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ARTICLE INFO ABSTRACT

Keywords: Query suggestions help users of a search engine to refine their queries. Previous work on query
Neural methods for information retrieval suggestion has mainly focused on incorporating directly observable features such as query co-
Query suggestion occurrence and semantic similarity. The structure of such features is often set manually, as a

result of which hidden dependencies between queries and users may be ignored. We propose an
Attention-based Hierarchical Neural Query Suggestion (AHNQS) model that uses an attention
mechanism to automatically capture user preferences. AHNQS combines a session-level neural
network and a user-level neural network into a hierarchical structure to model the short- and
long-term search history of a user. We quantify the improvements of AHNQS over state-of-the-art
recurrent neural network-based query suggestion baselines on the AOL query log dataset, with
improvements of up to 9.66% and 12.51% in terms of Recall@10 and MRR@10, respectively;
improvements are especially obvious for short sessions and inactive users with few search ses-
sions.

1. Introduction

Modern search engines offer query suggestions to help users express their information needs effectively. Previous work on query
suggestion, such as probabilistic models and learning to rank techniques, mainly relys on features indicating dependencies between
queries and users, such as clicks and dwell time (Chen, Cai, Chen, & de Rijke, 2017). However, the structure of those dependencies is
usually modeled manually. As a result, hidden relationships between queries and a user’s behavior may be ignored. Recurrent neural
network (RNN)-based approaches have been proposed to tackle these challenges. A query log can be treated as sequential data that
can be modeled to predict the next input query. However, existing neural based methods only consider so-called current sessions (in
which a query suggestion is being generated) as the search context for query suggestion (Onal et al., 2018).

Our research goal is to develop a neural query suggestion method that is able to capture the user’s search intent by capturing both
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query suggestion approach to model users’ preference better by combining local (attention-based) and global session states; (2) investigate the
performance of AHNQS with different session states, i.e., global vs. local vs. combined; (3) investigate the performance of our model with different
numbers of users’ search sessions, as we find that the majority of users in the AOL dataset only have a small number of sessions; and (4) include more
related work and provide a more detailed analysis of the approach and experimental results.
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their short-term interests, as manifested during an ongoing search session, and their long-term interests, as manifested during earlier
sessions. To this end we propose an AHNQS model that applies a user attention mechanism inside a hierarchical neural structure for
query suggestion. The hierarchical structure contains two parts: a session-level RNN and a user-level RNN. The first captures queries
in the current session and is used to model the user’s short-term search context to predict their next query. The second captures the
past search sessions for a given user and is applied to model their long-term search behavior to output a user state vector representing
their preferences. We use the hidden state of the session-level RNN as the input to the user-level RNN; the user state of the latter is
then used to initialize the first hidden state of the next session-level RNN.

In addition, we apply an attention mechanism inside the hierarchical structure of AHNQS that is meant to capture a user’s
preference towards different queries in a session. This addition is based on the assumption that different queries in the same session
may express different aspects of the user’s search intent (Bahdanau, Cho, & Bengio, 2015), e.g., queries with subsequent click
behavior are more likely to represent the user’s information need than those without. An attention mechanism can automatically
assign different weights to hidden states of queries in the session-level RNN. The attentive hidden states together compose the session
state, which we regard as a local session state. The local session state has the advantage of adaptively focusing on more important
queries to capture users’ main purpose in the current session. Besides, we also consider the final hidden state of the session-level RNN
as a global session state, which acts as a vertical summary of the full sequence behavior. Then we use a combination of the global and
local session state as the input for the user-level RNN.

We compare the performance of AHNQS against a state-of-the-art query suggestion baseline and variants of RNN-based query
suggestion methods using the AOL query log. In terms of query suggestion ranking accuracy we establish improvements of AHNQS
over the best baseline model of up to 9.66% and 12.51% in terms of Recall@10 and MRR@10, respectively. In addition, we in-
vestigate the impact on query suggestion performance of different session states, i.e., global vs. local vs. combined. The results show
the effectiveness of the AHNQS model with the combined session state. Furthermore, we test the scalability of the AHNQS model
across users with different numbers of sessions in their interaction history. The experimental results show that the performance of
AHNQS is better than the best baseline model for users with varying degrees of activity.

Our contributions in this paper are:

1. We tackle the challenge of query suggestion in a novel way by proposing an Attention-based Hierarchical Neural Query
Suggestion model, i.e., AHNQS, which adopts a hierarchical structure containing a user attention mechanism to better capture the
user’s search intent.

2. We analyse the impact of session length on query suggestion performance and find that AHNQS consistently yields the best
performance, especially with short search contexts.

3. We examine the performance of AHNQS with different numbers of users’ sessions. We find that AHNQS always yields better
performance over the best baseline model, especially for users with few search sessions.

We describe related work in Section 2. Details of the attention-based hierarchical query suggestion model are described in
Section 3. Section 4 presents our experimental setup. In Section 5, we report and discuss our results. Finally, we conclude in Section 6,
where we also suggest future research directions.

2. Related work

Query suggestion can support users of search engines during their search tasks. A significant amount of work has gone into
methods for formulating a better understandable query submitted by users (Cai et al., 2016; Cai & de Rijke, 2016a; 2016¢; Smith,
Gwizdka, & Feild, 2017; Vidinli & Ozcan, 2016a; 2016b). In recent years, deep learning techniques have been applied to a range of
information retrieval tasks, often leading to a better understanding of user’s search behavior (Borisov, Wardenaar, Markov, &
de Rijke, 2018; Onal et al., 2018). In this section, we summarize traditional query suggestion methods in Section 2.1 and neural
methods for query suggestion in Section 2.2.

2.1. Traditional query suggestions methods

Query suggestion methods that only rely on query co-occurrence are not able to satisfy all users in all contexts as they always
provide the same list of suggestions to different users (Cai and de Rijke, 2016b; Chen et al., 2017). Thus, search query logs are an
important resource to mine different users’ search behavior. A query log can be partitioned into query sessions, i.e., sequences of
queries issued by a unique user within a short time interval. Previously submitted queries may provide useful search context to reduce
ambiguity of the current query and to produce more focused suggestions (Jiang, Ke, Chien, & Cheng, 2014). He et al. (2009) propose
a context-aware method that uses a Variable Memory Markov model (QVMM) and builds a suffix tree to model the user query
sequence. The method proposed by Cao et al. (2008) is similar but they build a suffix tree on clusters of queries and model transitions
between clusters. However, for both methods, the number of parameters increases with the depth of the tree, which naturally leads to
sparsity. Instead, our model can consider a flexible length of contexts with a fixed number of parameters. In addition,
Santos, Macdonald, and Ounis (2013) and Ozertem, Chapelle, Donmez, and Velipasaoglu (2012) focus on learning to rank approaches
for query suggestion. However, those approaches are trained with pairwise features, which cannot consider previous queries ef-
fectively.

Other work mainly focuses on personalized query suggestion methods based on a query-URL bipartite graph, which is constructed
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from click data with one type of vertex corresponding to queries and another type corresponding to URLs. Such query suggestion
methods typically use a click graph representing the information flow in query logs with a Markov random walk model (Cui et al.,
2011; Torres, Hiemstra, Weber, & Serdyukov, 2014). For instance, Ma, Yang, King, and Lyu (2008) develop a two-level query
recommendation method based on two bipartite graphs (user-query and query-URL bipartite graphs) extracted from click data.
Li, Yang, Liu, and Kitsuregawa (2008) use the connectivity of a query-URL bipartite graph through a novel two-phrase algorithm to
recommend relevant queries that can improve the effectiveness of personalized query recommendation. Mei, Zhou, and
Church (2008) propose a personalized query suggestion method by employing hitting time and creating pseudo query nodes in a click
graph. Click graph-based approaches cannot extract features of users’ long-term and short-term search histories, and thus fail to
combine different types of user behavior effectively.

Unlike the work listed above, our method uses a session-level RNN and a user-level RNN to model a user’s short-term and long-
term search history, respectively, thereby extracting sequential behavior features in an effective way. In addition, we integrate this
two level RNN structure into a hierarchical architecture to combine short-term and long-term search behavior simultaneously. An
attention mechanism is applied inside the hierarchical structure to capture the user’s search intent.

2.2. Neural networks in query suggestion

Neural networks have been applied in a variety of tasks in Information Retrieval, ranging from document ranking, and query
understanding to user modeling (Borisov, Markov, de Rijke, & Serdyukov, 2016; He et al., 2018; Huang et al., 2013; Li, Ren, et al.,
2017; Onal et al., 2018; Shen, He, Gao, Deng, & Mesnil, 2014). To some extent, we share similar targets with Borisov et al. (2016),
who use distributed representations to model user browsing behavior in web search with a neural click model. We represent a user’s
short-term and long-term search behavior as a sequence of vector states that can describe a user’s search intent. This kind of re-
presentation is richer than traditional methods and thereby enables us to capture more complex patterns of user search behavior.

Similar work has been done on neural query auto completion (QAQC), i.e., a special type of query suggestion that suggests queries
according to the input query prefix. Deep learning-based QAC models can be categorized into two groups: semantic models with
convolutional neural networks and language models with recurrent neural networks (Mitra & Craswell, 2015; Park & Chiba, 2017).
For RNN-based models, the probability for predicting the completed query is related to the length of the query, consequently favoring
short query predictions (Fiorini & Lu, 2018). Using the RNN and CNN-based features developed in the work mentioned, a learning to
rank-based method has been shown to achieve state-of-the-art performance on the neural query auto completion task, but with high
computational costs (Fiorini & Lu, 2018).

In addition, Sordoni, Bengio, Vahabi et al. (2015) propose a hierarchical recurrent encoder-decoder model for generative query
suggestion. The authors formulate a novel hierarchical neural network architecture and use it to produce query suggestions. It differs
from our work in two important ways. On the one hand, it incorporates the neural query suggestion model as a feature into a learning
to rank approach and thus belongs to the feature engineering approaches. On the other hand, their approach only considers users’
short-term search history and, hence, it ignores long-term search behavior.

Another line of work similar to ours is due to Quadrana, Karatzoglou, Hidasi, and Cremonesi (2017), who propose a neural
hierarchical session-based approach for recommender systems. In particular, the authors extend previous RNN-based session mod-
eling with an additional RNN level that models the user activity across sessions and the evolution of their interests over time. We
apply an attention mechanism inside the hierarchical structure that can capture a user’s preference towards certain queries over
others in a session. In addition, we propose a combined session state to capture both the user’s sequential behavior and their main
purpose in the current session, which we show to be useful in improving the query suggestion performance.

Compared to our previous work (Chen, Cai, Chen, & de Rijke, 2018), where we proposed an attention-based hierarchical neural
query suggestion model (AHNQS) and quantified the improvement of AHNQS against the state-of-the-art baselines, we make new
contributions in four directions. First, we combine the local (attention-based) states and the global session states to model users’
preferences. Second, we investigate the performance of AHNQS with different session states to verify the utility of this combination
(local and global session states). Third, we examine the performance of AHNQS with different numbers of users’ search sessions, as we
find that the majority of users in the AOL dataset only have a small number of sessions. Finally, we include more related work and
provide a more detailed analysis of our experimental results.

3. Approach

Before introducing the AHNQS model, we introduce a neural query suggestion (NQS) model with session-level RNNs, and a
hierarchical neural query suggestion (HNQS) model with hierarchical user-session RNNs.

3.1. Session-level RNNs for query suggestion

As in Sordoni et al. (2015), session-level RNNs are our starting point. In the neural-based query suggestion model (NQS), queries
in the current session are taken as sequential input and used to output the probability of being the next query for the query suggestion
candidates.

Formally, we assume that a query session session, contains N, queries, denoted as session, = (q, ;» @, Gs 1>+ n,;)- AS shown in
Fig. 1, for generating the input vector of the network, we use a 1-of-N encoding of g;, i.e., the vector length equals the number of
unique queries V and only the coordinate corresponding to the ith query is one, the others are zero. We choose to use the Gated
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Fig. 1. Structure of the NQS model.

Recurrent Unit (GRU) (Cho, van Merrienboer, Giilcehre et al., 2014) as our non-linear transformation. The hidden state h, can be
A
calculated by using the previous hidden state h,_; and the candidate update state h,:
A
hn = (1 - un)hn—l + unhm (€D)]
where the update gate u, can be generated by:
Uy = U(qumt + H,hy_1). 2)

The candidate update state Il1\n is calculated by:
Ifz\,, = tanh(Ig, , + H (-hn_1)), 3
where the reset gate r, is:
b =0l q,, + Hhn1), 4

where [, I,, I, € RV, H, H,, H, € R%*%, and dj is the number of dimension of the hidden state; o(-) denotes the sigmoid function.
The H matrices are used to keep or forget the information in h,_;. Finally, g, is the representation of the nth query in session,.
We use RNNygion and RNN,,, to denote the GRU function. The final hidden state of a session-level RNN is used to indicate the
session state, S; = hy, . The output of the session-level RNN are the scores of query suggestion candidates being predicted as the next
query:
Snt = g(‘Nith)’ 5)

where g(-) is the activation function of the output layer, which can be either a softmax or a tanh, depending on the loss function of
the neural network. In addition, W; € RV*% is a parameter that can keep the dimension of the output equal to the number of queries.
Thus we can generate a list of query suggestions in the test set according to the scores of query candidates.

We choose a pairwise loss function that forces positive query suggestion samples to be ranked higher than negative ones. There
are several pairwise ranking loss functions, including cross-entropy and TOP1 (Hidasi, Karatzoglou, Baltrunas, & Tikk, 2016). In the
field of recommender systems, TOP1 has proved to outperform others, so we set:

Ns
1
Loss = ~ z o (i — Sie) + (570,
S =1 (6)

where s;, and s;, denote the score of a negative query candidate and a ground truth query, respectively, and Ng is the number of
negative sampled query candidates, which are the queries that a user does not submit or input; as before o(-) denotes the sigmoid
function.

3.2. Hierarchical user-session RNN for query suggestion

Clearly, the NQS model only models the short-term search context. Next, we model the long-term search behavior of a given user
with a user-level RNN, thereby producing the hierarchical NQS model (HNQS).

We assume that a user u has N,, query sessions, which is denoted as: u(session) = (session, ,, session, y, ...,sessiony, ). In a user-level
RNN, the input is the session state S, and the hidden state in user-level RNN can be calculated as:

hn,u = RNNuser(hn—l.u’ Sn,u)’ (7)

where S, ,, is the session state of the nth query session of user u, which is equal to the last hidden state of the session-level RNN.

As shown in Fig. 2, we use the final hidden state of the user-level RNN to denote the user state, U, = h;,, that contains the
information about the search behavior from a user’s past sessions and thus can be applied in the session-level RNN. In HNQS, the
session-level RNN is initialized with a user state as follows:

ho,s = tanh(W-U,_1 + by). (€))]
Updating:
hn,t = R-NMesxion(hn—l,t’ qn,[)~ (9)
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Fig. 2. Structure of the HNQS model.

Output:
Sp,t = g(“’ihn,t)- (10)

With this initialization strategy, the user’s short-term search intent can be incorporated with his general preference. We choose to
use only the initialization strategy for session-level RNN with user state U;_;, instead of transporting the user information from U;_;
throughout the whole session-level RNN including initialization, updating and output. The GRU unit has both long and short term
memory (Hochreiter & Schmidhuber, 1997) and can automatically transport the user state information within the network, which
leads to a better performance when combined with our initialization strategy. If we choose to transport the user state throughout the
whole session-level RNN, the user state information will be overloaded, which limits the performance of the model.

3.3. Attention-based hierarchical RNN for query suggestion

We assume that submitted queries that trigger subsequent click behavior have a better expression of the user’s search intent. We
hypothesize that queries in a session should have different weights to reflect the user’s information need and employ an attention
mechanism on top of the HNQS model to capture the user’s preference for different queries in a session and then aggregate the
representations of informative queries.

Fig. 3 shows how we update the user-level RNN in AHNQS with an attention mechanism as follows:

ht,u = RNNu:er(ht—l,uy Ct)s (11)

where C, is the attentive representation of the session state, a weighted sum of the hidden states h; . from the session-level RNN, which
is generated as:

N
C = Z ijrhj,n
j=1 12

where a;, is the normalized attention score for the jth query in session session,, which is interpreted as the contribution of the query to
the preference of the user:

Attention ¥

Fig. 3. The attention mechanism in the AHNQS model.
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User
Attention

Fig. 4. Structure of the AHNQS model with combined session state.

exp(eir)

%= <
TSN explen) 13)

where ¢; = h[{l,uW;hj, is the initial attention score computed with user state h,_;, and hidden state h;, in a session-level RNN. The
parameters W, can be jointly trained with the other components of AHNQS as the attention mechanism allows the gradient of the loss
function to be backpropagated.

For the task of session-based query suggestion, the final hidden state of the session-level RNN can express a summary of the whole
sequence behavior, which is called the global session state. As the attentive representation of the session state can adaptively select the
important items in the current session to capture the user’s main purpose, we regard C, in (11) as the local session state. While the
global session state indicates users’ current search intents explicitly, the local session state denotes users’ general preferences towards
the queries in the current session. Thus, we combine the global and local session state by concatenating them to form an extended
representation of a session as shown in Fig. 4.

We denote the global session state as Sf“’bm = hy,; and the local session state as S,’“C“’ = C;. Then, the combined session state can be
generated by

Nt
S = [SF SPNWy = [ s D) oy [ W,
=1 14)

where Wy, is used to keep the dimension of S the same as S&°°® and S/’ Then, the hidden states in the user-level RNN in Eq. (12)
can be updated with the combined session state as:

Ry = RNNyger (Be_1,u, SE™), (15)

So far, we have developed the AHNQS model, which combines a hierarchical user-session RNN and an attention mechanism for
query suggestion; the hierarchical structure models the user’s short and long-term search behavior, while the attention mechanism
captures the user’s search preference.

The training process of AHNQS with combined session states is outlined in Algorithm 1.

We first initialize the parameters in the session-level RNN and user-level RNN in step 1. Then, for a session-level RNN, we
initialize the first hidden state in session, with the former user state U;_; in step and produce the hidden states in step 7. The prediction
score for the next query is generated in step 8 and the loss of the whole network is calculated in step 9, which can be used during
backpropagation to optimize the parameters. As for the user-level RNN, we calculate the attention weights with step 12 and step 13.
Then we generate the combined session state S for session, from step 14 and step 16. Finally, the tth hidden state h,, and user state
U, in the user-level RNN are calculated in step 17 and step 18.

4. Experiments

We conduct our experiments on the AOL dataset to examine the effectiveness of AHNQS. We first list the research questions and
the models used for comparison. After that, the datasets and experimental setup are described.

4.1. Research questions
We conduct experiments with the aim of answering the following research questions:

(RQ1) Do the hierarchical structure and attention mechanism incorporated in AHNQS help to improve the performance of the
neural query suggestion model and outperform the state-of-the-art?
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Input: Epoches: training iterations;
U: user set;
u(session): the session set of user
sessioq the t-th session in(session);
query: the i-th query insessioq
N: the number of queries isessio
Ns: the number of negative sampled query candidates;

Output: the optimized parameters in session-level RNN and user-level RNN.
1: randomly initialize the parameters and the hidden states in session-level RNN and user-lev
2: for epoch in range(Epochedd
3 forueUdo

4: for sessiope u(sessiondo

5: for query; € sessiopdo

6: ho; = tanh(W- U_1 + bg); %% initialization strategy for session-level RNN
7: hit = RN Nsessiohi- 1. Git);

8: s.t = g(Wihip); %% prediction score of next query

9: Loss= N—ls . Z?jl O'('Sj’t - Sit) + q(sit); %% loss calculation
10: use back propagation to optimize the parameters.

11: end for

12: ej = h'; Wahy;

13: aj = —x0@) . o404 attention mechanism

Zkzl ?\Tp(e(t)

14: SPe = Bt ajhig

15: Sglobal — hN(,t-

16: Sgomb — [S?"’ba', S{OC""']WE;

17 ey = RNNisedne-1.u, S{:omt);

18: U = ht,u;

19: end for
20:  end for
21: end for

22: return the parameters in session-level RNN and user-level RNN.

Algorithm 1. Attention-based Hierarchical Neural Query Suggestion.

(RQ2) What is the impact on query suggestion performance of session length, i.e., short vs. medium length vs. long sessions?
(RQ3) What is the impact on query suggestion performance of different session states, i.e., global vs. local vs. combined?
(RQ4) How does the performance of AHNQS vary across users with different numbers of search sessions?

4.2. Model summary

As AHNQS is based on a neural network to capture the dependencies between queries and users, we compare it with the state-of-
the-art neural models for query suggestion. As an aside, Sordoni et al. (2015) incorporate a neural query suggestion model as a
feature into a learning to rank approach and, hence, their approach belongs to the feature engineering approaches we do not compare
with. We consider the following baselines for comparison:

ADJ original co-occurrence-based query suggestion method (Huang, Chien, & Oyang, 2003);

NQS a simple session-based RNN method for query suggestion (Hidasi et al., 2016), Section 3.1;

HNQS a hierarchical structure with user-session-level RNN for query suggestion, Section 3.2.

In addition, we consider two variants of our attention-based hierarchical neural query suggestion model:

AHNQS;o; an attention-based hierarchical RNN model for query suggestion, using the local session state S/°*, Section 3.3;
AHNQS ompinea an attention-based hierarchical RNN model for query suggestion, using the combined session state Stcombi"e‘i,

Section 3.3.

We list all the models to be compared in Table 1. It should be noticed that if we only use a global session state to update the user-
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Table 1
An overview of models discussed in the paper.
Model Description Source
ADJ An original co-occurrence-based query suggestion method. Huang et al. (2003)
NQS A simple session-based RNN method for query suggestion. Hidasi et al. (2016), Section 3.1
HNQS A hierarchical structure with user-session-level RNN for query suggestion. Quadrana et al. (2017), Section 3.2
AHNQS/ocal An attention-based hierarchical RNN model for query suggestion, using the local session state S{°°%. This paper, Section 3.3
AHNQS ombined An attention-based hierarchical RNN model for query suggestion, using the combined session state This paper, Section 3.3
Stcomb[ned.

level RNN, it is the same as the HNQS model. Thus, in the experiments on which we report below, we use HNQS to denote the model
that only has a global session state.

4.3. Datasets and experimental setup

4.3.1. Dataset

We use the AOL query log and preprocess the dataset following Guo, Cheng, Xu, and Zhu (2011). Queries are separated into
sessions by 30 minutes of inactivity. We remove queries with less than 20 occurrences and keep sessions whose length is larger than 5
as well as users with at least 5 sessions to provide sufficient user-session information. The training set consists all but the last 30 days
in the search history; the test set consists of the last 30 days in the log after filtering out queries that do not exist in the training set.
Table 2 details the statistics of the dataset used.

4.3.2. Parameter settings

We use GRUs as the RNN units and optimize the neural models using the TOP1 loss function and AdaGrad with momentum for 20
epochs. The number of hidden units is set to 100 in all cases and we use dropout regularization. We optimize the hyperparameters by
running 100 experiments at randomly selected points of the parameter space. Optimization is done on a validation set, which is
partitioned from the training set with the same procedure as the test set. We summarize the best performing parameters in Table 3.

In addition, in order to answer RQ4, we plot distributions of users with different numbers of sessions in the AOL dataset in Fig. 5.

The x-axis denotes the number of sessions while the y-axis indicates the number of users corresponding to the sessions. We see
that although the maximum number of sessions that a user has is more than 150, the majority of users in the dataset only have a small
number of sessions, which we regard as “inactive users.” In detail, 60.49% of the users have fewer than 8 sessions, 32.33% from 8 to
20 sessions, and only 7.18% of the users have more than 20 sessions. Thus, it is meaningful to investigate how the performance of the
AHNQS models varies with different numbers of users’ sessions.

4.3.3. Training and evaluation

Research in natural language processing tasks often uses a fixed number of sequential words in a sentence to form a session and
then put those sessions next to each other to form mini-batches. However, in query suggestion, the lengths of sessions are different
and our goal is to capture how a session evolves over time, thus it is not suitable to set a fixed length for sessions. Besides, different
users also have different numbers of sessions and we need to deal with sessions of the same user in order. Hence, we use parallel mini-
batches with the identifications of users and sessions following Hidasi et al. (2016). We first group sessions by users and then sort
sessions within each group by time. Then we order the users at random. Next, the first item of the first session of the first N users
constitute the first mini-batch. The second item in each session server as the output for the first mini-batch and also constitute the
next mini-batch. When a session ends, its next session of the user comes. When the sessions of a user have been processed completely,
the next user is put in its place in the next mini-batch.

During training, we apply dropout in three ways: the calculation of the hidden states in the session-level RNN, the calculation of
the hidden states in the user-level RNN, and the initialization for the first hidden state in the session-level RNN with a user state.

We evaluate the models by providing queries in a session one by one and measure the ranking performance of query suggestions
with MRR and Recall on the test set.

Table 2

Dataset statistics.
Variable Training Test
# Queries 1,545,543 576,817
# Unique queries 61,641 33,519
# Sessions 166,414 67,716
# Users 23,308 19,255
Average # queries per session 9.28 8.52
Average # sessions per user 7.14 3.52
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Table 3

Parameters used for each model.
Model Batch Dropout Learning rate Momentum
NQS 50 0.5 0.01 0.0
HNQS 50 0.1 0.1 0.0
AHNQS 50 0.1 0.1 0.0

B AOL dataset
5000

N w S

o o o

o o o

o o o
L L L

Number of users

1000
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0 25 50 75 100 125 150 175
Number of sessions

Fig. 5. Distribution of users with varying numbers of sessions in the AOL dataset.

5. Results and discussion
5.1. Performance of query suggestion models

To answer RQ1, we examine the query suggestion performance of the baselines as well as the AHNQS;,.; and AHNQS ;mpined
models. Table 4 presents the results.

As shown in Table 4, amongst the baselines, ADJ outperforms NQS, with 9.74% and 12.58% improvements in terms of Recall@10
and MRR@10, respectively. This may be due to the fact that the NQS model (without knowing about individual users) fails to capture
information from the past search history. HNQS shows improvements over ADJ of up to 15.07% and 13.75% in terms of Recall@10
and MRR@10, respectively. This demonstrates that the hierarchical structure can effectively incorporate a given user’s previous
search behavior and then improve the accuracy. Thus, in general, HNQS performs best among the baselines we consider and, hence, it
is used as the baseline of choice in our later experiments.

Regarding our newly introduced models, the AHNQS models display a competitive performance compared to HNQS and ADJ. In
particular, AHNQS;,. outperforms ADJ by 21.86% in terms of Recall@10 and 22.99% in terms of MRR@10, and beats HNQS by
5.9% in terms of Recall@10 and 8.13% in terms of MRR@10, respectively. The improvements are significant when tested with a t-test
at the a = .01 level. These findings indicate that attention can strengthen the model’s ability to rank query suggestion candidates
effectively. The best performance is obtained by AHNQS ompined; its improvements over AHNQS;,. are 3.55% in terms of Recall@10
and 4.05% in terms of MRR@10, respectively. This can be attributed to the utility of the combined session state.

Interestingly, we see that the improvements of our AHNQS models against the baselines in terms of MRR@10 are more obvious
than those in terms of Recall@10. For example, AHNQS ompinea Shows an improvement over HNQS by 12.51% in terms of MRR@10
and 9.66% in terms of Recall@10. This means that the attention mechanism cannot only help to suggest the right query, but has a

Table 4

Performance of query suggestion models. The results by the best baseline and the best
performer in each column are italic and in boldface, respectively. Statistical significance
of pairwise differences of AHNQS;,c; and AHNQS .ompinea VS- the best baseline) is de-
termined by a t-test (&/Y for a = 0.01).

Model Recall@10 MRR@10
ADJ 0.70724 0.69224
NQS 0.64444 0.61484
HNQS 0.81384 0.78744
AHNQS;ocqt 0.86184 0.85144
AHNQS ombined 0.89244 0.88594
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(c) User-level RNN in HNQS. (d) User-level RNN in AHNQS,cq:.

Fig. 6. Visualizing the hierarchical structure ((a) and (b)) and attention mechanism ((c) and (d)). The lighter the area in the plot, the more important
the information is.

competitive performance in ranking it at the top position in the list of query suggestion.
5.2. Visualization of the hierarchical structure and attention mechanism

To determine the impact of the hierarchical structure and attention mechanism, we consider a sample session and user, and
compare the hidden states of an RNN in NQS and HNQS, respectively in Fig. 6a and b, as well as the hidden states of an RNN in HNQS
and AHNQS;,cq1, respectively in Fig. 6¢ and d. The lighter the area in the plot, the more important the information is.

In Fig. 6a and b, the session contains 102 queries (x-axis); the number of hidden units is 100 (y-axis). Compared with Fig. 6a, we
can see that the hierarchical structure modifies the user’s search intent especially at the first positions in a session in Fig. 6b. This is
because we initialize the session-level RNN with a user state U, in HNQS. There is a fluctuation around the 36th to 40th queries in
Fig. 6b, which may be due to the fact that we use a GRU unit inside the session-level RNN to transport the user state information
within the network.

Turning to the attention mechanism (Fig. 6¢ and d), we select a user with 105 sessions (x-axis) and the number of hidden units in
the user-level RNN is set to 100 (y-axis). Compared with Fig. 6¢, the user’s preference towards different information is more equally
distributed inside the user-level RNN in Fig. 6d. Moreover, going from left to right there are fewer abrupt shifts form high interest
(light) to low interest (dark) areas, or vice versa, in Fig. 6d than in Fig. 6¢: the attention mechanism can help to describe a user’s long-
term search preferences towards different topics.
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Fig. 7. Effect on performance of five models in terms of Recall@10 and MRR@10 with different session lengths, tested on the AOL log.

5.3. Impact of the current session length

For RQ2, we expect the current session length to have an impact on the performance of query suggestion models. We report
separate results for short (2 queries), medium (3 or 4 queries), and long current sessions (at least 5 queries) on the test set in Fig. 7.

Clearly, as the session length increases, the performance in terms of Recall@10 of all query suggestion models improves and our
AHNQS ompinea model always achieves the highest scores. As for the baselines, ADJ outperforms NQS; the margin between them goes
down as the session length increases. HNQS performs better than both ADJ and NQS across all session lengths. The improvements of
HNQS and AHNQS against ADJ (as well as NQS) are more obvious for short sessions than for long sessions. This is due to the fact that
when predicting a user’s search intent at the first position of a session, the hierarchical structure within RNN models can provide
effective information from a user’s past search history and thus can improve the accuracy for query suggestion.

For MRR@10, a similar trend is shown in Fig. 7a. Compared with the results in Fig. 7b, the AHNQS models show a larger
improvement over HNQS. For AHNQS;, 4, the improvements are 11.23%, 7.13% and 8.74% in terms of MRR@10, for short, medium
and long sessions, respectively, vs. improvements of 5.88%, 5.97% and 3.61% for Recall@10. As for AHNQS ompineq; the improve-
ments are 18.77%, 10.61% and 11.15% in terms of MRR@10, for short, medium and long sessions, respectively, vs. improvements of
12.31%, 9.12% and 5.53% for Recall@10. This confirms our intuition about attention mechanisms, i.e., that they help to improve the
precision for query suggestion.

5.4. Impact of different session states

For RQ3, in order to investigate the impact of different session states used in our hierarchical structure, i.e., the global session
state, the local session state, and the combined session state, we compare the performance of HNQS, AHNQS;,.; and AHNQS .ompined

11
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Table 5

Performance comparison among query suggestion models with different session states when the cutoff N is 5, 10 and 15, respectively. D denotes the
hidden state dimension in session-level RNN. The results by the best performer in each column are in boldface. Statistical significance of pairwise
differences of AHNQS ompinea VS- HNQS is determined by a t-test (A/Y for a = 0.05).

(a) Performance comparison at N = 5

D =50 D =100
Model Recall@5 MRR@5 Recall@5 MRR@5
HNQS 0.78194 0.75374 0.79774 0.78164
AHNQSjpcqr 0.82794 0.82084 0.84214 0.84994
AHNQS.ompined 0.87014 0.86204 0.87904 0.88374

(b) Performance comparison at N = 10

D =50 D =100
Model Recall@10 MRR@10 Recall@10 MRR@10
HNQS 0.79814 0.76464 0.81384 0.78744
AHNOQS;pcat 0.85154 0.83014 0.86184 0.85144
AHNQS.ombined 0.88374 0.86574 0.89244 0.88594

(c) Performance comparison at N = 15

D =50 D = 100
Model Recall@15 MRR@15 Recall@15 MRR@15
HNQS 0.80364 0.76734 0.81784 0.78824
AHNQS;pcal 0.85244 0.83364 0.86534 0.85374
AHNQS compined 0.88664 0.86714 0.89784 0.88644

by varying the hidden state dimension in the session-level RNN from 50 to 100. Here, we should remind the reader that HNQS can be
regarded as the model that only has a global session state, as we have explained in Section 4.2. We present the Recall and MRR scores
when the cutoff N is set to 5, 10 and 15 in Table 5 as tested on the AOL log.

As shown in Table 5, we find that the HNQS and AHNQS;,.; models, which only use a single way to represent the session state, do
not perform well in terms of the two metrics. However, AHNQS ,mpineq Yields the best performance under all experimental settings
and its improvements over HNQS are significant when tested with a t-test at « = .05. This indicates that merely considering the final
hidden state or the sequential behavior in the current session may not allow the network to learn a good query suggestion model. In
particular, AHNQS;,.; performs better than HNQS on different hidden state dimensions over the three cutoff settings. This de-
monstrates that the local session state can give a better description of a user’s search intent than the global session state.

Regarding the impact of different hidden state dimensions, we can see that the query suggestion performance of the three models
improves when the hidden state dimension increases from 50 to 100. However, the AHNQS .ompines model shows less improvements
than the other two models. For example, the improvements of D = 100 over D = 50 are 1.97%, 1.21% and 0.98% of HNQS,
AHNQS},cqr and AHNQS ,mpinea in terms of Recall@10, and 2.98%, 2.56% and 2.33% in terms of MRR@10, respectively. This can be
explained by the fact that AHNQS ,mpines takes advantage both of the local and global session state, and thus can generate a better
performance with a smaller hidden state dimension. In addition, comparing different cutoff settings, the performances of all models
get improved with N increasing from 5 to 15. In addition, the improvements of N = 15 over N = 5 of our AHNQS models are smaller
than of HNQS in terms of both metrics. This can be explained by the fact that the AHNQS models can rank the right query at the top
position of the query suggestion list and thus the performance is affected little by an increase in the cutoff.

5.5. Scalability with different numbers of users’ sessions

In Fig. 5, we have shown that most users have a very limited number of sessions ( < 17) while there are some that have a
particularly large number of sessions ( = 150), which we regard as “inactive users” and “most active users,” respectively. It is
meaningful to investigate how the performance of AHNQS and HNQS varies across users with different numbers of sessions.

Following Prem, Hofman, and Blei (2015), we look at the performance for users of varying degrees of activity, measured by
percentile. In Fig. 8, we first rank the users according to their number of sessions. The “inactive users” mark shows the mean
performance across the bottom 10% of users, who are least active but constitute the majority of the dataset; the “active users” mark
shows the mean performance for the remaining users except the top 10% most active users; the “most active users” mark shows the
mean performance of the top 10% most active users, which form the smallest subset of the dataset.

As shown in Fig. 8, the AHNQS models outperform the best baseline model HNQS for users across all activity levels, i.e., inactive
users, active users as well as most active users. In addition, the AHNQS,,pineq model always achieves the best performance in terms of
Recall@10 and MRR@10. In particular, AHNQS ;mpinea Shows larger improvements over the HNQS model for the “inactive users”

12
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Fig. 8. Performance of three models across users with different numbers of search sessions, tested on the AOL log.

than for the “active users” as well as the “most active users.” For example, when the number of user sessions increases, i.e., testing on
the group of “inactive users” to “active users” and “most active users” accordingly, the improvements decrease from 10.22% to 9.95%
and 9.23% in terms of Recall@10, and from 13.01% to 12.04% and 11.81% in terms of MRR@10 on the AOL dataset, respectively.
This demonstrates that AHNQS ,mpinea can effectively model a user’s search intent even with a small number of user sessions.

We zoom in on the scores in terms of two metrics. In Fig. 8a, the performance of the three models in terms of Recall@10
monotonically improves when the number of user sessions goes up. However, as shown in Fig. 8b, the performance in terms of MRR@
10 decreases when the number of user sessions increases, cf. “active users” vs. “most active users.” That may be due to the fact that
users with lots of search sessions may have very diverse search intents and thus it is difficult to improve the ranking accuracy of the
models for such users. This naturally suggests that in future work we should consider extending the AHNQS ,mpineg model by in-
tegrating other strong signals for personalized query suggestion, such as dwell time or user profiles.

6. Conclusions and future work

We have proposed an attention-based hierarchical neural query suggestion model (AHNQS) that combines a hierarchical user-
session RNN with an attention mechanism. The hierarchical structure, which incorporates a session-level and a user-level RNN, can
model both the user’s short-term and long-term search behavior effectively, while the attention mechanism captures a user’s pre-
ference towards certain queries over others. For the session-level RNN, a combined session state is applied to capture both the user’s
sequential behavior and their main purpose in the current session, which is then used as the input for the user-level RNN. For the
user-level RNN, we use the final hidden state to initialize the next session-level RNN, which can automatically transport the user
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information within the network.

Our experimental results show that: (1) the proposed AHNQS model helps to boost query suggestion performance in terms of MRR
and Recall across sessions with various lengths; (2) using the combined session state in the AHNQS model achieves better perfor-
mance than only using the local session state; (3) the AHNQS model yields better performance than the best baseline for inactive,
active, as well has highly active users.

The theoretical implication of our research is that a hierarchical model which is combined with an attention mechanism for query
suggestion can capture the dynamic search intents of a user. The practical implication of our research is that the improvements of
AHNQS over the best baseline model are significant; they are especially prominent for short sessions and for inactive users with few
search sessions, which is a realistic setup that online services are always confronted with Rashid, Karypis, and Riedl (2008). Com-
pared to the state-of-the-art, AHNQS achieves improvements of 9.66% and 12.51% in terms of Recall@10 and MRR@10, respectively,
on average over all users, and of 10.22% and 13.01% for inactive users.

As to future work, we plan to evaluate our model on other datasets so as to verify its robustness. We also want to investigate the
performance of AHNQS when combining semantic similarity within the hierarchical structure (Meij, Bron, Hollink, Huurnink, &
de Rijke, 2011), e.g., with different encoding methods for input queries (Karisani, Rahgozar, & Oroumchian, 2016; Li, Duan, et al.,
2017; Li, Xing, Sun, & ma, 2016). As for attention strategies, we plan to apply different attention mechanisms to explore users’ search
intents, e.g., self-attention. In addition, signals for personalized query suggestion that we do not consider in this paper, such as user
profiles and dwell time, could also be incorporated in our AHNQS model.
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