
Domain Generalization in Time Series Forecasting

SONGGAOJUN DENG, OLIVIER SPRANGERS, and MING LI, AIRLab, University of Amster-

dam, Amsterdam, The Netherlands

SEBASTIAN SCHELTER and MAARTEN DE RIJKE, University of Amsterdam, Amsterdam, The

Netherlands

Domain generalization aims to design models that can effectively generalize to unseen target domains by

learning from observed source domains. Domain generalization poses a significant challenge for time series

data, due to varying data distributions and temporal dependencies. Existing approaches to domain general-

ization are not designed for time series data, which often results in suboptimal or unstable performance when

confronted with diverse temporal patterns and complex data characteristics. We propose a novel approach to

tackle the problem of domain generalization in time series forecasting. We focus on a scenario where time se-

ries domains share certain common attributes and exhibit no abrupt distribution shifts. Our method revolves

around the incorporation of a key regularization term into an existing time series forecasting model: domain

discrepancy regularization. In this way, we aim to enforce consistent performance across different domains

that exhibit distinct patterns. We calibrate the regularization term by investigating the performance within

individual domains and propose the domain discrepancy regularization with domain difficulty awareness. We

demonstrate the effectiveness of our method on multiple datasets, including synthetic and real-world time se-

ries datasets from diverse domains such as retail, transportation, and finance. Our method is compared against

traditional methods, deep learning models, and domain generalization approaches to provide comprehensive

insights into its performance. In these experiments, our method showcases superior performance, surpass-

ing both the base model and competing domain generalization models across all datasets. Furthermore, our

method is highly general and can be applied to various time series models.
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1 INTRODUCTION

Time series data are ubiquitous, and forecasting such data plays a crucial role in many applications

such as financial forecasting [27, 31], meteorology prediction [19, 60], healthcare analysis [10],

and demand estimation [11]. The goal of time series forecasting is to predict future values based

on historical observations. A major challenge in time series forecasting is the presence of domain

shifts, where the underlying data distribution may vary due to data collection from various sources,

locations, or conditions. Traditional forecasting models trained on data from a specific context

often struggle to generalize well to unseen data. This issue arises in scenarios such as demand

forecasting for new products, where accurate predictions are essential for effective planning and

decision-making.

Domain generalization seeks to address this challenge by developing models that have consis-

tent performance across different domains [63]. Significant progress has been made in domain

generalization, yet mainly in computer vision [22, 65] and natural language processing [7]. Many

existing methods encounter challenges when applied to time series forecasting, primarily due to

two factors: (1) They require categorical label information in their problem settings, making them

better suited for classification tasks [7, 22, 65], and (2) the inherent complexity and dynamic na-

ture of time series data introduce significant stochasticity, complicating generalization efforts [15].

Existing domain generalization approaches fall short in effectively addressing the underlying tem-

poral dependencies and distribution shifts in time series data.

In this article, we propose an approach to tackle the problem of domain generalization in time

series forecasting. Our method focuses on addressing the challenges posed by the diverse patterns

and complex characteristics of time series data from different domains. We base our approach on

carefully considered assumptions concerning the presence of common patterns across domains

and restrictions on data shifts within each domain. We introduce two regularization terms that

enhance a model’s ability to generalize effectively in time series forecasting: a basic version that

ensures consistent performance across various domains, named Domain discrepancy regularization

(Section 3.2.1), and an extension that takes into account the difficulty of individual domains, named

Domain discrepancy regularization with domain difficulty awareness (Section 3.2.2). These regular-

ization terms control the model’s learning and fitting process across diverse domains, ensuring

consistent forecast performance and generalizability to unseen domains.

In summary, the main contributions of this work are:

— We introduce a novel domain generalization problem in the context of time series forecast-

ing. We formalize the time series forecasting task under specific assumptions, laying the

groundwork for further exploration (Section 3.1).

— We propose a novel regularization term that improves a forecasting model’s generalization

capabilities by regulating cross-domain performance differences weighted by domain dis-

crepancies (Section 3.2.1).

— We present an extended version of the regularization term by incorporating a notion of

domain difficulty awareness, where we assign less penalty to challenging domains, allowing

the model to learn more complex patterns (Section 3.2.2).

We conduct extensive experiments on diverse synthetic and real-world time series datasets to

demonstrate the effectiveness of our method (Section 4). Our method achieves higher accuracy in

domain generalization tasks than existing approaches and has low training overhead, making it

applicable to real-world scenarios on top of an existing forecasting model.

2 RELATED WORK

We survey work in time series forecasting and domain generalization on time series data.
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2.1 Time Series Forecasting

Time series forecasting is a regression task [33, 48], distinct from classification tasks [68, 69]

within the realm of predictive modeling. Time series forecasting finds applications in various do-

mains, such as finance [27, 31], retail [11], and healthcare [10]. Traditional time series forecasting

models, such as autoregressive (AR) [55], autoregressive integrated moving average model

(ARIMA) [8], and exponential smoothing [18], use statistical methods to analyze historical data

and make future predictions. The k-nearest neighbors (kNN), traditionally developed for classi-

fication tasks [68–71], has also been explored to address time series forecasting challenges [40, 67].

For better modeling nonlinear relationships and capturing more complex temporal dependencies,

machine learning (e.g., regression [55] and tree-based models [30]) and deep learning models have

received increased attention. Recurrent neural networks (RNNs) and their variants, such as

long short-term memory (LSTM) [25] and gated recurrent units (GRUs) [12], have demon-

strated strong performance in capturing long-term dependencies and nonlinear patterns in time

series data. Temporal convolutional networks (TCNs) [6] and WaveNet [44] have gained pop-

ularity for their fast training, which allows for easy parallelization. Attention-based models [4],

such as transformer [58] and TransformerConv [36], have achieved state-of-the-art performance

in many prediction tasks for sequential data. Recently, many researchers have explored graph

neural networks [64] in spatial-temporal forecasting [23, 60] and learning dynamic relationships

among potential factors of the predictions [14, 27].

Time series forecasting can be classified into point estimate and probabilistic forecasting [21, 38],

which provide a single predicted value and a probability distribution, respectively. Probabilistic

time series forecasting plays a critical role in decision-making due to its ability to quantify uncer-

tainties [21]. In this work, we focus on probabilistic forecasting.

2.2 Domain Generalization on Time Series Data

Domain generalization (DG) [63] refers to the problem of learning a model that can generalize

well to unseen target domains that differ from the training domains. DG may help to reduce la-

beling efforts, handle distribution shifts, and facilitate transferability to new tasks [63]. Existing

approaches to DG can be classified into three main categories: (i) data manipulation, (ii) learn-

ing strategy, and (iii) representation learning. Data manipulation techniques typically enhance

generalization through randomization [56], augmentation of input data [52, 59], or generation of

diverse samples [46]. Learning strategy-based methods mainly focus on meta-learning [7, 34, 37]

and gradient-based techniques [53]. Representation learning involves learning domain-invariant

representations through techniques such as kernel method, adversarial training, feature alignment,

or invariant risk minimization [2, 35]. Most existing research has focused on particular types of

data such as images, texts, or observation data for reinforcement learning.

Recently, DG has been explored in time series classification. These studies highlight the use of

class information to learn domain invariance using distribution matching [72], data augmenta-

tion [72], contrastive learning [26, 47], and adversarial learning [39]. An empirical framework for

DG has been explored in the context of time series classification within the clinical domain [66].

Additionally, researchers have introduced various time series benchmarks covering a diverse range

of data modalities, such as videos and brain recordings [16]. Yet, these benchmarks are highly bi-

ased towards classification tasks. There have also been notable contributions to temporal domain

generalization [5, 43]: the ability of a model to generalize well across different time periods. There

are a few studies in domain adaptation for time series forecasting [29] that assume that data from

the targeted domain is partially seen during training. Due to the complexity and stochasticity of

time series, there is limited research on DG for time series forecasting. This is where we contribute:

methods that enable domain generalization in time series forecasting.
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Table 1. Important Notations and Descriptions

Notation Description

T the number of timesteps in the history window

h the forecasting horizon

N the number of samples in a time series dataset

θ the learnable parameters of a model

K the total number of domains

M the total number of training domains

y1:T time series variables until time T
a1:T exogenous attributes until time T
Dk ,Dk1 ,Dk2 time series datasets for domain k,k1,k2, respectively

Dtrain,Dtest datasets for training and test domains, respectively

H(·) the high-level representation of time series from a domain

dH(, ) the distribution divergence between two domains

Lfcst(·) the forecasting loss in a domain

dLfcst
(, ) the difference in time series forecasting performance between two domains

Mean(·), Std(·) the mean and standard deviation of a set of values

MMD(, ) maximum mean discrepancy

ω(, ) the scaling factor that modulates the penalty for regularizing two domains

3 METHODOLOGY

We formalize the domain generalization problem for time series forecasting and introduce our

proposed method. The necessary mathematical notations are in Table 1.

3.1 Problem Formulation

We first introduce the problem of time series forecasting and extend it to domain generalization.

Time series forecasting. We denote time series variables as y1:T = {y1,y2, . . . ,yT }, where yt

represents the value at time t (e.g., sales in retail), and T is the number of timesteps in the his-

tory window.1 Usually, we assume the timestep t to be constant (e.g., a day or an hour). The

goal of time series forecasting is to estimate the future values yT+1:T+h = {yT+1,yT+2, . . . ,yT+h},

where h is the forecasting horizon. We focus on multi-step prediction with h > 1, because it

offers more valuable insights by providing longer prediction horizons, which are more relevant

and informative in real-world scenarios. A time series dataset with N samples can be denoted

by D = {(yi,1:T , ai,1:T ), yi,T+1:T+h}
N
i=1, where the variable a represents possible exogenous at-

tributes (e.g., day of the week, categorical features). For simplicity, we write D = {X ,Y }, where

X = {yi,1:T , ai,1:T }
N
i=1,Y = {yi,T+1:T+h}

N
i=1. We are interested in modeling the conditional distribu-

tion:

P(Y | X ;θ ) = P(yi,T+1:T+h | yi,1:T , ai,1:T ;θ )

=

T+h∏
t=T+1

P(yi,t | yi,1:t−1, ai,1:t−1;θ ),
(1)

where θ is the learnable parameters of a model. For probabilistic forecasting, we have θ = (μθ ,σθ )

where μθ ,σθ denotes the location and scale parameters of a distribution (e.g., a normal distribution)

parameterized by θ .

1In this article, yt denotes a scalar value, but it can also be extended to a vector.
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Domain generalization for time series forecasting. We extend the concept of time series fore-

casting to the scenario where the model needs to generalize well across multiple domains. We

consider D = {D1,D2, . . . ,DK } as the set of K domains, where each domain Dk consists of a time

series dataset Dk = {X k ,Y k }.

In the domain generalization problem, we assume to have access to M training domains Dtrain =

{Dk }M
k=1

where M < K . The domain generalization task is to learn a time series forecaster F : X →

Y that generalizes well to unseen test domains Dtest = {Dk }K
k=M+1

that cannot be accessed during

training.

Data assumptions. Given the inherent complexity of real-world time series data, we limit the

scope of domain generalization for time series forecasting. We employ the following assumptions

regarding the characteristics of time series data within and across domains. These assumptions are

widely used or have similar implications in general studies on domain generalization [2, 15, 39, 63].

Assumption 1 (Common underlying patterns). There exist common underlying patterns

among different domains, despite their individual idiosyncrasies. The dissimilarity between the joint

distributions for two domains falls within a range defined by a lower bound ϵl and an upper bound

ϵu . This range captures the extent of variation allowed between the shared patterns across different

domains. ϵl should also be sufficiently large to prevent identical data across domains. Mathematically

it can be expressed as: ϵl ≤ |Pk1 (X ,Y ) − Pk2 (X ,Y )| ≤ ϵu ,∀1 ≤ k1 � k2 ≤ K , 0 < ϵl ≤ ϵu .

Assumption 1 imposes constraints on the common patterns/invariance that can be leveraged to

improve domain generalization. In practice, we can leverage prior knowledge or domain expertise

to define the domains of interest that align with the assumed common patterns. For instance, re-

tail, meteorology, and environmental factors-related data often show recurring seasonal patterns.

To quantitatively measure this assumption, metrics such as the Pearson correlation coefficient or

Dynamic Time Warping [42] can be employed for comparing time series across different domains.

Assumption 2 (No abrupt distribution shifts). There are no sudden or abrupt distribution

shifts within each domain of the time series data, while gradual changes may be present. Sudden

changes imply large uncertainty in the unseen time series domain and raise concerns about the efficacy

of developing generalization methods. Suppose ΔDk (t) = |Pk (Xt ,Yt ) − Pk (Xt−1,Yt−1)| denotes the

distribution shift indicator for domain k at time t . We expect that |ΔDk (t)| remains within the bounds

of a potential threshold ϵs for all timesteps, for each domain, i.e., ∀1 < t ≤ T , 1 ≤ k ≤ K .

Assumption 2 focuses on scenarios where the within-domain data distributions maintain rela-

tive stability over time. This assumption is well-suited to certain fields such as meteorology, trans-

portation, and environmental monitoring where data tend to exhibit gradual changes rather than

abrupt shifts. However, there are fields where abrupt distribution shifts are common, such as fi-

nancial markets, natural disaster data, and social media activity, which may not conform to this

assumption. Nevertheless, in such cases, it is still possible to adapt to this assumption by limiting

the length of the time sequence within each domain, thereby ensuring that within-domain dis-

tributions remain acceptably stable. To measure this, distribution shift detection methods can be

applied, such as comparing statistical properties of various time series data and using visualization

techniques.2

2Assumption 2 shares similarities with scenarios addressed in related works [15, 39]. These works acknowledge the exis-

tence of multiple latent distributions within a time series and aim to first identify time series segments/domains that exhibit

substantial distribution shifts. In contrast, our work operates under the assumption that these segments already exist and

do not require explicit detection.
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These data assumptions offer a practical starting point for devising effective domain generaliza-

tion methods in time series forecasting.3 Nonetheless, we acknowledge the difficulties associated

with assessing the degree to which real-world datasets conform to our assumptions, e.g., defining

precise thresholds and comparing. These challenges arise because time series data are inherently

complex and exhibit diverse characteristics across different domains. We believe this requires fur-

ther breaking down problems in various application areas, and we leave the theoretical in-depth

studies for future work.

3.2 Proposed Method

Next, we present our proposed method, domain generalization in time series forecasting using

cross-domain regularizations with difficulty awareness (Cedar). It consists of two novel regular-

ization terms: (1) domain discrepancy regularization, which ensures consistent performance across

various domains with distinct patterns, and (2) domain discrepancy regularization with domain

difficulty awareness, an extension of the domain discrepancy regularization by considering the

performance within each domain, accounting for the difficulty in training different domains.

3.2.1 Domain Discrepancy Regularization. In domain generalization, where information about

the target domains is unknown, our objective is to learn a generalized model that exhibits consis-

tent and stable performance across diverse temporal patterns in different domains. To achieve this,

we propose a domain discrepancy regularization to prevent severe overfitting in all seen source

domains, ensuring the robustness and generalization capability of the model when applied to new

domains. It builds on the insight that dissimilar domains should not exhibit significant variations

in forecasting performance. This regularization term is straightforward, as it calculates the differ-

ence of the forecasting performance between domain pairs, weighted by the discrepancy of the

respective domain pair. We express the regularization term RDD as follows:

RDD =

M∑
k1,k2

dH
(
Dk1 ,Dk2

)
· dLfcst

(
Dk1 ,Dk2

)
. (2)

We use dH(, ) to represent the distribution divergence between two domains. We use maximum

mean discrepancy (MMD) as the difference metric in our experiments due to its easy imple-

mentation, widespread popularity, and kernel-based theoretical foundation supporting its use to

capture complex relationships. Other distance metrics can also be applied (e.g., Euclidean distance

and KL divergence). MMD has been used in distribution matching regularization in domain adap-

tation [15, 61] and generalization [72]. The definition of dH(, ) is:

dH
(
Dk1 ,Dk2

)
= MMD

(
H(Dk1 ),H(Dk2)

)
, (3)

where H(Dk ) represents the high-level representation of time series from domain k , which is

learned from a forecasting model (e.g., hidden states of an RNN or convolutional vectors of a

CNN) and evaluated on a batch of samples. Such a high-level representation captures temporal

dependencies inherent in time sequence data. We compute the mean value of these representations

across all samples in a batch that belongs to the specific domain.

The second term dLfcst
(, ) quantifies the difference in time series forecasting performance be-

tween two domains, computed by the Euclidean distance of the average loss values for batches of

3Note that this work differs from temporal domain generalization [5], which deals with time series data that exhibits chang-

ing patterns over time, necessitating adaptation of the model for future time segments. This work focuses on developing a

single global model intended for universal applicability across all domains.
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samples in each respective domain. Formally, we express the calculation as:

dLfcst

(
Dk1 ,Dk2

)
=
��Mean

(
Lfcst(D

k1 )
)
− Mean

(
Lfcst(D

k2 )
) ��p . (4)

Here, Lfcst(D
k ) denotes the forecasting loss (e.g., Gaussian negative log-likelihood or L2 loss) of

the batch samples in domain k ; | · | denotes the absolute operation, and the parameter p can be

set to 1 or 2. When p = 2, it implies a higher penalty for large differences in mean losses between

domains. We can use matrix operations to efficiently calculate the multiplication of the two terms

across all domain pairs.

By minimizing the regularization term (Equation (2)), we aim to prevent significant disparities

in forecasting performance between different domains, which in turn can hinder the model’s abil-

ity to effectively generalize to new patterns. Our approach differs from existing methods primarily

tailored for classification tasks [1, 61, 72]. Unlike these approaches, which concentrate on align-

ing distributions within the same class across different domains to capture domain invariance, our

method operates without class/label information. Class/label information provides a more straight-

forward way to group similar samples in different domains. Our focus is on promoting consistency

in the model’s predictive capacities across diverse domains while penalizing substantial differences

in forecasting performance.

3.2.2 Domain Discrepancy Regularization with Domain Difficulty Awareness. In the regulariza-

tion term RDD (Equation (2)), we use the mean value of loss for each domain to gauge its perfor-

mance in the current model, and the difference in mean loss is used to evaluate the performance

disparity. However, time series data often exhibits irregular patterns or contains abnormal points

and outliers, which may lead to inaccuracies in assessing the true performance difference based

solely on mean loss, e.g., large stock price fluctuations can occur in financial markets, leading to

inaccuracies in assessing the true performance of time segments based solely on their mean values.

Starting from this motivation, we adjust the penalty to account for the difficulty of the domains.

If a domain exhibits higher variance in its loss values, then it implies greater challenges in training.

Thus, we consider applying a milder penalty to that domain to give the model more flexibility in

learning from that domain’s data. By reducing the penalty for difficult domains, we allow the

model to concentrate more on adapting to the complex aspects of those domains, which may lead

to improved generalization performance.

To incorporate domain difficulty into the pairwise regularization term RDD (Equation (2)), we

propose a simple approach based on the variance that takes into account both domains in a pair:

RDDD =

M∑
k1,k2

dH
(
Dk1 ,Dk2

)
· dLfcst

(
Dk1 ,Dk2

)
· ω(Dk1 ,Dk2 ). (5)

Here, ω(Dk1 ,Dk2 ) is a scaling factor that modulates the penalty based on the difficulty of each

domain in a pair, defined as follows:

ω(Dk1 ,Dk2 ) =
1

Std
(
Lfcst(Dk1 )

)
+ Std

(
Lfcst(Dk2 )

)
+ ε
, (6)

where Std
(
Lfcst(D

k )
)

denotes the standard deviation of the losses of batch samples in domain k . If

any domain in the pair exhibits poor performance (with a large standard deviation of loss values),

then we consider the domain discrepancy regularization to be less reliable. We introduce ε = 1 to

prevent very small standard deviations from causing very large values or undefined values (e.g., 0)

of ω, and the maximum value of ω is 1. There are other methods that can be used to quantify the

difficulty of a domain, such as expert knowledge, exogenous feature analysis, or more advanced

domain-specific metrics. We leave this to future work.
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Table 2. Summary of Synthetic Datasets

Dataset
Attributes

#Domains #Points
Period Trend Noise

NT-P � � 30 500

PT-N � � 30 500

PN-T � � 30 500

T-PN � 30 500

(�) indicates common attributes across domains.

Training and optimization. Given a time series forecaster F and the proposed regularization

terms for domain generalization, we train the forecaster F by minimizing the following total loss:

L = Lfcst + γ · [RDD or RDDD ], (7)

where Lfcst is the empirical loss of the base model F , which uses empirical risk minimization

(ERM) [57] to minimize the average errors on training domains. It places equal emphasis on en-

hancing sample-level performance across all training domains. γ is a hyperparameter for balanc-

ing the contributions of cross-domain regularization and the empirical loss. The selection of the

two regularization terms can be guided by prior knowledge or experiments that provide valuable

insights into the difficulty of training each domain, e.g., a large variance in performance of the

base model on individual domains would indicate greater challenges in training, and in such cases,

RDDD can be a better choice.

4 EXPERIMENTS

4.1 Experimental Settings

Datasets. We evaluate the performance of our proposed method on both synthetic and real-world

time series datasets.

Synthetic data. To assess the efficacy of Cedar in achieving generalization across diverse sce-

narios, we construct multiple synthetic time series datasets that manifest distinct patterns of in-

variance across domains; see Table 2 for a summary. These datasets satisfy the data assumptions

from Section 3.1. We assume that there are no abrupt distribution shifts within each domain of

time series, and all domains share a common characteristic, i.e., periodicity. Periodicity is a preva-

lent pattern in various real-world time series data, such as sales data in retail and temperature

fluctuations. We use the sinusoidal function to generate periodic signals and apply Gaussian noise

to those periodic signals. We use no trend (i.e., horizontal trend) when it is a common attribute.

We use the previous 270 timestamps for training, the subsequent 90 timestamps for validation, and

the remaining timestamps for testing. No exogenous attributes are used.

Real-world data. We also assess the domain generalization ability of Cedar using real-world

time series data, focusing on retail, transportation, and finance. The dataset summary is in Table 3.

— Retail. We use Favorita [41], which is a Kaggle dataset that contains five years (2013–2017)

of daily sales for store-product combinations taken from a retail chain. We construct two

datasets based on Favorita, namely, Favorita-cat and Favorita-store. In Favorita-cat, we

focus on the category-level sales in the same store, treating each category as a separate

domain. Favorita-store comprises the time series data for a single category (Grocery I) across

multiple stores. We use data from the year 2015. The training data span from 2015-03-01 to

2015-06-30. The validation samples are from 2015-07-01 and 2015-8-15. The remaining data

are used for testing. The sale variables are log-transformed.

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 5, Article 113. Publication date: February 2024.
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Table 3. Summary of Real-world Datasets

Dataset Domains #Points Granularity (T ,h)
Favorita-cat 26 categories 306 day (60,14)

Favorita-store 45 stores 306 day (60,14)

US-traffic 19 stations 244 day (28,7)

Stock-volume 12 stocks 516 day (60,14)

(T , h) denotes the sizes of the historical and prediction windows.

— Transportation. We use the U.S. Traffic Volume Data, which is openly available on the official

website of U.S. Department of Transportation.4 The traffic volume data are collected by state

highway agencies. We use data in California from 2022-04 to 2022-11. The traffic volume is

aggregated on a daily basis, considering both directions of travel, and the final values are

divided by 1,000 to reduce the range of values. We use traffic volume data from 2022-04-01

to 2022-07-15 for training, data from 2017-07-16 to 2017-08-20 for validation, and the rest for

testing.

— Finance. We use Stock Exchange Data, which contains daily price data for indexes tracking

stock exchanges collected from Yahoo! Finance.5 We use the stock trading volume as the

target variable, representing the number of shares of security traded between its daily open

and close. The training data span from 2020-01-01 to 2020-08-30, the validation data extends

up to 2020-11-30, and the remaining data up to 2021-05-31 are for testing. Since some stocks

have large averages, we used a simple method for normalization, i.e., dividing all trading

volumes by 1e7.

Data assumption validation. We assess the alignment of real-world datasets with our assump-

tions primarily through prior knowledge and visualization methods. For instance, retail and trans-

portation datasets demonstrate consistent seasonal patterns, and stock volume data accounts for

overall market influence (Assumption 1). To mitigate abrupt distribution shifts (Assumption 2),

we restrict the time sequence length for each domain and use category-level sales for retail, daily

traffic volume, and daily stock volume data.

Exogenous attributes. We add numerical covariates consisting of time indicators (e.g., day of the

week) to real-world datasets. The time indicators are represented by two Fourier terms [28] to

represent the periodic nature of the time [54].

Data Visualization. We visualize some datasets in Figure 1 to illustrate the disparity in patterns

across domains. For the synthetic dataset PN-T, time series from different domains exhibit vary-

ing trends while sharing the same period and Gaussian noise applied to the periodic signals. For

real-world datasets, we can observe that the data have diverse cross-domain and within-domain

patterns but roughly follow a pattern similar to the synthetic dataset.

Methods used for comparison. To evaluate the domain generalization performance of Cedar,

we consider several state-of-the-art and popular domain generalization methods that are modality-

agnostic (i.e., can be applied to time series data.) and are compatible with forecasting tasks as

follows:

— DANN [17] is an adversarial learning method that learns features that are not capable of

discriminating between training and test domains.

4https://www.fhwa.dot.gov/policyinformation/tables/tmasdata/
5https://www.kaggle.com/datasets/mattiuzc/stock-exchange-data?select=indexProcessed.csv
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Fig. 1. Data visualization on partial domain data in PN-T, Favorita-cat, US-traffic, and Stock-volume datasets.

Each time sequence represents a domain.

— GroupDRO [49] is the Group Distributionally Robust Optimization approach that aims to

improve the robustness of models in the presence of domain shifts or changes in the data

distribution.

— MLDG [34] is a meta-learning algorithm for domain generalization. The method trains

for domain generalization by meta-optimization on simulated train/test splits with domain-

shift.

— IDGM [53] is a gradient matching approach that learns invariance by maximizing the inner

product between gradients from different domains.

— wERM is a weighted empirical risk minimization method adapted from the time series pre-

diction model under distribution shift using differentiable forgetting [9]. wERM-exp and

wERM-mix are variants using two forgetting mechanisms, corresponding to exponential

decay and a mixture of various functional forms of decay, respectively.6

— MMD [61, 62] is a distribution matching method that matches the distributions between

representations of data of two domains.

Cedar and the above domain generalization methods can be applied to different base models that

forecast time series. Specifically, we consider two popular and representative time series models

as the base model7:

— DeepAR [50] is an RNN-based probabilistic forecasting model.

— WaveNet [44] is a CNN-based forecasting model.

Apart from the base model with domain generalization methods, we also consider the following

two types of methods as our baselines:

— Traditional time series models: Seasonal Naive (SN) and Exponential Smoothing

(ES).8

6This approach is not applicable when the prediction model is a neural network. We used the proposed objective function

but adapted the bi-level optimization used in the original experiments to grid search for the optimal hyperparameter.
7The MMD calculation is performed on the last hidden state of all RNN layers. For IDGM, we use the first-order version

proposed in the original paper.
8For SN, we take the observation from the last period as our forecast. We only compare ES on real-world datasets and two

synthetic datasets (PT-N and PN-T), since they exhibit the same seasonality (e.g., weekly) across all domains.
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— Latest deep learning models: The variational recurrent autoencoder VRNN [13] that learns

latent variables that capture temporal dependencies and an adaptive time series model,

AdaRNN [15], which can be fit to our domain generalization for time series forecasting.9

Evaluation metrics. We employ both the point accuracy metric and range accuracy metric to eval-

uate the probabilistic forecasting performance, following prior studies [50, 54]. For point accuracy,

we use the normalized root mean squared error (NRMSE) and symmetric mean absolute

percentage error (sMAPE) [3]:

NRMSE =

√√√
1

h

T+h∑
t=T+1

(yt − ŷt )2
/( 1

h

T+h∑
t=T+1

|ŷt |
)
, (8)

sMAPE =
1

h

T+h∑
t=T+1

2|yt − ŷt |

|yt | + |ŷt |
. (9)

For range accuracy, we use the normalized quantile loss function [50]:

Q(q) =
N∑
i

T+h∑
t=T+1

2
��(yi,t − ŷ

q
i,t ) · (1yi,t ≤ŷ

q

i,t
− q)

��/ N∑
i

T+h∑
t=T+1

|yi,t |, (10)

where q is the quantile value, ŷ
q
t is the prediction for quantile q. 1 is the indicator function. We

report the scores when q = 0.5, denoted by Q(0.5), and the mean quantile performance over the

nine quantiles in the range q = {0.1, 0.2, . . . , 0.9}, denoted by Q(mean). The evaluation scores are

computed across all training/test domains.

Implementation details. We implemented, trained, and evaluated all methods using Py-

Torch [45] 1.7.1 with CUDA 10.2 on TITAN Xp. For all datasets, we use the scaling mechanism

following prior studies [50, 54]. All parameters are initialized with Glorot initialization [20] and

trained using the Adam [32] optimizer; the dropout rate is 0.3. The learning rate is searched from

{0.0005, 0.001, 0.005}. The batch size is 64 for all models and datasets. The hidden state size is set

to be consistent across layers for all models searched from {16, 32, 64}. We adopt specific config-

urations for the number of hidden layers and the kernel size of the convolution operation based

on prior work [54]. For RNN-based models (DeepAR and VRNN), the number of hidden layers is 3.

For CNN-based models (e.g., WaveNet), the number of hidden layers is 5 and the kernel size is 9.

For the GroupDRO, MLDG baseline models, we adopt the hyperparameter selection suggestions

from previous work [24]. For wERM, we use the hyperparameter initialization method introduced

in the original code [9]. For models that employ maximum mean discrepancy (MMD) as the

discrepancy measure, we utilize the squared linear MMD [51] due to its efficiency and effective-

ness. The coefficient multiplied to MMD is searched from {10i }0
i=−7. For AdaRNN, the number of

RNN layers is 2 following the original paper’s suggestion. The MMD coefficient has to be tuned

with other parameters, and we set its range to {0.001, 0.0001} to control the search space.

For Cedar, we grid-search the hyperparameter γ applied to LDD or LDDD from the range

{10i }0
i=−7 and p in Equation (4) from {1, 2}. We do not tune γ in conjunction with other hyper-

parameters, such as the learning rate. We directly utilize the optimal settings of the other hyper-

parameters learned from the base model. It allows us to focus on the impact of γ on the model’s

performance, without introducing additional variations from tuning other hyperparameters.

9We did not report the performance of recent approaches and CCDG [47] and Diversify [39], because they are developed

for classification tasks and their adaptation to a forecasting task is not possible without significant alterations to their

formulations.
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Model selection. We use 80% of domains for training and 20% for testing and adopt the training-

domain validation approach [24].10 We partition the available domains into training and test do-

mains. Within the training domain, we further split the data into training and validation subsets

in chronological order. Subsequently, we train models using the training subsets and choose the

model that has the lowest loss on validation subsets. We run each experiment for 150 epochs with

an early stopping criterion of 10 epochs. After we select the best model parameters based on the

predefined criterion, we perform the evaluation on 5 random seeds for all models and report the

average results. For each seed, we shuffle the training and test domains, ensuring that the model’s

generalization performance is assessed under varying conditions.

4.2 Results on Synthetic Data

Table 4 presents the results of the normalized quantile loss metrics Q(0.5) and Q(mean) on the four

synthetic datasets. Table 5 shows the results of point accuracy metrics NRMSE and sRMSE. We

apply Cedar to DeepAR and WaveNet and compare both with traditional time series models and

deep learning models.

Among the traditional methods (SN and ES), ES performs well on datasets with fixed seasonality

(PT-N and PN-T) but it falls behind some of the other methods. For deep learning baselines, the

latent variable model and AdaRNN show poor performance and exhibit instability in different cases.

This might be due to the complexity of the model structures, making it difficult to learn diverse time

series patterns. The original paper of AdaRNN reports that the model’s performance significantly

drops when the number of time series periods/domains increases beyond 10, which explains its

performance in our experiments. We also notice that its training time becomes extremely long

when the number of domains is large (e.g., 30).

For domain generalization methods, we notice that widely used domain generalization meth-

ods such as GroupDRO and MLDG do not yield good performance in time series forecasting

tasks. This can be attributed to their limited ability to account for certain inherent characteris-

tics within time series data. Baselines DANN, IDGM, and MMD consistently deliver better results.

The methods designed for distribution shifts, i.e., wERM-exp and wERM-mix, also perform well.

Cedar and the variant model Cedar(-D) achieve favorable and stable performance compared to

others when applied to both DeepAR and WaveNet. We see the performance of Cedar based on

DeepAR sometimes surpasses that of WaveNet and vice versa. The effectiveness of the regulariza-

tion is influenced by the temporal representation learned by the base model. The MMD method

can be regarded as a naive variant of our approach, as it simply makes all domain representations

similar (removing dLfcst
in Equation (2)). Its results are inferior to ours, indicating the efficacy of

leveraging cross-domain forecasting performance to enhance domain generalization. For the two

proposed regularization terms, we observe that in most cases (except on PN-T and T-PN), Cedar

consistently outperforms Cedar(-D) or performs on par with Cedar(-D). Hence, for the patterns

observed in synthetic datasets, considering the prediction performance within individual domains

is effective when applying cross-domain regularization.

4.3 Results on Real-world Data

Tables 6 and 7 list the results on the four real-world datasets. The traditional models achieve very

good performance on Favorita-cat and US-traffic datasets, which can be attributed to the clear

seasonality (weekly) and lower fluctuation in the category-level retail sales and daily traffic volume

10We did not allocate a specific percentage of domains as validation domains due to the inherent discrepancies between

domains. It is worth noting that a model’s performance on a subset of validation domains does not necessarily ensure

similar performance on test domains.
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Fig. 2. Prediction performance on synthetic datasets with varying ratios of training domains.

data. Cedar consistently outperforms the base models (DeepAR and WaveNet), demonstrating its

effectiveness in real-world scenarios compared to the naive empirical risk minimization method.

When compared to other domain generalization methods, Cedar exhibits the best overall perfor-

mance. GroupDRO and MLDG show unfavorable results on both the point accuracy and range

accuracy metrics. MMD, IDGM, and DANN show promising performance in certain scenarios,

but they do not consistently achieve satisfactory results across all scenarios. Cedar achieves su-

perior results on US-traffic, while on other datasets, Cedar(-D) performs exceptionally well or

exhibits close performance. It indicates that considering the difficulty of each domain by exam-

ining the within-domain performance becomes less effective. This may be due to the existence

of highly regular intra-domain patterns in all domains. It also suggests that there might be other

methods that are potentially better for quantifying the difficulties of domains than just using loss

variance.

4.4 Sensitivity Analysis

Ratio of training domains (M/K). We investigate the impact of different training domain ratios

on our approach’s performance. Figure 2 shows the Q(0.5) results for the base model DeepAR and

the model with our proposed method Cedar, as we vary the training domain ratio from 0.2 to

0.8. The performance of other metrics shows a similar pattern. As the number of training domains

increases, models tend to achieve better performance on test domains. This could be attributed

to the fact that more training domains allow models to digest a greater variety of data, which

enhances their ability to generalize to unseen domains. With fewer test domains, the model might

have already seen similar data during training, leading to better generalization performance.

Cedar generally performs better or shows competitive results in most cases. However, when the

number of training domains is smaller (0.2 and 0.4), we observe that the base model performs more

stable across datasets. This might be because a reduced number of training domains introduces

greater challenges for generalizing to unseen domains. In such scenarios, considering the base

model in the first place could be a safer option.

Values of γ . In Figure 3, we illustrate the impact of different values of γ on the regularization

term RDDD in Cedar by plotting the corresponding validation loss for all datasets. We observe

that the optimal value of γ varies across datasets (typically achieving better results when less than

1), depending on the scale of the loss and the magnitude of differences between domain losses. In

datasets with substantial differences in losses between domains, a smaller γ is preferred to avoid

excessive regularization term optimization at the expense of forecasting performance. Choosing an

appropriateγ is crucial to strike a balance between domain generalization and accurate forecasting

performance at the sample level.
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Fig. 3. Validation loss on all datasets with varying γ values.

Fig. 4. Example forecast loss and regularization curves.

4.5 Convergence Analysis

We analyze the convergence of Cedar applied to DeepAR by recording the forecast losses on train-

ing and validation sets, along with the regularization term. In Figure 4, we plot the curves (RDDD

is multiplied with the hyperparameter γ ) for the US-traffic and Favorita-cat datasets. We see that

Cedar can easily be trained with smooth convergence, witness the decrease in training and vali-

dation loss. For the regularization term, we notice that it continues to decrease on the US-traffic

dataset. It indicates that the regularization is effectively guiding the model to reduce the perfor-

mance discrepancies between domains, promoting better generalization across different domains.

It also implies that the domains have enough similarity or overlap in their data distributions, mak-

ing it easier for the model to generalize across domains. On Favorita-cat, we observe an increasing

pattern of the regularization term, although it still outperforms other methods. This suggests that

the regularization term is effectively guiding the model to adapt to the differences between do-

mains to some extent, even if it does not entirely eliminate the performance discrepancy (possibly

due to the large difference between domains). The increasing pattern may also occur when the

variance of within-domain losses becomes smaller through training.

4.6 Domain Performance Analysis

Cedar regulates the performance across domains during training, preventing overfitting in each

domain and ensuring good generalization on unseen domains. To assess the within-domain per-

formance distributions, we analyze the Stock-volume dataset, which has the smallest number of

domains for better visualization. The results are presented in a boxplot (Figure 5), where the y-axis

represents the loss value and the x-axis corresponds to different domains. Cedar achieves more

even distributions for some training domains (e.g., 6–9), resulting in a more uniform loss distribu-

tion across domains, i.e., less underfitting and overfitting. Moreover, for the test domains, Cedar

demonstrates notable performance improvements across all domains.
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Fig. 5. Forecast performance on training domains and test domains between the base model and Cedar on

Stock-volume.

Fig. 6. Training time analysis on the NT-P dataset with varying model sizes.

4.7 Computational Analysis

We conduct two experiments to evaluate the computational efficiency of Cedar, taking into ac-

count variations in both base forecasting model size and dataset size.

In the first experiment, we analyze the training time of Cedar in comparison with the base mod-

els DeepAR and WaveNet while varying the base model size. These experiments are performed

using the synthetic dataset NT-P with default settings, e.g., a batch size of 64 and a training do-

main ratio of 0.8. Figure 6 displays the increase in training time (per epoch) of Cedar relative to

the base model. We use the average training time of three epochs as the final measurement. We

observe that the additional overhead incurred by Cedar is very small, ranging only within a few

seconds. Furthermore, this overhead exhibited a slight decreasing trend as the model size increases

(i.e., the hidden state size increases). Our generalization approach causes nearly constant time

overhead, demonstrating its effectiveness for larger models. These findings indicate that Cedar

is well-suited for real-world applications with more complex data, which typically require large

models for accurate forecasting.

In the second experiment, we investigate how Cedar performs with larger time series datasets.

We extend the synthetic datasets from NT-P, increasing the length of each domain’s time series

from 500 data points to 1k, 10k, and 100k data points. The training domain ratio (e.g., 0.8) and the

ratios of training, validation, and testing timestamps remain the same as in our main experiments.

To accommodate the larger dataset, we adjust the batch size to 1,024 and increase the hidden

states of the base model to 1,024. The results in Figure 7 show the percentage increase in training

time (per epoch) for Cedar compared to the base model. We also use the average training time of

three epochs as the final measurement. Notably, when the base model is DeepAR, the percentage

increase is consistently less than 9%. For WaveNet, there is some randomness, but the largest

increase percentage remained under 10%. In some cases, Cedar adds almost no additional time
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Fig. 7. Training time analysis on larger NT-P datasets.

Fig. 8. (a) Visualization of partial domain data on the UCI-air dataset, where each sequence represents a

domain and (b) comparison results of our method with the base model.

to the base model. These results highlight the efficiency of Cedar when dealing with larger

datasets.

4.8 Beyond Our Assumptions

Cedar may not work effectively in scenarios that violate our data assumptions. To illustrate this,

we present two negative examples where our method could potentially encounter challenges.

Violating Assumption 1. We conduct an experiment using the UCI_air dataset. This dataset is

built from the Beijing Multi-site Air-quality Dataset, which contains hourly air pollutant data from

12 nationally controlled air-quality monitoring sites from 2013 to 2017.11 Each monitoring site is

considered as a domain, and we use PM2.5 data from 2016-01-01 to 2016-09-10 for training, data

from 2016-09-11 to 2016-12-01 for validation, and the rest of the data up to 2017-02-28 for testing.

Due to a large number of missing values, we convert the data to daily values by averaging over each

hour of the day. The historical window size is 28, and the prediction window is 7. In Figure 8(a), we

observe a high degree of similarity and overlap across different domains, which violates Assump-

tion 1, where ϵl is close to 0. The presence of these highly similar patterns also raises concerns

about the suitability of applying a domain generalization model in this particular context. We show

the comparison results of our method with the two base models in Figure 8(b). The base models

perform better. This finding emphasizes the importance of considering the shared patterns and

differences between domains to design effective domain generalization models (Assumption 1).

11https://www.kaggle.com/datasets/sid321axn/beijing-multisite-airquality-data-set
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Fig. 9. (a) Visualization of partial domain data on the NT-P* dataset, where each sequence represents a

domain and (b) comparison results of our method with the base model.

Violating Assumption 2. Assumption 2 assumes that the time series data should not exhibit

abrupt distribution shifts within each domain. To test this assumption, we apply a straightfor-

ward method to manipulate the synthetic dataset NT-P by introducing random mean shifts within

different segments while keeping other properties unchanged. A portion of the manipulated data

NT-P* is presented in Figure 9(a), and the comparison results are shown in Figure 9(b). Our obser-

vations reveal that when the base model is DeepAR, the performance differences between Cedar

and the base model are relatively minor, with the base model performing slightly better. However,

for the base model WaveNet, Cedar struggles to produce favorable results. When considering do-

main difficulties in the regularization, the results become much less stable. This outcome can be

attributed to the fact that the factors considered for training, which address domain difficulties,

do not effectively apply to unseen domains that may exhibit substantial disparities. When time

series data involve abrupt changes or significant distribution shifts (i.e., scenarios that contradict

Assumption 2), some researchers [15, 39] propose characterizing temporal distributions to segment

time series based on distribution differences, thus establishing distinct domains. Their characteri-

zation method presents a potential solution to address the limitations of our current approach. We

leave further analysis of this potential enhancement for future research.

5 CONCLUSION

We have presented Cedar, a novel approach to address the problem of domain generalization in

time series forecasting. By incorporating predefined assumptions about cross- and within-domain

patterns, we introduce two novel regularization methods to improve forecasting performance

across different time series domains. Through comprehensive experiments conducted on both syn-

thetic and real-world time series datasets, we have systematically compared our method against

several state-of-the-art approaches, demonstrating its effectiveness. Cedar has advantages such

as applicability to various forecasting models and potential use in non-time series regression prob-

lems. It can be used to enhance decision-making processes and optimize resource allocation by

improving overall forecasting accuracy across diverse domains, thereby offering practical and ben-

eficial applications in various fields.

Cedar has demonstrated its effectiveness based on two important assumptions about the data.

However, when these assumptions are violated, its performance drops (Section 4.8). How can we

overcome this limitation and achieve generalization in such cases? Another important line for fu-

ture work is to develop adaptive regularization techniques that can dynamically adjust to different

time series data characteristics and domain shifts.
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