
58

Hyperspherical Variational Co-embedding for

Attributed Networks

JINYUAN FANG, Sun Yat-sen University

SHANGSONG LIANG, Sun Yat-sen University, China and Mohamed bin Zayed University

of Artificial Intelligence

ZAIQIAO MENG, University of Cambridge

MAARTEN DE RIJKE, University of Amsterdam

Network-based information has been widely explored and exploited in the information retrieval literature.

Attributed networks, consisting of nodes, edges as well as attributes describing properties of nodes, are a basic

type of network-based data, and are especially useful for many applications. Examples include user profiling

in social networks and item recommendation in user-item purchase networks. Learning useful and expressive

representations of entities in attributed networks can provide more effective building blocks to down-stream

network-based tasks such as link prediction and attribute inference. Practically, input features of attributed

networks are normalized as unit directional vectors. However, most network embedding techniques ignore

the spherical nature of inputs and focus on learning representations in a Gaussian or Euclidean space, which,

we hypothesize, might lead to less effective representations. To obtain more effective representations of attrib-

uted networks, we investigate the problem ofmapping an attributed networkwith unit normalized directional

features into a non-Gaussian and non-Euclidean space. Specifically, we propose a hyperspherical variational

co-embedding for attributed networks (HCAN), which is based on generalized variational auto-encoders for

heterogeneous data with multiple types of entities. HCAN jointly learns latent embeddings for both nodes

and attributes in a unified hyperspherical space such that the affinities between nodes and attributes can

be captured effectively. We argue that this is a crucial feature in many real-world applications of attributed

networks. Previous Gaussian network embedding algorithms break the assumption of uninformative prior,

which leads to unstable results and poor performance. In contrast, HCAN embeds nodes and attributes as

von Mises-Fisher distributions, and allows one to capture the uncertainty of the inferred representations. Ex-

perimental results on eight datasets show that HCAN yields better performance in a number of applications

compared with nine state-of-the-art baselines.
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1 INTRODUCTION

Information is interconnected and therefore often represented as networks. Links between entities
in networks represent the relationship between them and are highly informative for retrieval [50]
and learning tasks [5]. For example, in networks of hyper-linked web documents, linked webpages
are more likely to share the same topics even if their textual contents differ. Recently, a number
of network embedding techniques have been proposed in order to effectively interpret and work
with network data. They aim at inferring representations of entities in the network such as nodes,
from which applications that use network data can benefit, including node classification [48, 56]
and clustering [36, 37], community detection [18, 35], and link prediction [42]. These network
embedding techniques map entities of a network into low-dimensional vectors in such a way that
essential information about the whole network is preserved as much as possible, such as, e.g.,
topological structure and similarities between entities.
In this article, we focus on a basic type of network, namely attributed networks. Attributed net-

works do not only come with a topological structure, e.g., nodes and their connections, but also
with rich attributes that describe properties of the nodes. For instance, in an academic search set-
ting an attributed network could consist of authors (as entities), the co-authorship relation (as
edges), and the journals/conferences the authors published at (as node attributes). Attributed net-
works are critical in many domains, ranging from online social networks to academic collaborative
networks. Many embedding models have been proposed that learn a low-dimensional vector rep-
resentations of nodes for attributed networks by leveraging both the topological structure and the
attributes of the networks [20, 29, 33, 59].

Today’s attributed network embedding algorithms suffer from a number of problems: (i) Most of
them regard attributes as a single category of features of nodes, and focus on learning representa-
tions for nodes only but not for both attributes and nodes, as a result of which it is hard to measure
similarities between nodes and attributes in the embedding space. Measuring such similarities is
crucial to many attributed network applications, such as attribute inference for nodes [15] and
user profiling [38]. (ii) Gaussians are the default choice as the prior for variational auto-encoder
(VAE) based network embedding methods [12, 29]. This choice is mathematically convenient, but
in many cases it breaks the assumption of an uninformative prior, which leads to unstable results
and poor performance [9]. (iii) Most of the existing algorithms embed data into a Euclidean space.
However, in data analysis, input features are usually normalized as unit vectors in a preprocessing
step, i.e., distributing the input data on the unit sphere. For example, in citation networks where
the features are bags-of-words, nodes or publications have typically been represented using a term
frequency-inverse document frequency (tf-idf) normalized form, where each publication is
represented as a point on a unit-sphere using a combination of both within document frequen-
cies and inverse document frequencies. Such unit normalized feature vectors are directional fea-
tures that remove the “magnitude” of the features and only keep the orientation of features as
discriminative information. Hence, hyperplane representations in a Euclidean space may not be
the appropriate representations concerning the directional features of the data. In fact, a variety of
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data, including texts, images, and sequential protein data are better represented through spherical
representations rather than hyperplane representations [13, 41].

The VAE [28] offers a principled framework to learn representations for homogeneous data, but
it has limited applicability in learning representations for heterogeneous data with multiple types
of entities, such as the two types of entities, i.e., nodes and attributes, in attributed networks. To
overcome this shortcoming, we propose a generalized variational auto-encoder for learning repre-
sentations of heterogeneous data. Based on the generalized VAE framework, we propose the hy-
perspherical variational co-embedding for attributed networks (HCAN) to learn represen-
tations for attributed networks with unit normalized directional features. The HCAN co-embeds
both nodes and attributes of the attributed networks in the same semantic space such that the
affinities between them can be effectively measured. To effectively obtain embeddings of both
nodes and attributes, hyperspherical variational co-embedding for attributed networks (HCAN)
represents them as von Mises–Fisher distributions in hyperspherical space instead of Gaussian
distributions. Utilizing the latent hyperspherical features of the data has been shown to be more
effective than utilizing the hyperplane features of the data for many tasks, such as clustering for
networks [1], face recognition [21], and text modeling [68]. Since the uniform distribution on the
hypersphere is conveniently recovered as a special case of the von Mises–Fisher distribution, we
can obtain a truly uninformative prior when placing a von Mises–Fisher prior on the embeddings
of both nodes and attributes. Moreover, by representing the embeddings as von Mises–Fisher dis-
tributions, we are able to measure the uncertainty in the inferred representations with the con-
centration parameter assigned to each embedding. As the HCAN learns latent representations of
both nodes and attributes in a unified hyperspherical space for the normalized directional data
distributed on unit sphere, it can better capture latent embeddings that improve the performance
of many attributed network tasks compared to models learning latent representations in Euclidean
space.
To evaluate the effectiveness of the proposed hyperspherical co-embedding model, we conduct

experiments on eight publicly available real-world datasets. For the purpose of evaluating the
inferred node representations, we compare HCAN against baseline models in terms of the perfor-
mance on node-oriented network tasks such as link prediction and node classification. For the pur-
pose of evaluating the inferred attribute representations, we compare HCANwith baseline models
in terms of the performance on attribute inference and user profiling tasks, where capturing simi-
larities between nodes and attributes is the key to the success of the tasks. Our experimental results
demonstrate that HCANs can achieve better performance and that inferring hyperspherical repre-
sentations rather than hyperplane ones can improve performance.
The main contributions of our work can be summarized as follows:

(i) We generalize the variational auto-encoder (VAE) to learn hyperspherical representations
for heterogeneous data with multiple types of entities and relations.

(ii) Based on the generalized VAE framework, we propose a hyperspherical co-embedding
model, HCAN, to jointly learn low-dimensional embeddings of both nodes and attributes
for attributed networks in a unified hyperspherical space such that the affinities between
nodes and attributes can be captured and measured effectively.

(iii) The HCAN model maps entities of an attributed network, i.e., nodes and attributes, into a
hyperspherical space by using the von Mises–Fisher distributions, which have been shown
to be more effective in representing similarities between entities.

(iv) We design practical, trainable inference and generative networks to optimize the derived
objective applied in the proposed HCAN model.

(v) We conduct extensive experiments on real-world attributed network datasets to evaluate the
effectiveness of the learned embeddings, i.e., link prediction, node classification, attribute
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inference and user profiling, and the results show that HCAN is able to learn high-quality
network embeddings.

The remainder of this article is organized as follows. Section 2 discusses the related work. In
Section 3, we define the hyperspherical co-embedding problem to be addressed. Section 4 provides
a brief introduction to variational representation learning for homogeneous data in hyperplane
space and then introduces generalized variational representation learning for heterogeneous data
in hyperspherical space. Section 5 provides an overview of the variational co-embedding model for
attributed networks and details the proposed model, HCAN. Section 6 describes our experimen-
tal setup and the experimental results are reported and analyzed in Section 7. Finally, Section 8
concludes the article.

2 RELATEDWORK

In this section, we briefly discuss three lines of related work: network embeddings, VAE, and hy-
perspherical latent spaces. We start by surveying the use of attributed networks in information
retrieval.

2.1 Attributed Networks in Information Retrieval

Real-world information can often be represented as attributed networks [50]. How to effectively
explore and exploit this type of network-based information is a constant theme in the information
retrieval literature. For example, user-item interactions in recommender systems can be consid-
ered as attributed networks where we treat users/items as nodes and the interactions between
them as edges. A number of publications have proposed to learn representations of nodes in the
user-item graphs [6, 61, 64, 65]. Wang et al. [64] proposeNeural Graph Collaborative Filtering

(NGCF), which explicitly incorporates a collaborative signal into the embedding model by leverag-
ing high-order connectivities in the user-item integration graph. Chen et al. [6] propose the Joint
Neural Collaborative Filtering (J-NCF) model that learns embeddings by leveraging both fea-
tures of nodes and the interactions between nodes in the user-item graphs. Attributed network
embedding techniques have also been widely applied in social network analysis [39, 62, 73]. For
example, Zhao et al. [73] propose a network embedding approach to automatically generate tags
for microblog users by leveraging rich social data. Online hyper-linked web documents can also be
treated as attributed networks, where documents are regarded as nodes and the texts in documents
are regarded as attributes. Yao et al. [70] propose a Text Graph Convolutional Network (Text
GCN) to learn representations of documents by levering the linkage and attribute information,
which can be applied in down-stream document classification tasks.

2.2 Network Embeddings

Learning representations of networks has gained much attention recently and many unsupervised
learningmethods have been proposed to embed networks as low-dimensional vectors. The learned
representations produced by these methods are capable of preserving the structural and feature
information of the original network while boosting the performance on down-stream tasks such
as node classification [48, 56] and link prediction [42].

Some network embedding methods only rely on the topological structure of the network to
learn useful embeddings, such as DeepWalk [48], node2vec [18], and large-scale information

network embedding (LINE) [56], which learn representations based on random walks or edge
sampling. These methods use skip-grams with a negative sampling neural network architecture
originally proposed for word embeddings [45]. In addition, Wang et al. [63] propose to incorporate
the community structure of the network into embedding methods.
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In another line of work, some methods propose to incorporate auxiliary information, such as
labels, node attributes, and text content, in the embedding model to obtain more useful embed-
dings of networks. Compared with embeddings based on network structure alone, the embeddings
learned through these methods are able to capture semantic information of objects in the network.
The variational graph auto-encoder (VGAE) introduced by Kipf andWelling [29] combines the
VAE framework and a graph convolution network to obtain network embeddings by taking both
the structure and the attribute information of the network as input. Hamilton et al. [20] propose the
GraphSAGE model that learns node representations by sampling and aggregating features from
the local neighborhood of nodes. Veličković et al. [59] introduce a masked self-attention mecha-
nism into the network embedding model, which enables nodes to attend to their neighborhoods’
features with different weights. Zhang et al. [72] and Gao and Huang [14] propose to learn node
embeddings with customized deep neural network architectures, which aim at capturing the high
degree non-linearity in both topological structure and attributes. The results show that combining
different types of auxiliary information, instead of using structure information only, can provide
different insights into embeddings of nodes. However, these models only learn embeddings of
nodes instead of all entities in the network, i.e., nodes and attributes, and are not able to capture
the uncertainty inherent in the embeddings.
Recently, some approaches have been proposed that embed nodes as distributions, which allow

them to capture the uncertainty of the embeddings [2, 11, 22, 44]. The KG2E model introduced by
He et al. [22] uses Gaussian distributions to represent each entity/relation of knowledge graphs.
Dos Santos et al. [11] study heterogeneous graphs for node classification using Gaussian embed-
dings. As to embedding methods for attributed networks, Bojchevski and Günnemann [2] embed
each node as Gaussian distributions according to the energy-based loss of a personalized ranking
formulation.
In HCAN, we embed both nodes and attributes in a hyperspherical space using the von Mises–

Fisher distributions, which allows us to capture the uncertainty with the concentration parameter
of the von Mises–Fisher distribution.

2.3 Variational Auto-Encoders

VAEs [28, 52] are a type of powerful generative models that are able to effectively infer poste-
rior distributions of latent variables from observational data based on the variational inference
principle. For a generative model p (x|z) with observational data x and latent variable z, it may
be analytically intractable to infer the true posterior of the latent variable p (z|x) when the likeli-
hood function is non-Gaussian. Variational inference approximates the intractable posterior with
a simpler-form variational distribution such as a Gaussian distribution. To effectively reduce the
number of variational parameters, the VAE proposes to replace the inference of latent variables
with an inference neural network and the generative process of the observations with a generative
neural network. The parameters of the inference network and the generative network are learned
jointly by maximizing the evidence lower bound of the log marginal likelihood of observations.
After optimization, the variational posterior over latent variables is inferred through the inference
network.
Many variants of the standard VAE model have been introduced [17, 25, 27, 29, 55], which have

been studied extensively and applied in generative models [3, 17, 55] and learning representations
of data in unsupervised [25, 29] or semi-supervised [7, 27, 43] ways. Specifically, Gregor et al. [17]
propose the Deep Recurrent Attentive Writer (DRAW) with sequential VAE framework that
allows for the iterative construction of complex images. Liang et al. [38] propose a dynamic user

and word embedding model (DUWE) that learns the representations of both users and words
in the same semantic space such that the similarities between them can be measured effectively.
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Meng et al. [43] propose a semi-supervised model that incorporates label information in the net-
work embedding methods to learn more expressive representations.

Of special interest to us is the VGAE model, proposed by Kipf and Welling [29], which uses the
VAE to learn representations for attributed networks as well. However, it only learns representa-
tions for nodes, rather than both nodes and attributes as we do in our model. Besides, it embeds the
nodes in Euclidean space by inferring Gaussian distributions of latent variables, while we embed
both the nodes and attributes in a hyperspherical space using the von Mises-Fisher distribution.

2.4 Hyperspherical Latent Spaces

Recently, models that exploit the latent hyperspherical manifold based on a von Misher–Fisher
distribution have been widely studied. Gopal and Yang [16] propose a Bayesian von Mises–Fisher
mixture model to improve the performance of clustering high-dimensional data and show that von
Mises–Fisher-based clusteringmodels can improve clustering performance over standard methods
such as K-means and topic modeling empirically. Similarly, Hasnat et al. [21] utilize the vMF mix-
ture model to learn representations of face pictures on the hyperspherical manifold, which can
preserve the class information such that it can achieve statisfactory results on the face verifica-
tion task. In addition, Reisinger et al. [51] propose to incorporate vMF distributions into Latent

Dirichlet Allocation (LDA) models and introduce SAM, which models documents as directional
distributions on an unit hypersphere while allowing a natural likelihood parameterization in terms
of cosine distance.
There has also been work that combines embedding techniques and the vMF distribution to

obtain powerful generative models [9, 19, 68]. This work shows that adding L2 normalization to
the latent representations of deep autoencoder models during training, i.e., forcing the latent rep-
resentations to distribute on a unit sphere, can greatly improve the performance of clustering [1].
Davidson et al. [9] propose the hyperspherical variational auto-encoder (S-VAE), which has
the same encoder-decoder structure as classic the VAE [28] but uses vonMises–Fisher distributions
as both variational posteriors and prior distributions over latent variables as opposed to Gaussian
distributions. However, it aims at inferring embeddings for only one category of entities in homo-
geneous data; it is still unknown how to obtain embeddings of two or more categories of entities
in heterogeneous data, in our case, nodes and attributes in attributed networks. Xu and Durrett
[68] use the hyperspherical variational auto-encoder for a text modeling task, where the model
encodes the input text as latent von Mises–Fisher distributions and reconstructs the text using the
decoder. But the model proposed in [68] treats the concentration parameter κ of the latent von
Mises–Fisher distribution as a constant that remains the same for every approximate posterior
distribution. As a result, the Kullback-Leibler (KL) divergence in the evidence lower bound is a
constant and the model only optimizes the reconstruction term of the loss function, which limits
the flexibility and the expressiveness of the latent distribution.
In our proposed co-embeddingmodel, both the direction vector and the concentration parameter

of the von Mises–Fisher distribution are treated as variables that are inferred with the encoder
network.

3 PROBLEM DEFINITION

In this section, we first introduce the main notation used in the article, and then formalize the
co-embedding problem for attributed networks.

3.1 Notation

We begin by introducing the main notation used in the article. We denote scalars with normal
letters (e.g., N represents the number of nodes in the network), while sets are represented with
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Table 1. Main Notation Used in the Article

Notation Description

G an attributed network
V set of nodes
A set of attributes
H set of heterogeneous data
E set of entities in heterogeneous data
X set of features in heterogeneous data
R set of relations between entities in heterogeneous data
S set of observations in heterogeneous data
N = |V | number of nodes
F = |A| number of attributes
D dimension of the latent variable
T number of different types of entities in heterogeneous data
A ∈ RN×N adjacency matrix of nodes
X ∈ RN×F attribute matrix of nodes

F
V ∈ RN×F directional feature matrix of nodes

F
A ∈ RF×N directional feature matrix of attributes

Z
V ∈ RN×D latent representation matrix for all nodes

Z
A ∈ RF×D latent representation matrix for all attributes

calligraphy letters (e.g., V represents the set of nodes in the network). Vectors and matrices are
denoted by lower case and bold letters (e.g., z represents the embedding vector of a node) and
bold and uppercase letters (e.g., A represents the adjacency matrix), respectively. The ith row of
a matrix is denoted with a subscript (e.g., Ai ), while a vector with a subscript represents a scalar
element of that vector (e.g., zi or Ai j ). The transpose of a matrix A is represented as A�.

We define a network with a set of nodes and attributes to be an attributed network, denoted
by G = (V,A,A,X). Here, V and A represent the set of nodes and attributes of the network,
respectively, A ∈ RN×N is the adjacency matrix of the network, and X ∈ RN×F is the attribute
matrix, where N = |V | and F = |A| are the numbers of nodes and attributes, respectively. We
further use the attribute matrix and the transpose of the attribute matrix to represent the features
of nodes and attributes, which is denoted as FV � X and F

A � X
�, respectively. Note that we

first normalize the feature vectors as unit length vectors, i.e., directional vectors distributed on a
unit sphere, in a preprocessing step. We summarize our main notation in Table 1.

3.2 The Co-embedding Problem

The problem of learning representations for entities in attributed networks, i.e., both nodes and
attributes, can be defined as follows. Given an attributed network G, with sets of nodes V and
attributes A, adjacency matrix of nodes A and attribute matrix of nodes X, we aim at learning
latent representations of both nodes and attributes of the network, denoted as ZV and ZA , respec-
tively. Here, ZV ∈ RN×D and Z

A ∈ RF×D represent the latent representation matrices of all the
nodes and attributes, respectively, while D represents the dimension of the latent representations
and D � F . Concretely, the problem can be formulated as learning a function f that satisfies the
following:

G = (V,A,A,X) f−→ Z
V ,ZA .
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The output of the function consists of the representations of both nodes and attributes of the
network in the same semantic space. As a result, the learned representations ZV and ZA allow us
to preserve both the topological structure and the attribute information of attributed networks as
much as possible while capturing the similarities between nodes and attributes.

4 VARIATIONAL REPRESENTATION LEARNING

VAEs [28, 52] are a type of generative models that offer a principled variational framework for
learning representations from observations by jointly training a probabilistic encoder and a prob-
abilistic decoder. The learned representations have been successfully applied in many critical do-
mains such as item recommendation [66] and user profiling [38]. In this section, we first briefly
review the variational representation learning for homogeneous data and then extend it to learn
hyperspherical representations for heterogenous data. After that, we detail our motivation for
learning representations in a hyperspherical space as opposed to a hyperplane space.

4.1 Variational Representation Learning for Homogeneous Data

We first review variational representation learning for homogeneous data that appears as O =
{x1, . . . , xn }, where xi ∈ RF is the feature vector of the ith data-point and F is the feature dimen-
sion. Following the principle of variational auto-encoders [28], the observation data are generated
through a set of latent variablesZ = {z1, . . . , zn } with Gaussian priors. In the variational learning
framework, the posteriors of these latent variables are considered as their representations. Since
exact posterior inference of the latent variables is not necessarily analytically tractable, variational
auto-encoders propose to approximate the true posteriors with simpler-form variational distribu-
tions such as Gaussian distributions. The variational distributions of latent variables are learned
bymaximizing the evidence lower bound (ELBO) of the log marginal likelihood of observations,
which is given by

L (O) =
n∑
i=1

Eqϕ (zi |xi )
[
logpθ (xi |zi )] − DKL[qϕ (zi |xi )‖pθ (zi )], (1)

where pθ (zi ) is the prior of the latent variable zi , which is usually modeled by a standard multi-
variate Gaussian distribution, and DKL[·‖·] is the KL divergence between the variational posterior,
which is also a Gaussian distribution, and the prior of the latent variable. The VAE framework con-
sists of two networks to learn the variational distributions of latent variables: one is the inference
network (also called the encoder) qϕ with parameter ϕ, which aims at inferring the variational pos-
teriors over latent variables, while another one is the generative network (also called the decoder)
pθ with parameter θ , which reconstructs the observation based on the latent variables. The vari-
ational parameter ϕ and generative parameter θ are trained jointly using the stochastic gradient
with the reparameterization trick [28]. After optimization, the representations of the homogeneous
data-points can be obtained through the encoder network.
While the method is effective in learning representations for homogeneous data, which are gen-

erated independently according to a homogeneous prior, it cannot be directly applied in hetero-
geneous data, which consists of multiple types of entities and relations. Some approaches [34, 38]
have been proposed to learn representations for multiple types of entities in heterogenous data
based on the variational methods. However, the embeddings learned with these methods lie in
the hyperplane space, which is represented as Gaussian distributions, as opposed to the hyper-
spherical space in this article. We leave a discussion of the limitations and solutions of Gaussian
distributions as embeddings to Section 4.3. To the best of our knowledge, no model in the liter-
ature learns hyperspherical representations for heterogenous network data. Hence, in the next
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section, we propose a variational method that is able to learn hyperspherical representations for
heterogenous data with arbitrary types of entities and relations.

4.2 Variational Representation Learning for Heterogeneous Data

We propose a generalized form of variational auto-encoders for heterogeneous data that appears as
triplets. LetH = {E,X,R} represent heterogeneous network data, where E = {E1, . . . ,ET } is the
set of entities with multiple types (e.g.,T types) associated with a set of featuresX = {X1, . . . ,XT }.
We use a superscript to denote features with a specific type, e.g., Xд represents the features of
entities with type д. The set of relations between entities is denoted as R = {ri j |xдi ∈ Xд , xhj ∈ Xh },
where ri j is the relationship between the two entities.

Without loss of generality, the observations of heterogeneous data S can be represented as a
set of triplets Si j = (x

д
i , x

h
j , ri j ), where two entities may have the same or different types. We

introduce a set of latent variables Z = {Z1, . . . ,ZT } corresponding to different types of entities.
Let Zi j = {zдi , zhj } be the collection of latent variables for the two entities in a triplet Si j and
Fi j = {xдi , xhj } be the feature vectors of the entities. By using Jensen’s inequality, the ELBO of the

log marginal likelihood of the triplet Si j can be derived as:

logpθ (Si j ) = log

∫
pθ (Si j ,Zi j )dZi j

= log

∫
pθ (Si j ,Zi j )

qϕ (Zi j |Fi j )
qϕ (Zi j |Fi j ) dZi j

� Eqϕ (Zi j |Fi j )
[
logpθ (Si j ,Zi j ) − logqϕ (Zi j |Fi j )

]
, (2)

where pθ (Si j ,Zi j ) is the joint distribution of the triplet, with θ being the generative parameters,
and qϕ (Zi j |Fi j ) is the variational distribution over entities approximating the true posterior of
latent variables pθ (Zi j |Fi j ), with ϕ being the variational parameters to be estimated. Note that θ
andϕ may be different types depending on the heterogeneity of entities in the triplet. Following the
standard VAE algorithm [28], we assume that the latent variables of the entities are independent
and the joint probability distribution can be factorized as:

pθ (Si j ,Zi j ) = pθ
(
x
д
i , x

h
j , ri j |Zi j

)
p
(
z
д
i

)
p
(
z
h
j

)
. (3)

In the setting of heterogeneous network data, we are more concerned about the reconstruction of
relationships between entities than the features of entities. Hence, we can simplify the likelihood
function of observation pθ (x

д
i , x

h
j , ri j |Zi j ) as pθ (ri j |Zi j ). As a result, by substituting Equation (3)

in Equation (2), Equation (2) can can denoted as:

logpθ (Si j ) � Eqϕ (Zi j |Fi j )
[
logpθ (ri j |Zi j )

]
− DKL

[
qϕ (Zi j |Fi j )‖p

(
z
д
i

)
p
(
z
h
j

) ]
� L (Si j ), (4)

where we use L (Si j ) to represent the ELBO of the triplet Si j . For the overall observations of
heterogeneous data S, the evidence lower bound can be written as:

J (S) =
∑
Si j ∈S

L (Si j ). (5)

From the perspective of auto-encoders, qϕ is the probabilistic encoder that encodes the features
of entities Fi j as variational distribution over representations of entities, sampling from which
we can obtain the latent representations, while the pθ is the probabilistic decoder that takes the
representations of entities as input and reconstructs the relationship between the entities. The KL-
divergence can be seen as a regularization term that encourages the variational distributions to be
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close to the priors. The generative parameters θ and variational parameters ϕ can be optimized by
maximizing the overall evidence lower bound (i.e., Equation (5)).
In the classic VAE [28, 29] setting, we obtain representations in a hyperplane space by choosing

both the prior and the variational posterior to be a Gaussian distribution. Davidson et al. [9] pro-
pose a hyperspherical VAE (S-VAE) that is able to learn representations in hyperspherical space for
homogeneous data. This is achieved by replacing the Gaussian distribution in the VAE framework
with a von Mises-Fisher distribution, which is a probability distribution defined on the sphere. We
can easily integrate the S-VAE in our generalized VAE for heterogeneous data by setting the prior
and the variational posterior of latent variables to be a von Mises–Fisher distribution and hence
we can obtain hyperspherical representations for the entities in heterogeneous network data.

4.3 Motivation for Embeddings in Hyperspherical Space

As mentioned above, we aim at learning representations of entities in heterogeneous data in a
hyperspherical space instead of a hyperplane space. We achieve this by inferring the entities’ la-
tent von Mises–Fisher distributions instead of their Gaussian distributions given the observations.
Although a Gaussian distribution is mathematically convenient, it exhibits problematic properties:
(i) If we embed the original data into a lower dimension, the Gaussian density presents a concen-
trated probability mass around the origin due to the KL-divergence of the ELBO, causing the data
to cluster around the origin. This is particularly problematic when we want to divide the data
into multiple clusters. An ideal prior/posterior should only stimulate the variance of the prior and
posterior without forcing its mean to be close to the center. Priors/posteriors satisfying these prop-
erties are a uniform distribution over the entire space [9, 16, 19, 21]. However, such a uniform prior
is not well defined on the hyperplane. (ii) If we embed the original data into higher dimensions, a
Gaussian distribution of the embedded data in high dimensions tends to resemble a uniform distri-
bution on the surface of a hypersphere, with most of its mass concentrated on the hyperspherical
shell. Thus, it is natural to define the prior/posterior to distribute on a hypersphere rather than a
hyperplane space. (iii) This is also motivated from a theoretical point of view, since the Gaussian
definition is based on the L-2 norm that suffers from the curse of dimensionality. (iv) In practice, it
has been shown that utilizing embeddings inferred in hyperspherical space instead of embeddings
in hyperplane space (especially those that are modeled as Gaussian distributions) helps to boost
the performance of many applications, e.g., image classification [8] and video completion [67].

5 HYPERSPHERICAL VARIATIONAL CO-EMBEDDING

In this section, we apply the generalized VAE for heterogeneous data (Section 4.2) to learn hyper-
spherical representations for entities in attributed networks with unit length directional feature
vectors. Attributed networks can be considered as a kind of heterogeneous data where the nodes
and attributes are two types of entities, i.e., E = {V,A}, and the adjacency matrix and attribute
matrix represent the relationships between the entities, i.e., R = {A,X}. The set of features in
an attributed network is given by X = {FV , FA}, where F

V and F
A are the unit normalized di-

rectional features of nodes and attributes, respectively. Furthermore, the set of latent variables is
denoted asZ = {ZV ,ZA}, where ZV and ZA represent the embeddings for nodes and attributes,
respectively.
To address the co-embedding problem, we propose a hyperspherical variational co-embedding

model (abbreviated as HCAN), that co-embeds nodes and attributes of attributed networks. The
goal of HCAN is to embed nodes and attributes of the attributed network in the same hyperspher-
ical space and this can be achieved by mapping the entities as von Mises–Fisher distributions,
which serve as the latent embeddings of both nodes and attributes. The learned embeddings
are able to preserve the structure and attribute information of the original network as much
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Fig. 1. Architecture of the proposed HCAN. The inference network fϕ and the generative network дθ are

the probabilistic encoder and decoder of the proposed model, respectively. The encoder of the model takes

the adjacency matrix A and attribute matrix X as input and embeds them into a unified hyperspherical

space by outputing the direction vectors and the concentraction parameters of the von Mises–Fisher dis-

tributions over latent representations, while the decoder of the model reconstructs the input based on the

latent representations.

as possible. Moreover, by representing the embeddings as von Mises–Fisher distributions, the
variances of the distributions enable us to capture the uncertainty inherent in the network, which
represents the noise in the network data caused by errors in data collecting and processing steps.
In what follows, we first provide an overview of the proposed model and then we briefly in-

troduce the von Mises–Fisher distribution. Then we follow the principle of generalized VAEs for
heterogeneous data (Section 4.2) to derive the overall evidence lower bound for the co-embedding
problem of attributed networks. After that, since the variational distributions over latent variables
are von Mises–Fisher distributions, we describe KL divergence, sampling and reparameterization
problems to enable efficient optimization. Finally, we provide a detailed description of the inference
and generative networks of our model.

5.1 Overview

Standard VAE algorithms [28] contain an inference network that maps an entity to a correspond-
ing latent random variable and a generative network that reconstructs the input based on the
latent variables. Inspired by standard VAEs, the proposed hyperspherical co-embedding model for
attributed networks contains three main components, as illustrated in Figure 1: (i) An inference
network for nodes that takes both the adjacency matrix A and feature matrix of nodes F

V as
input and outputs the approximate posterior distributions over representations of nodes. (ii) An
inference network for attributes that outputs the approximate posterior distributions over repre-
sentations of attributes based on the feature matrix of attributes FA . In contrast to the traditional
VAE and its variants, as illustrated in Section 4.3, the approximate posterior distributions over both
the representations of nodes and attributes are vonMises–Fisher distributions instead of factorized
Gaussian distributions, which allows us to obtain latent representations in hyperspherical space
while better preserving the structure and attribute information of the network. (iii) A generative
network that takes both the latent embeddings of the nodes and attributes as input and tries to
reconstruct the adjacency matrix and attribute matrix.
Following the principle of VAEs, the parameters of both the inference networks and the gen-

erative network are trained jointly by maximizing the ELBO of the log marginal likelihood of
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Fig. 2. Graphical representations of HCAN. The left subfigure describes the generative process, while the

right subfigure describes the inference process.

the observations. Moreover, the gradients with respect to the parameters are computed with the
reparameterization trick proposed by Naesseth et al. [46].

5.2 Von Mises–Fisher Distribution

The von Mises–Fisher distribution is a probability distribution defined on the (D − 1)-dimensional
sphere in RD . It is parameterized by µ ∈ RD and κ ∈ R+, representing the mean direction vector
and the concentration parameter, respectively. The probability density function of a von Mises–
Fisher distribution for a D dimensional random unit vector z ∈ RD is defined as:

q(z|µ,κ) = CD (κ) exp(κµ�z), (6)

CD (κ) = κD/2−1

(2π )D/2ID/2−1 (κ)
, (7)

where ‖µ‖ = 1 and CD (κ) is the normalizing constant where Iv stands for the modified Bessel
function of the first kind at order v [10].

A high concentration parameter κ of the von Mises–Fisher distribution often leads to a tighter
distribution around µ, the mean and the mode of the distribution. For the case when κ = 0, the
von Mises–Fisher distribution becomes a uniform distribution over the sphere independent of the
mean direction µ.
We utilize the von Mises–Fisher distribution as both the prior and variational distribution of the

latent variables in our model. Specifically, HCAN uses a von Mises–Fisher distribution with con-
centration parameter κ = 0, which is a uniform distribution on a hypersphere, as prior distribution
over the latent variable ZV and ZA . Since the true posterior over latent variables p (ZV ,ZA |X,A)
is intractable, we approximate it with variational distributions q(ZV |FV ) and q(ZA |FA ), which
are both von Mises–Fisher distributions.

5.3 Variational Evidence Lower Bound

To embed nodes and attributes of the attribute network G in hyperspherical space, we first de-
rive an objective function to be optimized, which is the overall evidence lower bound of the ob-
servations S, i.e., the adjacency matrix A and the attribute matrix X. Following the principle of
generalized VAEs for heterogeneous data, we derive the lower bound by splitting the observa-
tions into two types of triplets. Specifically, the elements in observation matrices can be catego-
rized into two types of triplet: (i) the edges connecting two nodes, which can be represented as
SVi j = (FVi , F

V
j ,Ai j ), where F

V
i is the feature vector of nodeVi and similar for FVj ; (ii) the attribute

values between nodes and attributes, which can be represented as SAia = (FVi , F
A
a ,Xia ), where F

A
a

is the feature vector of the attributeAa . The overall generative and inference processes are given
by the probabilistic graph shown in Figure 2.
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Case 1: Edges connecting two nodes. For an edgeAi j between nodeVi and nodeVj , we denote the

collection of latent variables associated with the two nodes asZVi j = {ZVi ,ZVj } and the collection
of feature vectors as F Vi j = {FVi , FVj }. We introduce a variational distribution over latent variables

ZVi j conditioned on F Vi j and by using Jensen’s inequality, we obtain the lower bound for the

logarithm marginal likelihood of the triplet:

logpθ
(
SVi j
)
� E

qϕ
(
ZVi j |F Vi j

) [logpθ (SVi j ,ZVi j ) − logqϕ (ZVi j |F Vi j )] , (8)

where qϕ (ZVi j |F Vi j ) is the variational distribution that approximates the true posterior of latent

variables, with ϕ representing the parameters of the inference process, and pθ (SVi j ,ZVi j ) is the
joint distribution of edges, with θ representing the parameters of the generative process. The joint
distribution can be further written as:

pθ
(
SVi j ,ZVi j

)
= pθ1

(
Ai j |ZVi ,ZVj

)
p
(
Z
V
i

)
p
(
Z
V
j

)
, (9)

where θ1 are the parameters of the generative model for edges and p (ZVi ) is the prior over embed-

dings of nodeVi , similar for p (ZVj ). As for the variational distribution qϕ (ZVi j |F Vi j ), by using the
mean-field assumption, we can factorize it as:

qϕ
(
ZVi j |F Vi j

)
= qϕ1

(
Z
V
i |FVi

)
qϕ1

(
Z
V
j |FVj

)
, (10)

where ϕ1 are the parameters of the inference model for nodes. As a result, by combining the
joint distribution (Equation (9)) and the variational distribution (Equation (10)) in the lower bound
(Equation (8)), the lower bound is represented as:

logpθ
(
SVi j
)
� E

qϕ
(
ZVi j |F Vi j

) [logpθ1 (Ai j |ZVi ,ZVj
)]
− DKL

[
qϕ1

(
Z
V
i |FVi

)
‖p
(
Z
V
i

)]
− DKL

[
qϕ1

(
Z
V
j |FVj

)
| |p
(
Z
V
j

)]
� U

(
SVi j
)
,

(11)

where we use U (SVi j ) to denote the ELBO of the marginal likelihood of observation SVi j , and
DKL[·‖·] is the KL divergence.

Case 2: Attribute values between nodes and attributes. In this case, Xia represents the attribute
value between node Vi and attribute Aa . Let ZAia = {ZVi ,ZAa } be the collection of latent

variables and F Aia = {FVi , FAa } be the collection of feature vectors associated with the triplet

SAia = (FVi , F
A
a ,Xia ). Then the lower bound of the logarithm marginal likelihood of the triplet

can be written as:

logpθ
(
SAia
)
� Eqϕ (ZAia |F Aia )

[
logpθ

(
SAia ,ZAia

)
− logqϕ

(
ZAia |F Aia

)]
, (12)

where the joint probability distribution pθ (SAia ,ZAia ) can be represented as:

pθ
(
SAia ,ZAia

)
= pθ2

(
Xia |ZVi ,ZAa

)
p
(
Z
V
i

)
p
(
Z
A
a

)
, (13)

where θ2 are the parameters of the generative model for attributes. We can further factorize the
variational distribution qϕ (ZAia |F Aia ) as:

qϕ
(
ZAia |F Aia

)
= qϕ1

(
Z
V
i |FVi

)
qϕ2

(
Z
A
a |FAa

)
, (14)
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where ϕ2 are the parameters of the inference model for attributes. Substituting Equations (13)
and (14) in Equation (12), Equation (12) can be written as:

logpθ
(
SAia
)
� Eqϕ (ZAia |F Aia )

[
logpθ2

(
Xia |ZVi ,ZAa

)]
− DKL

[
qϕ1

(
Z
V
i |FVi

)
‖p
(
Z
V
i

)]
− DKL

[
qϕ2

(
Z
A
a |FAa

)
‖p
(
Z
A
a

)]
�M

(
SAia
)
,

(15)

where we useM (SAia ) to denote the ELBO of marginal likelihood of observation SAia .
Since the ELBOs for the two types of observations are available, we can obtain the overall evidence
lower bound on themarginal likelihood for the entire adjacencymatrix and attributematrix, which
is given by

J (A,X) =
∑
Ai j ∈A

U
(
SVi j
)
+
∑

Xia ∈X
M
(
SAia
)
. (16)

In the objective function of Equation (16), the left term is the loss of the adjacencymatrix, while the
right term is the loss of the attribute matrix. As a result, the learned latent representations of nodes
and attributes are capable of capturing both the network structure and node attribute information.
However, to make our model more flexible in controlling the loss between edges and attributes,
we introduce a free parameter α to govern the trade-off between reconstruction accuracy of edges
and attributes. Therefore, the final objective function of the proposed model, HCAN, is as follows:

J (A,X) = α · ���
∑
Ai j ∈A

U
(
SVi j
)��	 + (1 − α ) · ���

∑
Xia ∈X

M
(
SAia
)��	 . (17)

The overall generative parameters θ = {θ1,θ2} and variational parameters ϕ = {ϕ1,ϕ2} in HCAN
are learned by maximizing the objective function of Equation (17). As mentioned before, we argue
that the structure and attribute information of the attributed network can be better preserved in
hyperspherical space than in hyperplane space, so we choose the prior and the variational distri-
butions of latent variables to be von Mises–Fisher distributions which can be represented by

p
(
Z
V
i

)
= U (SD−1), (18)

p
(
Z
A
a

)
= U (SD−1), (19)

qϕ1

(
Z
V
i |FVi

)
= vMF

(
Z
V
i |µϕ1

(
F
V
i

)
,κϕ1

(
F
V
i

))
, (20)

qϕ2

(
Z
A
a |FAa

)
= vMF

(
Z
A
a |µϕ2

(
F
A
a

)
,κϕ2

(
F
A
a

))
, (21)

where U (SD−1) represents the von Mises–Fisher distribution with concentration parameter κ = 0,
which is a uniform distribution defined on the (D − 1) dimensional sphere and D is the dimension
of the latent variables. The parameters of the variational distribution over latent variables of nodes
qϕ1

(ZVi |FVi ) are computed with non-linear functions µϕ1
and κϕ1

by taking the feature vector of
nodes as input. Similarly, µϕ2

and κϕ2
are non-linear functions used to compute the parameters of

the variational distribution of attributes qϕ2
(ZAa |FAa ).

5.4 KL Divergence

In order to maximize the objective function of Equation (17), we need to derive an expression
to compute the KL divergence between the approximate posterior and the prior, both of which
are von Mises–Fisher distributions. The KL divergence between a von Mises–Fisher distribution
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q(z|µϕ ,κϕ ) and a uniform distribution defined on the hypersphere

p (z) =

(
2(πD/2)

Γ(D/2)

)−1
, (22)

which is given by one divided by the surface area of S (D−1) , can be represented as:

DKL[q(z|µϕ ,κϕ )‖p (z)] = κϕ
ID/2 (κϕ )

ID/2−1 (κϕ )
+

(D
2
− 1
)
logκϕ −

(D
2

)
log(2π )

− logID/2−1 (κϕ ) +
(
D

2

)
logπ + log 2 − log Γ

(D
2

)
,

where Γ(x ) is the gamma function. Note that the KL divergence depends only on the concentration
parameter κϕ of the von Mises–Fisher distribution and not on the direction vector µϕ . Besides, as
we treat the parameter κϕ as a variable computed by the encoder, we need to compute the gradient
of the KL divergence with respective to the variational parameter ϕ, which can be represented as:

∇ϕDKL

[
q(z|µϕ ,κϕ )‖p (z)

]
= ∇ϕκϕ∇κϕDKL

[
q(z|µϕ ,κϕ )‖p (z)

]
= ∇ϕκϕ ·

(
1

2
κϕ

(ID/2+1 (κϕ )

ID/2−1 (κϕ )
− ID/2 (κϕ ) (ID/2−2 (κϕ )ID/2 (κϕ ))

ID/2−1 (κϕ )2

)
+ 1

)
,

(23)

where the chain rule is applied to derive the gradient of the variational parameter ϕ. In Equa-
tion (23),κϕ represents the function that computes the concentration parameterκ of the variational
vMF distribution, which is the encoder network in our model, and the gradient with respective to
ϕ, i.e., ∇ϕκϕ can be handled by automatic differentiation packages. When combining with the ex-
pression of the gradient of KL divergence with respective to the concentration parameter κϕ , we
can obtain the gradient of the variational parameter ϕ. Similar to Davidson et al. [9], we use the ex-
ponentially scaled modified Bessel function to replace the modified Bessel functions for numerical
stability.

5.5 Sampling and Reparameterization

To optimize the objective function, we use the Stochastic Gradient Variational Bayes (SGVB)
algorithm and the reparameterization trick proposed by Kingma and Welling [28], which requires
us to sample from the latent distribution and compute the stochastic gradient of the variational
parameter ϕ using reparameterization. In this section, we first describe an acceptance-rejection
sampling technique to get samples from the latent vonMises–Fisher distribution and then compute
gradient with respect to variational parameter using reparameterization under the acceptance-
rejection sampling scheme.

Sampling. The algorithm for sampling from a von Mises–Fisher distribution is summarized in
Algorithm 1. In order to sample from a von Mises–Fisher distribution q(z|µ,κ), we follow the sam-
pling procedure in [58], where we first sample from a von Mises–Fisher distribution q(z′|µ1,κ)
with mean direction vector µ1 = (1, 0, . . . , 0). During sampling from q(z′|µ1,κ), we need to

first sample ω, which is distributed as д(ω |κ,D) ∝ exp(ωκ) (1 − ω2)
1
2 (D−3) , using acceptance-

rejection sampling and the procedure is given in part I of Algorithm 1, where Beta(α1,α2) and
Uniform(β1, β2) denote a Beta distribution with parameters α1 and α2, and a uniform distribution
with parameters β1 and β2, respectively. After that, we sample vector v from the uniform distri-
bution defined on the (D − 2) dimensional sphere U (SD−2). By combining ω and v we can obtain
sample z

′ ∼ q(z′|µ1,κ), which is shown in part II of Algorithm 1, where Concat(·, ·) means the
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ALGORITHM 1: Sampling of the von Mises–Fisher distribution.

Input :Mean direction vector µ
Concentration parameter κ
Dimension of the samples D

Output : Sample z of the von Mises–Fisher distribution q(z|µ,κ)
1 /* Part I: Sample ω ∼ д(ω |κ,D) ∝ exp(ωκ) (1 − ω2)

1
2 (D−3) by acceptance-rejection sampling,

which can be completed by steps 2 to 11. */

2 Initialize values:

3 b ← −2κ+√4κ2+(D−1)2
D−1

4 a ← (D−1)+2κ+√4κ2+(D−1)2
4

5 d ← 4ab
1+b
− (D − 1) ln(D − 1)

6 repeat

7 Sample ϵ ∼ Beta( 12 (D − 1), 12 (D − 1))
8 ω ← h(ϵ,κ) =

1−(1+b )ϵ
1−(1−b )ϵ

9 t ← 2ab
1−(1−b )ϵ

10 sample u ∼ Uniform(0, 1)

11 until (D − 1) ln(t ) − t + d ≥ ln(u)

12 /* Part II: Sample z
′ of the von Mises--Fisher distribution q(z′|µ1,κ) with

µ1 = (1, 0, . . . , 0), which can be completed by steps 13 to 14. */

13 Sample vector v ∼ U (SD−2)
14 Obtain sample z′ ← Concat(ω;

√
1 − ω2v)

15 /* Part III: Obtain sample z of the von Mises--Fisher distribution q(z|µ,κ) by

householder transformation, which can be completed by steps 16 to 19. */

16 u
′ ← µ1 − µ

17 u← u
′

| |u′ | |
18 W← I − 2uu�
19 z←Wz

′
20 Return z

concatenation operation. In part III of Algorithm 1, after obtaining sample z
′, we can make it

distributed as q(z|µ,κ) by using the householder transformation which is an orthogonal transfor-
mation such thatWµ1 = µ.

Reparameterization. In classic VAEs, it is straight-forward to compute the gradient of the gener-
ative parameter θ , but the gradient with respect to the variational parameter ϕ can be problematic.
In order to compute the gradient of variational parameter ϕ with samples from the latent distri-
bution, Kingma and Welling [28] propose a reparameterization trick that introduces an auxiliary
variable ϵ and expresses the latent variable z as a deterministic function z = hϕ (ϵ, x) with x being
the input andhϕ representing a differentiable function parameterized byϕ. Recently, Naesseth et al.
[46] have introduced a technique that makes it possible to extend the reparameterization trick to
distributions using an acceptance-rejection scheme to sample data, which we utilize in our algo-
rithm as follows. In the case of sampling from a von Mises–Fisher distribution, we need to sample
ω from д(ω |κϕ ,D), where we use д(ω |ϕ) for simplicity, by accepting or rejecting samples from the
proposal distribution r (ω |ϕ). After obtaining samples of ω, we can express the latent variable z as
z = t (ω;ϕ) with t as a differentiable function. We introduce an auxiliary variable ϵ ∼ s (ϵ ), which
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is a Beta distribution in our case, and let ω = h(ϵ,ϕ) with h being a differentiable function with
respect to ϕ. Details of the s (ϵ ) and h can be found in Algorithm 1.
For notational simplicity, we represent the expectation terms in the objective function of Equa-

tion (17) as Eqϕ [f (z)] = Eд (ω |ϕ )[f (t (ω;ϕ))] with f being a certain function of z. Using the propo-
sition proven in [46], the expectation term can be represented as follows:

Eqϕ [f (z)] = Eд (ω |ϕ )[f (t (ω;ϕ))] (24)

= Eπ (ϵ ;ϕ )[f (t (h(ϵ,ϕ);ϕ))], (25)

with π (ϵ ;ϕ) = s (ϵ )
д (h (ϵ,ϕ ) |ϕ )
r (h (ϵ,ϕ ) |ϕ ) being the distribution of the accepted samples ϵ . It is given by the

rejection sampling, where we sample a value ϵ ∼ s (ϵ ) and uniform value u ∼ Uniform(0, 1) and

accept the sample if u <
д (h (ϵ,ϕ ) |ϕ )

Mϕ r (h (ϵ,ϕ ) |ϕ ) . Then we can compute the gradient of the expected term

with respect to the variational parameter ϕ using the log derivative trick:

∇ϕEqϕ (z)[f (z)]
= ∇ϕEπ (ϵ ;ϕ )[f (t (h(ϵ,ϕ);ϕ))]

= Eπ (ϵ ;ϕ )[∇ϕ f (t (h(ϵ,ϕ);ϕ))] + Eπ (ϵ ;ϕ )
[
f (t (h(ϵ,ϕ);ϕ))∇ϕ log д(h(ϵ,ϕ) |ϕ)

r (h(ε,ϕ) |ϕ)
]
.

(26)

In Equation (26) above, the first term is the reparameterization term as in [28], while the second
term is the correction term that accounts for not using r (ω |ϕ) ≡ q(ω |ϕ) for sampling ω. Thus,
we can obtain an unbiased Monte Carlo estimate of the gradient of the reconstruction loss with
respect to the variational parameter ϕ by acceptance-rejection sampling from π (ε ;ϕ).

5.6 Optimization

To enable scalable optimization, the standard VAE [28] replaces the inference of latent variables
with an inference network and the generative process with a generative network. The models
are trained by learning the parameters of the inference and generative networks. Similarly, to
effectively optimize our model, we introduce an inference network fϕ with variational parameters
ϕ and a generative network дθ with generative parameters θ , which serve as the encoder and the
decoder of the proposed model, respectively. Both the variational parameter ϕ and the generative
parameter θ are trained jointly by maximizing the objective function (i.e., Equation (17)) using the
reparameterization trick described above. We show the details of our model in this section.

Inference network. As mentioned before, we aim at embedding nodes and attributes of the at-
tributed network in a hyperspherical space and this can be achieved by mapping the features of
nodes and attributes, i.e., FV and F

A , to latent von Mises–Fisher distributions using the infer-
ence network fϕ . There are two types of inference networks for embedding nodes and attributes,
respectively.
To infer the latent von Mises–Fisher distributions of nodes, we apply a two-layer Graph Con-

volutional Network (GCN) [30] by taking both the adjacency matrix and the attributes matrix
as input and output the mean vector µϕ1

and the concentration parameter κϕ1
of the latent von

Mises–Fisher distribution. We use a GCN instead of other neural networks for its representational
learning ability and useful learning biases

HV = ReLU
(
ÃF
V
W

(0)
V
)
, (27)

µV = Norm
(
ÃHVW(1)

V
)
, (28)

κV = Softplus
(
ÃHVW(2)

V
)
, (29)
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whereHV represents the hidden layer of the inference network of nodes, and µV ,κV represent the
mean vector and the concentration parameter of the learned vMF distributions over embeddings
of nodes, respectively. ReLU(x ) = max(0,x ) and Softplus(x ) = log(1 + exp(x )) are the non-linear
activation functions, while Norm(·) is the normalization operation that forces the direction vector

µϕ1
to be a unit vector. Besides, Ã = D

− 1
2AD

− 1
2 is the symmetrically normalized adjacency matrix

with Dii =
∑

j Ai j representing the degree matrix of the graph G. ϕ1 = {W(0)
V ,W

(1)
V ,W

(2)
V } are the

variational parameters of the node inference network.
As for the attributes, we infer von Mises–Fisher distributions using a two-layered fully con-

nected neural network, which is given by:

HA = ReLU
(
F
A
W

(0)
A + b

(0)
)
, (30)

µA = Norm
(
HAW(1)

A + b
(1)
)
, (31)

κA = Softplus
(
HAW(2)

A + b
(2)
)
, (32)

where µA and κA are the parameters of the von Mises–Fisher distributions over embeddings of

attributes. b = {b(0), b(1), b(2) } is the bias of the fully connected layer and ϕ2 = {W(0)
A ,W

(1)
A ,W

(2)
A }

are the trainable parameters of the attribute inference network.
The overall variational parameters of the inference networks are denoted as ϕ = {ϕ1,ϕ2}. After

optimization, the variational von Mises–Fisher distributions over nodes and attributes can be in-
ferred through the variational networks. Using the sampling technique introduced in Section 5.5
to sample from the von Mises–Fisher distributions, we can obtain the latent representations ZV
and Z

A of nodes and attributes, which are used in the generative network to reconstruct the ob-
servations, while allowing for computing gradients of the variational parameters using the repa-
rameterization trick.

Generative network. The goal of the generative network (i.e., the decoder) of the proposed model
is to reconstruct the observations, i.e., the adjacency matrix A and attribute matrix X, using the
embeddings of the nodes ZV and attributes ZA . We describe the generative process of the edge in
the adjacency matrix and the attribute in the node attribute matrix as follows:

(i) For each nodeVi and attribute Aa , draw latent embeddings:

Z
V
i ∼ vMF(µV,i ,κV,i ), (33)

Z
A
a ∼ vMF(µA,a ,κA,a ). (34)

(ii) We start by describing the generative process of the adjacency matrix. We represent the
decoder network of edges as дθ1 , which takes embeddings of nodes ZVi , ZVj as input and

outputs the parameters for the corresponding distribution of the edge:[
µθ1 ,σ

2
θ1

]
= дθ1

(
Z
V
i ,Z

V
j

)
. (35)

For each edge Ai j in the adjacency matrix A:
(a) If edge Ai j is real-valued, then:

pθ1
(
Ai j |ZVi ,ZVj

)
= N

(
Ai j |µθ1 ,σ 2

θ1
I

)
. (36)

(b) If edge Ai j is binary, then:

pθ1
(
Ai j |ZVi ,ZVj

)
= Ber(Ai j |µθ1 ), (37)
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where N (Ai j |µθ1 ,σ 2
θ1
) and Ber(Ai j |µθ1 ) are the Gaussian distribution and Bernoulli distri-

bution of the edge Ai j parameterized by µθ1 ,σ
2
θ1
I and µθ1 , respectively.

(iii) We denote the generative network of the attribute matrix X as дθ2 , which takes embeddings

of nodes ZVi and attributes ZAa as input and outputs parameters for the distribution of the
attribute value: [

µθ2 ,σ
2
θ2

]
= дθ2

(
Z
V
i ,Z

A
a

)
. (38)

For each attribute value Xia in the attribute matrix X:
(a) If Xia is real-valued, then:

pθ2
(
Xia |ZVi ,ZAa

)
= N

(
Xia |µθ2 ,σ 2

θ2
I

)
. (39)

(b) If Xia is binary, then:

pθ2
(
Xia |ZVi ,ZAa

)
= Ber(Xia |µθ2 ). (40)

Similarly,N (Xia |µθ2 ,σ 2
θ2
) and Ber(Xia |µθ2 ) are the Gaussian distribution and Bernoulli dis-

tribution, respectively, whose parameters are the output of the attribute decoder network
дθ2 based on the embeddings of nodeVi and attribute Aa .

We denote all the parameters of the decoder network as θ = {θ1,θ2}. Since all the edges and the
attributes in our experiments are binary-valued, we implement our generative model simply by
the inner product between the latent representations, which is given by

дθ1
(
Z
V
i ,Z

V
j

)
= Sigmoid

(〈
Z
V
i ,Z

V
j

〉)
, (41)

дθ2
(
Z
V
i ,Z

A
a

)
= Sigmoid

(〈
Z
V
i ,Z

A
a

〉)
, (42)

where 〈·, ·〉 is the inner product of two vectors and Sigmoid(·) is the sigmoid function. We use
simple inner product as our generativemodel because it produces the best results in all experiments
including node classification, link prediction and attribute inference.

Time complexity analysis. As we can see from the above discussions, the main computational
cost of the HCAN model comes from the layer-wise propagations for the node encoder network
and the attribute encoder network. The time complexity of the two-layer GCN network of node
encoder for each epoch is C1 = O (N (NF + FH1 + NH1 + H1D)), where N and F are the number
of nodes and attributes in the network, respectively, H1 is the dimension of the first GCN layer
and D is the dimension of embeddings. For the two-layer neural network of attribute encoder, the
time complexity for each epoch is C2 = O (FH2 (N + D)), where H2 is the dimension of the first
hidden layer. Hence, the overall time complexity of our co-embedding model HCAN isC = C1+C2.
Empirically, our HCAN costs around 15s per 10 epoch on the Cora dataset during training for the
task of link prediction on an Intel i7 3.60 GHz CPU computer.

5.7 Comparison with Other Network Embedding Methods

To obtain a better understanding of HCAN, we provide explicit comparisons between HCAN and
other network embedding methods. Firstly, network embedding approaches based on the random
walks or edge sampling, such as DeepWalk [48], node2vec [18], and LINE [56], are the most widely
studied methods. They use random walks on the network to generate context pairs and use the
skip-gram loss to learn embeddingswhile HCAN is based on a variational auto-encoder and utilizes
the reconstruction errors of the adjacency matrix and attribute matrix to learn embeddings.
Other approaches based on VAEs have also been proposed, such as the VGAE [29] and

S-VGAE [9]. However, these methods learn embeddings for nodes only and it is unclear how to

ACM Transactions on Information Systems, Vol. 40, No. 3, Article 58. Publication date: December 2021.



58:20 J. Fang et al.

obtain embeddings of attributes in the network, while our co-embedding model can jointly learn
embeddings for both nodes and attributes in a unified hyperspherical space and capture the simi-
larities between them.
In another line of work, some approaches, which are based on graph convolution networks for

learning embeddings of nodes in attributed networks, have also been proposed, such as the Graph-
SAGE [20], the graph attention network (GAT) [20], and the deep graph infomax (DGI) [60].
However, these methods learn point vectors as the network embeddings, which are unable to cap-
ture uncertainties in the networks. In contrast, HCAN learns von Mises–Fisher distributions as
the network embeddings and the variances of these distributions can capture uncertainties in the
networks.

6 EXPERIMENTAL SETUP

In this section, we detail our experimental setup. We first list our research questions in Section 6.1
and then describe the experimental datasets in Section 6.2. Baselines are given in Section 6.3, and
training and parameter settings are provided in Section 6.4.

6.1 Research Questions

The research questions guiding the remainder of the article are as follows:

RQ1 How does the proposed model HCAN perform on node-oriented network tasks, e.g., link
prediction and node classification?

RQ2 Can the HCAN model that embeds nodes and attributes in a unified hyperspherical space
effectively capture the similarities between nodes and attributes of the network? How does
it perform on the attribute inference task?

RQ3 Can we qualitatively evaluate the learned embeddings of the nodes and attributes in HCAN?
RQ4 Is HCAN sensitive to the hyperparameters, such as the free parameter α in Equation (17) and

the embedding size D, in link prediction and attribute inference tasks?
RQ5 What are the effects of the major components such as the hyperspherical embeddings, the

uncertainty estimation and the co-embedding mechanism in HCAN?

6.2 Datasets

We conduct experiments on eight real-world attributed network datasets with their statistics show-
ing in Table 2:

Cora, Citeseer, and Pubmed [53]: These three datasets are citation networks where the nodes
are papers and attributes are the words in those papers. The edges of the network are citation
links, while the labels are the topics of the papers.

BlogCatalog [57]: BlogCatalog is a social relationship network of bloggers from the BlogCatalog
website. The nodes represent the users while the attributes are the keywords of the blogs
generated by the users. The labels represent the topic categories given by the authors.

Facebook [32]: This dataset is built by SNAP1 using the profiles and the relationship data of 10
users in Facebook, where users are treated as nodes, while the attributes are generated by
their profiles.

DBLP: This dataset is crawled from the DBLP public bibliography data,2 fromwhich we construct
a collaboration network. We treat each author as a node in the network with the collabora-
tion between two authors as the edge. We also extract top 172 computer science conferences

1Available from: http://snap.stanford.edu/data/.
2Available from: http://dblp.uni-trier.de/xml/.
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Table 2. Statistics of Datasets

Datasets #Nodes #Edges #Attributes #Labels

Cora 02,708 005,429 01,433 7
Citeseer 03,312 004,660 03,703 6
Pubmed 19,717 044,338 00,500 3
BlogCatalog 05,196 171,743 08,189 6
Facebook 04,039 088,234 01,406 –
DBLP 12,213 131,713 00,172 –
Physics 34,493 247,962 08,415 5
Ogbl-citation 2,927,963 30,561,187 0– –

(Tier A and B conferences according to the China Computer Federation3) as attributes of the
nodes.

Physics [54]: The Physics dataset is a co-authorship network where nodes represent authors,
that are connected by an edge if they co-authored a paper. The node attributes represent
paper keywords for each author’s papers, which are real-valued, and class labels indicate
most active fields of study for each author.

Ogbl-citation [23]: This is a large-scale citation network collected for link prediction where
nodes represent papers, edges are citations between nodes, and each node is associated with
a 128-dimensional WORD2VEC [45] feature vector. Since there are no explicit attributes and
labels in the dataset, we only use it for the link prediction task.

6.3 Baselines

We list the baseline models that we consider for comparison in this section. To evaluate the per-
formance of HCAN on link prediction and node classification tasks (RQ1), we compare it against
nine state-of-the-art attributed network embedding methods:

AANE [24]: This is an attributed network embedding model that learns embeddings of nodes
based on the decomposition of node attribute proximity. We use the same hyperparameter
settings as the original paper. For a fair comparison, we set the dimension of embeddings to
be 20, which is the same as for HCAN.

GraphSAGE [20]: GraphSAGE learns embeddings of nodes in the network by sampling and
aggregating features from nodes’ local neighborhoods. GraphSAGE has different variants
based on different feature aggregators, and we adopt GraphSAGE with mean-based aggre-
gator as our baseline. In our experiments, we use a two-layer GraphSAGE network where
the dimensions of the hidden layer and output layer are 64 and 20, respectively. Moreover,
we randomly sample 20 and 10 neighbors for aggregation in the hidden layer and the output
layer, respectively.

ANRL-WAN [72]: The model learns embeddings for attributed network by using the neighbor
enhancement autoencoder to model the node attribute information and using attribute-
aware skip-gram model to capture network structure. We adopt one of its variants that
uses the Weighted Average Neighbor function to construct its target neighbors, abbrevi-
ated as ANRL-WAN. For the architecture of the auto-encoder, we use two-layer neural net-
work with hidden dimension of 64 and output dimension of 20. In the skip-gram loss, we

3Available from: http://www.ccf.org.cn/.
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use random walks with a walk length of 80 and window size of 10 to generate the context
pairs.

VGAE [29]: VGAE learns latent Gaussian embeddings for attributed network by using the varia-
tional auto-encoder, which is trained by maximizing the ELBO of the likelihood of the adja-
cency matrix. It only embeds nodes in Euclidean space instead of both nodes and attributes
like HCAN. In VGAE, we use two-layer graph neural network as the encoder, where the
hidden dimension is 64 and output dimension is 20. Similar to that in HCAN, we use the
inner product between embeddings as the decoder.

GAE [29]: GAE is similar to VAGE, where the Gaussian embeddings are replaced with vector
embeddings, and is optimized by minimizing the reconstruction loss of the adjacency matrix.
We use a similar network architecture as VAGE in our experiments.

Node2vec [18]: Node2vec learns embeddings of nodes based on random walks over the network
structure of data. Similar to that in ANRL-WAN, we use random walks with a walk length of
80 and window size of 10 to generate the context pairs, and use the skip-gram loss to learn
embeddings with a dimension of 20.

S-VGAE [9]: S-VGAE is a generalization of VGAE, where the Gaussian distribution is replaced
with the vonMises–Fisher distribution such that it obtains hyperspherical embeddings. How-
ever, it only learns embeddings for nodes instead of both nodes and attributes like our HCAN.
We also use a similar network architecture as VGAE in our experiments.

GMNN [49]: GMNN employs a conditional random field to model the joint distribution of object
labels, and uses two GCNs for the inference and learning procedures. In our experiments,
we use the unsupervised version of GMNN where the neighbors of each node are treated as
the labels. The dimension of hidden layers of the GCNs is set to 64 and the dimension of the
embeddings is 20.

DGI [60]: DGI learns node embeddings by maximizing the mutual information between repre-
sentations of local subgraphs and the high-level representation of the graph, both of which
are obtained through the GCN. In our experiments, we use a two-layer GCN with 64-
dimensional hidden layer and 20-dimensional output layer to learn representations.

To answer RQ2, we compare HCAN against seven baselines in terms of attribute inference task:

SAN [71]: The model performs joint link prediction and attribute inference based on a random
walks with restart algorithm on the attribute-augmented social network. We use the same
random walk length as Node2vec and use a restart probability of 0.3.

EdgeExp [4]: This is an attribute inference algorithm that leverages a softmax function to solve
for both user attributes and relationship types. The dimension of the embeddings is 20 and
the number of neighbors is set to 100.

BLA [69]: This is a probabilistic model that iteratively learns user links and attributes, and lever-
ages data redundancy on each side and mutual reinforcement between the two. We also
use 20-dimensional embeddings and set the β parameter, which is a trade-off between edge
existence and transition probability, to 0.5.

LRA-SAN [15]: This method learns embeddings of both nodes and attributes by the low-rank
approximation of the attribute-augmented adjacency matrix, which is the concatenation of
attribute matrix and adjacency matrix. We use 20-dimensional embeddings.

CN-SAN [15]: This is an extension of SAN that additionally assigns a score for a node-attribute
pair based on the features of their common neighbors.

AA-SAN [15]: This is also an extension of SAN that additionally calculates the Adamic-Adar
scores based on the node degrees.
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NGCF [64]: NGCF is a recommendation algorithm that designs an embedding propagation layer
for leveraging collaborative signals to learn embeddings. In our experiments, we treat
nodes as users and the attributes as items to employ NGCF. We use a two-layer embed-
ding propagation layer where the dimensions of the hidden and output layer are 64 and 20,
respectively.

6.4 Settings

As mentioned in Section 5.1, the architecture of HCAN contains two main parts: the inference
model and the generative model. We adopt a two-layer GCN neural network [30] and a two-layer
fully-connected neural network for the node inference model and the attribute inference model,
respectively. In all experiments, the hidden layers of the two inference networks are set to 512,
while the dimension of the latent embeddings is 20 unless specifically stated. As for the generative
network, we simply use the inner product of the learned embeddings to reconstruct the adjacency
matrix and attribute matrix as it yields best performance in all our experiments. We implement
HCAN using PyTorch [47].4

HCAN is trained by maximizing the objective function in Equation (17) and we optimize it using
the Adam optimizer [26] with a learning rate of 0.03. In each experiment, we train HCAN for 250
iterations to obtain the resulting embeddings. The parameter α that balances the weight of the
reconstruction accuracy of the adjacency matrix and attribute matrix, is chosen within the range
[0.1, 0.9] and is tuned to obtain the best performance for the tasks of link prediction, attribute
inference and node classification. Specifically, since the Ogbl-citation dataset is too large for a
GCN to train in a GPU, we replace the two-layer GCN in the node inference network with a two-
layer GraphSAGE network with GCN aggregator [20], which enables scalable mini-batch training.
In this case, we use a batch size of 512, a learning rate of 0.0005, and train the model for 1, 500
iterations. Similarly, we also replace the GCNs of baselines with the GraphSAGE network on the
Ogbl-citation dataset. For the baseline models, we use the code released by the authors and use
the hyperparameter settings in Section 6.3. The input features of both HCAN and the baselines are
normalized as unit length vectors, i.e., unit normalized directional vectors, with a preprocessing
step.

7 RESULTS

In this section, we report our experimental results. We address RQ1 by evaluating the proposed
model on two graph mining tasks, i.e., link prediction and node classification. We then utilize the
learned embeddings of both nodes and attributes of the graph on an attribute inference task to
answer RQ2. Then we address RQ3 by visualizing both node and attribute embeddings of a DBLP
network in 3-D space. Subsequently, we answer RQ4 by varying the free parameter α and the
embedding size D in link prediction and attribute inference tasks. Finally, we conduct ablation
studies to examine the effects of the major components in HCAN to address RQ5.

7.1 Link Prediction and Node Classification

The goal of link prediction is to predict if there exists an edge between two nodes and it is a typical
task in social network analysis. We first compare the performance of HCAN on the link prediction
task with the baselines. Specifically, we follow the experimental settings in [29, 30], where we
randomly divide all the edges in the network into training set (85%), validation set (5%), and test
set (10%). We also randomly sample an equal number of non-existing edges as negative samples
in all three sets. After the model is optimized, we simply take the value of the inner product of the

4The code of HCAN is publicly available from https://github.com/fangjy6/HCAN.
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Table 3. Mean Performance of Link Prediction of HCAN and the Baseline Models

Method
Cora Citeseer Pubmed Facebook BlogCatalog Physics Ogbl-citation

AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP

AANE .755 .753 .821 .841 .778 .765 .843 .834 .698 .711 .798 .784 - -

GraphSAGE .803 .819 .815 .804 .879 .847 .857 .846 .729 .701 .943 .930 .910 .912

ANRL-WAN .835 .851 .843 .846 .911 .889 .935 .916 .772 .751 .849 .833 - -

VAGE .929 .931 .908 .923 .935 .929 .971 .964 .808 .804 .935 .927 .954 .958

GAE .927 .933 .899 .918 .931 .930 .964 .957 .803 .806 .933 .920 .947 .950

Node2vec .813 .832 .796 .825 .877 .859 .788 .801 .671 .691 .871 .866 .844 .857

S-VAGE .942 .940 .945 .952 .940 .934 .969 .968 .810 .812 .931 .924 .961 .965

GMNN .902 .889 .918 923 .925 .911 .955 .947 .793 .795 .867 .855 - -

DGI .944 .939 .948 .957 .929 .917 .948 .933 768 754 .893 .901 - -

HCAN .973† .968† .987† .984† .954† .948† .983† .975† .829† .823† .954† .945† .979† .977†

The best results per metric per dataset are marked in boldface. In each dataset, significant improvements over the

comparative methods are marked with † (paired t -test, p < .05).

learned embeddings of two nodes as the probability of a link between them. We use area under the
ROC curve (AUC) and average precision (AP) score [29] as our evaluation metrics to evaluate
the performance of HCAN on the link prediction task.
Table 3 shows the link prediction results of HCAN and the baseline models. Note that some

experimental results of baselines on Ogbl-citation dataset are missing due to the out of memory
issue. From the experimental results, we obtain the following observations. (i) HCAN significantly
outperforms all the baselines on all datasets according to the paired t-test (p < .05). Specifically,
HCAN achieves higher than 95% AUC (Area under the ROC Curve) and AP (Average Precision)
scores on the Cora, Citeseer, and Facebook datasets, and the improvements on both Citeseer and
Physics are significant, which demonstrates that the latent embeddings of nodes learned by HCAN
are effective for the link prediction task. (ii) Both S-VAGE and HCAN, which learn hyperspherical
embeddings, can outperform GAE and VAGE, which learn Gaussian embeddings. This is because
the hyperspherical embeddings can better preserve the spherical nature of the input features. The
results show that it is more effective to learn hyperspherical embeddings than hyperplane embed-
dings when the input features are unit-normalized. (iii) Compared with S-VAGE, GAE, and VGAE,
which embed nodes only, HCAN, which co-embeds nodes and attributes jointly, achieves better
performance. This is because these baselines only try to reconstruct the adjacency matrix and
ignore the reconstruction of attribute matrix, which leads to the less effective embeddings. Our
experimental results share similar findings of previous work [4, 42, 71], which demonstrates that
leveraging attribute information in addition to the network structure can improve the performance
of link prediction. (iv) The GCN-based methods, i.e., GraphSAGE, VGAE, DGI, and HCAN, can sig-
nificantly outperform the other methods, i.e., AANE, ANRL-WAN, and Node2vec, since GCNs can
effectively aggregate multi-hop neighborhood information to learn useful representations, which
is difficult for methods based on random walks or neural networks. The results suggest the effec-
tiveness of utilizing GCN as inference network in HCAN.
To further examine the usefulness of the learned node embeddings, we apply the embeddings

in a downstream node classification task, which is a classical task for evaluating the quality of
embeddings. Similar to the experimental settings in [24], after obtaining the latent embeddings
of nodes, we randomly sample 20% of the nodes as labelled nodes to train the logistic regression
classifier and randomly select 1,000 nodes in the remainder for evaluation. To evaluate the perfor-
mance of the classifier, we use Macro_F1 and Micro_F1 as evaluation metrics [24, 72]. We repeat
the experiment for 10 times and report the average performance on both Macro_F1 (Ma_F1) and
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Table 4. Mean Node Classification Performance of HCAN and the Baseline Models

Method
Cora Citeseer Pubmed BlogCatalog Physics

Ma_F1 Mi_F1 Ma_F1 Mi_F1 Ma_F1 Mi_F1 Ma_F1 Mi_F1 Ma_F1 Mi_F1

AANE .636 .623 .589 .647 .804 .798 .603 .613 .621 .697

GraphSAGE .734 .758 .598 .639 .797 .808 .617 .638 .889 .919

ANRL-WAN .774 .741 .671 .718 .764 .773 .609 .621 .843 .879

VAGE .742 .766 .544 .586 .805 .812 .558 .579 .897 .920

GAE .745 .762 .468 .536 .790 .802 .547 .561 .872 .912

Node2vec .584 .544 .443 .515 .698 .707 .448 .476 .757 .791

S-VAGE .779 .802 .589 .672 .804 .813 .554 .592 .894 .916

GMNN .784 .810 .624 .649 .808 .815 .607 .628 .901 .917

DGI .625 .701 .604 .687 .798 .812 .514 .605 .883 .903

HCAN .808† .827† .656 .708 .816† .823† .623† .655† .911† .937†

The best and the second best results per metric per dataset are marked in boldface and underlined,

respectively. For each dataset, significant improvements over the comparative methods are marked with †
(paired t-test, p < .05).

Micro_F1 (Mi_F1). Table 4 shows the classification performance of our model and the baselines.
Note that we do not use the Facebook and Ogbl-citation datasets for the classification task because
there is no label information in these two datasets.
As shown in Table 4, HCAN achieves the best performance on four out of five datasets (i.e., Cora,

Pubmed, BlogCatalog, and Physics) and achieves second-best performance on the Citeseer dataset
compared with state-of-the-art baselines. The results show that HCAN can learn useful and effec-
tive embeddings for the downstream node classification task. Specifically, when compared with
the VGAE model, HCAN consistently and significantly achieves a higher performance (paired t-
test, p < .05) on all five datasets, and HCAN can obtain a 8.9% and 8.0% absolute increase in
terms of the Ma_F1 and Mi_F1 metrics on the Cora dataset, which confirms the effectiveness of
the hyperspherical embeddings in the node classification task. Moreover, HCAN consistently out-
performs S-VAGE on all five datasets, which verifies that the co-embedding model is more effective
in the node classification task. Consequently, by combining the experimental results in both link
prediction and node classification, we can conclude that HCAN is more effective in learning high-
quality embeddings of nodes than baselines for downstream node-oriented network tasks such as
link prediction and node classification.
Furthermore, to qualitatively show that HCAN can lean high-quality hyperspherical embed-

dings, we visualize the learned latent embeddings of HCAN on the Cora dataset, which is shown
in Figure 3. In the figure, we also visualize the embeddings obtained by the competitive baseline
models, e.g., AANE, ANRL, and VAGE, for comparison. Specifically, after we obtain the leaned em-
beddings of nodes for each method, we use the t-SNE tool [40] to map them into the corresponding
low-dimensions. It is shown that HCAN can obtain better, more compact and separated cluster re-
sults compared with the baseline models, which helps to explain why HCAN can achieve better
classification results on the Cora dataset.

7.2 Attribute Inference

Next, we answer RQ2 by examining the performance of HCAN on attribute inference tasks com-
pared with baselines. The target of attribute inference is to predict the value of attributes of nodes
in the network, and hence capturing and measuring similarities between nodes and attributes in
this task is important. Since most baselines in the link prediction task, such as AANE, Graph-
SAGE, S-VAGE, GMNN, DGI, and so on, only learn node embeddings and hence are unable to cap-
ture similarities between nodes and attributes, they cannot be applied in attribute inference task.
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Fig. 3. Visualization of the latent space of the inferred embeddings on the Cora citation network for HCAN

and baselines. The same color indicates the same class label, which are not provided during training.

For comparison, we take seven state-of-the-art attribute inference algorithms, i.e., SAN, LRA-SAN,
CN-SAN, AA-SAN, EdgeExp, BLA, and NGCF, as our baselines. We adopt the same experimental
setup as in the link prediction task, where we randomly split attributes of nodes into three sub-sets:
training (85%), validating (5%), and testing (10%) sets, and randomly sample an equal number of
non-existing node-attribute pairs in all three sets. For evaluation metrics, we employ the AUC and
AP metrics to evaluate the attribute inference performance.

Table 5 shows the attribute inference results of HCAN and the baseline models on six attributed
networks. We find that HCAN performs significantly better than all the baseline methods on all
datasets (paired t-test, p < .05). The NGCF method can obtain the second best performance in
most cases. The reason why HCAN and NGCF obtain a better performance than other baselines
is that they both optimize a loss function containing the reconstruction error of all the attributes.
Moreover, compared with NGCF, HCAN not only optimizes the reconstruction error of all the at-
tributes but also optimizes a reconstruction error of the network structure. The fact that HCAN
achieves better performance than NGCF suggests that it is beneficial to also consider the net-
work structure in addition to the attribute matrix for improving the performance in the attribute
inference task.
Our experimental findings are consistent with the principle of social influence [31], which

states that users who are linked are likely to adopt similar attributes and suggests that net-
work structure should inform the attribute inference task. In addition, it is worth noting that all
the baselines have relatively poor performance on the Pubmed dataset, while HCAN obtains a
markedly better performance. Attribute inference on the Pubmed dataset is challenging because
the attribute matrix in the Pubmed dataset is quite sparse; the ratio between the positive node-
attribute pairs and the negative node-attribute pairs is only 0.02. The sparsity of the attribute
matrix results in a challenging, highly unbalanced classification problem. The experimental re-
sults in Table 5 show that HCAN is capable of learning effective latent hyperspherical embed-
dings for attribute inference task by capturing the similarities between nodes and attributes in
the network.

7.3 Network Visualization

Next we turn toRQ3 to qualitatively evaluate the learned embeddings of HCAN by visualizing the
embeddings of both nodes and attributes on the DBLP network in a unified hyperspherical space.
The DBLP network is an academic social network where the nodes are authors and the attributes
are the conferences at which an author has published academic publications. We choose DBLP
as experimental dataset for better interpretation of the similarities between nodes and attributes.
Specifically, we co-embed the DBLP academic network to obtain 3-dimensional embeddings for
the authors and the conferences. Then we plot the embeddings on 3-dimensional hyperspherical
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Table 5. Mean Attribute Inference Performance of HCAN and the Baselines

Method
Cora Citeseer Pubmed Facebook BlogCatalog Physics

AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP

EdgeExp .685 .701 .709 .729 .599 .586 .686 .697 .684 .749 .858 .854

SAN .664 .681 .685 .697 .579 .587 .712 .723 .694 .720 .794 .809

BLA .798 .784 .812 .795 .625 .619 .868 .831 .787 .792 .866 .870

LRA-SAN .665 .668 .690 .677 .586 .594 .730 .722 .669 .685 .812 .827

CN-SAN .725 .704 .755 .741 .618 .601 .798 .804 .731 .744 .845 .844

AA-SAN .751 .747 .805 .809 .699 .690 .851 .844 .801 .807 .884 .891

NGCF .793 .787 .822 .803 .725 .692 .901 .907 .812 .810 .930 .933

HCAN .810† .796† .831† .818† .761† .736† .915† .917† .824† .825† .944† .939†

The best performance per metric per dataset are marked in boldface. In each dataset, significant

improvements over the comparative methods are marked with † (paired t -test, p < .05).

Fig. 4. The 3-dimensional visualization of hyperspherical embeddings of authors and conferences for the

DBLP dataset. The red nodes are the top 200 high H-index authors, while the blue nodes are the 172 confer-

ences in our DBLP dataset.

space. For visual clarity, we only plot the embeddings of 200 authors who have the top 200 high
H-index5 on the dataset. The visualization results are shown in Figure 4, from which we have the
following observations:

(i) The embeddings of similar conferences are displayed quite closely to each other at the same
region on the hypersphere. Specifically, the five conferences with a heavy emphasis on data-
driven methods and machine learning, i.e., ICML, KDD, NIPS and SIGIR, and CVPR, are
shown at the bottom right region of the hypersphere. In contrast, the five theoretical com-
puter science conferences, i.e., FOCS, ICALP, PODC, SODA, and STOC are plotted at the top

5Please refer to http://www.guide2research.com/scientists/ for details.
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left region of the hypersphere. This result again indicates that HCAN is capable of capturing
meaningful similarities between attributes of the network.

(ii) The embeddings of similar scholars are also shown to be close on the latent space. As shown
in the figure, experts in the field of machine learning, information retrieval and data mining,
e.g., Michael I. Jordan, Geoffrey E. Hinton, and W. Bruce Croft, are quite close at the bot-
tom right region while Oded Goldreich and Guy Rothblum, who are experts in theoretical
computer science, are shown at the top left region of the sphere. This finding illustrates that
HCAN is also able to capture the similarities between nodes of the network.

(iii) Finally, the visualization also shows that experts in the field of machine learning, e.g.,
Michael I. Jordan, are quite close to conferences in the same field, e.g., NIPS, while experts
in theoretical computer science, e.g., Oded Goldreich, are quite close to conferences in theo-
retical computer science, e.g., SODA. The result confirms that HCAN can effectively capture
similarities between nodes and attributes of the network.

7.4 Hyperparameter Sensitivity

Next, we turn to RQ4 to understand whether the performance of HCAN is sensitive to the hy-
perparameters such as the free parameter α and the embedding size D. Specifically, we examine
the performance of HCAN with different values of α and D in the link prediction and attribute
inference tasks.

7.4.1 The Effect of Free Parameter α . In the HCAN method, a hyperparameter α is introduced
to balance the reconstruction accuracy between adjacency matrix and attribute matrix, which per-
forms a trade-off between link prediction task and attribute inference task. To understand the effect
of this parameter α , we conduct an experiment on the Cora dataset: we calculate the AUC and AP
score of link prediction and attribute inference under different settings of α , which ranges from 0.1
to 0.9, and the result is shown in Figure 5. According to the figure, as α increases from 0.1 to 0.9, the
performance on the link prediction task improves, while the performance on attribute inference
gets worse. This is quite intuitive, as α governs how important the reconstruction of the adjacency
matrix is in our model: when α increases, HCAN weights more on the reconstruction error of
adjacency matrix and hence obtains better performance on link prediction task and worse perfor-
mance on attribute inference task. The result indicates that we are able to optimize for the link
prediction or attribute inference tasks by the tuning parameter α and thus obtain a task-specific
model. Moreover, the figure shows that the performance of link prediction increases rapidly as α
increases from 0.1 to 0.5 and then gets smoother when α is greater than 0.5, which suggests the
performance of link prediction is more sensitive to α when α is smaller than 0.5. In contrast, the
performance of attribute inference decreases rapidly when α is greater than 0.5, which suggests
that the performance of attribute inference is more sensitive to α when α is greater than 0.5. The
sensitivity analysis helps to better fine-tune the parameter α to obtain the best performance on
link prediction and attribute inference.

7.4.2 The Effect of the Embedding Size. Next, we examine the effects of the embedding size on
the performance of HCAN in the tasks of link prediction and attribute inference. To study the
effect of the embedding size, we vary the size of latent embeddings of HCAN, i.e., D, from 5 to 50
and report the performance of learned embeddings in both link prediction and attribute inference
tasks on three citation networks, i.e., Cora, Citeseer, and Pubmed. We only report experimental
results on the citation networks because we found similar results on the other datasets. We
repeat each experiment for 10 times and report the mean and the standard deviation of the link
prediction and attribute inference performance evaluation scores (AUC and AP). Moreover, we
also compare HCAN against DGI on the link prediction task. Specifically, we report the link
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Fig. 5. Link prediction and attribute inference performance of HCAN on the Cora dataset by varying the

smoothing parameter α .

prediction performance of DIG with different embedding sizes. We only report the results of
DGI since DGI has the best performance on the link prediction compared with other baselines.
Similarly, we compare HCAN against NGCF on the attribute inference task. The experimental
results are presented in Figure 6. Note that we only report the mean evaluation scores of the
representative baselines, i.e., DGI and NGCF, for clarity.
As shown in the figure, in both the link prediction and attribute inference tasks, the performance

of our HCAN on all three datasets increases rapidly when the embedding size increases from 5 to
20, and then gradually converges when the embedding size is greater than 20. The results suggest
that HCAN is not very sensitive to the embedding size once it is greater than a certain thresh-
old. This can be explained based on the fact that our unit-length hyperspherical embeddings only
record the orientations of objects on the hypersphere and it is sufficient to use a small embedding
size to achieve that purpose. The findings show another merit of HCAN: we can use a small em-
bedding size in HCAN to achieve satisfactory performance in both link prediction and attribute
inference tasks. Another result shown in Figure 6 is that as the embedding size increases from 5
to 50, the standard deviations of evaluation metrics (AUC and AP) on link prediction and attribute
inference tasks gradually decrease. This suggests that HCAN learns more stable and robust object
embeddings when using a larger embedding size.
Moreover, the results in Figure 6 show that the performance of DGI on the link prediction task

gradually converges when the embedding size is greater than 20, which indicates that DGI is also
not very sensitive to the embedding size, and it is sufficient to use a small embedding size to obtain
satisfactory performance. Similarly, the performance of NGCF in attribute inference also shows the
insensitivity to embedding size. Similar results can also be found for the remaining baselines. These
experimental results validate that both HCAN and the baselines are insensitive to the embedding
size and simply increasing the embedding size cannot significantly improve the performance. As a
result, it is fine to compare HCAN and the baselines using the same embedding size. Moreover, Fig-
ure 6 also shows that, under the same embedding size, HCAN can always outperform the baselines
on both the link prediction and attribute inference tasks, which again confirms the effectiveness
of the proposed HCAN in learning useful network embeddings.

7.5 Ablation Studies

Finally, we conduct ablation studies to examine the effect of the major components in HCAN
to address RQ5. Specifically, we study the effect of hyperspherical embeddings, the effect of the
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Fig. 6. Link prediction and attribute inference performance of HCAN on the Cora, Citeseer, and Pubmed

datasets by varying the embeddings sizeD of our HCAN. The lines represent the mean of evaluation metrics,

while the shadow areas represent the standard deviation of evaluation metrics.

uncertainty estimation, and the effect of the co-embedding method, so as to validate the utility and
effectiveness of each of these components in our HCAN.

7.5.1 The Effect of Hyperspherical Embeddings. Firstly, we examine the effectiveness of
hyperspherical embeddings by comparing against Gaussian embeddings. It is straightforward to
employ Gaussian embeddings in the HCAN framework by simply replacing the von Mises–Fisher
distributions of node embeddings and attribute embeddings with Gaussian distributions and
using the reparameterization trick [28] for optimization. For a fair comparison, the dimension
of the Gaussian embeddings is the same as the hyperspherical embeddings, i.e., D = 20. Table 6
shows the performance of link prediction and attribute inference of HCAN under different types
of embeddings on six attributed networks. As shown in the figure, HCAN with hyperspherical
embeddings outperforms HCAN with Gaussian embeddings in both the link prediction and
attribute inference tasks on all datasets. This is because the input features of the attributed
networks are unit normalized in the preprocessing step, which removes the magnitude of the
features and only keeps the orientation of features as discriminative spherical information. Hence,
the hyperplane Gaussian embeddings in a Euclidean space may not be the appropriate represen-
tations concerning the spherical features of data, which can explain the suboptimal performance
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Table 6. Link Prediction and Attribute Inference Performance of HCAN when Using Gaussian

Embeddings and Hyperspherical Embeddings

Task Method
Cora Citeseer Pubmed Facebook BlogCatalog Physics

AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP

Link

prediction

Gaussian .951 .946 .958 .954 .920 .922 .936 .935 .739 .738 .921 .914

VMF .973 .968 .987 .984 .954 .948 .983 .975 .829 .823 .954 .945

Attribute

inference

Gaussian .803 .801 .821 813 .754 .740 .901 .905 .815 .817 .937 .931

VMF .810 .796 .831 .818 .761 .736 .915 .917 .824 .825 .944 .939

Note that “Gaussian” represents using Gaussian distribution as embeddings and “VMF” represents using von

Mises-Fisher distribution as embeddings.

Table 7. Link Prediction and Attribute Inference Performance of HCAN under Different Settings of

Whether or Not to Estimate the Uncertainties of Embeddings

Task Method
Cora Citeseer Pubmed Facebook BlogCatalog Physics

AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP

Link

Prediction

without κ .965 .960 .978 .979 .946 .933 .979 .969 .806 .788 .946 .940

with κ .973 .968 .987 .984 .954 .948 .983 .975 .829 .823 .954 .945

Attribute

Inference

without κ .789 .788 .823 .809 .753 .729 .908 .899 .818 .796 .938 .931

with κ .810 .796 .831 .818 .761 .736 .915 .917 .824 .825 .944 .939

Note that “with κ” represents to estimate the uncertainties, while “without κ” represents not to estimate the

uncertainties.

of Gaussian embeddings. The experimental results suggest that hyperspherical representations
are more effective than the hyperplane representations for data with spherical features.

7.5.2 The Effect of Uncertainty Estimation. Secondly, we study the effect of uncertainties κ in
learned hyperspherical embeddings. In HCAN, we use the von Mises–Fisher distributions as la-
tent embeddings of objects in the attributed network, where the variances of the distributions,
i.e., κ, can capture the uncertainties of embeddings. To validate the effectiveness of this uncer-
tainty estimation, we conduct ablation studies of HCAN by removing the variance. In such case,
the embeddings of objects reduce to unit-length deterministic vectors. The experimental results in
Table 7 show that HCANwith the uncertainty estimation (“withκ”) can slightly outperformHCAN
without the uncertainty estimation (“without κ”) in both link prediction and attribute inference
tasks on all the datasets. This is due to the fact that most real-world datasets are inherently noisy
due to the data collection and data preparation processes, where errors commonly occur. By esti-
mating the uncertainties of embeddings, we allow some tolerance for these types of noise and learn
more robust representations from the noisy data, which can explain the superior performance of
HCAN with the uncertainty estimation. The experimental results validate the effectiveness of the
uncertainty estimation in our HCAN and suggests that HCAN is able to learn useful and robust
embeddings of objects in the noisy attributed networks.

7.5.3 The Effect of the Co-embedding Method. Thirdly, to examine the effect of the co-
embedding mechanism, we compare the embeddings of nodes and attributes learned with the
co-embedding model HCAN against the embeddings of nodes and attributes separately learned
from the adjacency matrix and attribute matrix. Specifically, we use the same node inference
network and decoder network as HCAN for learning hyperspherical embeddings of nodes by min-
imizing the reconstruction loss of the adjacency matrix. Similarly, we also learn the embeddings
of attributes by minimizing the reconstruction loss of the attribute matrix. We then compare the
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Table 8. Link Prediction and Attribute Inference Performance of Embeddings Learned with Our

Co-embedding Model HCAN and the Embeddings Separately Learned from the Adjacency

Matrix and the Attribute Matrix

Task Method
Cora Citeseer Pubmed Facebook BlogCatalog Physics

AUC AP AUC AP AUC AP AUC AP AUC AP AUC AP

Link

Prediction

Seperate .961 .956 .979 .980 .948 .941 .973 .969 .799 .791 .942 .930
Co-embedding .973 .968 .987 .984 .954 .948 .983 .975 .829 .823 .954 .945

Attribute

Inference

Seperate .795 .791 .804 .805 .753 .731 .907 .901 .816 .820 .934 .929
Co-embedding .810 .796 .831 .818 .761 .736 .915 .917 .824 .825 .944 .939

performance of learned embeddings in both link prediction and attribute inference tasks, where
the results are represented in Table 8. As shown in the table, our co-embedding model HCAN
achieves better performance on both link prediction and attribute inference tasks on all the
datasets. The reason that HCAN performs better on the link prediction task is that the attribute
information can inform the interactions between nodes, since two nodes with similar attributes
are more likely to link to one another. Moreover, the network structure can help infer missing
attribute values of nodes, since nodes that are linked together are more likely to adopt similar
attributes, which can explain the superior performance of HCAN on the attribute inference task.
The experimental results confirm the effectiveness of our co-embedding model for jointly learn-

ing the embeddings of nodes and attributes. Additionally, previous studies [15, 43, 44] share the
same empirical findings as ours, which suggests that jointly considering the network structure and
node-attribute information can improve the performance of link prediction and attribute inference.

8 CONCLUSION

In this article, we have studied the problem of learning representations for attributed networks
with unit normalized directional features by modeling the embeddings with a non-Gaussian and
non-Euclidean representation space. We have shown that variational auto-encoders can be effec-
tively generalized to heterogeneous datawithmultiple types of entities and relations, and proposed
a hyperspherical variational co-embeddingmodel, calledHCAN, tomap the nodes and attributes of
an attributed network into a unified hyperspherical representation space such that the similarities
between them can be effectively captured and measured. Based on the framework of VAEs, HCAN
contains inference networks that map the input entities to latent hyperspherical embeddings and
generative networks that reconstruct the input based on the embeddings. We have detailed the
derivation of the objective function used in HCAN and have designed practical proper trainable
inference and generative networks to enable scalable optimization of the objective.
We have conducted extensive experiments on six real-world attributed networks. The experi-

mental results show that HCAN outperforms the baselines on several different application tasks,
e.g., link prediction and attribute inference, which indicates that HCAN is able to learn high-quality
hyperspherical embeddings for both nodes and attributes of attributed networks while being able
to capture the similarities between them. The 3-Dimensional visualization of the DBLP dataset in-
dicates that the similarities between nodes and attributes can be properly preserved and measured
by HCAN by mapping them in a unified hyperspherical space. Moreover, by introducing a free
parameter to balance the reconstruction accuracy between adjacency matrix and attribute matrix,
we can obtain a task-specific model.

We would like to discuss some broader implications of our work. In the information retrieval
literature, it is critical to leverage network-based information to boost the performance of many
traditional retrieval tasks as much real-world data is often represented by attributed networks,
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such as the purchase networks, social networks, and hyper-linked web documents. Our method
can be easily applied to solve down-streaming problems based on these network data by learning
useful and effective network embeddings. For instance, it is straightforward to apply ourmethod to
solve the recommendation problem in user/item purchase networks, the user profiling problem in
social networks, and document classification problem in the hyper-linked website data. Moreover,
this article reveals that jointly learning embeddings of different categories of entities in the data
is more effective than learning their embeddings separately. Our co-embedding framework might
inspire researchers to develop more effective and useful embedding techniques in other research
domains.
We would also like to discuss some limitations of our model. Since HCAN is an unsupervised

method that only uses node features and geometric structures for learning, one potential limitation
is that ourmodel may not directly leverage other important properties of attributed networks, such
as the label information and the community structures. Additionally, the proposed generalized
variational auto-encoder framework can also be applied to heterogeneous data with multiple types
of entities and relations. However, in this article, we mainly focus on its performance on attributed
networks, and its performance on heterogeneous data remains unexplored, which we leave as to
further work.
As to future work, we intend to apply HCAN to other tasks for which representations of two

or more different categories of entities need to be inferred in the same semantic space, such as
retrieval-based question answering, for which questions and answers need to be co-embedded, or
document retrieval, for which queries and documents need to be co-embedded, or entity retrieval,
for which queries and entities need to be co-embedded. In addition, we plan to propose a dynamic
co-embedding algorithm for dynamic attributed networks, where the evolution of the embeddings
of both nodes and attributes over time should be properly modeled.
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