
Optimizing Ranking Systems
Online as Bandits

Chang Li

Optimizing Ranking Systems
Online as Bandits

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus

prof. dr. ir. K.I.J. Maex
ten overstaan van een door het College voor Promoties ingestelde

commissie, in het openbaar te verdedigen in de Agnietenkapel
op donderdag 4 maart 2021, te 13.00 uur

door

Chang Li

geboren te Hebei

Promotiecommissie

Promotor: prof. dr. M. de Rijke Universiteit van Amsterdam

Copromotor: dr. M. Zoghi Google

Overige leden: prof. dr. T. Gevers Universiteit van Amsterdam
prof. dr. ir. D. Hiemstra Radboud Universiteit
dr. H.C. van Hoof Universiteit van Amsterdam
prof. dr. E. Kanoulas Universiteit van Amsterdam
dr. M. Lalmas Spotify

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

The research was supported by the Netherlands Organisation for Scientific Research (NWO)
under project number 612.001.551.

Copyright © 2021 Chang Li, Amsterdam, The Netherlands
Cover by Feng Li
Printed by Offpage, Amsterdam

ISBN: 978-94-93197-46-6

Acknowledgements

With the aim to experience a different type of life and continue working on machine
learning, I submitted my application for a PhD position at the University of Amsterdam.
After four years and 9 months, I notice that it has been one of the best decisions I have
made ever, not only because I received the offer from my supervisor Maarten de Rijke,
but also because doing a Ph.D. is way more interesting, meaningful and, of course,
challenging than what I expected.

I used to think that doing a Ph.D. is nothing but producing some papers :P. After I
joined the group, I realized that there are more things in Ph.D. life than papers. Thank
you to all ILPSers for teaching me this. It has been a really interesting journey with all
of you around. Special thanks to Maurits Bleeker for helping me translate the summary
into a samenvatting.

Maarten has been always trying to tell me that a Ph.D. thesis is more meaningful
that a stack of papers, in several ways. Unfortunately, I did not fully get his points and
understand how important it is until the beginning of my third year. One day, I was
asked by one of my co-authors, Branislav Kventon, what will your thesis topic be? All
of a sudden, Maarten’s words appeared, and I noticed that I should be thinking in a
more structured way. Thank you Maarten, for the guidance and help during my study!

A frustrating part of my Ph.D. has been that my papers got rejected eleven times
in a row. Thank you to all my co-authors for helping me get through this. However,
in my mind, a bigger challenge beyond this is how to make my research meaningful.
Fortunately, I had Maarten as my supervisor, who supported me and helped to connect
me to other researchers in the community. This is how I got to know Masrour Zoghi
(who became my co-promoter) and Brano, two awesome collaborators. Thank you both
for helping me with my research. Last but not least, I want to thank Ilya Markov for
helping me think scientifically in the early stages of my research.

I was fortunate enough to enjoy two internships. Thank you, Haoyun and Xinran
at Bloomberg. That summer in New York was fantastic! Thank you, Hua at Apple.
The internship in Cupertino was also amazingly special. I also want to thank Jeremy
and Derek from the HR team at Apple for helping me relocate to the US during the
COVID-19 pandemic.

Feng, I owe you a big thank you. Because of you, I chose Europe. Without you,
it would have been hard for me to reach this point. I really feel lucky and full of joy
to have you as my girlfriend. And, of course, thank you for creating the cover of my
thesis.
最后，感谢来自父母的支持。读博这几年跟你们在一起的时间也就一个多

月，感谢你们的理解，让我可以安心的在国外。
Although a bit sad, it is the time to conclude my student career. Thank you to all my

classmates and teachers.

Chang Li
Amsterdam
December 2020

Contents

1 Introduction 1
1.1 Research Outline and Questions . 2
1.2 Main Contributions . 4
1.3 Thesis Overview . 5
1.4 Origins . 6

2 Effective Large-Scale Online Ranker Evaluation 9
2.1 Introduction . 9
2.2 Problem Setting . 11
2.3 Related Work . 12
2.4 Algorithm . 14

2.4.1 MergeDTS . 14
2.4.2 Theoretical guarantees . 18
2.4.3 Discussion . 20

2.5 Experimental Setup . 20
2.5.1 Research questions . 20
2.5.2 Datasets . 21
2.5.3 Evaluation methodology . 22
2.5.4 Click simulation . 23
2.5.5 Baselines . 23
2.5.6 Parameters . 24
2.5.7 Metrics . 25

2.6 Experimental Results . 26
2.6.1 Large-scale experiments . 27
2.6.2 Computational scalability 27
2.6.3 Impact of noise . 28
2.6.4 Cycle experiment . 29
2.6.5 Beyond the Condorcet assumption 31
2.6.6 Parameter sensitivity . 31

2.7 Conclusion . 32

3 Safe Online Learning to Re-Rank 35
3.1 Introduction . 35
3.2 Background . 36

3.2.1 Click models . 36
3.2.2 Stochastic click bandit . 37

3.3 Online Learning to Re-Rank . 38
3.3.1 Algorithm . 38

3.4 Theoretical Analysis . 40
3.4.1 Regret bound . 40
3.4.2 Safety . 41
3.4.3 Discussion . 41
3.4.4 Proof of Theorem 3.1 . 42

3.5 Experimental Results . 43

v

CONTENTS

3.5.1 Experimental setup . 44
3.5.2 Results with regret . 46
3.5.3 Safety results . 46
3.5.4 Sanity check on regret bound 47
3.5.5 Results with NDCG . 48

3.6 Related Work . 49
3.7 Lemmas . 50
3.8 Conclusions . 55

4 Cascade Non-Stationary Bandits 57
4.1 Introduction . 57
4.2 Background . 58

4.2.1 Cascade model . 59
4.2.2 Cascading bandits . 59

4.3 Cascading Non-Stationary Bandits 60
4.3.1 Problem setup . 60
4.3.2 Algorithms . 61

4.4 Analysis . 63
4.4.1 Regret upper bound . 63
4.4.2 Regret lower bound . 64
4.4.3 Discussion . 66

4.5 Experimental Analysis . 66
4.6 Related Work . 68
4.7 Proofs . 68

4.7.1 Proof of Theorem 4.1 . 69
4.7.2 Proof of Theorem 4.2 . 72

4.8 Additional Experiments . 75
4.9 Conclusion . 75

5 Online Learning to Rank for Relevance and Diversity 77
5.1 Introduction . 77
5.2 Background . 79

5.2.1 Cascade model . 79
5.2.2 Cascading bandits . 80
5.2.3 Submodular coverage model 81

5.3 Algorithm . 82
5.3.1 Problem formulation . 82
5.3.2 Competing with a greedy benchmark 83
5.3.3 CascadeHybrid . 83
5.3.4 Computational complexity 85

5.4 Experiments . 85
5.4.1 Experimental setup . 85
5.4.2 Experimental results . 88

5.5 Analysis . 90
5.5.1 Performance guarantee . 90
5.5.2 Proof of Theorem 5.1 . 91

vi

CONTENTS

5.6 Related Work . 94
5.7 Conclusion . 95

6 Conclusions 97
6.1 Results . 97
6.2 Future Work . 98

Bibliography 101

Summary 109

Samenvatting 111

vii

1
Introduction

Ranking is widely utilized in daily interactive systems, where a service provider re-
sponds to a user’s request by using a sorted list of items. A typical scenario is web
search: a user issues a query to a search engine, and then the search engine returns a list
of items. In this thesis, we focus on optimizing these interactive ranking systems. We
simplify the ranking system as a ranking function, also called ranker, which, given a
context, (e.g., query), scores candidate items, and then sorts them in decreasing order
according to the scores. The optimization objective is to find or learn an optimal ranker
that displays the most relevant candidate items at the top. The problem is challenging
and one of the fundamental challenges is the notion of relevance [103].

About a decade ago, this problem was widely studied as an offline supervised
learning problem [84]. Service providers, such as Microsoft and Yahoo, would gen-
erate big collections of queries and documents, and ask human workers to judge the
relevance of each query-document pair [19, 96, 97]. The collected datasets would then
be used to optimize rankers, and the optimal ranker was the one that had the highest
offline ranking metric, e.g., NDCG [52]. This approach is still largely the industrial
standard [86]. However, one disadvantage is that annotated relevance is not consistent
with user preferences [40, 54, 121]. Thus, even an optimized ranker can be suboptimal
in production [131].

As an alternative, optimizing rankers with interactive feedback has drawn great
attention in the past decade [44, 126]. In these approaches, the interactive user feedback
(e.g., clicks) is used as a label, and the optimal ranker is the one that attracts the
highest number of clicks. Compared to human annotated feedback, there are three
advantages in using interactive feedback [41, 54]: (1) Interactive feedback is abundant
in interactive systems and easily obtained. (2) Interactive feedback is better aligned
with the user’s information needs. (3) Interactive feedback is more timely and can
capture shifts in user preferences. However, interactive feedback is noisy and highly
affected by the presentation order in the system, i.e., position bias. To use this type of
relatively low-quality feedback for ranker optimization, new learning algorithms need
to be designed.

In this thesis, we focus on learning from this feedback. Even though the quality
of interactive feedback is low, its advantages have the potential to assist in designing
new and powerful ranking systems. For instance, non-stationarity is known to exist in
user preference [49]. In traditional supervised learning, the annotated data may not be

1

1. Introduction

enough to capture shifts in user preferences. But, with interactive feedback, which is
more timely than human annotated data, we can design a ranker that changes its ranking
policy according to the change in user preferences, capturing the non-stationarity. In
this thesis, we study the problems of online ranker optimization, and translate our ideas
into new algorithms that work for novel Online Learning to Rank (OLTR) problems.
More specifically, we formulate the problem of learning from noisy and biased feedback
in ranking systems as different bandit problems [71, 111], and propose new bandit
algorithms to solve the proposed problems. Thus, the title of this thesis is Optimizing
Ranking Systems Online as Bandits.

1.1 Research Outline and Questions

Through out the thesis, we want to answer the following question: how should we use
implicit feedback to optimize ranking systems online? As implicit feedback is typically
noisy, we face the challenge of exploration versus exploitation. Bandit algorithms are
suitable for addressing this problem. In this thesis, we consider four different research
directions in ranking system optimization and formulate each of them as a research
question. The first one is about ranker evaluation and the other three are related to
OLTR.

RQ1 How to conduct effective large-scale online ranker evaluation?

Online ranker evaluation is one of the key challenges in information retrieval. While
the user preferences for ranker over another can be inferred by using interleaving
methods [130], the problem of how to effectively choose the ranker pair that generates
the interleaved list without degrading the user experience too much is still challenging.
On the one hand, if two rankers have not been compared enough, the inferred preference
can be noisy and inaccurate. On the other hand, if two rankers are compared too
many times, the interleaving process inevitably hurts user experience. This dilemma is
known as the exploration versus exploitation dilemma. It is captured by the K-armed
dueling bandit problem [126], which is a variant of the K-armed bandit problem, where
feedback comes in the form of pairwise preferences. Today’s deployed search systems
evaluate large numbers of rankers concurrently, and scaling effectively in the presence
of numerous rankers is a critical aspect of nline ranker evaluation.

We provide an answer to RQ1 in Chapter 2 by introducing the MergeDTS algorithm.
MergeDTS uses a divide-and-conquer strategy to localize the comparisons carried out by
the algorithm to small batches of rankers, and then employs Thompson Sampling (TS)
to reduce the comparisons between suboptimal rankers inside these small batches. We
conduct extensive experiments on three large-scale datasets to assess the performance
of MergeDTS. The experimental results demonstrate that MergeDTS outperforms the
state-of-the-art baselines.

RQ2 How to achieve safe online learning to re-rank?

Learning to rank has been studied in online and offline settings [35, 84]. In the offline
setting, rankers are typically learned from relevance labels created by judges. This
approach has become standard in industrial applications of ranking, such as web search

2

1.1. Research Outline and Questions

and recommender systems [83]. However, this approach lacks exploration and thus is
limited by the information contained in the offline training data. In the online setting,
an algorithm can experiment with ranked lists and learn from feedback on them in a
sequential fashion. Bandit algorithms are well-suited for this setting but they tend to
learn user preferences from scratch (i.e., the “cold-start” problem), which results in a
high initial cost of exploration. This poses an additional challenge of safe exploration
in ranked lists.

RQ2 is set up to address the safe exploration problem in OLTR. We address this
question by introducing the BubbleRank algorithm in Chapter 3. BubbleRank can be
viewed as a combination of offline and online Learning to Rank (LTR) algorithms. It
uses the offline trained ranker, e.g., the production ranker, to obtain the initial ranked
list, and then conducts safe online pairwise exploration to improve this list. The safety
comes from the fact that BubbleRank explores the ranked lists by randomly exchanging
items with their neighbors. Thus, during exploration, an item never moves too far from
its original position. We analyze the performance as well as the safety of BubbleRank
theoretically, and then conduct experiments on a large-scale click dataset to evaluate
BubbleRank empirically.

RQ3 How to conduct online learning to rank when users change their preferences
constantly?

Non-stationarity appears in many online applications such as web search and recom-
mender systems [49]. User preferences are effected by different factors and may change
constantly. An example is that user preferences are effected by abrupt incidents. Let us
take the query “corona” as an example. Before January of 2020, the query was mainly
related to a beer brand. But after the onset of the COVID-19 pandemic, the meaning of
this word has shifted to a deadly virus. If the learning algorithm is not able to capture
this change in user preferences, it would continue responding with beer-related items,
which would hurt the user experience.

We provide one solution to RQ3 in Chapter 4. Particularly, we consider abruptly
changing environments where user preferences remain constant in certain time periods,
named epochs, but change occurs abruptly at unknown moments called breakpoints.
We introduce cascading non-stationary bandits, an online variant of the Cascade Model
(CM) [27] with the goal of identifying the K most attractive items in a non-stationary
environment, and propose two algorithms: CascadeDUCB and CascadeSWUCB to
solve this bandit problem. The performance of the proposed algorithms are analyzed,
and two gap-dependent upper bounds on their n-step regret are derived, respectively.
We also establish a lower bound on the regret of the non-stationary OLTR problem, and
show that both algorithms match the lower bound up to a logarithmic factor. At the end
of the chapter, we evaluate the performance of the proposed algorithms on a real-world
web search click dataset.

RQ4 How to learn a ranker online considering both relevance and diversity?

Relevance ranking and result diversification are two important aspects in modern
recommender systems. Relevance ranking aims at putting relevant items at the top of
result lists, while result diversification focuses on generating ranked lists covering a
broad range of topics. The former is achieved by displaying a list whose items are sorted

3

1. Introduction

in decreasing order of relevance. However, this sorting process often makes the result list
less diverse since items with the highest relevance generally come from the same topic.
On the other hand, submodular functions are used for result diversification [38, 120],
but this alone is not enough to guarantee items at the top of list to be relevant.

In Chapter 5, we provide a solution to RQ4 by formulating the OLTR for relevance
and diversity as the Cascade Hybrid Bandits (CHB). The CascadeHybrid algorithm is
then proposed to solve CHB. We first provide a gap free bound on the n-step regret of
CascadeHybrid, and then evaluate it on two real-world recommendation tasks: movie
recommendation and music recommendation.

1.2 Main Contributions

We list the main contributions of the thesis in this section. The contributions of this
thesis come in three groups: algorithmic contributions, theoretical contributions and
empirical contributions.

Algorithmic contributions We proposed five novel bandit algorithms to solve four
online optimization problems in ranking systems:

• A TS-based dueling bandit algorithm, MergeDTS, which solves the large-scale
online ranker evaluation problem, Chapter 2.

• A safe online learning to re-rank algorithm, BubbleRank, which is inspired by
bubble sort, Chapter 3. To the best of our knowledge, BubbleRank is the first
safe online learning to re-rank algorithm.

• The CascadeDUCB and CascadeSWUCB algorithms for solving the non-station-
ary OLTR problem, Chapter 4. To the best of our knowledge, the proposed
CascadeDUCB and CascadeSWUCB are the first bandit algorithms that solve
the non-stationary OLTR problem.

• A hybrid algorithm, CascadeHybrid, for solving the OLTR problem, where both
relevance ranking and result diversification are critical to users, Chapter 5. To the
best of our knowledge, CascadeHybrid is the first bandit algorithm that considers
both relevance and diversity in the ranking problem.

Theoretical contributions We theoretically analyze the performance of all proposed
algorithms. Our theoretical analyses do not aim to show superior performance of the
algorithms, but to provide worst-case guarantees on their performance when deployed
online. We provide:

• A theoretical guarantee on the performance of MergeDTS, Chapter 2.

• A theoretical analysis of BubbleRank and the safety of BubbleRank, Chapter 3.

• The first theoretical analysis for the non-stationary OLTR problem, and an analy-
sis of the proposed CascadeDUCB and CascadeSWUCB algorithms, Chapter 4.

4

1.3. Thesis Overview

• A theoretical analysis of CascadeHybrid for solving the OLTR for both relevance
and diversity, Chapter 5.

Evaluation contributions To complement our theoretical findings, we conduct ex-
tensive experiments to evaluate the proposed algorithms for the considered tasks:

• An empirical evaluation of MergeDTS, and the comparison against the state of
the art in large-scale online ranker evaluation, Chapter 2.

• An empirical comparison of BubbleRank against baselines and a sanity check on
the proven theoretical results, Chapter 3.

• An empirical evaluation of CascadeDUCB and CascadeSWUCB for the non-
stationary OLTR task, Chapter 4.

• An empirical comparison of CascadeHybrid against baselines in OLTR for rele-
vance and diversity, Chapter 5.

1.3 Thesis Overview

In this section, we provide a brief overview of the remaining chapters. In Chapters 2
to 5, we study four online ranking optimization tasks, formulate each of them as a
bandit problem, and provide corresponding algorithms for solving each problem. The
proposed algorithms are theoretically analyzed and empirically compared against the
state of the art.

More precisely, we organize them in the following order:

• Chapter 2 treats large-scale online ranker evaluation as a dueling bandits problem,
and proposes the MergeDTS algorithm to solve it with theoretical guarantees on
the performance. Experimental evaluation reveals that MergeDTS outperforms
the state of the art baselines, e.g., MergeRUCB [130], DTS [115] and Self-
Sparring [109].

• Chapter 3 studies the safe OLTR problem, and presents the BubbleRank algo-
rithm. We analyze the performance of BubbleRank, and theoretically show
that it is a safe algorithm. Then, we empirically compare BubbleRank with
CascadeKL-UCB [65], BatchRank [132] and TopRank [72], and show that
the performance of BubbleRank is comparable to those algorithms while only
BubbleRank satisfies the theoretical safety constraint.

• Chapter 4 studies the non-stationary OLTR problem, where the user may change
their preference over time. We formulate this problem as cascade non-stationary
bandits and propose CascadeDUCB and CascadeSWUCB to solve the problem.
Both algorithms have theoretical guarantees on their performance, and the experi-
mental evaluation validates the theoretical findings.

5

1. Introduction

• Chapter 5 presents the CascadeHybrid algorithm, which is designed to solve the
OLTR problem for relevance and diversity. The proposed CascadeHybrid algo-
rithm is theoretically sound and empirically outperforms CascadeLinUCB [133]
and CascadeLSB [38].

In Chapter 6, we summarize all main findings of this thesis and provide several directions
for future work.

We have tried to keep the research chapters as close as possible to their published
version (see below for the publication details). This implies that some research chapters
have some overlap, especially concerning the related work and background material
that they present. But we believe that this disadvantage is outweighed by the advantage
that the research chapters are self-contained and by the fact that sticking close to the
published versions of the research chapters prevents us from creating alternative versions
of published work.

Chapter 2 discusses online ranker evaluation. Chapters 3 to 5 consider the online
learning to rank problem. It is recomended for the chapters to be read in order: Chapter 2,
3, 4 and 5.

1.4 Origins

The material in this thesis comes from the following publications:

• Chapter 2 is based on C. Li, I. Markov, M. de Rijke, and M. Zoghi. MergeDTS:
A method for effective large-scale online ranker evaluation. ACM Transactions
on Information Systems, 38(4):Article 40, August 2020 [79].

CL designed the algorithm, worked on the theory, and conducted the experiments.
MZ helped with algorithm design and theory. All authors contributed to the
writing.

• Chapter 3 is based on C. Li, B. Kveton, T. Lattimore, I. Markov, M. de Rijke,
C. Szepesvári, and M. Zoghi. BubbleRank: Safe online learning to re-rank via
implicit click feedback. In UAI, July 2019 [77].

CL designed the algorithm, and conducted the experiments. BK worked on the
theory. BK and MZ helped with the algorithm design. CL, TL, CS and MZ
helped with the theory. All authors contributed to the writing.

• Chapter 4 is based on C. Li and M. de Rijke. Cascading non-stationary bandits:
Online learning to rank in the non-stationary cascade model. In IJCAI, pages
2859–2865, August 2019 [74].

CL designed the algorithm, worked on the theory, and conducted the experiments.
CL and MdR contributed to the writing.

• Chapter 5 is based on C. Li, H. Feng, and M. de Rijke. Cascading hybrid bandits:
Online learning to rank for relevance and diversity. In RecSys, pages 33–42.
ACM, September 2020 [78].

6

1.4. Origins

CL designed the algorithm, worked on the theory and conducted the experiments.
CL, HF and MdR contributed to the writing.

There are other publications that indirectly contributed to this thesis:

• C. Li and H. Ouyang. Federated unbiased learning to rank. In SIGIR. ACM, July
2021. Submitted [75].

• C. Li and M. de Rijke. Incremental sparse bayesian ordinal regression. Neural
Networks, 106:294–302, October 2018 [73].

• B. Jiang, C. Li, M. de Rijke, X. Yao, and H. Chen. Probabilistic feature selection
and classification vector machine. ACM Transactions on Knowledge Discovery
from Data, 13(2):Article 21, April 2019 [53].

• C. Li, A. Grotov, I. Markov, and M. de Rijke. Online learning to rank with list-
level feedback for image filtering. arXiv preprint arXiv:1812.04910, December
2018 [76].

7

2
Effective Large-Scale Online Ranker

Evaluation

This chapter is set up to address RQ1:

RQ1 How to conduct effective large-scale online ranker evaluation?

Particularly, we focus on solving the large-scale online ranker evaluation problem
under the so-called Condorcet assumption, where there exists an optimal ranker that
is preferred to all other rankers. We propose the MergeDTS algorithm, which first
utilizes a divide-and-conquer strategy that localizes the comparisons carried out by the
algorithm to small batches of rankers, and then employs Thompson Sampling (TS) to
reduce the comparisons between suboptimal rankers inside these small batches. The
effectiveness (regret) and efficiency (time complexity) of MergeDTS are extensively
evaluated using examples from the domain of online evaluation for web search. Our
main finding is that for large-scale Condorcet ranker evaluation problems, MergeDTS
outperforms the state-of-the-art dueling bandit algorithms.

2.1 Introduction

Online ranker evaluation concerns the task of determining the ranker with the best
performance out of a finite set of rankers. It is an important challenge for information
retrieval systems [48, 88]. In the absence of an oracle judge who can tell the preferences
between all rankers, the best ranker is usually inferred from user feedback on the result
lists produced by the rankers [45]. Since user feedback is known to be noisy [32, 55, 56,
90], how to infer ranker quality and when to stop evaluating a ranker are two important
challenges in online ranker evaluation.

The former challenge, i.e., how to infer the quality of a ranker, is normally addressed
by interleaving methods [21, 24, 41, 43]. Specifically, an interleaving method interleaves
the result lists generated by two rankers for a given query and presents the interleaved
list to the user. Then it infers the preferred ranker based on the user’s click feedback.
As click feedback is noisy, the interleaved comparison of two rankers has to be repeated
many times so as to arrive at a reliable outcome of the comparison.

This chapter was published as [79].

9

2. Effective Large-Scale Online Ranker Evaluation

Although interleaving methods address the first challenge of online ranker evaluation
(how to infer the quality of a ranker), they give rise to another challenge, i.e., which
rankers to compare and when to stop the comparisons. Without enough comparisons, we
may mistakingly infer the wrong ranker preferences. But with too many comparisons
we may degrade the user experience since we continue showing results from sub-
optimal rankers. Based on previous work [14, 128, 130], the challenge of choosing
and comparing rankers can be formalized as a K-armed dueling bandit problem [123],
which is an important variant of the Multi-Armed Bandits (MAB) problem, where
feedback is given in the form of pairwise preferences. In the K-armed dueling bandit
problem, a ranker is defined as an arm and the best ranker is the arm that has the highest
expectation to win the interleaving game against other candidates.

A number of dueling bandit algorithms have been proposed; cf. [16, 126] for
an overview. However, the study of these algorithms has mostly been limited to
small-scale dueling bandit problems, with the state-of-the-art being Double Thompson
Sampling (DTS) [115]. By “small-scale” we mean that the number of arms being
compared is small. But, in real-world online ranker evaluation problems, experiments
involving hundreds or even thousands of rankers are commonplace [60]. Despite
this fact, to the best of our knowledge, the only work that address this particular
scalability issue is Merge Relative Upper Confidence Bound (MergeRUCB) [130]. As
we demonstrate in this chapter, the performance of MergeRUCB can be improved upon
substantially.

In this chapter, we propose and evaluate a novel algorithm, named Merge Double
Thompson Sampling (MergeDTS). The main idea of MergeDTS is to combine the
benefits of MergeRUCB, which is the state-of-the-art algorithm for large-scale dueling
bandit problems, and the benefits of DTS, which is the state-of-the-art algorithm for
small-scale problems, and attain improvements in terms of effectiveness (as measured
in terms of regret) and efficiency (as measured in terms of time complexity). More
specifically, what we borrow from MergeRUCB is the divide and conquer idea used to
group rankers into small batches to avoid global comparisons. On the other hand, from
DTS we import the idea of using Thompson Sampling (TS) [111], rather than using
uniform randomness as in MergeRUCB, to choose the arms to be played.

We analyze the performance of MergeDTS, and demonstrate that the soundness
of MergeDTS can be guaranteed if the time step T is known and the exploration
parameter α > 0.5 (Theorem 2.1). Finally, we conduct extensive experiments to
evaluate the performance of MergeDTS in the scenario of online ranker evaluation
on three widely used real-world datasets: Microsoft, Yahoo! Learning to Rank, and
ISTELLA [19, 85, 96]. We show that with tuned parameters MergeDTS outperforms
MergeRUCB and DTS in large-scale online ranker evaluation under the Condorcet
assumption, i.e., where there is a ranker preferred to all other rankers.1 Moreover, we
demonstrate the potential of using MergeDTS beyond the Condorcet assumption, i.e.,

1Our theoretical analysis is rather conservative and the regret bound only holds for the parameter values
within a certain range. This is because our bound is proven using Chernoff-Hoeffding bound [39] together
with the union bound [17], both of which, in our case, introduce gaps between theory and practice. In our
experiments, we show that the parameter values outside of the theoretical regime can boost up the performance
of MergeDTS as well as that of the baselines. Thus, our experimental results of MergeDTS are not restricted
to the parameter values within the theoretical regime.

10

2.2. Problem Setting

where there might be multiple best rankers.
In summary, the main contributions of this chapter are as follows:

(1) We propose a novel K-armed dueling bandits algorithm for large-scale online
ranker evaluation, called MergeDTS. We use the idea of divide and conquer
together with Thompson sampling to reduce the number of comparisons of arms.

(2) We analyze the performance of MergeDTS and theoretically demonstrate that the
soundness of MergeDTS can be guaranteed in the case of known time horizon
and parameter values in the theoretical regime.

(3) We evaluate MergeDTS experimentally on the Microsoft, Yahoo! Learning
to Rank and ISTELLA datasets, and show that, with the tuned parameters,
MergeDTS outperforms baselines in most of the large-scale online ranker evalua-
tion configurations.

The rest of the chapter is organized as follows. In Section 2.2, we detail the definition
of the dueling bandit problem. We discuss prior work in Section 2.3. MergeDTS is
proposed in Section 2.4. Our experimental setup is detailed in Section 2.5 and the
results are presented in Section 2.6. We conclude the chapter in Section 2.7.

2.2 Problem Setting

In this section, we first describe in more precise terms the K-armed dueling bandit
problem, which is a variation of the Multi-Armed Bandits (MAB) problem. The latter
can be described as follows: givenK choices, called “arms” and denoted by a1, . . . , aK ,
we are required to choose one arm at each step; choosing arm ai generates a reward
which is drawn i.i.d. from a random variable with mean, denoted by µi, and our goal
is to maximize the expected total reward accumulated by our choices of arms over
time. This objective is more commonly formulated in terms of the cumulative regret
of the MAB algorithm, where regret at step t is the difference between the reward of
the chosen arm, e.g., aj , and the reward of the best arm, e.g., ak, in hindsight, and the
average regret of arm aj is defined to be µk − µj : cumulative regret is defined to be the
sum of the instantaneous regret over time [9, 77].

The dueling bandit problem differs from the above setting in that at each step we
can choose up to two arms, ai and aj (ai and aj can be the same); the feedback is either
ai or aj , as the winner of the comparison between the two arms (rather than an absolute
reward), where ai is chosen as the winner with preference probability pij and aj with
probability pji = 1− pij . These probabilities form the entries of a K ×K preference
matrix P, which defines the dueling bandit problem but is not revealed to the dueling
bandit algorithm.

In a similar fashion to the MAB setting, we evaluate a dueling bandit algorithm
based on its cumulative regret, which is the total regret incurred by choosing suboptimal
arms comparing to the best arm over time [16, 110, 126]. However, the definition of
regret is less clear-cut in the dueling bandit setting, due to the fact that our dueling
bandit problem might not contain a clear winner that is preferred to all other arms, i.e.,
an arm aC , called the Condorcet winner, such that pCj > 0.5 for all j 6= C. There are

11

2. Effective Large-Scale Online Ranker Evaluation

numerous proposals in the literature for alternative notions of winners in the absence
of a Condorcet winner, e.g., Borda winner [51, 112], Copeland winner [62, 129], von
Neumann winner [129], with each definition having its own disadvantages as well as
practical settings where its use is appropriate.

MergeDTS, like most of the other dueling bandits algorithms [16, 112, 127, 128,
130], relies on the existence of a Condorcet winner, in which case the Condorcet winner
is the clear choice for the best arm, since it is preferred to all other arms, and with
respect to which regret can be defined. We pose, as an interesting direction for future
work, the task of extending the method proposed in this chapter to each of the other
notions of winner listed above.

In order to simplify the notation in the rest of the chapter, we re-label the arms such
that a1 is the Condorcet winner, although this is not revealed to the algorithm. We
define the regret incurred by comparing ai and aj at time t to be

rt = (∆1i + ∆1j)/2, (2.1)

where ∆1k := p1k − 0.5 for each k. Moreover, the cumulative regret after T steps is
defined to be

R(T) =

T∑
t=1

rt, (2.2)

where rt is the regret incurred by our choice of arms at time t.
Let us translate the online ranker evaluation problem into the dueling bandit problem.

The input, a finite set of arms, consists of a set of rankers, e.g., based on different ranking
models or based on the same model but with different parameters [60]. The Condorcet
winner is the ranker that is preferred, by the majority of users, over suboptimal rankers.
More specifically, a result list from the Condorcet winner is expected to receive the
highest number of clicks from users when compared to a list from a suboptimal ranker.
The preference matrix P records the users’ relative preferences for all rankers. Regret
measures the user frustration incurred by showing the interleaved list from suboptimal
rankers instead of the Condorcet winner. In the rest of the chapter, we use the term
ranker to indicate the term arm in K-armed dueling bandit problems since we focus on
the online ranker evaluation task.

2.3 Related Work

There are two main existing approaches for solving dueling bandit problems: (1) reduc-
ing the problem to a MAB problem, e.g., Sparring [5], Self-Sparring [109] and Relative
Exponential-weight algorithm for Exploration and Exploitation (REX3) [29]; (2) gener-
alizing existing MAB algorithms to the dueling bandit setting, e.g., Relative Upper Con-
fidence Bound (RUCB) [127], Relative Minimum Empirical Divergence (RMED1) [61]
and DTS [115]. The advantage of the latter group of algorithms is that they come
equipped with theoretical guarantees, proven for a broad class of problems. The first
group, however, have guarantees that either only hold for a restricted class of problems,
where the dueling bandit problem is obtained by comparing the arms of an underlying

12

2.3. Related Work

MAB problem (a.k.a. utility-based dueling bandits), e.g., Self-Sparring, REX3 and Spar-
ring T-INF [125], or have substantially suboptimal instance-dependent regret bounds
as in the case of Sparring EXP3, which has a regret bound of the form O(

√
KT),

as opposed to O(K log T). Indeed, as our experimental results below demonstrate,
Sparring-type algorithms can perform poorly when the dueling bandit problem does not
arise from a MAB problem.

Below, we describe some of these algorithms to provide context for our work.
Sparring [5] uses two MAB algorithms, e.g., Upper Confidence Bound (UCB), to
choose rankers. At each step, Sparring asks each MAB algorithm to output a ranker to
be compared. The two rankers are then compared and the MAB algorithm that proposed
the winning ranker gets a reward of 1 and the other a reward of 0.

Self-Sparring [109] improves upon Sparring by employing a single MAB algorithm,
but at each step samples twice to choose rankers. More precisely, Sui et al. [109]
use Thompson Sampling (TS) as the MAB algorithm. Self-Sparring assumes that the
problem it solves arises from an MAB; it can perform poorly when there exists a cycle
relation in rankers, i.e., if there are rankers ai, aj and ak with pij > 0.5, pjk > 0.5 and
pki > 0.5. As Self-Sparring does not estimate confidence intervals of the comparison
results, it does not eliminate rankers.

Another extension of Sparring is REX3 [29], which is designed for the adversarial
setting. REX3 is inspired by the Exponential-weight algorithm for Exploration and
Exploitation (EXP3) [10], an algorithm for adversarial bandits, and has a regret bound
of the form O(

√
K ln (K)T). Note that the regret bound grows as the square-root of

time-steps, but sublinearly in the number of rankers, which shows the potential for
improvement in the case of large-scale problems.

Relative Upper Confidence Bound (RUCB) [127] extends UCB to dueling bandits
using a matrix of optimistic estimates of the relative preference probabilities. At each
step, RUCB chooses the first ranker to be one that beats all other rankers based on
the idea of optimism in the face of uncertainty. Then it chooses the second ranker to
be the ranker that beats the first ranker with the same idea of optimism in the face of
uncertainty, which translates to pessimism for the first ranker. The cumulative regret of
RUCB after T steps is upper bounded by an expression of the form O(K2 +K log T).

RMED1 [61] extends an asymptotically optimal MAB algorithm, called Deterministic
Minimum Empirical Divergence (DMED) [46], by first proving an asymptotic lower
bound on the cumulative regret of all dueling bandit algorithms, which has the order of
Ω(K log T), and pulling each pair of rankers the minimum number of times prescribed
by the lower bound. RMED1 outperforms RUCB and Sparring.

Double Thompson Sampling (DTS) [115] improves upon RUCB by using TS to
break ties when choosing the first ranker. Specifically, it uses one TS to choose the
first ranker from a set of candidates that are pre-chosen by UCB. Then it uses another
TS to choose the second ranker that performs the best compared to the first one. The
cumulative regret of DTS is upper bounded by O(K log T + K2 log log T). Note
that the bound of DTS is higher than that of RUCB. We hypothesize that this is
because the bound of DTS is rather loose. DTS outperforms other dueling bandits
algorithms empirically and is the state-of-the-art in the case of small-scale dueling
bandit problems [109, 115]. As discussed in Section 2.6, for computational reasons
DTS is not suitable for large-scale problems.

13

2. Effective Large-Scale Online Ranker Evaluation

The work that is the closest to ours is by Zoghi et al. [130]. They propose
MergeRUCB, which is the state-of-the-art for large-scale dueling bandit problems.
MergeRUCB partitions rankers into small batches and compares rankers within each
batch. A ranker is eliminated from a batch once we realize that even according to
the most optimistic estimate of the preference probabilities it loses to another ranker
in the batch. Once enough rankers have been eliminated, MergeRUCB repartitions
the remaining rankers and continues as before. Importantly, MergeRUCB does not
require global pairwise comparisons between all pairs of rankers, and so it reduces the
computational complexity and increases the time efficiency, as shown in Section 2.6.2.
The cumulative regret of MergeRUCB can be upper bounded by O(K log T) [130], i.e.,
with no quadratic dependence on the number of rankers. This upper bound has the same
order as the lower bound proposed by Komiyama et al. [61] in terms of K log T , but it
is not optimal in the sense that it has large constant coefficients. As we demonstrate
in our experiments, MergeRUCB can be improved by making use of TS to reduce the
amount of randomness in the choice of rankers. More precisely, the cumulative regret
of MergeRUCB is almost twice as large as that of MergeDTS in the large-scale setup
shown in Section 2.6.

A recent extension of dueling bandits is called multi-dueling bandits [14, 102, 109],
where more than two rankers can be compared at each step. Multi-Dueling Bandits
(MDB) is the first proposed algorithm in this setting, which is specifically designed
for online ranker evaluation. It maintains two UCB estimators for each pair of rankers,
a looser confidence bound and a tighter one. At each step, if there is more than one
ranker that is valid for the tighter UCB estimators, MDB compares all the rankers that
are valid for the looser UCB estimators. MDB is outperformed by Self-Sparring, the
state-of-the-art multi-dueling bandit algorithm, significantly [109]. In this chapter, we
do not focus on the multi-dueling bandit setup. The reasons are two-fold. First, to the
best of our knowledge, there are no theoretical results in the multi-dueling setting that
allow for the presence of cyclical preference relationships among the rankers. Second,
Saha and Gopalan [102] state that “(perhaps surprisingly) [. . .] the flexibility of playing
size-k subsets does not really help to gather information faster than the corresponding
dueling case (k = 2), at least for the current subset-wise feedback choice model.”
This statement demonstrates that there is no clear advantage to using multi-dueling
comparisons over pairwise dueling comparisons at this moments.

2.4 Algorithm

In this section, we propose the MergeDTS algorithm, and explain the intuition behind
it. Then, we provide theoretical guarantees bounding the regret of MergeDTS.

2.4.1 MergeDTS

The MergeDTS algorithm combines the benefits of both the elimination-based divide
and conquer strategy of MergeRUCB and the sampling strategy of DTS, producing an
effective scalable dueling bandit algorithm.

The pseudo-code for MergeDTS is provided in Algorithms 1 to 3, with the notation

14

2.4. Algorithm

Table 2.1: Notation used in this chapter.

Notation Description

K Number of rankers
ai The i-th ranker
pij Probability of ai beating aj
M Size of a batch
α Exploration parameter, α > 0.5
ε Probability of failure
W The comparison matrix
wij Number of times ai has beaten aj
s Stage of the algorithm
Bs Set of batches at the s-th stage
bs Number of batches in Bs
θij Sampled probability of ai beating aj
ac Ranker chosen in Phase I of MergeDTS
φi Sampled probability of ai beating ac
ad Ranker chosen in Phase II of MergeDTS

uij Upper confidence bound (UCB): wij
wij+wji

+
√

α log (t+C(ε))
wij+wji

∆ij |pij − 0.5|
∆min min∆ij>0 ∆ij

∆B,min minai,aj∈B and i 6=j ∆ij

C(ε)
(

(4α−1)K2

(2α−1)ε

) 1
2α−1

summarized in Table 2.1 for the reader’s convenience. The input parameters are the
exploration parameter α, the size of a batch M and the failure probability ε ∈ (0, 1).
The algorithm records the outcomes of the past comparisons in matrix W, whose
element wij is the number of times ranker ai has beaten ranker aj so far. MergeDTS
stops when only one ranker remains and then returns that ranker, which it claims to be
the Condorcet winner.2

MergeDTS begins by grouping rankers into small batches (line 4). At each time-
step, MergeDTS checks whether there is more than one ranker remaining (line 7). If
so, MergeDTS returns that ranker, the potential Condorcet winner. If not, MergeDTS
considers one batch Bm and, using optimistic estimates of the preference probabili-
ties (line 9), it purges any ranker that loses to another ranker even with an optimistic
boost in favor of the former (line 10).

If, as a result of the above purge, Bm becomes a single-element batch, it is merged
with the next batch Bm+1 (line 12). Here, m + 1 is interpreted as modulo bs, where
bs is the number of batches in the current stage. This is done to avoid comparing a
suboptimal ranker against itself, since if there is more than one batch, the best ranker

2In the online ranker evaluation application, we can stop MergeDTS once it finds the best ranker. However,
in our experiments, we keep MergeDTS running by comparing the remaining ranker with itself. If the
remaining ranker is the Condorcet winner, there will be no regret.

15

2. Effective Large-Scale Online Ranker Evaluation

Algorithm 1 MergeDTS (Merge Double Thompson Sampling)
Input: K rankers a1, a2, . . . , aK ; partition size M ; exploration parameter α > 0.5;

running time steps T ; probability of failure ε = 1/T .
Output: The Condorcet winner.

1: W← 0K,K {The comparison matrix}

2: C(ε) =
(

(4α−1)K2

(2α−1)ε

) 1
2α−1

3: s = 1 {The stage of the algorithm}
4: Bs =

{
[a1, . . . , aM]︸ ︷︷ ︸

B1

, . . . , [a(b1−1)M+1, . . . , aK]︸ ︷︷ ︸
Bb1

}
{Disjoint batches of rankers,

with b1 = dKM e}
5: for t = 1, 2, . . . T do
6: m = t mod bs {Index of the batches}
7: if bs = 1 and |Bm| = 1 {One ranker left} then
8: Return the remaining ranker a ∈ Bm.

9: U = W
W+WT +

√(
α log(t+C(ε))

W+WT

)
{UCB estimators: operations are

element-wise and x
0 := 1}

10: Remove ai from Bm if uij < 0.5 for any aj ∈ Bm.
11: if bs > 1 and |Bm| = 1 then
12: Merge Bm with the next batch and decrement bs.
{Phase I: Choose the first candidate ac}

13: ac = SampleTournament(W, Bm) {See Algorithm 2}
{Phase II: Choose the second candidate ad}

14: ad = RelativeTournament(W, Bm, ac) {See Algorithm 3}
{Phase III: Compare candidates and update batches}

15: Compare pair (ac, ad) and increment wcd if ac wins otherwise increment wdc.
{Phase IV: Update batch set}

16: if
∑
m |Bm| ≤

K
2s then

17: Pair the larger size batches with the smaller ones, making sure the size of every
batch is in [0.5M, 1.5M].

18: s = s+ 1
19: Update Bs, bs = |Bs|.

in any given batch is unlikely to be the Condorcet winner of the whole dueling bandit
problem. As we will see again below, MergeDTS takes great care to avoid comparing
suboptimal rankers against themselves because it results in added regret, but yields no
extra information, since we know that each ranker is tied with itself.

After the above elimination step, the algorithm proceeds in four phases: choosing
the first ranker (Phase I), choosing the second ranker based on the first ranker (Phase II),
comparing the two rankers and updating the statistics (Phase III), and repartitioning the
rankers at the end of each stage (Phase IV). Of the four phases, Phase I and Phase II are
the major reasons that lead to a boost in effectiveness of MergeDTS when compared to
MergeRUCB. We will elaborate both phases in the remainder of this section.

16

2.4. Algorithm

In Phase I, the method SampleTournament (Algorithm 2) chooses the first candidate
ranker: MergeDTS samples preference probabilities θij from the posterior distributions
to estimate the true preference probabilities pij for all pairs of rankers in the batch Bm
(lines 1–3, the first TS). Based on these sampled probabilities, MergeDTS chooses the
first candidate ac so that it beats most of the other rankers according to the sampled
preferences (line 5).

Algorithm 2 SampleTournament
Input: The comparison matrix W and the current batch Bm.
Output: The first candidate ac.

1: for ai, aj ∈ Bm and i < j do
2: Sample θij ∼ Beta(wij + 1, wji + 1)
3: θji = 1− θij
4: κi = 1

|Bm|−1

∑
aj∈Bm,j 6=i 1(θij > 0.5)

5: ac = arg max
ai∈Bm

∼ κi; breaking ties randomly {First candidate}

In Phase II, the method RelativeTournament (Algorithm 3) chooses the second
candidate ranker: MergeDTS samples another set of preference probabilities φj from
the posteriors of pjc for all rankers aj inBm\{ac} (lines 1–2, the second TS). Moreover,
we set φc to be 1 (line 3). This is done to avoid self-comparisons between suboptimal
rankers for the reasons that were described above.

Algorithm 3 RelativeTournament
Input: The comparison matrix W, the current batch Bm and the first candidate ac.
Output: The second candidate ad.

1: for aj ∈ Bm and j 6= c do
2: Sample φj ∼ Beta(wjc + 1, wcj + 1)
3: φc = 1 {Avoid self-comparison}
4: ad = arg min

aj∈Bm
∼ φj ; breaking ties randomly {Second candidate}

Once the probabilities φj have been sampled, we choose the ranker ad that is going to
be compared against ac, using the following strategy. The worst ranker according to the
sampled probabilities φj is chosen as the second candidate ad (line 4). The rationale
for this discrepancy is that we would like to eliminate rankers as quickly as possible,
so rather than using the upper confidence bounds to explore when choosing ad, we use
the lower confidence bounds to knock the weakest link out of the batch as quickly as
possible.

In Phase III (line 15) of Algorithm 1, MergeDTS plays ac and ad and updates the
comparison matrix W based on the observed feedback.

Finally, in Phase IV (lines 16–19), if the number of remaining rankers in the current
stage is half of the rankers of the previous stage (line 16), MergeDTS enters the next
stage, before which it repartitions the rankers. Following the design of MergeRUCB,
this is done by merging batches of rankers such that the smaller sized batches are

17

2. Effective Large-Scale Online Ranker Evaluation

combined with the larger sized batches; we enforce that the number of rankers in the
new batches is kept in the range of [0.5M, 1.5M].

2.4.2 Theoretical guarantees
In this section, we state and prove a high probability upper bound on the regret ac-
cumulated by MergeDTS after T steps, under the assumption that the dueling bandit
problem contains a Condorcet winner. Since the theoretical analysis of MergeDTS is
based on that of MergeRUCB, we start by listing two assumptions that we borrow from
MergeRUCB in [130, Section 7].

Assumption 2.1. There is no repetition in rankers. All ranker pairs (ai, aj) with i 6= j
are distinguishable, i.e., pij 6= 0.5, unless both of them are “uninformative” rankers
that provide random ranked lists and cannot beat any other rankers.

Assumption 2.2. The uninformative rankers are at most one third of the full set of
rankers.

These assumptions arise from the Yahoo! Learning to Rank Challenge dataset, where
there are 181 out of 700 rankers that always provide random ranked lists. Assump-
tion 2.1 ensures that each informative ranker is distinguishable from other rankers.
Assumption 2.2 restricts the maximal percentage of uninformative rankers and thus
ensures that the probability of triggering the merge condition (line 16 in Algorithm 1) is
larger than 0.3 Moreover, we emphasize that Assumptions 2.1 and 2.2 are milder than
the assumptions made in Self-Sparring and DTS, where indistinguishability is simply
not allowed.
We now state our main theoretical result:

Theorem 2.1. With the known time step T , applying MergeDTS with α > 0.5, M ≥ 4
and ε = 1/T to a K-armed Condorcet dueling bandit problem under Assumptions 2.1
and 2.2, with probability 1− ε the cumulative regretR(T) after T steps is bounded by:

R(T) <
8αMK ln(T + C(ε))

∆2
min

, (2.3)

where
∆min := min

∆ij>0
∆ij , (2.4)

is the minimal gap of two distinguishable rankers and C(ε) =
(

(4α−1)K2

(2α−1)ε

) 1
2α−1

.

The upper bound on the T -step cumulative regret of MergeDTS is O(K ln (T)/∆2
min).

In other words, the cumulative regret grows linearly with the number of rankers,K. This
is the most important advantage of MergeDTS, which states the potential of applying
it to the large-scale online evaluation. We emphasize that for most of the K-armed

3In practice, MergeDTS works without Assumption 2.2 because the Condorcet winner eliminates all
other arms eventually with O(K2 log T) comparisons. We keep Assumption 2.2 to ensure that MergeDTS
also works in cases where we have the O(K log(T)) guarantee. We refer readers to [130] for a detailed
discussion.

18

2.4. Algorithm

dueling bandit algorithms in the literature, the upper bounds contain a K2 term, which
renders them unsuitable for large-scale online ranker evaluation. By the definition of
∆min in Eq. (2.4) we have ∆min > 0, and so our bound is well-defined. However, the
performance of MergeDTS may degrade severely when ∆min is small. α is a common
parameter in UCB-type algorithms, called the exploration parameter. α controls the
trade-off between exploitation and exploration: larger α results in more exploration,
whereas smaller α makes the algorithm more exploitative. Theoretically, α should be
larger than 0.5. However, as shown in our experiments, using some values of α that are
outside the theoretical regime can lead to a boost in the effectiveness of MergeDTS.

Theorem 2.1 provides a finite-horizon high probability bound. From a practical
point of view, this type of bound is of great utility. In practice, bandit algorithms are
always deployed and evaluated within limited user iterations [80, 121]. Here, each time
step is one user interaction. As the number of interactions is provided, we can choose a
reasonable step T to make sure the high probability bound holds. We can also get an
expected regret bound of MergeDTS at step T by setting ε = 1/T and adding 1 to the
right-hand side of Eq. (2.3): this is because E[R(T)] can be bounded by

1

T
· T +

T − 1

T
· 8αMK ln(T + C(ε))

∆2
min

≤ 1 +
8αMK ln(T + C(ε))

∆2
min

. (2.5)

We note that the above expected bound holds only at time-step T and so the horizonless
version of MergeDTS does not possess an expected regret bound.

The proof of Theorem 2.1 relies on the Lemma 3 in [130]. We repeat it here for the
reader’s convenience.

Lemma 2.1 (Lemma 3 in [130]). Given any pair of distinguishable rankers ai, aj ∈ B
and ε ∈ [0, 1], with the probability of 1− ε, the maximum number of comparisons that
could have been carried out between these two rankers in the first T time-steps before a
merger between B and another batch occurs, is bounded by

4α ln(T + C(ε))

∆2
B,min

, (2.6)

where ∆B,min = minai,aj∈B∼and∼i 6=j ∆ij is the minimal gap of two distinguishable
rankers in batch B.

Proof of Theorem 2.1. Lemma 2.1 states that with probability 1 − ε the number of
comparisons between a pair of distinguishable rankers (i, j) ∈ B is bounded by

4α ln(T + C(ε))

∆2
B,min

, (2.7)

regardless of the way the rankers are selected, as long as the same criterion as MergeRUCB
is used for eliminating rankers. Since the elimination criterion for MergeDTS is the
same as that of MergeRUCB, we can apply the same argument used to prove Theorem 1
in [130] to get a bound of

8αMK ln(T + C(ε))

∆2
min

(2.8)

on the regret accumulated by MergeDTS. Here we use the fact that ∆B,min ≥ ∆min

and thus 4α ln(T+C(ε))
∆2
B,min

≤ 4α ln(T+C(ε))
∆2
min

.

19

2. Effective Large-Scale Online Ranker Evaluation

2.4.3 Discussion
The prefix “merge” in MergeDTS signifies the fact that it uses a similar divide-and-
conquer strategy as merge sort. It partitions the K-arm set into small batches of size M .
The comparisons only happen between rankers in the same batch, which, in turn, avoids
global pairwise comparisons and gets rid of the O(K2) dependence in the cumulative
regret, which is the main limitation for using dueling bandits for large datasets.

In contrast to sorting, MergeDTS needs a large number of comparisons before
declaring a difference between rankers since the feedback is stochastic. The harder
two rankers are to distinguish or in other words the closer pij is to 0.5, the more
comparisons are required. Moreover, if a batch only contains the uninformative rankers,
the comparisons between those rankers will not stop, which incurs infinite regret.
MergeDTS reduces the number of comparisons between hardly distinguishable rankers
as follows:

(1) MergeDTS compares the best ranker in the batch to the worst to avoid compar-
isons between hardly distinguishable rankers;

(2) When half of the rankers of the previous stage are eliminated, MergeDTS pairs
larger batches to smaller ones that contain at least one informative ranker and
enters the next stage.

The second point is borrowed from the design of MergeRUCB.
MergeDTS and MergeRUCB follow the same “merge” strategy. The difference

between these two algorithms is in their strategy of choosing rankers, i.e., Algorithms 2
and 3. MergeDTS employs a sampling strategy to choose the first ranker inside the batch
and then uses another sampling strategy to choose the second ranker that is potentially
beaten by the first one. As stated above, this design comes from the fact that MergeDTS
is carefully designed to reduce the comparisons between barely distinguishable rankers.
In contrast to MergeDTS, MergeRUCB randomly chooses the first ranker and chooses
the second ranker to be the one that is the most likely to beat the first ranker, as
discussed in Section 2.3. The uniformly random strategy inevitably increases the
number of comparisons between those barely distinguishable rankers.

In summary, the double sampling strategy used by MergeDTS is the major factor that
leads to the superior performance of MergeDTS as demonstrated by our experiments.

2.5 Experimental Setup

In this chapter, we investigate the application of dueling bandits to the large-scale online
ranker evaluation setup. Our experiments are designed to answer RQ1, which we map
into a set of six more refined research questions.

2.5.1 Research questions
RQ1.1 In the large-scale online ranker evaluation task, does MergeDTS outperform

the state-of-the-art large-scale dueling bandits algorithms in terms of cumulative
regret, i.e., effectiveness?

20

2.5. Experimental Setup

In the bandit literature [16, 126], regret is a measure of the rate of convergence to the
Condorcet winner in hindsight. Mapping this to the online ranker evaluation setting,
RQ1.1 asks whether MergeDTS hurts the user experience less than baselines while it is
being used for large-scale online ranker evaluation.

RQ1.2 How do MergeDTS and the baselines scale computationally?

What is the time complexity of MergeDTS? Does MergeDTS require less running time
than the baselines?

RQ1.3 How do different levels of noise in the feedback signal affect cumulative regret
of MergeDTS and the baselines?

In particular, will we still observe the same results in RQ1.1 after a (simulated) user
changes its behavior? How sensitive are MergeDTS and the baselines to noise?

RQ1.4 How do MergeDTS and the baselines perform when the Condorcet dueling
bandit problem contains cycles?

Previous work has found that cyclical preference relations between rankers are abundant
in online ranker comparisons [128, 130]. Can MergeDTS and the baselines find the
Condorcet winner when the experimental setup features a large number of cyclical
relations between rankers?

RQ1.5 How does MergeDTS perform when the dueling bandit problem violates the
Condorcet assumption?

We focus on the Condorcet dueling bandit task in this chapter. Can MergeDTS be
applied to dueling bandit tasks without the existence of a Condorcet winner?

RQ1.6 What is the parameter sensitivity of MergeDTS?

Can we improve the performance of MergeDTS by tuning its parameters, such as the
exploration parameter α, the size of a batch M , and the probability of failure ε?

2.5.2 Datasets
To answer our research questions, we use two types of dataset: three real-world datasets
and a synthetic dataset. First, to answer RQ1.1 to RQ1.3, we run experiments on three
large-scale datasets: the Microsoft Learning to Rank (MSLR) WEB30K dataset [96], the
Yahoo! Learning to Rank Challenge Set 1 (Yahoo) [19] and the ISTELLA dataset [85].4

These datasets contain a large number of features based on unsupervised ranking
functions, such as BM25, TF-IDF, etc. In our experiments, we take the widely used
setup in which each individual feature is regarded as a ranker [41, 130]. This is different
from a real-world setup, where a search system normally ranks documents using a
well trained learning to rank algorithm that combines multiple features. However, the
difficulty of a dueling bandit problem comes from the relative quality of pairs of rankers

4We omit the Yahoo Set 2 dataset because it contains far fewer queries than the Yahoo Set 1 dataset.

21

2. Effective Large-Scale Online Ranker Evaluation

and not from their absolute quality. In other words, evaluating rankers with similar
and possibly low performance is as hard as evaluating state-of-the-art rankers, e.g.,
LambdaMART [15]. Therefore, we stick to the standard setup of [41, 130], treating
each feature as a ranker and each ranker as an arm in the K-armed dueling bandit
problem. We leave experiments aimed at comparing different well trained learning
to rank algorithms as future work. As a summary, the MSLR dataset contains 136
rankers, the Yahoo dataset contains 700 rankers and the ISTELLA dataset contains 220
rankers. Compared to the typical K-armed dueling bandit setups, where K is generally
substantially smaller than 100 [5, 109, 115, 122], these are large numbers of rankers.

Second, to answer RQ1.4, we use a synthetic dataset, generated by Zoghi et al.
[130], which contains cycles (called the Cycle dataset in the rest of the chapter).
The Cycle dataset has 20 rankers with one Condorcet winner, a1, and 19 suboptimal
rankers, a2, . . . , a20. The Condorcet winner beats the other 19 suboptimal rankers.
And those 19 rankers have a cyclical preference relationship between them. More
precisely, following Zoghi et al. [130], the estimated probability p1j of a1 beating
aj (j = 2, . . . , 20 is set to p1j = 0.51, and the preference relationships between the
suboptimal rankers are described as follows: visualize the 19 rankers a2, . . . , a20 sitting
at a round table, then each ranker beats every ranker to its left with probability 1 and
loses to every ranker to its right with probability 1. In this way we obtain the Cycle
dataset.

Note that this is a difficult setup for Self-Sparring, because Self-Sparring chooses
rankers based on their Borda scores, and the Borda scores (

∑K
j=1 pij for each ranker

ai [112]) are close to each other in the Cycle dataset. For example, the Borda score of
the Condorcet winner is 10.19, while the Borda score of a suboptimal ranker is 9.99.
This makes it hard for Self-Sparring to distinguish between rankers. In order to be able
to conduct a fair comparison, we generate the Cycle2 dataset, where each suboptimal
ranker beats every ranker to its left with a probability of 0.51 and the Condorcet winner
beats all others with probability 0.6. Now, in the Cycle2 dataset, the Borda score of the
Condorcet winner is 11.90, while the Borda score of a suboptimal ranker is 9.9. Thus,
it is an easier setup for Self-Sparring.

Furthermore, to answer RQ1.5, we use the MSLR-non-Condorcet dataset from [115],
which is a subset of the MSLR dataset that does not contain a Condorcet winner. This
datasets has 32 rankers with two Copeland winners (instead of one), each of which beats
the other 30 rankers. A Copeland winner is a ranker that beats the largest number of
other rankers; every dueling bandit dataset contains at least one Copeland winner [129].

Finally, we use the MSLR dataset with the navigational configuration (described in
Section 2.5.4) to assess the parameter sensitivity of MergeDTS RQ1.6.

2.5.3 Evaluation methodology

To evaluate dueling bandit algorithms, we follow the proxy approach from [130]. It
first uses an interleaving algorithm to obtain a preference matrix, i.e., a matrix that
for each pair of rankers contains the probability that one ranker beats the other. More
precisely, for each pair of rankers ai and aj , pij is the estimation that ai beats aj in
the simulated interleaved comparisons. Then, this obtained preference matrix is used
to evaluate dueling bandit algorithms: for two rankers ai and aj chosen by a dueling

22

2.5. Experimental Setup

bandit algorithm, we compare them by drawing a sample from a Bernoulli distribution
with mean pij , i.e., 1 means that ai beats aj and vice versa. This is a standard approach
to evaluating dueling bandit algorithms [115, 122, 128]. Moreover, the proxy approach
has been shown to have the same quality as interleaving in terms of evaluating dueling
bandit algorithms [130].

In this chapter, we adopt the procedure described by Zoghi et al. [130] and obtain
preference matrices for MSLR, Yahoo and ISTELLA datasets. Specifically, we use
Probabilistic Interleave [41] to obtain preference matrices.5 The numbers of compar-
isons for every pair of rankers in MSLR, Yahoo and ISTELLA datasets are 400 000,
60 000 and 400 000. The reason for the discrepancy is pragmatic: the Yahoo dataset has
roughly 27 times as many pairs of rankers to be compared.

2.5.4 Click simulation
As the interleaved comparisons mentioned above are carried out using click feedback,
we follow Hofmann et al. [43] and simulate clicks using three configurations of a click
model [23]: namely perfect, navigational and informational. The perfect configuration
simulates a user who checks every document and clicks on a document with a probability
proportional to the query-document relevance. This configuration is the easiest one for
dueling bandit algorithms to find the best ranker, because it contains very little noise.
The navigational configuration mimics a user who seeks specific information, i.e., who
may be searching for the link of a website, and is likely to stop browsing results after
finding a relevant document. The navigational configuration contains more noise than
the perfect configuration and is harder for dueling bandit algorithms to find the best
ranker. Finally, the informational configuration represents a user who wants to gather all
available information for a query and may click on documents that are not relevant with
high probability. In the informational configuration the feedback contains more noise
than in the perfect and navigational configurations, which makes it the most difficult
configuration for dueling bandit algorithms to determine the best ranker, which, in turn,
may result in the highest cumulative regret among the three configurations.

To answer the research questions that concern large-scale dueling bandit prob-
lems, namely RQ1.1, RQ1.2 and RQ1.6, we use the navigational configuration, which
represents a reasonable middle ground between the perfect and informational configu-
rations [41]. The corresponding experimental setups are called MSLR-Navigational,
Yahoo-Navigational and ISTELLA-Navigational. To answer RQ1.3 regarding the
effect of feedback with different levels of noise, we use all three configurations on
MSLR, Yahoo and ISTELLA datasets: namely MSLR-Perfect, MSLR-Navigational and
MSLR-Informational; Yahoo-Perfect, Yahoo-Navigational and Yahoo-Informational;
ISTELLA-Perfect, ISTELLA-Navigational and ISTELLA-Informational. Thus, we
have nine large-scale setups in total.

2.5.5 Baselines
We compare MergeDTS to five state-of-the-art dueling bandit algorithms:
MergeRUCB [130], DTS [115], RMED1 [61], Self-Sparring [109], and REX3 [29].

5We use the implementation of Probabilistic Interleave in the LEROT software package [104].

23

2. Effective Large-Scale Online Ranker Evaluation

Among these algorithms, MergeRUCB is designed for large-scale online ranker eval-
uation and is the state-of-the-art large-scale dueling bandit algorithm. DTS is the
state-of-the-art small-scale dueling bandit algorithm. RMED1 is motivated by the lower
bound of the Condorcet dueling bandit problem and matches the lower bound up to a
factor of O(K2), which indicates that RMED1 has low regret in small-scale problems
but may have large regret when the number of rankers is large. Self-Sparring is a more
recently proposed dueling bandit algorithm that is the state-of-the-art algorithm in the
multi-dueling setup, with which multiple rankers can be compared in each step. REX3
is proposed for the adversarial dueling bandit problem but also performs well for the
large-scale stochastic dueling bandit problem [29]. We do not include RUCB [127] and
Sparring [5] in our experiments since they have been outperformed by more than one of
our baselines [29, 109, 130].

2.5.6 Parameters

Recall that Theorem 2.1 is based on Lemma 3 in [130]. The latter provides a high
probability guarantee that the confidence intervals will not mislead the algorithm into
eliminating the Condorcet winner by mistake. However, this result is proven using the
Chernoff-Hoeffding [39] bound together with an application of the union bound [17],
both of which introduce certain gaps between theory and practice. That is, the analysis
of regret mainly considers the worst-case scenario rather than the average-case scenario,
which makes regret bounds much looser than they could have been. We conjecture that
the expression for C(ε), which derives its form from Lemma 3 in [130], is excessively
conservative. Put differently, Theorem 2.1 specifies a sufficient condition for the proper
functioning of MergeDTS, not a necessary one. So, a natural question that arises is the
following: to what extent can restrictions imposed by our theoretical results be violated
without the algorithm failing in practice? In short, what is the gap between theory and
practice and what is the parameter sensitivity of MergeDTS?

To address these questions and answer RQ1.6, we conduct extensive parameter
sensitivity analyses in the MSLR-Navigational setup with the following parameters:
α ∈ {0.80, 0.81, . . . , 0.89}, C ∈ {4 × 102, 4 × 103, . . . , 4 × 106, 4 726 908}, and
M ∈ {2, 4, 8, 16}. C is short for C(ε), where C(ε) is the exploration bonus added to
the confidence intervals. According to Table 2.1, C(ε) is a function of α and ε. However,
to simplify our experimental setup, we consider C as an individual parameter rather
than a function parameterized by α and ε, and study the impact of C directly. The
details about the choice of the values are explained in the following paragraph.

When choosing candidate values for α, we want them to cover the optimal theoretical
value α > 1, the lowest theoretically legal value α > 0.5, and for smaller values of α
we want to decrease the differences between two consecutive α’s. This last condition
is imposed because smaller values of α may mislead MergeDTS to eliminate the
Condorcet winner. So we shrink the search space for smaller values of α. The powers
of 0.8 from 0 to 9 seem to satisfy the above conditions, particularly 0.83 ≈ 0.5 and
obviously 0.80 = 1 with the difference between 0.8n and 0.8n+1 becoming smaller
with larger n. The value C = 4 726 908 is calculated from the definition of C(ε) with
the default α = 1.01 and M = 4 (see Table 2.1), noting that the MSLR-Navigational
setup contains 136 rankers, i.e., K = 136. As discussed before, the design of C(ε) may

24

2.5. Experimental Setup

be too conservative. So, we only choose candidate values smaller than 4 726 908. We
use the log-scale of C(ε) because the upper bound is logarithmic with C(ε).

The sensitivity of parameters is analyzed by following the order of their importance
to Theorem 2.1, i.e., α and M have a linear relation to the cumulative regret and C has
a logarithmic relation to the cumulative regret. We first evaluate the sensitivity of α
with the default values of M and C. Then we use the best value of α to test a range of
values of M (with default C). Finally, we analyze the impact of C using the best values
of α and M .

We discover the practically optimal parameters for MergeDTS to be α = 0.86,M =
16 and C = 4 000 000, in Section 2.6.6. We repeat the procedure for MergeRUCB and
DTS, and use their optimal parameter values in our experiments, which are α = 0.86,
M = 8, C = 400 000 for MergeRUCB and α = 0.87 for DTS. Then, we use these
values to answer RQ1.1 to RQ1.5. Self-Sparring does not have any parameters, so
further analysis and tuning are not needed here.

The shrewd readers may notice that the parameters are somewhat overtuned in
the MSLR-Navigational setup, and MergeDTS with the tuned parameters does not
enjoy the theoretical guarantees in Theorem 2.1. However, because of the existence
of the gap between theory and practice, we want to answer the question whether we
can improve the performance of MergeDTS as well as that of the baselines by tuning
the parameters outside of their theoretical limits. We also want to emphasize that the
parameters of MergeDTS and baselines are only tuned in the MSLR-Navigational setup,
but MergeDTS is compared to baselines in nine setups. If, with the tuned parameters,
MergeDTS outperforms baselines in other eight setups, we can also show the potential
of improving MergeDTS in an empirical way.

2.5.7 Metrics
In our experiments, we assess the efficiency (time complexity) and effectiveness (cu-
mulative regret) of MergeDTS and baselines. The metric for efficiency is the running
time in days. We compute the running time from the start of the first step to the end of
the T -th step, where T = 108 in our experiments. A commercial search engine may
serve more than 1 billion search requests per day [34], and each search request can be
used to conduct one dueling bandit comparison. The total number of time steps, i.e.
T , considered in our experiments is about 1% of the one-week traffic of a commercial
search engine.

We use cumulative regret in T steps to measure the effectiveness of algorithms,
which is computed as follows:

R(T) =

T∑
t=1

r(t) =

T∑
t=1

1

2
(∆1,ct + ∆1,dt), (2.9)

where r(t) is the regret at step t, ct and dt are the indices of rankers chosen at step t,
and without loss of generality, we assume a1 to be the Condorcet winner. The regret
r(t) arises from the comparisons between the two suboptimal rankers at t step. It is
the average sub-optimality of comparing two rankers ai and aj with respect to the
Condorcet winner a1, i.e., p1i+p1j2 − 0.5. In a real-world scenario, we have a fixed time

25

2. Effective Large-Scale Online Ranker Evaluation

Figure 2.1: Cumulative regret on large-scale online ranker evaluation: lower is better.
Note that the scales of the y-axes are different. The shaded areas are ± standard error.
The results are averaged over 50 independent runs.

period to conduct our online ranker evaluation, and thus, the number of steps T can
be estimated beforehand. In our online ranker evaluation task, the T -step cumulative
regret is related to the drop in user satisfaction during the evaluation process, i.e. higher
regret means larger degradation of user satisfaction, because the preference p1i can be
interpreted as the probability of the Condorcet winner being preferred to ranker i.

Unless stated differently, the results in all experiments are averaged over 50 and 100
independent runs on large- and small-scale datasets respectively, where both numbers
are either equal to or larger than the choices in previous studies [109, 115, 130]. In
the effectiveness experiments, we also report the standard error of the average cumu-
lative regret, which measures the differences between the average of samples and the
expectation of the sample population.

All experiments on the MSLR and Yahoo datasets are conducted on a server with
Intel(R) Xeon(R) CPU E5-2650 2.00GHz (32 Cores) and 64 Gigabyte. All experiments
on the ISTELLA dataset are conducted on servers with Intel(R) Xeon(R) Gold 5118
CPU @ 2.30GHz (48 Cores) and 256 Gigabyte. To be precise, an individual run of each
algorithm is conducted on a single core with 1 Gigabyte.

2.6 Experimental Results

In this section, we analyze the results of our experiments. In Section 2.6.1, we compare
the effectiveness (cumulative regret) of MergeDTS and the baselines in three large-scale
online evaluation setups. In Section 2.6.2, we compare and analyze the efficiency (time
complexity) of MergeDTS and the baselines. In Section 2.6.3, we study the impact of
different levels of noise in the click feedback on the algorithms. In Section 2.6.4 and
Section 2.6.5, we evaluate MergeDTS and the baselines in two alternative setups: the
cyclic case and the non-Condorcet case, respectively. In Section 2.6.6, we analyze the
parameter sensitivity of MergeDTS.

26

2.6. Experimental Results

2.6.1 Large-scale experiments

To answer RQ1.1, we compare MergeDTS to the large-scale state-of-the-art baseline,
MergeRUCB, as well as the more recently proposed Self-Sparring, in three large-
scale online evaluation setups, namely MSLR-Navigational, Yahoo-Navigational and
ISTELLA-Navigational. The results are reported in Fig. 2.1, which depicts the cu-
mulative regret of each algorithm, averaged over 50 independent runs. As mentioned
in Section 2.5, cumulative regret measures the rate of convergence to the Condorcet
winner in hindsight and thus lower regret curves are better. DTS and RMED1 are
not considered in the Yahoo-Navigational setup, and the cumulative regret of DTS
is reported with in 107 steps on the ISTELLA dataset, because of the computational
issues, which are further discussed in Section 2.6.2. Fig. 2.1 shows that MergeDTS
outperforms the large-scale state-of-the-art MergeRUCB with large gaps. Regarding
the comparison with Self-Sparring and DTS, we would like to point out the following
facts: (1) MergeDTS outperforms DTS and Self-Sparring in MSLR-Navigational and
ISTELLA-Navigational setups; (2) In the Yahoo-Navigational setup, MergeDTS has
slightly higher cumulative regret than Self-Sparring, but MergeDTS converges to the
Condorcet winner after three million steps while the cumulative regret of Self-Sparring
is still growing after 100 million steps. Translating these facts into real-world scenarios,
MergeDTS has higher regret compared to DTS and Self-Sparring in the early steps, but
MergeDTS eventually outperforms DTS and Self-Sparring with longer experiments.
As for REX3, we see that it has a higher order of regret than other algorithms since
REX3 is designed for the adversarial dueling bandits and the regret of REX3 is O(

√
T).

In this chapter, we consider the stochastic dueling bandits, and the regret of the other
algorithms is log (T). MergeDTS outperforms the baselines in most setups, but we
need to emphasize that the performance of MergeDTS here cannot be guaranteed by
Theorem 2.1. This is because we use the parameter setup outside of the theoretical
regime, as discussed in Section 2.5.6.

2.6.2 Computational scalability

To address RQ1.2, we report in Table 2.2 the average running time (in days) of each
algorithm in three large-scale dueling bandit setups, namely MSLR-Navigational, IS-
TELLA and Yahoo-Navigational. As before, each algorithm is run for 108 steps. An
individual run of DTS and RMED1 in the Yahoo-Navigational setup takes around
100.27 and 18.39 days, respectively, which is simply impractical for our experiments;
therefore, the running time of DTS and RMED1 in this setup is estimated by multiplying
the average running time at 105 steps by 103. For a similar reason, we estimate the
running time of DTS on the ISTELLA-Navigational setup by multiplying the average
running time at 107 by 10.

Table 2.2 shows that MergeDTS and MergeRUCB have very low running times.
This is due to the fact that they perform computations inside batches and their com-
putational complexity is O(TM2), where T is the number of steps and M is the size
of batches. Moreover, MergeDTS is considerably faster in the MSLR-Navigational
setup, because there it finds the best ranker with fewer steps, as can be seen in Fig. 2.1.
After finding this best ranker, the size of batches M becomes 1 and, from that moment

27

2. Effective Large-Scale Online Ranker Evaluation

Table 2.2: Average running time in days of each algorithm on large-scale problems
for 108 steps averaged over 50 independent runs. The running time of DTS in the
ISTELLA-Navigational setup is estimated based on the running time with 107 steps
multiplied by 10. The running time of DTS and RMED1 in the Yahoo-Navigational
setup is estimated by multiplying the average running time at 105 steps by 103. The
experiments on the ISTELLA dataset are conducted on different computer clusters from
those on the MSLR and Yahoo datasets. The speed of the former ones is about one time
faster than the latter ones. Therefore the numbers may not be directly compared.

MSLR ISTELLA Yahoo

Rankers 136 220 700

MergeDTS 0.08 0.03 0.11
MergeRUCB 0.08 0.03 0.11
Self-Sparring 0.18 0.22 0.90
DTS 5.23 9.88 100.27
RMED1 0.36 0.19 18.39
REX3 0.25 0.11 0.27

on, MergeDTS does not perform any extra computations. The running time of Self-
Sparring is also low, but grows with the number of rankers, roughly linearly. This is
because at each step Self-Sparring draws a sample from the posterior distribution of
each ranker and its running time is Ω(TK), where K is the number of rankers. DTS is
orders of magnitude slower than other algorithms and its running time grows roughly
quadratically, because DTS requires a sample for each pair of rankers at each step and
its running time is Ω(TK2).

Large-scale commercial search systems process over a billion queries a day [34],
and run hundreds of different experiments [60] concurrently, in each of which two
rankers are compared. The running time for DTS and RMED1 that appears in Table 2.2
is far beyond the realm of what might be considered reasonable to process on even 20%
of one day’s traffic: note that one query in the search setting corresponds to one step
for a dueling bandit algorithm, since each query could be used to compare two rankers
by performing an interleaved comparison. Given the estimated running times listed
in Table 2.2, we exclude DTS and RMED1 from our experiments on the large-scale
datasets for practical reasons.

2.6.3 Impact of noise

To address RQ1.3, we run MergeDTS in the perfect, navigational and informational
configurations (see Section 2.5.4). As discussed in Section 2.5.4, the perfect configu-
ration is the easiest one for dueling bandit algorithms to reveal the best ranker, while
the informational configuration is the hardest. We report the results of the perfect and
informational configurations in Fig. 2.2. For comparison, we refer readers to plots in
Fig. 2.1 for the results of navigational configuration.

On the MSLR and ISTELLA datasets, in all three configurations, MergeDTS with

28

2.6. Experimental Results

Figure 2.2: Effect of the level of noise on cumulative regret in click feedback (top row:
perfect configuration and bottom row: informational configuration). The results are
averaged over 50 independent runs. (Contrast with figures in Fig. 2.1.)

the chosen parameters outperforms the baselines, and the gaps get larger as click
feedback gets noisier. The results also show that Self-Sparring is severely affected by
the level of noise. This is because Self-Sparring estimates the Borda score [112] of a
ranker and, in our experiments, the noisier click feedback is, the closer the Borda scores
are to each other, making it harder for Self-Sparring to identify the winner.

Results on the Yahoo dataset disagree with results on the MSLR dataset. On
the Yahoo dataset, MergeDTS is affected more severely by the level of noise than
Self-Sparring. This is because of the existence of uninformative rankers as stated
in Assumption 2.1. In noisier configurations, the gaps between uninformative and
informative rankers are smaller, which results in the long time of comparisons for
MergeDTS to eliminate the uninformative rankers. Comparing those uninformative
rankers leads to high regret.

In summary, the performance of MergeDTS is largely affected when the gaps
between rankers are small, which is consistent with our theoretical findings.

2.6.4 Cycle experiment

We address RQ1.4 by running the algorithms that we consider on the Cycle and Cycle2
datasets introduced in Section 2.5.2. Particularly, we have already observed that Self-
Sparring performs well in some cases (see the above experiments and results), but we
argue that Self-Sparring may perform poorly when a dueling bandit problem contains
cyclic preference relationships. This has been identified as a point of grave concern

29

2. Effective Large-Scale Online Ranker Evaluation

Figure 2.3: Cumulative regret in cyclic and non-Condorcet setups. The results are
averaged over 100 independent runs.

in online evaluation [128]. Therefore, in this section we assess how dueling bandit
algorithms behave when a dueling bandit problem contains cycles.

In this section we conduct experiments for 10 million steps and repeat 100 times
since Merge-style algorithms converge to the Condorcet ranker within less than 1 million
steps and running longer only increases the gaps between MergeDTS and baselines.

For the Cycle dataset (the first plot in Fig. 2.3), the cumulative regret of Self-Sparring
is an order of magnitude higher than that of MergeDTS, although it performs well in
some cases (see the above experiments). As we discussed in Section 2.5.2, Self-Sparring
chooses rankers based on their Borda scores and when the Borda scores of different
arms become close to each other as in the Cycle dataset, Self-Sparring may perform
poorly. Also, we notice that when the gaps in Borda scores of the Condorcet winner
and other rankers are large, Self-Sparring performs well, as shown in the middle plot in
Fig. 2.3.

Other than Self-Sparring, we also notice that the other baselines performs quite
differently on the two cyclic configurations. In the harder configuration of the two,
the Cycle dataset, only RMED1 and MergeRUCB outperform MergeDTS. RMED1
excludes rankers from consideration based on relative preferences between two rankers.
And, in the Cycle dataset, the preferences between suboptimal rankers are large. Thus,
RMED1 can easily exclude a ranker based on its relative comparison to another subopti-
mal ranker. For the Cycle2 dataset, where the relative preferences between two rankers
are small, RMED1 performs worse than MergeDTS.

MergeRUCB also slightly outperforms MergeDTS on the Cycle dataset. This can
be explained as follows. In the Cycle dataset, the preference gap between the Condorcet
winner and suboptimal rankers is small (i.e., 0.01), while the gaps between suboptimal
rankers are relatively large (i.e., 1.0). Under this setup, MergeDTS tends to use the
Condorcet winner to eliminate suboptimal rankers in the final stage. On the other
hand, MergeRUCB eliminates a ranker by another ranker who beats it with the largest
probability. So, MergeDTS requires more comparisons to eliminate suboptimal rankers
than MergeRUCB. However, the gap between MergeRUCB and MergeDTS is small.

30

2.6. Experimental Results

2.6.5 Beyond the Condorcet assumption

To answer RQ1.5, we evaluate MergeDTS on the MSLR-non-Condorcet dataset that
does not contain a Condorcet winner. Instead, the dataset contains two Copeland
winners and this dueling bandit setup is called the Copeland dueling bandit [115, 129].
The Copeland winner is selected by the Copeland score ζi = 1

K−1

∑
k 6=i 1(pik > 1/2)

that measures the number of rankers beaten by ranker ai. The Copeland winner is
defined as ζ∗ = max1≤i≤K ζi. In the MSLR-non-Condorcet dataset, each Copeland
winner beats 30 other rankers. Specifically, one of the Copeland winners beats the other
one but is beaten by a suboptimal ranker. In the Copeland dueling bandit setup, regret is
computed differently from the Condorcet dueling bandit setup. Given a pair of rankers
(ai, aj), regret at step t is computed as:

rt = ζ∗ − 0.5(ζi + ζj). (2.10)

Among the considered algorithms, only DTS can solve the Copeland dueling bandit
problem and is the state-of-the-art Copeland dueling bandit algorithm. We conduct the
experiment for 10 million steps with which DTS converges to the Copeland winners.
And we run each algorithm 100 times independently. The results are shown in the last
plot in Fig. 2.3.

MergeDTS has the lowest cumulative regret. However, in our experiments, we find
that MergeDTS eliminates the two Copeland winners one time out of 100 individual
repeats. In the other 99 repeats, we find that MergeDTS eliminates one of the two
existing winners, which may not be ideal in practice. Note that we evaluate MergeDTS
in a relatively easy setup, where only two Copeland winners are considered. For
more complicated setups, where more than two Copeland winners are considered or
the Copeland winners are beaten by several suboptimal rankers, we speculate that
MergeDTS can fail more frequently. In our experiments, we do not evaluate MergeDTS
in the more complicated setups, because MergeDTS is designed for the Condorcet
dueling bandits and is only guaranteed to work under the Condorcet assumption. The
answer to RQ1.5 is that MergeDTS may perform well for some easy setups that go
beyond the Condorcet assumption without any guarantees.

2.6.6 Parameter sensitivity

We answer RQ1.6 and analyze the parameter sensitivity of MergeDTS using the setup
described in Section 2.5.6. Since MergeDTS converges to the Condorcet winner within
10 million steps, we conduct the experiments with 10 million steps and repeat 100 times.
Recall that we conduct the experiments in the MSLR-Navigational setup. The results
are reported in Fig. 2.4. We also report the standard errors in the plots.

The left plot in Fig. 2.4 shows the effect of the exploration parameter α on the
performance of MergeDTS. First, lowering α can significantly increase the performance,
e.g., the cumulative regret for α = 0.84 is about one third of the reward for α =
1.0 (which is close to the theoretically optimal value α = 1.01). Second, as we
decrease α, the number of failures increases, where a failure is an event that MergeDTS
eliminates the Condorcet winner: with α = {0.89, 0.88, 0.87} we observe 10, 4, 1
failures, respectively, and, thus, the cumulative regret increases linearly w.r.t. T . Since

31

2. Effective Large-Scale Online Ranker Evaluation

Figure 2.4: Effect of the parameters α, M , and C on the performance of MergeDTS
in the MSLR-Navigational setup. The results are averaged over 100 independent runs.
The shaded areas are ± standard error.

in practice we do not want to eliminate the best ranker, we choose α = 0.86 ≈ 0.2621
in our experiments.

The middle plot in Fig. 2.4 shows the effect of the batch sizeM . The larger the batch
size, the lower the regret. This can be explained as follows. The DTS-based strategy
uses the full local knowledge in a batch to choose the best ranker. A larger batch size
M provides more knowledge to MergeDTS to make decisions, which leads to a better
choice of rankers. But the time complexity of MergeDTS is O(TM2), i.e., quadratic
in the batch size. Thus, for realistic scenarios we cannot increase M indefinitely. We
choose M = 16 as a tradeoff between effectiveness (cumulative regret) and efficiency
(running time).

The right plot in Fig. 2.4 shows the dependency of MergeDTS on C. Similarly to
the effect of α, lower values of C lead to lower regret, but also to a larger number of
failures. C = 4 000 000 is the lowest value that does not lead to any failures, so we
choose it in our experiments.

In summary, the theoretical constraints on the parameters of MergeDTS are rather
conservative. There is a range of values for the key parameters α, M and C, where the
theoretical guarantees fail to hold, but where MergeDTS performs better than it would
if we were to constrain ourselves only to values permitted by theory.

2.7 Conclusion

In this chapter, we have studied the large-scale online ranker evaluation problem under
the Condorcet assumption, which can be formalized as a K-armed dueling bandit
problem. We have answered RQ1 by introducing a scalable version of the state-
of-the-art Double Thompson Sampling algorithm, which we call MergeDTS. Our
experiments have shown that, by choosing the parameter values outside of the theoretical
regime, MergeDTS is considerably more efficient than DTS in terms of computational
complexity, and that it significantly outperforms the large-scale state-of-the-art algorithm
MergeRUCB. Furthermore, we have demonstrated the robustness of MergeDTS when
dealing with difficult dueling bandit problems containing cycles among the arms. Lastly,
we have shown that the performance of MergeDTS is guaranteed if the parameter values

32

2.7. Conclusion

fall within the theoretical regime.
Several interesting directions for future work arise from this chapter: (1) In our

experiments, we have shown that there is a large gap between theory and practice. It
will be interesting to study this gap and provide a tighter theoretical bound. (2) We
only study dueling bandits in this chapter. We believe that it is interesting to study a
generalization of MergeDTS, as well as the theoretical analysis presented here, to the
case of online ranker evaluation tasks with a multi-dueling setup. (3) Since multi-dueling
bandits also compare multiple rankers at each step based on relative feedback, it is
an interesting direction to compare dueling bandits to multi-dueling bandits in the
large-scale setup. (4) We suspect that the UCB-based elimination utilized in MergeDTS
is too conservative, it might be that more recent minimum empirical divergence based
techniques [62] may be leveraged to speed up the elimination of the rankers. (5) The
feature rankers are chosen as arms in our experiments. A more interesting and realistic
way of choosing arms is to use well trained learning to rank algorithms.

33

3
Safe Online Learning to Re-Rank

In this chapter, we answer the following research question:

RQ2 How to achieve safe online learning to re-rank?

Particularly, we study the problem of safe online learning to re-rank, where user feedback
is used to improve the quality of displayed lists. We propose BubbleRank, a bandit
algorithm for safe re-ranking that combines the strengths of both the offline and online
settings. The algorithm starts with an initial base list and improves it online by gradually
exchanging higher-ranked less attractive items for lower-ranked more attractive items.
We prove an upper bound on the n-step regret of BubbleRank that degrades gracefully
with the quality of the initial base list. Our theoretical findings are supported by
extensive experiments on a large-scale real-world click dataset.

3.1 Introduction

Learning to rank (LTR) is an important problem in many application domains, such as
information retrieval, ad placement, and recommender systems [84]. More generally,
LTR arises in any situation where multiple items, such as web pages, are presented
to users. It is particularly relevant when the diversity of users makes it hard to decide
which item should be presented to a specific user [99, 120].

A traditional approach to LTR is offline learning of rankers from either relevance
labels created by judges [97] or user interactions [54, 87]. Recent experimental re-
sults [131] shows that such rankers, even in a highly-optimized search engine, can be
improved by online LTR with exploration. Exploration is the key component in multi-
armed bandit algorithms [9]. Many such algorithms have been proposed recently for
online LTR in specific user-behavior models [58, 65, 70], the so-called click models [23].
Compared to earlier online LTR algorithms [99], these click model-based algorithms
gain in statistical efficiency while giving up on generality. Empirical results indicate
that click model-based algorithms are likely to be beneficial in practice.

Yet, existing algorithms for online LTR in click models are impractical for at least
three reasons. First, an actual model of user behavior is typically unknown. This
problem was initially addressed by Zoghi et al. [132]. They showed that the list of

This chapter was published as [77].

35

3. Safe Online Learning to Re-Rank

items in the descending order of relevance is optimal in several click models and
proposed BatchRank for learning it. Then Lattimore et al. [72] built upon this work
and proposed TopRank, which is the state-of-the-art online LTR algorithm. Second,
these algorithms lack safety constraints and explore aggressively by placing potentially
irrelevant items at high positions, which may significantly degrade user experience [114].
A third and related problem is that the algorithms are not well suited for so-called warm
start scnearios [113], where the offline-trained production ranker already generates
a good list, which only needs to be safely improved. Warm-starting an online LTR
algorithm is challenging since existing posterior sampling algorithms, such as Thompson
sampling [111], require item-level priors while only list-level priors are available
practically.

We make the following contributions. First, motivated by the exploration scheme
of Radlinski and Joachims [98], we propose a bandit algorithm for online LTR that
addresses all three issues mentioned above. The proposed algorithm gradually im-
proves upon an initial base list by exchanging higher-ranked less attractive items for
lower-ranked more attractive items. The algorithm resembles bubble sort [26], and
therefore we call it BubbleRank. Second, we prove an upper bound on the n-step
regret of BubbleRank. The bound reflects the behavior of BubbleRank: worse initial
base lists lead to a higher regret. Third, we define our safety constraint, which is
based on incorrectly-ordered item pairs in the ranked list, and prove that BubbleRank
never violates this constraint with a high probability. Finally, we evaluate BubbleRank
extensively on a large-scale real-world click dataset.

3.2 Background

This section introduces our online learning problem. We first review click models [23]
and then introduce a stochastic click bandit [132], a learning to rank framework for
multiple click models.

The following notation is used in the rest of the chapter. We denote {1, . . . , n}
by [n]. For any sets A and B, we denote by AB the set of all vectors whose entries
are indexed by B and take values from A. We use boldface letters to denote random
variables.

3.2.1 Click models

A click model is a model of how a user clicks on a list of documents. We refer to
the documents as items and denote the universe of all items by D = [L]. The user is
presented a ranked list, an ordered list of K documents out of L. We denote this list by
R ∈ ΠK(D), where ΠK(D) is the set of all K-tuples with distinct items from D. We
denote byR(k) the item at position k inR; and byR−1(i) the position of item i inR,
if item i is inR.

Many click models are parameterized by item-dependent attraction probabilities
α ∈ [0, 1]L, where α(i) is the attraction probability of item i. We discuss the two most
fundamental click models below.

36

3.2. Background

In the cascade model (CM) [27], the user scans listR from the first itemR(1) to
the last R(K). If item R(k) is attractive, the user clicks on it and does not examine
the remaining items. If item R(k) is not attractive, the user examines item R(k +
1). The first item R(1) is examined with probability one. Therefore, the expected
number of clicks is equal to the probability of clicking on any item, and is r(R) =∑K
k=1 χ(R, k)α(R(k)), where χ(R, k) =

∏k−1
i=1 (1 − α(R(i))) is the examination

probability of position k in listR.
In the position-based model (PBM) [100], the probability of clicking on an item

depends on both its identity and position. Therefore, in addition to item-dependent
attraction probabilities α, the PBM is parameterized by K position-dependent examina-
tion probabilities χ ∈ [0, 1]K , where χ(k) is the examination probability of position
k. The user interacts with listR as follows. The user examines position k ∈ [K] with
probability χ(k) and then clicks on itemR(k) at that position with probability α(R(k)).
Therefore, the expected number of clicks on listR is r(R) =

∑K
k=1 χ(k)α(R(k)).

CM and PBM are similar models, because the probability of clicking factors into
item and position dependent factors. Therefore, both in the CM and PBM, under the
assumption that χ(1) ≥ · · · ≥ χ(K), the expected number of clicks is maximized
by listing the K most attractive items in descending order of their attraction. More
precisely, the most clicked list is

R∗ = (1, . . . ,K) (3.1)

when α(1) ≥ · · · ≥ α(L). Therefore, perhaps not surprisingly, the problem of learning
the optimal list in both models can be viewed as the same problem, a stochastic click
bandit [132].

3.2.2 Stochastic click bandit

An instance of a stochastic click bandit [132] is a tuple (K,L, Pα, Pχ), where K ≤ L
is the number of positions, L is the number of items, Pα is a distribution over binary
attraction vectors {0, 1}L, and Pχ is a distribution over binary examination matrices
{0, 1}ΠK(D)×K .

The learning agent interacts with the stochastic click bandit as follows. At time
t, it chooses a list Rt ∈ ΠK(D), which depends on its history up to time t, and then
observes clicks ct ∈ {0, 1}K on all positions in Rt. A position is clicked if and only
if it is examined and the item at that position is attractive. More specifically, for any
k ∈ [K],

ct(k) = Xt(Rt, k)At(Rt(k)), (3.2)

whereXt ∈ {0, 1}ΠK(D)×K andXt(R, k) is the examination indicator of position k
in listR ∈ ΠK(D) at time t; andAt ∈ {0, 1}L andAt(i) is the attraction indicator of
item i at time t. BothAt andXt are stochastic and drawn i.i.d. from Pα ⊗ Pχ.

The key assumption that allows learning in this model is that the attraction of
any item is independent of the examination of its position. In particular, for any list

37

3. Safe Online Learning to Re-Rank

R ∈ ΠK(D) and position k ∈ [K],

E [ct(k) |Rt = R] = χ(R, k)α(R(k)), (3.3)

where α = E [At] and α(i) is the attraction probability of item i; and χ = E [Xt]
and χ(R, k) is the examination probability of position k in R. Note that the above
independence assumption is in expectation only. We do not require that the clicks are
independent of the position or other displayed items.

The expected reward at time t is the expected number of clicks at time t. Based on
our independence assumption,

∑K
k=1 E [ct(k)] = r(Rt, α, χ), where r(R, A,X) =∑K

k=1X(R, k)A(R(k)) for any R ∈ ΠK(D), A ∈ [0, 1]L, and X ∈ [0, 1]ΠK(D)×K .
The learning agent maximizes the expected number of clicks in n steps. This problem
can be equivalently viewed as minimizing the expected cumulative regret in n steps,
which we define as

R(n)=

n∑
t=1

E
[

max
R∈ΠK(D)

r(R, α, χ)− r(Rt, α, χ)

]
. (3.4)

3.3 Online Learning to Re-Rank

Multi-stage ranking is widely used in production ranking systems [22, 57, 83], with the
re-ranking stage at the very end [22]. In the re-ranking stage, a relatively small number
of items, typically 10–20, are re-ranked. One reason for re-ranking is that offline rankers
are typically trained to minimize the average loss across a large number of queries.
Therefore, they perform well on very frequent queries and poorly on infrequent queries.
On moderately frequent queries, the so-called torso queries, their performance varies.
As torso queries are sufficiently frequent, an online algorithm can be used to re-rank so
as to optimize their value, such as the number of clicks [131].

We propose an online algorithm that addresses the above problem and adaptively
re-ranks a list of items generated by a production ranker with the goal of placing more
attractive items at higher positions. We study a non-contextual variant of the problem,
where we re-rank a small number of items in a single query. Generalization across
queries and items is an interesting direction for future work. We follow the setting in
Section 3.2.2, except thatD = [K]. Despite these simplifying assumptions, our learning
problem remains a challenge. In particular, the attraction of items is only observed
through clicks in Eq. (3.2), which are affected by other items in the list.

3.3.1 Algorithm
Our algorithm is presented in Algorithm 4. The algorithm gradually improves upon

an initial base list R0 by “bubbling up” more attractive items. Therefore, we refer to it
as BubbleRank. BubbleRank determines more attractive items by randomly exchanging
neighboring items. If the lower-ranked item is found to be more attractive, the items
are permanently exchanged and never randomly exchanged again. If the lower-ranked
item is found to be less attractive, the items are never randomly exchanged again. We
describe BubbleRank in detail below.

38

3.3. Online Learning to Re-Rank

Algorithm 4 BubbleRank

Input: Initial listR0 over [K]

1: ∀i, j ∈ [K] : s0(i, j)← 0, n0(i, j)← 0
2: R̄1 ← R0

3: for t = 1, . . . , n do
4: h← t mod 2

5: Rt ← R̄t

6: for k = 1, . . . , b(K − h)/2c do
7: i←Rt(2k − 1 + h), j ←Rt(2k + h)
8: if st−1(i, j) ≤ 2

√
nt−1(i, j) log(1/δ) then

9: Randomly exchange items Rt(2k − 1 + h) and Rt(2k + h) in list Rt

10: Display list Rt and observe clicks ct ∈ {0, 1}K

11: st ← st−1, nt ← nt−1

12: for k = 1, . . . , b(K − h)/2c do
13: i←Rt(2k − 1 + h), j ←Rt(2k + h)
14: if |ct(2k − 1 + h)− ct(2k + h)| = 1 then
15: st(i, j)← st(i, j) + ct(2k − 1 + h)− ct(2k + h)
16: nt(i, j)← nt(i, j) + 1
17: st(j, i)← st(j, i) + ct(2k + h)− ct(2k − 1 + h)
18: nt(j, i)← nt(j, i) + 1

19: R̄t+1 ← R̄t

20: for k = 1, . . . ,K − 1 do
21: i← R̄t+1(k), j ← R̄t+1(k + 1)
22: if st(j, i) > 2

√
nt(j, i) log(1/δ) then

23: Exchange items R̄t+1(k) and R̄t+1(k + 1) in list R̄t+1

BubbleRank maintains a base list R̄t at each time t. From the viewpoint of
BubbleRank, this is the best list at time t. The list is initialized by the initial base
listR0 (line 2). At time t, BubbleRank permutes R̄t into a displayed list Rt (lines 5–
9). Two kinds of permutations are employed. If t is odd and so h = 0, the items at
positions 1 and 2, 3 and 4, and so on, are randomly exchanged. If t is even and so
h = 1, the items at positions 2 and 3, 4 and 5, and so on are randomly exchanged. The
items are exchanged only if BubbleRank is uncertain regarding which item is more
attractive (line 8).

The list Rt is displayed and BubbleRank gets feedback (line 10). Then it updates
its statistics (lines 11–18). For any exchanged items i and j, if item i is clicked and
item j is not, the belief that i is more attractive than j, st(i, j), increases; and the
belief that j is more attractive than i, st(j, i), decreases. The number of observations,
nt(i, j) and nt(j, i), increases. These statistics are updated only if one of the items is
clicked (line 14), not both.

At the end of time t, the base list R̄t is improved (lines 19–23). More specifically,
if any lower-ranked item j is found to be more attractive than its higher-ranked neighbor

39

3. Safe Online Learning to Re-Rank

i (line 22), the items are permanently exchanged in the next base list R̄t+1.
A notable property of BubbleRank is that it explores safely, since any item in the

displayed list Rt is at most one position away from its position in the base list R̄t.
Moreover, any base list improves upon the initial base list R0, because it is obtained
by bubbling up more attractive items with a high confidence. We make this notion of
safety more precise in Section 3.4.2.

3.4 Theoretical Analysis

In this section, we provide theoretical guarantees on the performance of BubbleRank,
by bounding the n-step regret in Eq. (3.4).

The content is organized as follows. In Section 3.4.1, we present our upper bound
on the n-step regret of BubbleRank, together with our assumptions. In Section 3.4.2,
we prove that BubbleRank is safe. In Section 3.4.3, we discuss our theoretical results.
The regret bound is proved in Section 3.4.4. Our technical lemmas are stated and proved
in Section 3.7.

3.4.1 Regret bound

Before we present our result, we introduce our assumptions1 and complexity metrics.

Assumption 3.1. For any lists R,R′ ∈ ΠK(D) and positions k, ` ∈ [K] such that
k < `:

A1. r(R, α, χ) ≤ r(R∗, α, χ), whereR∗ is defined in Eq. (3.1);

A2. {R(1), . . . ,R(k − 1)} = {R′(1), . . . ,R′(k − 1)} =⇒ χ(R, k) = χ(R′, k);

A3. χ(R, k) ≥ χ(R, `);

A4. IfR andR′ differ only in that the items at positions k and ` are exchanged, then
α(R(k)) ≤ α(R(`)) ⇐⇒ χ(R, `) ≥ χ(R′, `); and

A5. χ(R, k) ≥ χ(R∗, k).

The above assumptions hold in the CM. In the PBM, they hold when the examination
probability decreases with the position.

Our assumptions can be interpreted as follows. Assumption A1 says that the list
of items in the descending order of attraction probabilities is optimal. Assumption A2
says that the examination probability of any position depends only on the identities of
higher-ranked items. Assumption A3 says that a higher position is at least as examined
as a lower position. Assumption A4 says that a higher-ranked item is less attractive if
and only if it increases the examination of a lower position. Assumption A5 says that
any position is examined the least in the optimal list.

1Our assumptions are slightly weaker than those of Zoghi et al. [132]. For instance, Assumption A2 is on
the probability of examination. Zoghi et al. [132] make this assumption on the realization of examination.

40

3.4. Theoretical Analysis

To simplify our exposition, we assume that α(1) > · · · > α(K) > 0. Let χmax =
χ(R∗, 1) denote the maximum examination probability, χmin = χ(R∗,K) denote the
minimum examination probability, and

∆min = min
k∈[K−1]

α(k)− α(k + 1)

be the minimum gap. Then the n-step regret of BubbleRank can be bounded as follows.

Theorem 3.1. In any stochastic click bandit that satisfies Assumption 3.1, and for any
δ ∈ (0, 1), the expected n-step regret of BubbleRank is bounded as

R(n) ≤ 180K
χmax

χmin

K − 1 + 2 |V0|
∆min

log(1/δ) + δ
1
2K3n2 .

3.4.2 Safety
Let

V(R)=
{

(i, j) ∈ [K]2 : i < j,R−1(i) > R−1(j)
}

(3.5)

be the set of incorrectly-ordered item pairs in listR. Then our algorithm is safe in the
following sense.

Lemma 3.1. Let

V0 = V(R0) (3.6)

be the incorrectly-ordered item pairs in the initial base list R0. Then the number of
incorrectly-ordered item pairs in any displayed list Rt is at most |V0|+K/2, that is
|V(Rt)| ≤ |V0|+K/2 holds uniformly over time with probability of at least 1−δ 1

2K2n.

Proof. Our claim follows from two observations. First, by the design of BubbleRank,
any displayed list Rt contains at most K/2 item pairs that are ordered differently from
its base list R̄t. Second, no base list R̄t contains more incorrectly-ordered item pairs
thanR0 with a high probability. In particular, under event E in Lemma 3.8, any change
in the base list (line 23 of BubbleRank) reduces the number of incorrectly-order item
pairs by one. In Lemma 3.8, we prove that P(E) ≥ 1− δ 1

2K2n.

3.4.3 Discussion

Our upper bound on the n-step regret of BubbleRank (Theorem 3.1) is O(∆−1
min log n)

for δ = n−4. This dependence is considered to be optimal in gap-dependent bounds.
Our gap ∆min is the minimum difference in the attraction probabilities of items, and
reflects the hardness of sorting the items by their attraction probabilities. This sorting
problem is equivalent to the problem of learningR∗. So, a gap like ∆min is expected,
and is the same as that in [132].

Our regret bound is notable because it reflects two key characteristics of BubbleRank.
First, the bound is linear in the number of incorrectly-ordered item pairs in the initial

41

3. Safe Online Learning to Re-Rank

base listR0. This suggests that BubbleRank should have lower regret when initialized
with a better list of items. We validate this dependence empirically in Section 3.5. In
many domains, such lists exist and are produced by existing ranking policies. They only
need to be safely improved.

Second, the bound is O(χmaxχ
−1
min), where χmax and χmin are the maximum and

minimum examination probabilities, respectively. In Section 3.5.4, we show that this
dependence can be observed in problems where most attractive items are placed at
infrequently examined positions. This limitation is intrinsic to BubbleRank, because
attractive lower-ranked items cannot be placed at higher positions unless they are
observed to be attractive at lower, potentially infrequently examined, positions.

The safety constraint of BubbleRank is stated in Lemma 3.1. For δ = n−4, as
discussed above, BubbleRank becomes a rather safe algorithm, and is unlikely to
display any list with more than K/2 incorrectly-ordered item pairs than the initial
base listR0. More precisely, |V(Rt)| ≤ |V0|+K/2 holds uniformly over time with
probability of at least 1−K2/n. This safety feature of BubbleRank is confirmed by
our experiments in Section 3.5.3.

The above discussion assumes that the time horizon n is known. However, in
practice, this is not always possible. We can extend BubbleRank to the setting of an
unknown time horizon by using the so-called doubling trick [18, Section 2.3]. Let n be
the estimated horizon. Then at time n + 1, R̄n+1 is set to R0 and n is doubled. The
statistics do not need to be reset.

BubbleRank is computationally efficient. The time complexity of BubbleRank is
linear in the number of time steps and in each step O(K) operations are required.

In this chapter, we focus on re-ranking. But BubbleRank can be extended to the
full ranking problem as follows. Define st(i, j) and nt(i, j) for all item pairs (i, j). For
even (odd) K at odd (even) time steps, select a random item below position K that has
not been shown to be worse than the item at position K, and swap these items with
probability 0.5. The item that is not displayed gets feedback 0. The rest of BubbleRank
remains the same. This algorithm can be analyzed in the same way as BubbleRank.

3.4.4 Proof of Theorem 3.1
In Lemma 3.8, we establish that there exists a favorable event E that holds with proba-
bility 1− δ 1

2K2n, when all beliefs st(i, j) are at most 2
√
nt(i, j) log(1/δ) from their

respective means, uniformly for i < j and t ∈ [n]. Since the maximum n-step regret is
Kn, we get that

R(n) ≤ E
[
R̂(n)IE

]
+ δ

1
2K3n2 ,

where R̂(n) =
∑n
t=1 r(R∗, α, χ)− r(Rt, α, χ). We bound R̂(n) next. For this, let

Pt =
{

(i, j) ∈ [K]2 : i < j,
∣∣∣R̄−1

t (i)− R̄−1
t (j)

∣∣∣ = 1

st−1(i, j) ≤ 2
√
nt−1(i, j) log(1/δ)

}
be the set of potentially randomized item pairs at time t. Then, by Lemma 3.4 on event
E , which bounds the regret of list Rt with the difference in the attraction probabilities

42

3.5. Experimental Results

of items (i, j) ∈ Pt, we have that

R̂(n) ≤ 3Kχmax

K∑
i=1

K∑
j=i+1

n∑
t=1

(α(i)− α(j))I(i, j) ∈ Pt.

Now note that for any randomized (i, j) ∈ Pt at time t,

χmin(α(i)− α(j)) ≤ Et−1

[
ct(R−1

t (i))− ct(R−1
t (j))

]
= Et−1 [st(i, j)− st−1(i, j)] ,

where Et−1 [·] is the expectation conditioned on the history up to time t,
R1, c1, . . . ,Rt−1, ct−1. The inequality is fromα(i) ≥ α(j), and Assumptions Item A2
and Item A4. The above two inequalities yield

R̂(n) ≤ 6K
χmax

χmin

K∑
i=1

K∑
j=i+1

n∑
t=1

Et−1 [st(i, j)− st−1(i, j)] I(i, j) ∈ Pt

≤ 6K
χmax

χmin

K∑
i=1

K∑
j=i+1

I∃t ∈ [n] : (i, j) ∈ Pt×

n∑
t=1

Et−1 [st(i, j)− st−1(i, j)] ,

where the extra factor of two is because BubbleRank randomizes any pair of items
(i, j) ∈ Pt at least once in any two consecutive steps. Moreover, for any i < j on event
E ,

n∑
t=1

(st(i, j)− st−1(i, j)) = sn(i, j) ≤ 15
α(i) + α(j)

α(i)− α(j)
log(1/δ) ≤ 30

∆min
log(1/δ).

The first inequality is by Lemma 3.6, which establishes that the maximum difference in
clicks of any randomized pair of items is bounded. After that, the better item is found and
the pair of items is never randomized again. The last inequality is by α(i) + α(j) ≤ 2
and α(i)− α(j) ≥ ∆min. Now we chain the above two inequalities and get that

R̂(n) ≤ 180K
χmax

χmin

1

∆min
log(1/δ)×

K∑
i=1

K∑
j=i+1

I∃t ∈ [n] : (i, j) ∈ Pt.

Finally, let P =
⋃
t∈[n] Pt. Then, on event E , |P | ≤ K − 1 + 2 |V0|. This follows

from the design of BubbleRank (Lemma 3.5) and completes the proof.

3.5 Experimental Results

We conduct four experiments to evaluate BubbleRank. In Section 3.5.1, we describe
our experimental setup. In Section 3.5.2, we report the regret of compared algorithms,

43

3. Safe Online Learning to Re-Rank

which measures the rate of convergence to the optimal list in hindsight. In Section 3.5.3,
we validate the safety of BubbleRank. In Section 3.5.4, we validate the tightness of
the regret bound in Theorem 3.1. Due to space limitations, we report the Normalized
Discounted Cumulative Gain (NDCG) of compared algorithms, which measures the
quality of displayed lists, in Section 3.5.5.

Figure 3.1: The n-step regret of BubbleRank (red), CascadeKL-UCB (green),
BatchRank (blue), TopRank (orange), and Baseline (grey) in the CM, DCM, and
PBM in up to 5 million steps. Lower is better. The results are averaged over all 100
queries and 10 runs per query. The shaded regions represent standard errors of our
estimates.

Figure 3.2: The n-step violation of the safety constraint of BubbleRank by
CascadeKL-UCB (green), BatchRank (blue), and TopRank (orange) in the CM, DCM,
and PBM in up to 5 million steps. Lower is better. The shaded regions represent
standard errors of our estimates.

3.5.1 Experimental setup

We evaluate BubbleRank on the Yandex click dataset.2 The dataset contains user search
sessions from the log of the Yandex search engine. It is the largest publicly available
dataset containing user clicks, with more than 30 million search sessions. Each session
contains at least one search query together with 10 ranked items.

2https://academy.yandex.ru/events/data_analysis/relpred2011

44

https://academy.yandex.ru/events/data_analysis/relpred2011

3.5. Experimental Results

We preprocess the dataset as in [132]. In particular, we randomly select 100 frequent
search queries, and then learn the parameters of three click models using the PyClick3

package: CM and PBM, described in Section 3.2.1, as well as the dependent click model
(DCM) [36].

The DCM is an extension of the CM [27] where each position k is associated with an
abandonment probability v(k). When the user clicks on an item at position k, the user
stops scanning the list with probability v(k). Therefore, the DCM can model multiple
clicks. Following the work in [58], we incorporate abandonment into our definition of
reward for DCM and define it as the number of abandonment clicks. The abandonment
click is a click after which a user stops browsing the list, and each time step contains at
most one abandonment click. So, the expected reward for DCM equals the probability
of abandonment clicks, which is computed as follows:

r(R, α, χ) =

K∑
k=1

χ(R, k)v(k)α(R(k)),

χ(R, k) =

k−1∏
i=1

(1− v(i))α(R(i))

is the examination probability of position k in listR. A high reward means a user stops
the search session because of clicking on an item with high attraction probability.

The learned CM, DCM, and PBM are used to simulate user click feedback. We
experiment with multiple click models to show the robustness of BubbleRank to multiple
models of user feedback.

For each query, we choose 10 items. The number of positions is equal to the number
of items, K = L = 10. The objective of our re-ranking problem is to place 5 most
attractive items in descending order of attractiveness at the 5 highest positions, as in
[132]. The performance of BubbleRank and our baselines is also measured only at the
top 5 positions.

BubbleRank is compared to three baselines Cascade- KL-UCB [65], BatchRank [132],
and TopRank [72]. The former is near optimal in the CM [65], but can have linear regret
in other click models. Note that linear regret arises when CascadeKL-UCB erroneously
converges to a suboptimal ranked list. BatchRank and TopRank can learn the optimal
listR∗ in a wide range of click models, including the CM, DCM, and PBM. However,
they can perform poorly in early stages of learning because they randomly shuffles
displayed lists to average out the position bias. All experiments are run for 5 million
steps, after which at least two algorithms converge to the optimal ranked list.

In the Yandex dataset, each query is associated with many different ranked lists, due
to the presence of various personalization features of the production ranker. We take
the most frequent ranked list for each query as the initial base listR0 in BubbleRank,
since we assume that the most frequent ranked list is what the production ranker would
produce in the absence of any personalization. We also compare BubbleRank to a
production baseline, called Baseline, where the initial listR0 is applied for n steps.

3https://github.com/markovi/PyClick

45

https://github.com/markovi/PyClick

3. Safe Online Learning to Re-Rank

3.5.2 Results with regret
In the first experiment, we compare BubbleRank to CascadeKL-UCB, BatchRank, and
TopRank in the CM, DCM, and PBM of all 100 queries. Among them, TopRank
is the state-of-the-art online LTR algorithm in multiple click models. We evaluate
these algorithms by their cumulative regret, which is defined in Eq. (3.4), at the top 5
positions. The regret, a measure of convergence, is a widely-used metric in the bandit
literature [9, 58, 65, 132]. In the CM and PBM, the regret is the cumulative loss in
clicks when a sequence of learned lists is compared to the optimal list in hindsight. In
the DCM, the regret is the cumulative loss in abandonment clicks. We also report the
regret of Baseline.

Our results are reported in Fig. 3.1. We observe that the regret of Baseline grows
linearly with time n, which means that it is not optimal on average. CascadeKL-UCB
learns R∗ quickly in both the CM and DCM, but has linear regret in the PBM. This
is expected since CascadeKL-UCB is designed for the CM, and the DCM is an ex-
tension of the CM. As for the PBM, which is beyond the modeling assumptions
of CascadeKL-UCB, there is no guarantee on the performance of CascadeKL-UCB.
BubbleRank, BatchRank, and TopRank can learn in all three click models. Compared
to BatchRank and TopRank, BubbleRank has a higher regret in 5 million steps. How-
ever, in earlier steps, BubbleRank has a lower regret than BatchRank and TopRank,
as it takes advantage of the initial base list R0. In general, these results show that
BubbleRank converges to the optimal list slower than BatchRank and TopRank. This
is expected because BubbleRank is designed to be a safe algorithm, and only learns
better lists by exchanging neighboring items in the base list.

3.5.3 Safety results
In the previous experiment, BubbleRank does not learn as fast as CascadeKL-UCB,
BatchRank, and TopRank, because of the additional safety constraint in Lemma 3.1.
The constraint is that BubbleRank is unlikely to display any list with more than K/2
incorrectly-ordered item pairs than the initial base listR0. More precisely, |V(Rt)| ≤
|V(R0)| + K/2 holds uniformly over time with probability of at least 1 −K2/n for
δ = n−4 (Section 3.4.3), where V is defined in Eq. (3.5). In the second experiment,
we answer the question how often do BubbleRank, CascadeKL-UCB, BatchRank, and
TopRank violate this constraint empirically. We define the safety constraint violation in
n steps as

V (n) =

n∑
t=1

I|V(Rt)| > |V(R0)|+K/2, (3.7)

where Rt is the displayed list at time t.
We report the n-step safety constraint violation of CascadeKL-UCB, BatchRank,

and TopRank in Fig. 3.2. We do not include results of BubbleRank since BubbleRank
never violates the constraint in our experiments. We observe that the safety constraint
violations of CascadeKL-UCB in the first 100 steps are 24.12 ± 0.76, 23.33 ± 0.90,
and 23.63± 0.96 in the CM, DCM, and PBM, respectively. Translating this to a search
scenario, CascadeKL-UCB may show unsafe results, which are significantly worse than

46

3.5. Experimental Results

Figure 3.3: Regret of BubbleRank as a function of the number of incorrectly-ordered
item pairs |V0|, and the minimal examination probability χmin. In the bottom-right
plot, the purple, red, green, orange, and blue colors represent χmin equals 0.5, 0.52,
0.53, 0.54, and 0.55, respectively. The shaded regions represent standard errors of our
estimates.

the initial base listR0, and may hurt user experience, more than 20% of search sessions
in the first 100 steps. Even worse, the violations of CascadeKL-UCB grow linearly
with time in the PBM. The safety issues of BatchRank, and TopRank are more severe
than that of CascadeKL-UCB. More precisely, the violations of BatchRank in the first
100 steps are 83.01 ± 0.56, 71.89 ± 0.92, and 59.63 ± 0.98 in the CM, DCM, and
PBM, respectively. And the violations of TopRank are 83.56± 0.70, 71.47± 1.07, and
57.00± 1.24 in the CM, DCM, and PBM, respectively. Note that the performance of
TopRank is close to that of BatchRank in the first 100 steps since they both require the
ranked lists to be randomly shuffled during the initial stages. Thus, BatchRank, and
TopRank would frequently hurt the user experience during the early stages of learning.

To conclude, BubbleRank learns without violating its safety constraint, while
CascadeKL-UCB, BatchRank, and TopRank violate the constraint frequently. Together
with results in Section 3.5.2, BubbleRank is a safe algorithm but, to satisfy the safety
constraint, it compromises the performance and learns slower than BatchRank and
TopRank. In Section 3.5.5, we compare BubbleRank to baselines in NDCG and show
that BubbleRank converges to the optimal lists in hindsight.

3.5.4 Sanity check on regret bound
We prove an upper bound on the n-step regret of BubbleRank in Theorem 3.1. In
comparison to the upper bounds of CascadeKL-UCB [65] and BatchRank [132], we
have two new problem-specific constants: |V0| and 1/χmin. In this section, we show
that these constants are intrinsic to the behavior of BubbleRank.

47

3. Safe Online Learning to Re-Rank

We first study how the number of incorrectly-ordered item pairs in the initial base
listR0, |V0|, impacts the regret of BubbleRank. We choose 10 random initial base lists
V0 in each of our 100 queries and plot the regret of BubbleRank as a function of |V0|.
Our results are shown in Fig. 3.3. We observe that the regret of BubbleRank is linear in
|V0| in the CM, DCM, and PBM. This is the same dependence as in our regret bound
(Theorem 3.1).

We then study the impact of the minimum examination probability χmin on the
regret of BubbleRank. We experiment with a synthetic PBM with 10 items, which is
parameterized by α = (0.9, 0.5, . . . , 0.5) and χ = (0.9, . . . , 0.9, 0.5i, 0.5i) for i ≥ 1.
The most attractive item is placed at the last position in R0, R0 = (2, . . . ,K − 1, 1).
Since this position is examined with probability 0.5i, we expect the regret to double
when i increases by one. We experiment with i ∈ [5] in Fig. 3.3 and observe this trend
in 1 million steps. This confirms that the dependence on 1/χmin in Theorem 3.1 is
generally unavoidable.

3.5.5 Results with NDCG

In this section, we report the NDCG of compared algorithms, which measures the
quality of displayed lists. Since CascadeKL-UCB fails in the PBM and we focus on
learning from all types of click feedback, we leave out CascadeKL-UCB from this
section.

In the first two experiments, we evaluate algorithms by their regret in Eq. (3.4)
and safety constraint violation in Eq. (3.7). Neither of these metrics measure the
quality of ranked lists directly. In this experiment, we report the per-step NDCG@5 of
BubbleRank, BatchRank, TopRank, and Baseline (Fig. 3.4), which directly measures
the quality of ranked lists and is widely used in the LTR literature [6, 52]. Since the
Yandex dataset does not contain relevance scores for all query-item pairs, we take the
attraction probability of the item in its learned click model as a proxy to its relevance
score. This substitution is natural since our goal is to rank items in descending order of
their attraction probabilities [23]. We compute the NDCG@5 of a ranked listR as

NDCG@5(R) =
DCG@5(R)

DCG@5(R∗)
, DCG@5(R) =

5∑
k=1

α(R(k))

log2(k + 1)
,

where R∗ is the optimal list and α(R(k) is the attraction probability of the k-th item
in listR. This is a standard evaluation metric, and is used in TREC evaluation bench-
marks [6], for instance. It measures the discounted gain over the attraction probabilities
of the 5 highest ranked items in listR, which is normalized by the DCG@5 ofR∗.

In Fig. 3.4, we observe that Baseline has good NDCG@5 scores in all click models.
Yet there is still room for improvement. BubbleRank, BatchRank, and TopRank have
similar NDCG@5 scores after 5 million steps. But BubbleRank starts with NDCG@5
close to that of Baseline, while BatchRank and TopRank start with lists with very
low NDCG@5.

These results validate our earlier findings. As in Section 3.5.2, we observe that
BubbleRank converges to the optimal list in hindsight, since its NDCG@5 approaches

48

3.6. Related Work

1. As in Section 3.5.3, we observe that BubbleRank is safe, since its NDCG@5 is never
much worse than that of Baseline.

Figure 3.4: The per-step NDCG@5 of BubbleRank (red), BatchRank (blue), TopRank
(orange), and Baseline (grey) in the CM, DCM, and PBM in up to 5 million steps.
Higher is better. The shaded regions represent standard errors of our estimates.

3.6 Related Work

Online LTR via click feedback has been mainly studied in two approaches: under
specific click models [25, 58, 65, 66, 70, 133]; or without a particular assumption on
click models [72, 99, 107, 132]. Algorithms from the first group efficiently learn optimal
rankings in the their considered click models but do not have guarantees beyond their
specific click models. Algorithms from the second group, on the other hand, learn the
optimal rankings in a broader class of click models. TopRank [72] is the state-of-the-art
of the second group, which has the regret of O(K2 log(n)) in our re-ranking setup, that
is L = K. BubbleRank also belongs to the second group and the regret of BubbleRank
is comparable to that of TopRank given a good initial list, when |V0| = O(K). However,
unlike BubbleRank, TopRank and all the previous algorithms do not consider safety.
They explore aggressively in the initial steps and may display irrelevant items at high
positions, which may then hurt user experiences [114].

Our safety problem is related to the warm start problem [108]. Contextual bandits [2,
80, 89] deal with a broader class of models than we do and are used to address the
warm start problem. But they are limited to small action sets, and thus unsuitable for
the ranking setup that we consider in this chapter.

The warm start LTR has been studied in multiple papers [42, 113, 118], where
the goal is to use an online algorithm to fine tune the results generated by an offline-
trained ranker. In these papers, different methods for learning prior distributions of
Thompson sampling based online LTR algorithms from offline datasets have been
proposed. However, these methods have the following drawbacks. First, the offline
data may not well align with user preferences [131], which may result in a biased
prior assumption. Second, grid search with online A/B tests may alleviate this and find
a proper prior assumption [113], but the online A/B test requires additional costs in
terms of user experience. Third, there is no safety constraint in these methods. Even
with carefully picked priors, they may recommend irrelevant items to users, e.g., new

49

3. Safe Online Learning to Re-Rank

items with little prior knowledge. In contrast, BubbleRank starts from the production
ranked list and learns under the safety constraint. Thus, BubbleRank gets rid of these
drawbacks.

Another related line of work are conservative bandits [59, 117]. In conservative
bandits, the learned policy is safe in the sense that its expected cumulative reward is at
least 1− α fraction of that of the baseline policy with high probability. This notion of
safety is less stringent than that in our work (Section 3.4.2). In particular, our notion
of safety is per-step, in the sense that any displayed list is only slightly worse than the
initial base list with a high probability. We do not compare to conservative bandits in
our experiments because existing algorithms for conservative bandits require the action
space to be small. The actions in our problem are ranked lists, and their number is
exponential in K.

3.7 Lemmas

Lemma 3.2. LetR be any list over [K]. Let

∆(R) =

K−1∑
k=1

Iα(R(k + 1))− α(R(k)) > 0× (α(R(k + 1))− α(R(k))) (3.8)

be the attraction gap of listR. Then the expected regret ofR is bounded as

K∑
k=1

(χ(R∗, k)α(k)− χ(R, k)α(R(k))) ≤ Kχmax∆(R) .

Proof. Fix position k ∈ [K]. Then

χ(R∗, k)α(k)− χ(R, k)α(R(k)) ≤ χ(R∗, k)(α(k)− α(R(k)))

≤ χmax(α(k)− α(R(k))) ,

where the first inequality follows from the fact that the examination probability of any
position is the lowest in the optimal list (Assumption A5) and the second inequality
follows from the definition of χmax. In the rest of the proof, we bound α(k)−α(R(k)).
We consider three cases. First, let α(R(k)) ≥ α(k). Then α(k) − α(R(k)) ≤ 0 and
can be trivially bounded by ∆(R). Second, let α(R(k)) < α(k) and π(k) > k, where
π(k) is the position of item k in listR. Then

α(k)− α(R(k)) = α(R(π(k)))− α(R(k))

≤
π(k)−1∑
i=k

Iα(R(i+ 1))− α(R(i)) > 0α(R(i+ 1))− α(R(i))).

From the definition of ∆(R), this quantity is bounded from above by ∆(R). Finally,
let α(R(k)) < α(k) and π(k) < k. This implies that there exists an item at a lower

50

3.7. Lemmas

position than k, j > k, such that α(R(j)) ≥ α(k). Then

α(k)− α(R(k)) ≤ α(R(j))− α(R(k))

≤
j−1∑
i=k

Iα(R(i+ 1))− α(R(i)) > 0(α(R(i+ 1))− α(R(i))) .

From the definition of ∆(R), this quantity is bounded from above by ∆(R). This
concludes the proof.

Lemma 3.3. Let

Pt ={
(i, j) ∈ [K]2 : i < j,

∣∣∣R̄−1
t (i)− R̄−1

t (j)
∣∣∣ = 1, st−1(i, j) ≤ 2

√
nt−1(i, j) log(1/δ)

}
be the set of potentially randomized item pairs at time t and ∆t = maxRt ∆(Rt) be
the maximum attraction gap of any list Rt, where ∆(Rt) is defined in Eq. (3.8). Then
on event E in Lemma 3.8,

∆t ≤ 3

K∑
i=1

K∑
j=i+1

I(i, j) ∈ Pt(α(i)− α(j))

holds at any time t ∈ [n].

Proof. Fix list Rt and position k ∈ [K − 1]. Let i′, i, j, j′ be items at positions
k − 1, k, k + 1, k + 2 in R̄t. If k = 1, let i′ = i; and if k = K − 1, let j′ = j. We
consider two cases.

First, suppose that the permutation at time t is such that i and j could be exchanged.
Then

α(R−1
t (k + 1))− α(R−1

t (k))

≤ I(min {i, j} ,max {i, j}) ∈ Pt(α(min {i, j})− α(max {i, j}))

holds on event E by the design of BubbleRank. More specifically, (min {i, j} ,max {i, j}) /∈
Pt implies that α(R−1

t (k + 1))− α(R−1
t (k)) ≤ 0.

Second, suppose that the permutation at time t is such that i and i′ could be
exchanged, j and j′ could be exchanged, or both. Then

α(R−1
t (k + 1))− α(R−1

t (k)) ≤
I(min {i, i′} ,max {i, i′}) ∈ Pt(α(min {i, i′})− α(max {i, i′})) +

α(j)− α(i) +

I(min {j, j′} ,max {j, j′}) ∈ Pt(α(min {j, j′})− α(max {j, j′}))

holds by the same argument as in the first case. Also note that

α(j)− α(i) ≤ I(min {i, j} ,max {i, j}) ∈ Pt(α(min {i, j})− α(max {i, j}))

51

3. Safe Online Learning to Re-Rank

holds on event E by the design of BubbleRank. Therefore, for any position k ∈ [K − 1]
in both above cases,

α(R−1
t (k + 1))− α(R−1

t (k)) ≤
k+1∑
`=k−1

I
(

min
{
R̄−1
t (`), R̄−1

t (`+ 1)
}
,max

{
R̄−1
t (`), R̄−1

t (`+ 1)
})
∈ Pt×(

α
(

min
{
R̄−1
t (`), R̄−1

t (`+ 1)
})
− α

(
max

{
R̄−1
t (`), R̄−1

t (`+ 1)
}))

.

Now we sum over all positions and note that each pair of R̄−1
t (`) and R̄−1

t (` + 1)
appears on the right-hand side at most three times, in any list Rt. This concludes our
proof.

Lemma 3.4. Let Pt be defined as in Lemma 3.3. Then on event E in Lemma 3.8,

K∑
k=1

(χ(R∗, k)α(k)− χ(Rt, k)α(Rt(k)))

≤ 3Kχmax

K∑
i=1

K∑
j=i+1

I(i, j) ∈ Pt(α(i)− α(j))

holds at any time t ∈ [n].

Proof. A direct consequence of Lemmas 3.2 and 3.3.

Lemma 3.5. Let Pt be defined as in Lemma 3.3, P =
⋃n
t=1 Pt, and V0 be defined as

in Eq. (3.6). Then on event E in Lemma 3.8,

|P | ≤ K − 1 + 2 |V0| .

Proof. From the design of BubbleRank, |P1| = K − 1. The set of randomized item
pairs grows only if the base list in BubbleRank changes. When this happens, the number
of incorrectly-ordered item pairs decreases by one, on event E , and the set of randomized
item pairs increases by at most two pairs. This event occurs at most |V0| times. This
concludes our proof.

Lemma 3.6. For any items i and j such that i < j,

sn(i, j) ≤ 15
α(i) + α(j)

α(i)− α(j)
log(1/δ)

on event E in Lemma 3.8.

Proof. To simplify notation, let st = st(i, j) and nt = nt(i, j). The proof has two
parts. First, suppose that st ≤ 2

√
nt log(1/δ) holds at all times t ∈ [n]. Then from

this assumption and on event E in Lemma 3.8,

α(i)− α(j)

α(i) + α(j)
nt − 2

√
nt log(1/δ) ≤ st ≤ 2

√
nt log(1/δ) .

52

3.7. Lemmas

This implies that

nt ≤
[
4
α(i) + α(j)

α(i)− α(j)

]2

log(1/δ)

at any time t, and in turn that

st ≤ 2
√
nt log(1/δ) ≤ 8

α(i) + α(j)

α(i)− α(j)
log(1/δ)

at any time t. Our claim follows from setting t = n.
Now suppose that st ≤ 2

√
nt log(1/δ) does not hold at all times t ∈ [n]. Let τ be

the first time when sτ > 2
√
nτ log(1/δ). Then from the definition of τ and on event E

in Lemma 3.8,

α(i)− α(j)

α(i) + α(j)
nτ − 2

√
nτ log(1/δ) ≤ sτ ≤ sτ−1 + 1

≤ 2
√
nτ log(1/δ) + 1

≤ 3
√
nτ log(1/δ) ,

where the last inequality holds for any δ ≤ 1/e. This implies that

nτ ≤
[
5
α(i) + α(j)

α(i)− α(j)

]2

log(1/δ) ,

and in turn that

sτ ≤ 3
√
nτ log(1/δ) ≤ 15

α(i) + α(j)

α(i)− α(j)
log(1/δ) .

Now note that st = sτ for any t > τ , from the design of BubbleRank. This concludes
our proof.

For some Ft = σ(R1, c1, . . . ,Rt, ct)-measurable event A, let Pt(A) = P(A | Ft)
be the conditional probability of A given history R1, c1, . . . ,Rt, ct. Let the corre-
sponding conditional expectation operator be Et [·]. Note that R̄t is Ft−1-measurable.

Lemma 3.7. Let i, j ∈ [K] be any items at consecutive positions in R̄t and

z = ct(R−1
t (i))− ct(R−1

t (j)) .

Then, on the event that i and j are subject to randomization at time t,

Et−1 [z | z 6= 0] ≥ α(i)− α(j)

α(i) + α(j)

when α(i) > α(j), and Et−1 [−z | z 6= 0] ≤ 0 when α(i) < α(j).

53

3. Safe Online Learning to Re-Rank

Proof. The first claim is proved as follows. From the definition of expectation and
z ∈ {−1, 0, 1},

Et−1 [z | z 6= 0] =
Pt−1(z = 1, z 6= 0)− Pt−1(z = −1, z 6= 0)

Pt−1(z 6= 0)

=
Pt−1(z = 1)− Pt−1(z = −1)

Pt−1(z 6= 0)

=
Et−1 [z]

Pt−1(z 6= 0)
,

where the last equality is a consequence of z = 1 =⇒ z 6= 0 and that z = −1 =⇒
z 6= 0.

Let χi = Et−1

[
χ(Rt,R−1

t (i))
]

and χj = Et−1

[
χ(Rt,R−1

t (j))
]

denote the
average examination probabilities of the positions with items i and j, respectively, in
Rt; and consider the event that i and j are subject to randomization at time t. By
Assumption A2, the values of χi and χj do not depend on the randomization of other
parts of R̄t, only on the positions of i and j. Then χi ≥ χj ; from α(i) > α(j) and
Assumption A4. Based on this fact, Et−1 [z] is bounded from below as

Et−1 [z] = χiα(i)− χjα(j) ≥ χi(α(i)− α(j)) ,

where the inequality is from χi ≥ χj . Moreover, Pt−1(z 6= 0) is bounded from above
as

Pt−1(z 6= 0) = Pt−1(z = 1) + Pt−1(z = −1)

≤ χiα(i) + χjα(j)

≤ χi(α(i) + α(j)) ,

where the first inequality is from inequalities Pt−1(z = 1) ≤ χiα(i) and Pt−1(z =
−1) ≤ χjα(j), and the last inequality is from χi ≥ χj .

Finally, we chain all above inequalities and get our first claim. The second claim
follows from the observation that Et−1 [−z | z 6= 0] = −Et−1 [z | z 6= 0].

Lemma 3.8. Let S1 =
{

(i, j) ∈ [K]2 : i < j
}

and S2 =
{

(i, j) ∈ [K]2 : i > j
}

. Let

Et,1 =
{
∀(i, j) ∈ S1 :

α(i)− α(j)

α(i) + α(j)
nt(i, j)− 2

√
nt(i, j) log(1/δ) ≤ st(i, j)

}
,

Et,2 =
{
∀(i, j) ∈ S2 : st(i, j) ≤ 2

√
nt(i, j) log(1/δ)

}
.

Let E =
⋂
t∈[n](Et,1 ∩ Et,2) and E be the complement of E . Then P(E) ≤ δ 1

2K2n.

Proof. First, we bound P(Et,1). Fix (i, j) ∈ S1, t ∈ [n], and (n`(i, j))
t
`=1. Let τ(m) be

the time of observing item pair (i, j) for them-th time, τ(m) = min {` ∈ [t] : n`(i, j) = m}
for m ∈ [nt(i, j)]. Let z` = c`(R−1

` (i))− c`(R−1
` (j)). Since (n`(i, j))

t
`=1 is fixed,

note that z` 6= 0 if ` = τ(m) for some m ∈ [nt(i, j)]. LetX0 = 0 and

X` =
∑̀
`′=1

Eτ(`′)−1

[
zτ(`′)

∣∣ zτ(`′) 6= 0
]
− sτ(`)(i, j)

54

3.8. Conclusions

for ` ∈ [nt(i, j)]. Then (X`)
nt(i,j)
`=1 is a martingale, because

X` −X`−1 = Eτ(`)−1

[
zτ(`)

∣∣ zτ(`) 6= 0
]
− (sτ(`)(i, j)− sτ(`−1)(i, j))

= Eτ(`)−1

[
zτ(`)

∣∣ zτ(`) 6= 0
]
− zτ(`) ,

where the last equality follows from the definition of sτ(`)(i, j)− sτ(`−1)(i, j). Now
we apply the Azuma-Hoeffding inequality and get that

P
(
Xnt(i,j) −X0 ≥ 2

√
nt(i, j) log(1/δ)

)
≤ δ 1

2 .

Moreover, from the definitions ofX0 andXnt(i,j), and by Lemma 3.7, we have that

δ
1
2 ≥ P

(
Xnt(i,j) −X0 ≥ 2

√
nt(i, j) log(1/δ)

)
= P

nt(i,j)∑
`′=1

Eτ(`′)−1

[
zτ(`′)

∣∣ zτ(`′) 6= 0
]
− st(i, j) ≥ 2

√
nt(i, j) log(1/δ)


≥ P

(
α(i)− α(j)

α(i) + α(j)
nt(i, j)− st(i, j) ≥ 2

√
nt(i, j) log(1/δ)

)
= P

(
α(i)− α(j)

α(i) + α(j)
nt(i, j)− 2

√
nt(i, j) log(1/δ) ≥ st(i, j)

)
.

The above inequality holds for any (n`(i, j))
t
`=1, and therefore also in expectation over

(n`(i, j))
t
`=1. From the definition of Et,1 and the union bound, we have P(Et,1) ≤

1
2δ

1
2K(K − 1).
The claim that P(Et,2) ≤ 1

2δ
1
2K(K − 1) is proved similarly, except that we use

Eτ(`)−1

[
zτ(`)

∣∣ zτ(`) 6= 0
]
≤ 0. From the definition of E and the union bound,

P(E) ≤
n∑
t=1

P(Et,1) +

n∑
t=1

P(Et,2) ≤ δ 1
2K2n .

This completes our proof.

3.8 Conclusions

In this chapter, we have provide an answer to RQ2 by combining the advantages of
both offline and online Learning to Rank (LTR) algorithms. In particular, we fill a gap
in the LTR literature by proposing BubbleRank, a re-ranking algorithm that gradually
improves an initial base list, which we assume to be provided by an offline LTR approach.
The improvements are learned from small perturbations of base lists, which are unlikely
to degrade the user experience greatly. We prove a gap-dependent upper bound on the
regret of BubbleRank and evaluate it on a large-scale click dataset from a commercial
search engine.

We leave open several questions of interest. For instance, our chapter studies
BubbleRank in the setting of re-ranking. Although we explain an approach of extending

55

3. Safe Online Learning to Re-Rank

BubbleRank to the general ranking setup in Section 3.4.3, we expect further experiments
to validate this approach. Our general topic of interest are exploration schemes that are
more conservative than those of existing online LTR methods. Existing methods are not
very practical because they can explore highly irrelevant items at frequently examined
positions.

56

4
Cascade Non-Stationary Bandits

This chapter provides an answer to RQ3:

RQ3 How to conduct online learning to rank when users change their preferences
constantly?

We study the online learning to rank problem in a non-stationary environment where user
preferences change abruptly at an unknown moment in time. We consider the problem
of identifying theK most attractive items and propose cascading non-stationary bandits,
an online learning variant of the cascading model, where a user browses a ranked list
from top to bottom and clicks on the first attractive item. We propose two algorithms for
solving this non-stationary problem: CascadeDUCB and CascadeSWUCB. We analyze
their performance and derive gap-dependent upper bounds on the n-step regret of these
algorithms. We also establish a lower bound on the regret for cascading non-stationary
bandits and show that both algorithms match the lower bound up to a logarithmic factor.
Finally, we evaluate their performance on a real-world web search click dataset.

4.1 Introduction

Learning to rank LTR [84] is a combination of machine learning and information
retrieval. It is a core problem in many applications, such as web search and recommen-
dation [84, 127]. The goal of LTR is to rank items, e.g., documents, and show the top
K items to a user. Traditional LTR algorithms are supervised, offline algorithms; they
learn rankers from human annotated data [97] and/or users’ historical interactions [54].
Every day billions of users interact with modern search engines and leave a trail of
interactions. It is feasible and important to design online algorithms that directly learn
from such user clicks to help improve users’ online experience. Indeed, recent studies
show that even well-trained production rankers can be optimized by using users’ online
interactions, such as clicks [131].

Generally, interaction data is noisy [54], which gives rise to the well-known explo-
ration vs. exploitation dilemma. Multi-armed bandit (MAB) [9] algorithms have been
designed to balance exploration and exploitation. Based on MABs, many online LTR
algorithms have been published [58, 65, 70, 77, 99, 132]. These algorithms address

This chapter was published as [74].

57

4. Cascade Non-Stationary Bandits

the exploration vs. exploitation dilemma in an elegant way and aim to maximize user
satisfaction in a stationary environment where users do not change their preferences
over time. Moreover, they often come with regret bounds.

Despite the success of the algorithms mentioned above in the stationary case,
they may have linear regret in a non-stationary environment where users may change
their preferences abruptly at any unknown moment in time. Non-stationarity widely
exists in real-world application domains, such as search engines and recommender
systems [49, 92, 116, 119]. Particularly, we consider abruptly changing environments
where user preferences remain constant in certain time periods, named epochs, but
change occurs abruptly at unknown moments called breakpoints. The abrupt changes
in user preferences give rise to a new challenge of balancing “remembering” and
“forgetting” [11]: the more past observations an algorithm retains the higher the risk of
making a biased estimator, while the fewer observations retained the higher stochastic
error it has on the estimates of the user preferences.

In this chapter, we propose cascading non-stationary bandits, an online variant
of the Cascade Model (CM) [27] with the goal of identifying the K most attractive
items in a non-stationary environment. CM is a widely-used model of user click
behavior [23, 132]. In CM, a user browses the ranked list from top to bottom and clicks
the first attractive item. The items ranked above the first clicked item are browsed but
not attractive since they are not clicked. The items ranked below the first clicked item
are not browsed since the user stops browsing the ranked list after a click. Although
CM is a simple model, it effectively explains user behavior [65].

Our key technical contributions in this chapter are: (1) We formalize a non-sta-
tionary Online Learning to Rank (OLTR) problem as cascading non-stationary bandits.
(2) We propose two algorithms, CascadeDUCB and CascadeSWUCB, for solving it.
They are motivated by discounted UCB (DUCB) and sliding window UCB (SWUCB),
respectively [31]. CascadeDUCB balances “remembering” and “forgetting” by using a
discounting factor of past observations, and CascadeSWUCB balances the two by using
statistics inside a fixed-size sliding window. (3) We derive gap-dependent upper bounds
on the regret of the proposed algorithms. (4) We derive a lower bound on the regret
of cascading non-stationary bandits. We show that the upper bounds match this lower
bound up to a logarithmic factor. (5) We evaluate the performance of CascadeSWUCB
and CascadeDUCB empirically on a real-world web search click dataset.

4.2 Background

We define the learning problem at the core of this chapter in terms of cascading non-
stationary bandits. Their definition builds on the CM and its online variant cascading
bandits, which we review in this section.

We write [n] for {1, . . . , n}. For setsA andB, we writeAB for the set of all vectors
whose entries are indexed by B and take values from A. We use boldface letters to
denote random variables. We denote a set of candidate items by D = [L], e.g., a set of
preselected documents. The presented ranked list is denoted as R ∈ ΠK(D), where
ΠK(D) denotes the set of all possible combinations of K distinct items from D. The
item at position k inR is denoted asR(k), and the position of item a inR is denoted

58

4.2. Background

asR−1(a)

4.2.1 Cascade model

We refer readers to [23] for an introduction to click models. Briefly, a click model
models a user’s interaction behavior with the search system. The user is presented
with a K-item ranked list R. Then the user browses the list R and clicks items that
potentially attract him or her. Many click models have been proposed and each models
a certain aspect of interaction behavior. We can parameterize a click model by attraction
probabilities α ∈ [0, 1]L and a click model assumes:

Assumption 4.1. The attraction probability α(a) only depends on item a and is inde-
pendent of other items.

CM is a widely-used click model [27, 132]. In the CM, a user browses the ranked
list R from the first item R(1) to the last item R(K), which is called the cascading
assumption. After the user browses an item R(i), he or she clicks on R(i) with
attraction probability α(R(i)), and then stops browsing the remaining items. Thus,
the examination probability of item R(j) equals the probability of no click on the
higher ranked items:

∏j−1
i=1 (1− α(R(i))). The expected number of clicks equals the

probability of clicking any item in the list: 1 −
∏K
i=1(1 − α(R(i))). Note that the

reward does not depend on the order inR, and thus, in the CM, the goal of ranking is to
find the K most attractive items.

The CM accepts at most one click in each search session. It cannot explain scenarios
where a user may click multiple items. The CM has been extended in different ways
to capture multi-click cases [20, 36]. Nevertheless, CM is still the fundamental click
model and fits historical click data reasonably well. Thus, in this chapter, we focus on
the CM and in the next section we introduce an online variant of CM, called cascading
bandits.

4.2.2 Cascading bandits

Cascading bandits (CB) is defined by a tuple B = (D, P,K), where D = [L] is the set
of candidate items, K ≤ L is the number of positions, P ∈ {0, 1}L is a distribution
over binary attractions.

In CB, at time t, a learning agent builds a ranked list Rt ∈ ΠK(D) that depends on
the historical observations up to t and shows it to the user. At ∈ {0, 1}L is defined as the
attraction indicator, which is drawn from P and At(Rt(i)) is the attraction indicator of
item Rt(i). The user examines Rt from Rt(1) to Rt(K) and clicks the first attractive
item. Since a CM allows at most one click each time, a random variable ct is used
to indicate the position of the clicked item, i.e., ct = arg mini∈[K] 1{At(Rt(i))}. If
there is no attractive item, the user will not click, and we set ct = K + 1 to indicate
this case. Specifically, if ct ≤ K, the user clicks an item, otherwise, the user does
not click anything. After the click or browsing the last item in Rt, the user leaves the
search session. The click feedback ct is then observed by the learning agent. Because
of the cascading assumption, the agent knows that items ranked above position ct are

59

4. Cascade Non-Stationary Bandits

observed. The reward at time t is defined by the number of clicks:

r(Rt,At) = 1−
K∏
i=1

(1−At(Rt(i))) . (4.1)

Under Assumption 4.1, the attraction indicators of each item in D are independently
distributed. Moreover, cascading bandits make another assumption.

Assumption 4.2. The attraction indicators are distributed as:

P (A) =
∏
a∈D

Pa(A(a)) , (4.2)

where Pa is a Bernoulli distribution with a mean of α(a).

Under Assumption 4.1 and Assumption 4.2, the attraction indicator of item a at time t
At(a) is drawn independently from other items. Thus, the expectation of reward of the
ranked list at time t can be computed as E [r(Rt,At] = r(Rt, α). And the goal of the
agent is to maximize the expected number of clicks in n steps, which is equivalent to
minimizing the n-step cumulative regret:

R(n) =

n∑
t=1

E
[

max
R∈ΠK(D)

r(R,α)− r(Rt, α)

]
. (4.3)

Cascading bandits are designed for a stationary environment, where the attraction prob-
ability P remains constant. However, in real-world applications, users change their pref-
erences constantly [49], which is called a non-stationary environment, and learning algo-
rithms proposed for cascading bandits, e.g., CascadeKL-UCB and CascadeUCB1 [65],
may have linear regret in this setting. In the next section, we propose cascading non-
stationary bandits, the first non-stationary variant of cascading bandits, and then propose
two algorithms for solving this problem.

4.3 Cascading Non-Stationary Bandits

We first define our non-stationary online learning setup, and then we propose two
algorithms learning in this setup.

4.3.1 Problem setup
The learning problem we study is called cascading non-stationary bandits, a variant
of CB. We define it by a tuple B = (D, P,K,Υn), where D = [L] and K ≤ L are
the same as in CB bandits, P ∈ {0, 1}n×L is a distribution over binary attractions and
Υn is the number of abrupt changes in P up to step n. We use Pt(Rt(i)) to indicate
the attraction probability distribution of item Rt(i) at time t. If Υn = 0, this setup is
same as CB. The difference is that we consider a non-stationary learning setup in which
Υn > 0 and the non-stationarity in attraction probabilities characterizes our learning
problem.

60

4.3. Cascading Non-Stationary Bandits

Algorithm 5 UCB-type algorithm for Cascading non-stationary bandits.
1: Input: discounted factor γ or sliding window size τ

2: // Initialization
3: ∀a ∈ D : N0(a) = 0
4: ∀a ∈ D : X0(a) = 0

5: for t = 1, 2, . . . , n do
6: for a ∈ D do
7: // Compute UCBs

8: Ut(a)←

{
Eq. (4.6) (CascadeDUCB)

Eq. (4.8) (CascadeSWUCB)

9: // Recommend top K items and receive clicks
10: Rt ← arg maxR∈ΠK(D) r(R,Ut)
11: Show Rt and receive clicks ct ∈ {1, . . . ,K + 1}
12: // Update statistics
13: if CascadeDUCB then
14: // for CascadeDUCB
15: ∀a ∈ D : Nt(a) = γNt−1(a)
16: ∀a ∈ D : Xt(a) = γXt−1(a)
17: else
18: // for CascadeSWUCB
19: ∀a ∈ D : Nt(a) =

∑t−1
s=t−τ+1 1{a ∈ Rs}

20: ∀a ∈ D : Xt(a) =
∑t−1
s=t−τ+1 1{R−1

s (a) = cs}
21: for i = 1, . . . ,min{ct,K} do
22: a← Rt(i)
23: Nt(a) = Nt(a) + 1
24: Xt(a) = Xt(a) + 1{i = ct}

In this chapter, we consider an abruptly changing environment, where the attraction
probability P remains constant within an epoch but can change at any unknown moment
in time and the number of abrupt changes up to n steps is Υn. The learning agent
interacts with cascading non-stationary bandits in the same way as with CB. Since the
agent is in a non-stationary environment, we write αt for the mean of the attraction
probabilities at time t and we evaluate the agent by the expected cumulated regret
expressed as:

R(n) =

n∑
t=1

E
[

max
R∈ΠK(D)

r(R,αt)− r(Rt,At)

]
. (4.4)

The goal of the agent it to minimizing the n-step regret.

4.3.2 Algorithms
We propose two algorithms, CascadeDUCB and CascadeSWUCB, for solving cas-

cading non-stationary bandits. The former one is inspired by DUCB and the later

61

4. Cascade Non-Stationary Bandits

one is inspired by SWUCB [31]. We summarize the pseudocode of both algorithms
in Algorithm 5.

CascadeDUCB and CascadeSWUCB learn in a similar pattern. They differ in the
way they estimate the Upper Confidence Bound (UCB) Ut(Rt(i)) of the attraction
probability of item Rt(i) as time t, as discussed later in this section. After estimating
the UCBs (line 8), both algorithms construct Rt by including the top K most relevant
items by UCB. Since the order of top K items only affects the observation but does not
affect the payoff of Rt, we construct Rt as follows:

Rt = arg max
R∈ΠK(D)

r(R,Ut). (4.5)

After receiving the user’s click feedback ct, both algorithms update their statistics
(lines 13–24). We use Nt(i) and Xt(i) to indicate the number of items i that have been
observed and clicked up to t step, respectively.

To tackle the challenge of non-stationarity, CascadeDUCB penalizes old observa-
tions with a discount factor γ ∈ (0, 1). Specifically, each of the previous statistics is
discounted by γ (lines 15–16). The UCB of item a is estimated as:

Ut(a) = ᾱt(γ, a) + ct(γ, a), (4.6)

where ᾱt(γ, a) = Xt(a)
Nt(a) is the average of discounted attraction indicators of item i and

ct(γ, a) = 2

√
ε lnNt(γ)

Nt(a)
(4.7)

is the confidence interval around ᾱt(i) at time t. Here, we compute Nt(γ) = 1−γt
1−γ as

the discounted time horizon. As shown in [31], αt(a) ∈ [ᾱt(γ, a)−ct(γ, a), ᾱt(γ, a)+
ct(γ, a)] holds with high probability.

As to CascadeSWUCB, it estimates UCBs by observations inside a sliding win-
dow with size τ . Specifically, it only considers the observations in the previous τ
steps (lines 19–20). The UCB of item i is estimated as

Ut(a) = ᾱt(τ, a) + ct(τ, a), (4.8)

where ᾱt(τ, a) = Xt(a)
Nt(a) is the average of observed attraction indicators of item a inside

the sliding window and

ct(τ, a) =

√
ε ln (t ∧ τ)

Nt(a)
(4.9)

is the confidence interval, and t ∧ τ = min(t, τ).

Initialization. In the initialization phase, we set all the statistics to 0 and define x
0 := 1

for any x (lines 3–4). Mapping back this to UCB, at the beginning, each item has the
optimal assumption on the attraction probability with an optimal bonus on uncertainty.
This is a common initialization strategy for UCB-type bandit algorithms [79].

62

4.4. Analysis

4.4 Analysis

In this section, we analyze the n-step regret of CascadeDUCB and CascadeSWUCB.
We first derive regret upper bounds on CascadeDUCB and CascadeSWUCB, respec-
tively. Then we derive a regret lower bound on cascading non-stationary bandits. Finally,
we discuss our theoretical results.

4.4.1 Regret upper bound

We refer to D∗t ⊆ [L] as the set of the K most attractive items in set D at time t
and D̄t as the complement of D∗t , i.e., ∀a ∈ D∗t ,∀a∗ ∈ D̄t : αt(a) ≥ αt(a

∗) and
D∗t ∪ D̄t = D ,D∗t ∩ D̄t = ∅. At time t, we say an item a∗ is optimal if a∗ ∈ D∗t
and an item a is suboptimal if a ∈ D̄t. The regret at time t is caused by the case
that Rt includes at least one suboptimal and examined items. Let ∆t

a,a∗ be the gap
of attraction probability between a suboptimal item a and an optimal a∗ at time t:
∆t
a,a∗ = αt(a

∗)− αt(a). Then we refer to ∆a,K as the smallest gap of between item
a and the K-th most attractive item in all n steps when a is not the optimal items:
∆a,K = mint∈[n],a∗∈D∗t αt(a

∗)− αt(a).

Theorem 4.1. Let ε ∈ (1/2, 1) and γ ∈ (1/2, 1), the expected n-step regret of
CascadeDUCB is bounded as:

R(n) ≤ LΥn
ln[(1− γ)ε]

ln γ
+
∑
a∈D

C(γ, a)dn(1− γ)e ln
1

1− γ
, (4.10)

where

C(γ, a) =
4

1− 1/e
ln (1 + 4

√
1− 1/2ε) +

32ε

∆a,Kγ1/(1−γ)
. (4.11)

We outline the proof in 4 steps below; the full version is in Section 4.7.1.1

Proof. Our proof is adapted from the analysis in [65]. The novelty of the proof comes
from the fact that, in a non-stationary environment, the discounted estimator ᾱt(γ, a) is
now a biased estimator of αt(a) (Step 1, 2 and 4).

Step 1. We bound the regret of the event that estimators of the attraction probabilities
are biased by LΥ ln[(1−γ)ε]

ln γ . This event happens during the steps following a breakpoint.
Step 2. We bound the regret of the event that αt(a) falls outside of the confidence

interval around ᾱt(γ, a) by 4
1−1/e ln (1 + 4

√
1− 1/2ε)n(1− γ) ln 1

1−γ .
Step 3. We decompose the regret at time t based on [65, Theorem 1].
Step 4. For each item a, we bound the number of times that item a is chosen when

a ∈ D̄t in n steps and get the term
32εdn(1−γ)e ln 1

1−γ
∆a,Kγ1/(1−γ) . Finally, we sum up all the

regret.

1https://arxiv.org/abs/1905.12370

63

https://arxiv.org/abs/1905.12370

4. Cascade Non-Stationary Bandits

The bound depends on step n and the number of breakpoints Υn. If they are known
beforehand, we can choose γ by minimizing the right hand side of Eq. (4.10). Choosing
γ = 1− 1/4

√
(Υn/n) leads to R(n) = O(

√
nΥn lnn). When Υn is independent of

n, we have R(n) = O(
√
nΥ lnn).

Theorem 4.2. Let ε ∈ (1/2, 1). For any integer τ , the expected n-step regret of
CascadeSWUCB is bounded as:

R(n) ≤ LΥnτ+
L ln2 τ

ln(1 + 4
√

(1− 1/2ε))
+
∑
a∈D

C(τ, a)
n ln τ

τ
, (4.12)

where

C(τ, a) =
2

ln τ

⌈
ln τ

ln(1 + 4
√

(1− 1/2ε))

⌉
+

8ε

∆a,K

dn/τe
n/τ

. (4.13)

When τ goes to infinity and n/τ goes to 0,

C(τ, a) =
2

ln(1 + 4
√

(1− 1/2ε))
+

8ε

∆a,K
. (4.14)

We outline the proof in 4 steps below and the full version is in Section 4.7.2.

Proof. The proof follows the same lines as the proof of Theorem 4.1.
Step 1. We bound the regret of the event that estimators of the attraction probabilities

are biased by LΥnτ .
Step 2. We bound the regret of the event that αt(a) falls outside of the confidence

interval around ᾱt(τ, a) by

ln2 τ + 2n

⌈
ln τ

ln(1 + 4
√

(1− 1/2ε))

⌉
. (4.15)

Step 3. We decompose the regret at time t based on [65, Theorem 1].
Step 4. For each item a, we bound the number of times that item a is chosen when

a ∈ D̄t in n steps and get the term 8ε
∆a,K

dnτ e. Finally, we sum up all the regret.

If we know Υn and n beforehand, we can choose the window size τ by minimizing
the right hand side of Eq. (4.12). Choosing τ = 2

√
n ln(n)/Υn leads to R(n) =

O(
√
nΥn lnn). When Υn is independent of n, we have R(n) = O(

√
nΥ lnn).

4.4.2 Regret lower bound
We consider a particular cascading non-stationary bandit and refer to it as BL =
(L,K,∆, p,Υ). We have a set of L items D = [L] and K = 1

2L positions. At any time
t, the distribution of attraction probability of each item a ∈ D is parameterized by:

αt(a) =

{
p if a ∈ D∗t
p−∆ if a ∈ D̄t,

(4.16)

64

4.4. Analysis

where D∗t is the set of optimal items at time t, D̄t is the set suboptimal items at time
t, and ∆ ∈ (0, p] is the gap between optimal items and suboptimal items. Thus,
the attraction probabilities only take two values: p for optimal items and p − ∆ for
suboptimal items up to n-step. Υ is the number of breakpoints when the attraction
probability of an item changes from p to p−∆ or other way around. Particularly, we
consider a simple variant that the distribution of attraction probability of each item is
piecewise constant and has two breakpoints. And we assume another constraint on the
number of optimal items that |D∗t | = K for all time steps t ∈ [n]. Then, the regret
that any learning policy can achieve when interacting with BL is lower bounded by
Theorem 4.3.

Theorem 4.3. The n-step regret of any learning algorithm interacting with cascading
non-stationary bandit BL is lower bounded as follows:

lim inf
n→∞

R(n) ≥ L∆(1− p)K−1

√
2n

3DKL(p−∆||p)
, (4.17)

where DKL(p−∆||p) is the Kullback-Leibler (KL) divergence between two Bernoulli
distributions with means p−∆ and p.

Proof. The proof is based on the analysis in [65]. We first refer to R∗t as the optimal
list at time t that includes K items. For any time step t, any item a ∈ D̄t and any item
a∗ ∈ D∗t , we define the event that item a is included in Rt instead of item a∗ and item
a is examined but not clicked at time step t by:

Gt,a,a∗ = {∃1 ≤ k < ct ∼ s.t. ∼ Rt(k) = a ,Rt(k) = a∗}. (4.18)

By [65, Theorem 1], the regret at time t is decomposed as:

E[r(Rt,αt)] ≥ ∆(1− p)K−1
∑
a∈D̄t

∑
a∗∈D∗t

1{Ga,a∗,t}. (4.19)

Then, we bound the n-step regret as follows:

R(n) ≥ ∆(1− p)K−1
n∑
t=1

∑
a∈D̄t

∑
a∗∈D∗t

1{Gt,a,a∗}

≥ ∆(1− p)K−1
∑
a∈D

n∑
t=1

1{a ∈ D̄t, a ∈ Rt}

= ∆(1− p)K−1
∑
a∈D

Tn(a),

(4.20)

where Tn(a) =
∑n
t=1 1{a ∈ D̄t, a ∈ Rt,R

−1
t (a) ≤ ct}. The second inequality

is based on the fact that, at time t, the event Gt,a,a∗ happens if and only if item a is
suboptimal and examined. By the results of [31, Theorem 3], if a suboptimal item a
has not been examined enough times, the learning policy may play this item for a long

65

4. Cascade Non-Stationary Bandits

period after a breakpoint. And we get:

lim inf
n→∞

T(n) ≥

√
2n

3DKL(p−∆||p)
. (4.21)

We sum up all the inequalities and obtain:

lim inf
n→∞

R(n) ≥ L∆(1− p)K−1

√
2n

3DKL(p−∆||p)
.

4.4.3 Discussion

We have shown that the n-step regret upper bounds of CascadeDUCB and CascadeSWUCB
have the order of O(

√
n lnn)and O(

√
n lnn), respectively. They match the lower

bound proposed in Theorem 4.3 up to a logarithmic factor. Specifically, the upper
bound of CascadeDUCB matches the lower bound up to lnn. The upper bound
of CascadeSWUCB matches the lower bound up to

√
lnn, an improvement over

CascadeDUCB, as confirmed by experiments in Section 4.5.
We have assumed that step n is know beforehand. This may not always be the case.

We can extend CascadeDUCB and CascadeSWUCB to the case where n is unknown by
using the doubling trick [31]. Namely, for t > n and any k, such that 2k ≤ t < 2k+1,
we reset γ = 1− 1

4
√

2k
and τ = 2

√
2k ln(2k).

CascadeDUCB and CascadeSWUCB can be computed efficiently. Their complexity
is linear in the number of time steps. However, CascadeSWUCB requires extra memory
to remember past ranked lists and rewards to update Xt and Nt.

4.5 Experimental Analysis

We evaluate CascadeDUCB and CascadeSWUCB on the Yandex click dataset,2 which
is the largest public click collection. It contains more than 30 million search sessions,
each of which contains at least one search query. We process the queries in the same
manner as in [77, 132]. Namely, we randomly select 100 frequent search queries with
the 10 most attractive items in each query, and then learn a CM for each query using
PyClick.3 These CMs are used to generate click feedback. In this setup, the size of
candidate items is L = 10 and we choose K = 3 as the number of positions. The
objective of the learning task is to identify 3 most attractive items and then maximize
the expected number of clicks at the 3 highest positions.

We consider a simulated non-stationary environment setup, where we take the
learned attraction probabilities as the default and change the attraction probabilities
periodically. Our simulation can be described in 4 steps: (1) For each query, the
attraction probabilities of the top 3 items remain constant over time. (2) We randomly
choose three suboptimal items and set their attraction probabilities to 0.9 for the next

2https://academy.yandex.ru/events/data_analysis/relpred2011
3https://github.com/markovi/PyClick

66

https://academy.yandex.ru/events/data_analysis/relpred2011
https://github.com/markovi/PyClick

4.5. Experimental Analysis

Figure 4.1: The n-step regret in up to 100k steps. Lower is better. The results are
averaged over all 100 queries and 10 runs per query. The shaded regions represent
standard errors of our estimates.

m1 steps. (3) Then we reset the attraction probabilities and keep them constant for
the next m2 steps. (4) We repeat step (2) and step (3) iteratively. This simulation
mimics abrupt changes in user preferences and is widely used in previous work on
non-stationarity [31, 49]. In our experiment, we set m1 = m2 = 10k and choose 10
breakpoints. In total, we run experiments for 100k steps. Although the non-stationary
aspects in our setup are simulated, the other parameters of a CM are learned from the
Yandex click dataset.

We compare CascadeDUCB and CascadeSWUCB, to RankedEXP3 [99],
CascadeKL-UCB [65] and BatchRank [132]. We describe the baseline algorithms
in slightly more details in Section 4.6. Briefly, RankedEXP3, a variant of ranked ban-
dits, is based on an adversarial bandit algorithm EXP3 [8]; it is the earliest bandit-based
ranking algorithm and is popular in practice. CascadeKL-UCB [65] is a near optimal
algorithm in CM. BatchRank [132] can learn in a wide range of click models. However,
these algorithms only learn in a stationary environment. We choose them as baselines
to show the superiority of our algorithms in a non-stationary environment. In experi-
ments, we set ε = 0.5, γ = 1− 1/(4

√
n) and τ = 2

√
n ln(n), the values that roughly

minimize the upper bounds.
We report the n-step regret averaged over 100 queries and 10 runs per query

in Fig. 4.1. All baselines have linear regret in time step. They fail in capturing
the breakpoints. Non-stationarity makes the baselines perform even worse during
epochs where the attraction probability are set as the default. E.g., CascadeKL-UCB
has 111.50± 1.12 regret in the first 10k steps but has 447.82± 137.16 regret between
step 80k and 90k. Importantly, the attraction probabilities equal the default and remain
constant inside these two epochs. This is caused by the fact that the baseline algorithms

67

4. Cascade Non-Stationary Bandits

rank items based on all historical observations, i.e., they do not balance “remembering”
and “forgetting.” Because of the use of a discounting factor and/or a sliding window,
CascadeDUCB and CascadeSWUCB can detect breakpoints and show convergence.
CascadeSWUCB outperforms CascadeDUCB with a small gap; this is consistent with
our theoretical finding that CascadeSWUCB outperforms CascadeDUCB by a

√
lnn

factor.

4.6 Related Work

The idea of directly learning to rank from user feedback has been widely studied in a
stationary environment. Ranked bandits [99] are among the earliest OLTR approaches.
In ranked bandits, each position in the list is modeled as an individual underlying
MABs. The ranking task is then solved by asking each individual MAB to recommend
an item to the attached position. Since the reward, e.g., click, of a lower position
is affected by higher positions, the underlying MAB is typically adversarial, e.g.,
EXP3 [8]. BatchRank is a recently proposed OLTR method [132]; it is an elimination-
based algorithm: once an item is found to be inferior to K items, it will be removed
from future consideration. BatchRank outperforms ranked bandits in the stationary
environment. In our experiments, we include BatchRank and RankedEXP3, the EXP3-
based ranked bandit algorithm, as baselines.

Several OLTR algorithms have been proposed in specific click models [58, 65, 70].
They can efficiently learn an optimal ranking given the click model they consider. Our
work is related to cascading bandits and we compare our algorithms to CascadeKL-UCB,
an algorithm proposed for soling cascading bandits [65], in Section 4.5. Our work differs
from cascading bandits in that we consider learning in a non-stationary environment.

Non-stationary bandit problems have been widely studied [11, 31, 82, 105, 119].
However, previous work requires a small action space. In our setup, actions are (ex-
ponentially many) ranked lists. Thus, we do not consider them as baselines in our
experiments.

In adversarial bandits the reward realizations, in our case attraction indicators, are
selected by an adversary. Adversarial bandits originate from game theory [12] and
have been widely studied, cf. [8, 18] for an overview. Within adversarial bandits, the
performance of a policy is often measured by comparing to a static oracle which always
chooses a single best arm that is obtained after seeing all the reward realizations up
to step n. This static oracle can perform poorly in a non-stationary case when the
single best arm is suboptimal for a long time between two breakpoints. Thus, even
if a policy performs closely to the static oracle, it can still perform sub-optimally in
a non-stationary environment. Our work differs from adversarial bandits in that we
compare to a dynamic oracle that can balance the dilemma of “remembering” and
“forgetting” and chooses the per-step best action.

4.7 Proofs

In this proofs, we refer toR∗t as the optimal list at time t that includes K items sorted
by the decreasing order of their attraction probabilities. We refer to D∗t ⊆ [L] as the

68

4.7. Proofs

set of the K most attractive items in set D at time t and D̄t as the complement of D∗t ,
i.e. ∀a∗ ∈ D∗t ,∀a ∈ D̄t : αt(a

∗) ≥ αt(a) and D∗t ∪ D̄t = D,D∗t ∩ D̄t = ∅. At time
t, we say an item a∗ is optimal if a∗ ∈ D∗t and an item a is suboptimal if a ∈ D̄t.
We denote rt = maxR∈ΠK(D) r(R,αt) − r(Rt,At) to be the regret at time t of the
learning algorithm. Let ∆t

a,a∗ be the gap of attraction probability between a suboptimal
item a and an optimal a∗ at time t: ∆t

a,a∗ = αt(a
∗)− αt(a). Then we refer to ∆a,K

as the smallest gap between item a and the K-th most attractive item in all n time steps
when a is not the optimal item: ∆a,K = mint∈[n],a/∈D∗t αt(K)− αt(a).

4.7.1 Proof of Theorem 4.1
Let Mt = {∃a ∈ D ∼ s.t. ∼ |αt(a) − ᾱt(γ, a)| > ct(γ, t)} be the event that αt(a)
falls out of the confidence interval around ᾱt(γ, a) at time t, and M̄t be the complement
of Mt. We re-write the n-step regret of CascadeDUCB as follows:

R(n) = E

[
n∑
t=1

1{Mt}rt

]
+ E

[
n∑
t=1

1{M̄t}rt

]
. (4.22)

We then bound both terms above separated.
We refer to T as the set of all time steps such that for t ∈ T , s ∈ [t−B(γ), t] and

any item a ∈ D we have αs(a) = αt(a), where B(γ) = dlogγ(ε(1 − γ))e. In other
words, T is the set of time steps that do not follow too close after breakpoints. Since for
any time step t /∈ T the estimators of attraction probabilities are biased, CascadeDUCB
may recommend suboptimal items constantly. Thus, we get the following bound:

E

[
n∑
t=1

1{Mt}rt

]
≤ LΥnB(γ) + E

[∑
t∈T

1{Mt}rt

]
. (4.23)

Then, we show that for steps t ∈ T , the attraction probabilities are well estimated for
all items with high probability. For an item a, we consider the bias and variance of
ᾱt(γ, a) separately. We denote:

Xt(γ, a) =

t∑
s=1

γ(t−s)1{a ∈ Rs,Rs(cs) = a}, Nt(γ, a) =

t∑
s=1

γ(t−s)1{a ∈ Rs},

as the discounted number of being clicked, and the discounted number of being exam-
ined.

First, we consider the bias. The “bias” at time t can be written as xt(γ, a)/Nt(γ, a)−
αt, where xt(γ, a) =

∑t
s=1 γ

(t−s)1{a ∈ Rs}αs(a). For t ∈ T :

|xt(γ, a)− αt(a)Nt(γ, a)| =

∣∣∣∣∣∣
t−B(γ)∑
s=1

γ(t−s)(αs(a)− αt(a)1{a ∈ Rt}

∣∣∣∣∣∣
≤

t−B(γ)∑
s=1

γ(t−s) |(αs(a)− αt(a)|1{a ∈ Rt}

≤ γB(γ)Nt−B(γ)(γ, a) ≤ γB(γ) 1

1− γ
,

69

4. Cascade Non-Stationary Bandits

where the last inequality is due to the fact that Nt−B(γ)(γ, a) ≤ 1/(1− γ). Thus, we
get: ∣∣∣∣ xt(γ, a)

Nt(γ, a)
− αt(a)

∣∣∣∣ ≤ γB(γ)

(1− γ)Nt(γ, a)
≤
(

1 ∧ γB(γ)

(1− γ)Nt(γ, a)

)

≤

√
γB(γ)

(1− γ)Nt(γ, a)
≤

√
ε lnNt(γ)

Nt(γ, a)
≤ 1

2
ct(γ, a),

where the third inequality is due to the fact that 1 ∧ x ≤
√
x and the last inequality

is due to the definition of B(γ). So, B(γ) time steps after a breakpoint, the “bias” is
at most half as large as the confidence bonus; and the second half of the confidence
interval is used for the variance.

Second, we consider the variance. For a ∈ D and t ∈ T , let Mt,a = {|αt(a) −
ᾱt(γ, a)| > ct(γ, t)} be the event that αt(a) falls out of the confidence interval around
ᾱt(γ, a) at time t. By using a Hoeffding-type inequality [31, Theorem 4], for an item
a ∈ D, t ∈ T , and any η > 0, we get:

P (Mt,a) ≤ P

(
Xt(γ, a)− xt(γ, a)√

Nt(γ2, a)
>

√
ε lnNt(γ)

Nt(γ2, a)

)

≤ P

(
Xt(γ, a)− xt(γ, a)√

Nt(γ2, a)
>
√
ε lnNt(γ)

)

≤
⌈

lnNt(γ)

ln (1 + η)

⌉
Nt(γ)−2ε(1− η

2

16).

Thus, we get the following bound:

E

[∑
t∈T

1{Mt}rt

]
≤ 2L

∑
t∈T

⌈
lnNt(γ)

ln (1 + η)

⌉
Nt(γ)−2ε(1− η

2

16).

By taking η = 4
√

1− 1/2ε such that 1− η2

16 = 1, and with t0 = (1− γ)(−1) we get:∑
t∈T

⌈
lnNt(γ)

ln (1 + η)

⌉
Nt(γ)−2ε(1− η

2

16)

≤ t0 +
∑

t∈T ,t≥t0

⌈
lnNt0(γ)

ln (1 + η)

⌉
Nt0(γ)−1

≤ t0 +

⌈
lnNt0(γ)

ln (1 + η)

⌉
n

Nt0(γ)

≤ 1

1− γ
+

⌈
lnNt0(γ)

ln (1 + η)

⌉
n(1− γ)

1− γ1/(1−γ)
.

We sum up and get the upper bound:

E

[
n∑
t=1

1{M̄t}rt

]
≤ LΥnB(γ)+2L

1

1− γ
+2L

⌈
lnNt0(γ)

ln (1 + η)

⌉
n(1− γ)

1− γ1/(1−γ)
. (4.24)

70

4.7. Proofs

Third, we upper bound the second term in Eq. (4.22). The regret is caused by
recommending a suboptimal item to the user and the user examines but does not click
the item. Since there are Υn breakpoints, we refer to [t1, . . . , tΥn] as the time step of a
breakpoint that occurs. We consider the time step in the individual epoch that does not
contain a breakpoint. For any epoch and any time t ∈ {te, te + 1, . . . , te+1 − 1}, any
item a ∈ D̄e and any item a∗ ∈ D∗e , we define the event that item a is included in Rt

instead of item a∗, and item a is examined but not clicked at time t by:

Gt,a,a∗ = {∃1 ≤ k < ct ∼ s.t. ∼ Rt(k) = a,Rt(k) = a∗}.

Since the attraction probability remains constant in the epoch, we refer to D∗e as the
optimal items and D̄e as the suboptimal items in epoch e. By [65, Theorem 1], the
regret at time t is decomposed as:

E[rt] ≤ ∆t
a,a∗

∑
a∈D̄e

∑
a∗∈D∗e

1{Ga,a∗,t}. (4.25)

Then we have:

E

[
ti+1−1∑
t=ti

1{M̄t}rt

]
=

ti+1−1∑
t=ti

1{M̄t}E [rt] ≤
∑
a∈D̄e

E

 ∑
a∗∈D∗e

ti+1−1∑
t=ti

∆t
a,a∗1{Ga,a∗,t}

 ,
(4.26)

where the first equality is due to the tower rule, and the inequality is due to Eq. (4.25).
Now, for any suboptimal item a in epoch e, we upper bound

E
[∑

a∗∈D∗e

∑ti+1−1
t=ti

∆t
a,a∗1{Ga,a∗,t}

]
. At time t, event 1{M̄t} and event 1{a ∈

Rt, a ∈ D̄t} happen when there exists an optimal item a∗ ∈ D∗e such that:

αt(a) + 2ct(γ, a) ≥ Ut(a) ≥ U(a∗) ≥ αt(a∗),

which implies that 2ct(γ, a) ≥ αt(a∗)− αt(a). Taking the definition of the confidence
interval, we get:

Nt(γ, a) ≤ 16ε lnNt(γ)

∆2
t,a,a∗

,

where we set ∆t,a,a∗ = ∆t
a,a∗ .

Together with Eq. (4.26), we get:

E

[
ti+1−1∑
t=ti

1{M̄t}rt

]

≤
∑
a∈D̄e

E

 ∑
a∗∈D∗e

16ε lnNt(γ)

∆t,a,a∗


≤ 16ε lnNt(γ)

[
∆t,a,1

1

∆2
t,a,1

+

K∑
a∗=2

∆t,a,a∗

(
1

∆2
t,a,a∗

− 1

∆2
t,a,a∗−1

)]

≤ 32ε lnNt(γ)

∆t,a,K
, (4.27)

71

4. Cascade Non-Stationary Bandits

where the last inequality is due to [64, Lemma 3]. Let ∆a,K = mint∈[n] ∆t,a,K be the
smallest gap between the suboptimal item a and an optimal item in all time steps. When
Nt(γ, a) > 32ε lnNt(γ)

∆2
a,K

, CascadeDUCB will not select item a at time t. Thus we get:

∑
a∈D

E

[
n∑
t=1

1{M̄t}1{a ∈ Rt, a ∈ D̄t}

]

≤
∑
e∈[Υn]

∑
a∈D̄e

32ε lnNt(γ)

∆t,a,K

≤
∑
a∈D
dn(1− γ)e32ε lnNn(γ)

∆a,K
γ1/(1−γ),

(4.28)

where the last inequality is based on [31, Lemma 1].

Finally, together with Eqs. (4.22) to (4.26) and (4.28), we get Theorem 4.1.

4.7.2 Proof of Theorem 4.2

Let Mt = {∃a ∈ D : |αt(a)− ᾱt(τ, a)| > ct(τ, t)} be the event that αt(a) falls out of
the confidence interval around ᾱt(τ, a) at time t, and let M̄t be the complement of Mt.
We re-write the n-step regret of CascadeSWUCB as follows:

R(n) = E

[
n∑
t=1

1{Mt}rt

]
+ E

[
n∑
t=1

1{M̄t}rt

]
. (4.29)

We then bound both terms in Eq. (4.29) separately.

First, we refer to T as the set of all time steps such that for t ∈ T , s ∈ [t − τ, t]
and any item a ∈ D we have αs(a) = αt(a). In other words, T is the set of time steps
that do not follow too close after breakpoints. Obviously, for any time step t /∈ T the
estimators of attraction probabilities are biased and CascadeSWUCB may recommend
suboptimal items constantly. Thus, we get the following bound:

E

[
n∑
t=1

1{Mt}rt

]
≤ LΥnτ + E

[∑
t∈T

1{Mt}rt

]
. (4.30)

τ time steps after a breakpoint, the estimators of the attraction probabilities are not
biased.

Then, we consider the variance. By using a Hoeffding-type inequality [30, Corollary

72

4.7. Proofs

21], for an item a ∈ D, t ∈ T , and any η > 0, we get:

P (|ᾱt(τ, a)− αt(a)| > ct(τ, t)) ≤ P

(
ᾱt(τ, a) > αt(a) +

√
ε ln (t ∧ τ)

Nt(τ, a)

)

+ P

(
ᾱt(τ, a) < αt(a)−

√
ε ln (t ∧ τ)

Nt(τ, a)

)

≤ 2

⌈
ln (t ∧ τ)

ln(1 + η)

⌉
exp

(
−2ε ln(t ∧ τ)(1− η

16
)
)

= 2

⌈
ln (t ∧ τ)

ln(1 + η)

⌉
(t ∧ τ)−2ε(1−η2/16).

Taking η = 4
√

1− 1
2ε , we have: P (|ᾱt(τ, a)− αt(a)|) ≤ 2

d ln (t∧τ)
ln(1+η) e
t∧τ . Thus, we get

the following bound:

E

[∑
t∈T

1{Mt}rt

]
≤ 2L

∑
t∈T

⌈
ln (t∧τ)
ln(1+η)

⌉
t ∧ τ

≤ L ln2(τ)

ln(1 + 4
√

1− 1/2ε)
+

2Ln ln τ

τ ln(1 + 4
√

1− 1/2ε)
.

We sum up and get the upper bound:

E

[
n∑
t=1

1{M̄t}Rt

]
≤ LΥnτ +

L ln2(τ)

ln(1 + 4
√

1− 1/2ε)

+
2Ln ln τ

τ ln(1 + 4
√

1− 1/2ε)
.

(4.31)

Third, we upper bound the second term in Eq. (4.29). The regret is caused by
recommending a suboptimal item to the user and the user examines but does not click
the item. Since there are Υn breakpoints, we refer to [t1, . . . , tΥn] as the time steps of
a breakpoint. We consider the time step in the individual epoch that does not contain
a breakpoint. For any epoch and any time t ∈ {te, te + 1, . . . , te+1 − 1}, any item
a ∈ D̄e and any item a∗ ∈ D∗e , we define the event that item a is included in Rt instead
of item a∗ and item a is examined but not clicked at time t by:

Gt,a,a∗ = {∃1 ≤ k < ct ∼ s.t. ∼ Rt(k) = a,Rt(k) = a∗}.

Since the attraction probabilities remain constant in the epoch, we refer to D∗e as the
optimal items and D̄e as the suboptimal items in epoch e. By [65, Theorem 1], the
regret at time t is decomposed as:

E[rt] ≤ ∆t
a,a∗

∑
a∈D̄e

∑
a∗∈D∗e

1{Ga,a∗,t}. (4.32)

73

4. Cascade Non-Stationary Bandits

Then we have:

E

[
ti+1−1∑
t=ti

1{M̄t}rt

]
=

ti+1−1∑
t=ti

1{M̄t}E [rt]

≤
∑
a∈D̄e

E

 ∑
a∗∈D∗e

ti+1−1∑
t=ti

∆t
a,a∗1{Ga,a∗,t}

 , (4.33)

where the first equality is due to the tower rule, and the inequality if due to Eq. (4.32).
Now, for any suboptimal item a in epoch e, we upper bound

E

 ∑
a∗∈D∗e

ti+1−1∑
t=ti

∆t
a,a∗1{Ga,a∗,t}

 .
At time t, event 1{M̄t} and event 1{a ∈ Rt, a ∈ D̄t} happen when there exists an
optimal item a∗ ∈ D∗e such that:

αt(a) + 2ct(τ, a) ≥ Ut(a) ≥ U(a∗) ≥ αt(a∗),

which implies that 2ct(τ, a) ≥ αt(a∗)− αt(a). Taking the definition of the confidence
interval, we get:

Nt(τ, a) ≤ 4ε lnNt(τ)

∆2
t,a,a∗

,

where we set ∆t,a,a∗ = ∆t
a,a∗ .

Together with Eq. (4.33), we get:

E

[
ti+1−1∑
t=ti

1{M̄t}rt

]

≤
∑
a∈D̄e

E

 ∑
a∗∈D∗e

4ε lnNt(γ)

∆t,a,a∗


≤ 4ε lnNt(γ)

[
∆t,a,1

1

∆2
t,a,1

+

K∑
a∗=2

∆t,a,a∗

(
1

∆2
t,a,a∗

− 1

∆2
t,a,a∗−1

)]

≤ 8ε lnNt(γ)

∆t,a,K
, (4.34)

where the last inequality is due to [64, Lemma 3]. Let ∆a,K = mint∈[n] ∆t,a,K be the
smallest gap between the suboptimal item a and an optimal item in all time steps. When

74

4.8. Additional Experiments

Nt(τ, a) > 8ε lnNt(τ)
∆2
a,K

, CascadeDUCB will not select item a at time t. Thus we get:

∑
a∈D

E

[
n∑
t=1

1{M̄t}1{a ∈ Rt, a ∈ D̄t}

]

≤
∑
e∈[Υn]

∑
a∈D̄e

8ε lnNt(τ)

∆t,a,K

≤
∑
a∈D

⌈n
τ

⌉ 8ε ln(n ∧ τ)

∆a,K
,

where the last inequality is based on [30, Lemma 25].
Finally, together with Eqs. (4.29) to (4.31), (4.33) and (4.35), we get Theorem 4.2.

4.8 Additional Experiments

In this section, we compare CascadeDUCB, CascadeSWUCB and baselines on single
queries. We pick 20 queries and report the results in Fig. 4.2. The results exemplify that
CascadeDUCB and CascadeSWUCB have sub-linear regret while other baselines have
linear regret.

4.9 Conclusion

In this chapter, we have answered RQ3 by studying the Online Learning to Rank (OLTR)
problem in a non-stationary environment where user preferences change abruptly. We
focus on a widely-used user click behavior model Cascade Model (CM) and have
proposed an online learning variant of it called cascading non-stationary bandtis. Two
algorithms, CascadeDUCB and CascadeSWUCB, have been proposed for solving it.
Our theoretical have shown that they have sub-linear regret. These theoretical findings
have been confirmed by our experiments on the Yandex click dataset. We open several
future directions for non-stationary OLTR.

First, we have only considered the CM setup. Although a CM is powerful in
explanaining user behavior, it can only learn up to the first click, which may ignore
part of user feedback. Other click models that can handle multiple clicks such as
DCM [36] and DBN [20] may be considered as part of future work. We believe that our
analysis can be adapted to those cases easily. Second, we focus on UCB1-based policy
in building rankings. Another possibility is to use the family of softmax policies, which
has original been designed for adversarial bandits [10, 11]. Along this line, one may
obtain upper bounds independent from the number of breakpoints.

75

4. Cascade Non-Stationary Bandits

Figure 4.2: The n-step regret of CascadeDUCB (black), CascadeSWUCB (red),
RankedEXP3 (cyan), CascadeKL-UCB (green) and BubbleRank (blue) on single
queries in up to 100k steps. Lower is better. The x-axis is step n. The results are
averaged over 10 runs per query. The shaded regions represent standard errors of our
estimates.

76

5
Online Learning to Rank for Relevance

and Diversity

This chapter is devoted to answering the following question:

RQ4 How to learn a ranker online considering both relevance and diversity?

We study an online learning setting that aims to recommend a ranked list with K items
that maximizes the ranking utility, i.e., a list whose items are relevant and whose topics
are diverse. We formulate it as the cascade hybrid bandits (CHB) problem. CHB
assumes a cascading user behavior, where a user browses the displayed list from top
to bottom, clicks the first attractive item, and stops browsing the rest. We propose a
hybrid contextual bandit approach, called CascadeHybrid, for solving this problem.
CascadeHybrid models item relevance and topical diversity using two independent
functions and simultaneously learns those functions from user click feedback. We
conduct experiments to evaluate CascadeHybrid on two real-world recommendation
datasets: MovieLens and Yahoo music datasets. Our experimental results show that
CascadeHybrid outperforms the baselines. In addition, we prove theoretical guarantees
on the n-step performance demonstrating the soundness of CascadeHybrid.

5.1 Introduction

Ranking is at the heart of modern interactive systems, such as recommender and search
systems. Learning to rank (LTR) addresses the ranking problem in such systems by
using machine learning approaches [84]. Traditionally, LTR has been studied in an
offline fashion, in which human labeled data is required [84]. Human labeled data is
expensive to obtain, cannot capture future changes in user preferences, and may not
well align with user needs [40]. To circumvent these limitations, recent work has shifted
to learning directly from users’ interaction feedback, e.g., clicks [42, 50, 131].

User feedback is abundantly available in interactive systems and is a valuable source
for training online LTR algorithms [35]. When designing an algorithm to learn from this
source, three challenges need to be addressed: (1) The learning algorithm should address
position bias (the phenomenon that higher ranked items are more likely be observed than

This chapter was published as [78].

77

5. Online Learning to Rank for Relevance and Diversity

lower ranked items); (2) The learning algorithm should infer item relevance from user
feedback and recommend lists containing relevant items (relevance ranking); (3) The
recommended list should contain no redundant items and cover a broad range of topics
(result diversification).

To address the position bias, a common approach is to make assumptions on the
user’s click behavior and model the behavior using a click model [23]. The cascade
model (CM) [27] is a simple but effective click model to explain user behavior. It
makes the so-called cascade assumption, which assumes that a user browses the list
from the first ranked item to the last one and clicks on the first attractive item and then
stops browsing. The clicked item is considered to be positive, items before the click
are treated as negative and items after the click will be ignored. Previous work has
shown that the cascade assumption can explain the position bias effectively and several
algorithms have been proposed under this assumption [38, 65, 74, 133].

In online LTR, the implicit signal that is inferred from user interactions is noisy [40].
If the learning algorithm only learns from these signals, it may reach a suboptimal
solution where the optimal ranking is ignored simply because it is never exposed to
users. This problem can be tackled by exploring new solutions, where the learning
algorithm displays some potentially “good” rankings to users and obtains more signals.
This behavior is called exploration. However, exploration may hurt the user experience.
Thus, learning algorithms face an exploration vs. exploitation dilemma. Multi-armed
bandit (MAB) [9, 71] algorithms are commonly used to address this dilemma. Along
this line, multiple algorithms have been proposed [42, 77, 80]. They all address the
dilemma in elegant ways and aim at recommending the top-K most relevant items to
users. However, only recommending the most relevant items may result in a list with
redundant items, which diminishes the utility of the list and decreases user satisfaction [4,
120].

The submodular coverage model [91] can capture the pattern of diminishing utility
and has been used in online LTR for diversified ranking. One assumption in this line
of work is that items can be represented by a set of topics.1 The task, then, is to
recommend a list of items that ensures a maximal coverage of topics. Yue and Guestrin
[120] develop an online feature-based diverse LTR algorithm by optimizing submodular
utility models [120]. Hiranandani et al. [38] improve online diverse LTR by bringing
the cascading assumption into the objective function. However, we argue that not all
features that are used in a LTR setting can be represented by topics [84]. Previous
online diverse LTR algorithms tend to ignore the relevance of individual items and may
recommend a diversified list with less relevant items.

In this chapter, we address the aforementioned challenges and make four contribu-
tions:

(1) We focus on a novel online LTR setting that targets both relevance ranking
and result diversification. We formulate it as a Cascade Hybrid Bandits (CHB)
problem, where the goal is to select K items from a large candidate set that
maximize the utility of the ranked list (Section 5.3.1).

1In general, each topic may only capture a tiny aspect of the information of an item, e.g., a single phrase
of a news title or a singer of a song [4, 120].

78

5.2. Background

(2) We propose CascadeHybrid, which utilizes a hybrid model, to solve this prob-
lem (Section 5.3.3).

(3) We evaluate CascadeHybrid on two real-world recommendation datasets: Movie-
Lens and Yahoo and show that CascadeHybrid outperforms state-of-the-art base-
lines (Section 5.4).

(4) We theoretically analyze the performance of CascadeHybrid and provide guar-
antees on its proper behavior; moreover, we are the first to show that the regret
bounds on feature-based ranking algorithms with the cascade assumption are
linear in

√
K.

The rest of the chapter is organized as follows. We recapitulate the background knowl-
edge in Section 5.2. In Section 5.3, we formulate the learning problem and propose
our CascadeHybrid algorithm that optimizes both item relevance and list diversity. Sec-
tion 5.4 contains our empirical evaluations of CascadeHybrid, comparing it with several
state-of-the-art baselines. An analysis of the upper bound on the n-step performance
of CascadeHybrid is presented in Section 5.5. In Section 5.6, we review related work.
Conclusions are formulated in Section 5.7.

5.2 Background

In this section, we recapitulate the Cascade Model (CM), Cascading Bandits (CB),
and the submodular coverage model. Throughout the chapter, we consider the ranking
problem of L candidate items and K positions with K ≤ L. We denote {1, . . . , n} by
[n] and for the collection of items we write D = [L]. A ranked list contains K ≤ L
items and is denoted by R ∈ ΠK(D), where ΠK(D) is the set of all permutations
of K distinct items from the collection D. The item at the k-th position of the list is
denoted byR(k) and, ifR contains an item i, the position of this item inR is denoted
byR−1(i). All vectors are column vectors. We use bold font to indicate a vector and
bold font with a capital letter to indicate a matrix. We write Id to denote the d × d
identity matrix and 0d×m the d×m zero matrix.

5.2.1 Cascade model

Click models have been widely used to interpret user’s interactive click behavior;
cf. [23]. Briefly, a user is shown a ranked listR, and then browses the list and leaves
click feedback. Every click model makes unique assumptions and models a type of
user interaction behavior. In this chapter, we consider a simple but widely used click
model, the cascade model [27, 65, 74], which makes the cascade assumption about user
behavior. Under the cascade assumption, a user browses a ranked listR from the first
item to the last one by one and clicks the first attractive item. After the click, the user
stops browsing the remaining items. A click on an examined itemR(i) can be modeled
as a Bernoulli random variable with a probability of α(R(i)), which is also called the
attraction probability. Here, the Cascade Model (CM) assumes that each item attracts
the user independent of other items in R. Thus, the CM is parametrized by a set of

79

5. Online Learning to Rank for Relevance and Diversity

attraction probabilities α ∈ [0, 1]L. The examination probability of item R(i) is 1 if
i = 1, otherwise 1−

∏i−1
j=1(1− α(R(j))).

With the CM, we translate the implicit feedback to training labels as follows: Given
a ranked list, items ranked below the clicked item are ignored since none of them are
browsed. Items ranked above the clicked item are negative samples and the clicked item
is the positive sample. If no item is clicked, we know that all items are browsed but not
clicked. Thus, all of them are negative samples.

The vanilla CM is only able to capture the first click in a session, and there are
various extensions of CM to model multi-click scenarios; cf. [23]. However, we still
focus on the CM, because it has been shown in multiple publications that the CM
achieves good performance in both online and offline setups [23, 65, 77].

5.2.2 Cascading bandits
Cascading bandits (CB) are a type of online variant of the CM [65]. A CB is represented
by a tuple (D,K, P), where P is a binary distribution over {0, 1}L. The learning agent
interacts with the CB and learns from the feedback. At each step t, the agent generates
a ranked listRt ∈ ΠK(D) depending on observations in the previous t− 1 steps and
shows it to the user. The user browses the list with cascading behavior and leaves click
feedback. Since the CM accepts at most one click, we write ct ∈ [K + 1] as the click
indicator, where ct indicates the position of the click and ct = K + 1 indicates no
click. Let At ∈ {0, 1}L be the attraction indicator, where At is drawn from P and
At(Rt(i)) = 1 indicates that itemRt(i) attracts the user at step t. The number of clicks
at step t is considered as the reward and computed as follows:

r(Rt, At) = 1−
K∏
i=1

(1−At(Rt(i))). (5.1)

Then, we assume that the attraction indicators of items are distributed independently as
Bernoulli variables:

P (A) =
∏
i∈D

Pα(i)(A(i)), (5.2)

where Pα(i)(·) is the Bernoulli distribution with mean α(i). The expected number of
clicks at step t is computed as E [r(Rt, At)] = r(Rt,α). The goal of the agent is to
maximize the expected number of clicks in n steps or minimize the expected n-step
regret:

R(n) =

n∑
t=1

E
[

max
R∈ΠK(D)

r(R,α)− r(Rt, At)
]
. (5.3)

CB has several variants depending on assumptions on the attraction probability α.
Briefly, cascade linear bandits [133] assume that an item a is represented by a feature
vector za ∈ Rm and that the attraction probability of an item a to a user is a linear
combination of features: α(a) ≈ zTa β

∗, where β∗ ∈ Rm is an unknown parameter.
With this assumption, the attraction probability of an item is independent of other items
in the list, and this assumption is used in relevance ranking problems. CascadeLinUCB
has been proposed to solve this problem. For other problems, Hiranandani et al. [38]

80

5.2. Background

assume the attraction probability to be submodular, and propose CascadeLSB to solve
result diversification.

5.2.3 Submodular coverage model
Before we recapitulate the submodular function, we introduce two properties of a
diversified ranking. Different from the relevance ranking, in a diversified ranking,
the utility of an item depends on other items in the list. Suppose we focus on news
recommendation. Items that we want to rank are news itms, and each news item covers
a set of topics, e.g., weather, sports, politics, a celebrity, etc. We want to recommend a
list that covers a broad range of topics. Intuitively, adding a news item to a list does not
decrease the number of topics that are covered by the list, but adding a news item to a
list that covers highly overlapping topics might not bring much extra benefit to the list.
The first property can be thought of as a monotonicity property, and the second one is
the notion of diminishing gain in the utility. They can be captured by the submodular
function [120].

We introduce two properties of submodular functions. Let g(·) be a set function,
which maps a set to a real value. We say that g(·) is monotone and submodular if
given two item sets A and B, where B ⊆ A, and an item a, g(·) has the following two
properties:

monotonicity : g(A ∪ {a}) ≥ g(A);

submodularity : g(B ∪ {a})− g(B) ≥ g(A ∪ {a})− g(A).

In other words, the gain in utility of adding an item a to a subset of A is larger than
or equal to that of adding an item to A, and adding an item a to A does not decreases
the utility. Monotonicity and submodularity together provide a natural framework to
capture the properties of a diversified ranking. The shrewd reader may notice that a
linear function is a special case of submodular functions, where only the inequalities in
monotonicity and submodularity hold. However, as discussed above, the linear model
assumes that the attraction probability of an item is independent of other items: it cannot
capture the diminishing gain in the result diversification. In the rest of this section, we
introduce the probabilistic coverage model, which is a widely used submodular function
for result diversification [4, 7, 38, 94, 120].

Suppose that an item a ∈ D is represented by a d-dimensional vector xa ∈ [0, 1]d.
Each entry of the vector xa(j) describes the probability of item a covering topic j.
Given a list A, the probability of A covering topic j is

gj(A) = 1−
∏
a∈A

(1− xa(j)). (5.4)

The gain in topic coverage of adding an item a to A is:

∆(a | A) = (∆1(a | A), . . . ,∆d(a | A)), (5.5)

where ∆j(a | A) = gj(A ∪ {a})− gj(A). With this model, the attraction probability
of the i-th item in a ranked listR is defined as:

α(R(i)) = ωTR(i)θ
∗, (5.6)

81

5. Online Learning to Rank for Relevance and Diversity

whereωR(i) = ∆(R(i) | (R(1), . . . ,R(i−1))) and θ∗ is the unknown user preference
to different topics [38]. In Eq. (5.6), the attraction probability of an item depends on the
items ranked above it; α(R(i)) is small ifR(i) covers similar topics as higher ranked
items. CascadeLSB [38] has been proposed to solve cascading bandits with this type of
attraction probability and aims at building diverse ranked lists.

5.3 Algorithm

In this section, we first formulate our online learning to rank problem, and then propose
CascadeHybrid to solve it.

5.3.1 Problem formulation
We study a variant of cascading bandits, where the attraction probability of an item in a
ranked list depends on two aspects: item relevance and item novelty. Item relevance is
independent of other items in the list. Novelty of an item depends on the topics covered
by higher ranked items; a novel item brings a large gain in the topic coverage of the list,
i.e., a large value in Eq. (5.6). Thus, given a ranked listR, the attraction probability of
itemR(i) is defined as follows:

α(R(i)) = zTR(i)β
∗ + ωTR(i)θ

∗, (5.7)

where ωR(i) = ∆(R(i) | (R(1), . . . ,R(i − 1)) is the topic coverage gain discussed
in Section 5.2.3, and zR(i) ∈ Rm is the relevance feature, θ∗ ∈ Rd and β∗ ∈ Rm
are two unknown parameters that characterize the user preference. In other words, the
attraction probability is a hybrid of a modular (linear) function parameterized by β∗

and a submodular function parameterized by θ∗.
Now, we define our learning problem, Cascade Hybrid Bandits (CHB), as a tuple

(D,θ∗,β∗,K). Here, D = [L] is the item candidate set and each item a can be
represented by a feature vector [xTa , z

T
a]T , where xa ∈ [0, 1]d is the topic coverage of

item a discussed in Section 5.2.3. K is the number of positions. The action space for
the problem are all permutations of K individual items from D, ΠK(D). The reward of
an action at step t is the number of clicks, defined in Eq. (5.1). Together with Eqs. (5.1),
(5.2) and (5.7), the expectation of reward at step t is computed as follows:

E [r(Rt, At)] = 1−
∏
a∈Rt

(1− zTaβ
∗ − ωTa θ∗). (5.8)

In the rest of the chapter, we write r(Rt) = E [r(Rt, At)] for short. And the goal of
the learning agent is to maximize the reward or, equivalently, to minimize the n-step
regret defined as follow:

R(n) =

n∑
t=1

[
max

R∈ΠK(D)
r(R)− r(Rt)

]
. (5.9)

The previously proposed CascadeLinUCB [133] cannot solve CHB since it only handles
the linear part of the attraction probability. CascadeLSB [38] cannot solve CHB, either,

82

5.3. Algorithm

because it only uses one submodular function and handles the submodular part of the
attraction probability. Thus, we need to extend the previous models or, in other words,
propose a new hybrid model that can handle both linear and submodular properties in
the attraction probability.

5.3.2 Competing with a greedy benchmark
Finding the optimal set that maximizes the utility of a submodular function is an NP-
hard problem [91]. In our setup, the attraction probability of each item also depends on
the order in the list. To the best of our knowledge, we cannot find the optimal ranking

R∗ = arg max
R∈ΠK(D)

r(R) (5.10)

efficiently. Thus, we compete with a greedy benchmark that approximates the optimal
rankingR∗. The greedy benchmark chooses the items that have the highest attraction
probability given the higher ranked items: for any positions k ∈ [K],

R̃(k) = arg max
a∈D\{R̃(1),...,R̃(k−1)}

zTaβ
∗ + ωTa θ

∗, (5.11)

where R̃(k) is the ranked list generated by the benchmark.
This greedy benchmark has been used in previous literature [38, 120]. As shown

by Hiranandani et al. [38], in the CM, the greedy benchmark is at least a η-approximation
ofR∗. That is,

r(R̃) ≥ ηr(R∗), (5.12)

where η = (1− 1
e) max{ 1

K , 1−
K−1

2 αmax} with αmax = maxa∈D zTaβ
∗+ xTa θ

∗. In
the rest of the chapter, we focus on competing with this greedy benchmark.

5.3.3 CascadeHybrid
We propose CascadeHybrid to solve the CHB. As the name suggests, the algorithm
is a hybrid of a linear function and a submodular function. The linear function is
used to capture item relevance and the submodular function to capture diversity in
topics. CascadeHybrid has access to item features, [xTa , z

T
a]T , and uses the probabilistic

coverage model to compute the gains in topic coverage. The user preferences θ∗ and β∗

are unknown to CascadeHybrid. They are estimated from interactions with users. The
only tunable hyperparameter for CascadeHybrid is γ ∈ R+, which controls exploration:
a larger value of γ means more exploration.

The details of CascadeHybrid are provided in Algorithm 6. At the beginning of
each step t (line 5), CascadeHybrid estimates the user preference as θ̂t and β̂t based on
the previous t− 1 step observations. θ̂t and β̂t can be viewed as maximum likelihood
estimators on the rewards,2 where Mt,Ht,Bt and yt,ut summarize the features and
click feedback of all observed items in the previous t− 1 steps. Then, CascadeHybrid
builds the ranked list Rt, sequentially (lines 7–14). In particular, for each position k,

2The derivation is based on matrix block-wise inversion. We omit the derivation since it is not a major
contribution of this chapter.

83

5. Online Learning to Rank for Relevance and Diversity

Algorithm 6 CascadeHybrid

Input: γ
1: {Initialization}
2: H1 ← Id,u1 ← 0d,M1 ← Im,y1 ← 0m,B1 = 0d×m
3: for t = 1, 2, . . . , n do
4: {Estimate parameters}
5: θ̂t ← H−1

t ut, β̂t ←M−1
t (yt −BT

t H−1
t ut)

6: {Build ranked list}
7: S0 ← ∅
8: for k = 1, 2, . . .K do
9: for a ∈ D \ Sk−1 do

10: ωa ← ∆(xa|Sk−1) {Recalculate the topic coverage gain. }
11: µa ← Eq. (5.13) {Compute UCBs.}
12: atk ← arg max

a∈D\Sk−1

µa

13: Sk ← Sk−1 + atk
14: Rt = (at1, . . . , a

t
K) {Ranked list}

15: DisplayRt and observe click feedback ct ∈ [K + 1]
16: kt ← min(K, ct)
17: {Update statistics}
18: Ht ← Ht + BtM

−1
t BT

t , ut ← ut + BtM
−1
t yt

19: for a ∈ Rt(1 : kt) do
20: Mt+1 ←Mt + zaz

T
a , Bt+1 ← Bt + ωaz

T
a , Ht ← Ht + ωaω

T
a

21: if ct ≤ K then
22: yt+1 ← yt + zRt(ct), ut ← ut + ωRt(ct)
23: Ht+1 ← Ht −Bt+1M

−1
t+1B

T
t+1, ut+1 ← ut −Bt+1M

−1
t+1yt+1

we recalculate the topic coverage gain of each item (line 7). The new gains are used
to estimate the attraction probability of items. CascadeHybrid makes an optimistic
estimate of the attraction probability of each item (lines 9–11) and chooses the one with
the highest estimated attraction probability (line 12). This is known as the principle of
optimism in the face of uncertainty [9], and the estimator for an item a is called the
Upper Confidence Bound (UCB):

µa = ωTa θ̂t + zTa β̂t + γ
√
sa, (5.13)

with
sa =ωTa H−1

t ωa − 2ωTa H−1
t BtM

−1
t za + zaM

−1
t za+

zaM
−1
t BT

t H−1
t BtM

−1
t za.

(5.14)

Finally, CascadeHybrid displays the ranked listRt to the user and collects click feed-
back (lines 15–23). Since CascadeHybrid only accepts one click, we use ct ∈ [K + 1]
to indicate the position of the click;3 ct = K + 1 indicates that no item inRt is clicked.

3For multiple-click cases, we only consider the first click and keep the rest of CascadeHybrid the same.

84

5.4. Experiments

Figure 5.1: n-step regret on the MovieLens dataset with different λ. Results are averaged
over 500 users with 2 repeats per user. Lower regret means more clicks received by the
algorithm during the online learning. Shaded areas are the standard errors of estimates.

5.3.4 Computational complexity

The main computational cost of Algorithm 6 is incurred by computing matrix inverses,
which is cubic in the dimensions of the matrix. However, in practice, we can use the
Woodbury matrix identity [33] to update H−1

t and M−1
t instead of Ht and Mt, which

is square in the dimensions of the matrix. Thus, computing the UCB of each item
is O(m2 + d2). As CascadeHybrid greedily chooses K items out of L, the per-step
computational complexity of CascadeHybrid is O(LK(m2 + d2)).

5.4 Experiments

This section starts with the experimental setup, where we first introduce the datasets,
click simulator and baselines. After that we report our experimental results.

5.4.1 Experimental setup

Off-policy evaluation [80] is an approach to evaluate interaction algorithms without live
experiments. However, in our problem, the action space is exponential in K, which
is too large for commonly used off-policy evaluation methods. As an alternative, we

85

5. Online Learning to Rank for Relevance and Diversity

evaluate the CascadeHybrid in a simulated interaction environment, where the simulator
is built based on offline datasets. This is a commonly used evaluation setup in the
literature [38, 65, 133].

Datasets. We evaluate CascadeHybrid on two datasets: MovieLens 20M [37] and
Yahoo.4 The MovieLens dataset contains 20M ratings on 27k movies by 138k users,
with 20 genres.5 Each movie belongs to at least one genre. The Yahoo dataset contains
over 700M ratings of 136k songs given by 1.8M users and genre attributes of each song;
we consider the top level attribute, which has 20 different genres; each song belongs to
a single genre. All the ratings in the two datasets are on a 5-point scale. All movies and
songs are considered as items and genres are considered as topics.

Data preprocessing. We follow the data preprocessing approach in [38, 81, 133]. First,
we extract the 1k most active users and the 1k most rated items. Let U = [1000] be the
user set, and D = [1000] be the item set. Then, the ratings are mapped onto a binary
scale: rating 5 is converted to 1 and others to 0. After this mapping, in the MovieLens
dataset, about 7% of the user-item pairs get rating 1, and, in the Yahoo dataset, about
11% of user-item pairs get rating 1. Then, we use the matrix F ∈ {0, 1}|U|×|D| to
capture the converted ratings and G ∈ {0, 1}|D|×d to record the items and topics, where
d is the number of topics and each entry Gjk = 1 indicates that item j belongs to topic
k.

Click simulator. In our experiments, the click simulator follows the cascade assump-
tion, and considers both item relevance and diversity of the list. To design such a
simulator, we combine the simulators used in [81] and [38]. Because of the cascading
assumption, we only need to define the way of computing attraction probabilities of
items in a list.

We first divide the users into training and test groups evenly, i.e., Ftrain and Ftest.
The training group is used to estimate features of items used by online algorithms, while
the test group are used to define the click simulator. This is to mimic the real-world
scenarios that online algorithms estimate user preferences without knowing the perfect
topic coverage of items. Then, we follow [81] to obtain the relevance part of the
attraction probability, i.e., z and β∗, and the process in [38] to get the topic coverage of
items, x, and the user preferences on topics, θ∗.

In particular, the relevance features z are obtained by conducting singular-value
decomposition on Ftrain. We pick the 10 largest singular values and thus the dimension
of relevance features is m = 10. Then, we normalize each relevance feature by the
transformation: za ← za

‖za‖2
, where ‖za‖2 is the L2 norm of za. The user preference β∗

is computed by solving the least square on Ftest and then β∗ is normalized by the same
transformation. Note that ∀a ∈ D : zTaβ

∗ ∈ [0, 1], since ‖za‖2 = 1 and ‖β∗‖2 = 1.
Then, we follow the process in [38]. If item a belongs to topic j, we compute the

topic coverage of item a to topic j as the quotient of the number of users rating item a to

4R2 - Yahoo! Music User Ratings of Songs with Artist, Album, and Genre Meta Information, v.
1.0 https://webscope.sandbox.yahoo.com/catalog.php?datatype=r

5In both datasets, one of the 20 genres is called unknown.

86

https://webscope.sandbox.yahoo.com/catalog.php?datatype=r

5.4. Experiments

be attractive to the number of users who rate at least one item in topic j to be attractive:

xa,j =

∑
u∈U Fu,aGa,j∑

u∈U 1{∃a′ ∈ D : Fu,a′Ga′,j > 0}
. (5.15)

Given user u, the preference for topic j is computed as the number of items rated to be
attractive in topic j over the number of items in all topics rated by u to be attractive:

θ∗j =

∑
a∈D Fu,aGa,j∑

j′∈[d]

∑
a′∈D Fu,a′Ga′,j′

. (5.16)

For some cases, we may have ∃a :∼
∑
j∈[d] xa,j > 1 and thus xTa θ

∗ > 1. However,
given the high sparsity in our datasets, we have xTa θ

∗ ∈ [0, 1] for all items during our
experiments.

Finally, we combine the two parts and obtain the attraction probability used in our
click simulator. To simulate different types of user preferences, we introduce a trade-off
parameter λ ∈ [0, 1], which is unknown to online algorithms, and compute the attraction
probability of the ith item inR as follows:

α(R(i)) = λzTR(i)β
∗ + (1− λ)ωTR(i)θ

∗. (5.17)

By changing the value of λ, we simulate different types of user preference: a larger
value of λ means that the user prefers items to be relevant; a smaller value of λ means
that the user prefers the topics in the ranked list to be diverse.

Baselines. We compare CascadeHybrid to two online algorithms, each of which has
two configurations. In total, we have four baselines, namely CascadeLinUCB and
CascadeLinUCBFull [133], and CascadeLSB and CascadeLSBFull [38]. The first two
only consider relevance ranking. The differences are that CascadeLinUCB takes z as
the features, while CascadeLinUCBFull takes {x, z} as the features. CascadeLSB and
CascadeLSBFull only consider the result diversification, where CascadeLSB takes x
as features, while CascadeLSBFull takes {x, z} as features. CascadeLinUCBFull and
CascadeLinUCB are expected to perform well when λ→ 1, and that CascadeLSB and
CascadeLSBFull perform well when λ→ 0. For all baselines, we set the exploration
parameter γ = 1 and the learning rate to 1. This parameter setup is used in [120], which
leads to better empirical performance. We also set γ = 1 for CascadeHybrid.

We report the cumulative regret, Eq. (5.9), within 50k steps, called n-step regret.
The n-step regret is commonly used to evaluate bandit algorithms [38, 74, 120, 133]. In
our setup, it measures the difference in number of received clicks between the oracle
that knows the ideal β∗ and θ∗ and the online algorithm, e.g., CascadeHybrid, in n
steps. The lower regret means the more clicks received by the algorithm. We conduct
our experiments with 500 users from the test group and 2 repeats per user. In total, the
results are averaged over 1k repeats. We also include the standard errors of our estimates.
To show the impact of different factors on the performance of online LTR algorithms,
we choose λ ∈ {0.0, 0.1, . . . , 1.0}, the number of positions K ∈ {5, 10, 15, 20}, and
the number of topics d ∈ {5, 10, 15, 20}. For the number of topics d, we choose the
topics with the maximum number of items.

87

5. Online Learning to Rank for Relevance and Diversity

Figure 5.2: n-step regret on the MovieLens dataset with different topics d.

5.4.2 Experimental results

We first study the movie recommendation task on the MovieLens dataset and show
the results in Figs. 5.1 to 5.3. Fig. 5.1 shows the impact of λ, where we fix K = 10
and d = 20. λ is a trade-off parameter in our simulation. It balances the relevance
and diversity, and is unknown to online algorithms. Choosing a small λ, the simulated
user prefers recommended movies in the list to be relevant, while choosing a large λ,
the simulated user prefers the recommended movies to be diverse. As shown in the
top row, CascadeHybrid outperforms all baselines when λ ∈ {0.1, 0.2, . . . 0.8}, and
only loses to the particularly designed baselines (CascadeLSB and CascadeLinUCB)
with small gaps in some extreme cases where they benefit most. This is reasonable
since they have fewer parameters to be estimated than CascadeHybrid. In all cases,
CascadeHybrid has lower regret than CascadeLinUCBFull and CascadeLSBFull that
work with the same features as CascadeHybrid. This result indicates that including
more features in CascadeLSB and CascadeLinUCB is not sufficient to capture both item
relevance and result diversification.

Fig. 5.2 shows the impact of different numbers of topics, where we fix λ = 0.5
and K = 10. We see that CascadeHybrid outperforms all baselines with large gaps. In
the last plot of the middle row, we see that the gap of regret between CascadeHybrid
and CascadeLinUCBFull decreases with larger values of d. This is because, on the
MovieLens dataset, when d is small, a user tends to prefer a diverse ranked list: when
d is small, an item is more likely to belong to only one topic, and each entry of θ∗j

88

5.4. Experiments

Figure 5.3: n-step regret on the MovieLens dataset with positions K.

becomes relatively larger since
∑
j∈[d] θ

∗
j = 1. And given an item a and a set S,

the difference between ∆(a|S)Tθ∗ and ∆(a|∅)Tθ∗ is large. This behavior is also
confirmed by the fact that CascadeLinUCBFull outperforms CascadeLSBFull for large
dwhile they perform similarly for small d. Finally, we study the impact of the number of
positions on the regret. The results are displayed in Fig. 5.3, where we choose λ = 0.5
and d = 20. Again, we see that CascadeHybrid outperforms baselines with large gaps.

Next, we report the results on the Yahoo dataset in Figs. 5.4 to 5.6. We follow the
same setup as for the MovieLens dataset and observe a similar behavior. CascadeHybrid
has slightly higher regret than the best performing baselines in three cases: CascadeLSB
when λ = 0 and CascadeLinUCB when λ ∈ {0.9, 1}. Note that these are relatively
extreme cases, where the particularly designed baselines can benefit most. Meanwhile,
CascadeLSB and CascadeLinUCB do not generalize well with different λs. In all setups,
CascadeHybrid has lower regret than CascadeLSBFull and CascadeLinUCBFull, which
confirms our hypothesis that the hybrid model has benefit in capturing both relevance
and diversity.

89

5. Online Learning to Rank for Relevance and Diversity

Figure 5.4: n-step regret on the Yahoo dataset with different λ. Results are averaged
over 500 users with 2 repeats per user.

5.5 Analysis

5.5.1 Performance guarantee

Since CascadeHybrid competes with the greedy benchmark, we focus on the η-scaled
expected n-step regret which is defined as:

Rη(n) =

n∑
t=1

E [ηr(R∗,α)− r(Rt, At)] , (5.18)

where η = (1 − 1
e) max{ 1

K , 1 −
K−1

2 αmax}. This is a reasonable metric, since
computing the optimal R∗ is computationally inefficient. A similar scaled regret has
previously been used in diversity problems [38, 95, 120]. For simplicity, we write
w∗ = [θ∗T ,β∗T]T . Then, we bound the η-scaled regret of CascadeHybrid as follows:

Theorem 5.1. For ‖w∗‖2 ≤ 1 and any

γ ≥

√
(m+ d) log

(
1 +

nK

m+ d

)
+ 2 log(n) + ‖w∗‖2 , (5.19)

90

5.5. Analysis

Figure 5.5: n-step regret on the Yahoo dataset with different topics d.

we have

Rη(n) ≤ 2γ

√
2nK(m+ d) log

(
1 +

nK

m+ d

)
+ 1. (5.20)

Combining Eqs. (5.19) and (5.20), we have Rη(n) = Õ((m + d)
√
Kn), where the

Õ notation ignores logarithmic factors. Our bound has three characteristics: (i) The-
orem 5.1 states a gap-free bound, where the factor

√
n is considered near optimal;

(ii) This bound is linear in the number of features, which is a common dependence in
learning bandit algorithms [1]; and (iii) Our bound is Õ(

√
K) lower than other bounds

for linear bandit algorithms in CB [38, 133]. We include a proof of Theorem 5.1 in
Section 5.5.2. We use a similar strategy to decompose the regret as in [38, 133], but we
have a better analysis on how to sum up the regret of individual items. Thus, our bound
depends on Õ(

√
K) rather than Õ(K). We believe that our analysis can be applied

to both CascadeLinUCB and CascadeLSB, and then show that their regret is actually
bounded by Õ(

√
K) rather than Õ(K).

5.5.2 Proof of Theorem 5.1

We first define some additional notation. We write w∗ = [θ∗T ,β∗T]T . Given a
ranked list R and a = R(i), we write φa = [ωTa , z

T
a]T . With the φa and w∗ no-

tation, CascadeHybrid can be viewed as an extension of CascadeLSB, where two

91

5. Online Learning to Rank for Relevance and Diversity

Figure 5.6: n-step regret on the Yahoo dataset with different positions K.

submodular functions instead of one are used in a single model. We write Ot =
Im+d +

∑t−1
i=1

∑
a∈Oi φaφ

T
a as the collected features in t steps, Ht as the collected

features and clicks up to step t, and Ri = (R(1), . . . ,R(i)). Then, the confidence
bound in Eq. (5.14) on the i-th item inR can be re-written as:

s(Ri) = φTR(i)O
−1
t φR(i). (5.21)

Let Π(D) =
⋃L
i=1 Πi(D) be the set of all ranked lists of D with length [L], and

κ : Π(D) → [0, 1] be an arbitrary list function. For any R ∈ Π(D) and any κ, we
define

f(R, κ) = 1−
|R|∏
i=1

(1− κ(Ri)). (5.22)

We define upper and lower confidence bounds, and κ as:

ut(R) = F[0,1][φ
T
R(l)ŵt + s(Rl)]

lt(R) = F[0,1][φ
T
R(l)ŵt − s(Rl)]

κ(R) = φTR(l)w
∗,

(5.23)

where l = |R| and F[0,1][·] = max(0,min(1, ·)). With the definitions in Eq. (5.23),
f(R, κ) = r(R,α) is the reward of listR.

92

5.5. Analysis

Proof. Let gt = {lt(R) ≤ κ(R) ≤ ut(R),∀R ∈ Π(D)} be the event that the attrac-
tion probabilities are bounded by the lower and upper confidence bound, and ḡt be the
complement of gt. We have

E [ηr(R∗,α)− r(Rt,At)] = E [ηf(R∗, κ)− f(Rt, κ)]

(a)

≤ P (gt)E [ηf(R∗, κ)− f(Rt, κ)] + P (ḡt)

(b)

≤ P (gt)E [ηf(R∗, ut)− f(Rt, κ)] + P (ḡt)

(c)

≤ P (gt)E [f(Rt, ut)− f(Rt, κ)] + P (ḡt),

(5.24)

where (a) holds because E [ηf(R∗, κ)− f(Rt, κ)] ≤ 1, (b) holds because under event
gt we have f(R, lt) ≤ f(R, κ) ≤ f(R, ut), ∀R ∈ Π(D), and (c) holds by the
definition of the η-approximation, where we have

ηf(R∗, ut) ≤ max
R∈ΠK(D)

ηf(R, ut) ≤ f(Rt, ut). (5.25)

By the definition of the list function f(·, ·) in Eq. (5.22), we have

f(Rt, ut)− f(Rt, κ)

=

K∏
k=1

(1− κ(Rkt))−
K∏
k=1

(1− ut(Rkt))

(a)
=

K∑
k=1

[
k−1∏
i=1

(1− κ(Rit))

]
(ut(Rkt)− κ(Rkt))

 K∏
j=k+1

(1− u(Rjt))


(b)

≤
K∑
k=1

[
k−1∏
i=1

(1− κ(Rit))

]
(ut(Rkt)− κ(Rkt)),

(5.26)

where (a) follows from Lemma 1 in [133] and (b) is because of the fact that 0 ≤
κ(Rt) ≤ ut(Rt) ≤ 1. We then define the event hti = {itemRt(i) is observed},
where we have E

[
ind∼ hti

]
=
∏i−1
k=1(1− κ(Rkt)). For any Ht such that gt holds, we

have

E [f(Rt, ut)− f(Rt, κ) | Ht]

≤
K∑
i=1

E
[

ind∼ hti | Ht
]

(ut(Rit)− lt(Rit))

(a)

≤ 2γE

[
ind∼ hti

K∑
i=1

√
s(Rit) | Ht

]
(b)

≤ 2γE

min(K,ct)∑
i=1

√
s(Rit) | Ht

 ,
(5.27)

93

5. Online Learning to Rank for Relevance and Diversity

where inequality (a) follows from the definition of ut and lt in Eq. (5.23), and inequality
(b) follows from the definition of hti. Now, together with Eqs. (5.18) and (5.27)
and Section 5.5.2, we have

Rη(n) =

n∑
t=1

E [ηr(R∗,α)− r(Rt,At)]

≤
n∑
t=1

2γE

min(K,ct)∑
i=1

√
s(Rit) | gt

P (gt) + P (ḡt)


≤ 2γE

[
n∑
t=1

K∑
i=1

√
s(Rit)

]
+

n∑
t=1

p(ḡt).

(5.28)

For the first term in Eq. (5.28), we have

n∑
t=1

K∑
i=1

√
s(Rit)

(a)

≤

√√√√nK

n∑
t=1

K∑
i=1

s(Rit)
(b)

≤
√
nK2 log det(Ot), (5.29)

where inequality (a) follows from the Cauchy-Schwarz inequality and (b) follows from
Lemma 5 in [120]. Note that log det(Ot) ≤ (m+ d) log(K(1 + n/(m+ d))), which
can be obtained by the determinant and trace inequality, and together with Eq. (5.29):

n∑
t=1

K∑
i=1

√
s(Rit) ≤

√
2nK(m+ d) log(K(1 +

n

m+ d
)). (5.30)

For the second term in Eq. (5.28), by Lemma 3 in [38], we have P (ḡt) ≤ 1/n for any γ
that satisfies Eq. (5.19). Thus, together with Eqs. (5.28) to (5.30), we have

Rη(n) ≤ 2γ

√
2nK(m+ d) log(1 +

nK

m+ d
) + 1.

This concludes the proof of Theorem 5.1.

5.6 Related Work

The literature on offline Learning to Rank (LTR) methods that account for position bias
and diversity is too broad to review in detail. We refer readers to [3] for an overview. In
this section, we mainly review online LTR papers that are closely related to our work,
i.e., stochastic click bandit models.

Online LTR in a stochastic click models has been well-studied [58, 65, 74, 77, 81,
99, 106, 120, 132, 133]. Previous work can be categorized into two groups: feature-
free models and feature-rich models. Algorithms from the former group use a tabular
representation on items and maintain an estimator for each item. They learn inefficiently
and are limited to the problem with a small number of item candidates. In this chapter,
we focus on the ranking problem with a large number of items. Thus, we do not consider
feature-free model in the experiments.

94

5.7. Conclusion

Feature-rich models learn efficiently in terms of the number of items. They are
suitable for large-scale ranking problems. Among them, ranked bandits [99, 106] are
early approaches to online LTR. In ranked bandits, each position is model as a MAB
and diversity of results is addressed in the sense that items ranked at lower positions
are less likely to be clicked than those at higher positions, which is different from the
topical diversity as we study. Also, ranked bandits do not consider the position bias
and are suboptimal in the problem where a user browse different possition unevenly,
e.g., CM [65]. LSBGreedy [120] and C2UCB [95] use submodular functions to solve
the online diverse LTR problem. They assume that the user browses all displayed items
and, thus, do not consider the position bias either.

Our work is closely related to CascadeLinUCB [133] and CascadeLSB [38], the
baselines, and can be viewed as a combination of both. CascadeLinUCB solves the
relevance ranking in the CM and assumes the attraction probability is a linear com-
bination of features. CascadeLSB is designed for result diversification and assumes
that the attraction probability is computed as a submodular function; see Eq. (5.6). In
our CascadeHybrid, the attraction probability is a hybrid of both; see Eq. (5.7). Thus,
CascadeHybrid handles both relevance ranking and result diversification. RecurRank [81]
is a recently proposed algorithm that aims at learning the optimal list in term of item
relevance in most click models. However, to achieve this task, RecurRank requires a lot
of randomly shuffled lists and is outperformed by CascadeLinUCB in the CM [81].

The hybrid of a linear function and a submodular function has been used in solving
combinatorial semi-bandits. Perrault et al. [93] use a linear set function to model the
expected reward of arm, and use the submodular function to compute the exploration
bonus. This is different from our hybrid model, where both the linear and submodular
functions are used to model the attraction probability and the confident bound is used as
the exploration bonus.

5.7 Conclusion

In real world interactive systems, both relevance of individual items and topical diversity
of result lists are critical factors in user satisfaction. This chapter has provide one
solution to this problem, i.e., RQ4. In order to better meet users’ information needs, we
propose a novel online LTR algorithm that optimizes both factors in a hybrid fashion.
We formulate the problem as Cascade Hybrid Bandits (CHB), where the attraction
probability is a hybrid function that combines a function of relevance features and a
submodular function of topic features. CascadeHybrid utilizes a hybrid model as a
scoring function and the UCB policy for exploration. We provide a gap-free bound
on the η-scaled n-step regret of CascadeHybrid, and conduct experiments on two
real-world datasets. Our empirical study shows that CascadeHybrid outperforms two
existing online LTR algorithms that exclusively consider either relevance ranking or
result diversification.

In future work, we intend to conduct experiments on live systems, where feedback is
obtained from multiple users so as to test whether CascadeHybrid can learn across users.
Another direction is to adapt Thompson Sampling (TS) [111] to our hybrid model, since
TS generally outperforms UCB-based algorithms [79, 133].

95

6
Conclusions

We set up this thesis to study the online optimization of ranking systems as bandit
problems. We consider two typical ranking tasks: online ranker evaluation and online
learning to rank. A typical challenge in these tasks is that the feedback is implicit and
partially-observed. Specifically, in the online evaluation task, the feedback is the relative
comparison of two rankers; and in Online Learning to Rank (OLTR), the feedback is the
click but due to the position bias, the examination of each item is unobserved. In this
thesis, we have considered four research directions in the online ranker optimization and
formulated each of them as a bandit problem and proposed the corresponding algorithm.
In the rest of this chapter, we first summarize the main results of this thesis and then
outline some potential directions for future research.

6.1 Results

We first revisit the research questions that are asked in Section 1.1.

RQ1 How to conduct effective large-scale online ranker evaluation?

The question has been answered in Chapter 2, where we introduce the Thompson
Sampling (TS) based algorithm, called MergeDTS. Although in theory, the regret of
MergeDTS has the same order as some baselines, i.e., MergeRUCB and Self-Sparring,
MergeDTS outperforms those baselines with large gaps in our large-scale online ranker
evaluation experiments, as shown in Section 2.6. Specifically, we have conducted
experiments on three large-scale datasets, each of which has been combined with 3
different types of click behavior. MergeDTS has lower regret than the baselines in
7 out of 9 configurations, and only has slightly higher regret than Self-Sparring in 2
configurations. Meanwhile, the time efficiency of MergeDTS is better than that of
Self-Sparring.

To answer RQ1, we conduct an effective large-scale online ranker evaluation by
combining Thompson sampling and the divide-and-conquer idea in MergeRUCB.

RQ2 How to achieve safe online learning to re-rank?

Chapter 3 has provided one answer to this question, where the BubbleRank algorithm is
introduced. BubbleRank is inspired from by the bubble sort algorithm and the pairwise

97

6. Conclusions

comparison in dueling bandits. BubbleRank starts from the ranked list produced by
a production ranker, and conducts pairwise comparisons between an item with its
neighbors. To get rid of the position bias, the position of an item is randomly exchanged
with its neighbors, during the comparisons. Thus, during the exploration, an item
will not displayed too far from its original position. On the other hand, if one item
is considered better than its upper neighbor with a high confidence, the positions of
two items are exchanged permanently. The safety feature of BubbleRank has been
theoretically proved in Lemma 3.1. The n-step regret of BubbleRank is O(K3 log(n)),
where K is the number of ranking positions and n is the time horizon. This regret
bound is only O(K) higher than the regret of TopRank, the state-of-the-art but unsafe
baseline. We have conducted an empirical evaluation on a large-scale click dataset, the
Yandex click dataset, and the empirical results have confirmed the theoretical findings.

RQ3 How to conduct online learning to rank when users change their preference
constantly?

Our answer to this question has been provided in Chapter 4. Firstly, the considered
non-stationary OLTR problem has been formulated as a cascading non-stationary bandit
problem, where we assume that users follow the cascading browsing behavior. Then,
two algorithms, CascadeDUCB and CascadeSWUCB, have been proposed to solve this
problem. To deal with the non-stationarity, the former algorithm uses the discount
factor, and the latter uses a sliding window. The n-step regret of CascadeDUCB and
CascadeSWUCB is O(

√
n ln(n)) and O(

√
n ln(n)), respectively, where n is the time

horizon. They both match the lower bound up to logarithmic factors. Finally, we have
evaluated the proposed algorithms in a semi-synthetic experiment on the Yandex click
dataset. The experimental results are consistent with our theoretical findings.

RQ4 How to learning a ranker online considering both relevance and diversity?

This question is answered in Chapter 5. As a follow up to Chapter 4, the cascade click
model has also been used to interpret the click feedback. We have first formulated
the OLTR problem for relevance and diversity as a cascade hybrid bandit problem,
and then introduced the CascadeHybrid algorithm to solve the proposed problem. The
term hybrid comes from the fact that we use a linear function for relevance and a
submodular function for diversity. The n-step regret of the proposed CascadeHybrid is
with the form of Õ(

√
Kn), where Õ(·) ignores logarithmic terms, K is the number of

positions, and n is the time horizon. This bound is comparable to other linear bandit
approaches for OLTR. In our experiments, we have evaluated CascadeHybrid on two
tasks: movie recommendation on the MovieLens dataset and music recommendation
on the Yahoo music dataset. The experimental results indicate that with the underlying
hybrid model, CascadeHybrid learns a ranker that considers both item relevance and
result diversification.

6.2 Future Work

As with any research, this thesis has some limitations, and we believe that more questions
have been generated than answered by our results. in addition to the suggestions for

98

6.2. Future Work

future work provided at the end of each of the research chapters, we believe there are
two important future directions.

Beyond the linear model The proposed algorithms in this thesis are based on linear
or tabular models. Although they learn efficiently, the relatively low learning capacity
limits the application scenarios of these algorithms. To model more complicated
problems, it is appealing to consider non-linear models, e.g., tree-based models and deep
models, which have a more powerful learning capacity. However, training non-linear
models online with implicit feedback is not without difficulty. One of the challenges is
exploration with non-linear models.

Let us step back and take a look at the exploration strategies in this thesis, i.e.,
UCB and TS. They both require closed-form solutions of the underlying models to
estimate the reward of each arm. This requirement can easily be satisfied when linear or
tabular models are used. However, there are generally no closed-form solutions for non-
linear models. To use UCB and TS for non-linear models, additional approximation
methods, e.g., the Laplacian approximation, are required [101, 124], which can be
computationally expensive. On the other hand, ε-greedy is one of the basic exploration
strategies, and can be used for non-linear models. Although ε-greedy is far from optimal
in Multi-Armed Bandits (the tabular case) and linear bandits (the linear case), for some
non-linear bandit setups, ε-greedy is shown to be rather competitive [69, 101].

A more sophisticated policy is bootstrapped sampling or bootstrapping [67–69, 101].
Bootstrapping is a statistical technique that estimates the distribution of random variables
by conducting sampling with replacement. Thus, it can be used to estimate the variance
of the predictions of non-linear models. However, there is no conclusive study to
indicate which policy is the optimal one for the ranking task. We believe that it is an
interesting direction to study how to conduct exploration for non-linear OLTR.

Privacy This direction comes from the recently regulations on data protection, e.g.,
the General Data Protection Regulation (GDPR)1 by European Union and consumer
data protection in the White House report [47]. The algorithms we have proposed in
this thesis depend on the collection of user interaction data, which inevitably brings
privacy risks. One way to provide protection w.r.t. user privacy is federated learning
(FL) [13, 63, 75], where the learning happens on the local devices under the coordination
of a central server, called federator.

Importantly, federated learning is easily combined with randomization techniques
from differential privacy [28], and provides theoretically sound approaches to protect
user privacy. In federated learning, the private user data is not collected by any central
server but the learned model gradients are. Briefly, the federator maintains a global
model that is trained by the participating clients, e.g., local mobile devices. The training
goes in rounds. At the start of each round, the federator broadcasts the global model
to local clients. Each client trains the model based on the local dataset, and then sends
back the local gradient or the updated model to the federator. The federator updates
the global model according to all local updates. This process continues until a certain
termination criterion has been met, e.g., the loss stops dropping.

1https://gdpr-info.eu/

99

https://gdpr-info.eu/

6. Conclusions

Federated learning also works in an online fashion. That is, after each round, the
new global model is updated based on user requests. However, in FL, the update at
each round consists of several local updates, while in online learning, there is only one
update per round. To combine the two learning paradigms, we have to deal with batched
feedback or updates, which again brings new challenges to exploration. As federated
learning to rank is a rather new but important topic, we expect to see more algorithms
published in the future.

100

Bibliography

[1] Y. Abbasi-Yadkori, D. Pál, and C. Szepesvári. Improved algorithms for linear stochastic bandits. In
NIPS, pages 2312–2320, 2011. (Cited on page 91.)

[2] A. Agarwal, D. Hsu, S. Kale, J. Langford, L. Li, and R. Schapire. Taming the monster: A fast and
simple algorithm for contextual bandits. In ICML, pages II–1638–II–1646, 2014. (Cited on page 49.)

[3] C. C. Aggarwal. Recommender Systems: The Textbook. Springer, 2016. (Cited on page 94.)
[4] R. Agrawal, S. Gollapudi, A. Halverson, and S. Ieong. Diversifying search results. In WSDM, pages

5–14, 2009. (Cited on pages 78 and 81.)
[5] N. Ailon, Z. Karnin, and T. Joachims. Reducing dueling bandits to cardinal bandits. In Proceedings

of the 31st International Conference on International Conference on Machine Learning - Volume
32, ICML’14, pages II–856–II–864. JMLR.org, 2014. URL http://dl.acm.org/citation.
cfm?id=3044805.3044988. (Cited on pages 12, 13, 22, and 24.)

[6] J. Allan, D. Harman, E. Kanoulas, D. Li, C. Van Gysel, and E. Voorhees. TREC 2017 common core
track overview. TREC, 2017. (Cited on page 48.)

[7] A. Ashkan, B. Kveton, S. Berkovsky, and Z. Wen. Optimal greedy diversity for recommendation. In
IJCAI, pages 1742–1748, 2015. (Cited on page 81.)

[8] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. Schapire. Gambling in a rigged casino: The adversarial
multi-armed bandit problem. In FOCS, pages 322–331, 1995. (Cited on pages 67 and 68.)

[9] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed bandit problem.
Machine Learning, 47(2-3):235–256, May 2002. ISSN 0885-6125. doi: 10.1023/A:1013689704352.
URL https://doi.org/10.1023/A:1013689704352. (Cited on pages 11, 35, 46, 57, 78,
and 84.)

[10] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. The nonstochastic multiarmed bandit problem.
SIAM J. Comput., 32(1):48–77, Jan. 2003. ISSN 0097-5397. doi: 10.1137/S0097539701398375.
(Cited on pages 13 and 75.)

[11] O. Besbes, Y. Gur, and A. Zeevi. Stochastic multi-armed-bandit problem with non-stationary rewards.
In NIPS, 2014. (Cited on pages 58, 68, and 75.)

[12] D. Blackwell. An analog of the minimax theorem for vector payoffs. Pacific Journal of Mathematics,
6(1):1–8, November 1956. (Cited on page 68.)

[13] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V. Ivanov, C. Kiddon, J. Konečnỳ,
S. Mazzocchi, H. B. McMahan, et al. Towards federated learning at scale: System design. arXiv
preprint arXiv:1902.01046, 2019. (Cited on page 99.)

[14] B. Brost, Y. Seldin, I. J. Cox, and C. Lioma. Multi-dueling bandits and their application to online
ranker evaluation. In Proceedings of the 25th ACM International on Conference on Information and
Knowledge Management, CIKM’16, pages 2161–2166, New York, NY, USA, 2016. ACM. ISBN
978-1-4503-4073-1. doi: 10.1145/2983323.2983659. URL http://doi.acm.org/10.1145/
2983323.2983659. (Cited on pages 10 and 14.)

[15] C. J. Burges. From ranknet to lambdarank to lambdamart: An overview. Technical Report
MSR-TR-2010-82, June 2010. URL https://www.microsoft.com/en-us/research/
publication/from-ranknet-to-lambdarank-to-lambdamart-an-overview/.
(Cited on page 22.)

[16] R. Busa-Fekete and E. Hüllermeier. A survey of preference-based online learning with bandit
algorithms. In Proceedings of the 25th International Conference on Algorithmic Learning Theory,
ALT’14, pages 18–39, Heidelberg, Germany, 2014. Springer. doi: 10.1007/978-3-319-11662-4\ 3.
URL https://doi.org/10.1007/978-3-319-11662-4_3. (Cited on pages 10, 11, 12,
and 21.)

[17] G. Casella and R. L. Berger. Statistical Inference. Duxbury Pacific Grove, CA, 2002. (Cited on
pages 10 and 24.)

[18] N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and Games. Cambridge University Press, 2006.
(Cited on pages 42 and 68.)

[19] O. Chapelle and Y. Chang. Yahoo! learning to rank challenge overview. In Proceedings of the 2010
International Conference on Yahoo! Learning to Rank Challenge - Volume 14, YLRC’10, pages 1–
24. JMLR.org, 2010. URL http://dl.acm.org/citation.cfm?id=3045754.3045756.
(Cited on pages 1, 10, and 21.)

[20] O. Chapelle and Y. Zhang. A dynamic Bayesian network click model for web search ranking. In
WWW, pages 1–10, 2009. (Cited on pages 59 and 75.)

[21] O. Chapelle, T. Joachims, F. Radlinski, and Y. Yue. Large-scale validation and analysis of interleaved

101

http://dl.acm.org/citation.cfm?id=3044805.3044988
http://dl.acm.org/citation.cfm?id=3044805.3044988
https://doi.org/10.1023/A:1013689704352
http://doi.acm.org/10.1145/2983323.2983659
http://doi.acm.org/10.1145/2983323.2983659
https://www.microsoft.com/en-us/research/publication/from-ranknet-to-lambdarank-to-lambdamart-an-overview/
https://www.microsoft.com/en-us/research/publication/from-ranknet-to-lambdarank-to-lambdamart-an-overview/
https://doi.org/10.1007/978-3-319-11662-4_3
http://dl.acm.org/citation.cfm?id=3045754.3045756

6. Bibliography

search evaluation. ACM Trans. Inf. Syst., 30(1):6:1–6:41, Mar. 2012. ISSN 1046-8188. doi: 10.1145/
2094072.2094078. URL http://doi.acm.org/10.1145/2094072.2094078. (Cited on
page 9.)

[22] R.-C. Chen, L. Gallagher, R. Blanco, and J. S. Culpepper. Efficient cost-aware cascade ranking in
multi-stage retrieval. In SIGIR, pages 445–454, New York, NY, USA, 2017. ACM. (Cited on page 38.)

[23] A. Chuklin, I. Markov, and M. de Rijke. Click Models for Web Search. Morgan & Claypool,
2015. doi: 10.2200/S00654ED1V01Y201507ICR043. URL https://doi.org/10.2200/
S00654ED1V01Y201507ICR043. (Cited on pages 23, 35, 36, 48, 58, 59, 78, 79, and 80.)

[24] A. Chuklin, A. Schuth, K. Zhou, and M. de Rijke. A comparative analysis of interleaving methods
for aggregated search. ACM Trans. Inf. Syst., 33(2):5:1–5:38, Feb. 2015. ISSN 1046-8188. doi:
10.1145/2668120. URL http://doi.acm.org/10.1145/2668120. (Cited on page 9.)

[25] R. Combes, S. Magureanu, A. Proutiere, and C. Laroche. Learning to rank: Regret lower bounds and
efficient algorithms. In ACM SIGMETRICS, pages 231–244, 2015. (Cited on page 49.)

[26] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms, 3rd Edition.
MIT Press, 2009. (Cited on page 36.)

[27] N. Craswell, O. Zoeter, M. Taylor, and B. Ramsey. An experimental comparison of click position-bias
models. In WSDM, pages 87–94, 2008. (Cited on pages 3, 37, 45, 58, 59, 78, and 79.)

[28] C. Dwork, A. Roth, et al. The algorithmic foundations of differential privacy. Foundations and Trends
in Theoretical Computer Science, 9(3-4):211–407, 2014. (Cited on page 99.)

[29] P. Gajane, T. Urvoy, and F. Clérot. A relative exponential weighing algorithm for adversarial
utility-based dueling bandits. In Proceedings of the 32nd International Conference on Interna-
tional Conference on Machine Learning - Volume 37, ICML’15, pages 218–227. JMLR.org, 2015.
URL http://dl.acm.org/citation.cfm?id=3045118.3045143. (Cited on pages 12,
13, 23, and 24.)

[30] A. Garivier and E. Moulines. On upper-confidence bound policies for non-stationary bandit problems.
arXiv preprint arXiv:0805.3415, 2008. (Cited on pages 72 and 75.)

[31] A. Garivier and E. Moulines. On upper-confidence bound policies for switching bandit problems. In
ALT, pages 174–188, 2011. (Cited on pages 58, 62, 65, 66, 67, 68, 70, and 72.)

[32] D. Goldberg, A. Trotman, X. Wang, W. Min, and Z. Wan. Further insights on drawing sound
conclusions from noisy judgments. ACM Trans. Inf. Syst., 36(4):36:1–36:31, Apr. 2018. ISSN 1046-
8188. doi: 10.1145/3186195. URL http://doi.acm.org/10.1145/3186195. (Cited on
page 9.)

[33] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins, Baltimore, MD, 3 edition,
1996. (Cited on page 85.)

[34] B. Gomes. Google Instant, Behind the Scenes, 2010. https://googleblog.blogspot.no/
2010/09/google-instant-behind-scenes.html. (Cited on pages 25 and 28.)

[35] A. Grotov and M. de Rijke. Online learning to rank for information retrieval: Sigir 2016 tutorial. In
SIGIR, pages 1215–1218, 2016. (Cited on pages 2 and 77.)

[36] F. Guo, C. Liu, and Y. M. Wang. Efficient multiple-click models in web search. In WSDM, WSDM
’09, pages 124–131, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-390-7. doi: 10.1145/
1498759.1498818. URL http://doi.acm.org/10.1145/1498759.1498818. (Cited on
pages 45, 59, and 75.)

[37] F. M. Harper and J. A. Konstan. The movielens datasets: History and context. ACM Trans. Interact.
Intell. Syst., 5(4):19:1–19:19, 2015. (Cited on page 86.)

[38] G. Hiranandani, H. Singh, P. Gupta, I. A. Burhanuddin, Z. Wen, and B. Kveton. Cascading linear
submodular bandits: Accounting for position bias and diversity in online learning to rank. In UAI,
2019. (Cited on pages 4, 6, 78, 80, 81, 82, 83, 86, 87, 90, 91, 94, and 95.)

[39] W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the Ameri-
can Statistical Association, 58(301):13–30, 1963. URL https://www.jstor.org/stable/
2282952?seq=1. (Cited on pages 10 and 24.)

[40] K. Hofmann, S. Whiteson, and M. de Rijke. Balancing exploration and exploitation in learning to rank
online. In ECIR, pages 251–263, 2011. (Cited on pages 1, 77, and 78.)

[41] K. Hofmann, S. Whiteson, and M. de Rijke. A probabilistic method for inferring preferences from
clicks. In Proceedings of the 20th ACM International Conference on Information and Knowledge
Management, CIKM’11, pages 249–258, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-
0717-8. doi: 10.1145/2063576.2063618. URL http://doi.acm.org/10.1145/2063576.
2063618. (Cited on pages 1, 9, 21, 22, and 23.)

[42] K. Hofmann, A. Schuth, S. Whiteson, and M. de Rijke. Reusing historical interaction data for faster

102

http://doi.acm.org/10.1145/2094072.2094078
https://doi.org/10.2200/S00654ED1V01Y201507ICR043
https://doi.org/10.2200/S00654ED1V01Y201507ICR043
http://doi.acm.org/10.1145/2668120
http://dl.acm.org/citation.cfm?id=3045118.3045143
http://doi.acm.org/10.1145/3186195
https://googleblog.blogspot.no/2010/09/google-instant-behind-scenes.html
https://googleblog.blogspot.no/2010/09/google-instant-behind-scenes.html
http://doi.acm.org/10.1145/1498759.1498818
https://www.jstor.org/stable/2282952?seq=1
https://www.jstor.org/stable/2282952?seq=1
http://doi.acm.org/10.1145/2063576.2063618
http://doi.acm.org/10.1145/2063576.2063618

online learning to rank for IR. In WSDM, WSDM ’13, pages 183–192, New York, NY, USA, February
2013. ACM. doi: 10.1145/2433396.2433419. (Cited on pages 49, 77, and 78.)

[43] K. Hofmann, S. Whiteson, and M. de Rijke. Fidelity, soundness, and efficiency of interleaved
comparison methods. ACM Trans. Inf. Syst., 31(4):17:1–17:43, Nov. 2013. ISSN 1046-8188. doi: 10.
1145/2536736.2536737. URL http://doi.acm.org/10.1145/2536736.2536737. (Cited
on pages 9 and 23.)

[44] K. Hofmann, S. Whiteson, and M. Rijke. Balancing exploration and exploitation in listwise and
pairwise online learning to rank for information retrieval. Inf. Retr., 16(1):63–90, Feb. 2013. ISSN
1386-4564. doi: 10.1007/s10791-012-9197-9. URL http://dx.doi.org/10.1007/s10791-
012-9197-9. (Cited on page 1.)

[45] K. Hofmann, L. Li, and F. Radlinski. Online evaluation for information retrieval. Found. Trends
Inf. Retr., 10(1):1–117, June 2016. ISSN 1554-0669. doi: 10.1561/1500000051. URL https:
//doi.org/10.1561/1500000051. (Cited on page 9.)

[46] J. Honda and A. Takemura. An asymptotically optimal policy for finite support models in the
multiarmed bandit problem. volume 85, pages 361–391, Dec 2011. doi: 10.1007/s10994-011-5257-4.
URL https://doi.org/10.1007/s10994-011-5257-4. (Cited on page 13.)

[47] W. House. Consumer data privacy in a networked world: A framework for protecting privacy and
promoting innovation in the global digital economy. White House, Washington, DC, pages 1–62, 2012.
(Cited on page 99.)

[48] M. Ibrahim and M. Carman. Comparing pointwise and listwise objective functions for random-forest-
based learning-to-rank. ACM Trans. Inf. Syst., 34(4):20:1–20:38, Aug. 2016. ISSN 1046-8188. doi:
10.1145/2866571. URL http://doi.acm.org/10.1145/2866571. (Cited on page 9.)

[49] R. Jagerman, I. Markov, and M. de Rijke. When people change their mind: Off-policy evaluation in
non-stationary recommendation environments. In WSDM, pages 447–455, 2019. (Cited on pages 1, 3,
58, 60, and 67.)

[50] R. Jagerman, H. Oosterhuis, and M. de Rijke. To model or to intervene: A comparison of counterfactual
and online learning to rank from user interactions. In SIGIR, pages 15–24, 2019. (Cited on page 77.)

[51] K. Jamieson, S. Katariya, A. Deshpande, and R. Nowak. Sparse dueling bandits. In Proceedings of
the 18th International Conference on Artificial Intelligence and Statistics - Volume 38, AISTATS’15,
pages 416–424. PMLR, 2015. (Cited on page 12.)

[52] K. Järvelin and J. Kekäläinen. Cumulated gain-based evaluation of IR techniques. ACM Trans. Inf.
Syst., 20(4):422–446, 2002. (Cited on pages 1 and 48.)

[53] B. Jiang, C. Li, M. de Rijke, X. Yao, and H. Chen. Probabilistic feature selection and classification
vector machine. ACM Transactions on Knowledge Discovery from Data, 13(2):Article 21, April 2019.
(Cited on page 7.)

[54] T. Joachims. Optimizing search engines using clickthrough data. In SIGKDD, pages 133–142, 2002.
(Cited on pages 1, 35, and 57.)

[55] T. Joachims. Evaluating retrieval performance using clickthrough data. In Text Mining, pages 79–96.
2003. URL https://www.cs.cornell.edu/people/tj/publications/joachims_
02b.pdf. (Cited on page 9.)

[56] T. Joachims, L. Granka, B. Pan, H. Hembrooke, F. Radlinski, and G. Gay. Evaluating the accuracy of
implicit feedback from clicks and query reformulations in web search. ACM Trans. Inf. Syst., 25(2),
Apr. 2007. ISSN 1046-8188. doi: 10.1145/1229179.1229181. URL http://doi.acm.org/10.
1145/1229179.1229181. (Cited on page 9.)

[57] S. K. Karmaker Santu, P. Sondhi, and C. Zhai. On application of learning to rank for e-commerce
search. In SIGIR, pages 475–484, New York, NY, USA, 2017. (Cited on page 38.)

[58] S. Katariya, B. Kveton, C. Szepesvari, and Z. Wen. DCM bandits: Learning to rank with multiple
clicks. In ICML, pages 1215–1224, 2016. (Cited on pages 35, 45, 46, 49, 57, 68, and 94.)

[59] A. Kazerouni, M. Ghavamzadeh, Y. Abbasi, and B. Van Roy. Conservative contextual linear bandits.
In NIPS, pages 3913–3922, 2017. (Cited on page 50.)

[60] R. Kohavi, A. Deng, B. Frasca, T. Walker, Y. Xu, and N. Pohlmann. Online controlled experiments
at large scale. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’13, pages 1168–1176, New York, NY, USA, 2013. ACM. ISBN
978-1-4503-2174-7. doi: 10.1145/2487575.2488217. URL http://doi.acm.org/10.1145/
2487575.2488217. (Cited on pages 10, 12, and 28.)

[61] J. Komiyama, J. Honda, H. Kashima, and H. Nakagawa. Regret lower bound and optimal algorithm
in dueling bandit problem. In Proceedings of The 28th Conference on Learning Theory - Volume 40,
COLT’15, pages 1141–1154. PMLR, 03–06 Jul 2015. URL http://jmlr.org/proceedings/

103

http://doi.acm.org/10.1145/2536736.2536737
http://dx.doi.org/10.1007/s10791-012-9197-9
http://dx.doi.org/10.1007/s10791-012-9197-9
https://doi.org/10.1561/1500000051
https://doi.org/10.1561/1500000051
https://doi.org/10.1007/s10994-011-5257-4
http://doi.acm.org/10.1145/2866571
https://www.cs.cornell.edu/people/tj/publications/joachims_02b.pdf
https://www.cs.cornell.edu/people/tj/publications/joachims_02b.pdf
http://doi.acm.org/10.1145/1229179.1229181
http://doi.acm.org/10.1145/1229179.1229181
http://doi.acm.org/10.1145/2487575.2488217
http://doi.acm.org/10.1145/2487575.2488217
http://jmlr.org/proceedings/papers/v40/Komiyama15.html
http://jmlr.org/proceedings/papers/v40/Komiyama15.html

6. Bibliography

papers/v40/Komiyama15.html. (Cited on pages 12, 13, 14, and 23.)
[62] J. Komiyama, J. Honda, and H. Nakagawa. Copeland dueling bandit problem: Regret lower bound, op-

timal algorithm, and computationally efficient algorithm. In Proceedings of the 33rd International Con-
ference on International Conference on Machine Learning - Volume 48, ICML’16, pages 1235–1244.
JMLR.org, 2016. URL http://dl.acm.org/citation.cfm?id=3045390.3045521.
(Cited on pages 12 and 33.)

[63] J. Konečnỳ, H. B. McMahan, D. Ramage, and P. Richtárik. Federated optimization: Distributed
machine learning for on-device intelligence. arXiv preprint arXiv:1610.02527, 2016. (Cited on
page 99.)

[64] B. Kveton, Z. Wen, A. Ashkan, H. Eydgahi, and B. Eriksson. Matroid bandits: Fast combinatorial
optimization with learning. arXiv preprint arXiv:1403.5045, 2014. (Cited on pages 72 and 74.)

[65] B. Kveton, C. Szepesvari, Z. Wen, and A. Ashkan. Cascading bandits: Learning to rank in the cascade
model. In Proceedings of the 32nd International Conference on Machine Learning, pages 767–776,
2015. (Cited on pages 5, 35, 45, 46, 47, 49, 57, 58, 60, 63, 64, 65, 67, 68, 71, 73, 78, 79, 80, 86, 94,
and 95.)

[66] B. Kveton, Z. Wen, A. Ashkan, and C. Szepesvari. Combinatorial cascading bandits. In NIPS, pages
1450–1458, 2015. (Cited on page 49.)

[67] B. Kveton, C. Szepesvari, S. Vaswani, Z. Wen, T. Lattimore, and M. Ghavamzadeh. Garbage in, reward
out: Bootstrapping exploration in multi-armed bandits. In International Conference on Machine
Learning, pages 3601–3610. PMLR, 2019. (Cited on page 99.)

[68] B. Kveton, M. Mladenov, C.-W. Hsu, M. Zaheer, C. Szepesvari, and C. Boutilier. Differentiable
meta-learning in contextual bandits. arXiv preprint arXiv:2006.05094, 2020.

[69] B. Kveton, M. Zaheer, C. Szepesvari, L. Li, M. Ghavamzadeh, and C. Boutilier. Randomized
exploration in generalized linear bandits. In International Conference on Artificial Intelligence and
Statistics, pages 2066–2076, 2020. (Cited on page 99.)

[70] P. Lagrée, C. Vernade, and O. Cappe. Multiple-play bandits in the position-based model. In NIPS,
pages 1605–1613, 2016. (Cited on pages 35, 49, 57, and 68.)

[71] T. Lattimore and C. Szepesvári. Bandit Algorithms. Cambridge University Press, 2020. (Cited on
pages 2 and 78.)

[72] T. Lattimore, B. Kveton, S. Li, and C. Szepesvari. Toprank: A practical algorithm for online stochastic
ranking. In NIPS, pages 3945–3954, 2018. (Cited on pages 5, 36, 45, and 49.)

[73] C. Li and M. de Rijke. Incremental sparse bayesian ordinal regression. Neural Networks, 106:294–302,
October 2018. (Cited on page 7.)

[74] C. Li and M. de Rijke. Cascading non-stationary bandits: Online learning to rank in the non-stationary
cascade model. In IJCAI, pages 2859–2865, August 2019. (Cited on pages 6, 57, 78, 79, 87, and 94.)

[75] C. Li and H. Ouyang. Federated unbiased learning to rank. In SIGIR. ACM, July 2021. Submitted.
(Cited on pages 7 and 99.)

[76] C. Li, A. Grotov, I. Markov, and M. de Rijke. Online learning to rank with list-level feedback for
image filtering. arXiv preprint arXiv:1812.04910, December 2018. (Cited on page 7.)

[77] C. Li, B. Kveton, T. Lattimore, I. Markov, M. de Rijke, C. Szepesvári, and M. Zoghi. BubbleRank:
Safe online learning to re-rank via implicit click feedback. In UAI, July 2019. (Cited on pages 6, 11,
35, 57, 66, 78, 80, and 94.)

[78] C. Li, H. Feng, and M. de Rijke. Cascading hybrid bandits: Online learning to rank for relevance and
diversity. In RecSys, pages 33–42. ACM, September 2020. (Cited on pages 6 and 77.)

[79] C. Li, I. Markov, M. de Rijke, and M. Zoghi. MergeDTS: A method for effective large-scale online
ranker evaluation. ACM Transactions on Information Systems, 38(4):Article 40, August 2020. (Cited
on pages 6, 9, 62, and 95.)

[80] L. Li, W. Chu, J. Langford, and R. E. Schapire. A contextual-bandit approach to personalized news
article recommendation. In WWW, WWW ’10, pages 661–670, 2010. (Cited on pages 19, 49, 78,
and 85.)

[81] S. Li, T. Lattimore, and C. Szepesvári. Online learning to rank with features. In ICML, pages
3856–3865, 2019. (Cited on pages 86, 94, and 95.)

[82] F. Liu, J. Lee, and N. Shroff. A change-detection based framework for piecewise-stationary multi-
armed bandit problem. In AAAI, pages 3651–3658, 2018. (Cited on page 68.)

[83] S. Liu, F. Xiao, W. Ou, and L. Si. Cascade ranking for operational e-commerce search. arXiv preprint
arXiv:1706.02093, 2017. (Cited on pages 3 and 38.)

[84] T.-Y. Liu. Learning to rank for information retrieval. Foundations and Trends in Information Retrieval,
3(3):225–331, 2009. (Cited on pages 1, 2, 35, 57, 77, and 78.)

104

http://jmlr.org/proceedings/papers/v40/Komiyama15.html
http://jmlr.org/proceedings/papers/v40/Komiyama15.html
http://dl.acm.org/citation.cfm?id=3045390.3045521

[85] C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, F. Silvestri, and S. Trani. Post-learning op-
timization of tree ensembles for efficient ranking. In Proceedings of the 39th International ACM
SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’16, pages 949–952,
New York, NY, USA, 2016. Association for Computing Machinery. ISBN 9781450340694. doi:
10.1145/2911451.2914763. URL https://doi.org/10.1145/2911451.2914763. (Cited
on pages 10 and 21.)

[86] C. Lucchese, F. M. Nardini, R. K. Pasumarthi, S. Bruch, M. Bendersky, X. Wang, H. Oosterhuis,
R. Jagerman, and M. de Rijke. Learning to rank in theory and practice: From gradient boosting to
neural networks and unbiased learning. In SIGIR 2019: 42nd international ACM SIGIR conference on
Research and Development in Information Retrieval, pages 1419–1420, ACM, July 2019. (Cited on
page 1.)

[87] H. B. McMahan, G. Holt, D. Sculley, M. Young, D. Ebner, J. Grady, L. Nie, T. Phillips, E. Davydov,
D. Golovin, et al. Ad click prediction: a view from the trenches. In SIGKDD, pages 1222–1230, 2013.
(Cited on page 35.)

[88] A. Moffat, P. Bailey, F. Scholer, and P. Thomas. Incorporating user expectations and behavior into
the measurement of search effectiveness. ACM Trans. Inf. Syst., 35(3):24:1–24:38, June 2017. ISSN
1046-8188. doi: 10.1145/3052768. URL http://doi.acm.org/10.1145/3052768. (Cited
on page 9.)

[89] T. Moon, L. Li, W. Chu, C. Liao, Z. Zheng, and Y. Chang. Online learning for recency search ranking
using real-time user feedback. In CIKM, pages 1501–1504, 2010. (Cited on page 49.)

[90] K. Nelissen, M. Snoeck, S. V. Broucke, and B. Baesens. Swipe and tell: Using implicit feedback
to predict user engagement on tablets. ACM Trans. Inf. Syst., 36(4):35:1–35:36, June 2018. ISSN
1046-8188. doi: 10.1145/3185153. URL http://doi.acm.org/10.1145/3185153. (Cited
on page 9.)

[91] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations for maximizing
submodular set functions—i. Mathematical Programming, 14(1):265–294, 1978. (Cited on pages 78
and 83.)

[92] F. S. Pereira, J. Gama, S. de Amo, and G. M. Oliveira. On analyzing user preference dynamics with
temporal social networks. Machine Learning, 107(11):1745–1773, 2018. (Cited on page 58.)

[93] P. Perrault, V. Perchet, and M. Valko. Exploiting structure of uncertainty for efficient matroid semi-
bandits. In ICML, pages 5123–5132. PMLR, 2019. (Cited on page 95.)

[94] L. Qin and X. Zhu. Promoting diversity in recommendation by entropy regularizer. In IJCAI, pages
2698–2704, 2013. (Cited on page 81.)

[95] L. Qin, S. Chen, and X. Zhu. Contextual combinatorial bandit and its application on diversified online
recommendation. In SDM, pages 461–469, 2014. (Cited on pages 90 and 95.)

[96] T. Qin and T.-Y. Liu. Introducing LETOR 4.0 datasets. arXiv preprint arxiv:1306.2597, 2013. URL
https://arxiv.org/abs/1306.2597. (Cited on pages 1, 10, and 21.)

[97] T. Qin, T.-Y. Liu, J. Xu, and H. Li. Letor: A benchmark collection for research on learning to rank for
information retrieval. Information Retrieval, 13(4):346–374, 2010. (Cited on pages 1, 35, and 57.)

[98] F. Radlinski and T. Joachims. Minimally invasive randomization for collecting unbiased preferences
from clickthrough logs. In AAAI, pages 1406–1412, 2006. (Cited on page 36.)

[99] F. Radlinski, R. Kleinberg, and T. Joachims. Learning diverse rankings with multi-armed bandits. In
ICML, pages 784–791, 2008. (Cited on pages 35, 49, 57, 67, 68, 94, and 95.)

[100] M. Richardson, E. Dominowska, and R. Ragno. Predicting clicks: Estimating the click-through rate
for new ads. In WWW, pages 521–530, 2007. (Cited on page 37.)

[101] C. Riquelme, G. Tucker, and J. Snoek. Deep bayesian bandits showdown: An empirical comparison of
bayesian deep networks for thompson sampling. arXiv preprint arXiv:1802.09127, 2018. (Cited on
page 99.)

[102] A. Saha and A. Gopalan. Battle of bandits. In Proceedings of the 34th Conference on Uncer-
tainty in Artificial Intelligence, UAI’18. AUAI.org, 2018. URL http://auai.org/uai2018/
proceedings/papers/290.pdf. (Cited on page 14.)

[103] T. Saracevic. Relevance: A review of and a framework for the thinking on the notion in information
science. J. Am. Soc. Inform. Sci., 26(6):321–343, 1975. (Cited on page 1.)

[104] A. Schuth, K. Hofmann, S. Whiteson, and M. de Rijke. Lerot: An online learning to rank framework.
In Proceedings of the 2013 Workshop on Living Labs for Information Retrieval Evaluation, LivingLab
’13, pages 23–26, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2420-5. doi: 10.1145/2513150.
2513162. URL http://doi.acm.org/10.1145/2513150.2513162. (Cited on page 23.)

[105] A. Slivkins and E. Upfal. Adapting to a changing environment: the brownian restless bandits. In

105

https://doi.org/10.1145/2911451.2914763
http://doi.acm.org/10.1145/3052768
http://doi.acm.org/10.1145/3185153
https://arxiv.org/abs/1306.2597
http://auai.org/uai2018/proceedings/papers/290.pdf
http://auai.org/uai2018/proceedings/papers/290.pdf
http://doi.acm.org/10.1145/2513150.2513162

6. Bibliography

COLT, pages 343–354, 2008. (Cited on page 68.)
[106] A. Slivkins, F. Radlinski, and S. Gollapudi. Learning optimally diverse rankings over large document

collections. In ICML, pages 983–990, 2010. (Cited on pages 94 and 95.)
[107] A. Slivkins, F. Radlinski, and S. Gollapudi. Ranked bandits in metric spaces: Learning diverse rankings

over large document collections. JMLR, 14(1):399–436, 2013. (Cited on page 49.)
[108] A. Strehl, J. Langford, L. Li, and S. M. Kakade. Learning from logged implicit exploration data. In

NIPS, pages 2217–2225, 2010. (Cited on page 49.)
[109] Y. Sui, V. Zhuang, J. W. Burdick, and Y. Yue. Multi-dueling bandits with dependent arms. In

Proceedings of the 33rd Conference on Uncertainty in Artificial Intelligence, UAI’17. AUAI.org, 2017.
URL http://auai.org/uai2017/proceedings/papers/155.pdf. (Cited on pages 5,
12, 13, 14, 22, 23, 24, and 26.)

[110] Y. Sui, M. Zoghi, K. Hofmann, and Y. Yue. Advancements in dueling bandits. In Proceedings
of the 27th International Joint Conference on Artificial Intelligence, IJCAI’18, pages 5502–5510.
AAAI Press, 2018. ISBN 978-0-9992411-2-7. URL http://dl.acm.org/citation.cfm?
id=3304652.3304790. (Cited on page 11.)

[111] W. R. Thompson. On the likelihood that one unknown probability exceeds another in view of the
evidence of two samples. Biometrika, 25:285–294, 1933. URL https://www.jstor.org/
stable/pdf/2332286.pdf?seq=1. (Cited on pages 2, 10, 36, and 95.)

[112] T. Urvoy, F. Clerot, R. Féraud, and S. Naamane. Generic exploration and k-armed voting bandits. In
Proceedings of the 30th International Conference on International Conference on Machine Learn-
ing - Volume 28, ICML’13, pages II–91–II–99. JMLR.org, 2013. URL http://dl.acm.org/
citation.cfm?id=3042817.3042904. (Cited on pages 12, 22, and 29.)

[113] A. Vorobev, D. Lefortier, G. Gusev, and P. Serdyukov. Gathering additional feedback on search results
by multi-armed bandits with respect to production ranking. In WWW, pages 1177–1187, 2015. (Cited
on pages 36 and 49.)

[114] X. Wang, N. Golbandi, M. Bendersky, D. Metzler, and M. Najork. Position bias estimation for unbiased
learning to rank in personal search. In WSDM, pages 610–618, 2018. (Cited on pages 36 and 49.)

[115] H. Wu and X. Liu. Double Thompson sampling for dueling bandits. In Proceedings of the 30th
International Conference on Neural Information Processing Systems, NIPS’16, pages 649–657, USA,
2016. Curran Associates Inc. ISBN 978-1-5108-3881-9. URL http://dl.acm.org/citation.
cfm?id=3157096.3157169. (Cited on pages 5, 10, 12, 13, 22, 23, 26, and 31.)

[116] Q. Wu, N. Iyer, and H. Wang. Learning contextual bandits in a non-stationary environment. In SIGIR,
pages 495–504, 2018. (Cited on page 58.)

[117] Y. Wu, R. Shariff, T. Lattimore, and C. Szepesvári. Conservative bandits. In ICML, pages 1254–1262,
2016. (Cited on page 50.)

[118] Y. Yan, Z. Liu, M. Zhao, W. Guo, W. P. Yan, and Y. Bao. A practical deep online ranking system in
e-commerce recommendation. In ECML PKDD, pages 186–201, 2018. (Cited on page 49.)

[119] J. Y. Yu and S. Mannor. Piecewise-stationary bandit problems with side observations. In ICML, 2009.
(Cited on pages 58 and 68.)

[120] Y. Yue and C. Guestrin. Linear submodular bandits and their application to diversified retrieval. In
NIPS, pages 2483–2491, 2011. (Cited on pages 4, 35, 78, 81, 83, 87, 90, 94, and 95.)

[121] Y. Yue and T. Joachims. Interactively optimizing information retrieval systems as a dueling ban-
dits problem. In ICML, ICML ’09, pages 1201–1208, New York, NY, USA, 2009. ACM. ISBN
978-1-60558-516-1. doi: 10.1145/1553374.1553527. URL http://doi.acm.org/10.1145/
1553374.1553527. (Cited on pages 1 and 19.)

[122] Y. Yue and T. Joachims. Beat the mean bandit. In Proceedings of the 28th International Conference
on International Conference on Machine Learning, ICML’11, pages 241–248, USA, 2011. Omni-
press. ISBN 978-1-4503-0619-5. URL http://dl.acm.org/citation.cfm?id=3104482.
3104513. (Cited on pages 22 and 23.)

[123] Y. Yue, J. Broder, R. Kleinberg, and T. Joachims. The k-armed dueling bandits problem. J. Comput.
Syst. Sci., 78(5):1538–1556, Sept. 2012. ISSN 0022-0000. doi: 10.1016/j.jcss.2011.12.028. URL
http://dx.doi.org/10.1016/j.jcss.2011.12.028. (Cited on page 10.)

[124] D. Zhou, L. Li, and Q. Gu. Neural contextual bandits with upper confidence bound-based exploration.
arXiv preprint arXiv:1911.04462, 2019. (Cited on page 99.)

[125] J. Zimmert and Y. Seldin. An optimal algorithm for stochastic and adversarial bandits. In K. Chaudhuri
and M. Sugiyama, editors, Proceedings of Machine Learning Research, volume 89 of Proceedings of
Machine Learning Research, pages 467–475. PMLR, 16–18 Apr 2019. (Cited on page 13.)

[126] M. Zoghi. Dueling Bandits for Online Ranker Evaluation. PhD thesis, University of

106

http://auai.org/uai2017/proceedings/papers/155.pdf
http://dl.acm.org/citation.cfm?id=3304652.3304790
http://dl.acm.org/citation.cfm?id=3304652.3304790
https://www.jstor.org/stable/pdf/2332286.pdf?seq=1
https://www.jstor.org/stable/pdf/2332286.pdf?seq=1
http://dl.acm.org/citation.cfm?id=3042817.3042904
http://dl.acm.org/citation.cfm?id=3042817.3042904
http://dl.acm.org/citation.cfm?id=3157096.3157169
http://dl.acm.org/citation.cfm?id=3157096.3157169
http://doi.acm.org/10.1145/1553374.1553527
http://doi.acm.org/10.1145/1553374.1553527
http://dl.acm.org/citation.cfm?id=3104482.3104513
http://dl.acm.org/citation.cfm?id=3104482.3104513
http://dx.doi.org/10.1016/j.jcss.2011.12.028

Twente, 2017. URL https://research.utwente.nl/en/publications/dueling-
bandits-for-online-ranker-evaluation. (Cited on pages 1, 2, 10, 11, and 21.)

[127] M. Zoghi, S. Whiteson, R. Munos, and M. de Rijke. Relative upper confidence bound for the k-armed
dueling bandit problem. In Proceedings of the 31st International Conference on International Confer-
ence on Machine Learning - Volume 32, volume II of ICML’14, pages II–10–II–18. JMLR.org, 2014.
URL http://dl.acm.org/citation.cfm?id=3044805.3044894. (Cited on pages 12,
13, 24, and 57.)

[128] M. Zoghi, S. A. Whiteson, M. de Rijke, and R. Munos. Relative confidence sampling for efficient
on-line ranker evaluation. In Proceedings of the 7th ACM International Conference on Web Search
and Data Mining, WSDM ’14, pages 73–82, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-
2351-2. doi: 10.1145/2556195.2556256. URL http://doi.acm.org/10.1145/2556195.
2556256. (Cited on pages 10, 12, 21, 23, and 30.)

[129] M. Zoghi, Z. Karnin, S. Whiteson, and M. de Rijke. Copeland dueling bandits. In Proceedings of the
28th International Conference on Neural Information Processing Systems - Volume 1, NIPS’15, pages
307–315, Cambridge, MA, USA, 2015. MIT Press. URL http://dl.acm.org/citation.
cfm?id=2969239.2969274. (Cited on pages 12, 22, and 31.)

[130] M. Zoghi, S. Whiteson, and M. de Rijke. Mergerucb: A method for large-scale online ranker evaluation.
In Proceedings of the 8th ACM International Conference on Web Search and Data Mining, WSDM ’15,
pages 17–26, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3317-7. doi: 10.1145/2684822.
2685290. URL http://doi.acm.org/10.1145/2684822.2685290. (Cited on pages 2, 5,
10, 12, 14, 18, 19, 21, 22, 23, 24, and 26.)

[131] M. Zoghi, T. Tunys, L. Li, D. Jose, J. Chen, C. M. Chin, and M. de Rijke. Click-based hot fixes for
underperforming torso queries. In SIGIR, pages 195–204. ACM, 2016. (Cited on pages 1, 35, 38, 49,
57, and 77.)

[132] M. Zoghi, T. Tunys, M. Ghavamzadeh, B. Kveton, C. Szepesvari, and Z. Wen. Online learning to rank
in stochastic click models. In ICML, pages 4199–4208, 2017. (Cited on pages 5, 35, 36, 37, 40, 41,
45, 46, 47, 49, 57, 58, 59, 66, 67, 68, and 94.)

[133] S. Zong, H. Ni, K. Sung, N. R. Ke, Z. Wen, and B. Kveton. Cascading bandits for large-scale
recommendation problems. In UAI, pages 835–844, 2016. (Cited on pages 6, 49, 78, 80, 82, 86, 87,
91, 93, 94, and 95.)

107

https://research.utwente.nl/en/publications/dueling-bandits-for-online-ranker-evaluation
https://research.utwente.nl/en/publications/dueling-bandits-for-online-ranker-evaluation
http://dl.acm.org/citation.cfm?id=3044805.3044894
http://doi.acm.org/10.1145/2556195.2556256
http://doi.acm.org/10.1145/2556195.2556256
http://dl.acm.org/citation.cfm?id=2969239.2969274
http://dl.acm.org/citation.cfm?id=2969239.2969274
http://doi.acm.org/10.1145/2684822.2685290

Summary

People use interactive systems, such as search engines, as the main tool to obtain
information. To satisfy the information needs, such systems usually provide a list of
items that are selected out of a large candidate set and then sorted in the decreasing
order of their usefulness. The result lists are generated by a ranking algorithm, called
ranker, which takes the request of user and candidate items as the input and decides
the order of candidate items. The quality of these systems depends on the underlying
rankers.

There are two main approaches to optimize the ranker in an interactive system: using
data annotated by humans or using the interactive user feedback. The first approach has
been widely studied in history, also called offline learning to rank, and is the industry
standard. However, the annotated data may not well represent information needs of
users and are not timely. Thus, the first approaches may lead to suboptimal rankers. The
second approach optimizes rankers by using interactive feedback. This thesis considers
the second approach, learning from the interactive feedback. The reasons are two-fold:
(1) Everyday, millions of users interact with the interactive systems and generate a
huge number of interactions, from which we can extract the information needs of users.
(2) Learning from the interactive data have more potentials to assist in designing the
online algorithms.

Specifically, this thesis considers the task of learning from the user click feedback.
The main contribution of this thesis is proposing a safe online learning to re-rank
algorithm, named BubbleRank, which addresses one main disadvantage of online
learning, i.e., the safety issue, by combining the advantages of both offline and online
learning to rank algorithms. The thesis also proposes three other online algorithms,
each of which solves unique online ranker optimization problems. All the proposed
algorithms are theoretically sound and empirically effective.

109

Samenvatting

Mensen gebruiken interactiesystemen, zoals een zoekmachine, als hun belangrijkste
hulpmiddel om informatie te verkrijgen. Om aan de informatiebehoefte te voldoen,
bieden dergelijke zoekmachines meestal een lijst met items aan. Deze items zijn
geselecteerd uit een grote set van kandidaten en zijn vervolgens gesorteerd in afnemende
volgorde van relevantie. Deze resultatenlijst wordt gegenereerd door een ranking-
algoritme, ranker genaamd, dat de informatiebehoefte van de gebruiker en de kandidaat-
items als input neemt en vervolgens de volgorde van de kandidaat-items bepaalt. De
kwaliteit van deze systemen is afhankelijk van de onderliggende rankers.

Er zijn twee belangrijke benaderingen om de rankers in een interactiesysteem te
optimaliseren: De eerste manier is door gebruik te maken van de gegevens die door
mensen zijn geannoteerd. De tweede is door gebruik te maken van de interactie-feedback
van gebruikers. De eerste benadering is uitgebreid bestudeerd, ook wel bekend als
offline-learning-to-rank, en is de standaard binnen de industrie. Echter, geannoteerde
gegevens geven mogelijk niet de juiste informatiebehoeften van de gebruikers weer en
zijn niet actueel. De eerste benadering kan dus leiden tot sub-optimale rankers. De
tweede benadering optimaliseert rankers door gebruik te maken van interactie-feedback.
Dit proefschrift behandelt de tweede benadering. Namelijk, het leren van feedback
van gebruikers-interactie. De redenen zijn tweeledig: (1) Elke dag hebben miljoenen
gebruikers interactie met interactie-systemen waarmee zij een enorm aantal interacties
genereren. Uit deze interactie-data van de gebruikers kan de informatiebehoeften van
de gebruikers worden afgeleid. (2) Het leren van de interactie-gegevens biedt meer
mogelijkheden bij het ontwerpen van de online-algoritmen.

Dit proefschrift gaat specifiek in op de taak om te leren van feedback van gebruikers
op basis van clicks. De belangrijkste bijdrage van dit proefschrift is het introduceren
van een algoritme voor veilig online learning to re-rank, genaamd BubbleRank, dat
een belangrijk nadeel van online leren aanpakt, namelijk het veiligheidsprobleem. Het
doet dit door de voordelen van zowel offline als online learning to rank te combineren.
Het proefschrift stelt ook drie andere online algoritmen voor, die elk een uniek opti-
malisatieprobleem voor online rankers oplossen. Alle voorgestelde algoritmen zijn
theoretisch correct en empirisch effectief.

111

	Introduction
	Research Outline and Questions
	Main Contributions
	Thesis Overview
	Origins

	Effective Large-Scale Online Ranker Evaluation
	Introduction
	Problem Setting
	Related Work
	Algorithm
	MergeDTS
	Theoretical guarantees
	Discussion

	Experimental Setup
	Research questions
	Datasets
	Evaluation methodology
	Click simulation
	Baselines
	Parameters
	Metrics

	Experimental Results
	Large-scale experiments
	Computational scalability
	Impact of noise
	Cycle experiment
	Beyond the Condorcet assumption
	Parameter sensitivity

	Conclusion

	Safe Online Learning to Re-Rank
	Introduction
	Background
	Click models
	Stochastic click bandit

	Online Learning to Re-Rank
	Algorithm

	Theoretical Analysis
	Regret bound
	Safety
	Discussion
	Proof of uai:thm:upper bound

	Experimental Results
	Experimental setup
	Results with regret
	Safety results
	Sanity check on regret bound
	Results with NDCG

	Related Work
	Lemmas
	Conclusions

	Cascade Non-Stationary Bandits
	Introduction
	Background
	Cascade model
	Cascading bandits

	Cascading Non-Stationary Bandits
	Problem setup
	Algorithms

	Analysis
	Regret upper bound
	Regret lower bound
	Discussion

	Experimental Analysis
	Related Work
	Proofs
	Proof of ijcai:th:upperboundcascadeducb
	Proof of ijcai:th:upperboundcascadeswucb

	Additional Experiments
	Conclusion

	Online Learning to Rank for Relevance and Diversity
	Introduction
	Background
	Cascade model
	Cascading bandits
	Submodular coverage model

	Algorithm
	Problem formulation
	Competing with a greedy benchmark
	CascadeHybrid
	Computational complexity

	Experiments
	Experimental setup
	Experimental results

	Analysis
	Performance guarantee
	Proof of th: regret

	Related Work
	Conclusion

	Conclusions
	Results
	Future Work

	Bibliography
	Summary
	Samenvatting

