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PF-HIN:Pre-Training for Heterogeneous
Information Networks

Yang Fang ™, Xiang Zhao ™, Yifan Chen, Weidong Xiao, and Maarten de Rijke

Abstract—In network representation learning we learn how to represent heterogeneous information networks in a low-dimensional space
so as to facilitate effective search, classification, and prediction solutions. Previous network representation learning methods typically
require sufficient task-specific labeled data to address domain-specific problems. The trained model usually cannot be transferred to out-of-
domain datasets. We propose a self-supervised pre-training and fine-tuning framework, PF-HIN, to capture the features of a heterogeneous
information network. Unlike traditional network representation learning models that have to train the entire model all over again for every
downstream task and dataset, PF-HIN only needs to fine-tune the model and a small number of extra task-specific parameters, thus
improving model efficiency and effectiveness. During pre-training, we first transform the neighborhood of a given node into a sequence.
PF-HIN is pre-trained based on two self-supervised tasks, masked node modeling and adjacent node prediction. We adopt deep bi-
directional transformer encoders to train the model, and leverage factorized embedding parameterization and cross-layer parameter
sharing to reduce the parameters. In the fine-tuning stage, we choose four benchmark downstream tasks, i.e., link prediction, similarity
search, node classification, and node clustering. PF-HIN outperforms state-of-the-art alternatives on each of these tasks, on four datasets.

Index Terms—Heterogeneous information network, pre-training, transformer
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INTRODUCTION

COMPLEX information often involves multiple types of
objects and relations. Such information can be repre-
sented via heterogeneous information networks (HINs) [1].
In a heterogeneous information network (HIN) different
types of nodes (objects) are connected by edges (rela-
tions) [2]. Compared to homogeneous networks that only
feature a single type of node, HINs provide a richer model-
ing tool, leading to more effective solutions for search, clas-
sification, and prediction tasks [3].

In order to mine the rich information captured by a HIN,
network representation learning (NRL) embeds a network into
a low-dimensional space. network representation learning
(NRL) has drawn a significant amount of interest from the
research community. Classical network embedding models
like DeepWalk [4], LINE [5], and node2vec [6] have been

o Yang Fang, Yifan Chen, and Weidong Xiao are with the Science and Tech-
nology on Information Systems Engineering Laboratory, National Univer-
sity of Defense Technology, Changsha, Hunan 410073, China.

E-mail: {fangyang12, yfchen, wdxiao}@nudt.edu.cn.

o Xiang Zhao is with the Laboratory for Big Data and Decision, National
University of Defense Technology, Changsha, Hunan 410073, China.
E-mail: xiangzhao@nudt.edu.cn.

o Maarten de Rijke is with the University of Amsterdam, 1012 WX Amster-
dam, Netherlands. E-mail: m.derijke@uova.nl.

Manuscript received 18 May 2021; revised 12 June 2022; accepted 9 September
2022. Date of publication 14 September 2022; date of current version 21 June
2023.

This work was supported in part by NSFC under Grants 61872446, 62272469,
and U19B2024, in part by the Science and Technology Innovation Program of
Hunan Province under Grant 2020RC4046, and in part by the Hybrid Intelli-
gence Center, a 10-year program funded by the Dutch Ministry of Education,
Culture and Science through the Netherlands Organisation for Scientific
Research, https:/[hybrid-intelligence-centre.nl.

(Corresponding author: Xiang Zhao.)

Recommended for acceptance by E. Chen.

Digital Object Identifier no. 10.1109/TKDE.2022.3206597

devised for homogeneous networks, using random walks
to capture the structure of networks. However, these meth-
ods lack the ability to capture a heterogeneous information
network with multiple types of objects and relations.
Hence, models designed specifically for HINs have been
proposed [7], [8], [9]. A central concept here is that of a
metapath, which is a sequence of node types with edge
types in between. To leverage the relationship between
nodes and metapaths, different mechanisms have been
proposed, such as the heterogeneous SkipGram [7], prox-
imity distance [8], and the Hardmard function [9]. Because
of the limited ability of metapaths to capture the neighbor-
hood structure of a node, the performance of these NRL
methods is limited.

Recently, graph neural networks (GNNs) have shown
promising results on modeling the structure of a network [10],
[11], [12]. GNNs usually involve encoders that are able to
explore and capture the neighborhood structure around a
node, thus improving the performance on representing an
HIN. However, GNNs need to be trained in an end-to-end
manner with supervised information for a task, and the model
learned on one dataset cannot easily be transferred to other,
out-of-domain datasets. For different datasets and tasks, the
methods listed above need to be re-trained all over. Addition-
ally, in many real-life datasets, the amount of available labeled
data is rarely sufficient for effective training.

Inspired by advances in pre-training frameworks in lan-
guage technology [13], [14], [15], there is a trend to investi-
gate pre-trained models for NRL. In particular, graph
contrastive coding (GCC) [16] and GPT-GNN [17] are the
most advanced solutions in this stream.! Nevertheless, they

1. The experiments on downstream tasks using GPT-GNN [17] were
conducted on the same dataset that had been employed for pre-
training.
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are mainly proposed for generic NRL, meaning that they
overlook the heterogeneous features of HINs; while they
are generally applicable to HINs, they tend to fall short
when handling HINs (as demonstrated empirically in Sec-
tion 5 below).

We aim to overcome the shortcomings listed above, and
propose

i) to pre-train a model on large datasets using self-
supervision tasks, and

ii)  for a specific downstream task on a specific dataset,
to use fine-tuning techniques with few task-specific
parameters, so as to improve the model efficiency
and effectiveness.

We refer to this two-stage (Pre-training and Fine-tuning)
framework for exploring the features of a HIN as PF-HIN.

Given a node in a HIN, we first explore the node’s neigh-
borhood by transforming it into a sequence to better capture
the features of the neighboring structure. Then, a ranking of
all the nodes is established based on their betweenness cen-
trality, eigencentrality and closeness centrality. We use
rank-guided heterogeneous walks to generate the sequence
and group different types of nodes into so-called mini-
sequences, that is, sequences of nodes of the same type [12].
Such a sampling operation can be conducted universally
across different datasets, so that structural patterns and het-
erogeneous features can be transferred. For type informa-
tion, our model is pre-trained to treat different types of
nodes differently, so that in downstream tasks, different
types of nodes will also be processed differently. This is the
main commonality between pre-training and downstream
tasks.

We design two tasks for pre-training PF-HIN. One is the
masked node modeling (MNM) task, in which a certain per-
centage of nodes in the mini-sequences are masked and we
need to predict those masked nodes. This operation is
meant to help PF-HIN learn type-specific node features. The
other task is the adjacent node prediction (ANP) task, which is
meant to capture the relationship between nodes. Given a
node u; having sequence X;, our aim is to predict whether
the node u; with sequence X; is an adjacent node. Other
pre-training tasks like attribute masking and node type
masking focus on mining features from auxiliary informa-
tion of the nodes. Our proposed MNM and ANP tasks are
directly applied to a graph. The MNM and ANP tasks pro-
vide more informative self-supervision for pre-training.
These two tasks need to be realized by a transformer
encoder, which requires the data to be sequence-like. That
is the main reason why we transform the sampled nodes
into a sequence. We adopt two strategies to reduce the
parameters to further improve the efficiency of PF-HIN, i.e.,
factorized embedding parameterization and cross-layer
parameter sharing. The large-scale dataset we use for pre-
training is the open academic graph (OAG), containing 179
million nodes and 2 billion edges.

During fine-tuning, we choose four benchmark down-
stream tasks:

i)  link prediction,
ii)  similarity search,
ili) node classification, and
iv)  node clustering.
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Different tasks have different fine-tuning settings [18].
We detail how to fine-tune the pre-trained model on differ-
ent tasks. In link prediction and similarity search, we use
node sequence pairs as input, and identify whether there is
a link between two nodes and measure the similarity
between two nodes, respectively. In the node classification
and node clustering tasks, we use a single node sequence as
input, employing a softmax layer for classification and a
k-means algorithm for clustering, respectively.

In our experiments, which are meant to demonstrate that
PF-HIN is transferable across datasets, besides a subset of
OAG denoted as OAG-mini, we include three other datasets
for downstream tasks: DBLP, YELP and YAGO. PF-HIN out-
performs the state-of-the-art on these downstream tasks.

Our main contributions can be summarized as follows:

e We propose a pre-training and fine-tuning frame-
work PF-HIN to mine information contained in a
HIN; PF-HIN is transferable to different downstream
tasks and to datasets of different domains.

e We adopt deep bi-directional transformer encoders
to capture the structural features of a HIN; the archi-
tecture of PF-HIN is a variant of a GNN.

e  We use type-based masked node modeling and adja-
cent node prediction tasks to pre-train PF-HIN; both
help PF-HIN to capture heterogeneous node features
and relationships between nodes.

e We show that PF-HIN outperforms the state of
the art on four benchmark downstream tasks across
datasets.

2 RELATED WORK

2.1 Network Representation Learning

Research on NRL traces back to dimensionality reduction
techniques [19], [20], [21], [22], which utilize feature vectors
of nodes to construct an affinity graph and then calculate
eigenvectors. Graph factorization models [23] represent a
graph as an adjacency matrix, and generate a low-dimen-
sional representation via matrix factorization. Such models
suffer from high computational costs and data sparsity, and
cannot capture the global network structure [5].

Random walks or paths in a network are being used to
help preserve the local and global structure of a network.
DeepWalk [4] leverages random walks and applies the Skip-
Gram word2vec model to learn network embeddings.
node2vec [6] extends DeepWalk; it adopts a biased random
walk strategy to explore the network structure. LINE [5]
harnesses first- and second-order proximities to encode
local and neighborhood structure information.

The aforementioned approaches are designed for homo-
geneous networks; other methods have been introduced for
heterogeneous networks. PTE [24] defines the conditional
probability of nodes of one type generated by nodes of
another, and forces the conditional distribution to be close
to its empirical distribution. Metapath2vec [7] has a hetero-
geneous SkipGram with its context window restricted to
one specific type. HINE [8] uses metapath-based proximity
and minimizes the distance between nodes’ joint probability
and empirical probabilities. HIN2Vec [9] uses Hadamard
multiplication of nodes and metapaths to capture features.
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More introduction of heterogeneous representation learning
could be found in [25], [26].

Some models employ a self-supervision technique to
realize the heterogeneous representation [27], but they do
not learn transferable knowledge on downstream datasets
and tasks. Hence, these models cannot be directly applied
in pre-training setting.

What we contribute to NRL on top of the work listed
above is an efficient and effective method for representation
learning for HINs based on graph neural networks (GNN5s).

2.2 Graph Neural Networks

GNN models have shown promising results for represent-
ing networks. Efforts have been devoted to generalizing
convolutional operations from visual data to graph data.
Bruna et al. [28] propose a spectral graph theory-based
graph convolution operation. graph convolutional networks
(GCNs) [10] adopt localized first-order approximations of
spectral graph convolutions to improve scalability. There is
a line of research to improve spectral GNN models [29],
[30], [31], [32], but it processes the whole graph simulta-
neously, leading to efficiency bottlenecks. To address the
problem, spatial GNN models have been proposed [33],
[34], [35], [36]. GraphSAGE [36] leverages a sampling strat-
egy to iteratively sample neighboring nodes instead of the
whole graph. Gao et al. [35] utilize a sub-graph training
method to reduce memory and computational cost.

GNNs fuse neighboring nodes or walks in graphs so as to
learn a new node representation [11], [37], [38]. The main dif-
ference with convolution-based models is that graph atten-
tion networks introduce attention mechanisms to assign
higher weights to more important nodes or walks. GAT [11]
harnesses masked self-attention layers to apply different
weights to different nodes in a neighborhood, to improve
efficiency on graph-structured data. GIN [39] models injec-
tive multiset functions for neighbor aggregation by parame-
terizing universal multiset functions with neural networks.

The above GNN models have been devised for homoge-
neous networks as they aggregate neighboring nodes or walks
regardless of their types. Targeting HINs, HetGNN [12] first
samples a fixed number of neighboring nodes of a given node
and then groups these based on their types. Then, it uses a
neural network architecture with two modules to aggregate
the feature information of the neighboring nodes. One module
is used to encode features of each type of node, the other to
aggregate features of different types. HGT [40] uses node- and
edge-type dependent parameters to describe heterogeneous
attention over each edge; it also uses a heterogeneous mini-
batch graph sampling algorithm for training.

What we contribute to GNNs is that the traditional NRL
and GNN models listed above need to be re-trained all over
again for different datasets and tasks, while our proposal
PF-HIN only needs fine-tuning using a small number of
task-specific parameters for a specific task and dataset, after
pre-training via self-supervision tasks.

2.3 Graph Pre-Training

There exist relatively few approaches for pre-training a GNN
model for downstream tasks. InfoGraph [41] maximizes the
mutual information between graph-level embeddings and
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sub-structure embeddings. Hu et al. [42] pre-train a GNN at
the level of nodes and graphs to learn local and global fea-
tures, showing performance improvements on various graph
classification tasks. Our proposed model, PF-HIN, differs as
we focus on node-level transfer learning and pre-train our
model on a single (large-scale) graph.

Hu et al. [43] design three pre-training tasks: denoising
link reconstruction, centrality score ranking, and cluster
preserving. GPT-GNN [17] adopts HGT [40] as its base
GNN and uses attribute generation and edge generation as
pre-training tasks. Hu et al. [17] only conduct their down-
stream tasks on the same dataset that was used for pre-
training. GCC [16] designs subgraph instance discrimina-
tion as a pre-training task and uses contrastive learning to
train GNNs, with its base GNNs as GIN; then it transfers its
pre-trained model to different datasets. However, it is
designed for homogeneous networks, not apt to exploit het-
erogeneous networks. PT-HGNN [44] adopts network sche-
mas to contrastively preserve the heterogeneous properties
as a form of prior knowledge to be transferred to down-
stream tasks. However, network schemas are domain-spe-
cific; they may not transfer the learned knowledge to
datasets in different domains.

What we contribute to graph pre-training on top of the
work listed above is that we are able to not only fine-tune
the proposed model across different tasks and different
datasets, but can also deal with heterogeneous networks.

3 THE PRoOPOSED MoDEL PF-HIN

3.1 Preliminaries

A heterogeneous information network (HIN) is a graph
G = (V,E,T), where V denotes the set of nodes and F
denotes the set of edges between nodes. Each node and
edge is associated with a type mapping function, ¢ : V —
Ty and ¢ : B — TF, respectively. Ty, and Ty denote the sets
of node and edge types. A HIN is a network where |Ty| >
land/or [Tg| > 1.

A visual presentation of the proposed model, pre-training
and fin-tuning heterogeneous information network (PF-HIN), is
given in Fig. 1. Below, we describe the node sequence gener-
ation procedure, the input representation, followed by the
pre-training and fine-tuning stages of PF-HIN.

3.2 Heterogeneous Node Sequence Generation

We first transform the structure of a node’s neighborhood to
a sequence of length k. To measure the importance of nodes
based on the structural roles in the graph, node centrality is
proposed in [45]. This framework makes use of three cen-
trality metrics,’ i.e.,

i) betweenness centrality,
ii) eigencentrality, and
iii)  closeness centrality.

2. This framework is extensible in the sense that additional metric
that is of particular interest to the user can be explicitly supplemented
after the three metrics, as long as the combination exhibits better perfor-
mance in downstream tasks. In our implementation, we stick to the
basic version consisted of three metrics to demonstrate the effectiveness
of the framework.
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Fig. 1. The pre-training procedure that makes up PF-HIN. The generation of node sequences is detailed in Section 3.2. Bi-LSTM-based learning of
input embeddings is described in Section 3.3. masked node modeling (MNM) is discussed in Section 3.4 and followed by adjacent node prediction
(ANP). The MNM and ANP tasks are conducted simultaneously. Sampled sequences of node v and u are concatenated during the training of the

ANP task.

Betweenness centrality is calculated as the fraction of
shortest paths that pass through a given node. Eigencentral-
ity measures the influence of a node on its neighbors. Close-
ness centrality computes the total length of the shortest
paths between the given node and others. We assign learn-
able weights to these metrics.

To capture heterogeneous features of a node’s neighbor,
we adopt a so-called rank-guided heterogeneous walk to
form the sequence mentioned above. The walk is with
restart; it will iteratively travel from a node to its neighbors.
It starts from node v, and it first reaches out to a node with a
higher rank, which is what makes the walk rank-guided.
This walk will not stop until it collects a pre-determined
number of nodes. In order to assign the model with a sense
of heterogeneity, we constrain the number of different types
to be collected in the sequence so that every type of node
can be included. We group nodes into mini-sequences,
where a mini-sequence is a sequence of nodes having the
same type [12]. In each mini-sequence, the nodes are sorted
based on each node’s rank, which serve as a kind of position
information.

Importantly, unlike traditional sampling strategies like
random walks, breadth first search or depth first search,
our sampling strategy is able to extract important and
influential neighboring nodes for each node by selecting
nodes with a higher rank; this allows us to capture more
representative structural information of a neighborhood.
The centrality of nodes follows a power-law distribution,

which means that nodes with a high degree of centrality
are limited. Our sampling strategy makes sure that these
more representative nodes are selected while other low-
ranked nodes can also be covered. In traditional sam-
pling strategies, the embedding of the ‘hub’ node could
be impaired by weakly correlated neighbors. Moreover,
our sampling strategy collects all types of node for each
node while traditional strategies ignore the nodes’ types.
Nodes of the same type are grouped in mini-sequences
so that further type-based analysis can be conducted to
capture the heterogeneous features of a HIN. Addition-
ally, metapaths, metagraphs and network schemas are
all domain-specific; they are usually pre-defined by
domain experts and may not be transferable to datasets
of different domains. Our sampling strategy captures
universal graph structural patterns. More empirical
results with analysis are provided in Section 5.3.

3.3 Input Embeddings Learned via Bi-LSTMs

After generating the sequences, we learn input embed-
dings of each node in the sequence using a Bi-LSTM
layer. A Bi-LSTM is able to process sequence-like data
and can learn deep feature interactions and obtain larger
expressive capability for node representation. Given the
input sequence {z,s,...,z,}, in which z; € R™! a Bi-
LSTM is used to capture the interaction relationships
between nodes. The Bi-LSTM is composed of a forward
and a backward LSTM layer. The LSTM layer is defined
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as follows:
j; = 8(Wyjz; + Whjhio1 + Wejcioi +bj), (D
fi = S(Wypzi + Wiyihioy + Wepciot +by), )
z; = tanh(Wy.z; + Wiehi—1 + b.), 3)
=11 0c1+j, 0z, 4)
0; = S(Wzol‘i + whohi—l + Wgoci + b0)7 (5)
hi = oitanh(ci), (6)

where h; € R¥? x 1 is the output hidden state of node i, ®
represents the element-wise product, W € RW/2*(4/2) and
b e RY*1 are learnable parameters, which denote weight
and bias, respectively; j,, f;, o, are the input gate vector, for-
get gate vector and output vector, respectively. We concate-
nate the hidden state of the forward and backward LSTM
layers to form the final hidden state of the Bi-LSTM layer.
For each type of node, we adopt different Bi-LSTMs so as to
extract type-specific features.

3.4 Masked Node Modeling

After generating the input embeddings via a Bi-LSTM, we
adopt masked node modeling (MNM) as our pre-training
task. We randomly mask a percentage of the input nodes
and then predict those masked nodes. We conduct this task
on the type-based mini-sequences generated by the afore-
mentioned rank guided heterogeneous walk. For each
group of nodes with the same type, we randomly mask
nodes in the mini-sequence. Given the mini-sequence of
type t, denoted as {z!, z%, ..., z.}, we randomly choose 15%
of the nodes to be replaced. And for a chosen node z!, we
replace its token with the actual [MASK] token with 80%
probability, another random node token with 10% probabil-
ity and the unchanged z! with 10% probability. The masked
sequence is fed into the bi-directional transformer encoders.
The embeddings generated via the Bi-LSTM are used as
token embeddings, while the rank information is trans-
ferred as position embeddings. After the transformer mod-
ule, the final hidden state h}" corresponding to the [MASK]
token is fed to a feedforward layer. The output is used to
predict the target node via a softmax classification layer

t

2l = Feedforward(h*), @)

(4
p! = softmax(WYNMz!), €))
where 2! is the output of the feedforward layer, WM™ ¢
V! x d is the classification weight shared with the input
node embedding matrix, V' is the number of nodes in the
t-type mini-sequence, d is the dimension of the hidden state
size, p! is the predicted distribution of z} over all nodes.
For training, we use the cross-entropy between the one-
hot label y! and the prediction p!

Lyn = — Z Ylogpl,, )
m

where ¢/, and p!, are the m-th components of y! and p/,
respectively. We adopt a smoothing strategy by setting
y!, = e for the target node and y!, = 5 for each of the other
nodes. By doing so, we loosen the restriction that a one-hot
label corresponds to only one answer.
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3.5 Adjacent Node Prediction

Aside from a masked node modeling module, we design
another pre-training task, ie., adjacent node prediction
(ANP), to capture the relationship between nodes. Note that
the adjacent node prediction (ANP) and masked node
modeling (MNM) tasks are conducted simultaneously in
practice. Unlike the MNM task, which operates on type-
based mini-sequences, we perform the ANP task on full
sequences, and we compare two full sequences to see
whether their starting nodes are adjacent or not. The reason
that we do not perform the ANP task on type-based mini-
sequences is that given k types of nodes, there will be k(k —
1)/2 mini-sequence pairs to be analyzed, which is very
time-consuming.

In our setting, for node v with sequence X, and node u
with sequence X, 50% of the time we choose u to be the
actual adjacent node of v (labeled as IsAdjacent), and 50% of
the time we randomly choose u from the corpus (labeled as
NotAdjacent) to save training time. More fake nodes could
also be included. Given the classification layer weights
WANE the scoring function s, of whether the node pair is
adjacent is shown as follows:

S¢ = sigmoid(CWANPl ), (10)
where s, € R? is a binary vector with s, sy € [0,1] and
$10 + s = 1, C € R denotes the hidden vector of classifi-
cation label used in a transformer architecture [18]. Consid-
ering the positive adjacent node pair S* and a negative
adjacent node pair S™, we calculate a cross-entropy loss as
follows:

Laxp == Y (loglsw)) + (1 - yollog(se)), (1D

eSTusS™

where y. is the label (positive or negative) of that node pair.
During the whole pre-training pipeline, we minimize the
following loss

L = Lyinm + Lanp. (12)

Through the MNM task, the model is able to predict a miss-
ing node by considering the neighborhood and context of
the missing node, thus exploring the node-wise network
structure. Through ANP task, the model can predict
whether two nodes are connected by considering the rela-
tionships of them and their context, thus exploring the
edge-wise network structure. In other words, PF-HIN adopt
structure-level pre-training tasks. However, previous pre-
training tasks like attribute masking and node type masking
only make use of the auxiliary information of a node. There-
fore, PF-HIN provides more informative self-supervision for
pre-training.

3.6 Transformer Architecture

Our two pre-training tasks share the same transformer
architecture. To increase the training speed of our model,
we adopt two parameter reduction techniques to lower
memory requirements, inspired by the ALBERT architec-
ture [46]. Instead of setting the node embedding size @ to be
equal to the hidden layer size H like BERT [18] does, we
make more efficient use of the total number of model
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parameters, dictating that H > ). We adopt factorized
embedding parameterization, which decomposes the
parameters into two smaller matrices. Rather than mapping
the one-hot vectors directly to a hidden space with size H,
we first map them to a low-dimensional embedding space
with size @, and then map it to the hidden space. Addition-
ally, we adopt cross-layer parameter sharing to further
boost efficiency. Traditional sharing mechanisms either
only share the feed forward network parameters across
layers or only the attention parameters. We share all param-
eters across layers.

We denote the number of transformer layers as L, and
the number of self-attention heads as A. For our parameter
settings we follow the configuration of ALBERT [46], where
Lissetto 12, H to 768, A to 12, () to 128, and the total num-
ber of parameters is equal to 12M. For the procedure of our
pre-training task, see Algorithm 1.

Algorithm 1: The Pre-Training Procedure of PF-HIN

Input:
Input HIN G;
Output:
Optimized model parameters ® (for downstream tasks);
1: Generates the node sequences via rank guided heteroge-
neous walk;
2: for each pair of sampled sequences do
3:  Apply Bi-LSTM on type-based mini-sequences to learn
the input embeddings of each node in the sequence;
4:  for each sequence do
5 Mask nodes in the type-based mini-sequences;
6: Feed the mini-sequences into transformer layers;
7
8

Calculate the masked node modeling loss by Eq. (9);
end
9:  Feed the two sequenes into transformer layers;
10:  Calculate the ajacent node prediction loss by Eq. (11);
11:  Update the parameters ® by Adam.
12: end
13: return Optimized pre-trained model parameters ©".

3.7 Fine-Tuning PF-HIN

The self-attention mechanism in the transformer allows
PF-HIN to model many downstream tasks. Fine-tuning can
be realized by simply swapping out the proper inputs and
outputs, regardless of the single node sequence or sequence
pairs used. For each downstream task, the task-specific
inputs and outputs are simply plugged into PF-HIN and all
parameters are fine-tuned end-to-end. Here, we introduce
four tasks:

i)  link prediction,
ii)  similarity search,
iii) node classification, and
iv) node clustering as downstream tasks.

Specifically, in link prediction, we predict whether there
is a link between two nodes, and the inputs are the node
sequence pairs. To generate output, we feed the classifica-
tion label into the sigmoid layer, so as to predict the exis-
tence of a link between two nodes. The only new
parameters are the classification layer weights W € R**#,
where H is the size of hidden state.
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In similarity search, in order to measure the similarity
between two nodes, we use the node sequence pairs as
input. We leverage the token-level output representations
to compute the similarity score of two nodes.

In node classification, we only use a single node
sequence as input and generate the classification label via a
softmax layer. To calculate the classification loss, we only
need to add classification layer weights W € R**# as new
parameters, where K is the number of classification labels
and H is the size of hidden state.

In node clustering, we also use a one node sequence as
input and then put the token-level output embeddings to a
clustering model, so as to cluster the data.

Experimental details for these downstream tasks are
introduced in Section 4 below.

4 EXPERIMENTAL SETUP

We detail our datasets, baseline models, and parameter
settings.

4.1 Datasets

We adopt the open academic graph OAG” as our pre-train-
ing dataset, which is a heterogeneous academic dataset. It
contains over 178 million nodes and 2.223 billion edges with
five types of node:

i) author,
ii) paper,
iii) venue,
iv) field, and
v) institute.
For downstream tasks, we transfer our pre-trained model
to four datasets:

1)  OAG-mini,

ii) DBLP,
iii)  YELP, and
iv)  YAGO.

OAG-mini is a subset extracted from OAG; the authors
are split into four areas: machine learning, data mining,
database, and information retrieval. DBLP* is also an aca-
demic dataset with four types of node:

i)  author,
ii) paper,
iii) venue, and
iv)  topic;

the authors are split into the same areas as those in
OAG-mini. YELP® is a social media dataset, with restaurants
reviews and four types of node:

i) review,
ii) customer,
iii) restaurant, and
iv)  food-related keywords.
The restaurants are separated into

i)  Chinese food,

3. https:/ /www.openacademic.ai/oag/
4. http://dblp.uni-trier.de
5. https:/ /www.yelp.com/dataset_challenge
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TABLE 1
Dataset Statistics

Dataset #nodes #edges #node types
OAG 178,663,927 2,236,196,802 5
OAG-mini 473,324 2,343,578 5
DBLP 301,273 1,382,587 4
YELP 201,374 872,432 4
YAGO 52,384 143,173 5

ii) fast food, and
iii)  sushi bar.
YAGO® is a knowledge base and we extracted a subset of
it containing movie information, having five types of node:

i) movie,
ii)  actor,
iii)  director,
iv) composer, and
v)  producer.
The movies are split into five types:

i) action,

ii) adventure,
iii)  scifi,
iv) crime, and

v)  horror.

The dataset statistics are shown in Table 1. In this paper,
we aim to address the issue that the data is usually scarce
with only a few labels given, which means that the fine-
tuned data is limited. So in practice, 10% of the training
data are fine-tuned with label.

4.2 Algorithms Used for Comparison

We first choose network embedding methods to directly
train the downstream datasets for specific tasks as baselines:
DeepWalk [4], LINE [5] and node2vec [6]; they were origi-
nally applied to homogeneous information networks. Deep-
Walk and node2vec leverage random walks, while
node2vec uses a biased walk strategy to capture the net-
work structure. LINE uses the local and neighborhood
structural information via first-order and second-order
proximities.

We include three state-of-the-art algorithms devised for
HINs: metapath2vec [7], HINE [8], HIN2Vec [9]. They are
all based on metapaths, but differ in the way they use meta-
path features: metapath2vec adopts heterogeneous Skip-
Grams, HINE proposes a metapath-based notion of
proximity, and HIN2Vec utilizes the Hadamard multiplica-
tion of nodes and metapaths.

We also include other GNN models, i.e., GCN [10],
GAT [11], GraphSAGE [36] and GIN [39], which were origi-
nally devised for homogeneous information networks.
GCN and GraphSAGE are based on convolutional opera-
tions, while GCN requires the Laplacian of the full graph,
and GraphSAGE only needs a node’s local neighborhood.
GAT employs an attention mechanism to capture the corre-
lation between central node and neighboring nodes. GIN

6. https://old.datahub.io/dataset/yago
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uses parameterizing universal multiset functions with neu-
ral networks to model injective multiset functions for neigh-
bor aggregation.

We also select HetGNN [12], HGT [40] as models for
comparison; both have been devised for HIN embeddings.
HetGNN samples heterogeneous neighbors, grouping them
based on their node types, and then aggregates feature
information of the sampled neighboring nodes. HGT has
node- and edge-type dependent parameters to characterize
heterogeneous attention over each edge.

The above network embedding methods are all directly
applied on the downstream datatasks.

Aside from those network embedding methods, for a fair
comparison, we also choose GPT-GNN [17], GCC [16] and
PT-HGNN [44] to run the entire pre-training and fine-tun-
ing pipeline. GPT-GNN utilizes attribute generation and
edge generation tasks to pre-train GNN, with HGT as its
base GNN. GCC adopts subgraph instance discrimination
as a pre-training task, taking GIN as its base GNN. PT-
HGNN adopts node-level and schema-level contrastive
learning as the pre-training task.

4.3 Parameters

For pre-training, we set the generated sequence length k to
20. The dimension of the node embedding is set to 128 and
the size of hidden state is set to 768. On transformer layers,
we use 0.1 as the dropout probability. The Adam learning
rate is initiated as 0.001 with a linear decay. We use 256
sequences to form a batch and the training epoch is set to
20. The training loss is the sum of the mean masked node
modeling likelihood and the mean adjacent node prediction
likelihood.

In fine-tuning, most parameters remain the same as
in pre-training, except the learning rate, batch size and
number of epochs. We use grid search to determine the
best configuration. The learning rate is chosen from
{0.01,0.02,0.025,0.05}. The training epoch is chosen from
{2,3,4,5}. The batch size is chosen from {16,32,64}. The
optimal parameters are task-specific. For the other models,
we adopt the best configurations reported in the source
publications.

We report on statistical significance with a paired two-
tailed t-test and we mark a significant improvement of
PF-HIN over GPT-GNN for p < 0.05 with 4.

5 RESULTS AND ANALYSIS

We present the results of fine-tuning PF-HIN on four down-
stream tasks:

i)  link prediction,
ii)  similarity search,
iii) node classification, and
iv) node clustering.
We analyze the computational costs, conduct an ablation
analysis, and study the parameter sensitivity.

5.1 Downstream Tasks
5.1.1 Link Prediction

This task is to predict which links will occur in the future.
Unlike previous work [6] that randomly samples a certain
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TABLE 2
Results for the Link Prediction Task
OAG-mini DBLP YELP YAGO

Model AUC F1 AUC AUC F1 AUC F1
DeepWalk 0.378 0.266 0.583 0.351 0.602 0.467 0.735 0.525
LINE 0.382 0.257 0.274 0.357 0.605 0.463 0.739 0.531
node2vec 0.392 0.273 0.584 0.355 0.609 0.471 0.742 0.534
metapath2vec 0.412 0.282 0.604 0.367 0.618 0.473 0.744 0.541
HINE 0.423 0.288 0.607 0.369 0.621 0.482 0.763 0.548
HIN2Vec 0.426 0.291 0.611 0.376 0.625 0.493 0.768 0.578
GCN 0.437 0.294 0.623 0.392 0.638 0.516 0.779 0.583
GraphSage 0.445 0.293 0.627 0.395 0.641 0.525 0.783 0.592
GAT 0.451 0.294 0.631 0.392 0.644 0.537 0.781 0.596
GIN 0.456 0.299 0.636 0.394 0.647 0.539 0.785 0.598
HetGNN 0.467 0.317 0.642 0.402 0.663 0.544 0.793 0.602
HGT 0.473 0.321 0.648 0.407 0.672 0.549 0.799 0.605
GPT-GNN 0.513 0.371 0.678 0.423 0.679 0.558 0.811 0.617
GCC 0.507 0.352 0.669 0.417 0.668 0.552 0.805 0.609
PT-HGNN 0.523 0.388 0.697 0.436 0.677 0.551 0.802 0.603
PF-HIN 0.519 0.383 0.692 0.4424 0.6914 0.5654 0.8224 0.6244

percentage of links as the training dataset and uses the
remaining links as the evaluation dataset, we adopt a
sequential split of training and test data. We first train a
binary logistic classifier on the graph of training data, and
then use the test dataset with the same number of random
negative (non-existent) links to evaluate the trained classi-
fier. We only consider the new links in the training dataset
and remove duplicate links from the evaluation. We adopt
AUC and F1 score as evaluation metrics.

We present the link prediction results in Table 2, with the
highest results set in bold. Scores increase as the dataset size
decreases. Traditional homogeneous models (DeepWalk,
LINE, node2vec) perform worse than traditional heteroge-
neous metapath-based models (metapath2vec, HINE,
HIN2Vec); metapaths capture the network structure better
than random walks. However, homogeneous GNN models
(GCN, GraphSAGE, GAT, GIN) achieve even better results
than traditional heterogeneous methods. Deep neural net-
works explore the entire network more effectively, generat-
ing better representations for link prediction. HetGNN and
HGT outperform the homogeneous GNN models, since
they take the node types into consideration. GPT-GNN,
GCC and PT-HGNN outperform all of the above methods
including their base GNN (HGT and GIN). Adopting pre-
training tasks can boost the downstream task performance.

PF-HIN outperforms GCC. This is because our pre-train-
ing on (type-based) mini-sequences helps to explore the
HIN, while GIN is designed for homogeneous information.
PF-HIN outperforms GPT-GNN due to our choice of pre-
training task, as the ANP task is more effective on predict-
ing links between nodes than the edge generation task used
in GPT-GNN. By deciding whether two nodes are adjacent,
ANP can tell if a link connects them. PT-HGNN performs
slightly better than PF-HIN on OAG-mini and DBLP datsets.
This is because that these two datasets share the same
domain of pre-training datasets OAG, and PT-HGNN takes
advantage of network-schema which can capture higher-
order structure of HIN. However, it performs much worse

than PF-HIN on YELP and YAGO, which proves that net-
work schema is not transferable on datasets of different
domains.

5.1.2 Similarity Search

In this task, we aim to find nodes that are similar to a given
node. To evaluate the similarity between two nodes, we cal-
culate the cosine similarity based on the node representa-
tions. It is hard to rank all pairs of nodes explicitly, so we
provide an estimation based on the grouping label g(-), in
which similar nodes are gathered in one group. Given a
node u, if we rank other nodes based on the similarity score,
intuitively, nodes from the same group (similar ones) should
be at the top of the ranked list while dissimilar ones should
be ranked at the bottom. We define the AUC value as

1 Z le’€Vg(u):g(1:)«,g(u)#g(v’) nSiIﬂ(U, U) > sim(u, V/)

AUC = —
Vi

uev 2o V() =glo) glutor!) 1

(13)

Table 3 displays the results for the similarity search task.
The highest scores are set in bold. The traditional heteroge-
neous models and homogeneous GNN models achieve
comparable results; metapath-based mechanisms and deep
neural networks can generate expressive node embeddings
for similarity search. HetGNN and HGT outperform the
above methods, which shows the power of combining GNN
and type features. PF-HIN performs well in all cases espe-
cially on YELP and YAGO, illustrating the effectiveness of
our pre-training model on learning heterogeneous node
representations for similarity search.

5.1.3 Node Classification

Next, we report on the results for the multi-label node clas-
sification task. The size (ratio) of the training data is set to
30% and the remaining nodes are used for testing. We adopt
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TABLE 3 TABLE 5
Results for the Similarity Search Task Results for the Node Clustering Task

Model OAG-mini  DBLP YELP YAGO  \iodel OAG-mini  DBLP YELP YAGO

AUC AUC AUC AUC NMI ARI NMI ARI NMI ARI NMI ARI
DeepWalk 0.478 0.511 0.553 0.656  DeepWalk  0.601 0.613 0.672 0.686 0.713 0.744 0.856 0.886
LINE 0.482 0.506 0.558 0.661 LINE 0.598 0.609 0.678 0.693 0.705 0.739 0.861 0.894
node2vec 0.483 0.513 0.559 0.653 node2vec 0.604 0.616 0.673 0.689 0.719 0.748 0.867 0.899
metapath2vec 0.494 0.545 0.578 0.673 metapath2vec 0.628 0.632 0.711 0.738 0.748 0.785 0.896 0.917
HINE 0.506 0.554 0.583 0.683 HINE 0.634 0.638 0.718 0.741 0.753 0.786 0.899 0.921
HIN2Vec 0.512 0.556 0.587 0.687 HIN2Vec 0.637 0.640 0.721 0.744 0.749 0.789 0.902 0.923
GCN 0.509 0.553 0.581 0.682 GCN 0.616 0.641 0.701 0.719 0.744 0775 0.881 0.907
GraphSage 0.513 0.557 0.586 0.689 GraphSage  0.619 0.643 0.705 0.722 0.746 0.778 0.885 0911
GAT 0.510 0.555 0.584 0.691 GAT 0.622 0.645 0.709 0.728 0.748 0.782 0.893 0915
GIN 0.514 0.559 0.587 0.690 GIN 0.625 0.650 0.711 0.735 0.752 0.785 0.898 0.919
HetGNN 0.527 0.563 0.592 0.694 HetGNN 0.644 0.678 0.729 0.748 0.759 0.792 0.904 0.926
HGT 0.532 0.568 0.591 0.697 HGT 0.648 0.682 0.734 0.753 0.763 0.794 0.909 0.931
GPT-GNN 0.563 0.596 0.603 0.708 GPT-GNN  0.673 0.712 0.756 0.761 0.769 0.808 0919 0.937
GCC 0.554 0.587 0.597 0.702 GCC 0.652 0.707 0.741 0.756 0.765 0.799 0.913 0.933
PT-HGNN 0.578 0.609 0.592 0.699 PT-HGNN  0.694 0.731 0.773 0.776 0.766 0.802 0.915 0.935
PF-HIN 0.574 0.6124  0.6134  0.7194  pryN 0.691 0.728 0.770 0.773 0.7814 0.8164 0.9274 0.9464

micro-F1 (MIC) and macro-F1 (MAC) as our evaluation
metrics.

Table 4 provides the results on the node classification
task; the highest scores are set in bold. GNN-based mod-
els perform relatively well, showing the benefits of using
deep neural networks for exploring features of the net-
work data for classification. PF-HIN achieves high scores
thanks to our fine-tuning framework, which aggregates
the full sequence information for node classification.

5.1.4 Node Clustering

Finally, we report on the outcomes for the node clustering
task. We feed the generated node embeddings of each

model into a clustering model. Here, we choose a k-means
algorithm to cluster the data. The size (ratio) of the training
data is set to 30% and the remaining nodes are used for test-
ing. We use normalized mutual information (NMI) and
adjusted rand index (ARI) as evaluation metrics.

Table 5 shows the performance for the node clustering
task, with the highest scores set in bold. Despite the
strong ability of homogeneous GNN models to capture
structural information of a network, they perform slightly
worse than traditional heterogeneous models. PF-HIN
performs steadily well on four datasets, proving that
PF-HIN is able to generate effective node embeddings for
node clustering.

TABLE 4
Results for the Multi-Label Node Classification Task
1 OAG-mini DBLP YELP YAGO
Mode MIC MAC MIC MAC MIC MAC MIC MAC
DeepWalk 0.175 0.173 0.193 0.191 0.163 0.145 0.328 0.265
LINE 0.177 0.172 0.184 0.179 0.274 0.276 0.366 0.320
node2vec 0.180 0.178 0.201 0.198 0.194 0.151 0.332 0.280
metapath2vec 0.195 0.194 0.209 0.207 0.264 0.269 0.370 0.332
HINE 0.198 0.192 0.234 0.230 0.276 0.284 0.401 0.363
HIN2Vec 0.204 0.201 0.246 0.241 0.291 0.306 0.428 0.394
GCN 0.209 0.205 0.257 0.256 0.302 0311 0.459 0.447
GraphSage 0211 0.207 0.267 0.269 0.305 0.318 0.464 0.456
GAT 0213 0211 0271 0.273 0.303 0315 0.469 0.462
GIN 0218 0.223 0.274 0.277 0.308 0.321 0.474 0.466
HetGNN 0.234 0.237 0.285 0.282 0.309 0.324 0.478 0.471
HGT 0.239 0.241 0.283 0.278 0313 0.327 0.484 0.483
GPT-GNN 0.276 0.274 0.304 0.299 0.322 0.339 0.496 0.493
GCC 0.266 0.264 0.295 0.291 0315 0332 0.489 0.486
PT-HGNN 0.297 0.287 0316 0.315 0.312 0.330 0.486 0.484
PF-HIN 0.294 0.2924 0.3184 0311 0.3304 0.3544 0.5164 0.5094
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TABLE 6
Running Times on the DBLP Dataset
Model LP SS MC NC
Time (h) Time (h) Time (h) Time (h)
DeepWalk 1.09 1.15 0.74 0.53
LINE 1.19 1.31 0.76 0.62
node2vec 1.46 1.54 0.97 0.74
metapath2vec 1.68 1.90 1.35 1.05
HINE 1.84 2.11 1.38 1.08
HIN2Vec 2.02 2.53 1.56 1.26
GCN 3.45 4.14 2.66 2.08
GraphSage 2.75 3.25 217 1.46
GAT 2.55 2.94 1.73 1.55
GIN 3.59 4.54 3.21 2.33
HGT 3.11 3.80 2.53 2.19
HetGNN 3.15 3.68 2.51 1.80
GPT-GNN 1.64 1.92 1.35 1.03
GCC 1.55 2.28 1.56 1.13
PT-HGNN 1.53 1.78 1.22 0.93
PF-HIN 1.52 1.71 1.18 0.82

Abbreviations used: LP: link prediction, SS: similarity search, MC: multi-label
node classification, and NC: node clustering.

5.2 Computational Costs

To evaluate the efficiency of our fine-tuning framework
compared to other models, we conduct an analysis of the
computational costs. Specifically, we analyze the running
time of each model on each task, using the early stopping
mechanism. Due to space limitations we only report the
results on the DBLP dataset; the results for the remaining
datasets are qualitatively similar. See Table 6. We use stan-
dard hardware (Intel (R) Core (TM) i7-10700K CPU + GTX-
2080 GPU); the time reported is wall-clock time, averaged
over 10 runs.

PF-HIN’s running time is longer than of the three tradi-
tional homogeneous models DeepWalk, LINE and node2vec,
which are based on random walks; it is not as high as any of
the other models. GNN-based models like GCN, GraphS-
AGE, GAT, GIN and HetGNN have a higher running time
than all other models, since the complexity of traditional
deep neural networks is much higher than other algorithms.

GPT-GNN, GCC, PT-HGNN and PF-HIN have relatively
short running times; this is because pre-trained parameters
help the loss function converge much faster. We also com-
pare the pre-training time of these pre-training frameworks
in Table 7. PF-HIN is the most efficient one since the com-
plexity of the transformer encoder we use is lower than that
of HGT in GPT-GNN, that of GIN in GCC, and that contras-
tive framework in PT-HGNN.

5.3 Ablation Analysis

We analyze the effect of the pre-training tasks, the bi-direc-
tional transformer encoders, the components of the input
representation, the rank-guided heterogeneous walk sam-
pling strategy, the centrality metric and the fine-tuning
setting.

5.3.1 Effect of Pre-Training Task

To evaluate the effect of the pre-training tasks, we introduce
two variants of PF-HIN, ie., PF-HIN\MNM and PF-HIN
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TABLE 7
Running Times on Pre-Training on OAG
Model Time (h)
GPT-GNN 5.36
GCC 5.63
PT-HGNN 434
PF-HIN 4.02
TABLE 8
Ablation Analysis of the Pre-Training Tasks on the
DBLP Dataset
Model LP SS MC NC
AUC F1 AUC MIC MAC NMI ARI
PF-HIN 0.692 0.442 0.612 0.318 0.311 0.770 0.773

PF-HIN\ANP 0.421 0.221 0.356 0.217 0.257 0.548 0.629
PF-HIN\MNM 0.498 0.283 0.332 0.172 0.174 0.422 0.438

Same abbreviations used as in Table 6.

\ANP. PF-HIN \MNM is like PF-HIN but excludes pre-train-
ing on the masked node modeling task, PF-HIN\ ANP is like
PF-HIN but excludes pre-training on the adjacent node pre-
diction task. Due to space limitations, we only report the
experimental outcomes on the DBLP dataset; the findings
on the other datasets are qualitatively similar. Table 8 shows
the experimental results of the ablation analysis over pre-
training tasks. For the link prediction task, ANP is more
important than MNM since predicting if two nodes are adja-
cent could also tell if they are connected by a link. In similar-
ity search, those two tasks have a comparable effect. For the
node classification and node clustering tasks, MNM plays a
more important role, and this is because MNM directly
models node features and hence PF-HIN is better able to
explore them.

5.3.2 Effect of the bi-Directional Transformer Encoder

Our bi-directional transformer encoder is a variant of GNN
applied to HINs, aggregating neighborhood information.
For our analysis, we replace the transformer encoders with
a CNN, a bi-directional LSTM, and an attention mechanism.
Specifically, the model using the CNN encoder is denoted
as PF-HIN (CNN), the model using bi-directional LSTM as
PF-HIN (LSTM), and the model using an attention mecha-
nism as PF-HIN (attention). Again, we report on experi-
ments on the DBLP dataset only. Table 9 presents the
experimental results of different encoders. The CNN, LSTM
and attention mechanism-based models achieve compara-
ble results on the four tasks. PF-HIN consistently outper-
forms all three models, which shows the importance of our
bi-directional transformer encoder for mining the informa-
tion contained in a HIN.

5.3.3 Effect of Pre-Training Strategy

In PF-HIN, the MNM task is pre-trained on (type-based)
mini-sequences, while the ANP task is pre-trained on two
full sequences generated via two starting nodes. Here we

analyze the effect of this strategy. We consider three var-
iants of PF-HIN.
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TABLE 9
Ablation Analysis of the Encoder on the DBLP Dataset
LP SS MC NC
Model

AUC F1 AUC MIC MAC NMI ARI
PF-HIN 0.692 0.442 0.612 0.318 0311 0.770 0.773
PF-HIN (CNN) 0.643 0.418 0.578 0.296 0.287 0.743 0.747
PF-HIN (LSTM) 0.657 0421 0567 0.293 0.279 0.754 0.753
PF-HIN (attention) 0.629 0.411 0.572 0.299 0.291 0.748 0.757

Same abbreviations used as in Table 6.

TABLE 10
Ablation Analysis of the Pre-Training Strategy on the
DBLP Dataset

LP SS MC NC
Model
AUC F1 AUC MIC MAC NMI ARI
PF-HIN 0.692 0.442 0.612 0.318 0.311 0.770 0.773
PF-HIN (full-full) 0.671 0.419 0.589 0.295 0.294 0.747 0.757
PF-HIN (full-mini)  0.659 0.407 0.577 0.287 0.283 0.733 0.751
PF-HIN (mini-mini) 0.679 0.429 0.596 0.307 0.301 0.759 0.766

Same abbreviations used as in Table 6.

i) The first is to pre-train the two tasks on two full
sequences without considering the heterogeneous
features of the network, denoted as PF-HIN (full-
full).

ii) In the second, we try to assign the ANP task with a
sense of heterogeneous features. As explained in Sec-
tion 3.5, it is too time-consuming to pre-train all
mini-sequence pairs for the ANP task, so in the sec-
ond model we choose the two longest mini-sequen-
ces to train the ANDP task, while the MNM task is
trained on full sequences, denoted as PF-HIN (full-
mini).

iii)  The third is that the ANP and MNM tasks are both
trained on (type-based) mini-sequences, denoted as
PF-HIN (mini-mini).

Table 10 shows the results of the ablation analysis.
PF-HIN (full-full) outperforms PF-HIN (full-mini), which
illustrates that despite taking heterogeneous features into
consideration, only choosing two mini-sequences for the
ANP task may harm the performance as information is
missed. However, PF-HIN (mini-mini) outperforms PF-HIN
(full-full), showing that considering heterogeneous features
on the MNM task may help boost the model performance.
The strategy selected for PF-HIN achieves the best results.

5.3.4 Effect of Rank-Guided Heterogeneous Walk
Sampling
In this paper, we have adopted a rank-guided heteroge-
neous walk sampling strategy to sample nodes to form
input sequences. Here we consider three variants. The first
is to only use a breadth first search (BFS) sampling strategy,
denoted as PF-HIN (BFS); the second is to only use a depth
first search (DFS) sampling strategy, denoted as PF-HIN
(DFS); and the last is to randomly choose neighboring nodes
to form the node sequence, denoted as PF-HIN (random).
Table 11 shows the experimental results. PF-HIN (BFS) out-
performs PF-HIN (DFS) and PF-HIN (random); aggregating a
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TABLE 11
Ablation Analysis of the Rank-Guided Heterogeneous Walk
Sampling Strategy on the DBLP Dataset

LP SS MC NC
Model
AUC F1 AUC MIC MAC NMI ARI
PF-HIN 0.692 0.442 0.612 0.318 0.311 0.770 0.773
PF-HIN (BFS) 0.659 0.417 0577 0279 0.292 0.743 0.758
PF-HIN (DFS) 0.643 0.406 0.565 0.269 0.283 0.741 0.752
PF-HIN (random) 0.668 0.423 0.589 0.292 0.297 0.657 0.764

Same abbreviations used as in Table 6.

TABLE 12
Ablation Analysis of the Centrality Metric on the DBLP Dataset
LpP SS MC NC

Model

AUC F1 AUC MIC MAC NMI ARI
PF-HIN 0.692 0.442 0.612 0.318 0.311 0.770 0.773
PF-HIN \betweenness 0.674 0.423 0.582 0.304 0.298 0.757 0.759
PF-HIN \eigen 0.668 0.416 0.586 0.297 0.292 0.753 0.751
PF-HIN \closeness 0.671 0.420 0.577 0.301 0.302 0.761 0.754

Same abbreviations used as in Table 6.

node’s closest neighborhood’s information is more informa-
tive than choosing far-away nodes or randomly chosen neigh-
boring nodes. PF-HIN outperforms PF-HIN (BFS); choosing
nodes with a higher importance leads to better performing
feature representations of a HIN.

Notice that sampling random walk treats high rank
nodes and less ranked nodes equally. PF-HIN outperforms
PF-HIN (random), which further proves that sampling influ-
ential and representative nodes will improve the overall
model performance.

5.3.5 Effect of the Centrality Metrics

In this paper, we use three centrality metrics to measure the
importance of a node. Here we introduce three variants.
The first is to remove the betweenness centrality denoted as
PF-HIN \betweenness; the second is to remove the eigencen-
trality denoted as PF-HIN \eigen; the third is to remove the
closeness centrality denoted as PF-HIN \closeness. Each var-
iant assigns equal weights for the left two metrics.

Table 12 presents the experimental results. Removing a
metric influences the experimental results, which illustrates
that each metric is necessary for ranking the nodes. In addi-
tion, each metric has a different influence on different tasks,
so it is reasonable for us to adopt the learnable weights for
them.

5.3.6 Effect of the Fine-Tuning Setting

There are two kinds of fine-tuning setting, freezing and full
fine-tuning. Freezing fine-tuning is to freeze the parameters
of the pre-trained model when fine-tuning, denoted as
PF-HIN (Freeze). Full fine-tuning is to train the model with
the downstream classifier in an end-to-end manner. PF-HIN
leverages the full fine-tuning setting.

Table 13 shows the experimental results. PF-HIN consis-
tently outperforms PF-HIN (Freeze), which shows that full
fine-tuning is helpful to boost the model performance.
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TABLE 13
Ablation Analysis of the Fine-Tuning Setting on the
DBLP Dataset

LP SS MC NC
Model
AUC F1 AUC MIC MAC NMI ARI
PF-HIN 0.692 0.442 0.612 0.318 0.311 0.770 0.773

PF-HIN (Freeze) 0.673 0.427 0.587 0.295 0.291 0.742 0.747

Same abbreviations used as in Table 6.
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Fig. 3. Sensitivity w.r.t. dimension of node embeddings.

5.4 Parameter Sensitivity
Finally, we conduct a sensitivity analysis of the hyper-
parameters of PF-HIN. We choose two parameters for analy-
sis: the maximum length of the input sequence, and the
dimension of the node embedding. For each downstream
task, we only choose one metric for evaluation: AUC for
link prediction, AUC for similarity search, micro-F1 value
for node classification, and NMI value for node clustering.

Figs. 2 and 3 show the results of our parameter analysis.
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Fig. 4. Parameter analysis of the percentage of fine-tuning data

Fig. 2 shows the results for the maximum length of the
input sequence. The performance improves rapidly when
the length increases from 0 to 20. A short node sequence is
not able to fully express neighborhood information. When
the length reaches 20 or longer, the performance stabilizes,
and longer sequence lengths may even hurt the perfor-
mance. Given a node, its neighboring information can be
well represented by its direct neighborhood, however,
including far-away nodes may introduce noise. According
to this analysis, we choose the length of the input sequence
to be 20 so as to balance effectiveness and efficiency.

As to the dimension of node embeddings, Fig. 3 shows
that the performance improves as the dimension increases,
for all tasks and datasets. The higher dimensions are able to
capture more features. PF-HIN is not very sensitive to the
dimension we choose, especially once it is at least 128. The
performance gap is not very large between dimension 128
and 256. Thus, we choose 128 as our setting for the dimen-
sion of node embeddings for efficiency considerations.

We also conduct a parameter analysis of the percentage
of fine-tuning data. GPT-GNN, GCC and PF-HGNN are
chosen as methods for comparison as they all follow a pre-
training and fine-tuning setup. We choose node classifica-
tion as an example and choose MIC as the evaluation metric.
The experimental results are presented in Fig. 4. PF-HIN
consistently performs best among the pre-training and fine-
tuning models, which shows that PF-HIN generalizes well
with different percentages of fine-tuning data.

6 CONCLUSION

We have considered the problem of network representation
learning for heterogeneous information networks (HINs) .
We propose a novel model, PF-HIN, to mine the information
captured by a HIN. PF-HIN is a self-supervised pre-training
and fine-tuning framework. In the pre-training stage, we
first use rank-guided heterogeneous walks to generate input
sequences and group them into (type-based) mini-sequen-
ces. The pre-training tasks we utilize are masked node
modeling (MNM) and adjacent node prediction (ANP).
Then we leverage bi-directional transformer layers to pre-
train the model. We adopt factorized embedding parame-
terization and cross-layer parameter sharing strategies to
reduce the number of parameters. We fine-tune PF-HIN on
four tasks: link prediction, similarity search, node classifica-
tion, and node clustering. PF-HIN outperforms state-of-the-
art models on the above tasks on four real-life datasets.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 8, AUGUST 2023

In future work, we plan to conduct further graph learn-
ing tasks in the context of a diverse range of information
retrieval tasks, including, but not limited to, academic
search, financial search, product search, and social media
search. It is also of interest to see how to model a dynamic
HIN that is constantly evolving, using a pre-training and
fine-tuning framework.
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