos, NNS),

attr(n4, type, word), attr(n4, word, this), attr(n4, pos, DT),

attr(n5, type, word), attr(n5, word, month), attr(n5, pos, NN),

attr(n7, type, word), attr(n7, word, planned), attr(n7, pos, VBD),

attr(n10, type, word), attr(n10, word, *), attr(n10, pos, -NONE-), attr(n10, empty, 1),

. . .

edge(e0, n0, n1), attr(e0, type, child), edge(e16, n0, n7), attr(e16, type, lexhead),

edge(e24, n1, n3), attr(e24, type, ord), attr(e24, label, sibling),

edge(e25, n3, n6), attr(e25, type, ord), attr(e25, label, sibling),

edge(e1, n1, n2), attr(e1, type, child), attr(e1, head, 1),

edge(e17, n1, n2), attr(e17, type, lexhead),

edge(e3, n3, n4), attr(e3, type, child),

edge(e4, n3, n5), attr(e4, type, child), edge(e18, n3, n5), attr(e18, type, lexhead),

. . .

edge(e15, n10, n1), attr(e15, type, antecedent),

. . .
}

Figure 6.9: Example of the Penn Treebank annotation, corresponding graph and its
logical representation for the sentence “Directors this month planned to seek more
seats” (ord-edges, lexhead-edges and some attributes are not shown in the graph
diagram).

6.4 IDENTIFYING PAS USING PHRASE STRUCTURES 107

(S
(NP (NNS Directors))
(NP ((DT this) (NN month))
(VP (VBD planned)

(S
(VP (TO to) (VB seek)

(NP (JJR more)
(NNS seats))))))

VP

to seek NP

seats

VP

planned

S

directors S

this month

NP

NP

Figure 6.10: Example of the output of Charniak’s parser and the corresponding
phrase structure graph for the sentence “Directors this month planned to seek more
seats.” (ord-edges, lexhead-edges and attributes are not shown).

• At each iteration, the system was evaluated on the development corpus with
respect to both non-local dependencies and function tags of constituents
(Section 6.4.3 describes the evaluation measures in detail). If the improve-
ments of the F1 score for either evaluation measure was smaller than 0.1, the
learning cycle was terminated, otherwise a new iteration was started.

6.4.3 Evaluation measures

The commonly accepted evaluation measure for phrase structure parsers, PAR-
SEVAL (see Section 2.1.1), is based on comparing lexical spans of constituents
detected by a parser to the gold standard and does not address possible non-local
dependencies. Especially for the evaluation of the recovery of non-local depen-
dencies in phrase trees, Johnson (2002) proposed a simple measure, that calculates
how well a system identifies empty nodes and their antecedents. We take Johnson’s
evaluation approach, used also by Dienes and Dubey (2003a) and Dienes (2004),
in order both to guide our transformation method through iterations, and to present
the final evaluation results and compare them to the earlier work.

More specifically, the evaluation measure for non-local dependencies is the F1

score of precision and recall of co-indexed empty nodes, where an empty node
(a terminal node in a phrase structure graph with pos = -NONE-) is considered
correctly identified if:

• the type of the empty node (the value of the word attribute: *T*, *, *?*,0, *U*,
etc.) matches the gold standard;

• it is attached as child node to a constituent with the correct head word;

108 CHAPTER 6. GRAPH TRANSFORMATIONS FOR PAS IDENTIFICATION

• the head of the antecedent (or NULL, in case the empty node has no an-
tecedents) is the correct word.

The use of this measure enables a straightforward comparison of our results to
earlier work.

Unlike the approach of Johnson (2002), that focused only on detection and in-
sertion of empty nodes and their antecedents, our method may also affect the con-
stituents of phrase trees, since the transformations found by the method in principle
are not restricted only to empty nodes. It is possible that our system, while adding
empty nodes and detecting their antecedents, accidentally modifies the trees, and
thus, in principle, a good score for the detection of non-local dependencies might
come at the price of decreased PARSEVAL score. Indeed, this effect has been no-
ticed by Dienes (2004), who reports a decrease in PARSEVAL F1 score from 88.0
to 87.1 when making the parser aware of empty nodes, with the parsing model that
shows best results on non-local dependencies. Because of this potential trade-off
between accuracy of a system on local structures and on non-local dependencies,
we give both measures when reporting results.

Apart from detecting empty nodes and non-local dependencies, our method
also corrects labels of constituents, which corresponds to adding grammatical and
function tags (-SBJ, -TMP, etc.). For a separate evaluation of the tag detection we
use another measure: precision and recall for attaching tags to correctly identified
constituents (Blaheta, 2004; Blaheta and Charniak, 2000). We consider only those
constituents in the parser’s output, that have the same lexical span and label as
in the gold standard corpus, and for each of these constituents, we count as true
positives the tags that are attached to the constituent both in the gold standard and
in the results of transforming the parser’s output using our system.

6.4.4 Results and comparison to previous work

We applied our graph transformation method using the trees produced by Char-
niak’s parser as input corpus and the Penn Treebank as the output corpus, both
converted to phrase structure graphs as described above. We iterated the method
until the convergence criteria were met: both the increase in the evaluation score for
function tags and the increase of the evaluation score for non-local dependencies
are not higher than 0.1. Remember that we used the development corpus (sections
00–01) for these performance estimations at every iteration of the method.

The learning cycle terminated after 12 iterations. Table 6.5 shows the evalua-
tion results on all iterations: identification of function tags, detection of non-local
dependencies, and the standard PARSEVAL measure for constituent bracketing.

Unlike the method of Chapter 4, our present system works directly with phrase

6.4 IDENTIFYING PAS USING PHRASE STRUCTURES 109

Function tags Non-local deps PARSEVAL
Stage P R F1 P R F1 F1

Initial 0.0 0.0 0.0 0.0 0.0 0.0 88.7
1 93.3 89.0 91.2 88.2 38.6 53.7 88.4
2 93.4 89.0 91.1 87.2 48.6 62.5 88.4
3 93.4 88.9 91.1 87.5 51.9 65.2 88.4
4 93.4 89.0 91.1 86.7 52.1 65.1 88.4
5 93.4 89.0 91.2 86.1 56.3 68.1 88.3
6 93.4 89.2 91.3 86.0 57.2 68.7 88.4
7 93.4 89.3 91.3 86.3 61.3 71.7 88.4
8 93.4 89.3 91.3 86.6 63.4 73.2 88.4
9 93.4 89.3 91.3 86.7 64.6 74.0 88.4

10 93.4 89.4 91.3 86.7 64.9 74.2 88.4
11 93.4 89.4 91.3 86.6 65.1 74.3 88.4
12 93.3 89.6 91.4 86.7 65.2 74.4 88.4

Table 6.5: Evaluation results for PAS identification in phrase structure graphs pro-
duced by Charniak’s parser: precision and recall function tags and non-local de-
pendencies, and the standard PARSEVAL score for the parses.

trees produced by Charniak’s parser, without converting them to dependency struc-
tures. How do the results compare to results of other systems? Below we discuss
our results for identification on non-local dependencies and for function tagging.

Non-local dependencies

Table 6.6 on the next page gives a detailed description of our results specifically
for the identification of empty nodes and their antecedents. We compare the per-
formance of three systems:

• the system of Dienes and Dubey (2003a), combining a MaxEnt-based tagger
that inserts empty elements in sentences, and a lexicalized trace-aware parser
extending Model 3 of Collins (1997);

• the system of Dienes (2004), extending the previous one by integrating the
tagger and the parser into a probabilistic framework; to our knowledge, this
system demonstrates the best published F1-scores for the identification of
non-local dependencies;

• finally, our present system based on the graph transformation method applied
to the phrase trees by Charniak’s parser and the original Penn Treebank an-
notation.

110 CHAPTER 6. GRAPH TRANSFORMATIONS FOR PAS IDENTIFICATION

Dienes and Dubey Dienes (2004) Here
Type Count P R F1 P R F1 P R F1

PARSEVAL 44278 - - 86.3 - - 87.3 88.5 88.2 88.4

All empty 3864 81.8 67.9 74.3 82.5 70.1 75.8 86.7 65.2 74.4

NP-NP 1148 74.9 68.3 71.5 78.9 71.6 75.5 87.4 59.5 70.8
COMP-SBAR 545 93.9 76.9 84.6 78.6 83.7 81.7 89.9 81.3 85.4
WH-NP 508 89.6 73.4 80.7 91.6 77.8 84.1 94.8 74.8 83.6
PRO-NP 477 72.4 69.2 70.7 74.7 68.1 71.3 75.4 47.2 58.0
UNIT 388 99.7 93.6 96.5 94.4 91.2 92.8 93.0 92.3 92.6
TOP-S 277 83.9 79.1 81.4 87.8 85.9 86.9 87.0 79.8 83.2
WH-ADVP 171 73.2 41.5 53.0 85.9 46.2 60.1 92.0 70.1 79.6
COMP-WHNP 107 67.8 37.4 48.2 70.4 35.5 47.2 85.3 48.6 61.9

Table 6.6: A detailed comparison of the results of our system (using Charniak’s
parser) and the systems of Dienes and Dubey (2003a) and Dienes (2004): PARSE-
VAL bracketing scores and identification of empty nodes and their antecedents in
phrase trees.

The column Count gives the number of evaluated elements in the test corpus (sec-
tion 23 of the Penn Treebank): for the PARSEVAL measure, this is the total num-
ber of constituents, and for all other rows, the number of corresponding empty
elements in the corpus.

While our system outperforms (Dienes and Dubey, 2003a), and therefore our
system of Chapter 4, the overall performance on all empty elements is 1.4% worse
than that of the best combined system of Dienes (2004). Interestingly, however,
the systems show different behavior with respect to precision and recall of non-
locals: our transformation-based method allows us to achieve 4% better precision,
but the recall is about 5% lower. The performance on specific types of non-local
dependencies indicates a similar trend. Moreover, while for all types of empty
elements the precision of our system is close to, or substantially better than, the
precision of Dienes (e.g., 87.4 vs. 78.9 for NP-NP), the situation is opposite with
the recall.

This analysis indicates that our system is cautious in making changes to the
graphs. The system seems to apply rewrite rules only when there is enough ev-
idence and the decision is well supported by the training corpus. This allows us
to achieve good precision for the recovery of empty nodes (86.7%), but hurts re-
call. Another explanation to this imbalance is the iterative nature of our method:
we learn the most frequent graph transformations first, terminating the learning cy-
cle when the improvement of the F1 score is lower than 0.1, thus, ignoring less

6.4 IDENTIFYING PAS USING PHRASE STRUCTURES 111

frequent linguistic constructions. Note also that for relatively infrequent types of
empty elements (the bottom rows of Table 6.6) that nevertheless “made it” into
our transformation system, the results are significantly better than for the system
of Dienes (2004), both for precision and recall. It seems that while infrequent lan-
guage phenomena are difficult for probabilistic approaches (due to the data sparse-
ness problems or because more frequent constructions blur the model), our pattern-
based approach allows us to isolate specific phenomena and treat each of them sep-
arately, with separate rewrite rules that use pattern-specific classifiers. Our method
shares this feature of avoiding over-generalizations with other non-probabilistic
approaches to learning for complex tasks: Transformation-Based Learning (Brill,
1995) and Memory-Based Learning (Daelemans and van den Bosch, 2005).

Function tagging

How accurately does our system assign Penn Treebank function tags? In Ta-
ble 6.7 on the following page we summarize the results of our method and the
best MaxEnt-based model of Blaheta (2004). As in Section 4.5.1 on page 56, we
use the evaluation measure of Blaheta and Charniak (2000), considering function
tags only for constituents correctly identified by the parser with respect to the word
span and the phrase label (88.5% of the constuents returned by Charniak’s parser
on section 23 of the Penn Treebank). Since the system of Blaheta (2004) does not
assign tags to empty constituents (i.e., containing only empty elements), as they
are not produced by the parser, we exclude those from the evaluation.

Neither of the two systems outperforms the other: the ranking is different for
syntactic (SBJ, PRD, LGS, etc.) and semantic (ADV, LOC, TMP) tags. Apart from
presenting the results of the MaxEnt model, Blaheta (2004) describes extensive
experiments with voted perceptrons (Freund and Schapire, 1998) with different
combinations of features. Perceptrons demonstrate a different behavior, with some
of the models achieving F1 score of 98.8% for the identification of syntactic tags,
but none of the trained perceptrons performing better than 78.6% for semantic tags.
Blaheta reports the perceptron evaluation results only for the development corpus
(section 24 of the Penn Treebank).

6.4.5 Extracted transformations: a closer look

We now describe the graph rewrite rules extracted by the system in more detail.
During the 12 iterations of the learning cycle, 240 left-hand sides of rewrite

rules were extracted, with a total of 1840 right-hand sides, 7.7 RHS’s for one LHS
on average. The distribution of the sizes (the number of nodes) of the left-hand
sides was as follows:

112 CHAPTER 6. GRAPH TRANSFORMATIONS FOR PAS IDENTIFICATION

(Blaheta, 2004) Here
Type Count P R F1 P R F1

All tags 8480 - - - 93.3 89.6 91.4

Syntactic 4917 96.5 95.3 95.9 95.4 95.5 95.5
Semantic 3225 86.7 80.3 83.4 89.7 82.5 86.0

Table 6.7: A detailed comparison of our results and the results of the MaxEnt
model of Blaheta (2004) for assigning function tags to constituents in phrase trees
(both using Charniak’s parser on section 23 of the Penn Treebank).

Number of nodes: 1 2 3 4 5 6 7 8 9 10 ≥11
Number of patterns: 61 39 29 23 24 34 18 7 3 2 0

Rules with one-node left hand sides most often modify labels of constituents (e.g.,
adding function tags) or part of speech tags. Below are the five most frequent left-
hand sides extracted from the training corpus, each with their two most frequent
right-hand sides.

LHS = node(n0), attr(n0, label, NP), attr(n0, type, ph)

RHS 1 = node(n0), attr(n0, label, NP), attr(n0, type, ph)

RHS 2 = node(n0), attr(n0, label, NP-SBJ), attr(n0, type, ph)

RHS 3 = node(n0), attr(n0, label, NP), attr(n0, type, ph),

node(N1), attr(N1, type, word), attr(N1, empty, 1), attr(N1, pos, -NONE-),

attr(N1, word, *U*), edge(E0, N1, n0), attr(E0, type, child)

The LHS above matches phrase nodes labeled NP. The right-hand side RHS 1 is
identical to LHS, i.e., it defines an empty rewrite rule. In RHS 2, the label of the
node is changed to NP-SBJ. In RHS 3, a new node (N1) is inserted as a new child
of the phrase node: this is an empty unit (*U* with part of speech tag -NONE-).

Below are more examples of rules with a one-node left-hand side:

LHS = node(n0), attr(n0, pos, AUX), attr(n0, type, word)

RHS 1 = node(n0), attr(n0, pos, VBZ), attr(n0, type, word)

RHS 2 = node(n0), attr(n0, pos, VBD), attr(n0, type, word)

RHS 3 = node(n0), attr(n0, pos, VBP), attr(n0, type, word)

6.5 CONCLUSIONS 113

These rules change the part of speech tag AUX, used by Charniak’s parser for auxil-
iary verbs (e.g., does, had, is), to one of the tags of the Penn Treebank tag set (VBZ,
VBD, VBP, respectively).

Another example of a simple left-hand side:

LHS = node(n0), attr(n0, label, S), attr(n0, type, ph)

RHS 1 = node(n0), attr(n0, label, S-TPC), attr(n0, type, ph)

RHS 2 = node(n0), attr(n0, label, S), attr(n0, type, ph),

node(N1), attr(N1, type, ph), attr(N1, empty, 1), attr(N1, label, NP-SBJ),

node(N2), attr(N2, empty, 1), attr(N2, pos, -NONE-),

attr(N2, type, word), attr(N2, word, *),

edge(E0, N1, n0), attr(E0, type, child),

edge(E1, N2, N1), attr(E1, head, 1), attr(E1, type, child),

edge(E2, N2, N1), attr(E2, type, lexhead)

In the example above, the rule LHS → RHS1 changes constituent label from S to
S-TPC, adding the function tag that marks topicalized clauses. The rule LHS →
RHS2 adds a new child of the S node: an empty phrase node NP-SBJ containing a
single empty word, which is also marked as the head of the new NP-SBJ.

As these examples demonstrate, the transformation rules our system learns are
often interpretable and appear natural for the task we consider. A list of most
frequent extracted transformation patterns is available online at http://staff.
science.uva.nl/˜jijkoun/thesis/patterns.

6.5 Conclusions

In this chapter we presented two applications of the general method for learning
graph transformations of Chapter 5: identification of Penn Treebank-style predicate
argument structure in dependency graphs and in phrase trees produced by a parser.
Our method learned a sequence of graph rewrite rules, with constraints of the rules
implemented using an SVM classifier. The system does improve the results for
the task of PAS identification, as compared to the ad-hoc transformation system
described in Chapter 4. Moreover, evaluated separately on the recovery of non-
local dependencies and on assigning Penn function tags, our system demonstrates
results close to, or better than, the results in the literature.

Although the two applications we considered are similar in the problem ad-
dressed, they were defined using different syntactic formalisms: dependency graphs
(Section 6.3) and phrase structures (Section 6.4). We showed that in both cases our

114 CHAPTER 6. GRAPH TRANSFORMATIONS FOR PAS IDENTIFICATION

graph transformation method can handle the task successfully with essentially the
same machinery. Therefore, the experiments described in this chapter allow us to
give a positive answer to the Research Question 1 on page 14: the learning me-
thod of Chapter 5 can indeed be applied to different linguistic structures, without
modification of the method itself.

Comparing the results of our method to other approaches in the literature, we
showed that its generality does not clash with effectiveness, thereby addressing our
Research Question 4 about the limitations of the method.

Our method is based on extraction of graph patterns—left-hand sides of rewrite
rules—and training classifiers that select possible rewrites. In this chapter we have
seen that this approach has two attractive consequences. First, the rewrite rules
produced by our learning method can be interpreted linguistically and they often
correspond directly to linguistic phenomena. Unlike some purely statistical ap-
proaches to machine learning for NLP problems, our method produces clearer and
more interpretable list of rewrite rules, where only a part of a rule is “hidden” in a
trained model of a classifier implementing the rule’s constraint. We believe that our
method inherits this interpretability of learning results from the Transformation-
Based Learning paradigm (Brill, 1995).

A second consequence of the pattern-based nature of our method is that it al-
lows us to separate different linguistic contexts for learning. We use statistical
classifiers (SVM’s in this chapter) as one of the steps inside the method, but we
train a separate classifier for each rule, thereby dynamically dividing a complex
learning problem into smaller, and possibly simpler, sub-problems. We believe
that this accounts for the high precision figures for some of the tasks we consid-
ered above. Moreover, while dividing the task into smaller, more digestible chunks,
we do not assume independence between the sub-problems: the iterative structure
of the method allows for complex dependencies, as rules of later iterations operate
on the result of the application of earlier rules. This feature is directly inherited
from the Transformation-Based Learning paradigm.

Analyzing the NLP applications of the method in the present chapter, we also
identified some of the potential problems. In particular, we noticed that although
the precision for a learning task in question may be good, the recall values are often
substantially lower than those of state-of-the-art methods. It is not clear whether
this phenomenon is intrinsic to the method itself, or can be attributed to our imper-
fect frequency-based rule selection mechanism. We leave this important question
for future research, but will come back it more than once in later chapters of the
thesis, where we examine applications of our graph transformation method to other
NLP problems. In particular, in the next chapter we will present and analyze the
application of our method to a more general task: automatic conversion between
different syntactic formalisms.

Chapter 7

Transforming Syntactic
Structures

We have already described our general method for learning graph transformations
(Chapter 5) and its application to the problem of predicate argument structure
(PAS) identification in the output of a syntactic parser (Chapter 6). In fact, we
described two applications of our method to two variants of the problem based
on different syntactic formalisms: the PAS identification using dependency struc-
tures (Section 6.3) and using phrase trees (Section 6.4). Our results showed that
the problem can be described as a graph transformation problem and effectively
addressed by our transformation learning method, with either syntactic formalism.
At an abstract level, this result indicates that at least some NLP tasks can be for-
mulated and solved using methods that do not strongly depend on the underlying
syntactic formalism (dependency or phrase structures).

In this chapter we continue our exploration of the applicability of our graph
transformation method, and turn to yet another application: automatic conversion
between different syntactic representations. As a case study, we take the problem
of conversion between two particular types of syntactic dependency formalisms:
dependency graphs produced by Minipar (Lin, 1994) and dependency graphs de-
rived from the Penn Treebank (Marcus et al., 1994). The goal of this chapter is
to demonstrate the flexibility of our method for learning graph transformations by
applying it to another NLP problem.

The chapter is organized as follows. We first describe our motivation for the
task in Section 7.1. In Section 7.2 we discuss related work. In Section 7.3 we de-
scribe the problem in detail and give examples. We describe the actual application
of the graph transformation method to the problem in Section 7.4, and present the
results in Section 7.5 and give an analysis of the learned transformation rules in

116 CHAPTER 7. TRANSFORMING SYNTACTIC STRUCTURES

Section 7.6. We conclude in Section 7.7.

7.1 Motivation

In this chapter we consider the generic problem of transforming syntactic infor-
mation from one form or formalism into another. The need for effective methods
for performing such transformations comes up in various areas, both in applied
language technology and in computational linguistics.

Consider a complex NLP system, such as corpus-based Question Answering
(QA) system, that uses a syntactic parser as one of its components. Syntactic analy-
sis is essentially one of the key components of such a system and the basis for many
other modules and subsystems: offline information extraction (Jijkoun et al., 2004),
document retrieval (Katz and Lin, 2003), passage and sentence re-ranking (Bouma
et al., 2005), reasoning using lexical chains (Moldovan et al., 2003b). Some of
these modules require offline syntactic parsing of the entire text collection avail-
able to the QA system, others use a syntactic parser online, while answering a
user’s question, and only require parsing the most relevant documents or passages.
In either case, all modules depend on the exact details of the syntactic analyzer: the
representation and encoding of the structures (e.g., trees) and the set of syntactic la-
bels assigned by the parser. For example, Jijkoun et al. (2004) use manually created
patterns, simple labeled dependency trees, to extract information from dependency
graphs generated by Minipar (Lin, 1994). Bouma et al. (2005) use manually cre-
ated tree rewrite rules to generate syntactic paraphrases given constituency trees
produced by a syntactic parser, Alpino (Bouma et al., 2001). Clearly, for such sys-
tems, changing to a different syntactic parser, e.g., with a different set of syntactic
labels, may require re-parsing of the entire text collection or manual re-designing
of these processing modules. In order to avoid this, for example, when assessing a
new parser and estimating its effect on the performance of the entire system, one
may want to use a wrapper around the new parser, that will automatically convert
its output into the format of the old parser. With such a wrapper, it is possible to
substitute the old parser with the new one without the elaborate process of adjust-
ing various modules of the system to the new syntactic representation. In some
cases, when the syntactic representations used by the old and by the new parser
are well-defined and clearly documented, and moreover, the differences between
the two parsers are systematic, a rule-based conversion mechanism may suffice. In
other cases, we may prefer to induce such a wrapper automatically.

Another motivation for the task comes from within computational linguistics
itself. There is no lingua franca of syntactic formalisms that has been adopted uni-
versally. Even if we restrict ourselves to dependency syntax, we come across many

7.1 MOTIVATION 117

different approaches to the formalization of dependency grammars, different analy-
ses of language constructions and different labels of dependency relations (Carroll
et al., 2003; Hudson, 1990; Lin, 1998; Mel’cuk, 1988; Nivre and Scholz, 2004;
Schneider, 2003; Sleator and Temperley, 1991; Yamada and Matsumoto, 2003).
How different are these formalisms? Are the differences systematic? Is it possi-
ble to devise a mapping of one type of structure to another? Can this mapping be
induced automatically?

Computational linguistics provides yet another type of motivation for our inter-
est in transforming syntactic structures. Today, many syntactic parsers are available
for use. How do we choose between them? Comparing two parsers is often a diffi-
cult task because of possibly different formalisms. Typically, performance of both
parsers would be evaluated against a manually annotated corpus, such as the Penn
Treebank (Marcus et al., 1994), or English Parser Evaluation Corpus (Carroll et al.,
2003). This, however, requires converting the output of the parsers to the syntactic
representation used in the evaluation corpus. Such a conversion is in many cases
non-trivial and is usually implemented using theory-specific heuristics and rule-
based methods. In particular, automatic head identification using head assignment
tables has been used to convert phrase trees to dependency structures (Collins,
1997; Magerman, 1995), with dependency labels derived from phrase labels (we
used the same method to obtain a dependency corpus from the Penn Treebank in
Section 2.1.2). The dependency-based parser evaluation method of Lin (1998) is
based on converting the output of a parser and the gold standard corpus to a sin-
gle dependency formalism and evaluating the parser using precision and recall of
identified dependency relations. Carroll et al. (2003) proposed a parser evaluation
scheme based on grammatical relations, organized hierarchically and presented a
manually annotated corpus of grammatical relations that can be used as a gold
standard. In order to use these evaluation schemes for a given parser, one need to
devise complex mappings between the labels produced or derived from a parser to
the relation or dependency labels used in the gold standard corpus (Bohnet, 2003;
Kübler and Telljohann, 2002).

Several methods have been described for automatically transforming syntac-
tic structures in the opposite direction: from dependency structures to phrase trees
(Collins et al., 1999; Covington, 1994; Xia and Palmer, 2001). Because of the com-
plex nature of the task, these methods are theory-dependent and also use heuristics
such as projection tables (specifying labels of possible projection phrases for each
word category) and, in some cases, explicit argument-modifier distinction.

In this section of the thesis we address a different task than the methods men-
tioned above: converting between two different syntactic dependency formalisms.

Syntactic dependency formalisms may differ at various levels of the gram-
mar. The easiest mismatches are systematic differences in dependency labels: e.g.,

118 CHAPTER 7. TRANSFORMING SYNTACTIC STRUCTURES

NP-SBJ is used by Nivre and Scholz (2004) to denote subject dependencies, while
S|NP-SBJ is used in our dependency version of the Penn Treebank (Section 2.1.2),
ncsubj in the relational evaluation scheme of Briscoe et al. (2002) and subj by the
parser of Lin (1994).

A more complicated though systematic mismatch is due to the differing gran-
ularity of the dependency labels. E.g., while in our dependency version of the
Penn Treebank we distinguish types of adjuncts (temporal -TMP, locative -LOC,
manner -MNR, purpose -PRP, etc.), other dependency formalisms do not make this
distinction. Moreover, the standard conversion of the phrase trees produced, e.g.,
by the parser of Charniak (2000) to dependency structures, as we describe in Sec-
tion 2.1.2, results in dependency labels that do not allow us to distinguish argu-
ments and modifiers, making a meaningful comparison even harder.

Yet more complex mismatches between syntactic formalisms occur when they
produce different analyses of constructions like control, clausal complements and
relative clauses. Some of the formalisms (e.g., Lin’s parser and Carroll et al.’s
evaluation scheme) explicitly include non-local dependencies, while others ignore
them.

7.2 Related work

The issue of automatically converting between different syntactic formalisms has
not received much attention yet in the NLP community. Often, when the need
for such conversion arises, some task-specific rule-based heuristics are used. E.g.,
Collins (1999) describes heuristics for converting phrase structure parses into la-
beled dependency graphs (we describe an extension of these heuristics in Sec-
tion 2.1.2). Jijkoun and de Rijke (2004) report on a conversion between two dif-
ferent dependency formalisms, one based on Penn Treebank labels and another
based on grammatical relations of Carroll et al. (2003), using a system with 40
rules. Such task-specific rule-based approaches are often difficult to implement
due to the (possibly) differing degrees of granularity of different syntactic analyses.
E.g., the syntactic analysis provided the Penn Treebank distinguishes various types
of modifiers (temporal, manner, etc.), while the dependency parser Minipar (Lin,
1994) does not make this distinction. It is not obvious how to map the structures
provided by the latter into Penn Treebank-like annotations using a simple set of
rules.

Automatic transformations of syntactic trees and graphs have previously been
used for the recovery of non-local dependencies, the task we also addressed in
Chapters 4 and 6. Johnson (2002) was the first to present a method for adding
empty nodes and finding possible antecedents in parse trees. Johnson’s method

7.3 PROBLEM DESCRIPTION 119

S

insist

it

PP−CLR

VP

on NP

NP−SBJ

SBARNP

Investors

VP

oppose NP

the changes

S

WHNP

who

NP−SBJ

it

PP|NP
Investors

oppose

who

insist

changes

VP|PP−CLR

S|NP−SBJ

VP|NP

S|NP−SBJ

NP|SBAR

SBAR|S

the
NP|DT

on

Figure 7.1: (Left): Penn Treebank annotation of the sentence “Investors who op-
pose the changes insist on it.” (Right): the result of its conversion to a dependency
graph. Dotted edge corresponds to the co-indexed trace in the Penn Treebank an-
notation.

works by identifying in the training corpus which local contexts require the inser-
tion of empty nodes and which ones license non-local dependencies as they occur
in control or wh-extraction. Later, Jijkoun and de Rijke (2004) described a machine
learning method for a similar task of identifying non-local relations in dependency
graphs, where it is the task of a machine learner to identify licensing contexts.

7.3 Problem description

In this chapter we address a problem of automatically converting between different
syntactic dependency formalisms. Phrased at an abstract level, given a parser P

that produces analyses in the source formalism, and a corpus C that provides sam-
ple analyses of a number of sentences in the target formalism, our task is to build
a transformation function that maps structures provided by P into those annotated
in C .

In order to make the task concrete, we consider a specific instance of the gen-
eral problem outlined above: for the parser P , we take the wide-coverage depen-
dency parser Minipar (Lin, 1994) and our gold standard corpus consist of depen-
dency structures derived from the Penn Treebank as described in Section 2.1.2.

Figure 7.1 shows an example of the original Penn Treebank phrase tree (with
function tags, empty nodes and non-local dependencies) and the derived depen-
dency graph for the sentence “Investors who oppose the changes insist on it.” La-

120 CHAPTER 7. TRANSFORMING SYNTACTIC STRUCTURES

()

Investors

insist

()

it

on

oppose

changes

the

who

()

()

subj

s

rel

i

det

objsubj

whn

pcomp−n

mod

i

Figure 7.2: The output of Minipar for the sentence “Investors who oppose the
changes insist on it.” Dotted edges correspond to antecedents as given by Minipar.

bels of the dependency relations are obtained by concatenating phrase labels of
corresponding constituents. Figure 7.2 (top) shows the output of Minipar for the
same sentence.

Let’s take a close look at the differences between the dependency graphs in
Figures 7.1 and 7.2. First of all, some of the differences are simply due to different
dependency labels, as summarized in Table 7.1. To further illustrate the differences
in dependency labels, Table 7.2 describes the most frequent dependency labels in
our dependency version of the Penn Treebank, and Table 7.3 does the same for
Minipar’s output. The frequencies are calculated using sections 00–01 of the Penn
Treebank.

Different dependency labels and their different granularity, however, are not the
only possible mismatches between the two formalisms. Often Minipar identifies
empty nodes (labeled with “()” in Figure 7.2) in positions where no empty nodes
exist in the dependency version of the Penn Treebank. In particular, Minipar inserts
an empty node with the category C (clause) as a root of the sentence, attaching the
main verb “insist” as an i-dependent of this empty node. Another empty node of the
category C is inserted as the root of the relative clause “who oppose the changes.”
Two other empty nodes of the category N are inserted as subj-dependents of the
verb of the two clauses of the sentence.

Probably, the linguistically most interesting difference for this example is the
analysis of the WH-extraction in the two formalisms. In the dependency version of

7.4 EXPERIMENTAL SETTING 121

Penn TB label Minipar’s label Description
S|NP-SBJ s surface subject

VP|PP-CLR mod prepositional modifier
PP|NP pcomp-n nominal complement of a preposition
VP|NP obj direct object of a verb
NP|DT det determiner modifying a noun

Table 7.1: Some of the correspondences between Minipar’s dependency labels and
labels derived from the conversion of the Penn Treebank to a dependency corpus.

the Penn Treebank, following the original phrase structure annotation, the extracted
subject is co-indexed with the relative pronoun, e.g., who is the non-local subject
of oppose in Figure 7.1. On the other hand, in Minipar’s analysis the subject is
co-indexed with the noun modified by the relative clause, e.g., Investors is the
subject of oppose in Figure 7.2. Moreover, while in the Penn Treebank version we
choose the relative pronoun to be the head of SBAR and therefore the immediate
NP|SBAR-dependent of the modified noun, Minipar adds a separate empty node as
a rel-dependent.

In principle it is possible to manually create a list of graph rewrite rules that try
to account for such systematic differences in the analysis of various constrictions,
though this list is likely to be very long and transformations are likely to be far
from trivial. Moreover, the creation of such a list has to be example-driven, since
neither dependency formalism provides a full description of its analysis of all con-
structions. The task we address in this chapter of the thesis can be formulated as
creating such a list of rewrite rules automatically, applying our general framework
for learning graph transformations described in Chapter 5. In the next section we
define this task in detail.

7.4 Experimental setting

We use the graph transformation method described in Chapter 5 to learn graph
rewrite rules that would allow us to convert graphs produced by Minipar into the
dependency formalism derived from the Penn Treebank annotation.

As in the applications of the method to the predicate argument identification
problem (Chapter 6), we take the dependency version of the Penn Treebank as the
corpus of output graphs, and Minipar’s parses of the strings of the Penn Treebank
as the corpus of input graphs.

We split each of the input and output corpora in a standard way into develop-

122 CHAPTER 7. TRANSFORMING SYNTACTIC STRUCTURES

Penn TB label Frequency Description
All 98742 total dependency relations in sections 00–01
S|NP-SBJ 9460 subject
PP|NP 8487 nominal complement of a preposition
NP|DT 7877 determiner modifying a noun
NP|NNP 5045 proper noun modifying a noun (e.g., apposition)
VP|NP 5037 object (direct or indirect)
NP|JJ 4652 adjective modifying a noun
S|. 3942 punctuation mark: period
NP|PP 3629 prepositional phrase modifying a noun
SBAR|S 3236 relative clause
NP|NN 3039 noun-noun modifier
NP|, 2273 comma at an NP level
S|, 1718 comma at sentence level
NP|NP 1682 noun-noun modifier
VP|TO 1322 to of an infinitive
NP|CD 1272 number modifying a noun
VP|PP-CLR 1223 prepositional argument of a verb
VP|SBAR 1192 verb complement: a clause
VP|S 1172 verb complement: control or raising
NP|CC 1118 conjunction between nouns
aux 1078 auxiliary verb attached to a main verb
NP|SBAR 1009 relative clause or clausal compl. of an NP
VP|MD 947 modal verb modifying a main verb
VP|VP 841 past participle in passive
VP|CC 808 conjunction between verbs
COORD|NP 776 NP conjunct
S|CC 773 conjunction between clauses
NP|PRP$ 758 personal possessive pronoun modifying a noun
VP|PP 708 prepositional phrase modifying a verb
VP|, 701 comma at a VP level
QP|CD 670 number in a quantifier phrase
NP|-NONE- 650 empty unit in an NP
NP|PP-LOC 608 locative PP modifying a noun
VP|ADJP-PRD 522 adjectival predicate of copular verbs
VP|PP-TMP 515 temporal PP modifying a verb
NP|ADJP 510 complex adjectival phrase modifying a noun
VP|NP-PRD 498 noun predicate of copular verbs
NP|VP 460 reduced relative clauses
QP|$ 449 currency sign $ in quantifier phrase
VP|RB 413 adverb modifying a verb
VP|PP-LOC 409 locative PP modifying a verb

Table 7.2: Forty most frequent dependency labels, out of total 618, in our depen-
dency version of sections 00–01 of the Penn Treebank.

7.4 EXPERIMENTAL SETTING 123

Minipar label Frequency Description
All 112053 total dependency relations in sections 00–01
mod 14611 adjunct modifier
lex-mod 12322 part of a proper name or a compound
antecedent 11662 antecedent of an empty node
i 8657 relation between a clause and its inflectional phrase
subj 8635 subject of a verb
s 8346 surface subject
pcomp-n 8327 nominal complement of a preposition
det 7562 determined modifying a noun
obj 5515 direct object
Empty 3438 used to connect fragments of a parse
nn 3120 mainly noun-noun compound
aux 2131 auxiliary verb
conj 1953 conjunct
fc 1432 clausal complement
gen 1330 modification by a possessive (his, Jane’s)
pred 1219 predicate of a copular verb
be 1014 be in progressive tense
rel 937 relative clause
comp1 886 complement
amod 806 adverb modifying a verb
guest 737 adjunct modifier (similar to mod)
poss 634 relation between a noun and an ’s in possessive
c 632 complementizer (that)
appo 579 apposition
whn 540 WH-pronoun of a clause (what, who)
have 531 auxiliary have
title 494 title (Mr., Mrs.)
post 347 special modifiers (first, most)
pcomp-c 320 clausal complement of a preposition
sc 276 small clause (e.g., in control)
vrel 234 passive verb modifier of nouns
obj2 222 second object of ditransitive verbs
pre 197 special modifiers (such, only)
num 186 number modifying a noun (2 copies)
lex-dep 150 mainly conjuncts
desc 150 some predicates (grew popular, get burned)
wha 148 WH-pronoun of a clause (when, how)
by-subj 146 by-PP, a logical subject in passive
pnmod 128 post-nominal modifier

Table 7.3: Forty most frequent dependency labels, out of total 94, in the depen-
dency graphs produced by Minipar on the strings of sections 00–01 of the Penn
Treebank.

124 CHAPTER 7. TRANSFORMING SYNTACTIC STRUCTURES

ment (sections 00–01 of the treebank), training (sections 02–21), and test (section
23) corpora. We will use the training corpus to extract transformation patterns and
to learn transformation rules, the development corpus to guide the learning method,
and the test corpus to evaluate the resulting automatic graph conversion system.

For the evaluation of our graph transformation method on this task we take the
standard dependency-based approach (Lin, 1998), calculating the precision and
recall of labeled word-word relations. More precisely, in order to compare a graph
produced by Minipar and transformed by the system to the gold standard, we merge
(Section 3.5.2) the two graphs, aligning and identifying corresponding words, and
consider as correct only labeled edges present in both system’s output and the gold
standard.

We ran iterations of our method, as in the earlier applications, at each iteration
considering at most 20 most frequent left-hand sides of possible rewrite rules, and
for each left-hand side at most 20 most frequent possible right-hand sides. After
each iteration we evaluated the system using the development corpus (sections 00–
01 of the Penn Treebank), calculating the F1 score of precision and recall of labeled
dependencies. As before, we iterated the method until the improvement of the F1

score was not larger than 0.1, and arbitrary chosen threshold. With this termination
criterion, the method stopped after the 18-th iteration and we then used the test
corpus to evaluate the performance of the final system.

7.5 Results

Table 7.4 shows the final evaluation results of our transformation system at differ-
ent iterations of the learning method, on the test corpus (section 23 of the Penn
Treebank). Remember that during the learning of graph transformations from the
training corpus, we use the development corpus to estimate the accuracy of the
learned transformations and determine whether the termination criterion is met.

Given that Minipar and the Penn Treebank-derived dependency corpus provide
very different analyses of sentences, the final evaluation results for precision/recall
(72/61 on labeled dependencies, 78/66 on unlabeled dependencies) seem interest-
ing, although it is difficult to interpret the scores in the absence of a baseline for
this task.

Nevertheless, we can directly compare the evaluation results to the perfor-
mance of the system described in Section 6.3, where we described a system that
learns to transform the output of the parser of Charniak (2000) to the same depen-
dency version of the Penn Treebank. Table 7.5 summarizes the performance with
the two parsers.

7.6 EXTRACTED TRANSFORMATIONS: A CLOSE LOOK 125

Iterations Labeled Unlabeled
P R P R

Initial 0.1 0.1 43.4 49.3
1 43.2 38.7 55.4 49.6
2 52.2 46.2 62.5 55.4
3 55.7 50.9 63.9 58.4
4 61.1 53.9 68.1 60.0
5 64.3 55.8 71.1 61.7
6 66.1 57.0 72.2 62.3
7 67.1 57.7 73.1 62.9
8 67.9 58.2 73.8 63.3
9 68.4 58.5 74.2 63.5

10 68.7 58.8 74.5 63.7
11 69.2 59.1 75.0 64.0
12 69.5 59.3 75.2 64.2
13 69.8 59.6 75.6 64.6
14 70.0 59.8 75.8 64.7
15 70.3 60.0 76.0 64.9
16 70.4 60.0 76.2 65.0
17 71.2 60.7 77.1 65.6
18 71.8 60.6 77.6 65.6

Table 7.4: Evaluation results: transforming Minipar’s output to the Penn Treebank-
derived dependency formalism.

The final results of the graph transformation method on the output of Char-
niak’s parser are substantially better than with Minipar. First, Charniak’s parser
produces syntactic analysis much closer to the Penn Treebank that the analysis of
Minipar, which makes our transformation task harder. Second, Minipar is not a
statistical parser, and presumably produces less accurate syntactic structure. How-
ever, it is difficult to determine which factor might account for most errors.

7.6 Extracted transformations: a close look

During 18 iterations, our transformation learning method identified a total of 4984
graph rewrite rules with 360 different left-hand sides. Below is an overview of the
extracted rules:

• 34% of all rewrite rules are edge attribute modifications; these are modifica-

126 CHAPTER 7. TRANSFORMING SYNTACTIC STRUCTURES

Labeled Unlabeled
Parser P R P R
Charniak’s parser, see Section 6.3 84.7 83.7 89.6 88.6
Minipar, this chapter 71.8 60.6 77.6 65.6

Table 7.5: Comparing the two systems for transforming the parsers’ output into the
dependency version of the Penn Treebank: precision and recall of the dependency
relations.

tions of dependency labels;

• 16% of all rules are node attribute modifications; all these modification are
corrections of part-of-speech tags (pos attribute of word nodes);

• 26% of all rules contain exactly three nodes on the left-hand side;

• 5% of all rules contain four or more nodes on the left-hand side;

• 8% of all rules involve Minipar’s antecedent edges or Penn Treebank traces
and empty nodes.

Let us also have a look at the performance of our method for the example in Fig-
ure 7.2: the sentence Investors who oppose the changes insist on it. Figure 7.3
shows three dependency graphs:

(a) the output of Minipar,

(b) the result of its transformation by our system, and

(c) the gold standard Penn Treebank dependency graph.

Our graph transformation method is capable of producing a dependency graph that
is very close to the gold standard annotation. The only differences between the
graph (b) and the gold standard graph (c) in Figure 7.3 are the following:

• the dependency label between insist and the PP on it is VP|PP rather than
VP|PP-CLR, i.e., the labels lacks the Penn Treebank tag -CLR (“closely re-
lated”, used to mark constituents that occupy some middle ground between
argument and adjunct (Bies et al., 1995));

• an empty node with label “*” and the dependency label VP|NP was erro-
neously inserted as a dependent of insist. This error was caused by our sys-
tem misinterpreting insist as a head of a reduced relative clause (cf. the
company based * in Los Angeles).

7.6 EXTRACTED TRANSFORMATIONS: A CLOSE LOOK 127

(a)

()

Investors

insist

()

it

on

oppose

changes

the

who

()

()

subj

s

rel

i

det

objsubj

whn

pcomp−n

mod

i

(b)

Investors

oppose

who

insist

changes

S|NP−SBJ

VP|NP

S|NP−SBJ

NP|SBAR

SBAR|S

VP|PP

on

it

PP|NP

the
NP|DT

*
VP|NP

(c)

it

PP|NP
Investors

oppose

who

insist

changes

VP|PP−CLR

S|NP−SBJ

VP|NP

S|NP−SBJ

NP|SBAR

SBAR|S

the
NP|DT

on

Figure 7.3: Three dependency analyses for the sentence Investors who oppose the
changes insist on it: (a) Minipar’s output, (b) Minipar’s output transformed by our
system, and (c) dependency graph derived from the Penn Treebank.

128 CHAPTER 7. TRANSFORMING SYNTACTIC STRUCTURES

In total, 16 graph rewrite rules learned by the system were applied to the graph in
Figure 7.3(a). We describe these rules below in the application order:

• First, 6 rewrite rules of the following form are applied to change part-of-
speech tags of Minipar to the Penn Treebank tag set:

LHS =
{

node(n), attr(n, type, word), attr(n, pos, T1)
}

RHS =
{

node(n), attr(n, type, word), attr(n, pos, T2)
}

Specifically,

– for the word Investors, the tag was changed from N to NNP (i.e., the
above rule with T1 = N and T2 = NNP was applied with n mapped to
the word node Investors);

– for the word opposed, V was changed to VBG;
– for the word the, Det was changed to DT;
– for the word changes, N was changed to NN;
– for the word insist, V was changed to VBN;
– for the word on, Prep was changed to IN;
– for the word it, N was changed to NN;

Note that the tags NNP, VBG, NN and VBN were assigned incorrectly.

• Next, five more rules of the following form change edge labels:

LHS =
{

node(n0), node(n1), attr(n0, type, word), attr(n1, type, word),

edge(e0, n0, n1), attr(e0, type, dep), attr(e0, label, T1)
}

RHS =
{

node(n0), node(n1), attr(n0, type, word), attr(n1, type, word),

edge(e0, n0, n1), attr(e0, type, dep), attr(e0, label, T2)
}

Specifically,

– the label of the edge from insist to on is changed from mod to VP|PP

(i.e., the above rule with T1 = mod and T2 = VP|PP is applied);
– for the edge from on to it, changed from pcomp-n to PP|NP;
– for the edge from changes to the, changed from det to NP|DT;
– for the edge from insist to Investors, changed from s to S|NP-SBJ;
– for the edge from oppose to changes, changed from obj to VP|NP;

7.6 EXTRACTED TRANSFORMATIONS: A CLOSE LOOK 129

• The next rule, applied twice, removed two empty nodes, the subject of op-
pose and the subject of insist, together with their incident edges:

LHS =
{

node(n0), node(n1), node(n2),

attr(n0, type, word), attr(n1, type, word), attr(n2, type, word),

edge(e0, n0, n1), attr(e0, type, dep), attr(e0, label, antecedent),

edge(e1, n2, n0), attr(e0, type, dep), attr(e0, label, subj)
}

RHS =
{

node(n1), node(n2),

attr(n1, type, word), attr(n2, type, word)
}

subj

n1antecedent

n0

n1

n2n2

The rule was applied to the occurrences of its left-hand side, where

– n1 is mapped to insist, n2 to Investors,
– n1 is mapped to oppose, n2 to Investors,

and n0 to the corresponding () nodes.

• The next rule removes the empty node, the root of the Minipar’s dependency
tree, together with the incident edge labeled i, connecting () and insist:

LHS =
{

node(n0), node(n1), attr(n0, type, word), attr(n1, type, word),

edge(e0, n0, n1), attr(e0, type, dep), attr(e0, label, i)
}

RHS =
{

node(n1), attr(n1, type, word)
}

• The next rule adds a Penn Treebank empty node * as a dependent of insist:

LHS =
{

node(n0), attr(n0, type, word)
}

RHS =
{

node(n0), attr(n0, type, word),

node(n1), attr(n1, type, word),

attr(n1, empty, 1), attr(n1, pos, -NONE-),

edge(e0, n0, n1), attr(e0, type, dep), attr(e0, label, VP|NP)
}

• The next rule changes the annotation of the relative clause, removing Mini-
par’s empty node with its incident edges, and making the WH-pronoun who

130 CHAPTER 7. TRANSFORMING SYNTACTIC STRUCTURES

a non-local subject of the verb oppose and the head of the relative clause:

LHS =
{

node(n0), node(n1), node(n2),

attr(n0, type, word), attr(n1, type, word), attr(n2, type, word),

edge(e0, n0, n1), attr(e0, type, dep), attr(e0, label, whn),

edge(e1, n0, n2), attr(e0, type, dep), attr(e0, label, i)
}

RHS =
{

node(n1), node(n2),

attr(n1, type, word), attr(n2, type, word),

edge(e2, n1, n2), attr(e2, type, dep), attr(e2, label, SBAR|S),

edge(e3, n2, n1), attr(e3, type, dep), attr(e3, label, S|NP-SBJ)
}

n2

n1n0
i

whn

n1
n2

S|NP−SBJ

SBAR|S

• Finally, the next rule attaches the pronoun who that heads the relative clause,
to the modified noun Investors, making use of the remaining Minipar’s
antecedent edge from who to investors, in fact, simply changing the label of
the edge connecting who and Investors from antecedent to NP|SBAR:

LHS =
{

node(n0), node(n1), attr(n0, type, word), attr(n1, type, word),

edge(e0, n0, n1), attr(e0, type, dep), attr(e0, label, antecedent)
}

RHS =
{

node(n0), node(n1), attr(n0, type, word), attr(n1, type, word),

edge(e0, n0, n1), attr(e0, type, dep), attr(e0, label, NP|SBAR)
}

To give an overview of the transformations for this example, Figure 7.4 shows
the graph at different stages of the transformation (changes only in node attributes
omitted).

7.7 Conclusions and future work

In this chapter we described yet another application of our method for learning
graph transformations, to the task of automatic conversion between different syn-
tactic dependency formalisms. We used our method to learn a sequence of trans-
formations that allows us to convert the output of Minipar, a wide-coverage depen-
dency parser for English, to the kind of structures used in a dependency version of
the Penn Treebank.

7.7 CONCLUSIONS AND FUTURE WORK 131

()

Investors

insist

()

it

on

oppose

changes

the

who

()

()

subj

s

rel

i

det

objsubj

whn

pcomp−n

mod

i −−−→

()

Investors

insist

()

it

on

oppose

changes

the

who

()

()

subj

rel

i

subj

whn i

VP|PP

PP|NP

NP|DT

VP|NP

S|NP−SBJ

−−−→

()

Investors

insist

it

on

oppose

changes

the

who

()
rel

i

whn i

VP|PP

PP|NP

NP|DT

VP|NP

S|NP−SBJ

−−−→

Investors

insist

it

on

oppose

changes

the

who

()
rel

whn i

VP|PP

PP|NP

NP|DT

VP|NP

S|NP−SBJ

−−−→

Investors

insist

it

on

oppose

changes

the

who

()
rel

whn i

VP|PP

PP|NP

NP|DT

VP|NP

S|NP−SBJ

*
VP|NP

−−−→

Investors

insist

it

on

oppose

changes

the

VP|PP

PP|NP

NP|DT

VP|NP

S|NP−SBJ

*
VP|NP

who S|NP−SBJ

SBAR|S

−−−→

Investors

insist

it

on

oppose

changes

the

VP|PP

PP|NP

NP|DT

VP|NP

S|NP−SBJ

*
VP|NP

who S|NP−SBJ

SBAR|S

NP|SBAR

Figure 7.4: Transforming Minipar’s output for the sentence Investors who oppose
the changes insist on it into Penn Treebank dependency graph, step by step.

Although the two dependency formalisms are quite different, our system, used
as a post-processor for Minipar, achieved labeled precision 70.5 and labeled recall
60.0 for dependency relations, evaluated using a dependency version of the Penn
Treebank. These numbers are modest compared to the scores obtained by a similar
system applied to the output of the Charniak’s parser (precision and recall 84.1, see
Chapter 6).

An interesting aspect of our transformation method is that, similar to Trans-
formation Based Learning, the rewrite rules extracted by the method, or more pre-
cisely, their left- and right-hand sides can be interpreted linguistically, as we have

132 CHAPTER 7. TRANSFORMING SYNTACTIC STRUCTURES

seen for the example in the previous section.1

At this point in the thesis, we have already presented our general graph transforma-
tion method in Chapter 5 and described two applications of the method to concrete
NLP problems: the identification of the predicate argument structure in the output
of a syntactic parser (in Chapter 6) and conversion between two different syntactic
dependency formalisms (in the present chapter).

In the next chapter we will demonstrate that our general method can also be
used to identify semantic roles in English sentences.

1It is difficult to support a claim of this kind objectively, but we suggest interested readers to
examine the extracted patterns on the Web: http://staff.science.uva.nl/˜jijkoun/
thesis/patterns.

Chapter 8

Identifying Semantic Roles

In this thesis we have repeatedly argued that many Natural Language Processing
tasks can be viewed as instances of a general graph transformation problem: trans-
forming graphs of one type into graphs of another type. In Chapter 2 we gave
an overview of different representations of linguistic structures as directed labeled
graphs and described how some NLP tasks can be formulated as graph transfor-
mation problems. Then, in Chapter 5 we presented a general method for learning
graph transformations, given a corpus of transformation instances (pairs of input
and output graphs). In Chapters 6 and 7 we described applications of this general
method to concrete NLP problems:

• predicate argument structure (PAS) identification in dependency graphs,

• PAS identification in phrase trees, and

• transformation of one syntactic dependency formalism into another.

In the present chapter we describe yet another application of our graph transfor-
mation method: to the tasks of identification of PropBank (Kingsbury et al., 2002)
and FrameNet (Johnson et al., 2003) semantic roles in English sentences. We will
demonstrate possible ways of formulating these NLP tasks as graph transformation
problems, and show how our general learning method performs on these tasks.

In particular, we will argue that a graph-based view on the annotations of Prop-
Bank and FrameNet allows for a very precise and lossless encoding of the infor-
mation in the corpora. We will show that the graph transformation method is appli-
cable to the task if identification of PropBank semantic roles. When applying the
method to FrameNet, however, we will find that it is not well suited for FrameNet-
based shallow parsing, whereas a more ad-hoc task-specific graph transformation
method (similar to the task-specific method of Chapter 4 for the predicate argument

134 CHAPTER 8. IDENTIFYING SEMANTIC ROLES

structure identification) gives a state-of-the-art performance. This will raise impor-
tant issue concerning the default parameters of the graph transformation method,
such as criteria for the selection of rewrite rules.

8.1 Background and motivation

Semantic analysis of text is one of the long-term goals of Computation Linguistics.
Most NLP researchers agree that extracting deep semantic structures from free text
requires (at least, as a first step) identification of semantic predicates and their
arguments. With the success of statistical corpus-based methods for syntactic anal-
ysis (Bod et al., 2003a; Charniak, 2000; Collins, 1999; Magerman, 1995; Manning,
2003; Sampson, 1986), and with the emergence of semantically annotated corpora
such as PropBank (Kingsbury et al., 2002) and FrameNet (Baker et al., 1998), it
has become possible to address the task of semantic parsing (or, rather, shallow se-
mantic parsing, as it only focuses on extraction of predicates and their arguments)
in a similar, corpus-driven way. The growing number of text processing systems
making use of ProbPank and FrameNet data and their high performance are clear
indications that the problem is salient and within reach for the current state-of-
the-art in NLP (Ahn et al., 2004; Bejan et al., 2004; Gildea and Hockenmaier,
2003; Gildea and Jurafsky, 2002; Gildea and Palmer, 2002; Kwon et al., 2004a;
Litkowski, 2004; Palmer et al., 2005; Pradhan et al., 2004; Toutanova et al., 2005).

Put very broadly, the task of shallow semantic parsing, or semantic role iden-
tification, consists in detecting and labeling simple predicates: Who did what to
whom, where, when, how, why, etc. There is no single definition of a universal set
of semantic roles and moreover, different NLP applications may require different
granularity of role labels. In the present chapter we will examine two seman-
tic parsing tasks with different views on semantic predicates and their arguments:
PropBank-based and FrameNet-based semantic parsing.

The Proposition Bank project (Kingsbury et al., 2002; Palmer et al., 2005)
aims at creating a corpus with explicit annotations of semantic predicates, without
emphasizing any specific semantic theory, but rather providing analyses that are in
principle consistent with all theories of argument structure.

The following example from (Palmer et al., 2005) illustrates the PropBank
annotation of a sentence with respect to the target verb bought:

[Arg0 Chuck] have bought [Arg1 a car] [Arg2 from Jerry] [Arg3 for $1000.]

Essentially, PropBank annotates semantic arguments of verbs, without giving them
any specific semantic interpretation such as thematic roles Agent, Patient, Theme,

8.2 PROPBANK: AN ANNOTATED CORPUS OF SEMANTIC ROLES 135

Experiencer, etc., as, for example, in VerbNet (Kipper et al., 2000), but using num-
bered arguments and preserving the numbering in alternations of syntactic realiza-
tion with the same verb (Levin, 1993). Nevertheless, generally the argument Arg0
corresponds to a prototypical Agent, the argument Arg1 to a Patient and a Theme,
and moreover, for each specific sense of each verb (a frameset), PropBank defines
a mapping from the numbered arguments to thematic roles. For example, the verb
buy is specified to take up to five thematic arguments:

Arg0: Agent Arg2: Source Arg4: Beneficiary
Arg1: Theme Arg3: Asset

At the present (summer 2006), PropBank provides semantic annotations for verbs
only, with the annotation of nominalizations and other noun predicates in progress.

The FrameNet project (Baker et al., 1998) takes a different approach to anno-
tating semantic arguments. Following the Frame Semantics of Fillmore (1982), it
defines a set of semantic frames, a conceptual structures corresponding to particular
types of situations, objects or events, such as Motion or Commerce-Good-Transfer.
Each frame specifies a set of possible roles, frame elements, and a set of lexical
units, i.e., target words that evoke the frame. FrameNet annotates a corpus of sen-
tences with respect to particular target words, specifying the evoked frame and all
frame elements. Below is an example of the FrameNet annotation for the target
word bought from the Commerce-buy semantic frame.

[Buyer Chuck] have bought [Goods a car] [Seller from Jerry] [Payment for $1000.]

In general, for the frame Commerce-buy, FrameNet specifies 2 core frame elements
(i.e., conceptually necessary for the frame) and 13 non-core elements. Some of
them are listed below:

Buyer (core) Money Recipient . . .
Goods (core) Seller Rate

FrameNet annotates lexical units realized as verbs, nouns and adjectives.
In this chapter we will consider two variants of the shallow semantic parsing

task: PropBank-based and FrameNet-based. We will demonstrate a way of rep-
resenting semantic role information using graphs, re-formulate the semantic role
identification problem as a graph transformation problem and apply our method
for learning graph transformations.

8.2 PropBank: an annotated corpus of semantic roles

The goal of the Proposition Bank project is defined in (Kingsbury et al., 2002)
as “adding a layer of predicate-argument information, or semantic role labels, to

136 CHAPTER 8. IDENTIFYING SEMANTIC ROLES

the syntactic structures of the Penn Treebank.” The choice of the set of role labels
was guided by earlier research into the linking between semantic arguments of
verbs and their syntactic realization, in particular the study of verb classes and
alternations by Levin (1993).

PropBank does not aim at cross-verb semantically consistent labeling of ar-
guments, but rather at annotating the different ways arguments of a verb can be
realized syntactically in the corpus. Therefore, the architects of the project chose
a theory-neutral numbered labels (e.g., Arg0, Arg1, etc.), rather than mnemonic
names (Agent, Patient, Theme); these labels can be mapped easily into any spe-
cific theory of argument structure, such as Lexical-Conceptual Structure (Rambow
et al., 2003) or Tectogrammatics (Hajičová and Kučerová, 2002). In addition to ar-
guments, PropBank annotates various adjunct-like modifiers of the basic predicate
argument structure: temporal, location, manner (e.g., “John ate his peas yester-
day”), as well as verb-level negation (e.g., “John didn’t eat his peas”) and modal
verbs (e.g., “John would eat his peas”).

PropBank takes a corpus-based approach to the annotation of semantic roles:
for all verbs (except copular) of the syntactically annotated sentences of the Wall
Street Journal section of the Penn Treebank (Marcus et al., 1994), semantic argu-
ments are marked using references to the syntactic constituents of the Penn Tree-
bank. For the 49,208 syntactically annotated sentences of the Penn Treebank, the
PropBank annotated 112,917 verb predicates (2.3 predicates per sentence on aver-
age), with the total of 292,815 semantic arguments (2.6 arguments per predicate on
average).

While most PropBank semantic argument correspond to separate syntactic phra-
ses as they are annotated in the Penn Treebank, for 49,353 (16.9%) of the anno-
tated arguments, the set of the Penn Treebank phrase tree nodes that comprise the
argument consists of more than one. In most cases this violation of the one-to-one
mapping between syntactic constituents and semantic arguments is due to the Prop-
Bank policy towards Penn Treebank traces: whenever a trace (an empty node in the
Penn Treebank annotation) is assigned a semantic roles, the co-indexed constituent
(the antecedent of a trace) is also annotated as a part of the semantic argument.
Moreover, multi-constituent PropBank arguments occur in the case of split con-
stituents. In total 6.2% of all annotated arguments consist of more that one Penn
Treebank non-empty constituent.

The stand-off annotation format of the PropBank directly corresponds to the
predicates and their arguments. More specifically, for each predicate PropBank
specifies:

• the reference to the verb, the head of the predicate; in most cases, the head
consists of a single word, though 2.8% of the heads are phrasal verb con-

8.3 RELATED WORK 137

structions (e.g., set up, kick in) consisting of two words, in which case Prop-
Bank lists both;

• the frameset of the predicate: the lemma of the head verb and the identifier
of a specific role set for the lemma, the result of disambiguation between
different senses of the verb;

• the information about the inflection of the head verb: form (infinitive, gerund,
participle, finite), tense (future, past ,present), aspect (perfect, progressive,
both perfect and progressive), person (3rd person or other), voice (active or
passive);

• for each argument, the name of the argument and references to the Penn
Treebank constituents comprising the argument.

We refer to Section 8.4, in particular to Figures 8.1 and 8.1 on page 140 for exam-
ples of Proposition Bank annotations.

8.3 Related work

Most systems for PropBank-based semantic analysis described in the literature are
based on reducing the problem of semantic role identification to a multi-class clas-
sification problem: given a constituent in a syntactic tree (or a chunk identified by
a shallow parser), assign it to a specific role with respect to a given verb in the
sentence.

The first such system was described in (Gildea, 2001; Gildea and Jurafsky,
2002) for FrameNet-based shallow parsing and it was also applied to the PropBank
data (Gildea and Palmer, 2002). The system estimates probabilities of constituents
taking semantic roles, based on a number of features such as the constituent la-
bel and label of its parent, path in the syntactic tree between the constituent and
the verb defining the predicate, lexical heads, etc., combining these features in a
back-off tree. Moreover, in order to take into account possible dependencies be-
tween different arguments of the same verb, the system also incorporates the prior
probability of sets of possible arguments, estimated from the training corpus.

Gildea and Hockenmaier (2003) describe a system that makes use of a dif-
ferent, richer syntactic representation: Combinatory Category Grammar (CCG),
which is a form of a dependency grammar capable of handling long-distance de-
pendencies. The system uses a similar probabilistic approach, but the features
describing constituents are derived from CCG representations provided by a CCG
parser (Hockenmaier and Steedman, 2002a).

138 CHAPTER 8. IDENTIFYING SEMANTIC ROLES

Chen and Rambow (2003) describe a system that uses yet another syntactic
representation extracted from a Tree Adjoining Grammar (TAG). They also use
a role assignment method similar to (Gildea and Palmer, 2002), but extract their
features from TAG analyses.

The system of Surdeanu et al. (2003) uses a feature set similar to (Gildea and
Jurafsky, 2002), but applies a decision tree classifier to the role assignment prob-
lem, instead of estimating parameters of a probabilistic model.

Pradhan et al. (2004) present a system that also uses parse trees, but trains a
Support Vector Machine (SVM) classifier that predicts labels of constituents (as
SVMs are binary classifiers, each classification task is reduced to a sequence of
“one vs. all” classifications). They also use heuristics (e.g., disallowing overlap-
ping constituents as arguments) and add new features like partial tree path between
the constituent and the verb, named entities, temporal triggers, verb clusters, la-
bels of constituent’s siblings, etc. The system has been extended in Pradhan et al.
(2005c) to include possible dependencies between arguments of the same word, by
training a trigram language model that is used to estimates probabilities of possible
sequences of labels of a predicate’s arguments. In Pradhan et al. (2005a) a simi-
lar system is described, one that combines features derived from several syntactic
representations: parse trees from the parser of Charniak (2000), analyses from
the CCG parser of Hockenmaier and Steedman (2002b), dependency parses from
Minipar (Lin, 1994), and the results of the semantic chunker of Hacioglu (2004).
The experiments show that the combined system outperforms systems based only
on a single syntactic representation.

The system of Toutanova et al. (2005) addresses the semantic role labeling task
using a discriminative log-linear joint model that incorporates possible complex
dependencies between role labels of different constituents. The authors show that
such a joint model outperforms local models that assume independence of the role
assignment.

8.4 Encoding PropBank using graphs

We translated the PropBank stand-off annotation scheme to a graph representation
in a straightforward way, extending the graph representation of the Penn Treebank
phrase structures (see Section 3.4 on page 37).

As we mention above, for each predicate PropBank annotates its head and the
list of labeled arguments. Both the head and each argument contain a list of ref-
erences to the corresponding nodes of the Penn Treebank trees. We mirror this
structure for each predicate by adding to a corresponding Penn Treebank phrase
structure graph the following nodes and edges:

8.4 ENCODING PROPBANK USING GRAPHS 139

• A predicate node with type = propbank and label = pred, labeled also with
the attributes inflection and frameset, as defined in the PropBank;

• A head node with type = propbank and label = head and an edge with type =
propbank from the predicate node to the head node;

• For each PropBank argument, a separate argument node with type = propbank

and the label attribute specifying the PropBank argument label: ARG0, ARG1,
. . . , ARG5 or ARGM. Additionally, the feature attribute specifies the feature
of the argument if present in the PropBank annotation: TMP, LOC, DIR, etc.,
for arguments with the label ARGM, and the preposition (on, to, etc.) for
numbered arguments realized as prepositional phrases.

• For each of the head and argument nodes, edges with type = propbank, from
the PropBank node to the corresponding phrase and word nodes of the Penn
Treebank annotation.

Figure 8.1 shows an example of our encoding of the PropBank annotation on top
of the phrase structure graphs of the Penn Treebank: here, the predicate introduced
by the verb join has five arguments: an agent ARG0, a patient ARG1 and three
adjunct-like arguments ARGM of different subtypes. In a more complex example in
Figure 8.2, the annotated predicate introduced by the verb criticized and having two
arguments: a patient ARG1 and temporal adjunct ARGM. Notice that the PropBank
specifies four nodes in the phrase structure graph that together constitute the ARG1

argument: two of them are empty nodes (object extraction in passive and WH-
extraction in a relative clause), and the other two are phrases the buyers and who.

By adding the PropBank annotations to the original Penn Treebank phrase
structures encoded as graphs, we combine the two corpora, i.e., we create a sin-
gle corpus of graphs that annotates the sentences with both Penn Treebank and
PropBank information. In Section 8.5 we will use this corpus to train a learner
that will be able to add the PropBank semantic argument information to the Penn
Treebank structures automatically.

As we have seen, adding the PropBank annotation to the original Penn Tree-
bank phrase trees using our graph-based encoding is straightforward, since the
Proposition Bank explicitly refers to the constituents of the Penn Treebank that
serve as semantic role fillers. How do we perform a similar merge of two corpora
annotated with syntactic and semantic information if the phrase trees come from a
parser and, thus, are noisy?

The main problem with imperfect parse trees is that in the case of misattach-
ments or other parsing errors, semantic arguments no longer correspond to single
syntactic constituents. Note, however, that this correspondence is not one-to-one

140 CHAPTER 8. IDENTIFYING SEMANTIC ROLES

Pierre

NP−SBJ

Vinken

VP

S

VP

NP

will

join

boardthe NPas

PP−CLR

directora

NP−TMP

Nov. 29

ARG0 headARGM ARG1 ARGM

pred

feature=MOD feature=PRD
ARGM

feature=TMP

Figure 8.1: Example of an encoding of the PropBank annotation of the Penn Tree-
bank sentence Pierre Vinken will join the board as a director Nov. 29. Dashed
arrows represent PropBank edges (type=propbank).

... pred

head ARGMARG1
feature=TMP

the

SBARNP

NP

WHNPbuyers

who

S

T

NP−SBJ VP

were VP

NP

*

PP−TMP

after NP

crashthe

criticized

Figure 8.2: Example of an encoding of the PropBank annotation of the Penn Tree-
bank sentence fragment . . . the buyers who were criticized after the crash. Dotted
edges represent Penn Treebank traces (type=antecedent), dashed edges are Prop-
Bank edges (type=propbank).

8.4 ENCODING PROPBANK USING GRAPHS 141

S

NP−SBJ VP

VP

using

stoppedLorillard Inc

NP

crocidolite

PP−LOC−CLR

in

cigarette filters

NP

PP−TMP

in NP

1956

ARG0 head ARG1 ARGM
feature=TMP

pred

Figure 8.3: The merged PropBank and Penn Treebank annotation of the sentence
Lorillard Inc. stopped using crocidolite in cigarette filters in 1956 for the verb
stopped. PropBank resolves an incorrect Penn Treebank attachment of the temporal
PP in 1956.

even in the case of the manual annotation of the Penn Treebank, both due to the
specifics of the annotation guidelines (e.g., multiple constituents in relative clause
constructions, see example in Figure 8.2) and possible annotation errors in the Penn
Treebank itself. Consider the example in Figure 8.3, where the PropBank seman-
tic argument ARG0 is annotated to include three different constituents of the Penn
Treebank tree, due to a misattachment of the temporal PP in 1956 in the syntac-
tic annotation. Interestingly, the Charniak parse of the same sentence (Figure 8.4)
attaches the temporal PP correctly, although making a different attachment error.

Note that neither the original PropBank annotation, nor our graph-based en-
coding of PropBank semantic arguments disallows using multiple constituents per
argument. We use this flexibility of our representation, and encode the semantic
information precisely as it is annotated in the PropBank with respect to the lexi-
cal spans of the annotations. Specifically, when adding a PropBank argument to
an imperfect parse tree (the output of the parser), we link the corresponding node
to all maximal constituents that cover the same word span as the argument. For
the example in Figure 8.4, e.g., this gives us two syntactic constituents compris-
ing the argument ARG1 of the verb stopped, because according to the PropBank
annotation, ARG1 spans the phrase using crocidolite in cigarette filters.

Whereas, as we mentioned above, for the manually annotated trees, only 6.2%
of the PropBank arguments correspond to more than one syntactic constituent, for
the output of Charniak’s parser for the Penn Treebank sentences, 11.9% of all ar-
gument spans require more than one constituent to cover the span precisely as

142 CHAPTER 8. IDENTIFYING SEMANTIC ROLES

VP

using NP

S

stoppedLorillard Inc

in

cigarette filters

NP in NP

1956

ARG0 head ARG1 ARGM
feature=TMP

pred

crocidolite

S

PP PP

NP VP

Figure 8.4: The parse tree produced by Charniak’s parser, merged with the
PropBank annotation of the sentence Lorillard Inc. stopped using crocidolite in
cigarette filters in 1956 for the verb stopped. The merged annotation resolves the
misattachment of in cigarette filters.

specified in the PropBank. Note that this might pose an upper bound on the perfor-
mance (specifically, on the recall) of some of the semantic parsing methods based
on constituent classification (Section 8.3).

In the following section we describe the application of the general graph trans-
formation method to the task of PropBank-based semantic parsing, that uses the
corpora with merged syntactic and semantic information for training.

8.5 PropBank-based parsing via graph transformations

For a given sentence, the task of PropBank-based shallow semantic parsing con-
sists in finding semantic arguments of all its verbs, as they are annotated in the
PropBank. For example, for the sentence Lorillard Inc. stopped using crocidolite
in cigarette filters in 1956 and the verb stopped, the ideal output of a semantic
parsing system is

• ARG0: Lorillard Inc.

• ARG1: using crocidolite in cigarette filters

• ARGM-TMP: in 1956

indicating the agent, the theme and the time of the stopping event.

8.5 PROPBANK-BASED PARSING VIA GRAPH TRANSFORMATIONS 143

We translate this task into our graph-based framework as follows. Given a
phrase structure graph, which can be either a gold standard parse from the Penn
Treebank, or an output of an automatic parser, our task is to transform the graph
so that it includes semantic annotation (i.e., nodes and edges with type=propbank,
as described in Section 8.4 above). Then, for the evaluation and comparison of
our system, we read off the resulting semantic annotations from the transformed
graphs, taking all descendant words of each resulting semantic argument node as
the word span of this argument.

Formulated in this way, the task becomes an instance of a general graph trans-
formation problem. We apply our method for learning graph transformations to
this problem, as described below.

Our graph transformation method (Chapter 5) requires sets of input and out-
put graphs for training. We take a corpus of syntactic analyses of sentences as the
input corpus, and the result of its merging with PropBank annotations as the out-
put corpus. In Section 8.4 we defined the encoding of semantic arguments in such
a way that we can merge it with either gold standard phrase trees from the Penn
Treebank, or with the output of an imperfect phrase structure analyzer, the only re-
quirement being that the syntactic analysis contains phrase nodes with identifiable
word spans.

Below we report on three experiments with different syntactic corpora as input:

• Penn Treebank: phrase structure graphs with complete Penn Treebank anno-
tation (constituent labels with function tags, empty nodes, traces);

• Charniak: the output of the parser of Charniak (2000) on the strings of the
Penn Treebank;

• Charniak+PAS: the output of Charniak’s parser after applying the graph
transformations for predicate argument structure identification learned as de-
scribed in Chapter 6 (adding function tags, empty nodes and traces).

The three experiments will allow us to evaluate the effect of imperfect parses and
the richer input on the shallow semantic parsing task.

We used a standard split of the Penn Treebank and the Proposition Bank data:
sections 02–21 for training, sections 00–01 for development and performance es-
timation during training, section 23 for testing. We ran the graph transformation
method of Chapter 5 as before, separately for each of the three variants of the task.
Specifically,

• at each iteration of the method, we extracted 20 most frequent left-hand sides
of possible graph rewrite rules, and for each LHS at most 20 most frequent
right-hand sizes;

144 CHAPTER 8. IDENTIFYING SEMANTIC ROLES

• we used SVM-Light (Joachims, 1999) to learn constraints for each extracted
rewrite rule;

• at each iteration, we evaluated the system on the development corpus. We
calculated the precision and recall for the identification of PropBank argu-
ments, and terminated the learning process if the improvement of the F1

score for the current iteration was smaller than 0.1.

8.5.1 Results and analysis

Table 8.1 presents the evaluation results on the test corpus for the three versions of
the task: with the Penn Treebank trees, with Charniak’s parser and with Charniak’s
parser post-processed by our system from Chapter 6.

At the time of writing the best published results on the PropBank semantic
role labeling using the output of Charniak’s parser are the results of Pradhan et al.
(2005b): precision 80.9, recall 76.8, F1-score 78.8. Our best results for Charniak’s
parser are: precision 81.0, recall 70.4 and F1-score 75.3.

Interestingly, comparison to the state-of-the-art indicates the same situation
as was discussed in Section 6.4.4 on page 109: while our system shows good
precision, the recall falls behind. Taking into account the iterative nature of our
system an imperfect rule selection criteria (we simply take most frequent left-hand
sides), we believe that it is the rule selection and learning termination condition
that account for relatively low recall values. Indeed, for all of the three tasks in
Table 8.1 the learning stops while the recall is still on the rise, albeit very slowly. It
seems that a more careful rule selection mechanism is needed to address this issue.

8.5.2 Extracted transformations: a closer look

For Charniak’s parser with traces (Charniak+PAS in Table 8.1), during the 11 itera-
tions 220 left-hand sides were extracted and 1444 right-hand sides of rewrite rules.
In total, 76% of the LHS’s were patterns with 3 to 7 nodes. Interestingly, 55%
of the left-hand sides of the extracted patterns included PropBank ARGx nodes,
which means that half of the rewrite rules potentially were correcting previous de-
cisions of the system. This is a characteristic property of Transformation-Based
Learning and its relatives.

8.6 Experiments with FrameNet

In this section we describe our experiments with FrameNet-based shallow semantic
parsing. We will first present a task-specific method, similar to the method for

8.6 EXPERIMENTS WITH FRAMENET 145

Penn Treebank Charniak Charniak+PAS
Iterations P R P R P R

1 90.0 70.7 79.5 58.6 79.9 59.1
2 90.7 76.5 81.2 63.9 81.0 64.2
3 90.7 78.1 81.3 65.6 81.1 65.8
4 90.6 78.9 81.4 66.5 81.2 66.7
5 90.5 80.4 81.4 67.0 81.2 68.3
6 90.4 81.2 81.4 68.3 81.1 68.8
7 90.3 81.9 81.3 68.9 81.0 69.3
8 90.3 82.2 81.3 69.3 81.0 69.8
9 90.3 82.5 81.3 69.6 81.0 70.1

10 90.3 82.8 81.4 69.8 81.0 70.3
11 90.3 83.0 81.3 69.9 81.0 70.4
12 90.3 83.2

Table 8.1: Identification of semantic arguments using Penn Treebank trees, Char-
niak’s parser and the parser extended with the PAS identification system of Chap-
ter 6.

predicate argument structure identification of Chapter 4 Specifically,

• we will define the task of FrameNet-based parsing using graphs representing
dependency structures of sentences;

• we will use a task-specific type of dependency graph transformation, namely,
adding edges representing FrameNet semantic roles;

• we will train memory-based classifiers to predict which paths in syntactic
dependency graphs correspond to which semantic roles.

Then we will report of experiments with applying the general graph transformation
method of Chapter 5 and discuss why the method with the default transformation
rule selection criteria is not applicable to FrameNet.

We start with the description of representing the FrameNet data in our graph-
based framework.

8.6.1 Encoding FrameNet using dependency graphs

The FrameNet 1.1 corpus (Johnson et al., 2003) includes information about 487
semantic frames, 696 frame elements with distinct names and provides semantic
role annotations of 132,968 sentences. Each annotated sentence specifies a single
target word, the name of the semantic frame it evokes, and character spans of se-
mantic arguments of the frame. Unlike PropBank, the FrameNet annotation does

146 CHAPTER 8. IDENTIFYING SEMANTIC ROLES

not use or refer to the syntactic structure of the sentences, but is specified using
simple character spans.

We parsed the sentences of the FrameNet corpus using the parser of Charniak
(2000), converted the resulting trees to dependency graphs as described in Sec-
tion 2.1.2 and applied the system of Chapter 4, that identifies Penn Treebank-style
predicate argument structure, adding Penn grammatical and semantic function tags,
empty nodes and non-local dependencies.

Let G be a dependency graph (see Section 3.4 on page 37). For a node n

in G, we define the span of n to be the set of all nodes k in G such that there
is a directed path from n to k, consisting only of dependency edges, excluding
non-local dependencies, i.e., consisting of edges ei with attr(ei, type, dep) ∈ G

and attr(ei, trace, 1) 6∈ G. In other words, a span of a node is the set of all its
descendants with respect to the local dependency edges. Spans in dependency
graphs correspond to constituents in phrase trees, though not for every constituent
there is a identical span in the dependency tree of a sentence.

FrameNet annotations of the sentences were merged with the resulting depen-
dency graphs in a way similar to merging PropBank data to phrase trees in Sec-
tion 8.4. More specifically, for every annotated FrameNet sentence:

• for the target T of the sentence, we identified a node t in the dependency
parse of the sentence, such that its span is the smallest span of the graph,
containing all words of T ;

• similarly, for every annotated semantic role Ri that spans a string Pi in a sen-
tence, we identified a node ri that spans the minimal set of words containing
all words of Pi;

• for every such ri, we added a new edge e from t to ri, with type = framenet

and label = Ri.

Figures 8.5 and 8.6 show examples of the encoding of FrameNet information using
extra edges in dependency graphs. Note that for the example in Figures 8.5, the
target word grandmother, evoking the frame Kinship, is also the argument Alter
of the frame, which results in a loop edge in the graph. For the example in Fig-
ure 8.6, the graph contains two parsing errors: first, the phrasal verb ‘bring about’,
the target of the frame Causation, is erroneously analyzed as the verb bring with a
prepositional phrase ‘about an end. . . ’; second, the phrase to history is erroneously
attached to end instead of bring. Nevertheless, our heuristics using spans in depen-
dency graphs allowed us to produce an appropriate encoding of FrameNet roles for
this example.

As our learning method, described below, operates with the graph-based en-
coding of FrameNet roles, we will also have to perform an opposite operation:

8.6 EXPERIMENTS WITH FRAMENET 147

Frame: Kinship
Target: grandmother

Ego: Your
Alter: grandmother

not demurring

any at

have

meals

VP|NP

would
NP|PP

PP|NPYour
Ego

Alter grandmother

NP|PRP$

S|NP−SBJ
VP|MD

NP|DT

Figure 8.5: Dependency parse of the sentence “Your grandmother would not have
any demurring at meals” with the FrameNet annotation added for the noun grand-
mother evoking frame Kinship. The dotted edges are FrameNet edges (type =
framenet).

Frame: Causation
Target: bring about
Cause: History
Effect: an end

Affected: to history

could
History

failed

How

SQ|NP−SBJ

SBARQ|SQ

bring

about

VP|S

history
PP|NP

to

end
NP|PP

PP|NP

VP|PPS|NP−SBJ

to
Cause

have

?

an

Effect

Affected

Figure 8.6: Dependency parse of the sentence “How could History have failed to
bring about an end to history?” with the FrameNet annotation added for the phrasal
verb bring about evoking frame Causation. The dotted edges are FrameNet edges
(type = framenet); the dashed edge is a non-local dependency (trace = 1).

148 CHAPTER 8. IDENTIFYING SEMANTIC ROLES

given a graph encoding of semantic arguments of a sentence (e.g., in Figure 8.6,
right), produce a flat list of character spans (Figure 8.6, left). We implement this in
a straightforward way, computing spans of the nodes at the end points of FrameNet
edges. If one of the resulting argument spans contains another span or the target,
we remove the subsumed span from the subsumer, making all semantic arguments
disjoint from each other and from the target. If the subsumer becomes discontin-
uous after the removal, we leave only the right-most continuous part. The only
exception when we allow overlapping spans is when two or more spans are exactly
the same: this corresponds to the situation of one span playing more than one role
in a semantic frame.

Consider an example graph in Figure 8.6 (right). In order to generate character
spans of the arguments, we first compute spans of the corresponding nodes:

Cause = History,

Effect = an end to history,

Affected = to history.

Since the Effect argument subsumes the Affected, we remove the subsumed, ob-
taining the final argument spans:

Cause = History,

Effect = an end,

Affected = to history.

Having described our graph-based encoding of FrameNet information, we now re-
formulate the task of semantic role identification as a graph transformation prob-
lem: adding FrameNet edges to dependency graphs.

8.6.2 Learning to add FrameNet edges

We experimented with the data of the Senseval-3 Automatic Labeling of Semantic
Roles task (Litkowski, 2004): 24,558 annotated sentences for training and 8,002
test sentences, both corpora from 40 of the 100 most frequent frames in FrameNet.
Our system considered all FrameNet edges in the dependency graphs of the training
corpus, and for each such edge, it extracted the shortest path between its endpoints:
the target word and the word representing a semantic argument. For example, for

8.6 EXPERIMENTS WITH FRAMENET 149

the graphs in Figures 8.5 and 8.6, the following paths were extracted:

Ego =
{

node(t), node(r), edge(e0, t, r), attr(e0, label, NP|PRP$)
}

Alter =
{

node(t)}

Cause =
{

node(t), node(r), edge(e0, t, r), attr(e0, label, S|NP-SBJ)
}

Effect =
{

node(t), node(n0), edge(e0, t, n0), attr(e0, label, VP|PP),

node(r), edge(e0, n0, r), attr(e0, label, PP|NP)
}

Affected =
{

node(t), node(n0), edge(e0, t, n0), attr(e0, label, VP|PP),

node(n1), edge(e0, n0, n1), attr(e0, label, PP|NP),

node(r), edge(e0, n1, r), attr(e0, label, NP|PP)
}

We then proceeded similarly to step 3 of the graph transformation method of Chap-
ter 4 (see Section 4.7 on page 59). We considered only paths containing 3 or less
edges and occurring 10 or more times in the training corpus. For each path, we ex-
tracted all its occurrences as a pattern in the training corpus, with the first node of
each occurrence (i.e., the node that matched the target node when the pattern was
extracted; t in the paths above) only mapped to targets of sentences. For each oc-
currence of a path, we checked whether the occurrence corresponds to a FrameNet
edge, and if so, what the label of the edge is. Moreover, for each occurrence of
each path we also extracted the following features:

• the pattern defining the path;

• the name of the semantic frame of the sentence;

• the words of the nodes of the occurrence and their part of speech tags: as
we only restrict our method to paths with 3 or less edges, each occurrence
contains at most 4 nodes;

• presence of subject and object dependents, for each node of the occurrence;

• for each noun in the occurrence, its semantic class: one of 19 manually
defined hypernyms in WordNet (Fellbaum, 1998): animal, person, property,
etc.

The entire resulting set of path occurrences was used to train a memory-based
classifier, whose task was to predict a semantic role label, or lack thereof. As in
Chapter 4, we used TiMBL (Daelemans et al., 2003) for classification.

From the testing corpus without FrameNet edges, we extracted all occurrences
of the paths starting at the target node of a sentence, along with their features. We
applied the trained classifier to the extracted occurrences, and for those positively

150 CHAPTER 8. IDENTIFYING SEMANTIC ROLES

boundary overlap exact match
System P R Overlap Attempted P R F
Bejan et al. (2004) 89.9 77.2 88.2 85.9 82.4 71.1 76.3
Here 86.9 75.2 84.7 86.4 73.5 63.6 68.2
Moldovan et al. (2004) 80.7 78.0 77.7 96.7
Kwon et al. (2004b) 80.2 65.4 78.4 81.5

Table 8.2: Performance of the four systems with the highest results on the Senseval-
3 Semantic Role Labeling task.

classified, added a FrameNet edge from the first to the last node, with the label
predicted by the learner.

At the application stage our system takes as input dependency graphs with
marked target word and known semantic frame. It extracts occurrences of the paths
and uses a classifier to predict which of them correspond to FrameNet semantic
roles for a given target word. The result of the system are dependency graphs with
added FrameNet edges.

For the evaluation of the system, we compute the final argument spans as de-
scribed in Section 8.6.1 above.

8.6.3 Evaluation results

We report here the results of our official run at the Senseval-3 Semantic Role Label-
ing task (Ahn et al., 2004; Litkowski, 2004), created as described above. We only
took part in the Restricted task, where the systems needed to identify boundaries
of semantic arguments, as well as to assign role labels.

The evaluation measures follow the method of Gildea and Jurafsky (2002). A
frame element is considered correctly identified if it overlaps with the gold stan-
dard span of the argument with the same label. Precision and recall of the correctly
identified frame elements are then calculated in a standard way. Another measure
is Overlap, the average character overlap of the correct frame elements (FEs), cal-
culated as the number of characters overlapping in an FE returned by the system
and the gold standard FE divided by the length of the gold standard FE, averaged
for all FEs. Finally, the measure Attempted is the number of FEs generated by the
system divided by the number of FEs in the gold standard.

We also evaluated our run with a more strict measure, where the boundaries of
frame elements are required to match the gold standard exactly. The results for our
system and the system of Bejan et al. (2004) are presented in Table 8.2, columns
exact match.

8.6 EXPERIMENTS WITH FRAMENET 151

8.6.4 Analysis and further experiments

Although our method for FrameNet-based semantic parsing using dependency
graphs allows us to achieve high accuracy if partial overlap of FEs with the gold
standard is allowed, the system shows a drop of about 12% in both precision and
recall with the exact boundary requirement. It is tempting to attribute this drop
to parsing errors (e.g., misattachments, which might render an FE incorrect even
if we have identified the headword of the FE correctly). Indeed, our evaluation
showed that only 85% of FEs in the gold standard correspond to spans that our
system can generate, even after applying some simple heuristics to compensate
frequent mismatches. However, a much smaller drop in precision and recall for
the system of Bejan et al. (2004) indicates that this is not necessarily the case.
We conjecture that the deterioration of the performance of our system with the
“exact match” evaluation can be attributed to our choice of dependency rather than
phrase structure syntactic representation. Some of the constituents (namely, those
which are not maximal projections) are irrecoverably lost during the conversion to
dependency structures. To check whether this is indeed the case, however, requires
the development of a similar system based on phrase trees rather than dependency
graphs. We leave this for future work.

As we have seen, it is possible to formulate the task of FrameNet-based shallow
parsing as a graph transformation problem. However, the method we applied here
to this problem is again ad-hoc and task dependent, much in the same way as the
method for PAS identification in Chapter 4. Is it possible to apply our general
method for learning graph transformation to the task of semantic role labeling?

Unfortunately, our preliminary experiments with the graph transformation me-
thod of Chapter 5 gave disappointing results: we ran the method with the phrase
trees produced by Charniak’s parser and the same split of training and test FrameNet
data as for our Senseval experiments described above (we did not make a sepa-
rate development set for estimate performance through iterations). We stopped the
learning cycle after the second iteration since the performance on the test set was
very low (precision 76% and recall 33%, for the exact match of frame elements’
borders) and was increasing very slowly: 2% improvement of the F1-score be-
tween the first and the second iterations and less than 1% improvement between
the second and the third iterations. It seems that our graph transformation method
cannot be applied ‘as is’ to the FrameNet data. But why?

Our hard-wired heuristics for selecting the most frequent rewrite rules at each
iteration of the learning cycle and terminating the learning process unless the im-
provement with the learned rewrite rules is substantial, are appropriate for the Penn
Treebank and PropBank: relatively few rewrite rules with many training examples
for each. The FrameNet learning task appears to be of an essentially different na-

152 CHAPTER 8. IDENTIFYING SEMANTIC ROLES

ture: it seems to require many graph rewrites each of which is ‘small’ (i.e., comes
with few examples). For our generic graph transformation method as defined in
Chapter 5, to be more competitive at the FrameNet learning task we would need
to explore a two dimensional parameter space: how many LHS candidates of po-
tential rewrites to consider, and for each, how many possible RHS. We leave this
exploration as future work, but anecdotal evidence suggests that substantial gains
can be had by dropping the heuristics defined in Chapter 5.

8.7 Conclusions

In this chapter we examined two PropBank- and FrameNet-based shallow seman-
tic parsing tasks. We presented different ways of embedding the tasks into our
graph framework. For PropBank, we carefully transfered the original annotation
into graphs, preserving all of the information in this conversion. Unlike most other
approaches to shallow semantic parsing, we did not make any assumptions about
one-to-one match between syntactic phrases and semantic elements, but rather pre-
served exact word spans, allowing more than one constituent (or even separate
words) to make up a semantic argument. According to our evaluation, 12% of the
PropBank arguments did not match the constituents produced by Charniak’s parser.
About half of these problematic elements seem to be truly discontinuous (as 6% of
the elements do not match gold standard Penn Treebank constituents either), and
the other half can be attributed to parsing errors. We believe that such mismatches
between annotations should not be ignored or discarded in favor of simpler rep-
resentations. This is important because the mismatches may be systematic and
pertinent to specific language constructions (cf. example in Figure 8.2).

The results of the application of our general graph transformation method to
the two tasks of shallow semantic parsing are inconclusive. For the PropBank roles
the method shows reasonable precision, but the recall is as low as 70.4. We notice,
however, that this was also the case for the application in Chapter 6. We believe this
to be an indication that our mechanism for rule selection (hard-wired to select 20
most frequent potential left-hand sides in the training corpus) needs to be revised.

The results are different for FrameNet. While our graph-based but ad-hoc me-
thod for semantic role identification demonstrates competitive results, a direct ap-
plication of the graph transformation method seems to fail, producing very low
recall scores. We attribute this to the structure of FrameNet annotations: the cor-
pus consists of a large number of independent frames, thus reasonable rewrite rules
might exist but they are not necessarily among the most frequent throughout the it-
erations.

Chapter 9

Conclusions

In this thesis we presented an approach to natural language processing tasks based
on graphs and graph transformations. We considered different types of linguistic
structures and demonstrated that they can be straightforwardly and without infor-
mation loss represented using directed labeled graphs. In particular, we used a
graph formalism to represent dependency graphs, phrase trees with empty nodes
and non-local dependencies, predicate argument structure annotations of PropBank
and semantic frames of FrameNet.

In this final chapter we summarize our main findings, discuss the strengths and
weaknesses of our graph transformation-based take on natural language processing
tasks, and discuss future work.

9.1 Main findings

We presented a view on several NLP tasks as graph transformation problems and
described a method to learn graph transformations from a corpus of graphs. The
method builds on ideas of Transformation-Based Learning, extending them to the
domain of graphs and complementing simple rewrite rules with machine learners.

We demonstrated and analyzed applications of our graph transformation me-
thod to several tasks:

• recovery of Penn Treebank function tags, empty nodes and non-local depen-
dencies in the output of a parser; we applied the method both to dependency
structures and phrase trees;

• converting between different syntactic formalisms; we trained a system that
converts the output of a dependency parser (Minipar) to dependency for-
malisms derived from the Penn Treebank II;

154 CHAPTER 9. CONCLUSIONS

• shallow semantic parsing with PropBank and FrameNet.

Turning to the research questions listed in Chapter 1, we answered the first one
(“Can a general framework and processing method for NLP problems be devel-
oped?”) in the affirmative: we proposed a single, unified approach to language
processing, that is generic but does allow for task-specific knowledge to be brought
in.

In answer to our second research question (“How well is our proposed graph-
based framework suited for representing various types of linguistic structures?”),
we have shown that our proposed modeling framework in terms of labeled directed
graphs is sufficiently flexible and rich to be able to cater for both a broad range of
syntactic and semantic features.

As to our third research question (“How well and how natural can different
language processing tasks be formulated as graph transformation problems?”), we
considered several NLP tasks related to the syntactic and semantic analysis of text
at different levels. We demonstrated how a graph-based encoding of linguistic
structures makes it possible to re-cast these tasks as instances of a general graph
transformation problem. For each of the three tasks listed above, we put our graph
transformation-based method to work, achieving state-of-the-art performance in
several cases, thus partly addressing our fourth research question (“How well does
our general graph transformation-based method for solving language processing
tasks perform compared to other, task-specific methods?”). Further answers to
this question were offered by comparing both a task-specific and a generic graph
transformation-based solution for two of the three tasks listed above: in one case,
generality helped to improve the results, on the other it hurt, mainly because of
specific heuristics hardwired into our method.

As to the limitations of our graph transformation-based approach to NLP tasks
(our fourth research question), one of our main findings was that, with the heuris-
tics currently hardwired into it, the approach is effective for the NLP tasks where
there are relatively few potential rewrite rules, each with many examples (such
as the recovery of Penn Treebank-style predicate argument structures, converting
between syntactic dependency formalisms, and semantic parsing with PropBank),
whereas its underlying heuristics need revising to be able to deal effectively with
tasks such as FrameNet parsing, where we face many possible rewrite rules, each
with a small number of examples.

9.2 Strengths and weaknesses of our approach

Below we summarize strengths and weaknesses of our method identified while
experimenting with the NLP tasks mentioned above:

9.3 CONCLUSIONS ON THE TASKS 155

+ A graph-based view on different types of linguistic structure allows us to
naturally model various aspects of text and combine different structures of
text in a systematic way.

+ Our graph transformation method, being an extension of Transformation-
Based Learning, exhibits similar properties, in particular, using a combina-
tion of rule-based and statistical machine learning instruments, the method
identifies meaningful and linguistically interpretable and justifiable rewrite
rules.

+ Our method for learning graph transformations is applicable to different NLP
tasks and demonstrates competitive results for some of them even without
any task- and data-specific fine-tuning.

– However, our graph transformation method relies on a small but specific set
of heuristics, which worked well for a number of tasks, but needs revisiting
for other tasks. Specifically, the method in its current version is not capable
of effectively addressing the task of FrameNet-based semantic parsing.

– Due to the iterative nature of the method and frequency-based criteria for the
selection of rewrite rules, for most of the tasks considered in the thesis, the
method demonstrates low recall values.

9.3 Conclusions on the tasks

For the three specific language processing tasks we considered in the thesis (in
Chapters 6, 7 and 8), the behavior of our graph transformation method is indicative
of the nature of the NLP tasks and the distribution of frequencies of the linguis-
tic phenomena involved in the tasks. Specifically, the first few iterations of our
transformation algorithm allow us to account for a substantial number of the most
systematic mismatches between input and output graphs. However, during later
iterations the rewrite rules detected by the algorithm become less and less frequent
and, therefore, the subsequent iterations are less effective. This leads to early termi-
nation of the algorithm and low recall. We believe that this behavior is yet another
manifestation of the Pareto principle, or the 80–20 rule, stating that, as a rule of
thumb, 80% of consequences stem from 20% of causes. A deeper analysis of the
performance of the algorithm is needed to confirm this claim and to see whether
the frequency distribution of the learned patterns follows Zipf’s law (Manning and
Schütze, 1999, pages 23–29).

156 CHAPTER 9. CONCLUSIONS

9.4 Further work

In the thesis we presented a novel method and showed it at work. We have an-
swered some of the questions about the method and, quite naturally, many new
ones were generated. The three most important, in our opinion, are listed below.

• As our method takes its general architecture from Transformation-Based
Learning, it is interesting and informative to study the relation between the
two. One specific question is, whether it is possible to apply the classic
TBL paradigm to graph transformation tasks, for example, using Graph-
Based Relational Learning (Cook and Holder, 2000) for extraction of simpler
rewrite rules.

• The weaknesses of the method that we identified above suggest another di-
rection for further work. Is it possible to factor out or to parametrize in a
natural way the current heuristics for the rule selection? Our hope is that
such an analysis of heuristics and assumptions of our method will help to
address the low recall problem, allowing us to handle corpora like FrameNet
that have so far prove difficult.

• The relatively low recall values our method demonstrates on various tasks
indicate that either the current rule selection strategy does not cope well
with less frequent rewrite rules, or the types of the rewrite rules we consider
are not sufficient. We need to experiment both with rule types and selection
strategies to determine the cause of low recall scores and to improve the
performance of our method.

These additional experiments with our general graph transformation method will
help us to identify differences and similarities between the language processing
tasks to which we apply our methods. They will allow us to make explicit what
parameter settings and biases are necessary for our method to perform well. More-
over, we believe that this is essential for a deeper understanding of the NLP tasks
themselves by uncovering regularities and patterns in the underlying language us-
age.

Appendix A

Penn Treebank II Annotation:
Function Tags and Empty Nodes

In this appendix we briefly describe two aspects of the Penn Treebank II annota-
tion: function tags and empty nodes. We refer to the Penn Treebank II annotation
guidelines Bies et al. (1995) for a detailed description.

A.1 Function tags

Function tags are attached to phrase labels in the Penn Treebank annotation to
indicate a specific grammatical role or semantic aspects of the corresponding con-
stituents. A constituent may have more than one function tag. Technically, attach-
ing tags to a constituent can be viewed as changing the constituent’s label, e.g.,
from NP to NP-SBJ.

The following function tags are defined in the Penn Treebank II annotation
guidelines:

-ADV (adverbial) — marks constituents used adverbially
-NOM (nominal) — marks relatives and gerunds that act nominally
-DTV (dative) — marks the dative object in the double object construction
-LGS (logical subject) — marks the logical subject in passives
-PRD (predicate) — marks any predicate that is not VP

-PUT — marks the locative complement of put
-SBJ (subject) — marks the surface subject of clauses
-TPC (topicalized) — elements that appear before subjects in declarative

sentences
-VOC (vocative) — marks nouns of address

158 APPENDIX A. PENN TREEBANK II ANNOTATION

-BNF (benefactive) — marks the benefactive of an action
-DIR (direction) — adverbials answering “from where” or “to where”

questions
-EXT (extent) — phrases describing the spacial extent of an activity
-LOC (locative) — adverbials indicating place/setting of an event
-MNR (manner) — adverbial that indicate manner
-PRP (purpose) — purpose or reason clauses or PPs
-TMP (temporal) — temporal or aspectual adverbs
-CLR (closely related) — constituents occupying some middle ground

between argument and adjuncts of a verb phrase
-CLF (cleft) — marks it-clefs
-HLN (headline) — marks headlines and datelines
-TTL (title) – titles appearing inside running text

A.2 Empty nodes

Empty nodes in the Penn Treebank II are realized using a special part-of-speech
tag -NONE-. The “lexical” content of the node indicates its function:

T Traces of A′ movement.
Example: Which story about tribbles did you read *T*?

* Traces of NP movement and PRO.
Example: John was hit * by a ball.

0 Null complementizer.
Example: . . . the bird 0 I saw.

U Interpreted position of a unit symbol.
Example: . . . more that $ 5 *U*.

? Placeholder for ellipsed material.
Example: John is taller than I am *?*.

NOT Placeholder element in parallel constructions.
EXP “Expletive”: marks it-extraposition.
ICH “Interpret Constituent Here”: indicates discontinuous dependency.
PPA “Permanent Predictable Ambiguity”: indicates ambiguity of

attachment of a trace.
RNR “Right Node Raising”: indicates simultaneous interpretation at

multiple e attachment sites.

Bibliography

Ahn, D., Fissaha, S., Jijkoun, V., and de Rijke, M. (2004). The University of
Amsterdam at Senseval-3: semantic roles and logic forms. In Proceedings of
the Third International Workshop on the Evaluation of Systems for the Semantic
Analysis of Text, pages 49–53.

Ahn, D., Alink, W., Jijkoun, V., de Rijke, M., Boncz, P., and de Vries, A. (2006a).
Representing and querying multi-dimensional markup for question answering.
In NLPXML-2006: EACL 2006 Workshop on Multi-dimensional Markup in Nat-
ural Language Processing.

Ahn, D., Jijkoun, V., Müller, K., de Rijke, M., and Sang, E. T. K. (2006b). Towards
an Offline XML-based Strategy for Answering Questions. In C. Peters, F. Gey,
J. Gonzalo, H. Müller, G. Jones, M. Kluck, B. Magnini, and M. D. Rijke, editors,
Accessing Multilingual Information Repositories, volume 4022 of Lecture Notes
in Computer Science, pages 449–456. Springer.

Baker, C. F., Fillmore, C. J., and Lowe, J. B. (1998). The Berkeley FrameNet
project. In Proceedings of the Thirty-Sixth Annual Meeting of the Association for
Computational Linguistics and Seventeenth International Conference on Com-
putational Linguistics, pages 86–90.

Bejan, C. A., Moschitti, A., Morărescu, P., Nicolae, G., and Harabagiu, S. (2004).
Semantic parsing based on FrameNet. In Senseval-3: Third International Work-
shop on the Evaluation of Systems for the Semantic Analysis of Text, pages 73–
76.

Bies, A., Ferguson, M., Katz, K., and MacIntyre, R. (1995). Bracketing guidelines
for Treebank II style Penn Treebank project. Technical report, University of
Pennsylvania.

Blaheta, D. (2004). Function Tagging. Ph.D. thesis, Brown University.

Blaheta, D. and Charniak, E. (2000). Assigning function tags to parsed text. In
Proceedings of the 1st Annual Meeting of the North American Chapter of the
ACL (NAACL), pages 234–240.

Bod, R., Scha, R., and Sima’an, K., editors (2003a). Data-Oriented Parsing. CSLI
Publications. University of Chicago Press.

Bod, R., Hay, J., and Jannedy, S., editors (2003b). Probabilistic Linguistics. The
MIT Press.

Bohnet, B. (2003). Mapping phrase structures to dependency structures in the
case of free word order language. In Proceedings of The First International
Conference on Meaning-Text Theory, Paris.

Bouma, G., Noord, G. V., and Malouf, R. (2001). Alpino: Wide-coverage com-
putational analysis of Dutch. In Computational Linguistics in The Netherlands
2000, pages 45–59.

Bouma, G., Mur, J., van Noord, G., van der Plas, L., and Tiedemann, J. (2005).
Question Answering for Dutch using dependency relations. In Proceedings of
CLEF: Cross-Language Evaluation Forum.

Brill, E. (1995). Transformation-based error-driven learning and natural language
processing: A case study in part-of-speech tagging. Computational Linguistics,
21(4), 543–565.

Brill, E. (1996). Learning to Parse With Transformations. Kluwer Academic Pub-
lishers.

Brill, E. and Resnik, P. (1994). A rule-based approach to prepositional phrase
attachment disambiguation. In Proceedings of the 15th International Conference
on Computational Linguistics (COLING’94), pages 1198–1204.

Brill, Eric, J. C. H. and Ngai, G. (2000). Automatic grammar induction: Com-
bining, reducing and doing nothing. In Proceedings of the Sixth International
Workshop on Parsing Technologies (IWPT’2000).

Briscoe, T., Carroll, J., Graham, J., and Copestake, A. (2002). Relational evaluation
schemes. In Proceedings of the LREC 2002 Workshop Beyond PARSEVAL –
Towards Improved Evaluation Measures for Parsing Systems, pages 4–8.

Buchholz, S. (2002). Memory-based Grammatical Relation Finding. Ph.D. thesis,
Tilburg University.

Carroll, J., Minnen, G., and Briscoe, T. (2003). Parser evaluation using a gram-
matical relation annotation scheme. In A. Abeillé, editor, Building and Using
Parsed Corpora, pages 299–316. Kluwer.

Charniak, E. (2000). A maximum-entropy-inspired parser. In Proceedings of the
1st Annual Meeting of the North American Chapter of the Association for Com-
putational Lingustics (NAACL), pages 132–139.

Chen, J. and Rambow, O. (2003). Use of deep linguistic features for the recognition
and labeling of semantic arguments. In Proceedings of the 2003 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pages 41–48.

Collins, M. (1997). Three generative, lexicalized models for statistical parsing. In
Proceedings of the 35th Annual Meeting of the Association for Computational
Linguistics (ACL), pages 16–23.

Collins, M. (1999). Head-Driven Statistical Models for Natural Language Parsing.
Ph.D. thesis, University of Pennsylvania.

Collins, M., Ramshaw, L., Hajič, J., and Christoph, T. (1999). A statistical parser
for Czech. In Proceedings of the 37th Annual Meeting of the Association for
Computational Linguistics (ACL), pages 505–512.

Cook, D. J. and Holder, L. B. (2000). Graph-based data mining. IEEE Intelligent
Systems, 15(2), 32–41.

Covington, M. A. (1994). An empirically motivated reinterpretation of dependency
grammar. Technical Report AI-1994-01, Athens, GA.

Curran, J. R. and Wong, R. K. (1999). Transformation-based learning in document
format processing. In Working notes of the AAAI 1999 Fall Syposium on Using
Layout for the Generation, Understanding or Retrieval of Documents, pages
75–79.

Curran, J. R. and Wong, R. K. (2000). Formalisation of transformation-based
learning. In Proceedings of the 2000 Australian Computer Science Conference
(ACSC), pages 51–57.

Daelemans, W. and van den Bosch, A. (2005). Memory-Based Language Process-
ing. Cambridge University Press.

Daelemans, W., Zavrel, J., van der Sloot, K., and van den Bosch, A.
(2003). TiMBL: Tilburg Memory Based Learner, version 5.0, Reference
Guide. ILK Technical Report 03-10. Available from http://ilk.kub.
nl/downloads/pub/papers/ilk0310.ps.gz.

Dienes, P. (2004). Statistical Parsing with Non-local Dependencies. Ph.D. thesis,
Universität des Saarlandes, Saarbrücken, Germany.

Dienes, P. and Dubey, A. (2003a). Antecedent recovery: Experiments with a trace
tagger. In Proceedings of the 2003 Conference on Empirical Methods in Natural
Language Processing, pages 33–40.

Dienes, P. and Dubey, A. (2003b). Deep syntactic processing by combining shallow
methods. In Proceedings of the 41st Annual Meeting of the Association for
Computational Linguistics (ACL).

Drewes, F., Kreowski, H.-J., and Habel, A. (1997). Hyperedge Replacement Graph
Grammars, chapter 2, pages 95–162. Volume 1 of Rozenberg (1997).

Engelfriet, J. and Rozenberg, G. (1997). Node Replacement Graph Grammars,
chapter 1, pages 1–94. Volume 1 of Rozenberg (1997).

Fellbaum, C., editor (1998). WordNet: An Electronic Lexical Database. The MIT
Press.

Ferro, L., Vilain, M., and Yeh, A. (1999). Learning transformation rules to find
grammatical relations. In Proceedings of the 3rd International Workshop on
Computational Natural Language Learning (CoNLL), pages 43–52.

Fillmore, C. J. (1982). Frame semantics. Linguistics in the Morning Calm, pages
111–137.

Freund, Y. and Schapire, R. E. (1998). Large margin classification using the per-
ceptron algorithm. In Proceedings of the 11th Annual Conference on Computa-
tional Learning Theory (COLT), pages 277–296.

Gildea, D. (2001). Statistical Language Understanding Using Frame Semantics.
Ph.D. thesis, University of California, Berkeley.

Gildea, D. and Hockenmaier, J. (2003). Identifying semantic roles using combina-
tory categorial grammar. In Proceedings of the 2003 Conference on Empirical
Methods in Natural Language Processing (EMNLP).

Gildea, D. and Jurafsky, D. (2002). Automatic labeling of semantic roles. Compu-
tational Linguistics, 28(3), 245–288.

Gildea, D. and Palmer, M. (2002). The necessity of syntactic parsing for predi-
cate argument recognition. In Proceedings of the 40th Annual Meeting of the
Association for Computational Linguistics (ACL).

Hacioglu, K. (2004). A lightweight semantic chunker based on tagging. In Pro-
ceedings of the Human Language Technology Conference/North American chap-
ter of the Association of Computational Linguistics (HLT/NAACL).

Hajičová, E. and Kučerová, I. (2002). Argument/valency structure in propbank,
lcs database and prague dependency treebank: A comparative pilot study. In
Proceedings of the Third International Conference on Language Resources and
Evaluation (LREC), pages 846–851.

Hockenmaier, J. (2003). Parsing with generative models of predicate-argument
structure. In Proceedings of the 41st Annual Meeting of the Association for
Computational Linguistics (ACL), pages 359–366.

Hockenmaier, J. and Steedman, M. (2002a). Acquiring compact lexicalized gram-
mars from a cleaner treebank. In Proceedings of Third International Conference
on Language Resources and Evaluation (LREC), pages 1974–1981.

Hockenmaier, J. and Steedman, M. (2002b). Generative models for statistical pars-
ing with combinatory categorial grammar. In Proceedings of the 40th Annual
Meeting on Association for Computational Linguistics (ACL), pages 335–342.

Hudson, R. A. (1990). English Word Grammar. Blackwell, Oxford.

Jijkoun, V. (2003). Finding non-local dependencies: Beyond pattern matching. In
Proceedings of the ACL-2003 Student Research Workshop, pages 37–43.

Jijkoun, V. and de Rijke, M. (2004). Enriching the output of a parser using memory-
based learning. In Proceedings of the 42nd Meeting of the Association for Com-
putational Linguistics (ACL), pages 311–318.

Jijkoun, V. and de Rijke, M. (2005a). Recognizing textual entailment using lex-
ical similarity. In Proceedings of the PASCAL Recognising Textual Entailment
Challenge, pages 73–76.

Jijkoun, V. and de Rijke, M. (2005b). Retrieving answers from frequently asked
questions pages on the web. In Proceedings of the Fourteenth ACM Conference
on Information and Knowledge Management (CIKM 2005). ACM Press.

Jijkoun, V. and de Rijke, M. (2006). Recognizing textual entailment: Is lex-
ical similarity enough? In I. Dagan, F. Dalche, J. Quinonero Candela, and
B. Magnini, editors, Evaluating Predictive Uncertainty, Textual Entailment and
Object Recognition Systems, volume 3944 of LNAI, pages 449–460. Springer.

Jijkoun, V., de Rijke, M., and Mur, J. (2004). Information Extraction for Question
Answering: Improving recall through syntactic patterns. In Proceedings of the
20th International on Computational Linguistics (COLING 2004), pages 1284–
1290.

Joachims, T. (1999). Making large-scale svm learning practical. In B. Schölkopf,
C. Burges, and A. Smola, editors, Advances in Kernel Methods - Support Vector
Learning, pages 169–184. MIT-Press.

Johnson, C. R., Petruck, M. R. L., Baker, C. F., Ellsworth, M., Ruppenhofer, J.,
and Fillmore, C. J. (2003). FrameNet: Theory and Practice. http://www.
icsi.berkeley.edu/˜framenet.

Johnson, M. (2002). A simple pattern-matching algorithm for recovering empty
nodes and their antecedents. In Proceedings of the 40th Annual Meeting of the
Association for Computational Linguistics (ACL), pages 136–143.

Katz, B. and Lin, J. (2003). Selectively using relations to improve precision in
question answering. In Proceedings of the EACL-2003 Workshop on Natural
Language Processing for Question Answering.

Kingsbury, P., Palmer, M., and Marcus, M. (2002). Adding semantic annotation to
the Penn Treebank. In Proceedings of the Human Language Technology Con-
ference (HLT’02).

Kipper, K., Trang Dang, H., and Palmer, M. (2000). Class-based construction of
a verb lexicon. In Proceedings of the Seventh National Conference on Artificial
Intelligence (AAAI).

Klein, D. and Manning, C. D. (2003). Accurate unlexicalized parsing. In Proceed-
ings of the 41st Meeting of the Association for Computational Linguistics (ACL),
pages 423–430.

Kübler, S. and Telljohann, H. (2002). Towards a dependency-based evaluation for
partial parsing. In Proceedings of the LREC 2002 Workshop Beyond PARSEVAL
– Towards Improved Evaluation Measures for Parsing Systems.

Kuramochi, M. and Karypis, G. (2001). Frequent subgraph discovery. In Proceed-
ings of the 2001 IEEE International Conference on Data Mining (ICDM), pages
313–320.

Kwon, N., Fleischman, M., and Hovy, E. (2004a). FrameNet-based semantic pars-
ing using Maximum Entropy models. In Proceedings of the 20th International
Conference on Computational Linguistics (COLING), pages 1233–1239.

Kwon, N., Fleischman, M., and Hovy, E. (2004b). Senseval automatic labeling
of semantic roles using Maximum Entropy models. In Senseval-3: Third Inter-
national Workshop on the Evaluation of Systems for the Semantic Analysis of
Text.

Levenshtein, V. (1966). Binary codes capable of correcting deletions, insertions
and reversals, volume 10, pages 707–710.

Levin, B. (1993). English Verb Classes and Alternations: A Preliminary Investi-
gation. University of Chicago Press, Chicago.

Levy, R. and Manning, C. (2004). Deep dependencies from context-free statisti-
cal parsers: Correcting the surface dependency approximation. In Proceedings
of the 42nd Annual Meeting of the Association for Computational Linguistics
(ACL), pages 327–334.

Lin, D. (1994). PRINCIPAR – an efficient, broad-coverage, principle-based parser.
In Proceedings of the 15th International Conference on Computational Linguis-
tics (COLING-94).

Lin, D. (1998). A dependency-based method for evaluating broad-coverage
parsers. Natural Language Engineering, 4(2), 97–114.

Litkowski, K. (2004). Senseval-3 task: Automatic labeling of semantic roles. In
Proceedings of the Third International Workshop on the Evaluation of Systems
for the Semantic Analysis of Text.

Magerman, D. (1995). Statistical decision-tree models for parsing. In Proceedings
of the 33rd Annual Meeting of the Association for Computational Linguistics
(ACL), pages 276–283.

Manning, C. and Schütze, H. (1999). Foundations of statistical natural language
processing. The MIT press.

Manning, C. D. (2003). Probabilistic Syntax. In Bod et al. (2003b).

Marcus, M., Kim, G., Marcinkiewicz, M. A., MacIntyre, R., Bies, A., Fergusson,
M., Katz, K., and Schasberger, B. (1994). The Penn Treebank: Annotating
predicate argument structure. In Proceedings of the 1994 Human Language
Technology Workshop, pages 110–115.

Mel’cuk, I. A. (1988). Dependency syntax: theory and practice. SUNY Series in
Linguistics. State University of New York Press, Albany.

Moldovan, D., Harabagiu, S., Girju, R., Morarescu, P., Lacatusu, F., Novischi, A.,
Badulescu, A., and Bolohan, O. (2003a). LCC Tools for Question Answering.
In Proceedings of the Eleventh Text REtrieval Conference (TREC 2002).

Moldovan, D., Paşca, M., Harabagiu, S., and Surdeanu, M. (2003b). Performance
issues and error analysis in an open-domain question answering system. ACM
Transactions on Information Systems, 21, 133–154.

Moldovan, D., Gı̂rju, R., Olteanu, M., and Fortu, O. (2004). SVM classification of
FrameNet semantic roles. In Senseval-3: Third International Workshop on the
Evaluation of Systems for the Semantic Analysis of Text, pages 167–170.

Nivre, J. and Scholz, M. (2004). Deterministic dependency parsing of English
text. In Proceedings of the 20th International Conference on Computational
Linguistics (COLING), pages 64–70.

Palmer, M., Gildea, D., and Kingsbury, P. (2005). The Proposition Bank: An
annotated corpus of semantic roles. Computational Linguistics, 31(1), 71–106.

Pradhan, S., Ward, W., Hacioglu, K., Martin, J., and Jurafsky, D. (2004). Shallow
semantic parsing using support vector machines. In Proceedings of the Human
Language Technology Conference/North American chapter of the Association of
Computational Linguistics (HLT/NAACL).

Pradhan, S., Ward, W., Hacioglu, K., Martin, J. H., and Jurafsky, D. (2005a). Se-
mantic role labeling using different syntactic views. In Proceedings of the 43rd
Annual Meeting of the Association for Computational Linguistics (ACL).

Pradhan, S., Ward, W., Hacioglu, K., Martin, J., and Jurafsky, D. (2005b). Semantic
role labeling using different syntactic views. In Proceedings of the 43rd Annual
Meeting of the Association for Computational Linguistics (ACL), pages 581–
588.

Pradhan, S., Hacioglu, K., Krugler, V., Ward, W., Martin, J. H., and Jurafsky, D.
(2005c). Support vector learning for semantic argument classification. Machine
Learning, 60(1-3), 11–39.

Rambow, Owen, Dorr, B. J., Kipper, K., Kučerová, I., and Palmer, M. (2003).
Automatically deriving tectogrammatical labels from other resources: A com-
parison of semantic labels across frameworks. In The Prague Bulletin of Math-
ematical Linguistics, volume 79–80, pages 23–35.

Ratnaparkhi, A. (1996). A maximum entropy part-of-speech tagger. In Proceed-
ings of the Empirical Methods in Natural Language Processing Conference,
pages 133–142.

Roche, E. and Schabes, Y. (1995). Deterministic part-of-speech tagging with finite-
state transducers. Computational Linguistics, 21(2), 227–253.

Rozenberg, G., editor (1997). Handbook of Graph Grammars and Computing by
Graph Transformation, volume 1. World Scientific.

Sampson, G. (1986). A stochastic approach to parsing. In Proceedings of the
18th International Conference on Computational Linguistics (COLING), pages
151–155.

Satta, G. and Brill, E. (1996). Efficient transformation-based parsing. In Proceed-
ings of the 36th Annual Meeting of the Association for Computational Linguis-
tics (ACL), pages 255–262.

Schneider, G. (2003). A low-complexity, broad coverage probabilistic dependency
parser for English. In Proceedings of the Student Workshop of the Human Lan-
guage Technology Conference/North American chapter of the Association of
Computational Linguistics (HLT/NAACL), pages 31–36.

Schürr, A. (1997). Programmed Graph Replacement Systems, chapter 7, pages
479–546. Volume 1 of Rozenberg (1997).

Sleator, D. and Temperley, D. (1991). Parsing English with a link grammar. Techni-
cal Report CMU-CS-91-196, Department of Computer Science, Carnegie Mel-
lon University.

Surdeanu, M., Harabagiu, S., Williams, J., and Aarseth, P. (2003). Using predicate-
argument structures for information extraction. In Proceedings of the 41st An-
nual Meeting on Association for Computational Linguistics (ACL), pages 8–15.

Thomas H. Cormen, Charles E. Leiserson, R. L. R. and Stein, C. (2001). Introduc-
tion to Algorithms, Second Edition. The MIT Press.

Toutanova, K., Haghighi, A., and Manning, C. (2005). Joint learning improves
semantic role labeling. In Proceedings of the 43rd Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL), pages 589–596.

Voorhees, E. and Trang Dang, H. (2006). Overview of the TREC 2005 Question
Answering track. In Proceedings of the Fourteenth Text REtrieval Conference
(TREC 2005).

Webber, B., Gardent, C., and Bos, J. (2002). Position statement: Inference in
question answering. In Proceedings of the Third International Conference on
Language Resources and Evaluation (LREC).

Williams, K., Dozier, C., and McCulloh, A. (2004). Learning transformation rules
for semantic role labeling. In Proceedings of the 7th International Workshop on
Computational Natural Language Learning (CoNLL).

Xia, F. and Palmer, M. (2001). Converting dependency structures to phrase struc-
tures. In Proceedings of the First International Conference on Human Language
Technology Research, pages 1–5.

Yamada, H. and Matsumoto, Y. (2003). Statistical dependency analysis with sup-
port vector machines. In Proceedings of the 8th International Workshop on Pars-
ing Technologies.

Yan, X. and Han, J. (2002). gSpan: Graph-based substructure pattern mining.
In Proceedings of the 2002 IEEE International Conference on Data Mining
(ICDM), page 721.

Samenvatting

Dit proefschrift beschrijft een methode voor het leren van graaftransformaties en
onderzoekt de toepassingen van deze methode binnen de natuurlijke taalverw-
erking (Natural Language Processing, NLP). We beschouwen syntactische en se-
mantische taalstructuren als gelabelde gerichte grafen, en herformuleren NLP-
problemen als afbeeldingen tussen verschillende typen grafen. Bijvoorbeeld, een
semantische analyse-component leest als invoer een graaf die de syntactische struc-
tuur van een zin weergeeft, en produceert als uitvoer een andere graaf met een se-
mantische annotatie van de zin. Zo gezien is een NLP-algoritme simpelweg een
systeem dat grafen transformeert. Deze uniforme presentatie van NLP-problemen
maakt het mogelijk om een algemene methode te introduceren voor de constructie
van graaftransformatie-tools.

We beschrijven een algemene methode voor het leren van graaftransformaties
op basis van geannoteerde corpora, oftewel collecties van voorbeeldinvoer- en
uitvoergrafen. Deze methode voor machinaal leren combineert het Transformation
Based Learning paradigma met traditionele algoritmes voor “supervised” machi-
naal leren, om automatisch te herkennen welke reeks atomaire graaftransformaties
de invoergraaf omzet in de juiste uitvoergraaf. Atomaire transformaties zijn een-
voudige regels die kleine wijzigingen aanbrengen in de verbindingen tussen sub-
grafen. Het toepassen van deze regels wordt gestuurd door middel van traditionele
meervoudige classificatie.

Eerst beschrijven we de algemene methode voor het leren van graaftransfor-
maties. Vervolgens beschouwen we drie specifieke NLP-toepassingen:

• Het herkennen van predicaat-argumentstructuren in het resultaat van seman-
tische analyse, zowel voor syntactische dependentiestructuren als voor syn-
tactische frasestructuren;

• het automatisch omzetten van syntactische structuren van het ene dependen-
tieformalisme naar het andere; en

• het herkennen van semantische argumenten gegeven een syntactische parse,

waarbij we gebruik maken van PropBank en FrameNet als bronnen van se-
mantische annotaties.

We tonen aan dat de prestatie van graaftransformatie op het eerstgenoemde
probleem vergelijkbaar is met de best bekende technieken. Bovendien demonstr-
eren we de flexibiliteit van deze methode door haar toe te passen op verschillende
soorten syntactische representaties. Toepassing van de methode op de overige twee
problemen wijst uit dat de parameters van onze leermethode zorgvuldige afgesteld
moeten worden om voor die problemen goede resultaten te bereiken.

SIKS Dissertation Series

1998

1998-1 J̄ohan van den Akker (CWI)
DEGAS - An Active, Temporal Database of
Autonomous Objects

1998-2 Floris Wiesman (UM)
Information Retrieval by Graphically Brows-
ing Meta-Information

1998-3 Ans Steuten (TUD)
A Contribution to the Linguistic Analysis
of Business Conversations within the Lan-
guage/Action Perspective

1998-4 Dennis Breuker (UM)
Memory versus Search in Games

1998-5 E.W.Oskamp (RUL)
Computerondersteuning bij Straftoemeting

1999

1999-1 Mark Sloof (VU)
Physiology of Quality Change Modelling;
Automated modelling of Quality Change of
Agricultural Products

1999-2 Rob Potharst (EUR)
Classification using decision trees and neu-
ral nets

1999-3 Don Beal (UM)
The Nature of Minimax Search

1999-4 Jacques Penders (UM)
The practical Art of Moving Physical Ob-
jects

1999-5 Aldo de Moor (KUB)
Empowering Communities: A Method for the
Legitimate User-Driven Specification of Net-
work Information Systems

1999-6 Niek J.E. Wijngaards (VU)
Re-design of compositional systems

1999-7 David Spelt (UT)
Verification support for object database de-
sign

1999-8 Jacques H.J. Lenting (UM)
Informed Gambling: Conception and Analy-
sis of a Multi-Agent Mechanism for Discrete
Reallocation.

2000

2000-1 Frank Niessink (VU)
Perspectives on Improving Software Mainte-
nance

2000-2 Koen Holtman (TUE)
Prototyping of CMS Storage Management

2000-3 Carolien M.T. Metselaar (UVA)
Sociaal-organisatorische gevolgen van ken-
nistechnologie; een procesbenadering en ac-
torperspectief.

2000-4 Geert de Haan (VU)
ETAG, A Formal Model of Competence
Knowledge for User Interface Design

2000-5 Ruud van der Pol (UM)
Knowledge-based Query Formulation in In-
formation Retrieval.

2000-6 Rogier van Eijk (UU)
Programming Languages for Agent Commu-
nication

2000-7 Niels Peek (UU)
Decision-theoretic Planning of Clinical Pa-
tient Management

2000-8 Veerle Coup (EUR)
Sensitivity Analyis of Decision-Theoretic
Networks

2000-9 Florian Waas (CWI)
Principles of Probabilistic Query Optimiza-
tion

2000-10 Niels Nes (CWI)
Image Database Management System De-
sign Considerations, Algorithms and Archi-
tecture

2000-11 Jonas Karlsson (CWI)
Scalable Distributed Data Structures for
Database Management

2001

2001-1 Silja Renooij (UU)
Qualitative Approaches to Quantifying Prob-
abilistic Networks

2001-2 Koen Hindriks (UU)
Agent Programming Languages: Program-
ming with Mental Models

2001-3 Maarten van Someren (UvA)
Learning as problem solving

2001-4 Evgueni Smirnov (UM)
Conjunctive and Disjunctive Version Spaces
with Instance-Based Boundary Sets

2001-5 Jacco van Ossenbruggen (VU)
Processing Structured Hypermedia: A Mat-
ter of Style

2001-6 Martijn van Welie (VU)
Task-based User Interface Design

2001-7 Bastiaan Schonhage (VU)
Diva: Architectural Perspectives on Infor-
mation Visualization

2001-8 Pascal van Eck (VU)
A Compositional Semantic Structure for
Multi-Agent Systems Dynamics.

2001-9 Pieter Jan ’t Hoen (RUL)
Towards Distributed Development of Large
Object-Oriented Models, Views of Packages
as Classes

2001-10 Maarten Sierhuis (UvA)
Modeling and Simulating Work Practice
BRAHMS: a multiagent modeling and sim-
ulation language for work practice analysis
and design

2001-11 Tom M. van Engers (VUA)
Knowledge Management: The Role of Men-
tal Models in Business Systems Design

2002

2002-01 Nico Lassing (VU)
Architecture-Level Modifiability Analysis

2002-02 Roelof van Zwol (UT)
Modelling and searching web-based docu-
ment collections

2002-03 Henk Ernst Blok (UT)
Database Optimization Aspects for Informa-
tion Retrieval

2002-04 Juan Roberto Castelo Valdueza (UU)
The Discrete Acyclic Digraph Markov Model
in Data Mining

2002-05 Radu Serban (VU)
The Private Cyberspace Modeling Elec-
tronic Environments inhabited by Privacy-
concerned Agents

2002-06 Laurens Mommers (UL)
Applied legal epistemology; Building a
knowledge-based ontology of the legal do-
main

2002-07 Peter Boncz (CWI)
Monet: A Next-Generation DBMS Kernel
For Query-Intensive Applications

2002-08 Jaap Gordijn (VU)
Value Based Requirements Engineering: Ex-
ploring Innovative E-Commerce Ideas

2002-09 Willem-Jan van den Heuvel(KUB)
Integrating Modern Business Applications
with Objectified Legacy Systems

2002-10 Brian Sheppard (UM)
Towards Perfect Play of Scrabble

2002-11 Wouter C.A. Wijngaards (VU)
Agent Based Modelling of Dynamics: Bio-
logical and Organisational Applications

2002-12 Albrecht Schmidt (UvA)
Processing XML in Database Systems

2002-13 Hongjing Wu (TUE)
A Reference Architecture for Adaptive Hy-
permedia Applications

2002-14 Wieke de Vries (UU)
Agent Interaction: Abstract Approaches
to Modelling, Programming and Verifying
Multi-Agent Systems

2002-15 Rik Eshuis (UT)
Semantics and Verification of UML Activity
Diagrams for Workflow Modelling

2002-16 Pieter van Langen (VU)
The Anatomy of Design: Foundations, Mod-
els and Applications

2002-17 Stefan Manegold (UVA)
Understanding, Modeling, and Improving
Main-Memory Database Performance

2003

2003-01 Heiner Stuckenschmidt (VU)
Ontology-Based Information Sharing in
Weakly Structured Environments

2003-02 Jan Broersen (VU)
Modal Action Logics for Reasoning About
Reactive Systems

2003-03 Martijn Schuemie (TUD)
Human-Computer Interaction and Presence
in Virtual Reality Exposure Therapy

2003-04 Milan Petkovic (UT)
Content-Based Video Retrieval Supported by
Database Technology

2003-05 Jos Lehmann (UVA)
Causation in Artificial Intelligence and Law
- A modelling approach

2003-06 Boris van Schooten (UT)
Development and specification of virtual en-
vironments

2003-07 Machiel Jansen (UvA)
Formal Explorations of Knowledge Intensive
Tasks

2003-08 Yongping Ran (UM)
Repair Based Scheduling

2003-09 Rens Kortmann (UM)
The resolution of visually guided behaviour

2003-10 Andreas Lincke (UvT)
Electronic Business Negotiation: Some ex-
perimental studies on the interaction be-
tween medium, innovation context and cul-
ture

2003-11 Simon Keizer (UT)
Reasoning under Uncertainty in Natural
Language Dialogue using Bayesian Net-
works

2003-12 Roeland Ordelman (UT)
Dutch speech recognition in multimedia in-
formation retrieval

2003-13 Jeroen Donkers (UM)
Nosce Hostem - Searching with Opponent
Models

2003-14 Stijn Hoppenbrouwers (KUN)
Freezing Language: Conceptualisation Pro-
cesses across ICT-Supported Organisations

2003-15 Mathijs de Weerdt (TUD)
Plan Merging in Multi-Agent Systems

2003-16 Menzo Windhouwer (CWI)
Feature Grammar Systems - Incremental
Maintenance of Indexes to Digital Media
Warehouses

2003-17 David Jansen (UT)
Extensions of Statecharts with Probability,
Time, and Stochastic Timing

2003-18 Levente Kocsis (UM)
Learning Search Decisions

2004

2004-01 Virginia Dignum (UU)
A Model for Organizational Interaction:
Based on Agents, Founded in Logic

2004-02 Lai Xu (UvT)
Monitoring Multi-party Contracts for E-
business

2004-03 Perry Groot (VU)
A Theoretical and Empirical Analysis of Ap-
proximation in Symbolic Problem Solving

2004-04 Chris van Aart (UVA)
Organizational Principles for Multi-Agent
Architectures

2004-05 Viara Popova (EUR)
Knowledge discovery and monotonicity

2004-06 Bart-Jan Hommes (TUD)
The Evaluation of Business Process Model-
ing Techniques

2004-07 Elise Boltjes (UM)
Voorbeeldig onderwijs; voorbeeldgestuurd
onderwijs, een opstap naar
abstract denken, vooral voor meisjes

2004-08 Joop Verbeek(UM)
Politie en de Nieuwe Internationale In-
formatiemarkt, Grensregionale politiële
gegevensuitwisseling en digitale expertise

2004-09 Martin Caminada (VU)
For the Sake of the Argument; explorations
into argument-based reasoning

2004-10 Suzanne Kabel (UVA)
Knowledge-rich indexing of learning-objects

2004-11 Michel Klein (VU)
Change Management for Distributed On-
tologies

2004-12 The Duy Bui (UT)
Creating emotions and facial expressions for
embodied agents

2004-13 Wojciech Jamroga (UT)
Using Multiple Models of Reality: On
Agents who Know how to Play

2004-14 Paul Harrenstein (UU)
Logic in Conflict. Logical Explorations in
Strategic Equilibrium

2004-15 Arno Knobbe (UU)
Multi-Relational Data Mining

2004-16 Federico Divina (VU)
Hybrid Genetic Relational Search for Induc-
tive Learning

2004-17 Mark Winands (UM)
Informed Search in Complex Games

2004-18 Vania Bessa Machado (UvA)
Supporting the Construction of Qualitative
Knowledge Models

2004-19 Thijs Westerveld (UT)
Using generative probabilistic models for
multimedia retrieval

2004-20 Madelon Evers (Nyenrode)
Learning from Design: facilitating multidis-
ciplinary design teams

2005

2005-01 Floor Verdenius (UVA)
Methodological Aspects of Designing
Induction-Based Applications

2005-02 Erik van der Werf (UM)
AI techniques for the game of Go

2005-03 Franc Grootjen (RUN)
A Pragmatic Approach to the Conceptualisa-
tion of Language

2005-04 Nirvana Meratnia (UT)
Towards Database Support for Moving Ob-
ject data

2005-05 Gabriel Infante-Lopez (UVA)
Two-Level Probabilistic Grammars for Nat-
ural Language Parsing

2005-06 Pieter Spronck (UM)
Adaptive Game AI

2005-07 Flavius Frasincar (TUE)
Hypermedia Presentation Generation for Se-
mantic Web Information Systems

2005-08 Richard Vdovjak (TUE)
A Model-driven Approach for Building Dis-
tributed Ontology-based Web Applications

2005-09 Jeen Broekstra (VU)
Storage, Querying and Inferencing for Se-
mantic Web Languages

2005-10 Anders Bouwer (UVA)
Explaining Behaviour: Using Qualitative
Simulation in Interactive Learning Environ-
ments

2005-11 Elth Ogston (VU)
Agent Based Matchmaking and Clustering -
A Decentralized Approach to Search

2005-12 Csaba Boer (EUR)
Distributed Simulation in Industry

2005-13 Fred Hamburg (UL)
Een Computermodel voor het Ondersteunen
van Euthanasiebeslissingen

2005-14 Borys Omelayenko (VU)
Web-Service configuration on the Semantic
Web; Exploring how semantics meets prag-
matics

2005-15 Tibor Bosse (VU)
Analysis of the Dynamics of Cognitive Pro-
cesses

2005-16 Joris Graaumans (UU)
Usability of XML Query Languages

2005-17 Boris Shishkov (TUD)
Software Specification Based on Re-usable
Business Components

2005-18 Danielle Sent (UU)
Test-selection strategies for probabilistic
networks

2005-19 Michel van Dartel (UM)
Situated Representation

2005-20 Cristina Coteanu (UL)
Cyber Consumer Law, State of the Art and
Perspectives

2005-21 Wijnand Derks (UT)
Improving Concurrency and Recovery in
Database Systems by
Exploiting Application Semantics

2006

2006-01 Samuil Angelov (TUE)
Foundations of B2B Electronic Contracting

2006-02 Cristina Chisalita (VU)
Contextual issues in the design and use of in-
formation technology in organizations

2006-03 Noor Christoph (UVA)
The role of metacognitive skills in learning
to solve problems

2006-04 Marta Sabou (VU)
Building Web Service Ontologies

2006-05 Cees Pierik (UU)
Validation Techniques for Object-Oriented
Proof Outlines

2006-06 Ziv Baida (VU)
Software-aided Service Bundling - Intelli-
gent Methods & Tools
for Graphical Service Modeling

2006-07 Marko Smiljanic (UT)
XML schema matching – balancing effi-
ciency and effectiveness by means of cluster-
ing

2006-08 Eelco Herder (UT)
Forward, Back and Home Again - Analyzing
User Behavior on the Web

2006-09 Mohamed Wahdan (UM)
Automatic Formulation of the Auditor’s
Opinion

2006-10 Ronny Siebes (VU)
Semantic Routing in Peer-to-Peer Systems

2006-11 Joeri van Ruth (UT)
Flattening Queries over Nested Data Types

2006-12 Bert Bongers (VU)
Interactivation - Towards an e-cology of peo-
ple, our technological environment, and the
arts

2006-13 Henk-Jan Lebbink (UU)
Dialogue and Decision Games for Informa-
tion Exchanging Agents

2006-14 Johan Hoorn (VU)
Software Requirements: Update, Upgrade,
Redesign - towards a Theory of Require-
ments Change

2006-15 Rainer Malik (UU)
CONAN: Text Mining in the Biomedical Do-
main

2006-16 Carsten Riggelsen (UU)
Approximation Methods for Efficient Learn-
ing of Bayesian Networks

2006-17 Stacey Nagata (UU)
User Assistance for Multitasking with Inter-
ruptions on a Mobile Device

2006-18 Valentin Zhizhkun (UVA)
Graph Transformation for Natural Language
Processing

2006-19 Birna van Riemsdijk (UU)
Cognitive Agent Programming: A Semantic
Approach

2006-20 Marina Velikova (UvT)
Monotone models for prediction in data min-
ing

2006-21 Bas van Gils (RUN)
Aptness on the Web

2006-22 Paul de Vrieze (RUN)
Fundaments of Adaptive Personalisation

2006-23 Ion Juvina (UU)
Development of Cognitive Model for Navi-
gating on the Web

2006-24 Laura Hollink (VU)
Semantic Annotation for Retrieval of Visual
Resources

2006-25 Madalina Drugan (UU)
Conditional log-likelihood MDL and Evolu-
tionary MCMC

2006-26 Vojkan Mihajlovič (UT)
Score Region Algebra: A Flexible Frame-
work for Structured Information Retrieval

2006-27 Stefano Bocconi (CWI)
Vox Populi: generating video documentaries
from semantically annotated media reposito-
ries

