
12

Local Variational Feature-Based Similarity Models

for Recommending Top-N New Items

YIFAN CHEN, University of Amsterdam, The Netherlands

YANG WANG, Key Laboratory of Knowledge Engineering with Big Data, Ministry of Education,

Hefei University of Technology, China

XIANG ZHAO, National University of Defense Technology, China

HONGZHI YIN, University of Queensland, Australia

ILYA MARKOV and MAARTEN DE RIJKE, University of Amsterdam, The Netherlands

The top-N recommendation problem has been studied extensively. Item-based collaborative filtering recom-

mendation algorithms show promising results for the problem. They predict a user’s preferences by esti-

mating similarities between a target and user-rated items. Top-N recommendation remains a challenging

task in scenarios where there is a lack of preference history for new items. Feature-based Similarity Models

(FSMs) address this particular problem by extending item-based collaborative filtering by estimating similar-

ity functions of item features. The quality of the estimated similarity function determines the accuracy of the

recommendation. However, existing FSMs only estimate global similarity functions; i.e., they estimate using

preference information across all users. Moreover, the estimated similarity functions are linear; hence, they

may fail to capture the complex structure underlying item features.

In this article, we propose to improve FSMs by estimating local similarity functions, where each function

is estimated for a subset of like-minded users. To capture global preference patterns, we extend the global

similarity function from linear to nonlinear, based on the effectiveness of variational autoencoders. We pro-

pose a Bayesian generative model, called the Local Variational Feature-based Similarity Model, to encapsulate

local and global similarity functions. We present a variational Expectation Minimization algorithm for effi-

cient approximate inference. Extensive experiments on a large number of real-world datasets demonstrate

the effectiveness of our proposed model.

CCS Concepts: • Information systems → Recommender systems; Personalization; • Computing

methodologies→ Learning latent representations;

Additional Key Words and Phrases: Top-N recommendation, item cold-start, item feature, deep generative

model

This research was partially supported by Ahold Delhaize, the Association of Universities in the Netherlands (VSNU), the

China Scholarship Council, the National Natural Science Foundation of China with no 61806035 and 61872446, the Nat-

ural Science Foundation of Hunan under grant No. 2019JJ20024, the Netherlands Institute for Sound and Vision, and the

Netherlands Organisation for Scientific Research (NWO) under project nr CI-14-25. All content represents the opinion of

the authors, which is not necessarily shared or endorsed by their respective employers and/or sponsors.

Authors’ addresses: Y. Chen, I. Markov, and M. de Rijke, University of Amsterdam, Amsterdam, The Netherlands; emails:

{y.chen4, i.markov, derijke}@uva.nl; Y. Wang (corresponding author), Key Laboratory of Knowledge Engineering with Big

Data, Ministry of Education, Hefei University of Technology, Hefei, China; email: yangwang@hfut.edu.cn; X. Zhao, Na-

tional University of Defense Technology, Changsha, China; email: xiangzhao@nudt.edu.cn; H. Yin, University of Queens-

land, Brisbane, Australia; email: db.hongzhi@gmail.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

1046-8188/2020/02-ART12 $15.00

https://doi.org/10.1145/3372154

ACM Transactions on Information Systems, Vol. 38, No. 2, Article 12. Publication date: February 2020.

mailto:permissions@acm.org
https://doi.org/10.1145/3372154

12:2 Y. Chen et al.

ACM Reference format:

Yifan Chen, YangWang, Xiang Zhao, Hongzhi Yin, Ilya Markov, andMaarten de Rijke. 2020. Local Variational

Feature-Based Similarity Models for Recommending Top-N New Items. ACM Trans. Inf. Syst. 38, 2, Article 12

(February 2020), 33 pages.

https://doi.org/10.1145/3372154

1 INTRODUCTION

Top-N recommendation systems expose users to a limited number of items that reflect themost rel-

evant items a user has not yet rated. This helps users copewith large volumes of information. Exist-

ing methods for this task broadly fall into two categories: latent space methods and neighborhood-

based methods. Latent space methods [20] learn a low-rank factorization of the user-item matrix

into user and item factor matrices, representing both the users and the items in a common latent

space. Neighborhood-based methods [22] (user based or item based) focus on identifying similar

users/items, where item-based neighborhood methods demonstrate better top-N recommendation

performance than user-based ones [17, 18, 38, 50]. Item-based neighborhood methods can be fur-

ther categorized into two classes: memory based [22, 58] and model based [38, 50]. Memory-based

methods compute similarities between items based on statistical measures, such as Pearson coeffi-

cient and cosine similarity. However, recommendations based on such heuristic-based approaches

are usually inferior. Compared to memory-based methods, model-based methods, often known

as similarity models, achieve state-of-the-art performance on the top-N recommendation task by

learning similarities from data [38, 50].

It remains a challenging task to recommend top-N cold-start items, that is, recommending N
items to users from a set of new items. The problem of recommending top-N new items is sig-

nificant because new items are continuously observed: new products are introduced, new books

and articles are written, and news stories break. Conventional similarity models cannot generate

a recommendation in a cold-start setting [1, 5, 6, 28, 59]. The cold-start problem strongly impacts

recommendation performance and the user experience; hence, it attracts much attention from the

research community [16, 67]. Feature-based Similarity Models (FSMs) address the problem by ex-

tending similarity models to utilize auxiliary information associated with items, i.e., item features,

where item similarity is calculated using item features. FSMs have demonstrated their effectiveness

for recommending top-N new items [26, 62].

Existing FSMs have the following limitations:

• They estimate global similarity functions only. Existing FSMs exploit information across all

users to estimate the similarity function, thus assuming that items have the same similarities

for all users. In many real-world applications, item similarities should be better identified

within subsets of users [17, 63], especially when a large number of users are involved. In

fact, there could be a pair of items that are extremely similar for a specific subset of users,

while they have low similarity for another subset of users. Existing FSMs fail to capture

item similarities w.r.t. a specific aspect that is only of interest to a subset of like-minded

users.

• The estimated similarity functions are linear. Linear similarity functions fail to capture the

complex structure underlying item features. Item similarities measured by linear functions

can also be inaccurate, especially when item features are sparse.

To overcome these limitations of existing FSMs, we propose to model local aspects of items that

are of interest for a subset of users and extend the linear similarity function to a nonlinear one.

Specifically, we first identify user subsets via clustering, where userswithin the subset share similar

ACM Transactions on Information Systems, Vol. 38, No. 2, Article 12. Publication date: February 2020.

https://doi.org/10.1145/3372154

Local Variational Feature-Based Similarity Models for Recommending Top-N New Items 12:3

preferences. For each user subset, we estimate a local similarity function. Motivated by the success

of deep learning in the context of collaborative filtering [43, 73], we also estimate a global similarity

function that encodes item features into deep representations to measure item similarity in a latent

space. Local similarity functions capture specific aspects of items, and the global similarity function

encodes more abstract properties of items. The combination of local and global similarity functions

captures feature-based item similarities from different perspectives.

One challenging task is how to combine deep learning with item collaborative filtering and

user clustering: (1) deep learning requires the inputs to be i.i.d. [73]—therefore, it is difficult for

deep models to capture implicit relationships among items, which is crucial for item collaborative

filtering, and (2) deep learning is rarely applied to clustering problems—typically, deep-learning-

based methods are used for dimensionality reduction, followed by classical clustering techniques

applied to the resulting low-dimensional space [79].

We address the challenge of combining deep learning with item collaborative filtering and user

clustering by introducing a Bayesian generative model [39, 69]. We propose a Local Variational

Feature-based Similarity Model (LVSM) that integrates deep learning with user clustering and col-

laborative filtering for top-N cold-start item recommendation. Inference for LVSM is challenging

due to the complex entanglement of variables and the nonlinear structure within the deep net-

work. Therefore, we conduct variational inference. Existing deep learning for collaborative filter-

ing methods introduces offset variables on top of latent item representations, which can facilitate

variational inference [44, 73]. However, for new items, the offset cannot be inferred due to the ab-

sence of ratings. In order to recommend new items, they simply ignore the offset, which brings bias

between the rated items and new items. Unlike these methods, LVSM assumes that the generation

of user ratings depends directly on the latent item representations. However, this also brings an

extra difficulty for inference. We derive the Evidence Lower Bound (ELBO) with approximations,

based on which ELBO can be efficiently optimized through a variational EM procedure.

The contributions of our article can be summarized as follows:

• We propose a deep generative model, LVSM, to address the item cold-start top-N recom-

mendation problem. The model can capture local aspects of items and measure global item

similarity based on deep representations extracted from item features.

• To address the difficulty of optimizing LVSM, we perform variational inference and derive

the ELBO. Given this approximation, LVSM can be optimized efficiently.

• We conduct comprehensive experiments to demonstrate the effectiveness of LVSM, yielding

important insights into how it generates robust recommendations with a large fraction of

cold-start items and sparse item features.

The remainder of the article is organized as follows. We introduce preliminaries in Section 2. We

review related work in Section 3. We propose our model, LVSM, in Section 4 and then conduct

variational inference in Section 5. Section 6 and Section 7 describe our experimental setup and

results. We conclude the article in Section 8.

2 PROBLEM DEFINITION

In this work, we consider the cold-start top-N recommendation problem, i.e., the problem of rec-

ommending items that have been neither seen nor rated by users. The problem is defined as fol-

lows: given a set of new items (rating information for these items from users is entirely missing)

and their features (characteristics such as genre, product categories, keywords, etc.), recommend

each user with the top-N items selected from the new items. We assume general contents as item

features, which can be textual but do not necessarily have to be.

ACM Transactions on Information Systems, Vol. 38, No. 2, Article 12. Publication date: February 2020.

12:4 Y. Chen et al.

To recommend new items, standard cold-start recommender systems work as follows [26, 62]:

1. For a given user, predict his or her preference scores for all new items; the preference scores

are predicted using some models.

2. For this user, the new items are sorted using the predicted scores in nonincreasing order;

the N items at the top of the sorted list are recommended to him or her.

3. Repeat 1. and 2. for each user in the system.

Next, we introduce the relevant notation. We writem, n, d for the number of users, items, and

item features, respectively. We refer to Y as the preference matrix; yui represents the rating of

user u to item i . In many scenarios, user ratings are in the form of implicit feedback, such as

purchase history, watching habits, browsing activity, and so forth. Following the common setting

for implicit feedback [23], we assume that user ratings are binarized [35, 52, 70]. We refer to the

item feature matrix asX . Then, x i represents the feature vector for item i and xi j represents the jth
feature of item i . We assume numerical values for item features; in this way, we are able to handle

various multimedia features [44]. The notation used to describe LVSM as well as other models is

summarized in Table 1.

3 RELATEDWORK

The idea of estimating multiple local models together with a global model has previously been

found to be effective for many recommendation tasks, including rating prediction in both gen-

eral [40] and cold-start settings [63] and top-N recommendation [17, 18]. The broader message

of this article is that we extend the effectiveness of the idea to top-N recommendation in a cold-

start setting. LVSM is specifically designed for recommending top-N new items. Besides reviewing

models specifically designed for this problem, we review related work concerning a broader scope,

e.g., methods designed for cold-start recommendation.

To recommend items to new users, side information associating with users is utilized [27], e.g.,

contextual information [46], profiling [60], social networking [10, 84], and social media [90, 91].

However, this additional information is not always available due to privacy issues. When con-

fronted with the challenging task that user side information is not available, interview-based rec-

ommenders are studied, where a small number of items are selected as questions, and a new user is

required to answer these questions [19, 45, 63]. Similar to interview-basedmethods, active learning

methods have also been applied to tackle user cold-start recommendation [25].

We review cold-start item recommendations in detail. Although they are originally designed

for rating prediction over new items, they can also provide a top-N recommendation from new

items. Naively, new items may be recommended to users based on their popularity [53] or based

on a random selection [45]. The accuracy of these methods is low as they cannot provide person-

alized recommendations. Alternative methods have been proposed to warm up cold-start items

by forcing several representative users to rate them [19, 45]. In recent years, there has been an

increase in interest in utilizing other rich sources associated with items along with the rating ma-

trix to increase the accuracy of the recommendation [3, 27, 76, 83], and in dealing with cold-start

challenges. Although many other hybrid methods [49, 55, 65] also utilize item features, they are

specifically designed to address the data sparsity problem and fail to cope with cold-start item

problems, which is the main focus of this article.

Next, we discuss work that utilizes item features, namely so-called feature-based methods.

3.1 Feature-Based Methods

Based on how the rating of user u for new item i , i.e., yui , is generated, different models have been

proposed. Here, we review four common methods, respectively User Modeling (UM), Latent Factor

ACM Transactions on Information Systems, Vol. 38, No. 2, Article 12. Publication date: February 2020.

Local Variational Feature-Based Similarity Models for Recommending Top-N New Items 12:5

Table 1. Notation Used in This Article

Notation Description

S
e
ts

a
n
d
n
u
m
b
e
rs

U Set of users

I Set of items

R+u Set of items rated by user i
R+u−i Set of items rated by user u excluding item i
m Number of users, i.e., |U |
n Number of items, i.e., |I |
d Number of item features

c Number of user groups

nu Number of items rated by user i , i.e., |R+u |
nu−i Number of items rated by user i excluding item j, i.e., ���R+u−i ���

V
a
ri
a
b
le
s

Y ∈ Rm×n User rating matrix

X ∈ Rn×d Item feature matrix

V ∈ Rn×h Latent item representation matrix

x i ∈ Rd Feature vector of item i
vi ∈ Rh Latent representation of item i

h
inf
i Hidden variables of item i in the inference network

h
gen
i Hidden variables of item i in the generation network

yui Rating of user u for item i
si j Similarity between item i and item j
zu Indicator of the group for user u

P
a
ra
m
e
te
rs

Θ Parameters of the generative model

Φ Parameters of the inference model

θ Parameters of the generation network

ρ Parameters of the inference network

Ω Parameters of feature weights

ωk ∈ Rd Parameters of feature weights for the kth user group

π ∈ Rm×c Variational parameters of Z

The first section of the table summarizes the notation regarding sets and numbers. The second

section contains our notation for variables. The third section lists our notation for parameters.

Model (LFM), Item Feature Mapping (IFM), and Feature-based Similarity Model (FSM). We describe

each category of models and depict them as probabilistic graphical models in Figure 1.

User Modeling (UM). One of the earliest approaches for identifying which of the new items

may be relevant to a user is user modeling [4, 21, 29, 87]. These methods learn to generate

personalized recommendations by formulating the task as a classification or regression problem.

While they provide personalized recommendations, they are generally regarded as content-based

filtering methods, which fail to take advantage of collaborative filtering. Later, factorization

machines [12, 57] have been proposed to capture feature interactions. Factorization machines

can utilize item features and can be categorized as User Modeling (UM) in the scenario of item

cold-start recommendation.

Latent Factor Model (LFM). Latent Factor Models (LFMs) provide a better way to utilize item

features that take recent advances in matrix factorization methods into account [1, 51, 56, 59,

64, 93]. Rating and item feature matrices are simultaneously decomposed, sharing latent item

factors. However, LFM requires a large parameter space, especially when item features are

ACM Transactions on Information Systems, Vol. 38, No. 2, Article 12. Publication date: February 2020.

12:6 Y. Chen et al.

Fig. 1. Overview of existing feature-based methods represented as probabilistic graphical models. bu : pa-
rameters associated with user u. pu ,vi ,qj : latent factors associated with user u, item i , and feature j. x i ,x j :
feature vector for item i, j. xu : feature vector for user u, defined as xu =

∑
j ∈R+u−i x j . ω: parameters for

similarity function.

high-dimensional. LFM also shares item factors across different contexts [36]. This is problematic

as item factors that are cold-start in the context of user ratings will be learned mainly based on

data from the context of item features that are not cold-start, and therefore the item factors are

not properly learned in an item cold-start setting.

Item Feature Mapping (IFM). An alternative type of feature-based model is Item Feature Mapping

(IFM). To recommend new items, several authors [28, 71, 85] propose to form a regression model

by utilizing item features. Unlike UM, they first learn a mapping function to project item features

into a common latent space as a user factor. Wang and Blei [71] propose an IFM based on topic

modeling. A recent trend is to extract deep latent item factors for collaborative filtering [31, 68,

75]. Autoencoders have recently been studied to learn item representations from content [44, 73].

Item representations are used as regularizations for item factors.

Feature-based Similarity Model (FSM). FSMs have been shown to achieve state-of-the-art perfor-

mance for recommending top-N new items [2, 9, 22, 26, 38, 50, 62]. FSMs learn similarity functions,

measuring item similarities based on item features. The similarity functions are estimated across

all users, exploiting the effectiveness of item collaborative filtering. Existing FSMs estimate lin-

ear or bilinear similarity functions [26, 62]. As LVSM, our proposed method, follows the general

framework of FSMs, we now discuss FSMs in more detail.

3.2 Feature-Based Similarity Models

FSMs attempt to predict a rating score yui of user i for a new item j by defining

ỹui =
∑

j ∈R+u−i
sim(i, j), (1)

where R+u−i is the set of items rated by user i excluding item j; sim(i, j) is a similarity function that

measures the similarity between x i and x j . When sim(·) is linear or bilinear, Equation (1) can be

rewritten as

ỹui = sim(u, i). (2)

Here, sim(u, i) measures the similarity of xu and x i , where xu =
∑

j ∈R+u−i x j . There are several

definitions for the similarity function sim(·). One of the most intuitive ones is to calculate the dot

product [22]:

sim(u, i) = xTux i . (3)

The similarity function defined in Equation (3) has several drawbacks:

(1) Learning free: the similarity function is predefined; it does not utilize historical preferences

in order to estimate a similarity function that better predicts the observed preferences.

(2) Equal weights: the features are treated equally when measuring item similarity.

ACM Transactions on Information Systems, Vol. 38, No. 2, Article 12. Publication date: February 2020.

Local Variational Feature-Based Similarity Models for Recommending Top-N New Items 12:7

(3) Noncollaborative: the rating score that is computed for a new item w.r.t. user u relies en-

tirely on the set of items previously liked by u, and as such it does not use information

from other users.

To overcome these drawbacks, Personalized Feature Weighting (PFW) [9] has been proposed; it

introduces personalized weightsωu for item features:

sim(u, i) = ωT
u (xu ◦ x i), (4)

where ◦ is the element-wise product between vectors. PFW introduces learning parameters to the

model and weighs features to provide personalized recommendations. However, PFW also fails to

take advantage of collaborative filtering asωu is optimized separately for each user. Later, the User-

specific Feature-based Similarity Model (UFSM) [26] was introduced, which defines sim(i, j) as

sim(u, i) =
c∑

k=1

πukω
T
k (xu ◦ x i). (5)

Equation (5) defines c global similarity functions (ω1, . . . ,ωc) and user-specific contributions

of each global similarity function (πu1, . . . ,πuc). User-specific Feature-based Similarity Model

(UFSM) exploits item collaborative filtering by estimating {ωk } across all users. However, UFSM
fails to take into consideration interactions among features. UFSM considers item features

independently. Hence, the similarity measured this way could be inaccurate, especially when

features are high-dimensional and sparse, where two items might share few common features. To

capture feature interactions, a Feature-based factorized Bilinear Similarity Model (FBSM) [62] has

been proposed, where sim(u, i) is defined as

sim(u, i) = xTuDx i + x
T
u FF

Tx i , (6)

where D and FFT approximate the diagonal and off-diagonal of the feature interaction matrix,

respectively. While UFSM and FBSM demonstrate superior performance for item cold-start top-N
recommendations, the linearity of both models has restricted their expressiveness. Both methods

estimate similarity functions from information across all users, rather than subsets of like-minded

users, thus failing to capture local aspects.

3.3 Local Collaborative Filtering

Clustering has been widely studied for collaborative filtering [8, 30, 41, 74, 80, 81, 89]. Previous

methods cluster users or items based on user ratings into subgroups and then train a local model

separately for each cluster. The results from all subgroups are aggregated to produce recommen-

dations.

Christakopoulou and Karypis [18] propose local latent factor models, where the assignments

of users to subsets are constantly updated. Wang et al. [74] introduce a probabilistic model to

cluster items as topics. Wu et al. [78] propose a mixture model to infer memberships of users or

items to subgroups. Lee et al. [42] describe an iterative way to estimate latent factors, where, first,

latent factors representing the anchor points are estimated, and then, based on similarities of the

observed entries to the anchor points, the latent factors are re-estimated. Christakopoulou and

Karypis [17] explore subsets of users to learn user-specific local item similarity models, which are

combined with a global similarity model.

Unlike these methods, LVSM addresses the problem of recommending new items by combining

user clustering with deep learning.

ACM Transactions on Information Systems, Vol. 38, No. 2, Article 12. Publication date: February 2020.

12:8 Y. Chen et al.

Fig. 2. An illustrative example of LVSM.

3.4 Review-Based Recommendation

User reviews are an important source of information for recommendation; they can help to address

the rating sparsity for collaborative filtering methods [7, 11, 15, 33, 92]. Existing review-based rec-

ommenders show their effectiveness by applying sentiment analysis [54], topic modeling [48, 66],

or aspect extraction [7, 13, 88] to user reviews. By concatenating all the reviews belonging to an

item as item features, these methods can also help to tackle the item cold-start problem [15, 92].

Unlike these methods, we propose to utilize generic item features. We only assume to have sim-

ilarity information instead of the semantic information behind item features. Techniques applied

to user reviews cannot be applied in our setting.

4 LOCAL VARIATIONAL FEATURE-BASED SIMILARITY MODELS

4.1 Overview

In this article, we study the problem of recommending top-N new items to users. The solution

provided in our work falls into the cold-start recommendation framework introduced in Section 2,

and we contribute a more effective model for predicting scores for new items. Specifically, we pro-

pose a Bayesian generative model, an addition to the family of FSMs, namely the Local Variational

Feature-based Similarity Model (LVSM). LVSM extends linear similarity functions to nonlinear ones

by learning a global similarity function via a variational autoencoder (VAE) [39]. LVSM also iden-

tifies user groups and learns the corresponding local similarity functions. Figure 2 gives an illus-

trative example to describe how LVSM works. Figure 2(a) depicts a rating matrix, where rows are

users and columns are items. The dotted areas indicate the rated items by users. New items are on

the right of the red dashed line. For the rated items on the left of the red dashed line, some have been

rated by all users (global), and some have been rated only by users in group A or group B (local).

Given a user u and his or her history of rated items, LVSM calculates local and global similarities

between the new item i and user-rated items 1,5,9 (Figure 2(b)). Here, s (1)ji , s
(2)
ji are the local similari-

ties between i and j based on users from groupA and B; s (0)ji is the global similarity. We assume user

u is from group A. Thus, we formulate the prediction as ỹui = α (1)
ui + α

(0)
ui =

∑
j ∈{1,5,9} (s

(1)
ji + s

(0)
ji).

ACM Transactions on Information Systems, Vol. 38, No. 2, Article 12. Publication date: February 2020.

Local Variational Feature-Based Similarity Models for Recommending Top-N New Items 12:9

The rating matrix portrayed in Figure 2(a) shows two distinct user groups. Learning a local

model for each user group is beneficial for fitting the data. The two groups also have overlapping

ratings. Therefore, the combination of global and local models can better capture user behavior.

As we only cluster users (clustering items is possible but beyond the scope of this article), a single

global model is enough to capture the overlapping ratings.

For the generality of LVSM, we assume item features to be generic contents; that is, we do not

presume the availability of semantic information behind the features. Therefore, the embedding

layers that utilize word embeddings are excluded from LVSM.

4.2 Model Description

Modeling ratings. We start by modeling ratings. As we assume that user ratings are binarized,

we define the rating yui to follow a Bernoulli distribution:

yui ∼ Bernoulli(σ (ỹui)), (7)

where σ (·) is the sigmoid function and ỹui is the predicted score. We propose to compute ỹui by

ỹui = α (0)
ui + α

(zu)
ui ,

where zu ∈ {1, . . . , c} is a variable that indicates which group user u belongs to. Furthermore, α (0)
ui

and α (zu)
ui are the scores calculated based on the global similarity function and the zu th local simi-

larity function. Following FSM, we assume that α (k)
ui is calculated by aggregating item similarities:

α (k)
ui =

∑
j ∈R+u−i

s (k)ji , ∀k ∈ {0, . . . , c}, (8)

where R+u−i is the set of items that are rated by user u excluding item i , and si j is the similarity

between item i and j. The motivation for excluding item i is based on the estimation constraint [38]

that known rating information for a particular user-item pair yui is not used when the rating for

that item is being estimated. Therefore, ỹui can be computed by

ỹui =
∑

j ∈R+u−i
s (0)ji + s

(zu)
ji . (9)

We combine s (0)ji and s (zu)ji , linearly and equally, following [62], where the local and global similar-

ity functions capture the diagonal and off-diagonal feature interactions (Equation (6)). The linear

combination is especially useful for inference; we can derive the expectation ofα (k)
ui (Equation (26)).

Modeling global similarities. Inspired by Equation (6), we define the global similarity function to

capture feature interactions. Recently, several publications have explored Deep Neural Networks

(DNNs) to learn nonlinear feature interactions [14, 34, 61, 86]. However, capturing feature inter-

actions by these methods is not suitable for the global similarity function as they do not have a

Bayesian nature, which complicates combinations with item-based CF. Instead, we utilize a varia-

tional autoencoder (VAE) [39]. Then, the global similarity function is defined as the inner product

of latent item representations learned by the variational autoencoder (VAE):

s (0)i j = sim0 (x i ,x j) = fρ (x i)
T fρ (x j) = v

T
i v j , (10)

where vi ,v j are the latent representations of item i, j, respectively; fρ (·) stands for the inference
network of VAE, which is parameterized by ρ. As suggested by the VAE, we use a unit Gaussian

prior forvi :

vi ∼ N (0, I). (11)

ACM Transactions on Information Systems, Vol. 38, No. 2, Article 12. Publication date: February 2020.

12:10 Y. Chen et al.

Note that vi and v j are used directly to calculate the similarity, rather than introducing offset

variables like [44, 73]. This is because the offset cannot be inferred for new items. However, this

complicates inference as the DNN is directly coupled with the model. Fortunately, we can derive

an efficient inference thanks to the linear combination in Equation (9).

Modeling local similarities. We define the local similarity function with respect to the kth user

group by:

s (k)i j = simk (x i ,x j) = ωT
k (x i ◦ x j), (12)

where ◦ is the element-wise product between vectors;ωk is the feature weight vector for the kth
user group, where we use a Gaussian prior:

ωk ∼ N
(
0, λ−1ω I

)
. (13)

Given user u, the local similarity will be calculated based on which group u belongs to, denoted

by zu . As zu is discrete, we use a multinomial distribution for zu . As we presume no information

about which group users belong to, we assume equal probabilities:

zu ∼ Multi(1/c). (14)

Modeling item features. The item featurex i is generated from its latent representationvi through

a DNN. LetWl and bl be the parameters associated with the l-layer of the DNN. Following [44,

73], we modelWl and bl with a Gaussian distribution:

Wl ∼ N
(
0, λ−1W I

)
, bl ∼ N

(
0, λ−1b I

)
. (15)

The output of each layer hl also follows a Gaussian distribution:

hl ∼ N
(
ϕ
(
hTl−1Wl + bl

)
, I
)
. (16)

The feature x i is generated from the last layer output hL . Depending on what type of data the

item feature is, x i can be assumed to be generated from a multivariate Bernoulli distribution if it

is binary, or it can be generated from a Gaussian distribution if it is a real number:

x i ∼
{
Bernoulli (σ (hL)), if x i is binary,
N (hL, λ−1h I), if x i is real.

(17)

The overall generation procedure is as follows:

(1) For each layer l = 1, . . . ,L,
(a) draw the parameterWl ∼ N (0, λ−1W I);

(b) draw the bias bl ∼ N (0, λ−1
b
I).

(2) For each item i ∈ I,
(a) draw item representationvi ∼ N (0, I);
(b) draw hidden layer h1 ∼ N (ϕ (vT

i Wl + bl), λ
−1
h
I), where ϕ (·) is the activation function;

(c) for each layer l = 2, . . . ,L, draw hidden layer hl ∼ N (ϕ (hTi−1Wl + bl), λ
−1
h
I);

(d) draw item feature x i ∼ Bernoulli (σ (hL)) if x i is binary or x i ∼ N (hL, λ−1x I) if x i is
real, where σ (·) is the sigmoid function.

(3) For each user u ∈ U , draw zu ∼ Multi(1/c).
(4) For each user group k = 1, . . . , c , drawωk ∼ N (0, λ−1ω I).
(5) For each user-item pair (u, i),u ∈ Y , drawyui ∼ Bernoulli (σ (ỹui)), where ỹui is calculated

based on Equation (9).

Once the model is optimized, we can predict the score of a new item i for user u throughout the

inference of user rating ỹui .

ACM Transactions on Information Systems, Vol. 38, No. 2, Article 12. Publication date: February 2020.

Local Variational Feature-Based Similarity Models for Recommending Top-N New Items 12:11

5 MODEL OPTIMIZATION

In this section, we describe an optimization method for LVSM, i.e., how to optimize the parameters

Ω = {ω1, . . . ,ωc } for the similarity functions and the parameter θ for the generation network. Let

Θ = {Ω,θ }. We performMaximumA Posteriori (MAP) estimation to infer LVSM by optimizing the

following posterior:

p (Θ | X ,Y) � p (Θ,X ,Y)
= p (X ,Y | Θ)p (Θ)
= p (Θ)

∫
V

∑
Z

p (V ,Z ,X ,Y | Θ)dV .
(18)

The posterior in Equation (18) is intractable for exact inference, as the marginalization of latent

variables is extremely difficult, due to the complex entanglement of variables and the nonlinear

structure of the deep network. Therefore, we turn to approximate inference algorithms. Based on

the idea of VAE, we perform variational inference for LVSM.We first write the log-joint likelihood

of LVSM:

logp (V ,Z ,X ,Y | Θ) = logp (Y | V ,X ,Z ,Ω)

+ logp (X | V ,θ)
+ logp (V)

+ logp (Z).

(19)

We model the variational distribution of latent variables as q(V ,Z | Φ), where Φ is the set of vari-

ational parameters. The Evidence Lower Bound (ELBO) [82] is given as

L (Θ,Φ;q) = Eq [logp (V ,Z ,X ,Y | Θ) − q(V ,Z | Φ)] + logp (Θ).
Given the ELBO, we can thus find approximate empirical Bayes estimates for LVSM via an alter-

nating variational EM procedure that maximizes a lower bound w.r.t. the variational parameters

Φ and then, for fixed values of the variational parameters, maximizes the lower bound w.r.t. the

model parameters Θ. We summarize the variational EM algorithm in Algorithm 1.

ALGORITHM 1: Variational EM Algorithm

1 t ← 0;

2 Θ(0) ← randomly initialize parameters;

3 while not converge do

4 Φ(t) ← argmaxΦ L (Θ(t) ,Φ;q), see Section 5.2; /* E-step */

5 Θ(t+1) ← argmaxΘ L (Θ,Φ(t) ;q), see Section 5.3; /* M-step */

6 t ← t + 1;

5.1 Variational Inference

We discuss in detail how to derive the ELBO. For the variational distributions, we assume

zu ∼ Multi(πu), vi ∼ N
(
μi ,ς

2
i

)
.

Based on the mean-field assumption, we fully factorize q(V ,Y ,Z | Φ):

q(V ,Y ,Z | Φ) =
m∏
u=1

q(zu | πu)
n∏
i=1

q
(
vi | μi ,ς2i

)
,

ACM Transactions on Information Systems, Vol. 38, No. 2, Article 12. Publication date: February 2020.

12:12 Y. Chen et al.

where π = {πu }, ρ = {μi ,ς2i } are the free variational parameters. The number of parameters to

optimize grows with the number of users and items, which becomes a bottleneck for real-world

applications with millions of users and items. To address this issue, we utilize a variational autoen-

coder (VAE) [39] to replace individual parameters {μi ,ς i } with a data-dependent function through
an inference network parameterized by ρ, i.e., fρ (x i), where ρ is independent of samples and thus

the scale of ρ is free from n; ρ consists of the parameters of the inference network, which is de-

signed to have an identical neural network structure with the generation network parameterized

by θ .
Therefore, the ELBO is given as

L (q;Θ,Φ) =
m∑
u=1

n∑
i=1

c∑
k=1

πukEqρ [logp (yui | X ,V ,ωk)]

+

n∑
i=1

Eqρ [logp (x i | vi ,θ)] −KL (q(vi | x i , ρ) ‖ p (vi))

+

m∑
u=1

c∑
k=1

πuk (logp (zu) − logπuk) + logp (Θ),

(20)

where qρ is an abbreviation for q(vi | x i , ρ).
We start from deriving Eqρ [logp (yui | X ,V ,ωk)], which is in the first line of Equation (20):

Eqρ [logp (yui | X ,V ,ωk)] = Eqρ

[
yui logσ

(
ỹ (k)
ui

)
+ (1 − yui) log

(
1 − σ (ỹ (k)

ui)
)]

= yuiEqρ

[
ỹ (k)
ui

]
− Eqρ

[
log
(
exp

{
ỹ (k)
ui

}
+ 1
)]
,

(21)

where ỹ (k)
ui is calculated by Equation (9) with zu = k . It is not easy to infer Eqρ [log(exp{ỹ (k)

ui } + 1)].
Therefore, we approximate it as follows:

Eqρ

[
log
(
exp

{
ỹ (k)
ui

}
+ 1
)]
≈ Eqρ

[
log
(
exp

{
ỹ (k)
ui

})]
= Eqρ

[
ỹ (k)
ui

]
= log exp

{
Eqρ

[
ỹ (k)
ui

]}
≈ log

(
exp

{
Eqρ

[
ỹ (k)
ui

]}
+ 1
)
.

(22)

We then derive the expectation Eqρ [logp (x i | vi ,θ)], which is the first term in the second line of

Equation (20). It is problematic to derive Eqρ [logp (x i | vi ,θ)] due to the nonlinear transformation

within the inference network parameterized by ρ. While we can obtain an unbiased estimate of it

by sampling vi ∼ qρ and perform stochastic gradient ascent to optimize it, the challenge is that

we cannot trivially take gradients with respect to ρ through this sampling process. Therefore, we

apply the reparameterization trick [39], which works as follows in this setting: we first draw a

sample ϵ (l) , which is independent from φ and x i , and then reparameterizevi as follows:

ϵ (l) ∼ N (0, I),

v
(l)
i = μi + ϵ

(l) ◦ ς2i .
(23)

The KL(q(vi | x i , ρ) ‖ p (vi)), which is the second term in the second line of Equation (20), has

an analytical solution:

KL (q(vi | x i , ρ) ‖ p (vi)) =
1

2

(
2 log(ς i) − μ2

i − ς2i
)
. (24)

ACM Transactions on Information Systems, Vol. 38, No. 2, Article 12. Publication date: February 2020.

Local Variational Feature-Based Similarity Models for Recommending Top-N New Items 12:13

Putting Equations (21), (22), (23), and (24) together, we can rewrite the ELBO in Equation (20) as

L (q;Θ,Φ) �
m∑
u=1

n∑
i=1

c∑
k=1

πuk
[
yuiEqρ

[
ỹ (k)
ui

]
− log

(
exp

{
Eqρ

[
ỹ (k)
ui

]}
+ 1
)]
+ logp (Θ)

+
1

L

L∑
l=1

n∑
i=1

logp
(
x i | v (l)

i ,θ
)
− 1

2

n∑
i=1

(
2 log(ς i) − μ2

i − ς2i
)
−

m∑
u=1

c∑
k=1

πuk log πuk ,

(25)

where

Eqρ

[
ỹ (k)
ui

]
= ωT

k (xu ◦ x i) + Eqρ [vi]
T
∑

k ∈R+u−i
Eqρ [v j]. (26)

The reason that we can write Eqρ [ỹ
(k)
ui] as Equation (26) is thatvi andv j are i.i.d. samples gener-

ated from the inference network. It is worth noting that Eqρ [vi] = μi ,Eqρ [v j] = μ j .
Based on the variational inference in this section, we can detail the variational E-step and M-

step, respectively, in Section 5.2 and 5.3.

5.2 Variational E-Step

We update the variational parameter π = {πu } in the E-step. We isolate the optimization problem

for πu as

min
πu

c∑
k=1

πukγuk − πuk logπuk ,

where
∑c

k=1
πuk = 1 and

γuk =
n∑
i=1

πuk
[
yuiEqρ

[
ỹ (k)
ui

]
− log

(
exp

{
Eqρ

[
ỹ (k)
ui

]}
+ 1
)]
. (27)

By introducing the Lagrange multiplier λu , we have

L =
c∑

k=1

(πukγuk − πuk logπuk) − λu ��
c∑

k=1

πuk − 1	
 .
The derivative of L over πuk is

∇πukL = γuk − logπuk − λu − 1.
Applying the Karush-Kuhn-Tucker (KKT) first-order optimality conditions, we have

πuk =
exp(γuk − 1)∑c
k=1

exp(γuk − 1) ,

which provides the desired closed form.

5.3 Variational M-Step

We update the parameters of VAE (ρ and θ) and the parameters of local similarity functions (Ω =
{ωk }) in the M-step. We propose to optimize these parameters through stochastic gradient ascent.

At each time we select a user u and an item i . We write Lui to denote the loss of ELBO regarding

ACM Transactions on Information Systems, Vol. 38, No. 2, Article 12. Publication date: February 2020.

12:14 Y. Chen et al.

u, i:

Lui =

c∑
k=1

πuk
[
yuiEqρ

[
ỹ (k)
ui

]
− log

(
exp

{
Eqρ

[
ỹ (k)
ui

]}
+ 1
)]

+
∑
j ∈R+u

[
Eqφ

[
logp (x j | v j ,θ)

]
− 1

2

(
2 log(ς j) − μ2

j − ς2j
)]
.

(28)

The gradient of Lui w.r.t. μ j ,∀j ∈ R+u is

∇μ jLui =

c∑
k=1

πuk
[
yui − σ

(
Eqρ

[
ỹ (k)
ui

])]
∇μ jEqρ

[
ỹ (k)
ui

]
+

1

L

L∑
l=1

∇
v

(l)
j

logp
(
x j | fθ

(
v
(l)
j

))
+ μ j ,

(29)

where

∇μi Eqρ

[
ỹ (k)
ui

]
=
∑

j ∈R+u−i
μ j ,

∇μ jEqρ

[
ỹ (k)
ui

]
= μi , j ∈ R+u−i .

The gradient of Lui w.r.t. ς j ,∀j ∈ R+u is

∇ς jLui =
1

L

L∑
l=1

∇
v

(l)
j

logp
(
x j | fθ

(
v
(l)
j

))
◦ ϵ (l) − 1

ς i
+ ς i . (30)

The parameters of the generation network (θ) and the inference network (ρ) can be updated

through backpropagation once μ j and ς j have been updated. The gradient of Lui w.r.t. ωk is

∇ωk
Lui = −πuk

[
yui − σ

(
Eqρ

[
ỹ (k)
ui

])]
(xu ◦ x i). (31)

Algorithm 2 summarizes the variational M-step.

ALGORITHM 2: Variational M-step

1 while not converged do

2 for user u ∈ U do

3 i ← randomly select item from R+u ∪ R−u ;
4 for item j ∈ R+u do

5 μ j ,σ j ← generate through inference network;

6 for l = 1 to L do

7 v
(l)
j ← sample according to Equation (23);

8 ∇μ jLui ← calculate according to Equation (29);

9 ∇ς jLi j ← calculate according to Equation (30);

10 μ j ← μ j + η∇μ jLui ;
11 σ j ← σ j + η∇σ jLui ;
12 for k = 1 to c do
13 ∇ωk

Li j ← calculate according to Equation (31);

14 ωk ← ωk + η(∇ωk
Lui − λωωk);

ACM Transactions on Information Systems, Vol. 38, No. 2, Article 12. Publication date: February 2020.

Local Variational Feature-Based Similarity Models for Recommending Top-N New Items 12:15

5.4 Computational Analysis

We analyze the complexity of optimizing LVSM. In the variational E-step (Section 5.2), we calcu-

late πu based on Equation (27), before which we calculate ỹui based on Equation (26). Since the

calculations of πu1 and πu2 are independent, ∀u1 � u2 ∈ U , we can optimize the variational pa-

rameter πu in parallel. Therefore, we only analyze the complexity of computing πu for one user,

which is O (n(d + h |R+u−i |)), where h is the size of item representations.

As the variational M-step (Section 5.3) is optimized via stochastic optimization, we analyze the

complexity of evaluating a single sample, a user-item pair (u, i), i.e., the complexity of calculating

Equation (28), which is O (c (d + h |R+u−i |) + 2|R+u |
∑L
l=1 (hl−1hl)). Here, hl denotes the size of the

lth layer, where h0 = d and hL = h, and the term 2
∑L
l=1 (hl−1dl) is included for the complexity of

the VAE, which has an inference network and a generation network with an identical network

structure.

6 EXPERIMENTAL SETUP

In this section, we detail the experimental setup used to evaluate LVSM.

6.1 Research Questions

We seek to answer the following research questions:

(RQ1) How does LVSM perform on the item cold-start top-N recommendation task?

(RQ2) Does modeling local and global similarities help to improve performance?

(RQ3) What is the impact of feature sparsity on the recommendation performance?

(RQ4) What is the effect of the fraction of cold-start items on the recommendation performance?

(RQ5) How well can LVSM perform on large-scale datasets?

6.2 Datasets

To answer our research questions, we conduct experiments on five datasets, respectively Beauty,

Games, Sports, Kindle, CUL-a, and CUL-t. Beauty, Games, Sports, and Kindle are constructed

from different categories of Amazon products [48]. For each category, the original dataset contains

transactions between users and items, indicating implicit user feedback. We convert the multivari-

ate rating values to 1s and filter out less popular product items and users that appeared in fewer

than three transactions to construct the implicit ratingmatrix. For each dataset, we use the product

reviews as the features of the product items. We extract unigram features from the review articles

and remove stopwords. For Beauty, Games, and Sports, we select the most frequent 8,000 features

as the item features and represent each product item as a bag-of-words feature vector, where fea-

ture value is binarized. We retain the original features of Kindle as we evaluate scalability of LVSM

on Kindle.

CUL-a and CUL-t are datasets of user libraries of articles with different scales and degrees of

sparsity obtained from CiteULike.1 The first dataset, CUL-a, has been collected by Wang and Blei

[71]. The second dataset, CUL-t, has been independently collected by Wang et al. [72] and is even

larger and sparser. Each article in the two datasets has a title and abstract. The content information

of the articles is the concatenation of the titles and abstracts. We follow the same procedure as

in [71] to preprocess the text content information. After removing stop words, the vocabulary for

each dataset is selected according to the tf-idf value of each word.

1http://www.citeulike.org.

ACM Transactions on Information Systems, Vol. 38, No. 2, Article 12. Publication date: February 2020.

http://www.citeulike.org

12:16 Y. Chen et al.

Table 2. Statistics of the Datasets Used

Dataset #User #Item #Feature Rating Density Feature Density Feature Type

Beauty 5,083 11,909 8,000 0.150% 0.528% binary

Games 6,255 10,672 8,000 0.180% 0.324% binary

Sports 6,174 13,257 8,000 0.116% 0.665% binary

Kindle 26,555 22,203 11,308 0.085% 2.011% binary

CUL-a 5,480 11,564 7,988 0.276% 0.838% tf-idf

CUL-t 7,947 7,582 7,715 0.162% 0.224% tf-idf

The statistics of the datasets are presented in Table 2. #User , #Item, and #Feature denote the

number of users, items, and features, respectively. The rating density is calculated as

Rating density =
#Rating

#User × #Item ,
where #Rating is the number of interactions between user and item. It is common that values of

item features are missing, especially when an item feature is high-dimensional, e.g., the bag-of-

words representation from a text. We write 0 for missing feature values. Therefore, we can also

measure the density of features:

Feature sparsity =
#Nonzero

#Item × #Feature ,
where #Nonzero is the number of nonzero feature values.

Note that we binarize feature values for the Amazon datasets (Beauty, Games, Sports, and

Kindle) and calculate tf-idf for CiteULike. The reason is that user reviews are generally noisy in

terms of how they describe items, which might harm the performance of recommendation. We

binarize item features for the Amazon datasets to overcome noise. On the other hand, the features

for CiteULike are extracted from scientific papers, which we assume to be qualified and relevant as

item features. Tf-idf values could well benefit the recommendations. It is also worth noting that tf-

idf values are only suitable for text features, where binary values are applicable for other features,

e.g., item attributes, image pixels, and the like. Experimenting with binary values can demonstrate

the generality of the proposed model.

6.3 Evaluation Protocol

We follow the evaluation methodology of [26, 62] to evaluate the performance of item cold-start

top-N recommendation. Specifically, we split the user rating matrix Y into Ytrain,Yvalid , and Ytest ,
respectively, for training, validating, and testing. We assume that each subset of ratings contains

nonoverlapping items (columns) of Y , so that we can evaluate the performance of recommend-

ing new items as users in Ytrain do not have any preferences for items in Yvalid and Ytest . In this

article, we randomly select 80%, 10%, and 10% items for Ytrain, Yvalid , and Ytest , respectively. For
each user, the cold-start items are sorted in decreasing order and the first N items are returned as

the top-N recommendations for that user. The list of recommended items is validated with Yvalid
and evaluated with Ytest using two metrics: Recall at N (Rec@N) and Discounted Cumulative Gain

at N (DCG@N) [37]. Given the list of top-N recommended items for user u, Rec@N measures

how many of the items liked by u appeared in that list, whereas the DCG@N measures how high

the relevant items were placed in the list. For a fair comparison with the most relevant works,

UFSM [26] and FBSM [62], which also study recommending top-N new items, we follow their def-

inition of DCG@N , which ensures DCG@N to take on values within the [0, 1] interval. Rec@N

ACM Transactions on Information Systems, Vol. 38, No. 2, Article 12. Publication date: February 2020.

Local Variational Feature-Based Similarity Models for Recommending Top-N New Items 12:17

and DCG@N are defined as follows:

Rec@N =
|relevant items ∩ recommended items|

|relevant items| ,

DCG@N = imp1 +
N∑
i=2

impi
log2 (i)

,

where the importance score impi of the items with rank i in the top-N list is

impi =

{
1
N
, if the item at rank i is relevant,

0, otherwise.

The main difference between Rec@N and DCG@N is that DCG@N is sensitive to the rank of

the items in the top-N list. Both Rec@N and the DCG@N are computed for each user and then

averaged over all users.

6.4 Methods Used for Comparison

We evaluate LVSM by comparing it against eight other feature-based models for recommending

new items. We use the categories of models introduced in Section 3.1 to characterize the methods

we consider.

• Feature-based Singular Value Decomposition (SVDFeature) [12]: A feature-based ma-

trix factorization method. For item cold-start recommendation, the rating score yui is esti-
mated as

yui = bu + b
T
i x i + p

T
u

d∑
j=1

xi jw j =

d∑
j=0

b ′jxi j , (32)

where b ′0 = bu ,b
′
t = p

T
uw j , j ≥ 1. Thus, SVDFeature can be categorized as User Modeling

(UM). We utilize the ranking method of SVDFeature for our experiments.

• Simple Cosine-Similarity (coSim) [9]: A memory-based neighborhood method that es-

timates item similarities by cosine similarity based on item features. The preference score

yui is estimated as

yui =
∑
j ∈R+u

xTi x j

|x i | |x j | . (33)

• Personalized Feature Weighting (PFW) [9]: A noncollaborative technique that learns

user models independently. A feature weighting vectorωu of length d is estimated for each

user u to reflect the importance of the different item features for each user. The preference

score yui of user u for item i is estimated as

yui =
∑
j ∈R+u

ωT
u (x i ◦ x j). (34)

• Local Collective Embeddings (LCE) [59]: A typical Latent Factor Model (LFM) that col-

lectively factorizes a user rating matrix and an item feature matrix. For a new item i with
feature x i , the item factorvi is first inferred by solving x i = viW

T , whereW ∈ Rd×h is the

feature factor.

• Neural Semantic Personalized Ranking (NSPR) [24]: A typical IFM that maps item fea-

tures via a DNN. During recommendation, the expectation of item representation vi is in-

ferred from item feature x i via the DNN.

ACM Transactions on Information Systems, Vol. 38, No. 2, Article 12. Publication date: February 2020.

12:18 Y. Chen et al.

Table 3. Methods Used for Comparison

Method Personalized Collaborative Category

SVDFeature [12]
√ √

UM

LCE [59]
√ √

LFM

NSPR [24]
√ √

IFM

CVAE [44]
√ √

IFM

coSim [9]
√

– FSM

PFW [9]
√

– FSM

FBSM [62]
√ √

FSM

UFSM [26]
√ √

FSM

LVSM (this article)
√ √

FSM

• Collaborative Variational Autoencoder (CVAE) [44]: A state-of-the-art IFM. The differ-

ence between NSPR and CVAE is that CVAE learns item representations from item features

via a VAE.

• User-specific Feature-based Similarity Model (UFSM) [26]: A Feature-based Similarity

Model (FSM) that models global aspects by learning multiple global similarity functions.

The user-specific similarity function is calculated by aggregating global similarities with

personalized weights.

• Feature-based factorized Bilinear Similarity Model (FBSM) [62]: A FSM that models

the interaction between features. The interaction matrix is further factorized to reduce the

complexity. The similarity function is defined by Equation (6).

We summarize these methods in Table 3. Note that while all methods can generate personal-

ized recommendations, coSim and PFW fail to take advantage of collaborative filtering. For PFW,

UFSM, and FBSM, we train both a pointwise loss function and a pairwise loss function, where

the model with the pairwise loss function is subscripted with pair , i.e., PFWpair , UFSMpair , and

FBSMpair . We train NSPR with two types of pairwise probability, respectively, logistic probabil-

ity and probit probability, as proposed in [24]; we refer to the respective models as NSPR-L and

NSPR-P. By comparing LVSM1 with FBSM, we can evaluate the effectiveness of nonlinear simi-

larity functions, since the only difference between LVSM1 and FBSM is that LVSM1 utilizes the

nonlinear similarity function to approximate the off-diagonal of the feature interaction matrix of

FBSM.

6.5 Parameter Settings

For LVSMwe fix λW = λb = λh = λω = 0.1 for the prior of parametersp (Θ).We choose a two-layer

Multi Layer Perceptron (MLP) network architecture (50–10 for the inference network and 10–50

for the generation network) with a ReLU activation function [32]. We select a smaller network

scale for CUL-t (10–5 for the inference network and 5–10 for the generation network) as the item

feature of the dataset is extremely sparse so that algorithms easily overfit. For the number of local

aspects, we try c = 1, 2, 3, respectively, and denote the corresponding model as LVSM1, LVSM2,

and LVSM3.

We select the same network structure for CVAE as it also utilizes a VAE. We select a larger scale

for the network of VAE for CVAE as it is used for learning item factors (100–50 for the inference

network and 50–100 for the generation network). We also try to find a smaller network scale for

CVAE on CUL-t but find out that it is not possible to improve the performance. Therefore, we keep

ACM Transactions on Information Systems, Vol. 38, No. 2, Article 12. Publication date: February 2020.

Local Variational Feature-Based Similarity Models for Recommending Top-N New Items 12:19

Table 4. Tuned Parameter Values of Different Methods on Different Datasets

Dataset PFW [9] PFWpair [9] UFSM [26] UFSMpair [26]

μ μ μ1 μ2 λ c μ1 μ2 λ c
Beauty 10 1 0.01 1 0.1 3 1 1 0.1 2

Games 10 0.01 1 0.01 1 1 0.1 1 0.1 2

Sports 0.1 10 1 1 0.01 4 0.1 0.01 1 6

CUL-a 0.1 0.01 1 0.01 1 6 0.1 1 0.01 6

CUL-t 1 1 1 0.01 1 5 0.1 0.01 0.1 5

FBSM [62] FBSMpair [62] NSPR-L [24] NSPR-P [24]

β λ k β λ k λv λu λv λu
Beauty 0.1 0.01 1 0.1 0.01 5 0.1 1 0.5 0.01

Games 0.01 1 10 0.1 0.01 5 0.9 10 0.9 1

Sports 0.01 0.1 5 1 0.01 10 0.9 0.1 0.5 1

CUL-a 0.01 1 1 0.1 0.1 1 0.5 0.1 0.5 0.01

CUL-t 0.01 1 1 0.1 0.1 1 0.9 0.01 0.1 0.01

SVDFeature [12] CVAE [44] LCE [59]

α β k λv λu α β λ k
Beauty 0.01 1 50 0.5 1 0.9 1 0.1 200

Games 0.1 0.1 50 0.5 1 0.5 10 1 200

Sports 0.01 0.01 50 0.9 1 0.5 1 1 500

CUL-a 0.01 0.01 500 0.5 1 0.9 1 0.1 500

CUL-t 0.01 0.01 500 0.9 1 0.9 1 1 500

the same network scale for CVAE over all datasets. Similarly, we also select a two-layer perceptron

(100–50) for NSPR.

For the methods used for comparison, we select the hyperparameters by Rec@10 on the valida-

tion setRvalid . A detailed list of parameter settings is included in Table 4; there, we tune the �2-norm
regularization parameter μ for PFW, which is selected from {0.01, 0.1, 1, 10}. We tune μ1, μ2, λ, and
l for UFSM, where μ1, μ2, λ are selected from {0.01, 0.1, 1, 10} and l from {1, 2, 3, 4, 5, 6}. We tune

β, λ, and k for FBSM, where β, λ are selected from {0.01, 0.1, 1, 10} and k from {1, 5, 10, 20}. We tune

λ1 and λ2 for SVDFeature, which, respectively, stand for the regularization parameter of the user

factor and the item factor; both λ1 and λ2 are selected from {0.01, 0.1, 1, 10}. We also tune the latent

dimension k for SVDFeature, which is selected from {50, 100, 200, 500}. We tune α , β, λ for LCE,

where α balances the importance of user rating and item feature, which is within [0, 1]; we select
α from {0.1, 0.2, . . . , 0.9} and β, λ from {0.01, 0.1, 1, 10}. We also tune the latent dimension k for

LCE, which is selected from {50, 100, 200, 500}. We tune λv and λu for CVAE; λv controls the con-

tribution of latent item representation to item factor, which we select from {0.1, 0.2, . . . , 0.9}; λu is

the regularization for user factor, which we selected from {0.01, 0.1, 1, 10}. Similarly, we also tune

λv and λu for CVAE, which are selected from {0.1, 0.2, . . . , 0.9} and {0.01, 0.1, 1, 10}, respectively.
6.6 Experiments

To answer our research questions, we conduct different sets of experiments:

• To answer RQ1, we generate the top-N recommendations of new items by comparing all

baselines with LVSM on Beauty, Games, Sports, CUL-a, and CUL-t (Section 7.1).

• To answer RQ2, we run incremental experiments on the Beauty, Games, CUL-a, and CUL-t

datasets to evaluate the modeling of local and global similarity functions of FSMs. We also

ACM Transactions on Information Systems, Vol. 38, No. 2, Article 12. Publication date: February 2020.

12:20 Y. Chen et al.

show what user subgroups learned by LVSM look like through a qualitative example on

Games (Section 7.2).

• To answer RQ3, we manually sparsify the Beauty dataset and evaluate the performance on

the Beauty dataset with different feature densities (Section 7.3).

• To answer RQ4, we vary the number of new items and run experiments on the Sports

datasets (Section 7.4).

• To answer RQ5, we compare both efficiency and accuracy of LVSM with other FSMs on the

Kindle dataset (Section 7.5).

7 RESULTS AND ANALYSIS

In this section we report on the results of our experiments and answer our research questions.

7.1 Performance Comparison

To address RQ1, we present an overall comparison of the top-N recommenders that we consider.

We report the recommendation results in terms of Rec@N and DCG@N in Table 5, where respec-

tively 5, 10, 15, 20 items are recommended.We show the best score in boldface and the second best

is underlined. We conducted two-sided tests for the null hypothesis that the best and the second

best have identical average values. We attach asterisks to the best score if the improvement over

the second best is statistically significant; we use a single asterisk ∗ if p < 0.05 and two asterisks
∗∗ if p < 0.01. Note that we do not take LVSM for both best and second best; that is, if LVSM1

performs the best in one metric, we do not take LVSM2 as the second best in the same metric even

if it is. This is because we want to show whether the improvement of LVSM is significant over

other baselines.

We organize the discussion of the results by dataset. We first look at the Beauty dataset. We

note that LVSM3 dominates the performance on all metrics. The second-best results are achieved

by coSim, PFW, and UFSM. The improvement of LVSM3 over the second best is significant in

terms of Rec@10, DCG@5, DCG@10, DCG@15, and DCG@20. This demonstrates the superiority

of FSMs for item cold-start top-N recommendation. This also shows the power of LVSM as it

significantly improves over the state-of-the-art FSMs.

Next, we look at the Games dataset, which shows similar results. The difference is that FBSM

performs the second best for this task and FBSM achieves a comparable performance as LVSM2

on Rec@5. TheGames dataset has the sparsest item feature but the least sparse ratings of all Ama-

zon datasets. This characteristic of the Games dataset benefits FBSM as it models the interaction

among features to overcome feature sparsity, while the least sparse rating helps it to learn feature

interactions. LVSM can also benefit from the characteristics of the Games dataset as the modeling

of global item similarities captures the feature interaction in a more advanced way. The improve-

ment of LVSM over FBSM is significant on Rec@10, Rec@20, DCG@10, DCG@15, and DCG@20.

We turn to the Sports dataset. LVSM generally has an advantage but is outperformed by CVAE

in terms of Rec@5 and DCG@5. As shown in Table 2, the ratings of the Sports dataset are the

sparsest among all the datasets that we consider. LVSM and CVAE show their advantage of utiliz-

ing a VAE by benefiting from the automatic denoising property of the VAE. While CVAE shows

promising results when N = 5, the effectiveness of CVAE drops as N increases. Also, a comparison

between CVAE and NSPR reveals that a VAE is a better tool for extracting information from raw

features than DNN. The superiority of LVSM is well demonstrated on Sports when N is getting

larger. The improvement of LVSM over the second-best approach is significant in terms of Rec@10,

Rec@15, Rec@20, and DCG@20. With insufficient label information, methods that better extract

information from the item feature will show their advancement on Sports.

ACM Transactions on Information Systems, Vol. 38, No. 2, Article 12. Publication date: February 2020.

Local Variational Feature-Based Similarity Models for Recommending Top-N New Items 12:21

Table 5. Performance of Recommending Top-N New Items on Different Datasets in Terms of Rec@N
and DCG@N , Where N Equals 5, 10, 15, 20, Respectively

Beauty Rec@5 Rec@10 Rec@15 Rec@20 DCG@5 DCG@10 DCG@15 DCG@20

coSim [9] 0.1045 0.1490 0.1885 0.2245 0.0380 0.0225 0.0168 0.0137

SVDFeature [12] 0.0035 0.0261 0.0273 0.0297 0.0013 0.0026 0.0018 0.0014

NSPR-L [24] 0.0378 0.0535 0.0707 0.0814 0.0145 0.0086 0.0065 0.0052

NSPR-P [24] 0.0083 0.0275 0.0415 0.0596 0.0026 0.0029 0.0026 0.0024

CVAE [12] 0.0932 0.1318 0.1584 0.1816 0.0346 0.0206 0.0151 0.0121

LCE [59] 0.0996 0.1408 0.1801 0.2065 0.0367 0.0220 0.0163 0.0130

PFW [9] 0.1009 0.1445 0.1848 0.2179 0.0361 0.0216 0.0162 0.0132

PFWpair [9] 0.1005 0.1501 0.1893 0.2233 0.0362 0.0219 0.0164 0.0133

UFSM [26] 0.1065 0.1486 0.1870 0.2220 0.0380 0.0223 0.0166 0.0135

UFSMpair [26] 0.1000 0.1478 0.1864 0.2220 0.0360 0.0218 0.0162 0.0132

FBSM [62] 0.0501 0.0836 0.1180 0.1443 0.0177 0.0117 0.0092 0.0079

FBSMpair [62] 0.0503 0.0849 0.1201 0.1488 0.0188 0.0120 0.0096 0.0079

LVSM1 0.1061 0.1544 0.1899 0.2242 0.0396 0.0239 0.0176 0.0143**

LVSM2 0.1077 0.1523 0.1904 0.2232 0.0395 0.0235 0.0175 0.0141

LVSM3 0.1100 0.1579* 0.1940 0.2276 0.0401* 0.0242** 0.0177** 0.0143**

Games Rec@5 Rec@10 Rec@15 Rec@20 DCG@5 DCG@10 DCG@15 DCG@20

coSim [9] 0.0653 0.1050 0.1401 0.1645 0.0216 0.0139 0.0107 0.0088

SVDFeature [12] 0.0025 0.0054 0.0086 0.0121 0.0008 0.0007 0.0005 0.0005

NSPR-L [24] 0.0080 0.0187 0.0236 0.0296 0.0027 0.0022 0.0017 0.0014

NSPR-P [24] 0.0130 0.0177 0.0232 0.0335 0.0044 0.0026 0.0020 0.0018

CVAE [12] 0.0538 0.0854 0.1149 0.1381 0.0175 0.0113 0.0088 0.0072

LCE [59] 0.0475 0.0768 0.1028 0.1274 0.0161 0.0106 0.0082 0.0068

PFW [9] 0.0611 0.1015 0.1282 0.1535 0.0202 0.0132 0.0100 0.0083

PFWpair [9] 0.0576 0.0968 0.1261 0.1524 0.0194 0.0128 0.0098 0.0081

UFSM [26] 0.0596 0.0974 0.1291 0.1553 0.0196 0.0126 0.0098 0.0081

UFSMpair [26] 0.0621 0.0987 0.1311 0.1585 0.0210 0.0134 0.0103 0.0085

FBSM [62] 0.0739 0.1007 0.1414 0.1699 0.0236 0.0141 0.0110 0.0091

FBSMpair [62] 0.0739 0.1007 0.1402 0.1699 0.0232 0.0139 0.0108 0.0090

LVSM1 0.0732 0.1084 0.1420 0.1704 0.0242 0.0148 0.0112 0.0092

LVSM2 0.0739 0.1078 0.1387 0.1698 0.0238 0.0146 0.0111 0.0092

LVSM3 0.0736 0.1112* 0.1441 0.1757* 0.0243 0.0151** 0.0114** 0.0094**

Sports Rec@5 Rec@10 Rec@15 Rec@20 DCG@5 DCG@10 DCG@15 DCG@20

coSim [9] 0.0599 0.0924 0.1185 0.1402 0.0167 0.0106 0.0079 0.0065

SVDFeature [12] 0.0042 0.0078 0.0194 0.0230 0.0011 0.0007 0.0009 0.0007

NSPR-L [24] 0.0128 0.0224 0.0289 0.0380 0.0040 0.0026 0.0020 0.0017

NSPR-P [24] 0.0141 0.0223 0.0318 0.0380 0.0043 0.0027 0.0022 0.0017

CVAE [12] 0.0648 0.0875 0.1004 0.1124 0.0202 0.0116 0.0082 0.0064

LCE [59] 0.0539 0.0866 0.1092 0.1294 0.0165 0.0104 0.0077 0.0063

PFW [9] 0.0554 0.0871 0.1121 0.1362 0.0162 0.0102 0.0077 0.0063

PFWpair [9] 0.0555 0.0881 0.1125 0.1368 0.0163 0.0103 0.0077 0.0064

UFSM [26] 0.0575 0.0917 0.1178 0.1387 0.0160 0.0103 0.0077 0.0063

UFSMpair [26] 0.0561 0.0919 0.1168 0.1376 0.0162 0.0105 0.0079 0.0064

FBSM [62] 0.0313 0.0550 0.0678 0.0850 0.0078 0.0055 0.0041 0.0035

FBSMpair [62] 0.0313 0.0550 0.0708 0.0880 0.0078 0.0055 0.0042 0.0036

(Continued)

ACM Transactions on Information Systems, Vol. 38, No. 2, Article 12. Publication date: February 2020.

12:22 Y. Chen et al.

Table 5. Continued

LVSM1 0.0618 0.0972 0.1265** 0.1480* 0.0184 0.0115 0.0087 0.0070*

LVSM2 0.0607 0.0936 0.1244 0.1467 0.0184 0.0114 0.0086 0.0069

LVSM3 0.0640 0.0981* 0.1206 0.1443 0.0187 0.0116 0.0086 0.0070*

CUL-a Rec@5 Rec@10 Rec@15 Rec@20 DCG@5 DCG@10 DCG@15 DCG@20

coSim [9] 0.1977 0.2819 0.3394 0.3840 0.0973 0.0590 0.0435 0.0348

SVDFeature [12] 0.0017 0.0065 0.0109 0.0149 0.0013 0.0013 0.0011 0.0010

NSPR-L [24] 0.0020 0.0065 0.0102 0.0120 0.0022 0.0018 0.0015 0.0012

NSPR-P [24] 0.0034 0.0087 0.0135 0.0197 0.0021 0.0017 0.0015 0.0014

CVAE [12] 0.0348 0.0594 0.0823 0.1020 0.0255 0.0166 0.0128 0.0106

LCE [59] 0.1639 0.2572 0.3203 0.3657 0.0871 0.0556 0.0420 0.0337

PFW [9] 0.1798 0.2574 0.3146 0.3602 0.0890 0.0544 0.0403 0.0323

PFWpair [9] 0.1812 0.2609 0.3148 0.3558 0.0900 0.0552 0.0406 0.0325

UFSM [26] 0.1905 0.2738 0.3291 0.3724 0.0935 0.0577 0.0424 0.0339

UFSMpair [26] 0.1940 0.2770 0.3330 0.3766 0.0941 0.0574 0.0424 0.0340

FBSM [62] 0.0053 0.0093 0.0154 0.0212 0.0042 0.0026 0.0021 0.0018

FBSMpair [62] 0.0043 0.0093 0.0147 0.0170 0.0028 0.0022 0.0018 0.0014

LVSM1 0.2108 0.3019 0.3633 0.4089 0.1083 0.0664 0.0487 0.0388

LVSM2 0.2226** 0.3172** 0.3772 0.4225 0.1116 0.0683 0.0501 0.0400

LVSM3 0.2173 0.3108 0.3800** 0.4226** 0.1121** 0.0684** 0.0504** 0.0401**

CUL-t Rec@5 Rec@10 Rec@15 Rec@20 DCG@5 DCG@10 DCG@15 DCG@20

coSim [9] 0.1972 0.2728 0.3316 0.3704 0.0629 0.0379 0.0278 0.0221

SVDFeature [12] 0.0093 0.0148 0.0190 0.0304 0.0032 0.0021 0.0016 0.0015

NSPR-L [24] 0.0051 0.0097 0.0140 0.0181 0.0019 0.0014 0.0013 0.0012

NSPR-P [24] 0.0053 0.0087 0.0135 0.0176 0.0028 0.0020 0.0016 0.0013

CVAE [12] 0.0368 0.0650 0.0927 0.1137 0.0143 0.0096 0.0078 0.0065

LCE [59] 0.1513 0.2298 0.2870 0.3253 0.0502 0.0315 0.0236 0.0189

PFW [9] 0.1777 0.2557 0.3089 0.3517 0.0562 0.0343 0.0252 0.0203

PFWpair [9] 0.1821 0.2559 0.3076 0.3502 0.0570 0.0344 0.0253 0.0203

UFSM [26] 0.1865 0.2671 0.3213 0.3640 0.0599 0.0364 0.0268 0.0214

UFSMpair [26] 0.1920 0.2740 0.3264 0.3691 0.0612 0.0370 0.0270 0.0216

FBSM [62] 0.0033 0.0141 0.0191 0.0245 0.0011 0.0013 0.0010 0.0010

FBSMpair [62] 0.0029 0.0135 0.0229 0.0271 0.0010 0.0011 0.0011 0.0009

LVSM1 0.1935 0.2760 0.3335 0.3762 0.0616 0.0375 0.0276 0.0219

LVSM2 0.1918 0.2769 0.3318 0.3693 0.0591 0.0363 0.0266 0.0211

LVSM3 0.1923 0.2805 0.3379 0.3834 0.0615 0.0379 0.0280 0.0223

Next, we consider CUL-a. As CiteULike has better formatted features than the Amazon datasets

to measure item similarity, we can expect a better performance achieved by FSMs. Surprisingly,

although FSMs perform better than other methods, it actually fails to beat the noncollaborative

filtering method coSim. A possible explanation is that the features of CUL-a are well qualified to

capture item similarities, where existing FSMs reached a bottleneck to further improve the perfor-

mance, due to the sparsity of ratings. However, LVSM has the ability to improve the performance

over coSim by a large margin. LVSM2 is significantly better than coSim in terms of Rec@5 and

Rec@10, and LVSM3 is significantly better than coSim in terms of every DCG metric.

Finally, we look atCUL-t. While the performance of LVSM is very promising onCUL-a, it cannot

significantly improve the performance on CUL-t. LVSM is outperformed by coSim in terms of

ACM Transactions on Information Systems, Vol. 38, No. 2, Article 12. Publication date: February 2020.

Local Variational Feature-Based Similarity Models for Recommending Top-N New Items 12:23

Table 6. Different Ways of Modeling Item

Similarity Functions

Method LVSM LSM UFSM

Global similarity 1 0 c
Local similarity c c 0

Rec@5 and DCG@5, and achieves a tie with coSim in terms of DCG@10. The improvements of

LVSM over coSim in terms of Rec@10, Rec@15, Rec@20, DCG@10, DCG@15, and DCG@20 is not

significant. CUL-t has the sparsest features among all datasets. All methods except coSim include

learning, which is heavily impacted by the sparsity of features. Although the performance of LVSM

is not exceptional, it actually shows a good denoising ability as the performance generally is at

least as good as that of coSim. In comparison, other methods, especially FBSM, perform much

worse.

To summarize, LVSM has generally shown its superiority over other methods on all datasets.

Except on CUL-a, the improvement of LVSM over the second-best method is usually significant.

On the other hand, FSMs show better performance than other types of methods (in other cate-

gories) for the task of item cold-start top-N recommendation. CVAE enjoys the benefits of VAE

for denoising with sparse features, compared with NSPR. However, as it belongs to IFM, which is

not designed for the top-N recommendation task, it fails to perform well, especially on CUL-a and

CUL-t. LVSM takes advantage of both FSM and VAE to yield overall better performance.

7.2 Effect of Modeling Global and Local Similarities

We seek to answer RQ2, whether modeling global and local item similarities helps to improve per-

formance. We form another baseline LSM from LVSM, which calculates local similarities only. We

also compare LVSM with UFSM, which calculates global similarities only. We summarize LVSM,

LSM, and UFSM in Table 6. We vary the number of user groups c and plot the Rec@10 scores

obtained by LVSM, LSM, UFSM, and UFSMpair ; see Figure 3.

Figure 3(a) displays the results on the Beauty dataset. UFSM, UFSMpair reach their peak perfor-

mance when learning three global similarity functions. LVSM and LSM generally decrease their

performance when modeling more local similarity functions. LSM is outperformed by UFSM,

UFSMpair when c ≥ 2 and LVSM is outperformed by UFSMpair when c = 4. In short, modeling

global similarity functions only achieves the best performance, which shows that there may not

exist user subgroups on the Beauty dataset. LVSM also shows better modeling capacity of global

item similarities than UFSM.

Figure 3(b) shows a converse result. LVSM and LSM increase their performance by modeling

local similarity functions. When c = 5, LVSM achieves its best performance, although the figure

of LSM drops slightly. LSM outperforms UFSM and UFSMpair when c ≥ 2 and LVSM further ev-

idently improves over LSM. In short, learning local item similarity functions well captures user

subsets in the Games dataset. The advantage of LVSM over UFSM is better illustrated as UFSM

fails to model local similarities.

Figure 3(c) further demonstrates the suitability of learning item similarities with LVSM. Al-

though LSM is outperformed by UFSM and UFSMpair , LVSM outperforms UFSM and UFSMpair ,

and the best performance is achieved when c = 2. We can conclude from Figure 3(c) that while

solely modeling local similarities is suboptimal, the integration of modeling local and global simi-

larities well captures the essence of the application on CUL-a.

The results in Figure 3(d) are similar. LVSM shows better results when c ≤ 3. UFSM and

UFSMpair catch up when c is increased. Note that while LSM achieves the best performance at

ACM Transactions on Information Systems, Vol. 38, No. 2, Article 12. Publication date: February 2020.

12:24 Y. Chen et al.

Fig. 3. Effect of the number of similarity functions on Rec@10.

c = 4, that setting is where LVSM actually generates its worst recommendation performance. This

further confirms the effectiveness of jointly modeling local and global similarities, which is the

advantage of Bayesian graphical modeling.

The estimation of local models is essential to the performance of LVSM. As each local model

corresponds to a user group, it will be interesting to see what the learned user group looks like.

Therefore, we provide a qualitative example in Figure 4, using the Games dataset. For the sake

of obtaining a clear visualization, we consider two user groups only. We visualize the predicted

scores ỹui of users over new items. This is because users in the same group have similar behaviors,

whereas users from different groups have different behaviors. We randomly select 30 items from

all new items. For each group, we randomly select 20 users.

We visualize the predicted ratings for the 20 items in Figure 4(a). Clearly, users from different

groups show different behaviors, illustrated by the different ratings given to the same items. Users

from group A generally give lower ratings to items, compared with users from group B. Besides,
similarities are clearly visible for users in groupA, whereas behaviors of users from group B show

some difference. We can also see the commonality in behaviors from both groups, which reflects

the effect of the global similarity function.

We also visualize the spatial proximity by conducting t-SNE [47] on the predicted rating scores.

t-SNE identifies two and three main components, depicted in Figure 4(b) and Figure 4(c), respec-

tively. Users from the two groups can be clustered with clear and different centroids.

7.3 Effect of Feature Sparsity

We proceed to answer RQ3. We evaluate the effect of feature sparsity on the performance of rec-

ommenders. We manually sparsify item features by randomly selecting dimensions in the feature

ACM Transactions on Information Systems, Vol. 38, No. 2, Article 12. Publication date: February 2020.

Local Variational Feature-Based Similarity Models for Recommending Top-N New Items 12:25

Fig. 4. Qualitative examples showing how LVSM captures user groups.

to be excluded, where the feature density is roughly controlled as 0.27%, 0.32%, 0.37%, 0.42%, 0.48%,
which are respectively 50%, 60%, 70%, 80%, 90% to the original density of Beauty dataset. Aswe have

already demonstrated the superiority of models in the FSM category over models in the UM, LFM,

and IFM categories, we only care about the impact of feature sparsity on FSMs, i.e., coSim, PFW,

UFSM, and LVSM. Note that we also exclude FBSM for comparison as it generates very poor rec-

ommendations when item features are even sparser. For illustration, we depict the results of a com-

parison in terms of Rec@10, Rec@20, DCG@10, and DCG@20 on the Beauty dataset in Figure 5.

As shown in Figure 5(a), coSim and PFW outperform LVSMwhen Feature density = 0.27%. This
is understandable: when item feature is extremely sparse, we have less information from data so

that the simple models generally perform better, e.g., coSim. LVSM performs better when the item

feature sparsity is 0.32%, 0.37%, 0.42%, 0.48%, respectively, where other models also surpass coSim

and PFW. This shows that LVSM can overcome feature sparsity to a certain degree. When it is

extremely sparse, we should turn to simpler models.

Similar results are shown for Rec@20 in Figure 5(b), where the superiority of LVSM is shown

when item features are not extremely sparse. It is also interesting to see thatwhile LVSM2 generally

shows less effective results than LVSM1 and LVSM3, LVSM2 outperforms LVSM1 and LVSM3 when

feature sparsity = 0.42%. It seems that feature sparsity can also affect the number of local similarity

functions in the data.

Next we look at the results in terms of DCG. While LVSM loses out to simple models when

feature sparsity = 0.27% in terms of Rec@10 and Rec@20, it wins back in terms of DCG@10, as

shown in Figure 5(c). LVSM outperforms other methods with other degrees of feature sparsity.

Interestingly, LVSM1 and LVSM2 perform even better when feature sparsity = 0.37% than that

ACM Transactions on Information Systems, Vol. 38, No. 2, Article 12. Publication date: February 2020.

12:26 Y. Chen et al.

Fig. 5. Effect of feature sparsity on the performance of methods on the Beauty dataset.

when feature sparsity = 0.48%, and when feature sparsity = 0.42%, the performance actually de-

grades. We think that the dataset formed by controlling sparsity at 0.42% ignores some important

features. The 0.37% sparsity dataset might preserve these important features and ignore some

noisy features, which works similarly to feature selection.

While Figure 5(d) shows similar results for DCH@20, LVSM is again outperformed by simple

models when feature sparsity = 0.27%. Similar to Figure 5(b), LVSM2 also outperforms LVSM1 and

LVSM3 when feature sparsity = 0.42%, which further demonstrates the impact of feature sparsity

on the number of local similarity functions to model.

7.4 Effect of Item Cold-Start

Next, we turn to RQ4. We evaluate the effect of the fraction of cold-start items on the performance

of top-N recommenders. The construction of cold-start items follows exactly what is described

in Section 6.3. We evaluate the performance of recommending top-N new items when we have

different numbers of new items. We set different fractions of items to be cold-start items: we split

Y into Ytrain,Ytest , where Ytrain contains 5/7 items and Ytest contains 2/7 items. By training the

different methods on Ytrain given the tuned parameters (Table 4), we test the performance of the

trained model over a different test set, with respectively 25%, 50%, 75%, and 100% columns of Ytest ,
e.g., 1/14, 1/7, 3/14, and 2/7 items. As before, we only consider the effect on FSMs. We report the

result of Rec@10, Rec@20, DCG@10, DCG@20, respectively, in Figures 6(a) to 6(d).

A general trend revealed by Figure 6 is that the performance in terms of Recall decreases with

the growth of the number of cold-start items. If we increase the number of cold-start items, the

number of relevant items also increases, causing further difficulty for recommenders to identify all

the relevant items. Inversely, DCG shows an increasing trend; when the number of relevant items

increases, it is more likely that the relevant items appear in the recommendation list.

ACM Transactions on Information Systems, Vol. 38, No. 2, Article 12. Publication date: February 2020.

Local Variational Feature-Based Similarity Models for Recommending Top-N New Items 12:27

Fig. 6. Effect of the fractions of cold-start items on the performance of methods on the Sports dataset.

As shown by Figures 6(a) and 6(b), based on their performance in terms of Recall, the methods

are generally categorized into three clusters. The first cluster consists of LVSM2 and LVSM3. The

second cluster contains LVSM1, coSim, UFSM, UFSMpair , PFW, and PFWpair , which are inferior

to the first cluster but also provide good recommendations. The third cluster includes only FBSM

and FBSMpair , which is far behind the performance of the second cluster.

Unlike the performance in terms of Recall, over DCG the methods naturally cluster into two

clusters, as shown by Figure 6(c) and 6(d). Besides LVSM2 and LVSM3 in the first cluster, other

methods are all contained in the second cluster.

In short, LVSM beats other methods on all occasions of cold-start items. The superiority of

LVSM is demonstrated by jointly modeling local and global similarity functions of items (LVSM1

models only global similarities).

7.5 Performance on a Large-Scale Dataset

And, finally, we turn to RQ5. To show the scalability of LVSM, we run experiments on the Kindle

dataset. We compare LVSM with other FSMs. We exclude the comparison with other baselines

since FSMs already show superior performance (Section 7.1). As training on the Kindle dataset

is time-consuming, we only partially explore the parameter space. We tune λ for PFW from

0.1, 0.2, . . . , 1; c for UFSM from 1, 2, . . . , 10; and k for FBSM from 1, 5, 10, 20. Similarly, we train

UFSM, FBSM, and PFW with both pointwise and pairwise losses. For LVSM, we explore LVSM1,

LVSM2, and LVSM3. For a fair comparison, we fix other parameters that are used for regularization

to 0.1. We train every method for 50 epochs and at most 24 hours. We save the model after each

epoch and use the one with the highest Rec@10 on the validation set to evaluate on the test set.

ACM Transactions on Information Systems, Vol. 38, No. 2, Article 12. Publication date: February 2020.

12:28 Y. Chen et al.

Table 7. Performance of Recommending Top-N New Items on the Kindle Dataset

Method Rec@10 Rec@20 DCG@10 DCG@20 E-step M-step/ #Params

(secs.) Train (secs.)

coSim 0.0747 0.1204 0.0190 0.0160 – – –

PFW 0.0320 0.0539 0.0097 0.0081 – 2,031 299m

PFWpair 0.0443 0.0732 0.0131 0.0109 – 2,031 299m

UFSM 0.0786 0.1146 0.0203 0.0151 – 79 377k

UFSMpair 0.0794 0.1252 0.0199 0.0160 – 72 113k

FBSM 0.0358 0.0574 0.0092 0.0076 – 88 237k

FBSMpair 0.0262 0.0481 0.0076 0.0067 – 93 124k

LVSM1 0.0894** 0.1369** 0.0232** 0.0183** 430 256 1.18m

LVSM2 0.0925** 0.1425** 0.0242** 0.0191** 412 266 1.22m

LVSM3 0.0998** 0.1518** 0.0258** 0.0201** 1167 277 1.26m

The best parameters selected formethods: λ = 0.1 forPFW; λ = 1.0 for PFWpair ; c = 10 forUFSM; c = 3 forUFSMpair ;

k = 20 for FBSM; and k = 10 for FBSMpair .

We report results with N = 10, 20 in Table 7. As shown in Table 7, LVSM1, LVSM2, and LVSM3

significantly and substantially outperform other FSMs. LVSM2 outperforms LVSM1, while LVSM3

further improves over LVSM2.
2 The effectiveness of LVSM is further confirmed on large-scale

datasets, showing a bigger improvement than on other datasets. The potential reason is that users’

behaviors are highly diversified on the large-scale dataset, where estimating local models benefit

more from the diversity. The large-scale dataset also contains more noise in item features, and here

the denoising property of the VAE is especially useful.

We also report the number of parameters and the time for training for each epoch in Table 7.

PFW and PFWpair have the largest number of parameters as they will learn for each user a separate

set of parameters. Therefore, they are also time-consuming to train. In comparison, UFSM and

FBSM are efficient to train due to the small number of parameters. While LVSM has 3 to 5 times

more parameters than UFSM and FBSM, this number is 100 times less than for PFW. LVSM is

also efficient to train during the M-step, which is comparable to UFSM and FBSM. However, the

E-step is a bit time-consuming. While the training time for the M-step remains the same, it grows

substantially when c increased to 3 for the E-step.

In short, LVSM shows good performance on large-scale datasets, in terms of both effectiveness

and efficiency.

8 CONCLUSION

We have revisited the task of recommending top-N new items. We have proposed a Local

Variational Feature-based Similarity Model (LVSM) to address this problem by exploiting high-

dimensional and sparse item features. Our method is a Bayesian generative model that jointly uni-

fies item representation learning, user clustering, and item collaborative filtering. LVSM can learn

deep representations from item features to facilitate similarity measurement. LVSM clusters users

into subsets, where a separate similarity function is learned for each subset. To achieve efficiency,

we conduct variational inference and optimize the model through variational EM algorithms.

Through a broad set of experiments, we have evaluated the efficacy of LVSM. LVSMoutperforms

state-of-the-art feature-based methods for recommending top-N new items. It provides robust

recommendations independent of the quality of item features. It generates good performance in

2We can expect even better performances by estimating more local models. We leave further investigations for future work.

ACM Transactions on Information Systems, Vol. 38, No. 2, Article 12. Publication date: February 2020.

Local Variational Feature-Based Similarity Models for Recommending Top-N New Items 12:29

extreme cases, e.g., with a large fraction of new items or with extremely sparse features. It also

demonstrates an effective performance on the large-scale dataset.

As to limitations of LVSM, the model is more complicated than other feature-based similarity

models. On an extremely sparse dataset such as CUL-t, LVSM still outperforms other methods on

most metrics, but relatively simple methods such as coSim approach its performance.

In future work, we would like to extend LVSM to online settings, where user subsets constantly

evolve and the local similarity functions should be learned adaptively. Also, we should improve our

understanding of the relation between the sparsity of the dataset and the performance of LVSM.

REFERENCES

[1] Deepak Agarwal and Bee-Chung Chen. 2009. Regression-based latent factor models. In Proceedings of the 15th

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (SIGKDD’09). ACM, 19–28. DOI:
https://doi.org/10.1145/1557019.1557029

[2] Fabio Aiolli. 2013. A preliminary study on a recommender system for the million songs dataset challenge. In Proceed-

ings of the 4th Italian Information Retrieval Workshop (IIR’13). 73–83.

[3] Mohammad Aliannejadi and Fabio Crestani. 2018. Personalized context-aware point of interest recommendation.

ACM Trans. Inf. Syst. 36, 4, Article 45 (Oct. 2018), 28 pages. DOI:https://doi.org/10.1145/3231933
[4] Evangelos Banos, Ioannis Katakis, Nick Bassiliades, Grigorios Tsoumakas, and Ioannis P. Vlahavas. 2006. PersoNews:

A personalized news reader enhanced by machine learning and semantic filtering. In On the Move to Meaningful

Internet Systems (OTM’06). Springer, 975–982. DOI:https://doi.org/10.1007/11914853_62
[5] Iman Barjasteh, Rana Forsati, Farzan Masrour, Abdol-Hossein Esfahanian, and Hayder Radha. 2015. Cold-start item

and user recommendation with decoupled completion and transduction. In Proceedings of the 9th ACM Conference on

Recommender Systems (RecSys’15). ACM, 91–98. DOI:https://doi.org/10.1145/2792838.2800196
[6] I. Barjasteh, R. Forsati, D. Ross, A. Esfahanian, and H. Radha. 2016. Cold-start recommendation with provable guaran-

tees: A decoupled approach. IEEE Trans. Knowl. Data Eng. 28, 6 (June 2016), 1462–1474. DOI:https://doi.org/10.1109/
TKDE.2016.2522422

[7] Konstantin Bauman, Bing Liu, and Alexander Tuzhilin. 2017. Aspect based recommendations: Recommending items

with themost valuable aspects based on user reviews. In Proceedings of the 23rd ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining (SIGKDD’17). ACM, 717–725. DOI:https://doi.org/10.1145/3097983.3098170
[8] Alex Beutel, Ed Huai-hsin Chi, Zhiyuan Cheng, Hubert Pham, and John R. Anderson. 2017. Beyond globally optimal:

Focused learning for improved recommendations. In Proceedings of the 26th International Conference on World Wide

Web (WWW’17). 203–212. DOI:https://doi.org/10.1145/3038912.3052713
[9] Daniel Billsus and Michael J. Pazzani. 1999. A hybrid user model for news story classification. In Proceedings of the

7th International Conference on User Modeling (UM’99). Springer, 99–108.

[10] Chong Chen, Min Zhang, Chenyang Wang, Weizhi Ma, Minming Li, Yiqun Liu, and Shaoping Ma. 2019. An efficient

adaptive transfer neural network for social-aware recommendation. In Proceedings of the 42nd International ACM

SIGIR Conference on Research and Development in Information Retrieval (SIGIR’19). ACM, 225–234. DOI:https://doi.
org/10.1145/3331184.3331192

[11] Li Chen, Guanliang Chen, and Feng Wang. 2015. Recommender systems based on user reviews: The state of the art.

User Model. User-Adapt. Interact. 25, 2 (June 2015), 99–154. DOI:https://doi.org/10.1007/s11257-015-9155-5
[12] Tianqi Chen, Weinan Zhang, Qiuxia Lu, Kailong Chen, Zhao Zheng, and Yong Yu. 2012. SVDFeature: A toolkit for

feature-based collaborative filtering. J. Mach. Learn. Res. 13 (2012), 3619–3622.

[13] Xu Chen, ZhengQin, Yongfeng Zhang, and Tao Xu. 2016. Learning to rank features for recommendation overmultiple

categories. In Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information

Retrieval (SIGIR’16). ACM, 305–314. DOI:https://doi.org/10.1145/2911451.2911549
[14] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi Aradhye, Glen Anderson, Greg

Corrado, Wei Chai, Mustafa Ispir, Rohan Anil, Zakaria Haque, Lichan Hong, Vihan Jain, Xiaobing Liu, and Hemal

Shah. 2016. Wide & deep learning for recommender systems. In Proceedings of the 1st Workshop on Deep Learning for

Recommender Systems (DLRS@RecSys’16). ACM, 7–10. DOI:https://doi.org/10.1145/2988450.2988454
[15] Zhiyong Cheng, Ying Ding, Lei Zhu, and Mohan S. Kankanhalli. 2018. Aspect-aware latent factor model: Rating pre-

dictionwith ratings and reviews. In Proceedings of the 2018WorldWideWebConference onWorldWideWeb (WWW’18).

639–648. DOI:https://doi.org/10.1145/3178876.3186145
[16] Szu-Yu Chou, Yi-Hsuan Yang, Jyh-Shing Roger Jang, and Yu-Ching Lin. 2016. Addressing cold start for next-song

recommendation. In Proceedings of the 10th ACM Conference on Recommender Systems (RecSys’16). ACM, 115–118.

DOI:https://doi.org/10.1145/2959100.2959156

ACM Transactions on Information Systems, Vol. 38, No. 2, Article 12. Publication date: February 2020.

https://doi.org/10.1145/1557019.1557029
https://doi.org/10.1145/3231933
https://doi.org/10.1007/11914853_62
https://doi.org/10.1145/2792838.2800196
https://doi.org/10.1109/TKDE.2016.2522422
https://doi.org/10.1109/TKDE.2016.2522422
https://doi.org/10.1145/3097983.3098170
https://doi.org/10.1145/3038912.3052713
https://doi.org/10.1145/3331184.3331192
https://doi.org/10.1145/3331184.3331192
https://doi.org/10.1007/s11257-015-9155-5
https://doi.org/10.1145/2911451.2911549
https://doi.org/10.1145/2988450.2988454
https://doi.org/10.1145/3178876.3186145
https://doi.org/10.1145/2959100.2959156

12:30 Y. Chen et al.

[17] Evangelia Christakopoulou and George Karypis. 2016. Local item-item models for top-N recommendation. In Pro-

ceedings of the 10th ACM Conference on Recommender Systems (RecSys’16). ACM, 67–74. DOI:https://doi.org/10.1145/
2959100.2959185

[18] Evangelia Christakopoulou and George Karypis. 2018. Local latent space models for top-N recommendation. In Pro-

ceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery &DataMining (SIGKDD’18). ACM,

1235–1243. DOI:https://doi.org/10.1145/3219819.3220112
[19] Gabriella Contardo, Ludovic Denoyer, and Thierry Artières. 2015. Representation learning for cold-start recommen-

dation. InWorkshop Track Proceedings of the 3rd International Conference on Learning Representations (ICLR’15).

[20] Paolo Cremonesi, Yehuda Koren, and Roberto Turrin. 2010. Performance of recommender algorithms on top-N rec-

ommendation tasks. In Proceedings of the 4th ACM Conference on Recommender Systems (RecSys’10). ACM, 39–46.

DOI:https://doi.org/10.1145/1864708.1864721
[21] Manuel de Buenaga Rodríguez, Manuel J. Maña López, Alberto Díaz Esteban, and Pablo Gervás Gómez-Navarro. 2001.

A user model based on content analysis for the intelligent personalization of a news service. In Proceedings of the 8th

International Conference on User Modeling (UM’01). 216–218. DOI:https://doi.org/10.1007/3-540-44566-8_25
[22] Mukund Deshpande and George Karypis. 2004. Item-based top-N recommendation algorithms. ACM Trans. Inf. Syst.

22, 1 (Jan. 2004), 143–177. DOI:https://doi.org/10.1145/963770.963776
[23] Jingtao Ding, Guanghui Yu, Xiangnan He, Yuhan Quan, Yong Li, Tat-Seng Chua, Depeng Jin, and Jiajie Yu. 2018.

Improving implicit recommender systems with view data. In Proceedings of the 27th International Joint Conference on

Artificial Intelligence (IJCAI’18). 3343–3349. DOI:https://doi.org/10.24963/ijcai.2018/464
[24] Travis Ebesu and Yi Fang. 2017. Neural semantic personalized ranking for item cold-start recommendation. Inf. Retr.

Journal 20, 2 (2017), 109–131. DOI:https://doi.org/10.1007/s10791-017-9295-9
[25] Mehdi Elahi, Francesco Ricci, and Neil Rubens. 2014. Active learning strategies for rating elicitation in collaborative

filtering: A system-wide perspective. ACM Trans. Intell. Syst. Technol. 5, 1, Article 13 (Jan. 2014), 33 pages. DOI:
https://doi.org/10.1145/2542182.2542195

[26] Asmaa Elbadrawy and George Karypis. 2015. User-specific feature-based similarity models for top-N recommenda-

tion of new items. ACM Trans. Intell. Syst. Technol. 6, 3, Article 33 (April 2015), 20 pages. DOI:https://doi.org/10.1145/
2700495

[27] Rana Forsati, Mehrdad Mahdavi, Mehrnoush Shamsfard, and Mohamed Sarwat. 2014. Matrix factorization with ex-

plicit trust and distrust side information for improved social recommendation. ACM Trans. Inf. Syst. 32, 4, Article 17

(Oct. 2014), 38 pages. DOI:https://doi.org/10.1145/2641564
[28] Zeno Gantner, Lucas Drumond, Christoph Freudenthaler, Steffen Rendle, and Lars Schmidt-Thieme. 2010. Learning

attribute-to-featuremappings for cold-start recommendations. In Proceedings of the 10th IEEE International Conference

on Data Mining (ICDM’10). IEEE, 176–185. DOI:https://doi.org/10.1109/ICDM.2010.129

[29] Chen Gao, Xiangnan He, Dahua Gan, Xiangning Chen, Fuli Feng, Yong Li, Tat-Seng Chua, and Depeng Jin. 2019.

Neural multi-task recommendation frommulti-behavior data. In Proceedings of the 35th IEEE International Conference

on Data Engineering (ICDE’19). IEEE, 1554–1557. DOI:https://doi.org/10.1109/ICDE.2019.00140
[30] Thomas George and Srujana Merugu. 2005. A scalable collaborative filtering framework based on co-clustering. In

Proceedings of the 5th IEEE International Conference on Data Mining (ICDM’05). IEEE, 625–628. DOI:https://doi.org/
10.1109/ICDM.2005.14

[31] Kostadin Georgiev and Preslav Nakov. 2013. A non-IID framework for collaborative filtering with restricted Boltz-

mann machines. In Proceedings of the 30th International Conference on Machine Learning (ICML’13). 1148–1156.

[32] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. 2011. Deep sparse rectifier neural networks. In Proceedings of the

14th International Conference on Artificial Intelligence and Statistics (AISTATS’11). 315–323.

[33] Xinyu Guan, Zhiyong Cheng, Xiangnan He, Yongfeng Zhang, Zhibo Zhu, Qinke Peng, and Tat-Seng Chua. 2019.

Attentive aspect modeling for review-aware recommendation. ACM Trans. Inf. Syst. 37, 3, Article 28 (March 2019), 27

pages. DOI:https://doi.org/10.1145/3309546
[34] Xiangnan He and Tat-Seng Chua. 2017. Neural factorization machines for sparse predictive analytics. In Proceedings

of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’19). ACM,

355–364. DOI:https://doi.org/10.1145/3077136.3080777
[35] YifanHu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative filtering for implicit feedback datasets. In Proceedings

of the 8th IEEE International Conference on Data Mining (ICDM’08). IEEE, 263–272. DOI:https://doi.org/10.1109/ICDM.

2008.22

[36] Mohsen Jamali and Laks V. S. Lakshmanan. 2013. HeteroMF: Recommendation in heterogeneous information net-

works using context dependent factor models. In Proceedings of the 22nd International World Wide Web Conference

(WWW’13). 643–654. DOI:https://doi.org/10.1145/2488388.2488445
[37] Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumulated gain-based evaluation of IR techniques. ACM Trans. Inf. Syst.

20, 4 (Oct. 2002), 422–446. DOI:https://doi.org/10.1145/582415.582418

ACM Transactions on Information Systems, Vol. 38, No. 2, Article 12. Publication date: February 2020.

https://doi.org/10.1145/2959100.2959185
https://doi.org/10.1145/2959100.2959185
https://doi.org/10.1145/3219819.3220112
https://doi.org/10.1145/1864708.1864721
https://doi.org/10.1007/3-540-44566-8_25
https://doi.org/10.1145/963770.963776
https://doi.org/10.24963/ijcai.2018/464
https://doi.org/10.1007/s10791-017-9295-9
https://doi.org/10.1145/2542182.2542195
https://doi.org/10.1145/2700495
https://doi.org/10.1145/2700495
https://doi.org/10.1145/2641564
https://doi.org/10.1109/ICDM.2010.129
https://doi.org/10.1109/ICDE.2019.00140
https://doi.org/10.1109/ICDM.2005.14
https://doi.org/10.1109/ICDM.2005.14
https://doi.org/10.1145/3309546
https://doi.org/10.1145/3077136.3080777
https://doi.org/10.1109/ICDM.2008.22
https://doi.org/10.1109/ICDM.2008.22
https://doi.org/10.1145/2488388.2488445
https://doi.org/10.1145/582415.582418

Local Variational Feature-Based Similarity Models for Recommending Top-N New Items 12:31

[38] Santosh Kabbur, Xia Ning, and George Karypis. 2013. FISM: Factored item similarity models for top-N recommender

systems. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

(SIGKDD’13). ACM, 659–667. DOI:https://doi.org/10.1145/2487575.2487589
[39] Diederik P. Kingma and Max Welling. 2014. Auto-encoding variational bayes. In Proceedings of the 2nd International

Conference on Learning Representations (ICLR’14).

[40] Yehuda Koren. 2008. Factorization meets the neighborhood: A multifaceted collaborative filtering model. In Proceed-

ings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (SIGKDD’08). ACM,

426–434. DOI:https://doi.org/10.1145/1401890.1401944
[41] Joonseok Lee, Samy Bengio, Seungyeon Kim, Guy Lebanon, and Yoram Singer. 2014. Local collaborative ranking.

In Proceedings of the 23rd International World Wide Web Conference (WWW’14). 85–96. DOI:https://doi.org/10.1145/
2566486.2567970

[42] Joonseok Lee, Seungyeon Kim, Guy Lebanon, Yoram Singer, and Samy Bengio. 2016. LLORMA: Local low-rankmatrix

approximation. J. Mach. Learn. Res. 17 (2016), 15:1–15:24.

[43] Sheng Li, Jaya Kawale, and Yun Fu. 2015. Deep collaborative filtering via marginalized denoising auto-encoder. In

Proceedings of the 24th ACM International Conference on Information and Knowledge Management (CIKM’15). ACM,

811–820. DOI:https://doi.org/10.1145/2806416.2806527
[44] Xiaopeng Li and James She. 2017. Collaborative variational autoencoder for recommender systems. In Proceedings of

the 23rd ACM SIGKDD International Conference on Knowledge Discovery and DataMining (SIGKDD’17). ACM, 305–314.

DOI:https://doi.org/10.1145/3097983.3098077
[45] Nathan Nan Liu, Xiangrui Meng, Chao Liu, and Qiang Yang. 2011. Wisdom of the better few: Cold start recommen-

dation via representative based rating elicitation. In Proceedings of the 5th ACM Conference on Recommender Systems

(RecSys’11). ACM, 37–44. DOI:https://doi.org/10.1145/2043932.2043943
[46] Hao Ma, Tom Chao Zhou, Michael R. Lyu, and Irwin King. 2011. Improving recommender systems by incorporating

social contextual information.ACM Trans. Inf. Syst. 29, 2, Article 9 (April 2011), 23 pages. DOI:https://doi.org/10.1145/
1961209.1961212

[47] Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE. J. Mach. Learn. Res. 9 (Nov. 2008),

2579–2605.

[48] Julian J. McAuley and Jure Leskovec. 2013. Hidden factors and hidden topics: Understanding rating dimensions with

review text. In Proceedings of the 7th ACM Conference on Recommender Systems (RecSys’13). ACM, 165–172. DOI:
https://doi.org/10.1145/2507157.2507163

[49] Prem Melville, Raymond J. Mooney, and Ramadass Nagarajan. 2002. Content-boosted collaborative filtering for im-

proved recommendations. In Proceedings of the 18th National Conference on Artificial Intelligence and 14th Conference

on Innovative Applications of Artificial Intelligence (AAAI/IAAI’02). 187–192.

[50] Xia Ning and George Karypis. 2011. SLIM: Sparse linear methods for top-N recommender systems. In Proceedings of

the 11th IEEE International Conference on Data Mining (ICDM’11). IEEE, 497–506. DOI:https://doi.org/10.1109/ICDM.

2011.134

[51] Uros Ocepek, Joze Rugelj, and Zoran Bosnic. 2015. Improving matrix factorization recommendations for examples in

cold start. Expert Syst. Appl. 42, 19 (2015), 6784–6794. DOI:https://doi.org/10.1016/j.eswa.2015.04.071
[52] Rong Pan, Yunhong Zhou, Bin Cao, Nathan Nan Liu, Rajan M. Lukose, Martin Scholz, and Qiang Yang. 2008. One-

class collaborative filtering. In Proceedings of the 8th IEEE International Conference on Data Mining (ICDM’08). IEEE,

502–511. DOI:https://doi.org/10.1109/ICDM.2008.16

[53] Seung-Taek Park and Wei Chu. 2009. Pairwise preference regression for cold-start recommendation. In Proceedings

of the 3rd ACM Conference on Recommender Systems (RecSys’09). ACM, 21–28. DOI:https://doi.org/10.1145/1639714.
1639720

[54] Stefan Pero and Tomás Horváth. 2013. Opinion-driven matrix factorization for rating prediction. In Proceedings of

the 21st International Conference on User Modeling, Adaptation, and Personalization (UMAP’13). 1–13. DOI:https://doi.
org/10.1007/978-3-642-38844-6_1

[55] Alexandrin Popescul, Lyle H. Ungar, David M. Pennock, and Steve Lawrence. 2001. Probabilistic models for unified

collaborative and content-based recommendation in sparse-data environments. In Proceedings of the 17th Conference

in Uncertainty in Artificial Intelligence (UAI’01). 437–444.

[56] Ian Porteous, Arthur U. Asuncion, and Max Welling. 2010. Bayesian matrix factorization with side information and

Dirichlet process mixtures. In Proceedings of the 24th AAAI Conference on Artificial Intelligence (AAAI’10).

[57] Steffen Rendle. 2010. Factorization machines. In Proceedings of the 10th IEEE International Conference on Data Mining

(ICDM’10). IEEE, 995–1000. DOI:https://doi.org/10.1109/ICDM.2010.127

[58] Badrul Munir Sarwar, George Karypis, Joseph A. Konstan, and John Riedl. 2001. Item-based collaborative filtering

recommendation algorithms. In Proceedings of the 10th InternationalWorldWideWeb Conference (WWW’10). 285–295.

DOI:https://doi.org/10.1145/371920.372071

ACM Transactions on Information Systems, Vol. 38, No. 2, Article 12. Publication date: February 2020.

https://doi.org/10.1145/2487575.2487589
https://doi.org/10.1145/1401890.1401944
https://doi.org/10.1145/2566486.2567970
https://doi.org/10.1145/2566486.2567970
https://doi.org/10.1145/2806416.2806527
https://doi.org/10.1145/3097983.3098077
https://doi.org/10.1145/2043932.2043943
https://doi.org/10.1145/1961209.1961212
https://doi.org/10.1145/1961209.1961212
https://doi.org/10.1145/2507157.2507163
https://doi.org/10.1109/ICDM.2011.134
https://doi.org/10.1109/ICDM.2011.134
https://doi.org/10.1016/j.eswa.2015.04.071
https://doi.org/10.1109/ICDM.2008.16
https://doi.org/10.1145/1639714.1639720
https://doi.org/10.1145/1639714.1639720
https://doi.org/10.1007/978-3-642-38844-6_1
https://doi.org/10.1007/978-3-642-38844-6_1
https://doi.org/10.1109/ICDM.2010.127
https://doi.org/10.1145/371920.372071

12:32 Y. Chen et al.

[59] Martin Saveski and Amin Mantrach. 2014. Item cold-start recommendations: Learning local collective embeddings.

In Proceedings of the 8th ACM Conference on Recommender Systems (RecSys’14). ACM, 89–96. DOI:https://doi.org/10.
1145/2645710.2645751

[60] Yanir Seroussi, Fabian Bohnert, and Ingrid Zukerman. 2011. Personalised rating prediction for new users using la-

tent factor models. In Proceedings of the 22nd ACM Conference on Hypertext and Hypermedia (HT’11). ACM, 47–56.

DOI:https://doi.org/10.1145/1995966.1995976
[61] Ying Shan, T. Ryan Hoens, Jian Jiao, Haijing Wang, Dong Yu, and J. C. Mao. 2016. Deep crossing: Web-scale modeling

without manually crafted combinatorial features. In Proceedings of the 22nd ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining (SIGKDD’16). ACM, 255–262. DOI:https://doi.org/10.1145/2939672.2939704
[62] Mohit Sharma, Jiayu Zhou, Junling Hu, and George Karypis. 2015. Feature-based factorized bilinear similarity model

for cold-start top-n item recommendation. In Proceedings of the 15th SIAM International Conference on Data Mining

(SDM’15). SIAM, 190–198. DOI:https://doi.org/10.1137/1.9781611974010.22
[63] Lei Shi, Wayne Xin Zhao, and Yi-Dong Shen. 2017. Local representative-based matrix factorization for cold-start

recommendation. ACM Trans. Inf. Syst. 36, 2, Article 22 (Aug. 2017), 28 pages. DOI:https://doi.org/10.1145/3108148
[64] Ajit Paul Singh and Geoffrey J. Gordon. 2008. Relational learning via collective matrix factorization. In Proceedings of

the 14th ACM SIGKDD International Conference on Knowledge Discovery and DataMining (SIGKDD’08). ACM, 650–658.

DOI:https://doi.org/10.1145/1401890.1401969
[65] Ian Soboroff and Charles Nicholas. 1999. Combining content and collaboration in text filtering. In Proceedings of the

16th International Joint Conference on Artificial Intelligence (IJCAI’99). 86–91.

[66] Yunzhi Tan, Min Zhang, Yiqun Liu, and Shaoping Ma. 2016. Rating-boosted latent topics: Understanding users and

items with ratings and reviews. In Proceedings of the 25th International Joint Conference on Artificial Intelligence (IJ-

CAI’16). 2640–2646.

[67] Michele Trevisiol, Luca Maria Aiello, Rossano Schifanella, and Alejandro Jaimes. 2014. Cold-start news recommen-

dation with domain-dependent browse graph. In Proceedings of the 8th ACM Conference on Recommender Systems

(RecSys’14). ACM, 81–88. DOI:https://doi.org/10.1145/2645710.2645726
[68] Aäron van den Oord, Sander Dieleman, and Benjamin Schrauwen. 2013. Deep content-based music recommendation.

In Proceedings of the 27th Advances in Neural Information Processing Systems (NIPS’13). 2643–2651.

[69] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-Antoine Manzagol. 2010. Stacked denois-

ing autoencoders: Learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn.

Res. 11 (2010), 3371–3408.

[70] Maksims Volkovs and Guang Wei Yu. 2015. Effective latent models for binary feedback in recommender systems.

In Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval

(SIGIR’15). ACM, 313–322. DOI:https://doi.org/10.1145/2766462.2767716
[71] Chong Wang and David M. Blei. 2011. Collaborative topic modeling for recommending scientific articles. In Proceed-

ings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (SIGKDD’11). ACM,

448–456. DOI:https://doi.org/10.1145/2020408.2020480
[72] HaoWang, Binyi Chen, and Wu-Jun Li. 2013. Collaborative topic regression with social regularization for tag recom-

mendation. In Proceedings of the 23rd International Joint Conference on Artificial Intelligence (IJCAI’13). 2719–2725.

[73] Hao Wang, Naiyan Wang, and Dit-Yan Yeung. 2015. Collaborative deep learning for recommender systems. In Pro-

ceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (SIGKDD’15).

ACM, 1235–1244. DOI:https://doi.org/10.1145/2783258.2783273
[74] KeqiangWang, Wayne Xin Zhao, Hongwei Peng, and XiaolingWang. 2016. Bayesian probabilistic multi-topic matrix

factorization for rating prediction. In Proceedings of the 25th International Joint Conference on Artificial Intelligence

(IJCAI’16). 3910–3916.

[75] Xinxi Wang and Ye Wang. 2014. Improving content-based and hybrid music recommendation using deep learning.

In Proceedings of the ACM International Conference on Multimedia (MM’14). ACM, 627–636. DOI:https://doi.org/10.
1145/2647868.2654940

[76] Y.Wang, X. Lin, L.Wu, andW. Zhang. 2017. Effective multi-query expansions: Collaborative deep networks for robust

landmark retrieval. IEEE Trans. Image Processing 26, 3 (March 2017), 1393–1404. DOI:https://doi.org/10.1109/TIP.2017.
2655449

[77] Yang Wang, Wenjie Zhang, Lin Wu, Xuemin Lin, Meng Fang, and Shirui Pan. 2016. Iterative views agreement: An

iterative low-rank based structured optimization method to multi-view spectral clustering. In Proceedings of the 25th

International Joint Conference on Artificial Intelligence (IJCAI’16). 2153–2159.

[78] Yao Wu, Xudong Liu, Min Xie, Martin Ester, and Qing Yang. 2016. CCCF: Improving collaborative filtering via scal-

able user-item co-clustering. In Proceedings of the 9th ACM International Conference on Web Search and Data Mining

(WSDM’16). ACM, 73–82. DOI:https://doi.org/10.1145/2835776.2835836

ACM Transactions on Information Systems, Vol. 38, No. 2, Article 12. Publication date: February 2020.

https://doi.org/10.1145/2645710.2645751
https://doi.org/10.1145/2645710.2645751
https://doi.org/10.1145/1995966.1995976
https://doi.org/10.1145/2939672.2939704
https://doi.org/10.1137/1.9781611974010.22
https://doi.org/10.1145/3108148
https://doi.org/10.1145/1401890.1401969
https://doi.org/10.1145/2645710.2645726
https://doi.org/10.1145/2766462.2767716
https://doi.org/10.1145/2020408.2020480
https://doi.org/10.1145/2783258.2783273
https://doi.org/10.1145/2647868.2654940
https://doi.org/10.1145/2647868.2654940
https://doi.org/10.1109/TIP.2017.2655449
https://doi.org/10.1109/TIP.2017.2655449
https://doi.org/10.1145/2835776.2835836

Local Variational Feature-Based Similarity Models for Recommending Top-N New Items 12:33

[79] Junyuan Xie, Ross B. Girshick, and Ali Farhadi. 2016. Unsupervised deep embedding for clustering analysis. In Pro-

ceedings of the 33nd International Conference on Machine Learning (ICML’16). 478–487.

[80] Bin Xu, Jiajun Bu, Chun Chen, and Deng Cai. 2012. An exploration of improving collaborative recommender systems

via user-item subgroups. In Proceedings of the 21st World Wide Web Conference (WWW’12). 21–30. DOI:https://doi.
org/10.1145/2187836.2187840

[81] Chunfeng Yang, Huan Yan, Donghan Yu, Yong Li, and Dah Ming Chiu. 2017. Multi-site user behavior modeling and

its application in video recommendation. In Proceedings of the 40th International ACM SIGIR Conference on Research

and Development in Information Retrieval (SIGIR’17). ACM, 175–184. DOI:https://doi.org/10.1145/3077136.3080769
[82] Xitong Yang. 2017. Understanding the Variational Lower Bound. Retrieved from https://xyang35.github.io/2017/04/

14/variational-lower-bound/.

[83] Hongzhi Yin, Bin Cui, Yizhou Sun, Zhiting Hu, and Ling Chen. 2014. LCARS: A spatial item recommender system.

ACM Trans. Inf. Syst. 32, 3, Article 11 (July 2014), 37 pages. DOI:https://doi.org/10.1145/2629461
[84] Hongzhi Yin, Bin Cui, Xiaofang Zhou, Weiqing Wang, Zi Huang, and Shazia Sadiq. 2016. Joint modeling of user

check-in behaviors for real-time point-of-interest recommendation. ACM Trans. Inf. Syst. 35, 2, Article 11 (Oct. 2016),

44 pages. DOI:https://doi.org/10.1145/2873055
[85] Liang Zhang, Deepak Agarwal, and Bee-Chung Chen. 2011. Generalizing matrix factorization through flexible

regression priors. In Proceedings of the 5th ACM Conference on Recommender Systems (RecSys’11). ACM, 13–20.

DOI:https://doi.org/10.1145/2043932.2043940
[86] Weinan Zhang, Tianming Du, and Jun Wang. 2016. Deep learning over multi-field categorical data – A case study

on user response prediction. In Proceedings of the 38th European Conference on IR Research (ECIR’16). 45–57. DOI:
https://doi.org/10.1007/978-3-319-30671-1_4

[87] Yi Zhang and Jonathan Koren. 2007. Efficient Bayesian hierarchical user modeling for recommendation system. In

Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Re-

trieval (SIGIR’07). ACM, 47–54. DOI:https://doi.org/10.1145/1277741.1277752
[88] Yongfeng Zhang, Guokun Lai, Min Zhang, Yi Zhang, Yiqun Liu, and Shaoping Ma. 2014. Explicit factor models for

explainable recommendation based on phrase-level sentiment analysis. In Proceedings of the 37th International ACM

SIGIR Conference on Research and Development in Information Retrieval (SIGIR’14). ACM, 83–92. DOI:https://doi.org/
10.1145/2600428.2609579

[89] Yongfeng Zhang, Min Zhang, Yiqun Liu, Shaoping Ma, and Shi Feng. 2013. Localized matrix factorization for recom-

mendation based on matrix block diagonal forms. In Proceedings of the 22nd International World Wide Web Conference

(WWW’13). 1511–1520. DOI:https://doi.org/10.1145/2488388.2488520
[90] Wayne Xin Zhao, Yanwei Guo, Yulan He, Han Jiang, Yuexin Wu, and Xiaoming Li. 2014. We know what you want

to buy: A demographic-based system for product recommendation on microblogs. In Proceedings of the 20th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining (SIGKDD’14). ACM, 1935–1944. DOI:
https://doi.org/10.1145/2623330.2623351

[91] W. X. Zhao, S. Li, Y. He, E. Y. Chang, J. Wen, and X. Li. 2016. Connecting social media to e-commerce: Cold-start

product recommendation using microblogging information. IEEE Trans. Knowl. Data Eng. 28, 5 (May 2016), 1147–

1159. DOI:https://doi.org/10.1109/TKDE.2015.2508816
[92] Lei Zheng, Vahid Noroozi, and Philip S. Yu. 2017. Joint deep modeling of users and items using reviews for recom-

mendation. In Proceedings of the 10th ACM International Conference onWeb Search and Data Mining (WSDM’17). ACM,

425–434. DOI:https://doi.org/10.1145/3018661.3018665
[93] Tinghui Zhou, Hanhuai Shan, Arindam Banerjee, and Guillermo Sapiro. 2012. Kernelized probabilistic matrix fac-

torization: Exploiting graphs and side information. In Proceedings of the 12th SIAM International Conference on Data

Mining (SDM’12). SIAM, 403–414. DOI:https://doi.org/10.1137/1.9781611972825.35

Received December 2018; revised October 2019; accepted November 2019

ACM Transactions on Information Systems, Vol. 38, No. 2, Article 12. Publication date: February 2020.

https://doi.org/10.1145/2187836.2187840
https://doi.org/10.1145/2187836.2187840
https://doi.org/10.1145/3077136.3080769
https://xyang35.github.io/2017/04/14/variational-lower-bound/
https://xyang35.github.io/2017/04/14/variational-lower-bound/
https://doi.org/10.1145/2629461
https://doi.org/10.1145/2873055
https://doi.org/10.1145/2043932.2043940
https://doi.org/10.1007/978-3-319-30671-1_4
https://doi.org/10.1145/1277741.1277752
https://doi.org/10.1145/2600428.2609579
https://doi.org/10.1145/2600428.2609579
https://doi.org/10.1145/2488388.2488520
https://doi.org/10.1145/2623330.2623351
https://doi.org/10.1109/TKDE.2015.2508816
https://doi.org/10.1145/3018661.3018665
https://doi.org/10.1137/1.9781611972825.35

