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Abstract
BCubed is a mathematically clean, elegant and intuitively well behaved external performance metric for clustering tasks. 
BCubed compares a predicted clustering to a known ground truth clustering through elementwise precision and recall 
scores. For each element, the predicted and ground truth clusters containing the element are compared, and the mean 
over all elements is taken. We argue that BCubed overestimates performance, for the intuitive reason that the clustering 
gets credit for putting an element into its own cluster. This is repaired, and we investigate the repaired version, called 
“Elements Like Me (ELM)”. We extensively evaluate ELM from both a theoretical and empirical perspective, and conclude 
that it retains all of its positive properties, and yields a minimum zero score when it should. Synthetic experiments show 
that ELM can produce different rankings of predicted clusterings when compared to BCubed, and that the ELM scores 
are distributed with lower mean and a larger variance than BCubed.

Keywords Information retrieval · BCubed · Clustering · Metrics

1 Introduction

We review the external clustering performance metric BCubed [3], indicate a flaw and propose a repair. We then evaluate 
the repair both theoretically and experimentally.

In essence, clustering and (single label) classification perform the same task: given a set of items E, they partition E. 
However, when it comes to evaluation with comparison to a gold standard, things are very different.

With classification, the number of blocks in the partition is known (the set of labels), and a mapping exists between the 
true blocks and the predicted blocks (namely the identity mapping on the labels). So, counting errors is straightforward 
by making the cross table of predicted and gold truth values (the confusion table), and computing precision and recall 
as the diagonal divided by the two margins, respectively.

This is an extension of BCubed Revisited: Elements Like Me, published in ICTIR 2022. This work has several key differences and extensions 
over the previous work. First, theoretical proofs on the behaviour of ELM with respect to BCubed have been added in Sect. 3.1, 3.2 and 
3.3 with proofs of the ZeroScore constraint, behaviour on degenerate clusters and proof of its ability to change rankings. A new Sect. 3.4 
has been added that shows the differences between BCubed and ELM on synthetically generated data where rankings between all 
possible clusterings off 14 elements were compared to investigate the ranking differences between BCubed and ELM. A new experiment 
has been conducted, where the original hierarchical clustering algorithm is replaced with a BERT model (Sect. 3.5). The literature section 
has been updated to include an overview of the applications of BCubed. Apart from these large differences, several more minor changes 
were also made. Figure 1 was added to illustrate the BCubed intuition, an impression of the differences using synthetic data (Sect. 2.2) 
was added, and several plots were improved. We estimate 30–50% of this work is new or significantly updated over the original paper.
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With clustering, there is (at prediction time) no known number of blocks (as the label set is unknown), and there is 
no mapping between the predicted blocks and the true labels. This makes counting errors much less straightforward, 
witnessed by the numerous proposals on how to do this, nicely surveyed and classified by Amigó, Gonzalo, Artiles, and 
Verdejo [1].

The BCubed measure, proposed by Bagga and Baldwin [3], sidesteps the problem of matching true and hypothesized 
clusters. It does not measure errors over the clusters, but computes a precision and recall value for each element, and 
then takes the average. i.e., the recall for element e is the fraction of the true cluster of e that is contained in the predicted 
cluster of e. As each element e is contained in both its true and predicted cluster, both recall and precision of e are always 
larger than 0, even when a predicted and true clustering are disjoint except for the element e. This can be repaired by 
leaving out e itself in the calculation of precision and recall of e. In this paper, we investigate this alternative definition 
of BCubed (Sect. 2), evaluate the new metric both theoretically and empirically (Sect. 3), and conclude that it retains 
all positive properties of BCubed, yields a minimum zero score when it should and can produce different rankings for 
predicted clusterings when compared to BCubed.

2  BCubed revisited

Let E be a set and NT  and NH two clusterings (partitions) of E, corresponding to the true and hypothesized clustering, 
respectively. We use NT

e
 to denote the block in NT containing e, and similarly for NH

e
 and NH . Figure 1 shows how precision 

and recall relative to an element e are defined given the true and hypothesized clusterings NT and NH.
The BCubed measure for a given clustering is then the average harmonic mean (the F1-value) of the precision and 

recall for each element. This F1 value is what is denoted by “BCubed” or “BCubed score” in the literature, a convention 
also followed in this paper. This harmonic mean is usually defined as 2PR∕(P + R) , but the equivalent direct definition is 
insightful here as well. Let A⊕ B denote the symmetric difference of the sets A and B. Then

Fig. 1 shows that TPe ≠ ∅ , as e is always in TPe  and thus that precision, recall and F1 are always positive for each element, 
implying that the BCubed score of a clustering is never equal to 0.

Having a meaningful zero point is a requisite for a metric to be measured on ratio-scale. We can say that a score of 0 
is meaningful if none of the predictions was correct, thus when all items in the contingency table are off the diagonal. 
Let us formulate this as a desideratum for a clustering metric: 

(ZeroScore)  For every true clustering, there is a predicted clustering with score 0.

BCubed fails the ZeroScore constraint and can even give quite a high score of .66 to an absolutely wrong prediction. 
Consider this simple example: E = {1, 2} and the true clustering NT  is {E} . Now let the predicted clustering NH be (the 
only other possibility) {{1}, {2}} . Obviously it is wrong, but for both elements e, P(e) = 1 , as it makes no mistakes, R(e) 
= .5 , as half of the true elements of the block of e are in its predicted block, and so F1(e) = .66 . Taking the mean F1 over 
all elements, we get a BCubed score of .66 for this predicted partition.

In fact, because TPe can never be empty, BCubed fails the ZeroScore constraint in a much stronger manner: for every 
true clustering there is no prediction with score 0. Bcubed can never be equal to 0.

(1)F1(e) =
|NH

e
∩ NT

e
|

|NH
e

∩ NT
e
| + .5 ⋅ |NH

e
⊕ NT

e
|
.

Fig. 1  Comparing the ele-
ments in the true cluster NT

e
 of 

e to those in the predicted 
cluster NH

e
 of e. TP

e
 , FP

e
 , and FN

e
 

represent the sets of True Posi-
tives, False Positives, and False 
Negatives for e, respectively. 
P(e) and R(e) are Precision and 
Recall relative to e 
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In order to repair BCubed so that it does satisfy the ZeroScore constraint, we only need to remove e from both NH
e

 and 
NT
e
Ṫhus NT

e
 now denotes the set of all elements in the same true cluster as e except e itself, and similarly for NH

e
 Ẇe call 

these the neighbors of e. Then TPe = NH
e

 ∩ NT
e

 can be empty, and thus all measures can be equal to 0. The price paid for this 
is that we may divide by 0 in the definitions of P, R and F1 and thus must account for that. So all definitions remain the 
same, but we add the following provisos:

• If NH
e

 = � , P(e) = 1.
• If NT

e
 = � , R(e) = 1.

• If NT
e

=NH
e

 = � , F1(e) = 1.

With these rules the new definitions yield the same scores as the original BCubed definitions on the singleton cases. In 
the first case, the hypothesized cluster containing e is {e} , thus no mistakes for e can be made. In the second, recall for e 
is indeed perfect, and a perfect F1 score for a true singleton is of course only obtained if we exactly predict that.

It is easy to see that with this proviso the definition of F1(e) as in (1) is still equivalent to the often used 2PR∕(P + R) 
formulation.

2.1  A new name

In the rest of the paper, we further evaluate this repair. But let us first give it a name. The BCubed measure was introduced 
by Bagga and Baldwin. In a footnote they attribute the idea of BCubed to Bierman, and thus the cubed Bs. We opted 
for ELM, an abbreviation of Elements Like Me, which is a good mnemonic of the way we compute the repaired BCubed 
measure.

2.2  First impression of the differences

The following example gives a good impression of the difference between the two measures. Let E be the set consisting 
of the first 15 digits, and let it have the following true clustering

We have generated all possible predictions with the proviso that each cluster must consist of consecutive elements. For a 
set of N consecutive elements, there are 2N−1 of these. For 15 elements, this results in 16,384 possible predicted partitions. 
Figure 2 shows the distribution of the BCubed and ELM scores for all these predictions. Both scores are approximately 
normally distributed and 25% of the ELM scores are below the lowest BCubed score. The ELM scores are more evenly 
spread over the possible scores. Not only does BCubed start higher, its variance of .006 is much lower than the .02 for 
ELM. ELM and BCubed can also rank clustering systems differently: in this example, 18% of all ( 214 × 213 ) pairs of predic-
tions are ranked differently by ELM and BCubed.

The Kendall-Tau � statistic (which accounts for tied ranks) between the ELM- and the BCubed-based ranking in this 
example is 0.63, also indicating that there are substantial differences between the rankings produced by the two metrics.

(2){{1, 2}, {3, 4, 5}, {6, 7}, {8}, {9}, {10, 11, 12}, {13, 14}, {15}}.

Fig. 2  Population density dia-
gram of all BCubed and ELM 
scores for all 16,384 predic-
tions of the model in (2) plus 
the main statistics

BCubed ELM

mean 0.65 0.35
std 0.08 0.14
min 0.25 0.00
25% 0.60 0.25
50% 0.65 0.34
75% 0.71 0.44
max 1.00 1.00
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3  Evaluation

We evaluate the new ELM metric both theoretically and empirically in a number of ways: 

1. Unlike BCubed, ELM satisfies the ZeroScore constraint.
2. ELM has good behaviour on extreme non-informed (referred to as “degenerate” by Beeferman, Berger, and Lafferty 

[5]) systems.
3. The ranking of clustering systems based on ELM can be different from the ranking based on BCubed.
4. There are systematic differences between ELM and BCubed in synthetic experiments.
5. There are systematic differences on a real dataset, with a state-of-the-art clustering system based on BERT.
6. ELM satisfies the same four clustering metric constraints developed by Amigó et al. [1] that BCubed satisfies.

We compare the BCubed and ELM versions of P, R and F1 using superscripts PB, PELM , RB, RELM, F1B and F1ELM . In the proofs, 
the precision, recall and F1 scores over a set of elements E are defined as the average of these scores over all elements in E.

3.1  ZeroScore constraint

Theorem 1 For every set E, with at least 2 elements, and a gold standard partition NT  over E, there is a clustering NH over E such 
that for every e in E, F1ELM(e) = 0.

Proof Let E and NT  be as stated in the Theorem. Let Es ⊆ E be the set of elements which are clustered into singletons. 
There are three cases: no true singleton clusters, exactly one true singleton cluster or more than one singleton cluster. 
If there are no true singleton clusters, simply let the predicted clustering partition E into singletons. Recall that we now 
use NH

e
 and NT

e
 as denoting all elements in the same cluster as e except e. In particular, with a true singleton cluster {e} , NT

e
 

= � . Then for each e ∈ E , NH
e

 = � and | NT
e
 | ≥ 1 (as |E| ≥ 2 ). And thus TPe = � and F1(e) = 0 , because the special clause for F1 

does not apply. If there is more than one true singleton cluster, create the predicted clustering NH as follows: one cluster 
Es and for each e ∈ E⧵Es , a singleton cluster {e} . Again, we must show that F1(e) = 0 , for each e ∈ E . First, let e ∈ Es . Then 
NT
e

 = � and NH
e

 = Es ⧵ {e} , which is not equal to ∅ as E has at least 2 elements. And thus TPe = � and F1(e) = 0 because the 
special clause for F1 does not apply. If e ∉ Es , the reasoning is as in the case without singletons. If Es is itself a singleton, 
say {s} , we proceed as follows. Because E has at least two elements, it has another element different from s, say t. Let NH 
consist of the cluster {s, t} and, again, for each e ∈ E ⧵ {s, t} , a singleton cluster {e} . Using the same argument as above, 
for each e ∈ E , TPe = � and F1(e) = 0 , as the special case never applies.   ◻

3.2  ELM behaves well on degenerate clusterings

Theorem 2 Let NT  be a true clustering over a set E and NH the clustering consisting only of singleton clusters. Then P(e) = 1 , for 
all e ∈ E , and R(e) = F1(e) = 1 only if NT

e
 = � and 0 otherwise.

An immediate corollary is that the ELM F1 for the degenerate singleton clustering is equal to the proportion of singletons 
in the gold standard partition.

Proof Assume E, NT and NH are as in the theorem. In particular then NH
e

 = � , for all e ∈ E . Then by the special clause in the 
definition, P(e) = 1 for all e, and R(e) = F1(e) = 1 if NT

e
 = � . When NT

e
 ≠ ∅ , still NT

e
 ∩ NH

e
 NH(e) = � , and thus both R(e) and F1(e) 

are 0.   ◻

Now consider the other degenerate clustering: all elements are contained in one cluster. Let NH be this degenerate 
all in one predicted clustering, with NT the true clustering over a set E. Then obviously, R(e) = 1 , for all e ∈ E . Because NH

e
 

= E ⧵ {e} and thus NT
e

 ∩ NH
e

 = NT
e

  the precision P(e)equals |N
T
e
|

|E| − 1 . And thus the mean precision equals
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where the c ∈ NT denote the true clusters. Note that the BCubed mean precision for this degenerate clustering is equal 

to 
∑

c∈NT �c�2

�E�2  . Also note that when we view the clustering as a directed network partitioned into cliques, the ELM precision 

equals the density of this network, which ranges from 0 when each clique is a singleton to 1 only if the network is com-
plete and thus consists of one giant cluster.

We can conclude that for both degenerate clusterings, ELM gives the lowest reasonable score.

3.3  ELM can produce different rankings compared to BCubed

We give an example of a true clustering and two predicted clusterings (which can be seen as two competing systems), 
which are ranked differently by ELM compared to BCubed. The clusterings are over the set E = {1, 2, 3, 4, 5} and are given 
in the first 3 rows of Table 1, with for example H1 , depicting the clustering {1}, {2}, {3, 4, 5} . The other rows compute F1(e) 
for each element, for each clustering and using ELM and BCubed. System H2 is better according to ELM, while H1 is better 
according to BCubed.

Both H1 and H2 contain one error, but the error in H2 is in the larger cluster. Clustering intuition says that errors in smaller 
clusters should be penalized more than errors in larger ones, and that is what ELM does here, and BCubed does not.

3.4  ELM vs BCubed on synthetic data

We expand on the small synthetic experiment conducted in Sect. 2.2 by computing the BCubed and ELM scores for all 
clusterings of size 14 against all other clusterings of size 14. As there is a total of 214−1 possible clusterings, we thus have 
8,192 experiments, with each of these experiments producing two rankings of the predicted clusters, one for BCubed 
and one for ELM. The distribution of these scores is shown in Fig. 3. To further investigate the differences between 
BCubed and ELM when used to rank systems, we calculate the Kendall-Tau statistic between all rankings and also look 
at the number of system pairs where the order was swapped between BCubed and ELM (which is part of the calculation 
of Kendall-Tau). The number of pairs where the ranking order was swapped between BCubed and ELM was roughly 39 
billion out of the 274 billion cases (14%). The Kendall-Tau over all pairs of rankings is normally distributed with a mean 
of 0.70 and a standard deviation of 0.06, also similar to the example in Sect. 2.2.

Figure 4 shows the distribution of the fraction of the number of swaps for all of the 8, 192 experiments. Thus each 
datapoint is the fraction of possible system pairs where the order between the ranking between BCubed and ELM was 
swapped for that particular ranking. The y-axis represents all 8192 rankings and indicates what percentage of all rank-
ings has a certain fraction of swaps. To investigate which type of ground truth clusterings result in the largest number of 

P =

∑
e∈E �NT

e
�

�E� ⋅ (�E� − 1)
=

∑
c∈NT �c� ⋅ (�c� − 1)

�E� ⋅ (�E� − 1)
=

∑
c∈NT �c�2 − �c�
�E�2 − �E�

,

Table 1  F1 scores per 
element and the mean, 
for the given true and two 
system clusterings over the 
set {1, 2, 3, 4, 5} , according to 
both Bcubed and ELM

True

 

H1

 

H2

 

Metric System 1 2 3 4 5 Mean

BCubed H1
2

3

2

3
1 1 1 0.87

BCubed H2 1 1 4

5

4

5

1

2
0.82

ELM H1 0 0 1 1 1 0.60
ELM H2 1 1 2

3

2

3
0 0.66
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swaps, we employ the Pearson correlation between the entropy of the ground truth clustering and the number of pairs 
swapped in the ranking. The entropy for a given ground truth clustering NT is given by

The Pearson correlation between the entropy of a ground truth clustering and the number of swaps for that ground truth 
was 0.81 ( N = 8192 ). As clusterings that have more small elements have higher entropy, this means that the number of 
swaps tends to be higher when the ground truth has a larger number of small clusters. This is as expected as the differ-
ence between ELM and BCubed is larger on smaller clusters.

3.5  ELM vs BCubed on real data

We compare ELM and BCubed for three fixed cluster-size baselines and a clustering algorithm using BERT [7] on a large 
dataset consisting of 110 samples (separate clustering problems) with in total 24,180 true clusters over in total 89,491 
elements. The mean and median cluster sizes are 4 and 2, respectively. Each sample is a sequence of pages of text divided 
into documents. Thus each cluster consists of a document, which is a continuous sequence of pages. The elements are 
thus the pages. This scenario is common in the field of Page Stream Segmentation [20]. On average roughly 35% of the 
clusters in a stream are singleton clusters.

Following Bagga and Baldwin [3] and Amigó et al. [1], we report the mean average F1 scores. Thus for every sample E in 
our testset, we take the average over the F1(e) for each e ∈ E , and then we take the mean over all samples in the testset.

The dataset, together with the code for all the experiments conducted in this paper is available on GitHub.1 For the 
experiments with the BERT model, the dataset was split into a 70% train and 30% test set.

As the fixed page size baselines are not learned, we can use the entire dataset (train and test) for these experiments. The 
BERT model is evaluated on the test part of the dataset, consisting of 34 samples with 6347 clusters over 25,676 elements.

entropy(NT ) = −
∑

C∈NT

p(C) ∗ log2(p(C)), where p(C) =
|C|
|E|

.

Fig. 3  Population density 
diagram of BCubed and ELM 
scores between all possible 
pairs of ground truth and 
predicted clusterings of size 
14 plus the main statistics (N 
= 213 ⋅ 212)

Fig. 4  The fraction of the 
number of pairs with reversed 
orderings between BCubed 
and ELM for all rankings for all 
clusterings with size 14 (N = 
8192) plus the main statistics

1 https:// github. com/ irlab amste rdam/ elm.

https://github.com/irlabamsterdam/elm
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We first compare the precision, recall and their harmonic mean for BCubed and ELM on three fixed baselines: the two 
degenerate clusterings with only singleton clusters and one giant cluster, and a more sensible baseline that evenly par-
titions a sample into clusters of the mean true cluster size of that sample. The results are shown in Fig. 5. Note how the 
plots for precision for the all-singleton prediction and recall for the one-giant-cluster prediction show constant values 
of 1 for both ELM and BCubed.

The plots indicate that the smaller the cluster sizes in the predicted clustering, the larger the difference in both the 
mean and standard deviation of BCubed and ELM, for all 3 measures, again as expected.

We will now cluster this dataset using the BERT model for Page Stream Segmentation from Guha, Alahmadi, Samanta, 
Khan, and Alahmadi [9]. In short, this model creates textual representations of each page using a BERT model, and then 
uses this representation to divide the pages into pages starting a new document and other pages. This classification is 
equivalent to a clustering. We follow their experimental setup, replacing the English bert-base model with the Dutch 
version2 as the dataset is in Dutch. We train the model for 10 epochs, using a batch size of 512 and a learning rate of 2e−5.

Table 2 shows hardly any difference in precision and recall, but still a three percent point difference in F1 score. The 
KDE plots of the differences in Fig. 6 show the same trend.

This result shows that the differences between ELM and BCubed do not only exist on synthetic and simple baseline 
models, but also on well performing state-of-the-art models tested on large real data.

Fig. 5  Distributions of mean 
average Precision, Recall and 
F1 for BCubed and ELM for the 
three fixed baselines (only sin-
gletons, one giant cluster, and 
each cluster has the length of 
the samples mean true cluster 
length (N = 110))

2 https:// huggi ngface. co/ GroNLP/ bert- base- dutch- cased.

https://huggingface.co/GroNLP/bert-base-dutch-cased
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3.6  ELM satisfies the constraints of Amigó et al

We show that the four constraints developed by Amigó et al. [1] hold for the ELM F1 metric. The family of BCubed-
like cluster evaluation metrics is the only one satisfying all these four constraints. For a thorough explanation and 
motivation of these constraints we refer to the original paper. We follow the same line of reasoning as Amigó et al. 
[1] and also use their informative pictures.

3.6.1  Homogeneity

The homogeneity constraint states that a cluster assignment D1 that splits samples into homogeneous subgroups 
should be scored higher than an assignment D2 that mixes samples of different subgroups together, like in Fig. 7.

The ELM recall for each element is the same in D1 and D2 , but the precision is lower for the elements in the mixed 
cluster in D2 , than in the homogeneous clusters in D1 . Hence, the mean ELM F1 score of D1 is higher.

Table 2  Mean BCubed and ELM precision, recall and F1 scores for the BERT based clustering model evaluated on the Page Stream Segmen-
tation dataset (N = 34)

Precision Recall F1

BCubed � = 0.93, � = 0.07 � = 0.85, � = 0.26 � = 0.83, � = 0.24

ELM � = 0.92, � = 0.08 � = 0.85, � = 0.26 � = 0.80, � = 0.24

Fig. 6  KDE Plots of the relative 
differences between BCubed 
and ELM for Precision, Recall 
and F1 for the BERT clustering 
model (N = 34)

Fig. 7  Homogeneity con-
straint: black nodes belong 
to one cluster and the white 
nodes belonging to another 
cluster. Shown are two 
partitions: the homogene-
ous D1 ∶ {C1,C2,C3} and the 
mixed D2 ∶ {C1,C2 ∪ C3} . 
Figure 7 is a modification of 
Figure 5 from [1]
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3.6.2  Completeness

The cluster completeness constraint states that a cluster assignment D1 that groups items belonging to the same cluster 
together should receive a higher score than a clustering D2 that subdivides items from a homogeneous cluster, like in Fig. 8.

The argument is the dual of the previous argument. Here, precision is maximal for all elements in both partitions as all 
clusters are homogeneous. But ELM recall is lowered for those elements in the separate C2 and C3 . In fact, recall for ELM 
is 0 for singleton clusters. Thus the mean ELM F1 is higher for the partition D1 with the joined clusters.

3.6.3  Rag Bag

The Rag Bag constraint states that adding a singleton cluster to a cluster consisting of all differently labeled elements, 
a rag-bag, should score higher than an assignment adding this singleton to a homogeneous cluster, as in Fig. 9. In this 
example, this means that D1 should score higher than D2.

First observe that all elements have the same recall in both clusterings. Now the element in C3 has the same precision 
of 0 when it is added to C1 or to C2 . The elements in the rag-bag C2 also keep the same precision (namely 0) irrespective 
to whether C3 is joined or not. But those in the homogeneous C1 see a drop in precision (from 1 to 3

4
 ) when C3 is joined. 

Thus D1 has a higher mean ELM F1.

3.6.4  Cluster size vs. quantity

As stated by Amigo et al., the Cluster Size vs. Quantity constraint can be loosely formulated by saying that small mistakes 
in large clusters should be penalized less than small mistakes in small clusters. Amigo et al. operationalize this constraint 
as follows. Let n > 2 , and E a set of elements with |E| = 3n + 1 , and let T, H1 and H2 be three partitions over E, where T is 
the ground truth, and H1 and H2 are two predicted clusterings. Let T be a partitioning of E containing one cluster C1 of size 
n + 1 , and n clusters each of size 2, C2 through Cn+1 . Let H1 be a partitioning of E that splits C1 into a cluster C′

1
 of size n, and 

C′′
1

 of size 1, and with C2 through Cn+1 unaltered. Let H2 be a partitioning that leaves C1 unaltered, but splits C2 through Cn+1 

Fig. 8  Completeness 
constraint: All nodes 
belong to the same cluster 
shown are two partitions: 
D1 = {C1,C2 ∪ C3} and 
D2 = {C1,C2,C3} . Figure 8 is 
a modification of Figure 6 
from [1]

Fig. 9  Rag Bag constraint: 
black nodes belong to one 
cluster and all other nodes 
are singleton clusters shown 
are two cluster assignments: 
D1 = {C1,C2 ∪ C3} and 
D2 = {C1 ∪ C3,C2} . Figure 9 is 
taken from Figure 7 from [1]
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into 2n singleton clusters {CL
2
,CR

2
,⋯ ,CL

n+1
,CR

n+1
} . An illustraion of this setup for n = 3 is given in Fig. 10. The thus formal-

ized constraint now says that the ELM score of H1 should be higher than that of H2 , given T.

Theorem 3 (Cluster Size Vs. Quantity) Given n > 2 , T, H1 and H2 as described above, the ELM F1 score for H1 is higher than that 
for H2.

Proof Let T ,H1 and H2 be as stated in the constraint for some n > 2 . Given that both H1 and H2 only split true clusters in T 
into smaller subsets, P(e) = 1 for every element in E for both H1 and H2 , and thus proving that the mean ELM F1 is larger 
for H1 than for H2 simplifies to proving that this holds for the mean recall. We will show that the sum of all R(e) is higher 
for H1 than for H2 , which proves the theorem.

For H1 , the recall of all 2n nodes belonging to the correctly predicted clusters C2 through Cn+1 equals 1, and the recall 
of the single node in C′′

1
 is 0 (this would be 1

n+1
 for BCubed). The ELM recall of all n nodes in C′

1
 equals n−1

n
 (this would be 

n

n+1
 for BCubed). Thus for H1 , Σe∈ER(e) equals 2n + n ⋅

n−1

n
= 3n − 1.

For H2 (which correctly predicts the big cluster but splits all true two-size clusters) the ELM recall R(e) = 0 , for all e ∈ Ci 
with i ≠ 1 (this would be 1

2
 for BCubed)). For the n + 1 nodes in the correctly predicted C1 the recall is 1, and thus for H2 , 

Σe∈ER(e) = n + 1 . For every n > 1 , 3n − 1 > n + 1 , as desired.   ◻

4  BCubed in the literature

We survey for which tasks BCubed has been used and discuss two other refinements of BCubed.
BCubed is used in the Machine Learning community for several clustering problems where a gold standard clustering 

is available, such as coreference resolution [6, 14, 15, 17, 18], Entity Linking [10, 11], and name disambiguation[2, 8]. In 
the case of coreference resolution, the task is to map words or short phrases that occur in a text to real-world entities. 
This mapping defines a clustering of all these words and phrases.

In coreference resolution in particular, BCubed is often used as a successor to the link based metric used in MUC [19]. 
BCubed has two main advantages over MUC: its ability to score singleton clusters, and the fact that it takes the sever-
ity of clustering mistakes into account, something MUC does not. ELM obviously still keeps these advantages. In both 
coreference resolution and Entity Linking, cluster size is likely long tail distributed, with a few very large clusters and 
numerous smaller clusters, and many singletons. We have seen that BCubed especially overestimates on elements from 
small clusters and that ELM repairs this. As the reported F1 measure is the mean over all elements, this skewed distribu-
tion amplifies the overestimation. We thus believe that especially in these applications, ELM is preferable to BCubed.

Several refinements of BCubed have been proposed, to adapt the metric to specific use-cases. Moreno and Dias [13] 
proposed two adjustments to the BCubed F1 metric that makes it more suited for usage with highly unbalanced datasets, 
which for example occur frequently in the tasks of image clustering, or the clustering of results for ambiguous search 
terms on the web. They argue that the standard version of BCubed is less suited for this, because the larger clusters (of 
the irrelevant class) have an unreasonable effect on the total score, comparable to the unreasonableness of accuracy in 
such cases. Both proposed alterations have the effect of weighting precision more than recall. The most straightforward 
one is not to use the harmonic mean F1, but a differently weighted average. The same remedy can be applied to ELM by 
using different weights in equation (1) for FPe and FNe.

Fig. 10  An illustration of 
the Cluster Size Vs. Quantity 
constraint for ELM for n = 3 
and E = {1, 2,… , 10} . The 
numbers in the two bottom 
rows are the ELM F1 scores for 
each element, and the mean 
F1 (the ELM score)
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An extension to BCubed that handles overlapping clusters correctly is proposed by Amigó et al. [1], where the quality 
of a predicted cluster is evaluated by comparing an element with all other elements (including itself ) in the ground truth 
(for recall, predicted cluster for precision) and comparing how many clusters they share in the prediction compared to 
the ground truth. However, this extension might assign the maximum F1 score to a clustering that is not exactly equal to 
the gold standard. Rosales-Méndez and Ramírez-Cruz [16] propose CICE-BCubed, which fixes the aforementioned issue 
for BCubed by also checking for pair occurrences in different classes. The adapted BCubed variant proposed by Amigo 
et al. that makes it suitable for usage with overlapping clusterings (and the change proposed by the authors of CICE-
BCubed), is not straightforward to implement for ELM. The main problem arises from the fact that this extended variant 
of BCubed must include a comparison between the element and itself, to be able to penalize a model for the spurious 
creation or deletion of singleton clusters. Consider the example where the ground truth contains two elements e1 and 
e2 that both belong to cluster a, and a prediction where e1 and e2 both belong to a, but e1 also belongs to a new cluster 
b. Intuitively, the precision for this element should not be 1, as the prediction added a cluster, but the definition of ELM 
means that this relation is not considered, and thus this mistake is not penalized. We leave the repair of this shortcoming 
of ELM in the case of overlapping clusters for future work.

5  Discussion

We have calculated the F1 scores for both BCubed and ELM on the element level, and then defined the F1 score of a pre-
dicted clustering as the average of the F1 scores of all elements. Although we believe this is closest to the original (not 
explicitly stated) definition as given by Bagga and Baldwin [3], this is not the only way in which BCubed can be defined. 
Amigó et al. [1] define BCubed from the average precison and recall over all elements and then applying the 2PR∕(P + R) 
manner of calculating the F1 score using these averages. In words: we have used the average harmonic mean instead of 
the harmonic mean of the averages. For the main message of this article this does not matter as both ways of defining 
BCubed do not satisfy the ZeroScore constraint.

6  Conclusion

We indicated that the BCubed F1 measure gives an overestimation of the performance of a clustering method, repaired 
the definition, and evaluated the result positively.

ELM satisfies a basic property of a metric: it can always obtain the minimal score of 0, and it gives it to each prediction 
which has nothing correct (i.e., not a single true positive). We want to emphasize that the idea and intuition behind the 
ELM metric is identical to that of BCubed.

We showed that the difference between ELM and BCubed is largest when the size of true clusters is small and when 
there are many of such small clusters (e.g. when cluster size is power law distributed). Even on large real datasets with a 
well performing state-of-the-art clustering algorithm, ELM F1 was three percent point lower than BCubed.

We end with looking at the problem from the perspective of network science [4, 12]. If we view a clustering not as a 
set of subsets on some domain D but as a binary relation on D, we take a network perspective. A clustering or partition 
then corresponds to an equivalence relation ≡ . The neighbor function N(e) = {e� ∈ D ∣ e ≡ e�} then is the clustering 
function used to define BCubed and ELM. In network science, it is customary to work with simple (that is, irreflexive), 
and if possible, undirected relations. If we replace the equivalence relation with this irreflexive undirected relation, we 
end up with the same partition (in network science the blocks are called cliques). But on this network, the same neighbor 
function defines ELM, simply because no element is a neighbor of itself. We may speculate how BCubed would have been 
defined if one of the three B’s had been a network scientist.

Acknowledgements We sincerely thank the reviewers of the manuscript for their detailed and constructive feedback and suggestions, which 
helped to improve the overall quality of the paper.

Author contributions Conceptualization, M.M., J.K. and R.H;Resources, M.M and R.H; Data Curation, R.H; Software R.H and M.M.; Formal Analysis, 
M.M and R.H; Supervision, M.M and J.K.; Funding Acquisition, J.K. and M.M.; Validation, R.H and M.M.; Investigation, R.H and M.M; Visualization, 
R.H and M.M; Methodology, R.H, J.K. and M.M; Writing—Original Draft, M.M and R.J.; Project Administration, R.H and M.M.; Writing—Review 
and Editing, all authors.



Vol:.(1234567890)

Research Discover Computing            (2024) 27:5  | https://doi.org/10.1007/s10791-024-09436-7

Funding This research was supported in part by the Netherlands Organization for Scientific Research (NWO) through the ACCESS project 
grant CISC.CC.016, and by the University of Amsterdam through Humane AI.

Data availability Both the data and the source code used in this research are publicly accessible on GitHub via the following link: https:// 
github. com/ irlab amste rdam/ elm

Declarations 

Competing interests The authors have no conflict of interest to declare that are relevant to the content of this article.

Ethics approval Not applicable.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Amigó E, Gonzalo J, Artiles J, Verdejo F. A comparison of extrinsic clustering evaluation metrics based on formal constraints. Inf Retr J. 
2009;12(4):461–86.

 2. Artiles J, Borthwick A, Gonzalo J, Sekine S, Amigó E. Weps-3 evaluation campaign: overview of the web people search clustering and 
attribute extraction tasks. CLEF (notebook papers/labs/workshops) 2010;1176.

 3. Bagga A, Baldwin B. Entity-based cross-document coreferencing using the vector space model. Proceedings of the 36th Annual Meeting 
of the Association for Computational Linguistics and 17th International Conference on Computational Linguistics. 1998;1:79–85.

 4. Barabási A-L, Pósfai M. Network science. Cambridge: Cambridge University Press. Retrieved from http://barabasi.com/networkscience-
book/ 2016.

 5. Beeferman D, Berger A, Lafferty J. Statistical models for text segmentation. Mach Learn J. 1999;34(1):177–210.
 6. Beheshti S-M-R, Benatallah B, Venugopal S, Ryu SH, Motahari-Nezhad HR, Wang W. A systematic review and comparative analysis of cross-

document coreference resolution methods and tools. Comput J. 2017;99(4):313–49.
 7. Devlin J, Chang M-W, Lee K, Toutanova K. BERT: pretraining of deep bidirectional transformers for language understanding. Proceedings 

of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 
Volume 1 (Long and Short Papers) (pp. 4171–4186). 2019.

 8. Ferreira AA, Gonçalves MA, Laender AH. A brief survey of automatic methods for author name disambiguation. ACM SIGMOD Rec. 
2012;41(2):15–26.

 9. Guha A, Alahmadi A, Samanta D, Khan MZ, Alahmadi AH. A multi-modal approach to digital document stream segmentation for title 
insurance domain. IEEE Access. 2022;10:11341–53.

 10. Ji H, Grishman R, Dang HT, Griffitt K, Ellis J. Overview of the TAC 2010 knowledge base population track. Proceedings of the Third Text 
Analysis Conference (2010) (Vol. 3, pp. 3–3). 2010.

 11. Ji H, Nothman J, Hachey Bea. Overview of tac-kbp2014 entity discovery and linking tasks. Proceedings of the Text Analysis Conference 
(2014) 2014;1333–1339.

 12. Menczer F, Fortunato S, Davis CA. A first course in network science. Cambridge: Cambridge University Press; 2020. https:// doi. org/ 10. 
1017/ 97811 08653 947.

 13. Moreno JG, Dias G. Adapted B-CUBED metrics to unbalanced datasets. Proceedings of the 38th International ACM SIGIR Conference on 
Research and Development in Information Retrieval 2015;p. 911–914.

 14. Poot C, van Cranenburgh A. A benchmark of rule-based and neural coreference resolution in Dutch novels and news. Proceedings of the 
Third Workshop on Computational Models of Reference, Anaphora and Coreference 2020;79–90.

 15. Rahman A, Ng V. Supervised models for coreference resolution. Proceedings of the 2009 Conference on Empirical Methods in Natural 
Language Processing 2009;968–977.

 16. Rosales-Méndez H, Ramírez-Cruz Y. CICE-BCubed: a new evaluation measure for overlapping clustering algorithms. J. Ruiz-Shulcloper & 
G. Sanniti di Baja (Eds.), Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications (pp. 157–164). Springer.2013.

 17. Stylianou N, Vlahavas I. A neural entity coreference resolution review. Expert Syst with Appl. 2021;168: 114466.
 18. Uzuner O, Bodnari A, Shen S, Forbush T, Pestian J, South BR. Evaluating the state of the art in coreference resolution for electronic medical 

records. J Am Med Inf Assoc. 2012;19(5):786–91.
 19. Vilain M, Burger JD, Aberdeen J, Connolly D, Hirschman L. A model-theoretic coreference soring scheme. Sixth Message Understanding 

Conference (MUC-6): Proceedings of a Conference Held in Columbia, Maryland, November 1995;6-8, 1995.
 20. Wiedemann G, Heyer G. Multi-modal page stream segmentation with convolutional neural networks. Lang Resour Eval J. 2021;55(1):127–50.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://github.com/irlabamsterdam/elm
https://github.com/irlabamsterdam/elm
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/9781108653947
https://doi.org/10.1017/9781108653947

	Bcubed revisited: elements like me
	Abstract
	1 Introduction
	2 BCubed revisited
	2.1 A new name
	2.2 First impression of the differences

	3 Evaluation
	3.1 ZeroScore constraint
	3.2 ELM behaves well on degenerate clusterings
	3.3 ELM can produce different rankings compared to BCubed
	3.4 ELM vs BCubed on synthetic data
	3.5 ELM vs BCubed on real data
	3.6 ELM satisfies the constraints of Amigó et al
	3.6.1 Homogeneity
	3.6.2 Completeness
	3.6.3 Rag Bag
	3.6.4 Cluster size vs. quantity


	4 BCubed in the literature
	5 Discussion
	6 Conclusion
	Acknowledgements 
	References


