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ABSTRACT

Factorization Machines (FMs) are widely used for feature-based
collaborative filtering tasks, as they are very effective at modeling
feature interactions. Existing FM-based methods usually take all
feature interactions into account, which is unreasonable because
not all feature interactions are helpful: incorporating useless feature
interactions will introduce noise and degrade the recommendation
performance. Recently, methods that perform Feature Interaction
Selection (FIS) have attracted attention because of their effective-
ness at filtering out useless feature interactions. However, they
assume that all users share the same feature interactions, which
is not necessarily true, especially for collaborative filtering tasks.
In this work, we address this issue and study Personalized Feature
Interaction Selection (P-FIS) by proposing a Bayesian Personal-
ized Feature Interaction Selection (BP-FIS) mechanism under the
Bayesian Variable Selection (BVS) theory. Specifically, we first intro-
duce interaction selection variables with hereditary spike and slab
priors for P-FIS. Then, we form a Bayesian generative model and de-
rive the Evidence Lower Bound (ELBO), which can be optimized by
an efficient Stochastic Gradient Variational Bayes (SGVB) method
to learn the parameters. Finally, because BP-FIS can be seamlessly
integrated with different variants of FMs, we implement two FM
variants under the proposed BP-FIS. We carry out experiments on
three benchmark datasets. The empirical results demonstrate the
effectiveness of BP-FIS for selecting personalized interactions and
improving the recommendation performance.
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1 INTRODUCTION

Factorization Machines (FMs) [39, 40] are a generic supervised
learning approach that combines the advantage of Support Vector
Machines (SVMs) [48] with factorization models [25]. FMs account
for interactions between features with factorized parameters [5, 46].
Feature interactions are crafted as combinations of individual fea-
tures [12]. For example, in the movie recommendation scenario, the
features for the movie “Spider-Man” can be “comics”, “marvel” and
“avengers”. Accordingly, feature interactions can be combinations
such as, e.g., “(comics, marvel)”, “(comics, avengers)”, etc.

FMs are widely applied in predictive analytics, ranging from
recommendation [41], computational advertising [18], to search
ranking [30] and toxicogenomics prediction [59]. FMs have been
well studied for recommendations, due to their effective use of
historical interactions between users and items [39]. FMs can in-
corporate additional information associated with users or items,
including content descriptions [60], context information [43], so-
cial networks [7, 10], sequential dependencies [26]. While the wide
availability of auxiliary data provides rich sources that may help
reveal user preferences, they also increase the dimensionality of
the feature space [9]. The problem of high-dimensionality is partic-
ularly severe for FMs, because FMs consider feature interactions.
Hence, the complexity of FM models grows exponentially with
the order of feature interactions. But not all feature interactions
are helpful [11]; incorporating unnecessary feature interactions
may bring in noise, which adversely impacts the recommendation
accuracy and increases the difficulty of interpreting outcomes [58].

Feature Interaction Selection (FIS) has been proposed to select
useful feature interactions and filter out useless feature interactions.
Existing FIS methods can be divided into two classes: wrapper meth-
ods [31] and embedded methods [11, 58]. Wrapper methods evaluate
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Figure 1: Feature Interaction Selection and Personalized Fea-
ture Interaction Selection. xi,...,x4 are features and x; -
X2, ...,X3 x4 are feature interactions. The 4 X 4 matrices indi-
cate masks for the selection of feature interactions. x;-x; will
pass through the grid in the i-th row and j-th column or the
Jj-th row and i-th column. The white grids of the matrices
filter out feature interactions. FIS selects identical feature
interactions for u; and uy while P-FIS selects feature interac-
tions for u; and u; separately.

subsets of feature interactions by training a model with each subset
and scoring on a held-out set. Although wrapper methods are more
flexible as they do not depend on the recommendation model to
use, they suffer from poor scalability. Embedded methods perform
interaction selection during model training, which is more efficient
and effective. Sparse Factorization Machines (SFMs) [37, 58, 62] are
an example of embedded methods; they utilize sparsity regulariza-
tion [49, 53] to achieve FIS. Existing FIS-based methods, including
SFMs, overwhelmingly select a common set of interactions for all
users non-personally, on the assumption that the same feature in-
teractions are equally powerful to predict user’s behavior. This
assumption may not be valid, as it overlooks the individuality and
personality of user’s behavior, especially for recommendation tasks.

We introduce and study Personalized Feature Interaction Selec-
tion (P-FIS). As shown in Figure 1, unlike FIS, P-FIS aims to achieve
adaptive FIS for each individual user. P-FIS is a more challenging
task than non-personalized FIS since we have a limited number of
instances associated with each user to select user-specific feature in-
teractions. Although we can train a particular Sparse Factorization
Machine for each user, this is problematic for at least two reasons.
First, it is both time and storage inefficient since we would need to
maintain a model for each user. Second, it is less effective because
estimating a model separately for each user fails to take advantage
of collaborative filtering. To this end, we propose a Bayesian Per-
sonalized Feature Interaction Selection (BP-FIS) mechanism for FMs.
First, instead of learning expensive and less effective personalized
feature embeddings for each user, we estimate a single set of fea-
ture embeddings shared by all users to preserve the advantage of

collaborative filtering. We achieve P-FIS by introducing personal-

ized interaction selection variables and employ Bayesian Variable

Selection (BVS) to estimate the selection variables, which allows

us to avoid expensive cross-validation required by sparsity regu-

larizations [49]. The widely used sparsity priors [3] for BVS are
not ideal since they assign zero probability mass to events asso-
ciated with weights having zero value [50]. Instead, we propose

a Hereditary Spike-and-Slab Prior (HSSP), a variant of the com-

monly used spike and slab priors in BVS [2, 15, 34]. We formulate

the BP-FIS as a probabilistic hierarchical generation procedure and
derive the Evidence Lower Bound (ELBO). Inspired by Variational

Auto-Encoders (VAEs) [23, 28], we use a Stochastic Gradient Vari-

ational Bayes (SGVB) estimator to approximate posteriors of the

latent variables and propose an efficient algorithm to optimize the
model. BP-FIS can be seamlessly integrated into both traditional

FMs (linear) and neural FMs (nonlinear).

We summarize the contributions of this paper as follows:

e To the best of our knowledge, we are the first to study Person-
alized Feature Interaction Selection (P-FIS) for FMs to improve
recommendation performance.

e We propose hereditary spike and slab priors to assign non-zero
probabilities to zero values while preserving hereditary relations.

o We formulate the BP-FIS task as a probabilistic hierarchical gen-
eration procedure and conduct variational inference to derive
the ELBO for optimization.

e We implement two FM variants under our proposed Bayesian
Personalized Feature Interaction Selection (BP-FIS) mechanism
and verify their effectiveness through extensive experiments.

2 PRELIMINARIES

Table 1 summarizes the notation used in this paper.

2.1 Factorization machines

In the recommendation scenario, FMs try to predict the rating of
an item based on its feature vector x € R%. A general formulation
is shown in Eq. (1):

d d d
F(x) = by + Z wixi + Z Z WijXiXj, (1)
i=1

i=1 j=i+1

where 7(x) is the predicted rating for x; x; € x is the i-th feature
of x; bo, wi, wij are the parameters, where by models the global
bias, w; models the first-order interaction, i.e., the interaction be-
tween the feature i and the target, and w;; models the second-order
interaction, i.e., the interaction between feature i and j. Instead
of learning a fixed interaction parameter w;;, FMs factorize it as
wij = vl.ij, where v; € R is the embedding of feature i and k is
the dimension of the latent space.

2.2 Bayesian variable selection

Variable selection is an important problem in statistical analysis,
which selects a subset of variables that should be taken into con-
sideration [49]. Bayesian Variable Selection (BVS) attempts to es-
timate the marginal posterior of a variable as the probability that
the variable should be selected. Depending on the definition of
priors, various Bayesian Variable Selection (BVS) methods have



Table 1: Summary of symbols and notation.

Notation Description

Set of users

Set of features

Set of feature vectors

Set of ratings

Number of users, i.e., m = |U|
Number of features, ie., d = |F|
Number of ratings, i.e., n = |X| = |R|
Dimension of feature embedding

Sets and numbers
TS RIAIXNR

Feature vector

Rating associated with feature x
Personalized first-order feature interaction
weight of user u for feature i

Personalized second-order feature interaction
weight of user u between feature i and j

Set of interaction weights, i.e., W = {wy;} U

{wuij}

Bayesian variables
S

Sui, Wi Variables to reformulate wy,;, i.e., wyi = syiw;
. Variables to reformulate wy;j, i.e, wyij =
Suij> Wij P
uijWij
SW Set of variables for reformulation, ie., S =
’ {sui} U {suij} and W = {w;} U {w;;}
¢ wv; e RK  Embedding for feature i
£V eR™k  Embeddings of all features
5 by Parameter for user bias of user u
B o Variational parameters for S
a p Variational parameters for W

been proposed [14]; Spike-and-Slab Priors (SSPs) [55] have been
widely studied.

A variable w following SSP is sampled from a linear combination
of two distributions:

w ~ 2N (g, 0%) + (1 = 7)o,

where N(y, 62) is the slab prior, which is modeled using a Gaussian
distribution with mean p and variance ¢2; & is the spike prior,
which is modeled using a Dirac delta mass function centered at zero.
The Dirac delta function is a generalized distribution that is used
to model the density of an idealized point mass as a function equal
to zero everywhere except for zero and whose integral over the
entire real line is equal to one. SSP can assign non-zero probability
for the event w = 0 (p(w = 0) = 1 — ). Therefore, SSP is the ideal
distribution for variable selection. However, the presence of the
Dirac delta function & in the SSP complicates inference. Titsias

and Lazaro-Gredilla [50] reformulate SSP as follows:
s ~ Bernoulli(r), w~ N(0,1), w=w-s. (2)

This brings two additional variables, w and s, where w represents
the weight of the variable and s indicates whether to select the vari-
able. The SSP in Eq. (2) is amenable to approximate inference [50].

3 MODEL DESCRIPTION

We first present a personalized FM framework. Then, we propose a
Bayesian Personalized Feature Interaction Selection (BP-FIS) method

n
u=1, ,m
@ j:L' ’
i=1,...,d

Figure 2: Graphical model of BP-FIS. Nodes represent ran-
dom variables and edges represent dependencies between
variables.

within this framework. To incorporate collaborative filtering into
BP-FIS, we propose Hereditary Spike-and-Slab Priors (HSSPs). Fi-
nally, we present the loss function of BP-FIS by conducting varia-
tional inference.

3.1 Personalized factorization machines

To incorporate P-FIS for FMs, we reformulate Eq. (1) as a personal-
ized FM by introducing personalized feature interaction parameters,
as indicated in Eq. (3):

d d d
F(x) = by + Z WyiXi + Z Z WyijXiXj. (3)
i=1

i=1 j=i+1

Here, by, {wyi}, {wuij} are the personalized coefficients of user u,
and wy; and wy;; reflect the preferences of user u over first- and
second-order feature interactions. While the FM in Eq. (1) can also
account for personalization by taking user ID as features, it fails to
personalize every interactions, which is required by FIS.

3.2 Bayesian personalized feature interaction
selection

We formulate a Bayesian generation model, BP-FIS, for Eq. (3). The
graphical model of BP-FIS is depicted in Figure 2. According to
BP-FIS, each rating in Eq. (3) is generated with the procedure de-
tailed in Algorithm 1. Note that we treat {wy,; }, {wu i j} as variables
and by, as the parameter.

In the first part of the generation (line 1-9), we generate per-
sonalized feature interaction weights wy; and wy;; for all users.
We reformulate wy,; by sy; - w; and wy;; by syij - wi; as suggested
by [50]. Through the reparameterization, we can take advantage
of collaborative filtering by learning a single set of feature inter-
action weights W = {w;} U {\7\11- j} for all users and operationalize
P-FIS by learning the personalized interaction selection variable
S ={syitV {suij}. The generation of s;; is conditioned on sy,; and
suj, which captures the hereditary relation between the first- and
second-order interactions; see §3.3 for details on s;; and s;,;.

In the second part (line 10-12), we calculate the rating predic-
tion by Eq. (3) and generate the rating r(x), following p(r | #(x)).
The distribution of r(x) determines the likelihood function for op-
timization. For example, if we assume r(x) to follow a Gaussian



Algorithm 1 Generation procedure

1: for each user u € U do

2:  for for each feature i € ¥ do

3: draw first-order interaction selection variable s,; ~
Bernoulli(s);

draw first-order interaction weight w; ~ N(0, 1);

Wyi = Sui * Wi.

. for for each feature pair i, j € ¥ do

draw second-order interaction selection variable s;;; ~
p(suij | sui, 5uj)§

8 draw second-order interaction weight w;; ~ N(0, 1);

N

9% Wuij = Suij - Wij.

10: for for each feature vector x € X do
11:  calculate the rating prediction 7(x) by Eq. (3);
122 draw r(x) ~ p(r | #(x)).

distribution N(7(x), 1), we can derive the Gaussian log-likelihood:

> 0 - )2, @

xeX

If r(x) follows a Bernoulli distribution Bernoulli(#(x)), the logistic
log-likelihood can be derived:

Z r(x)logo (F(x)) + (1 - r(x))log (1 - o(#(x))).  (5)

xeX

The likelihood functions in Eq. (4) and (5) correspond to the squared
loss and cross entropy loss, which are widely used by collaborative
filtering methods [28]. Besides, ranking loss can also be derived, e.g.,
pairwise ranking loss [42] or listwise ranking loss [60]. However,
deriving the proper likelihood function for optimization is beyond
the scope of this paper. In this work, we employ the Gaussian
likelihood of Eq. (4) for optimization.

3.3 Hereditary spike-and-slab prior

Although we can learn the personalized parameters in Eq. (3) for
each user separately, there are two disadvantages to this. First, se-
lecting interactions directly based on Eq. (3) fails to take advantage
of collaborative filtering. Second, Eq. (3) raises some challenges for
optimization due to the large number of parameters (O(md?)).

Therefore, we reparameterize wy; by sy; - w; (line 6) and wy;;j
by suij - wij (line 10) in the generation procedure in §3.2. In or-
der to model sy, suij, we propose the Hereditary Spike-and-Slab
Prior (HSSP), which optimizes over SSP by capturing heredity con-
straints [13] between first- and second-order interactions. The intu-
ition is that there are natural hereditary constraints among the first-
and second-order interactions [32], i.e., feature i and feature j are
the “parents” of feature interaction (i, ). The hereditary constraints
help to dramatically reduce the number of candidate interactions.

The HSSP is based on two hereditary constraints: strong heredity
and weak heredity, where we define as follows based on FMs.

Definition 3.1 (Strong heredity). Given a FM, strong heredity is the
constraint that if the first-order interactions x; and x; are selected
for the FM, the second-order interaction of their combination, i.e.,
(i, x;) will also be selected.

According to strong heredity, we have:
if sy; = 1 or syj = 1 then sy = 1.
Definition 3.2 (Weak heredity). Given a FM, weak heredity is
the constraint that if one of the first-order interactions x; or x;

is selected for the FM, then the second-order interaction of their
combination (x;, xj) will have a non-zero probability to be selected.

According to weak heredity, we have:
if sy; = 1 or sy = 1 then p(sy;j = 1) > 0.
Based on the definitions of strong heredity and weak heredity, we
derive the HSSP by modifying the priors for s,;; of SSP:
plsui =1) =plsuj =1) =m
Plsuij =1 suisuj =1) =1
P(suij =1 syi+syj=1)=m
P(suij = 1| syi +suj =0)=0,

(Strong heredity)
(Weak heredity)

where 71, 2 € [0, 1] are constant values.

3.4 Variational inference

To optimize BP-FIS, we need to maximize the posterior p(W,S |
R, X), where S = {syi} U {su,-j} and W = {w;} U {Vvij}. However,
exact inference for p(W, S | R, X) requires an infeasible combina-

torial search over O(Zmdz) possible models. To speed up the pro-
cess, we conduct variational inference to approximate the posterior
p(W, S | R, X) by a variational distribution q(W, S). The closeness
of the posterior and the variational distribution is measured by
the Kullback Leibler (KL)-divergence, i.e., KL(q(W,S) || p(W,S |
R, X)). The KL-divergence can be derived as follows:

KL(g(W,S) | p(W, S | R, X))
= —Eq [logp(W, S, R, X) — log (W, S)] + log p(R, X),
where £ = Eg [Iogp(W, S, R, X) - log (W, S)] is the Evidence
Lower Bound (ELBO); l(3g p(R, X) is the marginal likelihood which
does not depend on g(W, S). Eq. (6) states that minimizing the KL-

divergence is the same as maximizing the ELBO. To maximize the
ELBO, we first discuss the variational distribution g(W, S).

Variational distribution. To ensure the quality of approxima-
tion, we assume the hereditary constraints also hold in the varia-
tional distributions. Therefore, g(W, S) can be factorized as follows:

d d m
qW.) =[] [ a@atwip [ | aun)gtsuij | suissup)- @)
u=1

i=1 j=i+1
The factorized distributions are modeled as follows:
q(wi | pi, 01) = N(pi, 01)

q(wij | pij» 0ij) = N(pij, oij)

q(sui | mui) = Bernoulli(ry;)
‘I(suij | SuiSuj = 1)= Suij
q(suij | Sui + Suj = 1, myuij) = Bernoulli(ryj)
q(suij | Sui +suj =0) = 1= sy,

where p = {yj, 0} U {pij,aij} and 7 = {my;} U {nuij} are the
variational parameters.



Evidence lower bound. Given the variational distribution g(W, S |
p, 1), the ELBO can be derived as follows:

L =Eq [logp(W, S,R,X) - log q(W, S|p, n)]

= 3" By llogp(rix) | H(x)] - KL (¢, | p, ) | p(7.5))
xeX
where Eg4 [-] stands for the expectation w.r.t. q(W, S| p, 7). In the
ELBO, KL(q(W, S| pm) |l p(W, S)) can be analytically derived
(see Appendix A.1 for details). However, it is problematic to derive
Eq [log p(r(x) | #(x))]. Therefore, we approximate the expectation
with Monte Carlo estimation as follows~

S Bqllog p(r(x) | #x)] ~ Z > 5 (- ®), @)

xeX I=1x GX
where #(x)() is calculated by Eq. (3) with the I-th sampling W1,
We write log p(r(x) | #(x)D) as a Gaussian log-likelihood as we
assume r(x) to follow N(F(x), 1) (Eq. (4) in §3.2).
Reparameterization. When sampling wy; and wy;;, we apply
the reparameterization trick [23]:
€1, €2 ~ Uniform(0,1), €1,e2 ~ N(0,1)

sui = €1 2 mu;]

suij = Suisuj + (1 = Suisuj)(sui + suj)lez = muij] ©)

Wi = lUj + £10;

Wij = Hij + €201

Wui = Wi Sui,  Wuij = Wij - Suij.
By doing so, the stochasticity in the sampling process is isolated
and the gradient with respect to {y;, i}, {,u,-j, aij} can be back-
propagated through the sampled wy; and wy;j. Unfortunately, the
above procedure fails to take the gradient of {,;} and {ﬂ'ui j}
due to the discrete nature of {s;;} and {su,— j}. We follow [51] by
marginalizing out the variable of interest (see Appendix A.2).

Faster inference. To further speed up the variational inference,
we factorize the variational parameter 7y ;; as my,; 7y ;. In this way,
we only need to preserve {m,;} for each user, decreasing the learn-
ing parameters from O(md?) to O(md). For {\X/ij}, we introduce
feature embeddings V e R4*k and replace the variational parame-

ters for w;; as follows:

pij = p(vi,vj), i = o(vi, vj),

where () and o(-) are the transformation functions, and v;, vj €
R are the embeddings for feature i, j, respectively. Note that we
can have different definitions for u(-) and o(-). Inspired by [17, 57],
we define the transformations as follows:

i v)) = i’ fywiow). o(vivy) =0 fywiovy. (10)
where o is the element-wise product operation and fy(-) is the
transformation parameterized by ¢, which transforms a vector from
RF to RM; 4 and o are the vectors in R". Note that u(-) and o(-)
can be either linear transformations, e.g., f¢ (v) = v, or non-linear
transformations, e.g., f4(-) is a neural network. The variational
parameter for W is p = {¢, p, &, V'}.

Learning. We propose to learn BP-FIS via Stochastic Gradient
Variational Bayes (SGVB). As the reparameterization procedures for

Table 2: Statistics of the datasets.

Dataset  #User #Item  #Feature #Rating

MLHt 2,112 5,682 11,945 731,215
LastFM 1,892 17,632 29,200 341,104
Delicious 1,867 69,223 77,735 372,609

estimating gradients of p and r are different, we propose to optimize
the variational parameter 7 and p alternatively. Specifically, at
iteration ¢, by fixing p{! =), we train 7! ) to update the probabilities
that a user will select the specific feature interactions. Then by
fixing 7(t), rather than training p<t) based on p(t_l), we train p(t)
from scratch. This is because when 7 is updated, we will have
different user preferences of feature interactions, where p should
be optimized accordingly. As we have experimented, adapting p
fitting for 7D to (1) could adversely bias the learning.

Prediction. Once the model has been trained, we can generate
predictions via point estimation in Eq. (1 1):

E[F(x)] = by +ZE Wyi xﬁ—zz

i=1j=i+1

Wul] XiXj, (11)

where E [wy;] = myip; and E [wuij]
TTuj )i Tuj i

= [ﬂui”uj"'(l_”ui”uj)(ﬂui""

4 EXPERIMENTAL SETUP
We evaluate BP-FIS using the top-N recommendation task.

4.1 Research questions

We seek to answer the following research questions: (RQ1) Does
P-FIS help to improve the performance of FMs on the top-N rec-
ommendation task? Specifically, how well does BP-FIS perform
against state-of-the-art FMs? (RQ2) How does the embedding size
impact the ability of BP-FIS to improve the performance of FMs?
(RQ3) How does the alternating optimization procedure affect the
performance of BP-FIS? (RQ4) How can BP-FIS provide explainabil-
ity for the recommendations generated by the FMs?

4.2 Dataset

We use three benchmark recommendation datasets from HetRec [6]

in our experiments. Summary statistics are provided in Table 2.

e MovieLens Hetrec (MLHt) — Extends the MovieLens10M [16]
dataset.! It links the movies of the MovieLens dataset with their
corresponding web pages at the Internet Movie Database (IMDb)?
and Rotten Tomatoes movie review systems.> MLHt only contains
users with both rating and tagging information.

e LastFM - Contains social networking, tagging, and music artist
listening information from the Last.fm online music system.*
Each user has a list of most listened music artists, tag assignments,
and friend relations within the social network.

e Delicious — Contains social networking, bookmarking, and tag-
ging information from the Delicious social bookmarking system.’

Lhttp://www.grouplens.org
Zhttp://www.imdb.com

3 http://www.rottentomatoes.com
http://www.last.fm
Shttp://www.delicious.com
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Each user has bookmarks, tag assignments, and contact relations

within the social network.
For MLHt, users rate each movie with stars, on a scale from 1 to 5.
We treat ratings of at least 3 as positive (r = 1 if rating > 3) and treat
all other ratings as missing (r = 0) [20, 56]. For LastFM, we regard
user’s listening history of artists as implicit ratings, i.e., r = 1 if
the user listened to a song by the artist. Similarly for Delicious, we
regard the bookmarks added by the users as implicit ratings. The
side information of these datasets is utilized as additional features,
i.e., user tags, movie genres and social networks. Ratings with
less than 10 non-zero feature values are discarded. Therefore, our
statistics may slightly differ from the original datasets.

4.3 Baselines

To evaluate the effectiveness of BP-FIS, we provide two implemen-
tations, namely BP-FM and BP-NFM. They differ in the definition
of fs(-) in Eq. (10): f(*) is an identify transformation for BP-FM
and a stack of fully connected network layers for BP-NFM. We im-
plement BP-FM and BP-NFM using PyTorch.® We compare BP-FM
and BP-NFM with the following baseline methods:

FM The Factorization Machine (FM) is originally proposed by Ren-
dle [39]. The official implementation is specifically optimized for the
rating prediction task, whereas we evaluate the performance with
top-N recommendation metrics. Therefore, we provide a PyTorch
implementation of FM for a fair comparison.

SFM The Sparse Factorization Machine (SFM) is learns sparse first-
and second-order interactions [37, 58, 62] study SFMs. We imple-
ment SFM, on top of the implementation of FM, to utilize general
features for top-N recommendation, where all feature embeddings
are penalized by group Lasso regularizations.

AFM The Attentional Factorization Machine (AFM) [57] learns
the importance of each feature interaction from data via an atten-
tion network. We utilize the tensorflow implementation’ of AFM
released by the authors in our experiments.

NFM The Neural Factorization Machines (NFM) [17] models high-
er-order interactions through neural networks, which is the state-
of-the-art neural extension of factorization machines. We utilize
the tensorflow implementation® of NFM released by the authors.

4.4 Evaluation

We adopt the leave-one-out evaluation, which has been widely used
in the literature [21, 36]. For each user, we randomly hold-out one
of her interactions as the test set and utilize the remaining data for
training. Since it is too time-consuming to rank all items for every
user during evaluation, we follow the common strategy [25, 28]
which randomly samples items that are not interacted with by the
user, ranking the test item among 100 items. The recommendation
quality is measured using Hit Rate (HR) and Average Reciprocal
Hit-Rank (ARHR). HR is defined as follows:

#Hit

#Hit 1 1
HR= ———, ARHR= >
#User #User pi

i=1

®https://pytorch.org/
"https://github.com/hexiangnan/attentional_factorization_machine
8https://github.com/hexiangnan/neural_factorization_machine

where #User is the total number of users, and #Hit is the number
of users whose item in the test set is recommended (i.e., a hit) in
the size-N recommendation list. p; is the position of the item in the
ranked recommendation list, if an item of a user is among the list.
ARHR is a weighted version of HR and it measures how strongly
an item is recommended, in which the weight is the reciprocal of
the hit position in the recommendation list.

4.5 Implementation details

For a fair comparison, we have the following identical experimental
settings for all compared methods. (1) All models are optimized
using Adam [22]. Adam computes individual adaptive learning
rates for different parameters. Therefore, we do not need to tune
the learning rate. In practice, setting the initial learning rate as
0.001 provides a good default value. (2) All models are optimized
by the mean square loss, accounting for the fairness of comparison
and efficiency of training. (3) We hold-out ratings from the training
set for validation. We tune parameters of all methods and select the
ones with the best performance. (4) We set the maximum training
epochs to 50. We apply early-stop for all methods, where we stop
training if no further performance gain is observed for 4 successive
epochs. (5) Feature embeddings are randomly initialized according
to N(0,0.01). (6) We tune the parameter k (the latent dimension of
feature embeddings) from 64, 128, 256.

For BP-FIS, we set 11 = w2 = 0.5 as we presume no prior knowl-
edge about the selection. For the baselines, we follow the exper-
imental settings in [17, 57] to tune parameters. We tune the {-
norm regularization parameter for FM in 16_6, 56_6, ey le~ 1. Sim-
ilarly, we tune the {2 1-norm regularization parameter for SFM in
179, 5¢76, ..., 1e71. We use dropout for NFM and AFM. For NFM,
we fix the dropout rate of the hidden layers as 0.8 and tune the
dropout rate for Bi-interaction layer in 0.1,0.2, ..., 1.0. For AFM,
we use dropout for the embedding layer, which is searched from
0.1,0.2,...,1.0. As suggested by the author, we tune the £,-norm
regularization parameter for the attention layer in 0, 0.5, 1, 2, 4, 8, 16.

For the network structure of NFM and BP-NFM, we follow [17]
and set identical dimensions for hidden layers. According to [17],
NFM with one hidden layer generates the best performance. There-
fore, we also use one hidden layer for NFM and BP-NFM in our
experiments. We use ReLU as the activation function.

5 EXPERIMENTAL RESULT AND ANALYSIS

We answer the research questions listed in §4.1 in four subsections.

5.1 RQ1: Results

We report the recommendation performance of all models in Table 3,
in terms of HR@1, HR@10 and ARHR@10. Table 3 shows that BP-
FM and BP-NFM consistently outperform the other methods. This
proves the effectiveness of BP-FIS for improving the performance
of both linear and non-linear FMs for top-N recommendation.

To answer RQ1, we analyze the results by separating the com-
parison between linear and non-linear models. Among linear mod-
els, SFM outperforms FM and AFM on the LastFM and Delicious
datasets. This supports the need for conducting FIS for FMs. How-
ever, SFM cannot always improve over FMs. It fails to beat FM on
MLHLt. In contrast, BP-FM achieves improvements over FM on the
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Table 3: Comparison of top-N recommendation methods.

Method 4 drop k HR@1 HR@10 ARHR@10
FM 0.1 - 64 0.2371 0.6028 0.3398
- SFM 0.01 - 64 0.2294 0.6052 0.3351
E AFM 2 0.1 64 0.1138 0.4273 0.1969
= BP-FM - - 128 0.2401* 0.7070** 0.3932**
NFM . 0.2 256 0.2180 0.6257 0.3389
BP-NFM - - 128 0.2519"% 0.6831"* 0.3814™"
M 0.1 - 64 0.1894 0.6403 0.3215
= SFM 0.05 - 256 0.2118 0.6542 0.3449
= AFM 8 0.7 256 0.2166 0.6126 0.3332
E BP-FM - - 256 0.2209 0.6798"* 0.3581*
NFM - 0.6 64 0.2150 0.6798 0.3563
BP-NFM - - 256 0.2257 0.6910 0.3660
M 0.1 - 64 0.0202 0.1147 0.0440
; SFM 0.1 - 128 0.0229 0.1212 0.0465
'8 AFM 2 0.1 64 0.0274 0.1169 0.0494
% BP-FM - - 128 0.0278 0.1240"* 0.0509*
(=]
NFM - 0.1 64 0.0229 0.1065 0.0426
BP-NFM - - 128 0.0268 0.1289** 0.0504**

Boldface scores indicate best results for linear and non-linear FMs on each
metric. We conducted two-sided tests for the null hypothesis that the best
and the second best have identical average values. * and ** indicate that the
best score is significantly better than the second best score with p < 0.1
and p < 0.05, respectively.

same dataset. This shows that selecting or weighing a single set of
feature interactions for all users might overlook the personalization
over features, and conducting P-FIS is required. Except for HR@1
on LastFM and Delicious, the improvement achieved by BP-FM is
significant, especially HR@10 on MLHt, where BP-FM improves
FM by 17.286%. This demonstrates the efficacy of BP-FIS.

The comparison between non-linear models, i.e., NFM and BP-
NFM, shows similar results. BP-NFM steadily achieves better perfor-
mance than NFM on all datasets and all metrics, which shows that
the improvement achieved by P-FIS is orthogonal to the non-linear
modeling of interactions.

5.2 RQ2: Impact of embedding size

To answer RQ2, we analyze the performance of all models with
different embedding sizes. Specifically, we plot figures to show
results w.r.t. HR@1, HR@5, HR@10, ARHR@5 and ARHR@10 of
all models on the MLHt dataset, as shown in Figure 3. Generally,
we can see that BP-FM and BP-NFM achieve better a performance
than the other models. This demonstrates the robustness of BP-FIS
as it constantly improves the performance of FMs, regardless of the
embedding size and evaluation metric.

Specifically, for the setting k = 64, almost all models show a com-
petitive performance. This is because the space for the performance
improvement is limited when k = 64 on the MLHt dataset. P-FIS has
insignificant effect on FMs due to the restricted embedding size. In
contrast, for the setting k = 128, while FM, SFM and NFM achieve
comparable results, BP-FM and BP-NFM significantly outperform
them. This means that the effect of P-FIS can be better expressed by
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Figure 3: Performance comparison w.r.t. different embed-
ding sizes. ARHR@1 is actually HR@1.

HR@10

ARHR@5

ARHR@10

increasing the embedding size for FMs. Interestingly, while BP-FM
performs better than BP-NFM for most metrics, the performance
gain achieved by BP-NFM is more remarkable on HR@1. Similar
performance levels are seen when k = 256, except that BP-NFM
does not outperform BP-FM. This might be because BP-NFM has
far more parameters than BP-FM when the embedding size is large,
which brings extra difficulty to avoid overfitting.

5.3 RQ3: Impact of training

To analyze alternative training procedure of BP-FIS, we show the
performance of BP-FM and BP-NFM after each iteration in Figure 4.
A general trend could be revealed by Figure 4 that the recommen-
dation performance of both BP-FM and BP-NFM grows initially
and fluctuate successively. Although BP-NFM can mostly achieve
better performance than BP-FM, it also shows higher variation.
When k = 64, BP-FM outperforms BP-NFM w.r.t. HR@1 and
performs competitively with BP-NFM w.r.t. HR@5 and HR@10.
When k = 128, we can witness a relatively stable growth in BP-FM,
especially for HR@5 and HR@10. While a certain level of con-
vergence can be witnessed for HR@5 and HR@10, BP-NFM still
fluctuates more than BP-FM during the training procedure. These
observations might suggest that the training of BP-FIS shows better
robustness for linear FMs than non-linear ones. BP-NFM is more
unstable in terms of HR@5 and HR@10 when k = 256, the per-
formance of which drops sharpely during the 9-th iteration. Thus,
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LastFM dataset.

Table 4: Case study.
48 Hrs. Spider-Man Lethal Weapon True Lies

action (a) v v v

buddy (b) v v v
clever (cl) v N
comedy (co) v v v
fanny (f) v N
sequel (se) v v

special effects (sp) v v
user 1 - top-5 top-1 top-10
user 2 - top-5 top-5 top-10
user 3 - - - -

Ticks indicate whether a movie has the feature. We also indicate for each user
whether the movie is within the top-1, top-5 or top-10 recommendation.

more iterations do not help a lot for improving the performance but
might adversely harm the performance. Another observation is that
the training procedure of BP-FM and BP-NFM varies with different
embedding sizes. Training BP-FM and BP-NFM with k = 128 pro-
vides the most stable procedure. This shows that a proper selection
of embedding size can further extend the potential of BP-FIS.

5.4 RQ4: Explainability for recommendation

To answer RQ4, we provide a case study based on the experiments
on the MLHt dataset. We select four movies (“48 Hrs”, “Spider-
Man”, “Lethal Weapon” and “True Lies”) with seven shared features
(“action”, “buddy”, “clever”, “comedy”, “funny”, “sequel” and “special
effects”). We generate the recommendation results with BP-FM for
three users (“user 17, “user 2” and “user 3”) and check if the four
movies are in the top-1, top-5 or top-10 list. The results are shown
in Table 4.

We also visualize the selection probability of second-order fea-
ture interactions (p(sy;j = 1)) in Figure 5. The color depth indicates
how likely the corresponding feature interaction will be selected
for the user. The probability indicates the predictive power of the
feature interaction for the specific user.

user 1 user 2 user 3

b
cl 0.75
c 0.50
f 0.25
0.00

se

sp

abclcofsesp aboclcofsesp abclcof sesp
Figure 5: Visualization of second-order feature interaction
selection w.r.t. the case studies in Table 4. The color depth
corresponds to the probability of selecting the correspond-
ing interaction. (a, b, cl, co, f, se, sp) are the abbreviations of
the features listed in Table 4.

Figure 5 shows the diverse selections of feature interactions
for the three users. All interactions are unlikely to be selected for
user 3. Therefore, the four movies sharing these features are not
recommended to her. In comparison, several interactions have high
probabilities to be selected for user 1 and user 2. Some interactions
are predictive for both users, e.g., (sequel, special effects), (comedy,
sequel), (buddy, comedy), and some are useful only for a specific
user, e.g., (action, buddy), (action, comedy), (action, sequel) for user
1 and (buddy, clever), (buddy, comedy) for user 2.

The commonality of feature interactions for user 1 and user
2 explains the recommendation of “Spider-Man” and “True-Lies”.
“Spider-Man” has (sequel, special effects) and “True-Lies” has (buddy,
commedy), which have been selected for both users. The person-
alization of feature interactions explains the recommendation of
“Lethal Weapon”. While the movie has the interaction (buddy, com-
edy) that was selected for both users, it also has the specific inter-
action (action, comedy) that is only selected for user 1. Therefore,
“Lethal Weapon” is the top-1 item for user 1 and the top-5 item for
user 2. On the other hand, “48Hrs.” is not recommended to any user.
Although the movie has (action, buddy) and (action, comedy) se-
lected for user 1 or (buddy, clever) and (buddy, comedy) selected for
user 2, it has no interactions like (comedy, sequel) or (sequel, special
effects), which might account largely for the recommendation.

6 RELATED WORK

In this section, we survey related work on factorization machines
and feature (interaction) selection, respectively.

6.1 TFactorization machines

FMs have been widely studied and are commonly used in practical
systems for their effectiveness and flexibility. Early studies [39, 43]
show the generality of FMs. In contrast to Matrix Factorization
(MF) [47] or Tensor Factorization (TF) [44], which model interac-
tions between categorical variables only, FMs provides a generic
way to model interactions between any real valued features. Ren-
dle [39] show that FMs can mimic many of the most successful
factorization models (including MF, parallel factor analysis, and
SVD++ [25]).

Recently, successive variants of FMs have been developed [1,
4,5, 19, 29, 30]. They have achieved promising performance in
different recommendation scenarios [17, 35, 37, 38, 60]. Juan et al.
[19] propose the Field-Aware Factorization Machine (FFM) to fac-
torize the interactions of fields (the category of features). Blondel



et al. [4] present the Higher-Order Factorization Machine (HOFM),
which provides an efficient algorithm to train FMs with higher-
order interactions. Besides rating prediction, FMs have also been
optimized for the top-N recommendation task. Yuan et al. [60] intro-
duce Boosted Factorization Machiness (BoostFMs) to incorporate
contextual information into FMs for Context-Aware Recommen-
dation (CAR) [33, 35, 43]. Xiao et al. [57] propose the Attentional
Factorization Machine (AFM), which uses an attention network to
learn the importance of each feature interaction. To investigate the
linear expressiveness limitation of FMs, He and Chua [17] propose
Neural Factorization Machiness (NFMs), which perform non-linear
transformations on the latent space of second-order feature inter-
actions.

Despite the effectiveness of modeling various feature interac-
tions, existing FM variants suffer from the high-dimensionality
issue which limits their application in high-dimensional scenarios.

6.2 TFeature selection

An effective approach to alleviate the high-dimensionality issue of
FMs is feature selection. Cheng et al. [11] propose to select feature
interactions though a greedy interaction feature selection algorithm
based on gradient boosting. Xu et al. [58] apply group Lasso [61]
to user and item feature embeddings to select interactions between
user and item features. Zhao et al. [62] propose to select meta-graph
based features. Similarly, they also apply group Lasso for feature
selection. Mao et al. [31] propose to select context features for FMs.
They first choose features based on predictive power. Then, they
subsample the set of features selected in the first step.

Feature selection has also been well investigated for Feature-
based Recommender Systems (FRSs), which often utilize high-di-
mensional auxiliary information. Ronen et al. [45] propose to select
content features. Their algorithm selects the most informative fea-
tures by computing relevance scores based on pluggable feature
similarity functions. Koenigstein and Paquet [24] propose to se-
lect content features for Xbox movies by incorporating sparsity
priors on feature parameters. Different feature weighing methods
have also been proposed to select context features [63]. Li et al.
[27] study personalized feature selection for unsupervised learning;
they learn a specific model for each user, which is only applicable
with a limited number of users.

The differences between our method and the above methods are
at least three-fold. First, we target personalized feature interaction
selection, which better captures a user’s personalized preferences
over different features. Second, we provide a generic way to achieve
feature selection, which can be seamlessly integrated to different
FM variants. Third, we opt for Bayesian Variable Selection (BVS)
with spike and slab priors, rather than the sparsity induced regu-
larizations that have previously been considered.

7 CONCLUSION

We propose a Bayesian Personalized Feature Interaction Selec-
tion (BP-FIS) method to address the Personalized Feature Inter-
action Selection (P-FIS) task for Factorization Machines (FMs) in
this paper. BP-FIS fuses Hereditary Spike-and-Slab Prior (HSSP) to
achieve P-FIS while taking advantage of collaborative filtering. We
conduct variational inference and propose a Stochastic Gradient

Variational Bayes (SGVB) method to optimize BP-FIS. Experimental
results show that BP-FIS significantly improves the performance
of both linear and non-linear FMs. Further analytical experiments
show that: (1) BP-FIS is effective for both linear and non-linear
FMs; (2) BP-FIS is robust for performance gain, regardless of the
embedding size; and (3) it is preferable to train BP-FIS with a limited
number of iterations.

A limitation of BP-FIS is that it needs more time to train than
other FMs because we need to optimize the parameters specifically
for each user. In future work, we hope to improve BP-FIS in two
ways: (1) extend BP-FIS to higher-order interactions or multi-view
and multimodal factorizations [52, 54]; and (2) consider group-level
personalization by clustering users to speed up training.
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A APPENDIX
A1 Solution of KL (q(W, S| po7) |l p(W, 5))

d d
KL (q(W. S | p.m) | p(W. S)) = Y KL(g(%0) || q(0)) ), KL(g(sun) || plsur) +

d
i=1j

where

KL (g(w:) Il p(w:)) =

KL (q(wi) 1| g(wi)) D KL (qCsuis | suts sup) | psuis | suis sus))
1 u=1

Ma

¥

=i

(1+loga? — p? - o2),

Do | =

- . 1 ,
KL (g(wij) || p(wij)) = 3 (1 +logo?; — i - f’izj) »
TTui 11—y
o +(1 - my;)log g
KL(‘I(Suij [ suis> Suj) | p(suij | Sui» Suj)) =

1= 7tyij
+ (1= myij)log ——| .
3 1-rm

KL (q(sui) Il p(sui)) = muilog

TTuij

(7wi + 7wy — 27Tuij) (nuij log

A.2 Taking gradients of {r,;} and {r,;;}

We follow [51] to take gradients specifically for discrete variables. To take the gradient
for 7, ;, we marginalize out 7y, ;:

By [log p(r(x) | #(x)] = muiByy (5,,; ) log p(r(x) | (), sui = D] +
(1= 7B g (5,1 BB () | (). 50t = 0)].
The gradient of log p(r(x) | F) D\ {;y;}) over my; is:
Vo = B (sur} 08P () | 76, sus = 1] -
E‘?\{sui} [log p(r(x) | #(x), sui = 0)]

L
- % D log p(r(x) | #x)Y, sus = 1) = log p(r(x) | #(x) ", sus = 0).
I=1

The gradient of 7,,;; can be computed in a similarly way.
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