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A B S T R A C T   

Recommender systems exploit interaction history to estimate user preference, having been heavily used in a wide 
range of industry applications. However, static recommendation models are difficult to answer two important 
questions well due to inherent shortcomings: (a) What exactly does a user like? (b) Why does a user like an item? 
The shortcomings are due to the way that static models learn user preference, i.e., without explicit instructions 
and active feedback from users. The recent rise of conversational recommender systems (CRSs) changes this 
situation fundamentally. In a CRS, users and the system can dynamically communicate through natural language 
interactions, which provide unprecedented opportunities to explicitly obtain the exact preference of users. 
Considerable efforts, spread across disparate settings and applications, have been put into developing CRSs. 
Existing models, technologies, and evaluation methods for CRSs are far from mature. In this paper, we provide a 
systematic review of the techniques used in current CRSs. We summarize the key challenges of developing CRSs 
in five directions: (1) Question-based user preference elicitation. (2) Multi-turn conversational recommendation 
strategies. (3) Dialogue understanding and generation. (4) Exploitation-exploration trade-offs. (5) Evaluation and 
user simulation. These research directions involve multiple research fields like information retrieval (IR), natural 
language processing (NLP), and human-computer interaction (HCI). Based on these research directions, we 
discuss some future challenges and opportunities. We provide a road map for researchers from multiple com-
munities to get started in this area. We hope this survey can help to identify and address challenges in CRSs and 
inspire future research.   

1. Introduction 

Recommender systems have become an indispensable tool for in-
formation seeking. Companies such as Amazon and Alibaba, in e-com-
merce, Facebook and Wechat, in social networking, Instagram and 
Pinterest, in content sharing, and YouTube and Netflix, in multimedia 
services, all have the need to properly link items (e.g., products, posts, 
and movies) to users. An effective recommender system that is both 
accurate and timely can help users find the desired information and 
bring significant value to the business. Therefore, the development of 
recommendation techniques continues to attract academic and indus-
trial attention. 

Traditional recommender systems, which we call static recommen-
dation models in this survey, primarily predict a user’s preference 

towards an item by analyzing past behaviors offline, e.g., click history, 
visit log, ratings on items. Early methods, such as collaborative filtering 
(CF) (SarwarGeorge et al., 2001; Schafer et al., 2007), logistic regression 
(LR) (Nelder and Wedderburn, 1972), factorization machine (FM) 
(Rendle, 2010), and gradient boosting decision tree (GBDT) (Ke et al., 
2017), have been intensively used in practical applications due to the 
efficiency and interpretability. Recently, more complicated but powerful 
neural networks have been developed, including Wide & Deep (Cheng 
et al., 2016), neural collaborative filtering (NCF) (He et al., 2017), deep 
interest network (DIN) (Zhou et al., 2018a), tree-based deep model 
(TDM) (Zhu et al., 2018), and graph convolutional networks (GCNs) 
(Ying et al., 2018; Wu et al., 2019b; He et al., 2020). 

Inherent Disadvantages of Static Recommendations. Static 
recommendation models are typically trained offline on historical 
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behavior data, which are then used to serve users online (Covington 
et al., 2016). Despite their wide usage, they fail to answer two important 
questions:  

1. What exactly does a user like? The learning process of static models is 
usually conducted on historical data, which may be sparse and noisy. 
Moreover, a basic assumption of static models is that all historical 
interactions represent user preference. Such a paradigm raises crit-
ical issues. First, users might not like the items they chose, as they 
may make wrong decisions (Wang et al., 2020a, 2020b). Second, the 
preference of a user may drift over time, which means that a user’s 
attitudes towards items may change, and capturing the drifted 
preference from past data is even harder (Jagerman et al., 2019). In 
addition, for cold users who have few historical interactions, 
modeling their preferences from data is difficult (LeeJinbae et al., 
2019). Sometimes, even the users themselves are not sure of what 
they want before being informed of the available options (Wang and 
Benbasat, 2013). In short, a static model can hardly capture the 
precise preference of a user.  

2. Why does a user like an item? Figuring out why a user likes an item is 
essential to improve recommender model mechanisms and thus in-
crease their ability to capture user preference. There are many fac-
tors affecting a user’s decisions in real life (MaChang et al., 2019; Cen 
et al., 2020; Gao et al., 2019c). For example, a user might purchase a 
product because of curiosity or being influenced by others (Yu et al., 
2019a). Or it may be the outcome of deliberate consideration. It is 
common that different users purchase the same product but their 
motivations are different. Thus, treating different users equally or 
treating different interactions by the same user equally, is not 
appropriate for a recommendation model. In reality, it is hard for a 
static model to disentangle different reasons behind a user’s con-
sumption behavior. 

Even though much effort has been done to eliminate these problems, 
they make limited assumptions. For example, a common setting is to 
exploit a large amount of auxiliary data (e.g., social networks, knowl-
edge graphs) to better interpret user intention (Shi et al., 2014). How-
ever, these additional data may also be incomplete and noisy in real 
applications. We believe the key difficulty stems from the inherent 
mechanism: the static mode of interaction modeling fundamentally 
limits the way in which user intention can be expressed, causing an 
asymmetric information barrier between users and machines. 

Introduction of CRSs. The emergence of conversational recom-
mender systems (CRSs) changes this situation in profound ways. There is 
no widely accepted definition of CRS. In this paper, we define a CRS to 
be: 

A recommendation system that can elicit the dynamic preferences of 
users and take actions based on their current needs through real-time 
multi-turn interactions. 

Our definition highlights a property of CRSs: multi-turn interactions. 
By a narrow definition, conversation means multi-turn dialogues in the 
form of written or spoken natural language; from a broader perspective, 
conversation means any form of interactions between users and systems, 
including written or spoken natural language, form fields, buttons, and 
even gestures (Jannach et al., 2020). Conversational interaction is a 
natural solution to the long-standing asymmetry problem in information 
seeking. Through interactions, CRSs can easily elicit the current pref-
erence of a user and understand the motivations behind a consumption 
behavior. Fig. 1 shows an example of a CRS where a user resorts to the 
agent for music suggestions. Combining the user’s previous preference 
(loving Jay Chou’s songs) and the intention elicited through conversa-
tional interactions, the system can offer desired recommendations 
easily. Even if the produced recommendations do not satisfy the user, 
the system has chances to change recommendations based on user 

feedback. 
Recently, attracted by the power of CRSs, many researchers have 

been on focusing on exploring this topic. These efforts are spread across 
a broad range of task formulation, in diverse settings and application 
scenarios. We collect the papers related to CRSs by searching for 
“Conversation* Recommend*” on DBLP 1 and visualize the statistics of 
them with regard to the published year and venue in Fig. 2. There are 
148 unique publications up to 2020, and we only visualize the top 10 
venues, which contain 53 papers out of all 148 papers at all 89 venues. It 
is necessary to summarize these studies which put efforts into different 
aspects of CRSs. 

Connections with Interactive Recommendations. Since the born 
of recommender systems, researchers have realized the importance of 
the human-machine interaction. Some studies propose interactive 
recommender systems (He et al., 2016; Wang et al., 2017; Chen et al., 
2019ba; Zhou et al., 2020d) and critiquing-based recommender systems 
(Tou et al., 1982; Tversky and Simonson, 1993; Burke et al., 1997; 
Smyth and McGinty, 2003; Pu and Faltings, 2004; Chen and Pu, 2012; 
Luo et al., 2020b; LuoScott et al., 2020), which can be viewed as early 
forms of CRSs since they focus on improving the recommendation 
strategy online by leveraging real-time user feedback on previously 
recommended items. 

In the setting of interactive recommendations, each recommendation 
is followed by a feedback signal indicating whether and how much the 
user likes this recommendation. However, interactive recommendations 
suffer from low efficiency, as there are too many items. An intuitive 
solution is to leverage attribute information of items, which is self- 
explanatory for understanding users’ intention and can quickly narrow 
down candidate items. The critiquing-based recommender system is 
such a solution that is designed to elicit users’ feedback on certain at-
tributes, rather than items. Critiquing is like a salesperson who collects 

Fig. 1. A toy example of a conversational recommender system in music 
recommendation. 

1 https://dblp.org/search?q=conversation*%20recommend*. 
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user preference by asking questions proactively on item attributes. For 
example, when seeking mobile phones, a user may follow the hint of the 
system and provides feedback such as “cheaper” or “longer battery life.” 
Based on such feedback, the system will recommend more appropriate 
items; this procedure repeats several times until the user finds satisfac-
tory items or gives up. The mechanism gives the system an improved 
ability to infer user preference and helps quickly narrow down recom-
mendation candidates. 

Though effective, existing interactive and critiquing methods have a 
limitation: the model makes a recommendation each time after receiving 
user feedback, which should be avoided as the recommendation should 
only be made when the confidence is high. This problem is solved in 
some CRSs by developing a conversation strategy determining when to 
ask and recommend (Lei et al., 2020a, 2020b). Besides, the interactive 
and critiquing methods are constrained by their representation ability 
since users can only interact with the system through a few predefined 
options. The integration of a conversational module in CRSs allows for 

more flexible forms of interaction, e.g., in the form of tags (Christako-
poulou et al., 2018), template utterances (Sun and Zhang, 2018), or free 
natural language (Li et al., 2018). Undoubtedly, user intention can be 
more naturally expressed and comprehended through a conversational 
module. 

Connections with Other Conversational AI Systems. Besides 
CRSs, there are other conversational AI systems, e.g., task-oriented 
dialogue systems (Chen et al., 2017; Zhang et al., 2020b; Pei et al., 
2021), social chatbots (Ma et al., 2021; Li et al., 2021a; Wu and Yan, 
2018), conversational searching (Voskarides et al., 2020; Rosset et al., 
2020; Ren et al., 2021), and conversational question answering (QA) 
(Zhu et al., 2021). The common point of them is to utilize natural lan-
guage as a powerful tool to convey information and thus to provide a 
natural user interface. Though these research topics all possess the 
keyword “conversation”, the central tasks are different. For example, 
while task-oriented dialogue systems aim to fulfill a certain task in 
human-machine dialogue, the concentration of effort is mainly on 
handling information in the textural language-based dialogue, e.g., 
natural language understanding (NLU), dialogue state tracking (DST), 
dialogue policy learning (DPL), and natural language generation (NLG) 
(Chen et al., 2017; Zhang et al., 2020b; Gao et al., 2019a). In CRSs, 
however, the multi-turn conversation can be built on any form of 
interaction (e.g., form fields, buttons, and even gestures (Jannach et al., 
2020)) instead of merely textual form. Because CRSs concentrate on 
recommendation logic, the textual dialogue is just one possible means to 
convey information, i.e., it is auxiliary, not necessary. Although there 
are some CRSs implemented as end-to-end dialogue systems (Li et al., 
2018; Chen et al., 2019bb), the human evaluation conducted by Jannach 
and Manzoor (2020) suggests the performance is not ideal and more 
efforts should be put on improving both recommendation and language 
generation. 

Other conversational AI systems can also be distinguished from CRSs 
by their specific scenarios. For instance, conversational searching fo-
cuses on analyzing the input query (in contrast to eliciting user prefer-
ence in CRSs); conversational QA focuses on the single-turn question 
answering (in contrast to multi-turn interaction in CRSs). Therefore, it is 
essential to identify the central tasks and primary challenges in CRSs to 
help the beginner and future researchers set foot in this field and keep up 
with state-of-the-art technologies. 

Focuses of This Survey. Although many studies have been done on 
CRSs, there is no uniform task formulation. In this survey, we present all 
CRSs as the general framework that consists of three decoupled com-
ponents illustrated in Fig. 3. Specifically, a CRS is made of a user 
interface, a conversation strategy module, and a recommendation en-
gine. The user interface serves as a translator between the user and 
machine; generally, it extracts information from raw utterances of the 
user and transforms the information into machine-understandable rep-
resentation, and it generates meaningful responses to the user based on 
the conversation strategy. The conversation strategy module is the brain 
of the CRS and coordinates the other two components; it decides the core 
logic of the CRS such as eliciting user preference, maintaining multi-turn 

Fig. 2. Statistics of the publications related to CRSs, grouped by the publication 
year and venue. Only the top 10 venues are used in the visualization. 

Fig. 3. Illustration of the general framework of CRSs and our identified five primary challenges on the three main components.  
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conversations, and leading new topics. The recommendation engine is 
responsible for modeling relationships among entities (e.g., the user- 
item interaction or item-item linkage), learning and recording user 
preference on items and attributes of items, retrieving the required 
information. 

There are many challenges in the three components, we summarize 
five main challenges as following. 

● Question-based User Preference Elicitation. CRSs provide the opportu-
nity to explicitly elicit user preference by asking questions. Two 
important questions are needed to be answered: (1) What to ask? (2) 
How to adjust the recommendations based on user response? The 
former focuses on constructing questions to elicit as much informa-
tion as possible; the latter leverages the information in user response 
to make more appropriate recommendations.  

● Multi-turn Conversational Recommendation Strategies. The system 
needs to repeatedly interact with a user and adapts to the user’s 
response dynamically in multiple turns. An effective strategy con-
cerns when to ask questions and when to make recommendations, i. 
e., let the model choose between (1) continuing to ask questions so as 
to further reduce preference uncertainty, and (2) generating a 
recommendation based on estimation of current user preference. 
Generally, the system should aim at a successful recommendation 
using the least number of turns, as users will lose their patience after 
too many turns (Lei et al., 2020a). Furthermore, some sophisticated 
conversational strategies try to proactively lead dialogues (Wu et al., 
2019; Balaraman and Magnini, 2020), which can introduce diverse 
topics and tasks in CRSs (Liu et al., 2020ab; Zhou et al., 2020c; Lewis 
et al., 2017; Wang et al., 2019).  

● Natural Language Understanding and Generation. Communicating like 
a human being continues to be one of the hardest challenges in CRSs. 
For understanding user interests and intentions, some CRS methods 
define the model input as pre-defined tags that capture semantic 
information and user preferences (Christakopoulou et al., 2018; Lei 
et al., 2020a, 2020b; Zou et al., 2020). Some methods extract the 
semantic information from users’ raw utterances via slot filling 
techniques and represent user intents in slot-value pairs (Zhang et al., 
2018; Sun and Zhang, 2018; Ren et al., 2020). And for generating 
human-understandable responses, CRSs use many strategies such as 
directly providing a recommendation list (Zou et al., 2020; Zhang 
et al., 2018), incorporating recommended items in a rule-based 
natural language template (Sun and Zhang, 2018; Lei et al., 
2020a, 2020b). Moreover, some researchers propose the end-to-end 
framework to enable CRSs to precisely understand users’ sentiment 
and intentions from the raw natural language and to generate 
readable, fluent, consistent, and meaningful natural language re-
sponses (Li et al., 2018; Liu et al., 2020ab; Ren et al., 2020; Chen 
et al., 2019bb; Zhou et al., 2020a).  

● Trade-offs between Exploration and Exploitation (E&E). One problem 
of recommender systems is that each user can only interact with a 
few items out of the entire dataset. A large number of items that a 
user may be interested in will remain unseen by the user. For cold- 
start users (who have just joined the system and have zero or very 
few interactions), the problem is especially severe. Thanks to the 
interactive nature, CRSs can actively explore the unseen items to 
better capture the user preference. In this way, users can benefit from 
having chances to express their intentions and obtain better- 
personalized recommendations. However, the process of explora-
tion comes at a price. As users only have limited time and energy to 
interact with the system, a failed exploration will waste time and lose 
the opportunity to make accurate recommendations. Moreover, 
exposing unrelated items hurts user preference, compared to 
exploiting the already captured preference by recommending the 
items of high confidence (Schnabel et al., 2018; Li et al., 2015; 

Gilotte et al., 2018). Therefore, pursuing E&E trade-offs is a critical 
issue in CRSs.  

● Evaluation and User Simulation. Evaluation is an important topic. 
Unlike static recommender models that are optimized on offline 
data, CRSs emphasize the user experience during dynamic in-
teractions. Hence, we should not only consider the turn-level eval-
uation for both recommendation and response generation but also 
pay attention to the conversation-level evaluation. Besides, evalu-
ating CRSs requires a large number of online user interactions, which 
are expensive to obtain (Li et al., 2015; Jagerman et al., 2019; Huang 
et al., 2020). Practical solutions include: (1) leveraging the off-policy 
evaluation which assesses the target policy using the logged data 
under the behavior policy (Gilotte et al., 2018; Jagerman et al., 
2019), and (2) directly introducing user simulators to replace the 
true users in evaluation (Zhang and Balog, 2020; Sun et al., 2021). 

The five challenges are allocated to the corresponding component as 
illustrated in Fig. 3, where trading off the E&E balance is exclusive to the 
recommender engine; handling natural language understanding and 
generation is exclusive to the conversation module. The rest three 
challenges are related to both the components. We illustrate in Table 1 
the solutions of some classic CRSs that focus on these directions. Limited 
by space, we only give part of the classic studies here. We will further 
discuss existing solutions in the following sections. 

Differences with Existing Related Surveys. Recently, A number of 
related survey papers have been published. There are survey papers 
focusing on certain cutting-edge aspects in recommender systems, such 
as the bias issues and debiasing methods (Chen et al., 2020a), explain-
ability/interpretability (Zhang and Chen, 2020), evaluation issues (Sil-
veira et al., 2019), and novel methods that leverage deep neural 
networks (Wu et al., 2020, 2021; Zhang et al., 2019a), knowledge graphs 
(Guo et al., 2020), or reinforcement learning (Afsar et al., 2021) to 
improve the ability of recommendation systems. Also, there are survey 
papers that summarize new frontiers in conversational AI systems, such 
as the advanced methods (Chen et al., 2017; Gao et al., 2019a; Zhang 
et al., 2020b) and the evaluation issues (Celikyilmaz et al., 2020; Deriu 
et al., 2021) in dialogue systems. However, there is only one survey 
paper published in 2020 that focuses on CRSs (Jannach et al., 2020). 

Jannach et al. (2020), for the first time, delved into different aspects 
of CRSs and made a comprehensive survey of CRSs. Specifically, they 
categorize existing CRSs in various dimensions, for instance, in terms of 
interaction modalities (e.g., buttons or written language), supported 
tasks (e.g., recommend or explain), or the knowledge CRSs use in the 
background (e.g., item-related information or dialogue corpora). Their 
survey provides a structured description of the CRS. Therefore, the 
audience, after reading this survey, can answer what a CRS is, for 
example, what the input/output or the functions of a CRS are. However, 
they may be still unsure about what the key challenges are, or what to do 
next. In our survey, we not only give the review of the current progress 
on CRSs including the existing assumptions and exploration but also 
refine the problems in state-of-the-art methods and summarize five 
challenges. We are trying to answer the three questions above, and we 
hope to provoke deeper thought and spark new ideas for the audience. 

Survey Organization. The remainder of this paper is organized as 
follows. In next several sections, we discuss the main challenges in CRSs. 
Specifically, in Section 2, we illustrate how CRSs can elicit user prefer-
ences by asking informative questions. In Section 3, we describe the 
strategies in CRSs to interact with users in a multi-turn conversation. In 
Section 4, we point out the problems and provide solutions in dialogue 
understanding and generation for CRSs. In Section 5, we discuss how 
CRSs can balance the exploration-exploitation trade-off. In Section 6, we 
explore metrics and present techniques for evaluating CRSs. In Section 7, 
we envision some promising future research directions. And in Section 8, 
we conclude this survey. 
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2. Question-based user preference elicitation 

A user looking for items with specific attributes may get assess to 
them by actively searching. For instance, a user may search “iphone12 
red 256gb”, where the key phrases “red” and “256gb” are the attributes 
of the item iPhone12. In this scenario, users construct a query them-
selves, and the performance relies on both the search engine and the 
user’s expertise in constructing queries. Even though there are efforts on 
helping users complete queries by suggesting possible options based on 
what they entered (Ma et al., 2008; Bar-Yossef and Kraus, 2011; Deh-
ghani et al., 2017; Cai and de Rijke, 2016), users still need to figure out 
appropriate query candidates. Besides, searching in this way requires 
users to be familiar with each item they want, which is not true in 
practice. Recommender systems introduce users to the potential items 
that they may like. However, traditional recommender systems can only 
utilize the static historical records as the input, which results in the two 
main limitations mentioned in mysecintro. 

Fortunately, CRSs can bridge the gap between the search engine and 
recommender system. Empowered by real-time interactions, CRSs can 
proactively consult users by asking questions. And with the feedback 
returned by users, CRSs can directly comprehend users’ needs and at-
titudes towards certain attributes, hence making proper recommenda-
tions. Even if users are not satisfied with the recommended items, a CRS 
has the opportunity to adjust its recommendations in the interaction 
process. 

Question-driven methods focus on the problem of what to ask in 
conversations. Generally, there are two kinds of methods: (1) asking 
about items (Zhao et al., 2013; Christakopoulou et al., 2016; Sepliar-
skaia et al., 2018), or (2) asking about attributes/topics/categories of 
items (Lei et al., 2020a, 2020b). 

2.1. Asking about items 

Early studies directly ask users for opinions about an item itself (Zhao 
et al., 2013; Wang et al., 2018; Christakopoulou et al., 2016; Zou et al., 
2020b; Vendrov et al., 2020). Unlike traditional recommender systems 
which need to estimate user preferences in advance, CRSs can construct 
and modify the user profile during the interaction process. 

In traditional recommender system models, the recommended items 
are produced in a relatively stable way from all candidates. In the CRS 
scenario, the recommended items should be updated after the system 
receives feedback from a user and it could be a complete change in order 
to adapt to the user’s real-time preferences. Hence, instead of merely 
updating parameters of models online, some explicit rules or mecha-
nisms are required. We introduce three methods that can elicit users’ 
attitudes towards items and can quickly adjust recommendations. Most 

of these methods did not use natural language in their user interface, but 
it can easily integrate an natural language-based interface to make a 
CRS. 

Choice-based Methods. The main idea of choice-based preference 
elicitation is to recurrently let users choose their preferred items or item 
sets from the current given options. The common strategies include (1) 
choosing an item from two given options (Sepliarskaia et al., 2018), (2) 
selecting an item from a list of given items (Jiang and QiHe, 2014; Graus 
and Willemsen, 2015; Saavedra et al., 2016), and (3) choosing a set of 
items from two given lists (LoeppTim Hussein and Ziegler, 2014). 

After the user chooses preferred items, the methods change the 
recommendations according to the user’s choice. For example, Loepp 
et al. (LoeppTim Hussein and Ziegler, 2014) use the matrix factorization 
(MF) model (Bell et al., 2007) to initialize the embedding vectors of 
users and items, then select two sets of items from the item embedding 
space as candidate sets and let a user choose one of the two sets. It is 
important to ensure that the two candidate sets are as different or 
distinguishable as possible. To achieve this, the authors adopt a 
factor-wise MF algorithm (Bell et al., 2007), which factorizes the 
user-item interaction matrix and obtains the embedding vectors one by 
one in decreasing order of explained variance. Hence, the factors, i.e., 
different dimensions of embedding vectors, are ordered by distinctive-
ness. Then, the authors iteratively select two item sets with only a single 
factor value varying. For example, if two factors represent the degree of 
Humor and Action of movies, respectively, then the two candidate sets 
are one set of movies with a high degree of Humor and another with a 
low degree of Humor, while the degree of Action of the two sets is fixed to 
the average level. When a user chooses one item set, the user’s prefer-
ence embedding vector is set to the average of the embedding vectors of 
the chosen items. The choice becomes harder as the interaction process 
continues. Users can choose to ignore the question, which means the 
users cannot tell the difference between the two item sets or they do not 
care about it. Carenini et al. (2003) further explore other strategies to 
select query items, e.g., selecting the most popular or the most diverse 
items in terms of users’ history. 

Bayesian Preference Elicitation. In addition, there are studies 
based on a probabilistic view of preference elicitation, which has been 
researched for a long time (Chajewska et al., 1998; Boutilier, 2002; 
Vendrov et al., 2020). Basically, there is a utility function or a score 
function u

(
xj,ui

)
representing user i’s preference for item j. Usually, it 

can be written as a linear function as 

u
(
xj, ui

)
= xT

j ui. (1) 

In a Bayesian setting, user i’s preference is modeled by a probabilistic 
distribution instead of a deterministic vector, which means that the 
vector ui is sampled from a prior user belief P

(
𝒰(i)). Therefore, the utility 

Table 1 
Five primary challenges in CRSs and part of the classic methods that contribute to these challenges.  

Primary Challenges in CRSs Contributions of Existing 
Studies 

Classic Publications 

Question-based User Preference 
Elicitation 

Asking about items (Zhao et al., 2013; Christakopoulou et al., 2016; Yu et al., 2019b; Zou et al., 2020b; Mangili et al., 2020; Vendrov 
et al., 2020; LoeppTim Hussein and Ziegler, 2014) 

Asking about attributes (Mangili et al., 2020; YangScott et al., 2021; Wu et al., 2019a; Christakopoulou et al., 2018; Zhang et al., 2018; Sun 
and Zhang, 2018; Lei et al., 2020a, 2020b; Zhou et al., 2020a) 

Multi-turn Conversational 
Strategies 

Explicit strategies (Sun and Zhang, 2018; Zhang et al., 2018; Lei et al., 2020a; Xu et al., 2021) 

Leading diverse topics (Liu et al., 2020ab; Zhou et al., 2020c) 

Language Understanding and 
Generation 

End-to-end dialogue 
systems 

(Li et al., 2018; Chen et al., 2019bb; Zhou et al., 2020a; Xu et al., 2020; Moon et al., 2019) 

Exploration and Exploitation 
Trade-offs 

Leveraging multi-armed 
bandits 

(Christakopoulou et al., 2016; Zhang et al., 2020c; Li et al., 2021b; Yu et al., 2019b) 

Evaluation and User Simulation Evaluation (Gilotte et al., 2018; Huang et al., 2020) 

User simulation (Zhang and Balog, 2020; Sun et al., 2021)  
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of an item j for a user i is computed as the expectation: 

E
[
u
(
xj, ui

) ]
=

∫

ui∼𝒰(i)
P(ui)u

(
xj,ui

)
dui. (2) 

The item with the maximum expected utility for user i is considered 
as the recommendation items: 

arg maxjE
[
u
(
xj, ui

) ]
. (3) 

Based on the utility function, the system can select some items to 
query. And the user belief distribution can be updated based on users’ 
feedback. Specifically, given a user response ri to the question q, the 
posterior user belief P(ui|q, ri) can be written as: 

P(ui|q, ri) =
P(ri|q,ui)P(ui)∫

𝒰(i)P(ri|q,ui)P(ui)dui
. (4) 

As for the query strategy, i.e., selecting which items to ask, there are 
different criteria. For example, Boutilier (2002) propose a partially 
observed Markov decision process (POMDP) framework as the sequen-
tial query strategy. And Vendrov et al. (2020) and Guo and Sanner 
(GuoScott, 2010) use the expected value of information (EVOI) para-
digm as a relatively myopic strategy to select items to query. Further-
more, the query type can be classified into two different types: 

(1) a pairwise comparison query, in which the users are required to 
choose what they prefer more between two items or two item sets 
(Christakopoulou et al., 2016; GuoScott, 2010; Sepliarskaia et al., 2018); 
or (2) a slate query, where users need to choose from multiple given 
options (Vendrov et al., 2020). 

Interactive Recommendation. Interactive recommendation 
models are mainly based on reinforcement learning. Some researchers 
adopt a multi-armed bandit (MAB) algorithm (Zhao et al., 2013; 
Christakopoulou et al., 2016; Wang et al., 2018). The advantage is 
two-fold. First, MAB algorithms are efficient and naturally support 
conversational scenarios. Second, MAB algorithms can exploit the items 
that users liked before and explore items that users may like but never 
tried before. There are also researchers formulate the interactive 
recommendation as a meta learning problem which can quickly adapt to 
new tasks (Zou et al., 2020b; LeeJinbae et al., 2019). A task here is to 
make recommendations based on several conversation histories. Meta 
learning methods and MAB-based methods have the capability of 
balancing exploration and exploitation. We will describe it later in 
Section 5. 

Recently, researchers incorporate deep reinforcement learning (DRL) 
models into interactive recommender systems (Zhao et al., 2018; Chen 
et al., 2019ba; Xian et al., 2019; Zheng et al., 2018; HuQing et al., 2018; 
Zou et al., 2019; Chen et al., 2019aa; Ie et al., 2019; Liao et al., 2018; 
Pecune et al., 2019; Zhou et al., 2020b; Zou et al., 2020a; Wang et al., 
2020c). Unlike MAB-based methods which usually assume the user 
preference is unchanged during the interaction, DRL-based methods can 
model a dynamic preference and long-term utility. For example, Mah-
mood and Ricci (2007) introduce a model-based techniques and use the 
policy iteration algorithm (Sutton and Barto, 2018) to acquire an 
adaptive strategy. Model-free frameworks such as deep Q-network 
(DQN) (Zhao et al., 2018; Zheng et al., 2018; Zou et al., 2019; Zhou 
et al., 2020b) and deep deterministic policy gradient (DDPG) (HuQing 
et al., 2018) are used in interactive recommendation scenarios. Most 
reinforcement learning (RL)-based methods often suffer from low effi-
ciency issues and cannot handle cold-start users. Zhou et al. (2020b) 
propose to integrate a knowledge graph into the interactive recom-
mendation to solve these problems. 

For more works that leverage RL in interactive recommender sys-
tems, we refer the interested readers to the comprehensive survey con-
ducted by Afsar et al. (2021). 

However, directly requiring items is inefficient for building the user 
profile because the candidate item set is large. In real-world CRS ap-
plications, users will get bored as the number of conversation turns 

increases. It is more practical to ask attribute-centric questions, i.e., to 
ask users whether they like an attribute (or topic/category in some 
works), and then make recommendations based on these attributes 
(Zhang et al., 2018; Lei et al., 2020a). Therefore, the estimation and 
utilization of a user’s preferences towards attributes become a key 
research issue. 

2.2. Asking about attributes 

Asking about attributes is more efficient because whether users like 
or dislike an attribute can significantly reduce the recommendation 
candidates. The challenge is to determine a sequence of attributes to ask 
so as to minimize the uncertainty of current user needs (Mirzadeh et al., 
2005; Thompson et al., 2004). The aforementioned critiquing-based 
methods fall into this category. Besides, there are other kinds of 
methods, we introduce some mainstream branches as below. 

2.2.1. Fitting patterns from historical interaction 
A conversation can be deemed as a sequence of entities including 

consumed items and mentioned attributes, and the objective is to learn 
to predict the next attribute to ask or the next item to recommend. 
Therefore, the sequential neural network such as the gated recurrent 
unit (GRU) model (ChoBart van Merriënboer et al., 2014) and the long 
short term memory (LSTM) model (HochreiterJürgen Schmidhuber, 
1997) can be naturally adopted in this setting, due to its ability to 
capture long and short term dependency in user behavioral patterns. 

An exemplar work is the question & recommendation (Q&R) model 
proposed by Christakopoulou et al. (2018), where the interaction be-
tween the system and a user is implemented as a selection system. In 
each turn, the system asks the user to choose one or more distinct topics 
(e.g., NBA, Comics, or Cooking) from the given list, and then recom-
mends items in these topics to the user. It contains a trigger module to 
decide whether to ask a question about attributes or to make a recom-
mendation. The triggering mechanism can be as simple as a random 
mechanism or can be more sophisticated, i.e., using criteria capturing 
the user’s state, or even be user-initiated. At the t-th time step, the next 
topic q that user click can be predicted based on the user’s watching 
history e1, …, eT as: P(q|e1,…, eT). After user clicking a topic q, the model 
can recommend an item r based on the conditional probability written 
as: P(r|e1,…, eT , q). Both of the two conditional probabilities are 
implemented as the GRU architecture (ChoBart van Merriënboer et al., 
2014). This algorithm is deployed on YouTube, for obtaining prefer-
ences from cold-start users. 

Zhang et al. (2018) propose a “System Ask User Response” (SAUR) 
paradigm. For each item, they utilize the rich review information and 
convert a sentence containing an aspect-value pair to a latent vector via 
the GRU model. Then they adopt a memory module with attention 
mechanism (SukhbaatarArthur Szlam et al., 2015; Kumar et al., 2016; 
Miller et al., 2016) to perform both the next question generation task 
(determining which attribute to ask) and the next item recommendation 
task. Again, they also develop a heuristic trigger to decide whether it is 
the time to display the top-n recommended items to users or to keep 
asking questions about attributes. One limitation of the work is that the 
authors assume all information in reviews can support the purchasing 
behavior, however it is not true as users may complain certain aspects of 
the purchased items, e.g., a user may write “64 Gigabytes is not enough”. 
Using information without discrimination will mislead the model and 
deteriorate the performance. 

The utterances produced by the system, i.e., the questions, are con-
structed with predefined language patterns or templates, meaning that 
what the system needs to pay attention to are only the aspect and the 
value. This is a common setting in state-of-the-art CRS studies because 
the core task here is recommendation instead of language generation 
(Christakopoulou et al., 2018; Lei et al., 2020a, 2020b). 

Note that these kinds of methods have a common disadvantage: 
learning from historical user behaviors cannot aid understanding the 
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logic behind the interaction. As interactive systems, these models do not 
consider how to react to feedback when users reject the recommenda-
tion, i.e., they just try to fit the preferences in historical interaction and 
do not consider an explicit strategy to deal with different feedback. 

2.2.2. Reducing uncertainty 
Unlike sequential neural network-based methods that do not have an 

explicit strategy to handle all kinds of user feedback, some studies try to 
build a straightforward logic to narrow down item candidates. 

Critiquing-based Methods. The aforementioned critiquing model is 
typically equipped with a heuristic tactic to elicit user preference on 
attributes (Chen and Pu, 2012; Wu et al., 2019a; Luo et al., 2020b; 
LuoScott et al., 2020). In traditional critiquing models, where the 
critique on an attribute value (e.g., “not red” for color or “less expensive” 
for price) is used for reconstructing the candidate set by removing the 
items with unsatisfied attributes (Chen and Pu, 2012; McCarthy et al., 
2004; Smyth et al., 2004; Viappiani et al., 2007; Burke et al., 1997; 
Smyth and McGinty, 2003). The neural vector-based methods take the 
criticism into the latent vector, which is responsible for generating both 
the recommended items and the explained attributes. For example, Wu 
et al. (2019a) propose an explainable neural collaborative filtering 
(CE-NCF) model for critiquing. They use the NCF model (He et al., 2017) 
to encode the preference of a user i for an item j as a latent vector ẑi,j, 
then ̂zi,j is used for producing the rating score ̂ri,j as well as the explained 
attribute vector ŝi,j. The attributes are composed of a set of key-phrases 
such as “golden, copper, orange, black, yellow,” and each dimension of 
ŝi,j corresponds to a certain attribute. When a user dislikes an attribute 
and critique it in real-time feedback, the system updates the explained 
attribute vector ̂si,j by setting the corresponding dimension to zero. Then 
the updated vector s̃i,j is used to update the latent vector ẑi,j to be z̃i,j. 
Consequently, the recommendation score is updated to be ̃ri,j. Following 
this setting, Luo et al. (2020b) change the base NCF model (He et al., 
2017) to be a variational autoencoder (VAE) model, and this generative 
model can help the critiquing system have better computational effi-
ciency, improved stability, and faster convergence. 

Reinforcement Learning-driven Methods. Reinforcement learning 
is also used in CRSs to select the appropriate attributes to ask (Sun and 
Zhang, 2018; Lei et al., 2020a, 2020b). Empowered by a deep policy 
network, the system not only selects the attributes but also determine a 
controlling strategy on when to change the topic of the current con-
versation; we will elaborate this in Section 3.1 where we describe how 
reinforcement learning helps the system form a multi-turn conversa-
tional strategy. 

Graph-constrained Candidates. Graph is a prevalent structure to 
represent relationship of different entities. It is natural to utilize graphs 
to sift items given a set of attributes. For example, Lei et al. (2020b) 
propose an interactive path reasoning algorithm on a heterogeneous 
graph on which users, items, and attributes are represented as nodes and 
an edge connected two nodes represented a relationship between two 
nodes, e.g., a user purchased an item, or an item has a certain value for 
an attribute. With the help of the graph, a conversation can be converted 
to a path on the graph, as illustrated in Fig. 4. The authors compare the 
uncertainty of preference for attributes and choose the attributes with 
the maximum uncertainty to ask. Here, the preference for a certain 
attribute is modeled by the average preference for items that have this 
attribute. Hence, the searching space and overhead of the algorithm can 
be significantly reduced by utilizing the graph information. There are 
other studies that apply graph neural networks (GNNs) to learn a 
powerful representation of both items and attributes, so the semantic 
information in the learned embedding vectors can help end-to-end CRS 
models generate appropriate recommendations. For example, the GCN 
model and its variants (Kipf and Welling, 2017; Schlichtkrull et al., 
2018) are adopted on the knowledge graph in recent CRS models (Chen 
et al., 2019bb; Zhou et al., 2020a; Xu et al., 2020; Liao et al., 2020). 

Other Methods. There are other attempts to make recommendations 

based on user feedback on attributes. For example, Zou et al. (Zou et al., 
2020) proposed a question-driven recommender system based on an 
extended matrix factorization model, which merely considers the user 
rating data, to combine real-time feedback from users. 

The basic assumption is that if a user likes an item, then he/she will 
like the attributes of this item. Thereby, in each turn, the system will 
select the attribute that carries the maximum amount of uncertainty to 
ask. In other words, if an attribute is known to be shared by most items 
that a user likes, then it does not need to ask about this attribute. 
Similarly, there is no need to ask about the attributes that users dislike. 
Only if it is not sure whether a user likes an attribute, then asking about 
this attribute can provide the most amount of information. The param-
eters in matrices can be updated after users providing feedback. Besides, 
using ideas similar to aforementioned models based on asking items, 
MAB-based models (Zhang et al., 2020c; Li et al., 2021b) and Bayesian 
approaches (Mangili et al., 2020) are also developed in attribute-asking 
CRSs. 

2.3. Section summary 

We list the common CRS models in Table 2, where the models are 
characterized by different dimensions, which are the asking entity (item 
or attribute), the asking mechanism, the type of user feedback, and the 
multi-turn strategy that we will describe in the next section. 

In most interactive recommendations (Zou et al., 2020a; Wang et al., 
2020c; ZhangTong et al., 2019b; Ding et al., 2020) and critiquing 
methods (Chen and Pu, 2012; Wu et al., 2019a; Luo et al., 2020b; 
LuoScott et al., 2020), the system keeps asking questions, and each 
question is followed by a recommendation. This process will only 
terminate when users quit with either being satisfied or impatient. The 
setting is unnatural and will likely hurt the user experience during the 
interaction process. Asking too many questions may let the interaction 
become an interrogation. Moreover, during the early stages of interac-
tion, when the system has not confidently modeled the user preferences 
yet, recommendations with low confidence should not be exposed to the 
user (Schnabel et al., 2018). In other words, there should be a multi-turn 
conversational strategy to control how to switch between asking and 
recommending, and this strategy should change dynamically in the 
interaction process. 

3. Multi-turn conversational strategies for CRSs 

Question-driven methods focus on the problem of “What to ask”, and 
the multi-turn conversational strategies discussed in this section focus 
on “When to ask” or a broader perspective, “How to maintain the con-
versation”. A good strategy cannot only make the recommendation at the 
proper time (with high confidence) and adapt flexibly to users’ feed-
back, but also maintain the conversation topics and adapt to different 
scenarios to make users feel comfortable in the interaction. 

3.1. Conversation strategies for determining when to ask and recommend 

Most CRS models do not carefully consider a strategy to determine 
whether to continue interrogating users by asking questions or to make a 
recommendation. However, a good strategy is essential in the interac-
tion process so as to improve the user experience. The strategy can be a 
rule-based policy, i.e., making recommendations every k turns of asking 
questions (Zhang et al., 2020c), or a random policy (Christakopoulou 
et al., 2018), or a model-based policy (Christakopoulou et al., 2018). 

In the SAUR model (Zhang et al., 2018), a trigger is set to activate the 
recommendation module when the confidence is high. The trigger is 
simply implemented as a sigmoid function on the score of the most 
probable item, i.e., if the score of the candidate item is high enough, then 
the recommendation step is triggered, else the system will keep asking 
questions. 

Though straightforward and easy to control, these strategies cannot 
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capture rich semantic information, e.g., what topics are talking about 
now or how deep the topics have been explored. This information can 
directly affect the conversation topic. Thereby, a sophisticated strategy 

is necessary. Recently, reinforcement learning (RL) has been adopted by 
many interactive recommendation models for its potential of modeling 
the complex environment (Zhao et al., 2018; Chen et al., 2019ba; Xian 

Fig. 4. An illustration of interactive path reasoning in the CPR model. Credits: Lei et al. (Lei et al., 2020b).  

Table 2 
Characteristics of common CRS models in different dimensions. The strategy indicates whether the work considers an explicit strategy to control multi-turn con-
versations, e.g., whether to ask or recommend in the current turn.  

Asking Asking Mechanism Basic Model Type of User Feedback Strategy Publications 

Items Exploitation & 
Exploration 

Multi-armed bandit Rating on the given 
item(s) 

No (Zhao et al., 2013; Christakopoulou et al., 2016; Zhou et al., 2020e;  
WangSteven et al., 2017; Yu et al., 2019b) 

Exploitation & 
Exploration 

Meta learning Rating on the given 
item(s) 

No (Zou et al., 2020b; LeeJinbae et al., 2019) 

Maximal posterior user 
belief 

Bayesian methods Rating on the given 
item(s) 

No Vendrov et al. (2020) 

Reducing uncertainty Choice-based 
methods 

Choosing an item or a 
set of items 

No (LoeppTim Hussein and Ziegler, 2014; Jiang and QiHe, 2014; Graus and 
Willemsen, 2015; Saavedra et al., 2016; Rana and Bridge, 2020) 

Attributes Exploitation & 
Exploration 

Multi-armed bandit Rating on the given 
attribute(s) 

Yes (Zhang et al., 2020c; Li et al., 2021b) 

Reducing uncertainty Bayesian approach Providing preferred 
attribute values 

No (Mangili et al., 2020; YangScott et al., 2021) 

Critiquing-based 
methods 

Critiquing one/ 
multiple attributes 

No (McCarthy et al., 2004; Smyth et al., 2004; Viappiani et al., 2007; Burke 
et al., 1997; Smyth and McGinty, 2003) 
(Pu and Faltings, 2004; Chen and Pu, 2012; Wu et al., 2019a; Luo et al., 
2020b; LuoScott et al., 2020) 

Matrix factorization Answering Yes/No for 
an attributes 

No Zou et al. (2020) 

Fitting historical patterns Sequential neural 
network 

Providing preferred 
attribute values 

Yes (Christakopoulou et al., 2018; Zhang et al., 2018) 

Providing an utterance No (Li et al., 2018; Chen et al., 2019bb) 

Maximal reward Reinforcement 
learning 

Answering Yes/No for 
an attributes 

Yes (Lei et al., 2020a, 2020b) 

Providing an utterance Yes (Kang et al., 2019; Sun and Zhang, 2018; Tsumita and Takagi, 2019) 

No Ren et al. (2020) 

Exploring graph- 
constrained candidates 

Graph reasoning Answering Yes/No for 
an attributes 

Yes Lei et al. (2020b) 

Providing an utterance Yes (Chen et al., 2019bb; Liu et al., 2020ab) 

No (Zhou et al., 2020a; Liao et al., 2020) 

Providing preferred 
attribute values 

Yes Xu et al. (2020) 

No Moon et al. (2019)  
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et al., 2019; Zheng et al., 2018; Zou et al., 2019; Chen et al., 2019aa; Ie 
et al., 2019; Liao et al., 2018; Pecune et al., 2019; ZhangTong et al., 
2019b; Zhou et al., 2020b). Therefore, it is natural to incorporate RL into 
the CRS framework (Sun and Zhang, 2018; Lei et al., 2020a, 2020b; 
Tsumita and Takagi, 2019; Ren et al., 2020; Kang et al., 2019). For 
instance, Sun and Zhang (2018) propose a model called conversational 
recommender model (CRM) that uses the architecture of task-oriented 
dialogue system. In CRM, a belief tracker is used to track the users’ 
input, and it outputs a latent vector representing the current state of the 
dialogue and the user preferences that have so far been captured. Af-
terward, the state vector of the belief tracker is input into a deep policy 
network to decide whether to recommend an item or to keep asking 
questions. Specifically, there are l + 1 actions: l actions for choosing one 
facet to ask and the last one is to yield a recommendation. The deep 
policy network uses the policy gradient method to make decisions. 
Finally, the model gets rewards from the environment, which includes 
user feedback towards the questions and the reward from the automatic 
evaluation of recommendation results. 

However, the state modeled in CRM is a latent vector capturing the 
information of facet-values, which is hard to interpretable. In this 
respect, some studies explore better ways to construct the state of RL to 
make the multi-turn conversation strategy better adapt to an dynamic 
environment. For example, Lei et al. (2020a) propose an 
Estimation-Action-Reflection (EAR) framework, which assumes that the 
model should only ask questions at the right time. The right time, in 
their definition, is when (1) the item candidate space is small enough; 
(2) asking additional questions is determined to be less useful or helpful, 
from the perspective of either information gain or user patience; and (3) 
the recommendation engine is confident that the top recommendations 
will be accepted by the user. 

The workflow of the EAR framework is illustrated in Fig. 5, where the 
system has to decide whether to continue to ask questions about attri-
butes or to make a recommendation based on available information. To 
determine when to ask a question, they construct the state of the RL 
model to take into account four factors:  

● Entropy information of each attribute among the attributes of the 
current candidate items. Asking attributes with a large entropy helps 
to reduce the candidate space, thus benefits finding desired items in 
fewer turns. 

● User preference on each attribute. The attribute with a high pre-
dicted preference is likely to receive positive feedback, which also 
helps to reduce the candidate space.  

● Historical user feedback. If the system has asked about a number of 
attributes for which the user gives approval, it may be a good time to 
recommend.  

● Number of rest candidates. If the candidate list is short enough, the 
system should turn to recommend to avoid wasting more turns. 

Building on these vectors capturing the current state, the RL model 
learns the proper timing to ask or recommend, which is more intelligent 
than a fixed heuristic strategy. 

During the conversation, the recommendation module takes the 
items in the previous list of recommendations that are not chosen by 
users as the negative samples. However, Lei et al. (2020a) mention that 
this setting deteriorates the performance of the recommendation results. 
The reason, as they analyze it, is that rejecting the produced attribute 
does not mean that the user dislikes it: maybe the user does like it but 
overlooks it or just wants to try other new things. 

Furthermore, Lei et al. (2020b) extend the EAR model by proposing 
the CPR model. By integrating the knowledge graph consisted of users, 
items, and attributes, they model conversational recommendation as an 
interactive path reasoning problem on the graph. A toy example of the 
generated conversation of the CPR model is shown in Fig. 4. Unlike the 
EAR model where the attributes to be asked are selected irregular and 
unpredictable from all attribute candidates, CPR chooses attributes to be 
asked and items to be recommended strictly following the paths on the 
knowledge graph, which renders interpretable results. 

In terms of the timing to ask or recommend, CRP makes an important 
improvement: the action space of the RL policy is only two — asking an 
attribute or making item recommendations. This largely reduces the 
difficulty of learning the RL policy. The CPR model is much more effi-
cient than the EAR model due to the fact that the searching space of 
attributes in CPR is constrained by the graph. The integration of 
knowledge improves the multi-turn conversational reasoning ability. 

3.2. Conversation strategies from a broader perspective 

Although learning from the query-answering interactions can enable 
the system to understand and respond to human query directly, the 
system still lacks intelligence. One reason is that most CRS models as-
sume that users always bear in mind what they want, and the task is to 
obtain the preference through asking questions. However, users who 
resort to recommendation might not have a clear idea about what they 
really want. Just like a human asks a friend for suggestions on restau-
rants. Before that, he may not have a certain target in mind, and his 
decision can be affected by his friend’s opinions. Therefore, CRSs should 
not only ask clarification questions and interrogate users, but also take 
responsibility for leading the topics and affecting users’ mind. Towards 
this objective, some studies try to enrich CRSs certain personalities or 
endow CRSs the ability to lead the conversation, which can make the 
dialogues more attractive and more engaging. These efforts can also be 
found in the field of proactive conversation (Mo et al., 2018; Wu et al., 
2019; Balaraman and Magnini, 2020). 

3.2.1. Multi-topic learning in conversations 
Borrowing the idea from the proactive conversation, Liu et al. (Liu 

et al., 2020ab) present a new task which places conversational recom-
mendation in the context of multi-type dialogues. In their model, the 
system can proactively and naturally lead a conversation from a 
non-recommendation dialogue (e.g., question answering or chitchat) to 
a recommendation dialogue, taking into account the user’s interests and 
feedback. And during the interaction, the system can learn to flexibly 
switch between multiple goals. To address this task, they propose a 
multi-goal driven conversation generation (MGCG) framework, which 
consists of a goal planning module and a goal-guided responding mod-
ule. The goal-planning module can conduct dialogue management to 
control the dialogue flow, which takes recommendation as the main goal 
and complete the natural topic transitions as the short-term goals. 
Specifically, given a user’s historical utterances as context X and the last 
goal gt− 1, the module estimates the probability of changing the goal gt of 
the current task as PGC(gt ∕= gt− 1|X, gt− 1). The goal gt of the current task is 

Fig. 5. The estimation-action-reflection workflow. Credits: Lei et al. (Lei 
et al., 2020a). 
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changed when the probability PGC > 0.5 and remains to be gt− 1 if PGC ≤

0.5. Based on the current goal, the framework can produce responses 
from an end-to-end neural network. 

Learning a multi-type conversational model requires a dataset that 
supports multi-type dialogues. Therefore, Liu et al. (Liu et al., 2020ab) 
create a dataset, denoted as DuRecDial, with various types of interac-
tion. In DuRecDial, two human workers are asked to conduct the con-
versation based on a given profile, which contains the information of 
age, gender, occupation, preferred domains, and entities. The workers 
must produce utterances that are consistent with their given profiles, 
and they are encouraged to produce utterances with diverse goals, e.g., 
question answering, chitchat, or recommendation. Then these dialogue 
data are labeled with goals and goal descriptions by templates and 
human annotation. 

Further, Zhou et al. (2020c) release a topic-guided conversational 
recommendation dataset. They collect the review data from Douban 
Movie ,2 a movie review website, to construct the recommended movies, 
topic threads, user profiles, and utterances. And they associate each 
movie with the concepts in ConceptNet (Speer et al., 2017), a 
commonsense knowledge graph, for providing rich topic candidates. 
Then they use rules to generate multi-turn conversations with diverse 
topics based on the user profile and topic candidates. Based on the 
proposed dataset, a new task of topic-guided conversational recom-
mendation is defined as follows: given the user profile Pu, user interac-
tion sequence Iu, historical utterances s1, …, sk− 1, and corresponding 
topic sequence {t1,…, tk− 1}, the system should: (1) predict the next topic 
tk, or (2) recommend the movie ik, and finally (3) produce a proper 
response sk about the topic and with persuasive reasons. 

3.2.2. Special ability: suggesting, negotiating, and persuading 
There are miscellaneous tasks beyond the preference elicitation and 

recommendation for an intelligent interactive system, which require the 
CRS to possess different abilities to react in different scenarios. This is a 
high-level and abstract requirement. A lot of effort have put into helping 
the machine improve the topic’s guiding ability. For instance, in 
conversational search (Voskarides et al., 2020; ter Hoeve et al., 2020; 
Ren et al., 2020b; Vakulenko et al., 2020b; Vakulenko et al., 2021; Ren 
et al., 2021), where traditional work has mainly attempted to better 
understand a user’s information needs by resolving ambiguity, the 
conversational search engine aims to lead the conversation with ques-
tions that a user may want to ask in the next step. For example, if a user 
queried “Nissan GTR Price,” then the system can provide question sug-
gestions include those that help the user complete a task (“How much 
does it cost to lease a Nissan GT-R?”), weigh options (“What are the pros 
and cons of the Nissan GT-R?”), explore an interesting related topic (“Is 
the Nissan GT-R the ultimate streetcar?”), or learn more details (“How 
much does 2020 Nissan GTR cost?”) (Rosset et al., 2020). These question 
suggestions can lead the user to an immersive search experience with 
diverse and fruitful future outcomes. 

In addition, Lewis et al. (2017) propose a system that is capable of 
engaging in the negotiations with users. They define the problem as an 
allocation problem: there are some items that need to be allocated to two 
people, where each item has a different value to a different person and 
people do not know the value of others. Hence, the two people have to 
converse and negotiate with each other to reach an agreement about the 
division of these items. Instead of optimizing relevance-based likeli-
hood, the model should pursue a maximal profit for both parties. The 
authors use RL to tackle this problem. And they interleave RL updates 
with supervised updates to avoid that the models diverges from human 
language. 

Wang et al. (2019) develop a model that tries to persuade users to 
take certain actions, which is very promising for conversational 
recommendation. They train the model, according to conversational 

contexts, to learn and predict the 10 persuasion strategies (e.g., logical 
appeal or emotion appeal) used in the corpus. And they analyze which 
strategies are better conditioned on the background (personality, mo-
rality, value systems, willingness) of the user being persuaded. 

Though some of these efforts are applied to specific application 
scenarios in dialogue systems, these techniques can be adopted in the 
multi-turn strategy in CRSs and thus push the development of CRSs. 

3.3. Section summary 

The multi-turn conversation strategies of CRSs discussed in this 
section are summarized in Table 3. The main focus of the conversation 
strategy is to determine when to elicit user preference by asking ques-
tions and when to make recommendations. As a recommendation should 
only be made when the system is confident, an adaptive strategy can be 
more promising compared to a static one. Besides this core function, we 
introduce some strategies from a broader perspective. These strategies 
can extend the capability of CRSs by means of leading multi-topic con-
versations (Liu et al., 2020ab; Zhou et al., 2020c) or showing special 
ability such as suggesting (Rosset et al., 2020), negotiating (Lewis et al., 
2017), and persuading (Wang et al., 2019). 

4. Dialogue understanding and generation in CRSs 

An important direction of CRSs is to converse with humans in natural 
languages, thus understanding human intentions and generating 
human-understandable responses are critical. However, most CRSs only 
extract key information from processed structural data and present the 
result via rule-based template responses (Zhang et al., 2018; Zou et al., 
2020; Lei et al., 2020a, 2020b). This not only requires lots of labor to 
construct the rule or template but also make the result rely on the pre-
processing. It also hurt user experience as the constrained interaction is 
unnatural in real-world applications. Recently, we have witnessed the 
development of end-to-end learning frameworks in dialogue systems, 
which have been studying for years to automatically handle the se-
mantic information in raw natural language (Gao et al., 2019a; Lei et al., 
2018; Jin et al., 2018). We will introduce these natural language pro-
cessing (NLP) technologies in dialogue systems and describe how they 
help CRSs understand user intention and sentiment and generate 
meaningful responses. 

4.1. Dialogue understanding 

Understanding users’ intention is the key requirement for the user 
interface of a CRS, as downstream tasks, e.g., recommendation, rely 
heavily on this information. However, most CRSs pay attention to the 
core recommendation logic and the multi-turn strategy, while they 
circumvent extracting user intention from raw utterances and requires 
the preprocessed input such as rating scores (Zhao et al., 2013; Chris-
takopoulou et al., 2016; Zou et al., 2020b; LeeJinbae et al., 2019), 
YES/NO answers (Zou et al., 2020; Lei et al., 2020a, 2020b), or another 
type of value or orientation (Christakopoulou et al., 2018; Zhang et al., 
2018) towards the queried items or attributes. This is unnatural in 
real-life human conversation and imposes constraints on user expres-
sion. Thereby, it is necessary to develop methods to extract semantic 
information in users’ raw language input, either in an explicit or implicit 
way. 

We introduce how dialogue systems use NLP technologies to address 
this problem and give the examples of CRSs that use these technology to 
understand user intention. 

4.1.1. Slot filling 
A common way used in dialogue systems to extract useful informa-

tion is to predefine some aspects of interest and use a model to fill out the 
values of these aspects from users’ input, a.k.a, slot filling (Deng et al., 
2012; Deoras and Sarikaya, 2013; Yao et al., 2013, 2014; Mesnil et al., 2 https://movie.douban.com/. 
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2013; Pecune et al., 2020). Sun and Zhang (2018) first consider 
extracting the semantic information from the raw dialogue in CRSs. 
They propose a belief tracker to capture the facet-value pairs, e.g., (color, 
red), from user utterances. Specifically, given a user utterance et at time 
step t, the input to the belief tracker is the n-gram vector zt, which is 
written as zt = n-gram(et), where the dimension of zt is the corpus size. 
This means that only the positions corresponding to the words in ut-
terance et are set to 1, other positions will be set to 0. Suppose there are K 
types of facet-value pairs, for a given facet m ∈{1, 2, …, K}, the user’s 
sequential utterances z1, z2, …, zt are encoded by a LSTM model 
(HochreiterJürgen Schmidhuber, 1997) to learn the latent vector fm for 
this facet m. The size of vector fm is set to the number of values, e.g., the 
number of available colors. The vector fm capturing the facet-value in-
formation will be used in the recommendation module and policy 
network later. Besides, Ren et al. (2020), Tsumita and Takagi (2019) 
also employ recurrent neural networks (RNN)-based methods to extract 
the facet-value information as input for in downstream tasks in their 
CRSs. 

However, explicitly modeling semantic information as aspect-value 
pairs can be a limitation in some scenarios where it is difficult and 
also unnecessary to do that. Besides, aspect-value pairs cannot precisely 
express information such as user intent or sentiment. Therefore, some 
recent CRSs use end-to-end neural frameworks to implicit learning the 
representation of users’ intentions and sentiment. 

4.1.2. Intentions and sentiment learning 
Neural networks are famous for extracting features automatically, so 

it can be used to extract users’ intentions and sentiment in CRSs. An 
classic example in CRSs is the end-to-end framework that proposed by Li 
et al. (2018), which takes the user’s raw utterances as input and directly 
produces the responses in the interaction. They collect the REDIAL 
dataset 3 through the crowdsourcing platform Amazon Mechanical Turk 
(AMT) .4 They pair up AMT workers and give each of them a role. The 
movie seeker has to explain what kind of movie he/she likes, and asks 
for movie suggestions. The recommender tries to understand the 
seeker’s movie tastes and recommends movies. All exchanges of infor-
mation and recommendations are made using natural language; every 
movie mention is tagged using the “@” symbol to let the machine know 
it is a named entity. In this way, the dialogues in the REDIAL data 
contain the required semantic information that can help the model learn 
to answer users with recommendations and reasonable explanations. In 
addition, three questions are asked to provide labels for supervised 
learning: (1) Whether the movie was mentioned by the seeker, or was a 
suggestion from the recommender (“suggested” label). (2) Whether the 
seeker has seen the movie (“seen” label): one of Have seen it, Haven’t seen 
it, or Didn’t say. (3) Whether the seeker liked the movie or the suggestion 
(“liked” label): one of Liked, Didn’t like, Didn’t say. The three labels are 

collected from both the seeker and the recommender. 
In this way, although the facet-value constraints are removed, all 

kinds of information including mentioned items and attributes, user 
attitude, and user interest are preserved and labeled in the raw utter-
ance. And the CRS model needs to directly learn users’ sentiment (or 
preferences), and it will make recommendations and generate responses 
based on the learned sentiment. The deep neural network-based model 
consists of four parts: (1) A hierarchical recurrent encoder implemented 
as a bidirectional GRU (ChoBart van Merriënboer et al., 2014) that 
transforms the raw utterances into a latent vector with the key semantic 
information remained. (2) At each time a movie entity is detected (with 
the “@” identifier convention), an RNN model is instantiated to classify 
the seeker’s sentiment or opinion regarding that entity. (3) An 
autoencoder-based recommendation module that takes the sentiment 
prediction as input and produces an item recommendation. (4) A 
switching decoder generating the response and deciding whether the 
name of the recommended item is included in the response. The model 
generates a complete sentence that might contain a recommended item 
to answer each user’s utterance. 

Beside using the RNN-based neural networks, there are some CRSs 
that adopt the convolutional neural network (CNN) model (Ren et al., 
2020; Liu et al., 2020ab), which has been proven to be very effective for 
modeling the semantics from raw natural language (Kim, 2014). How-
ever, deep neural networks are often criticized to be non-transparent 
and hard to interpretable (Buhrmester et al., 2019). It is not clear how 
the deep language models can help CRSs in understanding user needs. 

In order to answer this question, Penha and Hauff (2020) investigate 
the bidirectional encoder representations from transformers (BERT) 
(Devlin et al., 2019), a powerful technology for NLP pre-training 
developed by Google, to analyze whether its parameters can capture 
and store semantic information about items such as books, movies, and 
music for CRSs. The semantic information includes two kinds of 
knowledge needed for conducting conversational search and recom-
mendation, namely content-based and collaborative-based knowledge. 
Content-based knowledge is knowledge that requires the model to 
match the titles of items with their content information, such as textual 
descriptions and genres. In contrast, collaborative-based knowledge 
requires the model to match items with similar ones, according to 
community interactions such as ratings. The authors use the three 
probes on the BERT model (i.e., tasks to examine a trained model 
regarding certain properties) to achieve the goal. And the result shows 
that both collaborative-based and content-based knowledge can be 
learned and remembered. Therefore, the end-to-end language model has 
potential as part of CRS models to interact with humans directly in 
real-world applications with complex contexts. 

4.2. Response generation 

A natural language-based response of a CRS should at least meet two 
levels of standards. The lower level standard requires the generated 
language to be proper and correct; the higher level standard requires the 

Table 3 
The commonly used multi-turn strategies in CRSs.  

Main 
Mechanism 

Asking 
Method 

When to ask and recommend Determining X and 
Y 

Publications 

Asking 
questions 

Explicit Asking 1 turn; recommending 1 turn Fixed (Christakopoulou et al., 2018; Yu et al., 2019b) 

Asking X turn(s); recommending 1 
turn 

Fixed Zou et al. (2020) 

Adaptive Sun and Zhang (2018) 

Asking X turn(s); recommending Y 
turn(s) 

Adaptive (Zhang et al., 2018; Lei et al., 2020a, 2020b; Li et al., 2021b; Xu et al., 2021) 

Implicit Contained in natural language Adaptive (Li et al., 2018; Chen et al., 2019bb; Zhou et al., 2020a; Zhou et al., 2020c) 

Leading diverse topics or explore special abilities  (Liu et al., 2020ab; Zhou et al., 2020c; Rosset et al., 2020; Lewis et al., 2017;  
Wang et al., 2019)  

3 https://redialdata.github.io/website/.  
4 https://www.mturk.com/. 
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response contains meaningful and useful information about recom-
mended results. 

4.2.1. Generating proper utterances in natural language 
Many CRSs use template-based methods to generate responses in 

conversations (Sun and Zhang, 2018; Lei et al., 2020a, 2020b). How-
ever, template-based methods suffer from producing repetitive and 
inflexible output, and it require intense manual work. Besides, 
template-based responses could make users uncomfortable and hurt user 
experience. Hence, it is important to automate the response generation 
in CRSs to produce proper and fluent responses. This is also the objective 
of dialogue systems, so we introduce two veins of technologies for 
producing responses in dialogue systems: 

Retrieval-based Methods. The basic idea is to retrieve the appro-
priate response from a large collection of response candidate. This 
problem can be formulated as a matching problem between an input 
user query and the candidate responses. The most straightforward 
method is to measure the inner-product of the feature vectors repre-
senting a query and a response (Wu and Yan, 2018). A key challenge is to 
learn a proper feature representation (Wu and Yan, 2018). One strategy 
is to use neural networks to learn the representation vectors from user 
query and candidate response, respectively. Then, a matching function is 
used to combine the two representations and output a matching prob-
ability (Hu et al., 2014; TanCicero dos Santos et al., 2016; Qiu and 
Huang, 2015; Feng et al., 2015; Wang et al., 2016b). An alternative 
strategy, in contrast, is to combine the representation vectors of query 
and response first, and then a neural method is used on the combined 
representation pair to further learn the interaction (Wang and Jiang, 
2016; Wan et al., 2016; Pang et al., 2016; Lu and Li, 2013). These two 
strategies have their own advantages: the former is more efficient and 
suitable for online serving, while the latter is better at efficacy since the 
matching information is sufficiently preserved and mined (Wu and Yan, 
2018). 

Generation-based Methods. Unlike retrieval-based methods, which 
select existing responses from a database of template response, 
generation-based methods directly produce a complete sentence from 
the model. The basic generation model is a recurrent sequence-to- 
sequence model, which sequentially feeds in each word in the query 
as input, and then generates the output word one by one (SutskeverOriol 
VinyalsQuoc, 2014). Compared to retrieval-based methods, 
generation-based methods have some challenges. First, the generated 
answer is not guaranteed to be a well-formed natural language utterance 
(Yan et al., 2016). Second, even though the generated response may be 
grammatically correct, we can still distinguish a machine-generated 
utterance from a human-generated utterance, since the machine 
response lacks basic commonsense (Young et al., 2018; Zhou et al., 
2018c; Ren et al., 2020a), personality (Qian et al., 2018; Zheng et al., 
2020), emotion (Zhou et al., 2018b), and the ability to perceive user 
profiles (Pei et al., 2021). Even worse, generation models are prone to 
produce a safe answer, such as “OK,” “I don’t understand what you are 
talking about,” which can fit in almost all conversational contexts but 
would only hurt the user experience (Li et al., 2016a; Qiu et al., 2019). 
Ke et al. (2018) propose to explicitly control the function of the gener-
ated sentence, for example, for the same user query, the system can 
answer with different tones: The interrogative tone can be used to ac-
quire further information; the imperative tone is used to make requests, 
directions, instructions or invitations to elicit further interactions; and 
the declarative tone is commonly used to make statements or explana-
tions. Another problem is how to evaluate the generated response, since 
there is no standard answer; we will further discuss this in Section 6. 
Researchers borrow the ideas from dialogue systems and apply the 
technologies in the user inferface of CRSs. For instance, Li et al. (2018) 
generate responses by a decoder where a GRU model (ChoBart van 
Merriënboer et al., 2014) decodes the context from the previous 
component (i.e., predicted sentiment towards items) to predict the next 
utterance step by step. Liu et al. (Liu et al., 2020ab) adopt the 

responding model in the work of Wu et al. (2019) and propose both a 
retrieval-based model and a generation-based model to produce re-
sponses in their CRS. 

However, a correct sentence does not mean it can fulfill the task of 
recommendation; at least the name of the recommended entity should 
be mentioned in generated sentences. Hence, Li et al. (2018) use a 
switch to decide whether the next predicted word is a movie name or an 
ordinal word; Liu et al. (Liu et al., 2020ab) introduce an external 
memory module for storing all related knowledge, making the models 
select appropriate knowledge to enable proactive conversations. Be-
sides, there are other efforts to guarantee the generated responses should 
not only be proper and accurate but also be meaningful and useful. 

4.2.2. Incorporating recommendation-oriented information 
There is a major limitation CRSs that use the end-to-end frameworks 

as the user interface: only items mentioned in the training corpus have a 
chance of being recommended since items that have never been 
mentioned are not modeled by the end-to-end model. Therefore, the 
performance of this method is greatly limited by the quality of human 
recommendations in the training data. To overcome this problem, Chen 
et al. (Chen et al., 2019bb) propose to incorporate domain knowledge to 
assist the recommendation engine. The incorporation of a knowledge 
graph mutually benefits the dialogue interface and the recommendation 
engine in the CRS. (1) the dialogue interface can help the recommender 
engine by linking related entities in the knowledge graph; the recom-
mendation model is based on the R-GCN model (Schlichtkrull et al., 
2018) to extract information from the knowledge graph; (2) the 
recommender system can also help the dialogue interface: by mining 
words with high probability, the dialogue can connect movies with some 
biased vocabularies, thus it can produce consistent and interpretable 
responses. 

Following this line, Zhou et al. (2020a) point out the remaining 
problems in the dialogue interface in CRSs. Although Chen et al. (Chen 
et al., 2019bb) have introduced an item-oriented knowledge graph to 
enable the system to understand the movie-related concepts, the system 
still cannot comprehend some words in the raw utterances. For example, 
“thriller”, “scary”, “good plot”. In essence, the problem originates from 
the fact that the dialogue component and the recommender component 
correspond to two different semantic spaces, namely word-level and 
entity-level semantic spaces. Therefore, Zhou et al. (2020a) incorporate 
and fuse two special knowledge graphs, i.e., a word-oriented graph 
(ConceptNet (Speer et al., 2017)), and an item-oriented graph (DBpedia 
(Bizer et al., 2009)), to enhance understanding semantics in both the 
components. The representations of the same concepts on the two 
knowledge graphs are forced to be aligned with each other via the 
mutual information maximization (MIM) technique (Veličković et al., 
2019; Yeh and Chen, 2019). Furthermore, a self-attention-based 
recommendation model is proposed to learn the user preference and 
adjust the representation of corresponding entities on the knowledge 
graph. Then, equipped with these representations containing both se-
mantics and users’ historical preferences, the authors use an 
encoder-decoder model to extract user intention from the raw utterances 
and directly generate the responses containing recommended items. 

Besides, some researchers try to improve the diversity or explain-
ability of generated responses in CRSs. For example, Liu et al. (Liu et al., 
2020ab) propose the multi-topic learning that can handle diverse dia-
logue types in CRSs. To enhance the interpretability of CRSs, Chen et al. 
(2020b) design an incremental multi-task learning framework to inte-
grate review comments as side information. Hence, the CRS can simul-
taneously produce a recommendation as well as a sentence as an 
explanation, e.g., “I recommend Mission Impossible, because it is by far 
the best of the action series.” Moreover, Luo et al. (2020b) use a 
VAE-based architecture to learn a latent representation for generating 
recommendations and fitting user critiquing. Therefore, their model can 
better understand users’ intentions from users’ raw comments, and thus 
can generate more interpretable responses. Gao et al. (2020) consider 
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attributes and review information and rewrite a coherent and mean-
ingful answer from a selected prototype answer, which can address the 
safe answer problem in the response (Li et al., 2016a; Qiu et al., 2019). 

4.3. Section summary 

In Table 4, we classify CRSs into two classes in terms of the forms of 
input and output. Generally, interactive recommendations (Zou et al., 
2020a; Wang et al., 2020c; ZhangTong et al., 2019b; Ding et al., 2020), 
critiquing methods (Chen and Pu, 2012; Wu et al., 2019a; Luo et al., 
2020b; LuoScott et al., 2020), and CRSs focusing on the multi-turn 
conversation strategy (Christakopoulou et al., 2016, 2018; Lei et al., 
2020a, 2020b; Li et al., 2021b) are prone to use the pre-annotated input 
and rule-based or template-based output; dialogue systems (Young et al., 
2018; Zhou et al., 2018c; Gao et al., 2020) and CRSs caring about the 
dialogue ability (Li et al., 2018; Chen et al., 2019bb; Zhou et al., 2020a) 
are more likely to use raw natural language as input and automatically 
generate responses. In the future, user understanding and response 
generation in CRSs will remain a critical research field, as they serve as 
the interface of CRSs and directly impact the user experience. 

5. Exploration-exploitation trade-offs 

One challenge of CRSs is to handle the cold-start users that have few 
historical interactions. A natural way to tackle this is through the idea of 
the Exploration-Exploitation (E&E) trade-off. With exploitation, the 
system takes advantage of the best option that is known; with explora-
tion, the system takes some risks to collect information about unknown 
options. In order to achieve long-term optimization, one might make a 
short-term sacrifice. In the early stages of E&E, an exploration trial could 
be a failure, but it warns the model to not take that action too often in the 
future. Although the E&E trade-off is mainly used for the cold-start 
scenario in CRSs, it can also be used for improving the recommenda-
tion performance for any users (including cold users and warm-up users) 
in recommendation systems. 

MAB is a classic problem formulated to illustrate the E&E trade-off, 
and many algorithms have been proposed to solve the problem. In CRSs, 
the MAB-based algorithms are introduced to help the system improve its 
recommendation. Besides, there are also CRSs that use meta-learning to 
balance E&E. We first introduce MAB and common MAB-based algo-
rithms in recommender systems, then we present examples how CRSs 
balance E&E in their models. 

5.1. Multi-armed bandits in recommendation 

We first introduce the general MAB problem and the classic methods 
to solve it, then we introduce how recommender systems use MAB-based 
methods to achieve the E&E balance. 

5.1.1. Introduction to multi-armed bandits 
MAB is a classic problem that well demonstrates the E&E dilemma 

(Katehakis and Veinott, 1987; Auer et al., 2002). The name comes from 
the story where a gambler at a row of slot machines (each of which is 
known as a “one-arm bandit”) wants to maximize his expected gain and 
has to decide which machines to play, how many times to play each 
machine, in which order to play them, and whether to continue with the 

current machine or try a different machine. The problem is difficult 
because all of the slot machines are black boxes, whose properties, i.e., 
the probability of winning, can only be estimated by the rewards 
observed in previous experiments. 

Formally, the problem is to maximize the cumulative reward 
∑T

t=1ra,t 

after T rounds of arm selection. Here, ra,t is the reward with arm 0 ≤ a ≤
K selected at trial t, K is the total number of arms. Fig. 6 illustrates an 
example in which a gambler decides which arm to choose now. For a 
certain arm, a reward distribution is estimated based on previous 
experiment results. The gambler can, naturally, select to exploit the 
second arm which has the maximal mean reward μ(a). Or, he can take 
some risks to explore the other arm, e.g., the third arm, which has a 
higher uncertainty Δ(a) and thus has the maximal upper confidence 
bound (UCB) of the reward μ(a) + Δ(a). After each time he plays an arm, 
the new reward value is observed, and the estimated reward distribution 
of this arm can be updated accordingly. With exploration, the gambler 
hopes to find the potential arms that have higher rewards, though it can 
also end up in lower rewards. In any case the gambler has a better 
estimation of the rewards of those arms. 

Equivalently, the problem can also be formulated as minimizing the 
regret function, which is the difference between the theoretically 
optimal expected cumulative reward and the estimated expected cu-
mulative reward: 

E

[
∑T

t=1
rt,a*

]

− E

[
∑T

t=1
rt,a

]

, (5)  

where a* is the theoretically optimal arm with the maximum expected 
reward at all times. 

The commonly used bandit strategies include the greedy strategy, i. 
e., the exploit-only strategy that always selects the arm with the current 
estimated highest reward; the random strategy, i.e., a trivial explore- 
only strategy; and ε-greedy, which mixes the greedy and random stra-
tegies via a trigger with probability ε. Other classic models include 
Upper Confidence Bound (UCB) (Auer, 2002; Auer et al., 2002) and 
Thompson Sampling (TS) (Chapelle and Li, 2011) which are introduced 
next. 

Table 4 
Mechanisms of language understanding and generation in CRSs.  

Forms of Input & Output Publications 

Pre-annotated Input & 
Template-based Output 

(Zhao et al., 2013; Zou et al., 2020; LoeppTim Hussein and Ziegler, 2014; Zhang et al., 2018; Sun and Zhang, 2018), 
(Christakopoulou et al., 2016, 2018; Lei et al., 2020a, 2020b; Li et al., 2021b; Fu et al., 2021) 

Raw Language Input & 
Natural Language Generation 

(Ren et al., 2020; Li et al., 2018; Chen et al., 2019bb), 
(Zhou et al., 2020a; Ma et al., 2020; Liu et al., 2020ab)  

Fig. 6. An illustration of the multi-armed bandit problem.  
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5.1.2. Recommendation via MAB-based methods 
As the classic algorithm for E&E trade-offs, MAB-based models can 

be seamlessly plugged into the online recommendation setting (Zeng 
et al., 2016; Zheng et al., 2018), interactive recommendation (Zhao 
et al., 2013; Wang et al., 2017), and CRSs (Christakopoulou et al., 2016; 
Zhang et al., 2020c; Li et al., 2021b). In the online or interactive 
recommendation tasks, the system aims to recommend the optimal item 
(s) according to users’ previous feedback. This process can be deemed as 
a MAB problem, where each arm corresponds to an item. Therefore, the 
classical MAB-based methods can be plugged in this situation. 

However, traditional bandit methods only consider treating items as 
independent arms and ignore the item features (Li et al., 2010). Directly 
estimating each item’s probability of being chosen based on the accu-
mulated rewards is rather inefficient due to a large number of items. In 
recommendation, there is a rich set of features on users and items, and 
whether a user ut would choose item at can be predicted by the features 
of both ut and at. Motivated by this, Li et al. (2010) propose a linear 
contextual bandit model called LinUCB, which is the first bandit model 
that considers the contextual information (i.e., user/item features) in 
recommendation systems. 

For each trial t, they assume the expected reward rt of a user ut 
choosing an arm (item) at is linear in its d-dimensional feature vector 
xut ,at with the unknown coefficient vector θ*

a (which is determined on 
this arm at rather than other arms); namely, for all trial t, 

E
[
rt,a
⃒
⃒xut ,at

]
= x⊤

ut ,at
θ*

a, (6)  

where the feature vector xut ,at summarizes information of both user ut 

and arm (item) at, and is referred to as the context. The coefficients θ*
a 

can be learned from the historical interactions and feedback. Specif-
ically, let Da be a design matrix of dimension m × d at trial t, e.g., m 
contexts that are observed previously for arm a, and ct ∈ Rm be the 
corresponding reward vector, the coefficients θ*

a are estimated by 
applying ridge regression to the training data (Da, ca) as: 

θ̂a =
(
D⊤

a Da + Id
)− 1D⊤

a ca,

where Id is the d × d identity matrix. When components in ca are in-
dependent conditioned on corresponding rows in Da, it can be shown 
that with probability at least 1 − δ, 
⃒
⃒
⃒x⊤

ut ,at
θ̂a − E

[
rt,a
⃒
⃒xut ,at

] ⃒⃒
⃒ ≤ α

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

x⊤
ut ,at

(
D⊤

a Da + Id
)− 1xut ,at

√

,

for any δ > 0 and xut ,at ∈ Rd, where α = 1 +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ln(2/δ)/2

√
is a constant. 

Therefore, the inequality gives a reasonably tight UCB for the expected 
reward of arm at, from which the arm-selection (recommendation) 
strategy can be derived: at each trial t, choose 

at =
def arg maxa∈𝒜t

(

x⊤
ut ,at

θ̂a + α
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

x⊤
ut ,at

(
D⊤

a Da + Id
)− 1xut ,at

√ )

.

Actually, the contextual bandit model improves the recommendation 
by leveraging the user/item features through the idea of collaborative 
filtering (SarwarGeorge et al., 2001; Schafer et al., 2007), i.e., those 
items are more likely to be recommended to a user who showed pref-
erence for items with similar features. 

There are also studies pointing out that exploration in recommen-
dations is important, i.e., the recommendations should be diverse 
instead of being limited by similar items (Qin et al., 2014; Liu et al., 
2020bb; Ding et al., 2020). For instance, Ding et al. (2020) consider the 
fact that users may have different preference with regard to the diversity 
of items, e.g., a user with specific interest may prefer a relevant item set 
than a diverse item set, while another user without specific interest may 
prefer a diverse item set to explore his interests. Therefore, the authors 
propose a bandit learning framework to consider the user’s preferences 
on both the item relevance features and the diversity features. It is a way 

to trade off the accuracy and diversity of recommendation results. 
Besides, Yu et al. (2019b) use a cascading bandit in a visual dialogue 

augmented interactive recommender system. In cascading bandits, the 
user examines the recommended list from the first item to the last and 
selects the first attractive one (Kveton et al., 2015; Zong et al., 2016). 
This setting is practical to implement in online recommender systems or 
search engines. It has an excellent advantage as it can provide reliable 
negative samples, which are critical for recommendation, and the 
problem has drawn a lot of research attention (Chen et al., 2019, Ding 
et al., 2019; Wang et al., 2020c; LianQi and Chen, 2020; Chen et al., 
2019). Since the system can ensure that the items before the first 
selected one are not attractive, thus it can easily obtain reliable negative 
samples. Another contribution is the use of the item’s visual appearance 
and user feedback to design more efficient exploration. 

In addition, there are other efforts to enhance bandit methods in 
different recommendation scenarios. For instance, Chou et al. (2015) 
indicate that a user would only choose one or a few arms in the candi-
dates, leaving out the informative non-selected arms. They propose the 
concept of pseudo-rewards, which embeds estimates to the hidden re-
wards of non-selected actions under the bandit setting. Wang et al. 
(2018) consider dependencies among items and explicitly formulate the 
item dependencies as clusters on arms, where arms within a single 
cluster share similar latent topics. They adopt a generative process based 
on a topic model to explicitly formulate the arm dependencies as the 
clusters on arms, where dependent arms are assumed to be generated 
from the same cluster. Yang et al. (2020) consider the situations where 
there are exploration overheads, i.e., there are non-zero costs associated 
with executing a recommendation (arm) in the environment, and hence, 
the policy should be learned with a fixed exploration cost constraint. 
They propose a hierarchical learning structure to address the problem. 
Sakhi et al. (2020) state that the online bandit signal is sparse and un-
even, so they utilize the massive offline historical data. The difficulty is 
that most of offline data is irrelevant to the recommendation task, and 
the authors propose a probabilistic model to solve it. 

The advantage of multi-armed bandit methods is their ability to 
conduct online learning, enabling the model to learn the preferences of 
cold users and adjust the strategy quickly after several trials to pursue a 
global optimum. 

5.2. Multi-armed bandits in CRSs 

The ability to interact with users enables CRSs to directly use MAB- 
based methods to help the recommendation. Christakopoulou et al. 
(2016) propose a classic CRS based on MAB, which uses several naive 
MAB-based methods to enhance the offline probabilistic matrix factor-
ization (PMF) model (Salakhutdinov and Mnih, 2007). They first 
initialize the model parameters using offline data, then leverage 
real-time user feedback to update parameters via several common 
multi-armed bandit models, including the aforementioned greedy 
strategy, random strategy, UCB (Auer, 2002; Auer et al., 2002), and TS 
(Chapelle and Li, 2011). On the one hand, the performance improves on 
the initialized model due to the online updating; on the other hand, the 
offline initialization helps bandit methods reduce the computational 
complexity. 

As mentioned above, the original MAB methods ignore item features, 
which could be very helpful in recommendation. Hence, Zhang et al. 
(2020c) propose a conversational upper confidence bound (ConUCB) 
algorithm to apply the LinUCB model (Li et al., 2010) in the CRS context. 
Instead of asking items, ConUCB asks the user about one or more attri-
butes (key-terms in their work). Specifically, they make the assumption 
that user preference on attributes can propagate to items, hence the 
system can analyze user feedback on queried attributes to quickly nar-
row down the item candidates. The strategies to select the attributes and 
arms depend on both the attribute-level and arm-level rewards, i.e., the 
feedback on attributes and items will be absorbed into the model pa-
rameters for future use. In addition, the authors employ a hand-crafted 
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function to determine the timing to ask attributes or make recommen-
dation, e.g., making k conversations in every m rounds. 

However, hand-crafted strategies are fragile and inflexible, as the 
system should make recommendation only when the confidence is high. 
Therefore, Li et al. (2021b) propose a Conversational Thompson Sam-
pling method (ConTS) to automatically alternate asking questions about 
attributes with recommending items. They achieve this goal by unifying 
all attributes and items in the same arm pool, thus an arm selected from 
the arm pool can be either a recommendation about an item or a 
question about an attribute. The flowchart of ConTS is illustrated in 
Fig. 7. ConTS assumes each user’s preference vector ̃u is sampled from a 

prior Gaussian distribution as ũ ∼ 𝒩
(

μu, l2B− 1
u

)
, where the μu, B, and l 

are parameters. 
For each new-coming user, the mean of prior Gaussian distribution, 

μu, is initialized by the average of existing users’ preference vector 𝒰old 

as: 

μu =
1

|𝒰old|

∑|𝒰
old |

i=1
ui, ui ∈ 𝒰old . (7) 

The expected reward of arm a (which can either be an item or an 
attribute) for user u is also formulated as a Gaussian distribution since 
the Gaussian family is conjugate to itself. The expected reward is written 
as: 

r(a, u,℘u) ∼ 𝒩

(

ũ⊤xa +
∑

pi∈℘u

xT
a pi, l2

)

, (8)  

where ℘u denotes the user’s currently known preferred attributes ob-
tained in historical conversations. And xa represents the embedding 
vector of an arm. In the reward function, the term ũ⊤xa models the 
general preference of user u to arm a, and the term 

∑
pi∈℘u

xT
a pi models 

the affinity between arm a and the user’s preferred attributes ℘u. Then 
ConTS select an arm with the maximal reward as: 

a(t) = argmaxa⊂𝒜u ũ⊤xa +
∑

pi∈℘u

xT
a pi. (9) 

Note that if the a(t) is an attribute, the system will query the user 
about the preference on this attribute; if it is an item, the system will 
make a recommendation using this item. After obtaining users’ feed-
back, parameters such as μu,℘u,B will be updated accordingly. 

5.3. Meta learning for CRSs 

Beyond multi-armed bandits, there are work trying to balance 

between exploration and exploitation via meta learning. For instance, 
Zou et al. (2020b) formulate the interactive recommendation as a 
meta-learning problem, where the objective is to learn a learning algo-
rithm that takes the user’s historical interactions as the input and out-
puts a model (policy function) that can be applied to new users. The 
authors follow the idea of meta reinforcement learning (DuanJohn 
Schulman et al., 2016) and use Q-Learning (Mnih et al., 2013) to learn 
the recommendation policy. The exploration strategy is the aforemen-
tioned ε-greedy, where the model will select the items of maximum 
Q-value with probability 1 − ε, and choose random items with proba-
bility ε. 

In addition, Lee et al. (LeeJinbae et al., 2019) address the cold-start 
problem in recommendation via a model based on the Model-Agnostic 
Meta-Learning (MAML) algorithm (Finn et al., 2017). The learned 
recommendation model can quickly adapt to the cold user preference in 
the fine-tuning stage by asking the cold user a few questions about 
certain items (called the evidence candidates in the work). A drawback 
of this work is that the evidence candidates are only selected once, and 
the query process is conducted only at the beginning when cold users 
arrived. It could be better to extend this strategy to a CRS setting and 
develop a dynamic multi-round query strategy to further enhance the 
recommendation. 

5.4. Section summary 

In this section, we introduce how a CRS can solve the cold-start 
problem and trade off the E&E balance via the interactive models such 
as MAB-based methods and meta learning methods. The solutions are 
summarized in Table 5. It still has a lot of room for CRSs to develop 
potential models to address the E&E problem, in order to improve the 
user experience. 

6. Evaluation and user simulation 

In this section, we discuss how to evaluate CRSs, which is an 
underexplored problem. We group attempts to evaluate CRSs into two 
classes: (1) Turn-level evaluation, which evaluates a single turn of the 
system output, including the recommendation task and response gen-
eration task, which are both supervised prediction tasks. (2) 
Conversation-level evaluation, which evaluates the performance of the 
multi-turn conversation strategy which is a sequential decision making 
task. To achieve the goal, user simulation is important. We first intro-
duce the commonly used datasets in CRSs, and then we introduce the 
metrics, methods, and problems in the turn-level and conversation-level 
evaluation of CRSs. Finally, we discuss the strategies of user simulation 
in CRSs. 

6.1. Datasets and tools 

We list the statistics of the commonly used CRS datasets in Table 6. 
Some studies collect human-human and human-machine conversation 
data by asking true users to converse using natural language under 
certain rules. To guarantee the quality of the data, these users will be 
rewarded after providing qualified data. There are crowdsourcing sites, 
such as Amazon Mechanical Turk (AMT),5 where the researchers can 
find participants to fulfill their data collection task (Li et al., 2018; Moon 
et al., 2019; Liu et al., 2020ab; Hayati et al., 2020). 

As mentioned earlier, a lot of studies of CRS focus on the interaction 
policy and the recommendation strategy instead of language under-
standing and generation. Thus, all these studies need is the labeled en-
tities (including users, items, attributes, etc.) in the multi-turn 
conversation (Zhang et al., 2018; Christakopoulou et al., 2018; Lei et al., 
2020a, 2020b; Li et al., 2021b; Fu et al., 2021). These studies mainly 

Fig. 7. The flowchart of the ConTS algorithm. Credits: Li et al. (Li 
et al., 2021b). 

5 https://www.mturk.com/. 
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simulate and construct the user interaction from the historical records in 
traditional recommendation datasets, e.g., MovieLens (Bertin-Mahieux 
et al., 2011), LastFM (Bertin-Mahieux et al., 2011), Yelp,6 and Amazon 
dataset (McAuley et al., 2015b). 

Although it seems to be many datasets in CRSs, these datasets are not 
qualified to develop the CRSs that can work in industrial applications. 
The reason is twofold: first, the scale of these datasets is not enough to 
cover the real-world entities and concepts; second, the conversation is 

either constructed from the non-conversation data or generated under 
certain rigorous constraints, so it is hard to generalize to the complex 
and diverse real-world conversations. Therefore, more effort is needed 
to develop large-scale, generalizable, natural datasets for CRSs. There-
fore, more effort is still needed to develop large-scale, generalizable, 
diverse, and natural datasets for CRSs. 

There are many different settings in CRSs, making comparison be-
tween different models difficult. Recently, Zhou et al. (2021) have 

Table 6 
Statistics of commonly used datasets of CRSs.  

Dataset #Dialogs #Turns Dialogue 
Type 

Domains Dialogue Resource Related Publications 

MovieLens ( 
Bertin-Mahieux et al., 
2011) 

Depended on the dialogue simulation 
process 

Movie From item ratings (Zhao et al., 2013; LoeppTim Hussein and 
Ziegler, 2014; Vendrov et al., 2020; Zou 
et al., 2020b), 
(LeeJinbae et al., 2019; Iovine et al., 2020;  
Habib et al., 2020) 

LastFM (Bertin-Mahieux 
et al., 2011) 

Music From item ratings (Lei et al., 2020a, 2020b; Zhou et al., 2020b) 

Yelp Restaurant From item ratings (Sun and Zhang, 2018; Lei et al., 2020a, 
2020b) 

Amazon (McAuley et al., 
2015b) 

E-commerce From item ratings (Zhang et al., 2018; Fu et al., 2020; Zou 
et al., 2020; Penha and Hauff, 2020), 
(Wu et al., 2019a; Luo et al., 2020b;  
LuoScott et al., 2020a; Fu et al., 2021) 

TG-ReDial (Zhou et al., 
2020c) 

10,000 129,392 Rec., 
chichat 

Movie, multi 
topics 

From item rating, and enhanced by 
multi topics 

Zhou et al. (2020c) 

Facebook_Rec (Dodge 
et al., 2016) 

1M 6M Rec. Movie From item ratings Dodge et al. (2016) 

COOKIE (Fu et al., 2020) Not 
given 

11,638,418 Rec. E-commerce From interactions and reviews on 
Amazon dataset (McAuley et al., 
2015b) 

Fu et al. (2020) 

HOOPS (Fu et al., 2021) Not 
given 

11,638,418 Rec. E-commerce From interactions and reviews on 
Amazon dataset (McAuley et al., 
2015b) 

Fu et al. (2021) 

DuRecDial (Liu et al., 
2020ab) 

10,190 155,477 Rec., QA, 
etc. 

Movie, 
restaurant, etc. 

Generated by workers (Liu et al., 2020ab) 

OpenDialKG (Moon et al., 
2019) 

15,673 91,209 Rec. 
chitchat 

Movie, book, 
sport, etc. 

Generated by workers Moon et al. (2019) 

ReDial (Li et al., 2018) 10,006 182,150 Rec., 
chitchat 

Movie Generated by workers (Li et al., 2018; Chen et al., 2019bb; Zhou 
et al., 2020a; Ma et al., 2020) 

MGConvRex (Xu et al., 
2020) 

7.6K+ 73K Rec. Restaurant Generated by workers Xu et al. (2020) 

GoRecDial (Kang et al., 
2019; Ma et al., 2020) 

9,125 170,904 Rec. Movie Generated by workers Kang et al. (2019) 

INSPIRED (Hayati et al., 
2020) 

1,001 35,811 Rec. Movie Generated by workers Hayati et al. (2020) 

ConveRSE (Iovine et al., 
2019) 

Not 
given 

9,276 Rec. Movie, books, 
music 

Generated by workers (Iovine et al., 2019, 2020)  

Table 5 
E&E-based methods adopted by interactive recommender systems (IRSs) and CRSs.   

Mechanism Publications 

MAB in IRSs Linear UCB considering item features Li et al. (2010) 
Considering diversity of recommendation (Qin et al., 2014; Liu et al., 2020bb; Ding et al., 2020) 
Cascading bandits providing reliable negative samples (Kveton et al., 2015; Zong et al., 2016) 
Leveraging social information Yu et al. (2019b) 
Combining offline data and online bandit signals Sakhi et al. (2020) 
Considering pseudo-rewards for arms without feedback Chou et al. (2015) 
Considering dependency among arms Wang et al. (2018) 
Considering exploration overheads Yang et al. (2020) 

MAB in CRSs Traditional bandit methods in CRSs Christakopoulou et al. (2016) 
Conversational upper confidence bound Zhang et al. (2020c) 
Conversational Thompson Sampling Li et al. (2021b) 
Cascading bandits augmented by visual dialogues Yu et al. (2019b) 

Meta learning for CRSs Learning to learn the recommendation model (LeeJinbae et al., 2019; Zou et al., 2020b; Wei et al., 2020)  

6 https://www.yelp.com/dataset. 
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implemented an open-source toolkit, called CRSLab,7 for building and 
evaluating CRSs. They unify the tasks in existing CRSs into three 
sub-tasks: namely recommendation, conversation and policy, which 
correspond to our three components in Fig. 3: recommendation engine, 
user interface, and conversation strategy module, respectively. Some 
models and metrics are implemented under the three tasks, and the 
toolkit contains an evaluation module that can not only conduct the 
automatic evaluation but also the human evaluation through an inter-
action interface, which makes the evaluation of CRSs more intuitive. 
However, up to now, the majority of implemented methods are based on 
end-to-end dialogue systems (Li et al., 2018; Chen et al., 2019bb; Zhou 
et al., 2020a) or deep language models (Zhou et al., 2020c); the CRSs 
that focus on the interaction policy and the multi-turn conversation 
strategies ((Lei et al., 2020b; Lei et al., 2020a)) are absent. 

6.2. Turn-level evaluation 

The fine-grained evaluation of CRSs is conducted on the output of 
each single turn, which contains two tasks: language generation and 
recommendation. 

6.2.1. Evaluation of language generation 
For CRS models that generate natural language-based responses to 

interact with users, the quality of the generated responses is critical. 
Thus we can adopt the metrics used in dialogue response generation to 
evaluate the output of CRS. Two example metrics are BLEU (Papineni 
et al., 2002a) and Rouge (Lin, 2004). BLEU measures the precision of 
generated words or n-grams compared to the ground-truth words, rep-
resenting how much the words in the machine-generated utterance 
appeared in the ground-truth reference utterance. Rouge measures the 
recall of it, i.e., how many of the words or n-grams in the ground-truth 
reference utterance appear in the machine-generated utterance. 

However, it is widely debated whether these metrics are suitable for 
evaluating language generation (Liu et al., 2016a; Novikova et al., 
2017). Because those metrics are only sensitive to lexical variation, they 
cannot appropriately assess semantic or syntactic variations of a given 
reference. Meanwhile, the goal of the proposed system is not to predict 
the highest probability response, but rather the long-term success of the 
dialogue. Thus, other metrics reflecting user satisfaction are more suit-
able in evaluation, such as measuring fluency (CelikyilmazAntoine et al., 
2018; Narayan et al., 2018; Du et al., 2017), consistency (Gandhe and 
Traum, 2008; Lapata and Barzilay, 2005), readability (Lapata, 2003), 
informativeness (Huang et al., 2017), diversity (Li et al., 2016b; Ippolito 
et al., 2019; Gao et al., 2019b), and empathy (Ghandeharioun et al., 
2019; Sharma et al., 2021). For more metrics and evaluation methods on 
text generation, we refer the readers to the overviews (Celikyilmaz et al., 
2020; Deriu et al., 2021). 

However, the CRSs based on end-to-end dialogue frameworks or 
deep language models may have limitations regarding the usability in 
practice. Recently, Jannach and Manzoor (2020) conducted an evalua-
tion on the two state-of-the-art end-to-end frameworks (Li et al., 2018; 
Chen et al., 2019bb), and showed that both models face three critical 
issues: (1) For each system, about one-third of the system utterances are 
not meaningful in the given context and would probably lead to a 
breakdown of the conversation in a human evaluation. (2) Less than 
two-thirds of the recommendations were considered to be meaningful in 
a human evaluation. (3) Neither of the two systems “generated” utter-
ances, as almost all system responses were already present in the 
training data. Jannach and Manzoor (2020)’s analysis shows that human 
assessment and expert analysis are necessary for evaluating CRS models 
as there is no perfect metric to evaluate all aspects of a CRS. The CRS 
models and their evaluation still have a long way to go. 

6.2.2. Evaluation of recommendation 
The performance of recommendation models is evaluated by 

comparing the predicted results with the records in the test set. There 
are two kinds of metrics in measuring the performance of recommender 
systems:  

● Rating-based Metrics. These metrics assume the user feedback is an 
explicit rating score, e.g., an integer in the range of one to five. 
Therefore, we can measure the divergence between the predicted 
scores of models and the ground-truth scores given by users in the 
test set. Conventional rating-based metrics include Mean Squared 
Error (MSE) and Root Mean Squared Error (RMSE), where RMSE is 
the square root of the MSE.  

● Ranking-based Metrics. These metrics are more frequently used 
than rating-based metrics. Ranking-based metrics require that the 
relative order of predicted items should be consistent with the order 
of items in the test set. Thereby, there is no need for explicit rating 
scores from users, and the implicit interactions (e.g., clicks, plays) 
can be used to evaluate models. For example, a good evaluation 
result means that the model should only recommend the items in the 
test set, or it means that the items with higher scores in the test set 
should be recommended at higher ranks than the items with lower 
scores. Frequently used ranking-based metrics include hits, preci-
sion, recall, F1-score, Mean Reciprocal Rank (MRR), Mean Average 
Precision (MAP), and Normalized Discounted Cumulative Gain 
(NDCG) (Järvelin and Kekäläinen, 2002). 

Recently, it has become common for researchers to speed up evalu-
ation by sampling a small set of irrelevant items and calculate the 
ranking-based metrics only on the small set (He et al., 2017; Ebesu et al., 
2018; Hu et al., 2018; Yang et al., 2018). However, Krichene and Rendle 
(2020) point out and prove that some metrics, such as average precision, 
recall, and NDCG, are inconsistent with the exact metrics when they are 
calculated on the sampled set. This means that if a recommender A 
outperforms a recommender B on the sampled metric, it does not imply 
that A has a better metric than B when the metric is computed exactly. 
Therefore, the authors suggest that sampling during evaluation should 
be avoided; if it is necessary to sample, using the corrected metrics 
proposed by the authors is a better choice. 

The biggest problem in these evaluation methods is that real-world 
user interactions are very sparse, and a large fraction of items never 
have a chance of being consumed by a user. However, this does not mean 
that the user does not like any of them. Perhaps the user has never seen 
them, or the user just does not have resources to consume them (Liu 
et al., 2020aa; Chen et al., 2020a). Hence, taking the consumed items in 
the test set as the users’ ground-truth preferences can introduce evalu-
ation biases (Yang et al., 2018; Chen et al., 2020a). Unlike static 
recommender systems, CRSs have the ability to ask real-time questions, 
so the system can make sure whether a user is satisfied with an item by 
collecting users’ online feedback. This online user test can avoid biases 
and provide conversation-level assessments for the CRS model. 

6.3. Conversation-level evaluation 

Different from the turn-level evaluation which compares the pre-
diction results with the ground-truth labels in a supervised way, the 
conversation-level evaluation is not a supervised prediction task. The 
interaction process is not i.i.d. (independent and identically distributed) 
since each observation is part of a sequential process and each action the 
system makes can influence future observations. Plus, the conversation 
heavily relies on the user feedback. Therefore, the evaluation of the 
conversation requires either an online user test or leveraging historical 
interaction data which can be conducted by the off-policy evaluation or 
using user simulation. 

7 https://github.com/RUCAIBox/CRSLab. 

C. Gao et al.                                                                                                                                                                                                                                     

https://github.com/RUCAIBox/CRSLab


AI Open 2 (2021) 100–126

117

6.3.1. Online user test 
The online user test, or A/B test, can directly evaluate the conver-

sation policy by leveraging true user feedback. To conduct the assess-
ment, the appropriate metrics should be designed. For example, the 
average turn (AT) is a global metric to optimize in a CRS, as the model 
should capture user intention and make successful recommendations 
thus finish the conversation with as few turns as possible (Lei et al., 
2020a, 2020b; Li et al., 2021b). A similar metric is the recommendation 
success rate (SR@t), which measures how many conversations have 
ended with the successful recommendation by the t-th turn. Besides, the 
ratio of failed attempts, e.g., how many of the questions asked by the 
system are rejected or ignored by users, can be a feasible way to measure 
whether a system makes decisions to the users’ satisfaction. 

Besides these global statistics, the cumulative performance of each 
turn of the conversation can also reflect the overall quality of the con-
versation. The expectation of the cumulative reward of a conversation 
policy can be written as: 

J(π) = Eτ∼pπ (τ)

[
∑T

t=0
γtr(st, at)

]

, (10)  

where the conversation trajectory τ is a sequence of states and actions of 
length T, pπ(τ) is the trajectory distribution under policy π. γ ∈ (0, 1] is a 
scalar discount factor. r(st , at) is the immediate reward obtained by 
performing action at at state st, e.g., it can be a feedback signal that 
reflects user satisfaction such as user clicks or dwell time (Chen et al., 
2019aa; Ie et al., 2019). 

Though effective, the online user evaluation has critical problems: 
(1) The online interaction between humans and CRSs is slow and usually 
takes weeks to collect sufficient data to make the assessment statistically 
significant (Li et al., 2015; Gilotte et al., 2018; Zhao et al., 2019). (2) 
Collecting users’ feedback is expensive in terms of engineering and lo-
gistic overhead (Jagerman et al., 2018, 2019; Xu et al., 2015) and may 
hurt user experience as the recommendation may not satisfy them 
(Schnabel et al., 2018; Li et al., 2015; Gilotte et al., 2018; Chen et al., 
2019ab). Therefore, a natural solution is to leverage the historical 
interaction, where the off-policy evaluation and user simulation tech-
niques can be used. 

6.3.2. Off-policy evaluation 
Off-policy evaluation, also called counterfactual reasoning or coun-

terfactual evaluation, is designed to answer a counterfactual question: 
what would have happened if instead of πβ we would have used πθ? 
Specifically, when we want to evaluate the current target policy πθ but 
we only have data under a behavior policy (or logging policy) πβ, we can 
still evaluate the target policy πθ by introducing the importance sam-
pling or inverse propensity score (Gilotte et al., 2018; Jagerman et al., 
2019; Chen et al., 2019aa; McInerney et al., 2020; Levine et al., 2020) as: 

J(πθ) = Eτ∼πβ(τ)

[
πθ(τ)
πβ(τ)

∑T

t=0
γtr(s, a)

]

. (11) 

It is similar to Equation (10) except we use data logged under another 
policy to evaluate the target policy. Where a weight w(τ) = πθ(τ)

πβ(τ)
is used to 

address the distribution mismatch between the two policy πβ and πθ. 
Unfortunately, such an estimator suffers from high variance when πθ 
deviates from πβ a lot. The variance reduction techniques are introduced 
as the remedy. The common techniques include weight clipping (Chen 
et al., 2019aa; Zou et al., 2020a) which limits w(τ) by an upper bound, 
and trusted region policy optimization (TRPO) (Schulman et al., 2015; 
Chen et al., 2019aa). 

Another intuitive method is to directly simulate user behaviors just 
like the online user test, where user feedback is provided by the user 
simulators instead of true users. It is efficient and can avoid the high 
variance problem. However, the challenge is that the preference of 
simulated users may deviate from the true users, i.e., the user simulation 

can avoid high variance, but it introduces bias. Therefore, creating 
reliable user simulators is a crucial challenge. 

6.3.3. User simulation 
There are generally four types of strategies in simulating users: (1) 

using the direct interaction history of users, (2) estimating user prefer-
ences on all items, (3) extracting from user reviews, and (4) imitating 
human conversational corpora.  

● Using Direct Interaction History of Users. The basic idea is similar to the 
evaluation of traditional recommender systems, where a subset of 
human interaction data is set aside as the test set. If the items rec-
ommended by a CRS are in the users’ test set, then this recommen-
dation is deemed to be a successful one. As user-machine interactions 
are relatively rare, there is a need to generate/simulate interaction 
data for training and evaluation. Sun and Zhang (2018) make a 
strong assumption that users visit restaurants after chatting with a 
virtual agent. Based on this assumption, they create a crowdsourcing 
task to use a schema-based method to collect dialogue utterances 
from the Yelp dataset. In total, they collect 385 dialogues, and 
simulate 875, 721 dialogues based on the collected dialogues by a 
process called delexicalization. For instance, “I’m looking for 
Mexican food in Glendale” is converted to the template: “I’m looking 
for <Category> in ”, then they use these templates to generate di-
alogues by using the rating data and the rich information on the Yelp 
dataset. Lei et al., 2020a, Lei et al., 2020b use click data in the 
LastFM and Yelp datasets to simulate conversational user in-
teractions. Given an observed user-item interaction, they treat the 
item as the ground truth item to seek for and its attributes as the 
oracle set of attributes preferred by the user in this session. First, the 
authors randomly choose an attribute from the oracle set as the 
user’s initialization to the session. The session goes into a loop of a 
“model acts – simulator responses” process, in which the simulated 
user will respond with “Yes” if the query entity is contained in the 
oracle set and “No” otherwise. Most CRS studies adopt this simula-
tion method because of its simplicity (Zou et al., 2020; Christako-
poulou et al., 2018; Chen et al., 2019ba). However, the sparsity 
problem in recommender systems still remains: only a few values in 
the user-item matrix are known, while most elements are missing, 
which forbids the simulation on these items.  

● Estimating User Preferences on All Items. Using direct user interactions 
to simulate conversations has the same drawbacks as we mentioned 
above, i.e., a large number of items that have not been seen by a user 
are treated as disliked items. To overcome this bias in the evaluation 
process, some research proposes to obtain the user preferences on all 
items in advance. Given an item and its auxiliary information, the 
key to simulating user interaction is to estimate or synthesize pref-
erences for this item. For example, Christakopoulou et al. (2016) ask 
28 participants to rate 10 selected items, and then they can estimate 
the latent vectors of the 10 users’ preferences based on their matrix 
factorization model. By adding noise to the latent vector, they 
simulate 50 new user profiles and calculate these new users’ pref-
erences on any items based on the same matrix factorization model. 
Zhang et al. (2020c) propose to use ridge regression to compute user 
preferences based on these known rewards on historical interaction 
and users’ features; they synthesize the user’s reaction (rewards) on 
each item according to the computed preferences. This kind of 
method can theoretically simulate a complete user preference 
without the exposure bias. However, because the user preferences 
are computed or synthesized, it could deviate from real user pref-
erences. Huang et al. (2020) analyze the phenomenon of popularity 
bias (Steck, 2011; Pradel et al., 2012) and selection bias (Marlin 
et al., 2007; Hernández-Lobato et al., 2014; Steck, 2013) in simula-
tors built on logged interaction data and try to alleviate model per-
formance degradation due to these biases; it remains to be seen to 
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which degree generated interactions of the type described above are 
subject to similar bias phenomena. 

● Extracting Information from User Reviews. Besides user behavior his-
tory, many e-commerce platforms have textual review data. Unlike 
the consumption history, an item’s review data usually explicitly 
mentions attributes, which can reflect the users’ personalized opin-
ions on this item. Zhang et al. (2018) transform each textual review 
of part of the Amazon dataset into a question-answer sequence to 
simulate the conversation. For example, when a user mentioned that 
a blue Huawei phone with the Android system in a review of a mobile 
phone X, then the conversation sequence constructed from this re-
view is (Category: mobile phone → System: Android → Color: blue → 
Recommendation: X). Zhou et al. (2020c) also construct simulated 
interactions by leveraging user reviews. Based on a given user profile 
and its historical watching records, the authors construct a topic 
thread that consists of topics (e.g., “family” or “job seeking”) 
extracted from reviews of these watched movies. The topic thread is 
organized by a rule and eventually leads to the target movie. And the 
synthetic conversation is fleshed out by retrieving the most related 
reviews under corresponding topics. 

A noteworthy problem is that the aspects mentioned in reviews 
may contain some drawbacks of the products, which does not aid 
understanding why a user has chosen a product. For example, when a 
user complains about the capacity of a phone of 64 Gigabytes is not 
enough, and it should not be simply convert to (Storage capacity: 64 
Gigabytes) for the CRS to learn. Thus, employing sentiment analysis 
on the review data is necessary, and only the attribute with positive 
sentiment should be considered as the reason in choosing the item 
(Zhang et al., 2014a, 2014b).  

● Imitating Humans’ Conversational Corpora. In order to generate 
conversational data without biases, a feasible solution is to use real- 
world two-party human conversations as the training data (Vaku-
lenko et al., 2020a). By using this type of data, a CRS system can 
directly mimic human behavior by learning from a large number of 
real human-human conversations. For example, Li et al. (2018) ask 
workers from AMT to converse in terms of the topics on the movie 
recommendation. Using these conversational corpora as training 
data, the model can learn how to respond properly based on the 
sentiment analysis result. Liu et al. (Liu et al., 2020ab) conduct a 
similar data collection process. Except for collecting the dialogues 
about the recommendation, they also collect and construct a 
knowledge graph and define an explicit profile for each worker who 
seeks recommendations. Therefore, the conversational topics can 

contain many non-recommendation scenarios, e.g., question 
answering or social chitchat, which are more common in real life. To 
evaluate this kind of model, besides considering whether the user 
likes the recommended item, we have to consider if the system re-
sponds properly and fluently. The BLEU score (Papineni et al., 
2002b) is used to measure the fluency of these models mimicking 
human conversations (Budzianowski et al., 2018; Zhang and OuZ-
hou, 2020). 

There are also drawbacks for this kind of method. First, when col-
lecting the human conversational corpus, two workers need to enter the 
task at the same time, which is a rigorous setting and thus limits the scale 
of the dataset. Second, designers usually have many requirements that 
restrict the direction of the conversation. Therefore, the generated 
conversation is constrained and cannot fully cover the real-world sce-
narios. By imitating a collected corpus, learning a conversation strategy 
is very sensitive to the quality of the collected data. Vakulenko et al. 
(2020a) analyze the characteristics of different human-human corpora, 
e.g., in terms of initative taking, and show that there are important 
differences between human-human and human-machine conversations. 

Recently, Zhang and Balog (2020) have investigated using user 
simulations in evaluating CRSs. They organize the action sequence of the 
simulated user as a stack-like structure, called the user agenda. A dy-
namic update of the agenda is regarded as a sequence of pull or push 
operations, where dialogue actions are removed from or added to the 
top. Fig. 8 shows an example of a dialogue between the simulated user 
and a CRS. At each turn, the simulated user updates its agenda by either 
a push or a pull operation based on the dialogue state and the CRS’s 
action. The authors define a set of actions and the transition rule on 
these actions to let the simulated user imitate real users’ intentions. For 
example, the Disclose action indicates that the user expresses its need 
either actively, or in response to the agent’s question, e.g., “I would like 
to arrange a holiday in Italy”. And after this action, the simulator can 
either transit to the Inquire action or the Reveal section based on how the 
CRS model acts. 

Besides modeling the user preference in simulation, another branch 
of studies considers modeling user behaviors in the slate, top-K, or list- 
wise recommendation. A natural solution is to consider the combina-
torial action which contains a list of items instead of a single item 
(Sunehag et al., 2015). However, this method is unable to scale to 
problems of the size encountered in large, real-world recommender 
systems. The feasible way is to assume a user only consumes a single 
item from each slate and the obtained reward only depends on the item 

Fig. 8. Example dialogue with agenda sequence and state transition. The agenda is shown in square brackets. The third agenda is a result of a push operation, all 
other agendas updates are pull operations. Credits: Zhang and Balog (Zhang and Balog, 2020). 
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(Ie et al., 2019). Under the assumption, user choice behavior can be 
modeled as the multinomial logit model (Louviere et al., 2000) or the 
cascade model (Ie et al., 2019; Yu et al., 2019b; Kveton et al., 2015; Zong 
et al., 2016). Despite the recent interest in developing reliable user 
simulators, we believe that the research in this field is in its infancy and 
needs a lot of advancements. 

6.4. Section summary 

In this section, we review the metrics, methods, and challenges in the 
turn-level evaluation and conversation-level evaluation of CRSs. The 
turn-level evaluation measures the performance of the supervised pre-
diction tasks, i.e., recommendation and language generation of the CRS 
in a single round; the conversation-level evaluation measure how the 
conversation strategy performs in the multi-turn conversation. Since an 
online user test is expensive to conduct, researchers either leverage the 
off-policy evaluation which assesses the target policy using the logged 
data under the behavior policy, or directly introduce user simulators to 
replace the true users in evaluation. 

The evaluation of CRSs still needs a lot of effort. It ranges from 
constructing large-scale dense conversational recommendation data, to 
proposing uniform evaluation methods to compare different CRS 
methods that integrate both recommendation and conversation aspects. 

7. Future directions and opportunities 

Having described key advances and challenges in the area CRSs, we 
now envision some promising future directions. 

7.1. Jointly optimizing three tasks 

The recommendation task, language understanding and generation 
task, and conversation strategies in CRSs are usually studied separately 
in the three components in Fig. 3, respectively. The three components 
share certain objectives and data with each other (Chen et al., 2019bb; 
Ma et al., 2020; Lei et al., 2020a; Zhou et al., 2020a). For example, the 
user interface feeds extracted aspect-value pairs to the recommendation 
engine, and then integrates the entities produced by the recommenda-
tion engine into the generated response. However, they have the 
exclusive data that does not benefit each other. For instance, the user 
interface may use the rich semantic information in reviews but not 
shares with a recommendation engine (Li et al., 2018). Besides, the two 
components may work in the end-to-end framework that lacks an 
explicit conversation strategy to coordinate them in the multi-turn 
conversation (Li et al., 2018; Chen et al., 2019bb), thus the perfor-
mance is not satisfied in human evaluation (Jannach and Manzoor, 
2020). 

Thereby, the three tasks should be jointly learned and guided by an 
explicit conversation strategy for their mutual benefit, for instance, what 
if the conversation strategy module were able to plan future dialogue 
acts based on item-item relationships (such as complementarity and 
substitutability (McAuley et al., 2015a; Wan et al., 2018; Liu et al., 
2020ba))? 

7.2. Bias and debiasing 

It is inevitable that a recommender system could encounter various 
types of bias (Chen et al., 2020a). Some types of biases, e.g., popularity 
bias (Abdollahpouri and Mansoury, 2020; Steck, 2011) and conformity 
bias (Zhang et al., 2014b; Liu et al., 2016b), can be removed with 
introducing the interaction between the user and system. For example, a 
static recommender may not be sure whether a user will follow the 
crowd and like popular items. Therefore, the popularity bias is intro-
duced in the recommender system since popular items can have higher 
probability of being recommended. This, however, could be avoided in 
CRSs because a CRS can query about the user’s attitude towards popular 

items in real time and avoid recommending them if the user gives 
negative feedback. 

Nevertheless, some types of bias persist. For example, even though a 
recommender system may provide access to a large number of items, a 
user can only interact with a small set of them. If these items are chosen 
by a model or a certain exposure mechanism, users have no choices but 
to keep consuming these items. That is the exposure bias (Liu et al., 
2020aa). Moreover, users often select or consume their liked items and 
ignore these disliked ones even these items have been exposed to users, 
which introduces the selection bias (Marlin et al., 2007; Hernánde-
z-Lobato et al., 2014; Steck, 2013), also known as the positivity bias 
(Huang et al., 2020; Pradel et al., 2012), i.e., rating data is often missing 
not at random and the missing ones are more likely to be disliked by the 
user (Hernández-Lobato et al., 2014). These types of bias can be 
amplified in the feedback loop and may hurt the recommendation model 
(Sinha et al., 2016; Sun et al., 2019). For instance, a CRS model polluted 
by biased data might repeatedly generate the same items even through 
users suggested they would like other ones. 

There are relatively few efforts to study the bias problem in CRSs. 
The exploration-exploitation methods introduced in Section 5 can alle-
viate some types of bias in CRSs. And Huang et al. (2020) make an 
attempt to remove the positivity bias in the user simulation stage for the 
interactive recommendation. Moreover, Chen et al. (2020a) present a 
comprehensive survey of different types of bias and describe a number of 
debiasing methods for recommender systems (RSs); it provides some 
perspectives for debiasing CRSs. 

7.3. Sophisticated multi-turn conversation strategies 

The multi-turn strategy considered in current studies of CRSs are 
relatively naive. For example, there is work using a hand-crafted func-
tion to determine the timing to ask attributes or make recommendation, 
e.g., making k conversations in every m rounds (Zhang et al., 2020c). 
These studies based on end-to-end dialogue systems or deep neural 
language models are worse: they do not even have an explicit strategy to 
control the multi-turn conversation (Li et al., 2018; Chen et al., 2019bb). 
Besides, some strategies can be problematic in regard to handling users’ 
negative feedback. For instance, Lei et al. (2020a) consider updating the 
model parameters when the user dislikes a recommended item. How-
ever, simply taking rejected items as negative samples would influence 
the model’s judgement on the queried attributes. For example, a user’s 
rejection of a recreation video might be due to the fact that they watched 
it before, and it does not mean that they dislike recreation videos. To 
overcome this problem, the model should consider more sophisticated 
strategies such as recognizing reliable negative samples (Chen et al., 
2019, Ding et al., 2019; Wang et al., 2020c; LianQi and Chen, 2020; 
Chen et al., 2019) as well as disentangling user preferences on items and 
attributes (MaChang et al., 2019; Wang et al., 2020b). 

We have witnessed some studies using RL as the multi-turn conver-
sation strategy by determining model actions such as whether to ask or 
recommend (Sun and Zhang, 2018; Lei et al., 2020a, 2020b). However, 
there is a lot of room for improvement in designing the state, action, and 
reward in RL. For instance, more sophisticated actions can be taken into 
consideration such as answering open-domain questions raised by users 
(Zhu et al., 2021) or chatting non-task-oriented topics for entertainment 
purposes (Wu and Yan, 2018; Liu et al., 2020ab). Besides, more 
advanced and intuitive RL technologies can be considered to avoid the 
difficulties, e.g., hard to train and converge, in basic RL models (Wang 
et al., 2020a). For example, Inverse RL (IRL) (Ng and Russell, 2000) can 
be considered to learn a proper reward function from the observed ex-
amples in certain CRS scenarios, where there are too many user behavior 
patterns so the reward is hard to define. Meta-RL (DuanJohn Schulman 
et al., 2016; Wang et al., 2016a) can be adopted in CRSs, where the 
interaction is sparse and various, to speed up the training process and to 
improve the learning efficiency for novel subsequent tasks. 
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7.4. Knowledge enrichment 

A natural idea to improve CRSs is to introduce additional knowledge. 
In early stages of the development of CRSs, only the recommended items 
themselves were considered (Christakopoulou et al., 2016). Later, the 
attribute information of items was introduced to assist in modeling user 
preferences (Christakopoulou et al., 2018). Even more recent studies 
consider the rich semantic information in knowledge graphs (Zhou et al., 
2020a; Lei et al., 2020b; Xu et al., 2020; Moon et al., 2019). For example, 
to better understand concepts in a sentence such as “I am looking for 
scary movies similar to Paranormal Activity (2007)”, Zhou et al. (2020a) 
propose to incorporate two external knowledge graphs (KGs): one 
word-oriented KG providing relations (e.g., synonyms, antonyms, or 
co-occurrence) between words so as to comprehend the concept “scary” 
in the sentence; one item-oriented KG carrying structured facts 
regarding the attributes of items. 

Besides knowledge graphs, multimodal data can also be integrated 
into the original text-based CRSs since it can enrich the interaction from 
new dimensions. There are some studies that exploit the visual modality, 
i.e., images, in dialogue systems (Yu et al., 2019b; Liao et al., 2018; Cui 
et al., 2019; Zhang et al., 2019). For example, Yu et al. (2019b) propose 
a visual dialogue augmented CRS model. The model will recommend a 
list of items in photos, and the user will give text-based comments as 
feedback. The image not only helps the model learn a more informative 
representation of entities, but also enable the system to better convey 
information to the user. Except for the visual modality, other modalities 
can benefit CRSs and could be integrated. For example, spoken natural 
language can convey users’ emotions as well as sentiments towards 
certain entities (Pittermann et al., 2010). 

7.5. Better Evaluation and user simulation 

The evaluation of CRSs still has a long way to go. As we introduced in 
Section 6.3, evaluating the CRS requires real-time feedback, which is 
expensive in real-world situations (Jagerman et al., 2019). Thus, most 
CRSs adopt user simulation techniques to create an environment (Zhang 
and Balog, 2020). However, simulated users cannot fully replace human 
beings. How to simulate users with maximum fidelity still needs further 
research. Feasible directions include designing systematic simulation 
agenda (Zhang and Balog, 2020; Schatzmann et al., 2007), building 
dense user interactions for reliable simulation (Zou et al., 2020a; Chen 
et al., 2019ab; Bai et al., 2019), and modeling user choice behaviors over 
the slate recommendation (Ie et al., 2019; McInerney et al., 2020; Afsar 
et al., 2021). 

In addition, CRSs work on different datasets and they have various 
assumptions and settings. Therefore, developing comprehensive evalu-
ation metrics and procedures to assess the performance of CRSs remains 
an open problem. Recently, Zhou et al. (2021) have implemented an 
open-source CRS toolkit, enabling evaluation between different CRS 
models. However, their implemented models are mainly based on 
end-to-end dialogue systems (Li et al., 2018; Chen et al., 2019bb; Zhou 
et al., 2020a) or deep language models (Zhou et al., 2020c), the models 
focusing on the explicit conversation strategy (Lei et al., 2020a, 2020b) 
are absent. 

8. Conclusion 

Recommender systems are playing increasingly important role in 
information seeking and retrieval. Despite having been studied for de-
cades, traditional recommender systems estimate user preferences only 
in a static manner like through historical user behaviours and profiles. It 
offers no opportunities to communicate with users about their prefer-
ences. This inevitably suffers from a fundamental information asym-
metry problem: a system will never know precisely what a user likes 
(especially when his/her preference drifts frequently) and why the user 
likes an item. The envision of conversational recommender systems 

(CRSs) brings a promising solution to such problems. With the interac-
tive ability as well as the natural language-based user interface, CRSs 
can dynamically get explicit user feedback using natural languages, 
while increasing user engagement and improving user experience. This 
bold vision provides great potential for the future of recommender 
system, hence actively contributes to the development of the next gen-
eration of information seeking techniques. 

Although the build of CRS is an emerging field, we have spotted great 
efforts from different perspectives. In this survey, we acknowledge those 
efforts, with the aim to summarize the existing studies and to provide 
insightful discussions. We tentatively gave a definition of the CRS and 
introduced a general framework of CRSs that consists of three compo-
nents: a user interface, a conversation strategy module and a recom-
mender engine. Based on this decomposition, we distilled five existing 
research directions, namely: (1) question-based user preference elicita-
tion; (2) multi-turn conversational recommendation strategies; (3) dia-
logue understanding and generation; (4) exploitation-exploration 
tradeoffs for cold users; (5) evaluation and user simulation. For each 
direction, we reviewed the existing efforts and their limitation in one 
section, leading to the primary structure of this survey. Despite the 
progresses on the above five directions, more interesting problems 
remain to be explored in the field of CRSs, such as, (1) joint optimization 
of three components; (2) bias and debiasing methods in CRSs; (3) multi- 
turn conversational recommendation strategies; (4) multi-modal 
knowledge enrichment; (5) evaluation and user simulation. Our dis-
cussions above provide a comprehensive retrospect of current progress 
of CRSs which can serve as the basis for the further development of this 
field. By providing this survey, we call arm to this emerging and inter-
esting field. We hope this survey can inspire the researchers and prac-
titioners from both industry and academia to push the frontiers of CRSs, 
making the thoughts and techniques of CRSs more prevalent for the next 
generation of information seeking techniques. 
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