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Abstract—Query auto completion (QAC) methods recommend queries to search engine users when they start entering a query.

Current QAC methods mostly rank query completions based on their past popularity, i.e., on the number of times they have previously

been submitted as a query. However, query popularity changes over time and may vary drastically across users. Accordingly, the

ranking of query completions should be adjusted. Previous time-sensitive and user-specific QAC methods have been developed

separately, yielding significant improvements over methods that are neither time-sensitive nor personalized. We propose a hybrid QAC

method that is both time-sensitive and personalized. We extend it to handle long-tail prefixes, which we achieve by assigning optimal

weights to the contribution from time-sensitivity and personalization. Using real-world search log datasets, we return topN query

suggestions ranked by predicted popularity as estimated from popularity trends and cyclic popularity behavior; we rerank them by

integrating similarities to a user’s previous queries (both in the current session and in previous sessions). Our method outperforms

state-of-the-art time-sensitive QAC baselines, achieving total improvements of between 3 and 7 percent in terms of mean reciprocal

rank (MRR). After optimizing the weights, our extended model achieves MRR improvements of between 4 and 8 percent.

Index Terms—Query auto completion, personalization, time-sensitive, long-tail, web search
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1 INTRODUCTION

QUERY auto completion (QAC) helps users formulate a
query and improve the search quality. Currently,

common search engines and popular online properties, e.g.,
online shopping sites and email services, provide a QAC
service. As a user enters a prefix in the search box, matching
completions may appear below the search box as a drop-
down menu with the typed characters highlighted in each
completion. These matching completions can be further
reranked according to other metrics, e.g., the price of
products in an online store [2].

In pre-computed auto completion systems, the list of
matching completions for a prefix is generated in advance
and stored in an efficient data structure for fast lookups.
When needed, as shown in Fig. 1, continued typing charac-
ters can lead to dynamic refinements of the completions by
exact prefix matching until an appropriate completion is
found. Where offered, the facility is heavily used and highly
influential on search results [3], [4].

A common and useful approach in previouswork onQAC
is to extract past queries extending a prefix from query logs,
and then rank them by their popularity [3], [4], i.e., by the

number of times they have been submitted, which assumes
that current or future query popularity is the same as past
query popularity. This approach fails to take strong clues
from time, trend and user-specific context into account while
such information often influences the queries most likely to
be entered. As illustrated in Fig. 2, personalized QAC may
inject themost popular completions fromauser as query com-
pletions for that particular user; see Fig. 2a (not personalized)
and Fig. 2b (personalized). From Figs. 2c and 2d according to
Google Trends,1 we see that query popularity strongly
depends on time (a clear burst for the query “MH17” around
18 July, 2014) and that it is subject to cyclic phenomena (yearly
for the query “New year” and weekly for the query “Movie”),
which can be explored to forecast future query popularity.
This motivates a QAC approach that takes both the temporal
aspect and the personal context into account.

In addition, some user inputs are easier to complete than
others, depending on the “popularity” of the prefix, mea-
sured here by the number of returned query completions.
For instance, as shown in Fig. 3, a search session contains
three queries from the well-known AOL query log [5]. For
the sake of the example, let us assume that we have not yet
seen the last query (row 4 in Fig. 3a, query “jsonline”), and
that there are three lists in Fig. 3b of query completions with
the initial prefix “js,” “jso” and “json,” respectively, of this
query “jsonline,” for which we want to recommend comple-
tions. A regular baseline based on the most popular query is
applied to return these completions [3]. More completions
are returned for the first prefix (row 2 in Fig. 3b) than for the
second and third prefixes (rows 3 and 4, respectively, in
Fig. 3b). We treat a prefix as a long-tail prefix or a normal
prefix, depending on the number of returned query comple-
tions rather than the number of characters in the prefix. The
technical challenges for dealing with long-tail prefixes are:
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(1) only a limited number of query completions are
matched; and (2) they are not easily distinguishable from
others by their popularity, making it difficult to infer a
user’s search intent. However, for normal prefixes, the base-
line popularity-based strategy generally works well. Thus,
other resources, such as the search context, rather than
query popularity could help address these challenges. This
motivates us to work with a modified QAC model to adap-
tively deal with long-tail prefixes. In such a modified QAC
model, the parameters controlling the contribution of search
popularity and of search context for ranking query comple-
tions are optimized by a regression model.

Before we start, we differentiate query auto completion
from query suggestion in Table 1: for QAC we tend to fol-
low a strict matching policy while for query suggestions we

do not. Accordingly, in QAC we rank a limited number of
query completions and allow the user to complete their
query before it has been fully entered without modifying
their previously entered input. In contrast, query sugges-
tions may include query suggestions that are semantically
related to the user’s input but may suffer a problem of rank-
ing a large amount of query suggestions.

Given a threshold N , we define a prefix p to be a long-tail
prefix if the number of returned query completions is smaller
than N . If we set N ¼ 10, the prefixes “jso” and “json” in
Fig. 3b are long-tail prefixeswhile the prefix “js” is not.

The QAC model that we propose first returns the top N
query completions by predicted popularity based on their
cyclic behavior and recent trend, and then reranks these
completions by user-specific context to output a final query
auto completion list. We show that, when compared against
a state-of-the-art time-sensitive QAC baseline [6], the pre-
dicted popularity values produced by our time-sensitive
approach are closer approximations to what will be
observed later in the logs, and are more effective for QAC
after integrating user query similarity and checking prefix
popularity, with improvements in Mean Reciprocal Rank
(MRR) scores between 4 and 8 percent on a web search log
and on a query log from an audiovisual archive.

Our contributions in this paper can be summarized as
follows:

(1) We address the challenge of query auto completion
in a novel way by considering both time-sensitive
query popularity and user-specific context.

(2) We propose a new query popularity prediction
method that explores the cyclic behavior and recent
trend of query popularity.

(3) We extend our hybrid QAC model to deal with long-
tail prefixes by optimizing the contributions from
query popularity and user-specific context.

We describe related work in Section 2. Our approach is
described in Section 3, while Section 4 presents the experi-
mental setup. We report our experimental results in Sec-
tion 5 and conclude in Section 6.

Fig. 1. (Top) Query auto completion for the prefix “ IEEEt”, where t indi-
cates that a space follows after “ IEEE” . (Bottom) The refined comple-
tions after continuing to type TKDE after “ IEEEt”. The snapshot was
taken on Thursday, February 12, 2015.

Fig. 2. (Top) Query auto completions of the typed prefix “IEEE” under dif-
ferent settings. (Bottom) Relative query popularity for different queries
over time. Queries: “MH17” in blue, “Movie” in red, and “New year” in yel-
low. The snapshot was taken on Thursday, February 12, 2015.

Fig. 3. An AOL session example (Top) and lists of top 10 (at most)
completions returned based on frequency after typing the corresponding
prefix (Bottom).

TABLE 1
Query Auto Completion versus Query Suggestion

Task Input Output

QAC Prefix p Query set Q ¼ fqo : qo starts with pg
QS Query q Query set Q ¼ fqo : qo is relevant to pg
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2 RELATED WORK

In major web search scenarios, a common and straightfor-
ward approach to rank query completions is to use Maxi-
mum Likelihood Estimation (MLE) based on the past
popularity of queries [3]. Bar-Yossef and Kraus [3] refer to
this type of ranking as the Most Popular Completion (MPC)
model

MPCðpÞ ¼ arg max
q2CðpÞ

wðqÞ; wðqÞ ¼ fðqÞP
i2Q fðiÞ ; (1)

where fðqÞ denotes the number of occurrences of query q in
search log Q, and CðpÞ is a set of query completions that
start with prefix p. In essence, the MPC model assumes that
the current query popularity distribution will remain the
same as that previously observed, and hence completions
are ranked by their past popularity in order to maximize
QAC effectiveness for all users on average. As mentioned
above, query popularity may change over time and the
ranking of completions is user-dependent (see Fig. 2).
Accordingly, query completions must be adjusted to
account for time-sensitive and user-specific changes.

Next, we summarize recent QAC approaches into three
parts: time-sensitive, context-aware, and interaction-based
QAC.

2.1 Time-Sensitive Query Auto Completion

Time-sensitive query auto completion (TS-QAC) takes time
information, such as recency [6], [7], [8] and seasonality [4],
[9], into consideration for ranking query completions. It
leverages time-series analysis techniques for classifying sea-
sonal queries and forecasting their future popularity [4], [9].

Rather than ranking query completions by their previ-
ously observed popularity, Shokouhi and Radinsky [4]
propose a long-term time-series modeling approach to fore-
cast the query frequencies by applying a fixed moving time
window. The forecasts obtained by such time-series model-
ing are substantially more reliable. Similarly, Strizhevskaya
et al. [10] study actualization techniques for measuring
prediction accuracy of various daily query popularity
prediction models using query logs.

Another aspect of time-sensitive QAC is the problem of
search trend prediction. Short-range query popularity pre-
diction has seen little attention. Golbandi et al. [7] develop a
regression model to detect bursting queries for enhancing
trend detection. By analyzing query logs, they seek to accu-
rately predict what the most trending query items on the
Web are. Kulkarni et al. [11] classify queries into different
categories based on the changes in popularity over time and
show that monitoring query popularity can reveal strong
signals for detecting trends in query intent.

Recently, considering both recent trends and past query
popularity, Whiting and Jose [6] have proposed several
practical approaches to ranking query completions, such as
outputting query popularity evidence from a sliding win-
dow of the past 2 to 28 days or the query popularity distri-
bution in a recent query chunk observed with a given
prefix, as well as predicting query popularity based on
recently observed trends. Cai and de Rijke [12] propose a
learning-based QAC approach where features derived from

similar queries and semantically related terms are taken
into account.

Our TS-QAC approach (detailed below) differs from pre-
vious work as we consider both periodicity and recent
trends in query frequency. Additionally, none of the publi-
cations listed so far caters for individual users, returning
the same QAC list of typed prefixes for all users. We return
a personalized QAC list to boost QAC effectiveness based
on a time-sensitive ranking of query completions output by
forecasted query popularity, which will specifically benefit
revisiting search tasks.

2.2 Context-Aware Query Auto Completion

In most work mentioned so far, query completions are com-
puted globally and for a given prefix: all users are presented
with the same list of completions. But exploiting the user’s
personal context has led to increases in QAC effective-
ness [3], [13], [14], [15], [16].

Bar-Yossef and Kraus [3] treat the user’s recent queries as
context and exploit users with shared search activity, con-
sidering the similarity of query completions with this con-
text for ranking. Their hybrid model computes the final
score of each completion by linearly combining the MPC
score and a context-similarity score. Our approach to per-
sonalized QAC differs in the definition of context-similarity
and in the way we measure it. Shokouhi [14] exploits pro-
files to extract user-based features to model the likelihood
that a user will issue certain queries, and explores the effec-
tiveness of considering a user’s age, gender, location and
longer search history in ranking query completions, to
thereby personalize the ranking of query completions.

Guo et al. [17] propose a two-step approach, where the
user’s session context is matched against pre-generated
topic models for ranking query completions. Similarly, Cao
et al. [18] and Liao et al. [15] first cluster queries in the click
graph into a smaller set of virtual concepts. They match the
users’ context captured based on their recent queries against
these clusters for ranking query completions. Weber and
Castillo [19] focus on showing differences in query likeli-
hood across demographics. They predict the second term in
a query based on an unsupervised probabilistic model.
Building on temporal intuitions, Sengstock and Gertz [20]
consider query completions that depend on the time of day,
i.e., taking the search time as a user-specific context. Arias
et al. [21] propose a QAC algorithm for mobile search; their
completions are thesaurus-based concepts whose related-
ness to the user’s context is fixed and pre-determined by a
rule-based mechanism.

Bhatia et al. [22] mine frequently occurring phrases and
n-grams from indexed documents for generating and rank-
ing query completions for partial queries in the absence of
search logs. Fan et al. [23] propose a generative model that
incorporates the topical coherence of terms based on Latent
Dirichlet Allocation (LDA) for ranking query completions.
Closely related to QAC, Bickel et al. [24] learn a linearly
interpolated n-gram model for sentence completion based
on lexical statistics of text collections. Grabski and Scheffer
[25] deploy an index-based retrieval algorithm and a clus-
ter-based approach for their sentence-completion task.

Our personalized QAC approach works in a different
way; it scores query completions according to their
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similarity both to frequent queries issued by the same user
and to queries in the current search session.

2.3 Interaction-Based Query Auto Completion

Recently, user interactions have begun to play a more prom-
inent role in algorithms for QAC [26], [27], [28]. Jiang et al.
[27] investigate the feasibility of exploiting the context to
learn user reformulation behavior and propose a supervised
approach for query auto completion, where term-, query-
and session-level features of user reformulation behavior
are developed. With fine-grained user interaction informa-
tion, Li et al. [29] observe a horizontal skipping bias and ver-
tical position bias exists in the QAC process, and propose a
two-dimensional click model for modeling the QAC pro-
cess. Mitra et al. [28] investigate user interaction patterns
with QAC and suggest that users are most likely to engage
with auto-completion at word boundaries. They also notice
that the likelihood of using auto-completion varies with the
distance of query characters on the keyboard. These inter-
esting findings provide valuable insights for understanding
user engagement with QAC.

In addition, Li et al. [30] pay attention to users’ sequential
interactions with a QAC engine in and across QAC sessions,
rather than users’ interactions at each keystroke of each
QAC session. Based on an in-depth analysis of a high-reso-
lution query log, they propose a probabilistic model that
addresses the QAC task by capturing the relationship
between users’ sequential behaviors at different keystrokes.
Zhang et al. [31] study implicit negative feedback from a
user’s interactions with a search engine, and propose an
adaptive model that adapts query auto completion to feed-
back about skipped query completions. This model is based
on the assumption that top ranked but skipped query com-
pletions are not likely to be submitted and encodes the
strength of the implicit negative feedback to a query com-
pletion qc from a user u with personalization. We refer the
reader to [32] for a recent survey of the state-of-the-art in
query auto completion.

Interaction-based QAC models need a special device to
record explicit interactions as feedback to infer users’ search
intent. This setup differs from our QAC scheme, where
user’s previous queries both in the current search session
and their former search sessions are used to model their
specific interest. Our idea originates from the combination

of time-sensitivity and personalization used in current QAC
algorithms. Our approach to personalized QAC stands to
gain from query repetitions in user search behavior. Addi-
tionally, to the best of our knowledge, there is no published
work on QAC that specifically deals with long-tail prefixes.

3 APPROACH

In this section we describe our time-sensitive personalized
query auto completion approach, a hybrid model that not
only inherits the merits of time-sensitive query auto comple-
tion but also considers a user’s personal context. Table 2
provides an overview of various QAC approaches; the base-
lines (rows 1–3) are described in the literature; we detail our
models (rows 4–10) in three steps: time-sensitive QAC, per-
sonalized QAC, and hybrid QAC.

3.1 Periodicity and Trend Based QAC

We propose a time-sensitive QAC method that ranks query
completions by predicted query popularity (i.e., its fre-
quency) based on its periodicity and recent trend to detect
both cyclicly and instantly frequent queries. TS-QAC not
only inherits the merits of time-series analysis on long-term
observations of query popularity, but also considers the
recent variation of query counts. Specifically, we predict a
query q’s next-day popularity ~yt0þ1ðq; �Þ by both its recent
trend and periodicity with a free parameter � ð0 � � � 1Þ
controlling each contribution

~yt0þ1ðq; �Þ ¼ � � ŷt0þ1ðqÞtrend þ ð1� �Þ � �yt0þ1ðqÞperi; (2)

where � ¼ 1 for aperiodic queries and 0 � � < 1 for peri-
odic queries. The term ŷt0þ1ðqÞtrend is estimated via a linear

aggregation of predictions from recent Ndays observations

ŷt0þ1ðqÞtrend ¼
PNdays

i¼1 normðviÞ � ŷt0þ1ðq; iÞtrend; (3)

where normðviÞ normalizes the contributions from each day
to ensure

P
i vi ¼ 1. We introduce a temporal decay func-

tion to output the weight before normalizing as

vi ¼ fTDðiÞ�1; where f is a decay factor and TDðiÞ refers to
the interval from day i to the future day t0 þ 1. We identify
the highest prediction accuracy parameter Ndays for each
query based on its past observations in the whole log using

TABLE 2
Description of Query Popularity Prediction Methods and QAC Approaches

Approach Description Source

Pk Predicting a query’s future popularity by aggregating the frequency in past k days [4]
MPC-ALL Ranking query completions according to their past popularity on the whole log [3]
MPC-R-TW Ranking query completions according to their past popularity within a fixed time window [6]
O-MPC-R Ranking query completions according to their past popularity within an optimal time window [6]

Ptrend Predicting a query’s future popularity by its recent trend as described in (5) This paper
��-TS-QAC A TS-QAC model (Algorithm 1) with an optimal parameter �� used in (2), achieved by (8) This paper
Personalized QAC Ranking query completions according to their similarity to previous queries, following (9) This paper
�-H-QAC A hybrid QAC model (Algorithm 2) integrating �-TS-QAC as (14) and personalized QAC as (15) This paper
��-H-QAC A hybrid QAC model (Algorithm 2) integrating ��-TS-QAC by (8) and personalized QAC as (15) This paper
G-QAC A hybrid QAC model integrating MPC-ALL and n-gram based personalized QAC as (13) This paper
��-HG-QAC A hybrid QAC model integrating ��-TS-QAC and n-gram based personalized QAC as (13) This paper
��-H0-QAC Amodified ��-H-QAC model with long-tail prefix detection added This paper
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a multiple linear regression model, following [6]. The pre-
diction ŷt0þ1ðq; iÞtrend from each day i ði ¼ 1; . . . ; NdaysÞ is

derived from the first order derivative of q’s daily count
Cðq; tÞ as

ŷt0þ1ðq; iÞtrend ¼

yt0�TDðiÞðq; iÞ þ
Z t0þ1

t0�TDðiÞ

@Cðq; tÞ
@t

dt;
(4)

where yt0�TDðiÞðq; iÞ is the observed query count of q at
day i.

The periodicity term �yt0þ1ðqÞperi in (2) is smoothed by
simply averaging the recentM observations ytp at preceding

time points tp ¼ t0 þ 1� 1 � Tq; . . . ; t0 þ 1�M � Tq in the log

ŷt0þ1ðqÞperi ¼ 1
M

PM
m¼1 yt0þ1�m�TqðqÞ; (5)

where Tq denotes q’s periodicity. For detecting cyclic aspects
of query q’s frequency, we use autocorrelation coeffi-
cients [33], which measure the correlation between Ns suc-
cessive count observations Cðq; tÞ at different times
t ¼ 1; 2; . . . ; Ns in the query log. The correlation is computed
between a time series and the same series lagged by i time
units as

ri ¼ PNs�i
t¼1 ðCðq; tÞ � �x1ÞðCðq; tþ iÞ � �x2ÞPNs�i

t¼1 ðCðq; tÞ � �x1Þ2
� �1

2 PNs
t¼iþ1ðCðq; tþ iÞ � �x2Þ2

� �1
2

;

(6)

where �x1 (or �x2) is the mean of the first (or last)Ns � i obser-
vations. For Ns reasonably large, the denominator in (6) can
be simplified by approximation. First, the difference
between the means �x1 and �x2 can be ignored. Second, the
difference between summations over observations 1 to
Ns � i and iþ 1 to Ns can be ignored. Accordingly, ri can be
approximated by

ri �
PNs�i

t¼1 ðCðq; tÞ � �xÞðCðq; tþ iÞ � �xÞPNs
t¼1ðCðq; tÞ � �xÞ2 ; (7)

where �x ¼PNs
t¼1 Cðq; tÞ is the overall mean.

In addition, we choose an optimal �� by minimizing the
metric Mean Absolute Error (MAE) (described in Section 4.3)
as

�� ¼ arg min
0���1

1

jQj �
1

jLvj
X
q2Q

XjLvj

s¼1
j~ysðq; �Þ � ysðqÞj; (8)

where ~ysðq; �Þ and ysðqÞ are the predicted and the true query
counts at day s in the validation period (Lv days),
respectively.

Algorithm 1 details the major steps of our time-sensitive
QAC method. We write �-TS-QAC for the version with a
fixed � and ��-TS-QAC for the version where an optimal ��

is chosen. We fix the optimal number of days for predicting
the popularity trend by minimizing the MAE in row 10 in
Algorithm 1.

Algorithm 1. Time-Sensitive Query Auto Completion

Input: All queries: Q; Length of training and validation days:
Lt and Lv; t0; Number of returned completions: N ;
Output: Predictions: �Q ¼ f�yt0þ1ðqÞ: q 2 Q};

TopN completions of each prefix of all queries;
1: for each q 2 Q do
2: Tq  autocorðCountðqÞÞ;
3: for i ¼ 1; . . . ; Lt do
4: for j ¼ 1; . . . ; Lv do
5: ŷt0þ1ðqÞtrend½j�  RegressionðCountðqÞ½1 : i�Þ;
6: AbsoluteError½j�  ŷt0þ1ðqÞtrend½j� � yt0þ1ðqÞj;
7: end for
8: MAEðiÞ  meanðAbsoluteErrorÞ;
9: end for
10: Ndays  argmin1�i�LtMAEðiÞ;
11: Update ŷt0þ1ðqÞtrend with optimal Ndays and Compute

�yt0þ1ðqÞperi;
12: end for
13: Find an optimal �� by (8);
14: � ��;
15: for each q 2 Q do
16: ~yt0þ1ðq; �Þ  �	 ŷt0þ1ðqÞtrend þ ð1� �Þ 	 �yt0þ1ðqÞperi;
17: end for
18: for each q 2 Q do
19: for each prefix p of q do
20: Return topN completions of p ranked by ~yt0þ1ðq; �Þ;
21: end for
22: end for

3.2 Personalized QAC

Next, we extend our time-sensitive QAC described in Sec-
tion 3.1 with personalized QAC. After sorting the queries
with typed prefix p by predicted popularity following (2),
we are given a ranked list of the top N query completions.
Let SðpÞ represent the set of returned top N query comple-
tions of prefix p.

Our personalized QAC works by scoring completions
qc 2 SðpÞ using a combination of two similarity scores
ScoreðQs; qcÞ and ScoreðQu; qcÞ, where Qs relates to the
recent queries in the current search session and Qu refers to
those of the same user issued before, if available, as

PscoreðqcÞ ¼ v � ScoreðQs; qcÞ þ ð1� vÞ � ScoreðQu; qcÞ; (9)

where v controls the weight of the individual components.
Personalized QAC works at the session-based and user-
dependent level.

To compute the required similarity scores, we first con-
sider how to represent queries in Qs and Qu. A naive
approach would be to represent a query by n-grams or its
terms as “a bag of words.” The resulting similarity measure
can capture syntactic reformulations. However, the problem
is that queries are short, and thus their vocabulary is too
sparse to capture semantic relationships. In order to over-
come this sparsity problem, we use another solution to mea-
sure similarity. We observe in our datasets (see Table 3 and
Fig. 5) that users often request the same query or reformu-
late the query by modifying previous ones within the same
session. We treat a user’s preceding queries Qs in the cur-
rent session and their preceding queries Qu in the historical
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log as context to personalize QAC where we measure simi-
larity at the character level.

We represent the query qs 2 Qs and qc 2 SðpÞ by their
query terms as fws1; ws2; . . . ; wsmg and fwc1; wc1; . . . ; wcng
and let Nðw�; q�Þ denote the count of w� appearing in q�. We
estimate the similarity between qc and Qs as a conditional
probability

ScoreðQs; qcÞ ¼ pðqcjQsÞ
¼

X
qs2Qs

normðvsÞ � pðqcjqsÞ; (10)

where normðvsÞ introduces a decay function vs ¼
fTDðsÞ�1 as in (3) except that here TDðsÞ refers to the
interval between qc and qs, and pðqcjqsÞ is calculated fol-
lowing [34], [35] as

pðqcjqsÞ ¼
Y

wci2qc
pðwcijqsÞNðwci;qcÞ

¼
Y

wci2qc
pðwcijWðwciÞÞNðwci;qcÞ;

(11)

where W ðwciÞ ¼ fw 2 qs jw½0� ¼ wci½0�g is a set of terms in qs
sharing the same start with wci, and define

pðwcijWðwciÞÞ 
 Similarityðwci;WðwciÞÞ
¼ 1

jWðwciÞj
X

wj2WðwciÞ
Similarityðwci; wjÞ

¼ 1

jWðwciÞj
XjWðwciÞj

j¼1

lenðcommonðwci; wjÞÞ
minðlenðwciÞ; lenðwjÞÞ;

where lenðcommonðwci; wjÞÞ is the maximal length of com-
mon string appearing in wci and wj from the beginning.

We compute ScoreðQu; qcÞ in a different manner from
ScoreðQs, qcÞ in (10) because in this setting it is desirable to
consider both query count and time interval. Specifically,
we output ScoreðQu; qcÞ as

ScoreðQu; qcÞ ¼ pðqcjQuÞ ¼
X
qu2Qu

normðvuÞ � pðqcjquÞ; (12)

where normðvsÞ only depends on the query count—we
assume that frequent queries reflect a user’s personal search
clues.

3.3 Hybrid QAC

We introduce a hybrid QAC model that combines time-sen-
sitive QAC with personalized QAC. First, TS-QAC produ-
ces a list of query completions SðpÞ of prefix p. We assign
TSscoreðqcÞ to each completion qc 2 SðpÞ using its predicted
popularity, i.e., ~yt0þ1ðqc; �Þ in (2). Like [3], we then define

our hybrid models as convex combinations of two scoring
functions

HscoreðqcÞ ¼ g � TSscoreðqcÞ þ ð1� gÞ � PscoreðqcÞ: (13)

As TSscoreðqcÞ and PscoreðqcÞ use different units and scales,
they need to be standardized before being combined. We
standardize TSscoreðqcÞ (used in [3]) as

TSscoreðqcÞ  ~yt0þ1ðqc; �Þ � mT

sT
; (14)

where mT and sT are the mean and standard deviation of
predicted popularity of queries in SðpÞ. Similarly, we use (9)
to obtain

PscoreðqcÞ  PscoreðqcÞ � mP

sP
; (15)

where mP and sP are the mean and standard deviation of
similarity scores of queries in SðpÞ. Algorithm 2 describes
our hybrid QAC model, which requires a ranked list of
query completions along with their predicted popularity as
produced by Algorithm 1; (13) provides the overall ranking
score (see Algorithm 2, row 15).

Algorithm 2.Hybrid QACModel

Input: Predictions: �Q; user: u; prefix p;N ; a;
Output: Ranked list of topN query completions of p;
1: Produce SðpÞ consisting of topN query completions by (2);
2: List u’s queries Qu and Qs;
3: for each qc 2 SðpÞ do
4: Compute TSscoreðqcÞ based on (14);
5: for each qs 2 Qs do
6: pðqcjqsÞ = Similarityðqc; qsÞ;
7: end for
8: Compute ScoreðQs; qcÞ based on (11);
9: for each qu 2 Qu do
10: pðqcjquÞ = Similarityðqc; quÞ;
11: end for
12: Compute ScoreðQu; qcÞ based on (12);
13: Compute PscoreðqcÞ based on (9) and (15);
14: end for
15: Re-rank SðpÞ byHQscoreðqcÞ based on (13);
16: Return a reranked list of SðpÞ;

We write �-H-QAC to refer to the hybrid combination of
�-TS-QAC (used at row 4 in Algorithm 2) and the personali-
zation approach described in the previous section; we write
��-H-QAC for the variant where � has been optimized
according to (8).

For comparison, we also introduce other combined QAC
models that consider the query popularity and personaliza-
tion. For instance, the G-QAC model derives the TSscoreðqcÞ
score in (13) by MPC-ALL and PscoreðqcÞ by using an n-gram
representation similarity. Similarly, the ��-HG-QAC model
generates TSscoreðqcÞ by our ��-TS-QAC (in Section 3.1) and
PscoreðqcÞ by the same n-gram representation similarity.

3.4 Modified ��-H-QAC (��-H0-QAC)

The ��-H-QAC model assigns a fixed weight g to
TSscoreðqcÞ and 1� g to PscoreðqcÞ in (13) when calculating
the final ranking score for the completion qc. All prefixes are
handled equally when we score their completions associ-
ated with them. However, we observe that some typed pre-
fixes are easier to complete than others. This depends on the
prefix popularity discussed in Section 1. This observation
motivates an extended ranking model, named ��-H0-QAC.
Rather than using a fixed weight g for all prefixes, we assign
an optimal weight �g to long-tail prefixes after checking their
prefix popularity.
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More specifically, to derive �g, we first partition the pre-
fixes in the training data into two buckets according to
the number of query completions returned by TS-QAC:

long-tail and the other, i.e., �P1 and �P2 in Algorithm 3;

then we directly perform a linear regression on �P1 to gen-
erate an optimal weight �g for long-tail prefixes. Finally,
��-H0-QAC coincides with ��-H-QAC for normal prefixes
with a fixed weight g in (13) but unlike ��-H-QAC, for
long-tail prefixes it uses the optimal weight �g. The details
are described in Algorithms 3 and 4. We visualize the
main steps of our model ��-H0-QAC in Fig. 4, where most
steps are done offline, including generating SðpÞ by
��-TS-QAC and finding the optimal �g for long-tail pre-
fixes, etc.

Algorithm 3. Optimization on Long-Tail Prefixes (OLP)

Input: Predictions: �Q; prefix set �P ; N ; threshold Num;
Output: Subset �P1 for long-tail prefixes and �P2 for others;
1: �P1 ¼ �P2 ¼ {};
2: for each prefix p 2 �P do
3: Produce SðpÞ consisting of topN query completions by (2);
4: if N < Num then
5: �P1 ¼ �P1 [ fpg;
6: else
7: �P2 ¼ �P2 [ fpg;
8: end if
9: for each qc 2 SðpÞ do
10: Compute TSscoreðqcÞ based on (14);
11: Compute PscoreðqcÞ based on (9) and (15);
12: end for
13: end for
14: Apply linear regression on �P1, producing an optimal weight

�g in (13);
15: Return �g, �P1 and �P2;

4 EXPERIMENTAL SETUP

Below, Section 4.1 lists the research questions that guide our
experiments; Section 4.2 describes the datasets and lists
some interesting observations; Section 4.3 provides details

about our evaluation metrics and baselines; we detail our
settings and parameters in Section 4.4.

Algorithm 4. ��-H0-QAC

Input: Predictions: �Q; prefix set �P ;N ; �g;
Output: Ranked list of topN query completions for each p 2 �P ;
1: for each prefix p 2 �P do
2: List SðpÞ;
3: if p 2 �P1 then
4: Perform ��-H-QAC for pwith �g instead of g in (13);
5: else
6: Perform ��-H-QAC for pwith a fixed g in (13);
7: end if
8: end for
9: Return a reranked list of SðpÞ;

4.1 Research Questions

The research questions guiding the remainder of the paper
are:

RQ1 As a sanity check, what is the accuracy of query pop-
ularity prediction generated by various models? (See
Sections 5.1 and 5.2.)

RQ2 How do our time-sensitive QAC models (�-TS-QAC
and ��-TS-QAC) compare against state-of-the-art
time-sensitive QAC baselines? (See Section 5.3.)

RQ3 Does ��-H-QAC outperform time-sensitive QAC
methods (O-MPC-R and ��-TS-QAC)? (See Section
5.4.)

RQ4 How does ��-H-QAC compare against a personal-
ized QAC method using n-gram based query simi-
larity (G-QAC)? (See Section 5.5.)

RQ5 Which ingredient makes a bigger contribution to
effectively ranking query completions, predicted
popularity or query similarity? (See Section 5.6.)

RQ6 How does ��-HG-QAC compare against ��-H-QAC?
(See Section 5.7.)

RQ7 How does ��-H0-QAC compare against ��-H-QAC
on long-tail prefixes? And on all prefixes? (See Sec-
tions 5.8 and 5.9.)

4.2 Datasets

We use two query log2 in our experiments: AOL [5] and one
made available by the Netherlands Institute for Sound and
Vision,3 to which we will refer as “SnV” [37]. The AOL log
is publicly available and sufficiently large to guarantee sta-
tistical significance and SnV is one of the largest audiovisual
archives in Europe. The AOL queries were sampled
between March 1, 2006 and May 31, 2006. In total there are
16,946,938 queries submitted by 657,426 unique users, while
the SnV logs were recorded for one year between January 1,
2013 and December 31, 2013 using an in-house system tai-
lored to the archive’s online interface. For consistency, we
partitioned each log into two parts: a training set consisting

Fig. 4. Main steps of the ��-H0-QAC model.

2. Other popular query logs used in recent research, such as the
MSN log [36] and the Sogou log (http://www.sogou.com/labs) were
not used. The former lacks user IDs and the latter is too small.

3. http://www.beeldengeluid.nl
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of 75 percent of the query log, and a test set consisting of the
remaining 25 percent. Traditional k-fold cross-validation is
not applicable to temporally ordered data since it would
obviously mess up the order [38]. Queries in the training set
were submitted before May 8, 2006 in the AOL dataset and
before October 1, 2013 in the SnV dataset. We also use the
last week of training data to generate optimal parameters:
Ndays in (3) and �� in (8).

Moreover, we filtered out a large volume of navigational
queries containing URL substrings (.com, .net, .org, http,
.edu, www.) from the AOL dataset and removed queries
starting with special characters such as &, $ and # from
both datasets. Additionally, only queries appearing in both
partitions were kept. In total, 95,043 unique queries (21 per-
cent) in the processed AOL and 6,023 (7 percent) in SnV
show cyclic phenomena in terms of query frequency. Ses-
sion boundaries are identified in the AOL dataset by 30 sec-
onds of inactivity; in the SnV dataset a session boundary
occurs when a query has no overlapping terms with the pre-
vious query as users routinely view audiovisual material
during the search process; this can lead to periods of inac-
tivity even though the user is still fully engaged in the
search process [37]. Table 3 details the statistics of the
datasets.

We display the overlap of queries with various ways of
binning in Fig. 5. To begin, Fig. 5a shows the rates of unique
huser, queryi pairs posted at different numbers of repeats. A
considerable number of queries are posted more than once
by the same user within the training period (15.9 percent for
AOL and 56.9 percent for SnV). The discrepancy between
the rates can be explained by considering the type of user
the search engine serves. Fig. 5b gives us the distribution of
sessions containing queries that “evolved” from preceding
queries within the session, where we say that query q2
evolved from query q1 if q2 is issued after q1 and shares at
least one query term with q1. Sessions with more than one
query are considered. In total, there are 983,983 sessions in
AOL and 35,942 in SnV left. Clearly, users reformulate a
query very often. The difference between the sum of all
rates (0.531 for AOL and 1 for SnV) is a consequence of dif-
ferent session segmentation methods.

In Fig. 6, we plot the the ratios of long-tail prefixes among
all prefixes in the training and test periods of the AOL and
SnV datasets, respectively. For AOL, nearly 13 percent of the
prefixes return fewer than 10 query completions in both the
training and test period. For SnV, less long-tail prefixes are
detected, resulting in 12.5 and 12.7 percent for the training
and test datasets, respectively. Hence, in general, we will

encounter at least one long-tail prefix among every 10 pre-
fixes. Such long-tail prefixes often appear when a repeated
submission of previous queries, typically unpopular ones, in
the current session is observed. This finding motivates us to
devote special attention to long-tail prefixes. In addition, we
find that long-tail prefixes are often observed in search ses-
sions where users resubmit queries that have been issued
before in the current session, as shown in Fig. 3. Interestingly,
for both datasets the percentage of prefixes with few query
completions (e.g., 1 and 2) is higher than those with more
query completions (e.g., 8 and 9).

4.3 Evaluation Metrics and Baselines

We first measure our forecast accuracy for the time-sensitive
QAC model and then evaluate the effectiveness of the
resulting ranked lists of query completions. For each task,
we use metrics that are widely used in the literature on
QAC task [3], [4], [6], [14].

Mean Absolute Error is widely used to measure the accu-
racy of forecasts and is defined as follows:

MAE ¼ 1
n

Pn
i¼1 jŷi � yij; (16)

where yi is the true value and ŷi is the prediction. MAE is an
unbounded measure and is not strongly resilient to outliers.
Therefore, it is often used along with another metric such as
Symmetric Mean Absolute Percentage Error (SMAPE) to
diagnose the forecast variation. SMAPE is defined as

SMAPE ¼ 1
n

Pn
i¼1
jŷi�yij
ŷiþyi : (17)

In contrast to MAE, SMAPE is bounded between 0 and 1.
To evaluate the quality of rankings of query completions,

Mean Reciprocal Rank is a standard measure. For a query q
with prefix p in the query set Q associated with a list of

Fig. 6. Distribution of prefixes with varying numbers of returned query
completions in the AOL and SnV datasets, tested on the training and
test periods, respectively.

Fig. 5. Query repeat rates (left) and variation rates (right) for AOL and
SnV.

TABLE 3
Statistics of the Processed AOL and SnV Datasets

AOL SnV

Variables Training Testing Training Testing

#Qs 6,904,655 3,609,617 291,392 154,770
#Unique Qs 456,010 456,010 86,049 86,049
#Ss 5,091,706 2,201,990 176,893 102,496
#Unique Us 466,241 314,153 1051 804
Qs/Session 1.36 1.63 1.65 1.51
Qs/User 14.81 11.49 277.25 192.50

Queries: Qs, Sessions: Ss, Users: Us.
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query completions SðpÞ and the user’s finally completed
query q0, Reciprocal Rank (RR) is computed as

RR ¼
1

rank of q0 in SðpÞ ; if q0 2 SðpÞ
0; else.

�
(18)

Then MRR is computed as the mean of RR for all
prefixes.

Statistical significance of observed differences between
the performance of two approaches is tested using a two-
tailed paired t-test and is denoted using ~ (!) for significant

differences for a ¼ :01 and ~ (Ï) for a ¼ :05.
We consider several QAC baselines: (1) the most popular

completion QAC method based on the whole log, referred
as MPC-ALL [3]; (2) an MPC-based QAC method within
recent time windows (TW ¼ 2, 4, 7, 14 and 28 days, respec-
tively) denoted as MPC-R-TW [6]; (3) a recent QAC method
with an optimal time window referred as O-MPC-R, which
learns the optimal time window for each prefix and per-
forms best on the AOL data in [6].

To select the best baseline against which we compare our
newly introduced models, we compare the performance of
the three approaches just listed; see Table 4. For both data-
sets, O-MPC-R outperforms the other two approaches at dif-
ferent prefix lengths, e.g., it results in close to 10 percent
MRR improvements over MPC-ALL and MPC-R, respec-
tively. Hence, we select O-MPC-R as the baseline for com-
parisons against our proposed models in latter experiments.

4.4 Experimental Settings

In our experiments, prefixes are simulated by considering
all possible prefixes consisting of the first 1 to 5 characters
of the finally submitted query. Following [39], we set the
factor f ¼ 0:95 in the decay function in Section 3.1. For time-
sensitive prediction, we use a fixed � ¼ 0:5 in (2) to compare
with the results produced with an optimal �� returned by
(8). To detect periodicity, we count queries per hour for
AOL and per day for SnV because of the difference in time
spans of the collected data. This means that for SnV, we
compute ŷt0þ1ðqÞperi in (5) directly by averaging the day-

level predictions yt0þ1�m�Tq , while for AOL, we first generate

predictions per hour and then accumulate them to produce
yt0þ1�m�Tq . For identifying trends, we use per day counts to

overcome sparsity. For smoothing in (5), we set M ¼ 3, as it
performs best when M changes from 1 to 10 in our trials. In
our time-sensitive QAC experiments, we are given a list of

top N query completions; we set N ¼ 10 as this is com-
monly used by many web search engines.

We balance the contributions of Qs and Qu in (9), if avail-
able, by setting v ¼ 0:5, and construct Qu using the ten most
frequent queries of the user while collecting all preceding
queries in the current session to form Qs (see Table 3). In
particular, for users without long-term search history, i.e.,
for cold-start users, we only consider their short-term search
history in the current session for personalization. It could
help if we use the long-term search logs from similar users
seen in the training period. For instance, based on the pre-
ceding queries within a current session issued by a new
user, we can find a group of seen users in the training
period who have often submitted the same queries before.
By using the long-term search logs of users in this group,
we can model the interests of the new user for personaliza-
tion. For personalized QAC comparisons, we set the size of
n-grams to be n ¼ 4, which has been recommended in string
search [40] to represent queries. For our hybrid models, we
set g ¼ 0:5 in (13), which is also used by ��-H0-QAC for
non-long-tail prefixes. In addition, we set the threshold
Num ¼ 10when classifying prefixes in Algorithm 3.

5 RESULTS AND DISCUSSIONS

In Section 5.1, we examine the performance of our time-sen-
sitive QAC model in terms of its query popularity predic-
tion performance, which we follow with a section about the
trade-off of the parameter � in Section 5.2. We examine the
performance of various TS-QAC approaches in Section 5.3.
Then, Section 5.4 details the effectiveness of our hybrid
QAC model; Section 5.5 provides an analysis of the hybrid
QAC model with various personalized QAC scenarios; Sec-
tion 5.6 zooms in on the effect on ranking query completions
by varying the contribution weight g in the hybrid QAC
model; Section 5.7 compares the performance of combined
QAC models. Finally, Sections 5.8 and 5.9 detail the results
of our model on long-tail prefixes.

5.1 Query Popularity Prediction Evaluation

Since the true popularity of query completions is unavail-
able at runtime, ranking models sort query completions
according to their previously observed popularity [3] or
predicted popularity inferred from previous logs [4]. We
first evaluate the prediction accuracy on query popularity,
and then measure the impact of these predictions on the
quality of rankings of query completions in Section 5.3.

TABLE 4
Selecting Our Baseline

AOL SnV

Model #p ¼ 1 #p ¼ 2 #p ¼ 3 #p ¼ 4 #p ¼ 5 #p ¼ 1 #p ¼ 2 #p ¼ 3 #p ¼ 4 #p ¼ 5

MPC-ALL 0.1090 0.1903 0.3018 0.3996 0.4813 0.1573 0.2497 0.3281 0.4762 0.5438

2 days 0.1093 0.1866 0.2989 0.3970 0.4681 0.2467 0.3526 0.4917 0.6096 0.6913
4 days 0.1082 0.1814 0.2902 0.3875 0.4593 0.2281 0.3349 0.4751 0.5794 0.6681

MPC-R- 7 days 0.1120 0.1938 0.3107 0.4113 0.4830 0.2209 0.3158 0.4519 0.5528 0.6327
14 days 0.1140 0.1994 0.3217 0.4254 0.4985 0.1953 0.2946 0.4318 0.5317 0.6108
28 days 0.1147 0.2009 0.3233 0.4276 0.5076 0.1731 0.2690 0.3873 0.5167 0.5731

O-MPC-R 0.1175 0.2027 0.3267 0.4318 0.5087 0.2519 0.3607 0.5034 0.6133 0.6992

The performance of various baselines in terms of MRR, tested on the AOL and SnV datasets after typing 1 to 5 characters as prefix. The best performing baseline
in each column is highlighted in boldface.
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Our time-sensitive prediction method considers both the
recent and long-term query frequency to predict the future
popularity. To compare, the predicted query frequencies are
aggregated over a past query log (used in [4]) or only contrib-
uted over recent trend as described in (5). We denote the for-
mer by Pk where k is the number of previous days used for
averaging (k 2 f1; 3; 6g) and refer to the latter as Ptrend. We do
not take the prediction produced only by periodicity as a
baseline because of the unavailability of sufficiently many
periodic queries (21 percent in AOL and 7 percent in SnV, see
Section 4.2). Table 5 includes the forecast error rates of differ-
ent methods on datasets. The numbers show that ��-TS-QAC
performs better in terms of MAE and SMAPE than all aggre-
gation- and trend-based baselines, as well as �-TS-QAC.

Still focusing on Table 5, we take a closer look at the error
rates. TheMAE achieved onAOL ismuch smaller than 1 due
to the sparseness of query frequencies. Among the aggre-
gated baselines, MAE favors P6 and SMAPE prefers P1 on
AOL. However, for SnV, P1 wins on both metrics. The num-
bers show that with the exception of P1 on SnV, our predic-
tions are better than all aggregated baselines on bothmetrics.
The differences are statistically significant on SMAPE but
not so according to MAE. Overall, the competitive perfor-
mance on the AOL dataset can be explained by the fact that
compared to the daily query frequency used in the SnV data-
set, the data here is less sparse and has lower variance.

5.2 Impact of the Trade-Off Parameter �

Next, we manually vary the parameter � in (2) to determine
the best prediction accuracy, with 0.01 increments. We
show the results in Fig. 7. For AOL (Fig. 7a), ��-TS-QAC

performs best in terms of prediction accuracy with �� ¼
0:62, suggesting the predictions should emphasize recent
variations. We repeat our analysis on SnV and summa-
rize the results in Fig. 7b. The results are consistent with
the overall AOL numbers. SnV receives an optimal �� ¼
0:83 in our experiments. This is due to the fact SnV con-
tains fewer periodic queries than AOL and hence it
favors predictions from the trend.

Another interesting finding on both datasets from Fig. 7
is that MAE and SMAPE favor a relatively larger � and they
share the same behaviors, e.g., MAE decreases as SMAPE
comes down. This implies that (1) the recent trends are
important to predict future popularity; and (2) periodic phe-
nomena also contribute as the errors go up if their contribu-
tion is removed (i.e., with � ¼ 1).

Next, we take a close look at the optimal �, i.e., ��. We
find that for periodic queries, the optimal �� is often larger
than 0.5. For instance, the mean of the optimal �� in the
AOL dataset is close to 0.6. In other words, the contribution
from the cyclic behavior of query popularity is relatively
less important than that from recent trends. Neither of them
is negligible for the prediction of query popularity as both
weights are substantially larger than 0.

5.3 Performance of TS-QAC Ranking

For RQ2, we use MPC-based models to generate rankings of
query completions for each prefix to compare with our
results produced by time-sensitive QAC models, �-TS-QAC
and ��-TS-QAC. Table 6 contains the evaluation results for
different QAC models in terms of MRR. On both two data-
sets, each prefix is used to generate ten rankings of query
completions. For now, please ignore the ��-H-QAC row as
we will get to it later. All pairwise differences are detected
and marked if statistically significant.

TABLE 5
The Forecast Metrics Produced by Different Methods

on the AOL and SnV Dataset

AOL SnV

Method MAE SMAPE MAE SMAPE

P1 0.2906 0.2278 1.2287 0.3104
P3 0.2944 0.2363 1.3739 0.3265
P6 0.2893 0.2325 1.5751 0.3412
Ptrend 0.2996 0.2313 1.2492 0.3117
�-TS-QAC 0.2848~ 0.2197~ 1.2291 0.2959~

��-TS-QAC 0.2832~ 0.2145~ 1.2067~ 0.2813~

The best performer in each column is highlighted in boldface and the best per-
forming baseline is underlined. Statistical significance of pairwise differences
(�-TS-QAC versus the best baseline P� and ��-TS-QAC versus the best base-
line P�) are indicated.

Fig. 7. Impact of the trade-off parameter � in TS-QAC on the accuracy of
query popularity prediction for AOL and SnV.

TABLE 6
Performance in Terms of MRR at Prefix Length#p Ranging from 1 to 5 Characters on the AOL and SnV Datasets

AOL SnV

Model #p = 1 #p = 2 #p = 3 #p = 4 #p = 5 #p = 1 #p = 2 #p = 3 #p = 4 #p = 5

Baseline 0.1175 0.2027 0.3267 0.4318 0.5087 0.2519 0.3607 0.5034 0.6133 0.6992
�-TS-QAC 0.1169 0.1982Ï 0.3270 0.4390~ 0.5115~ 0.2536 0.3726~ 0.5117~ 0.6296~ 0.7103~

��-TS-QAC 0.1208 0.2056~ 0.3317~ 0.4455~ 0.5143~ 0.2637~ 0.3864~ 0.5193~ 0.6439~ 0.7203~

��-H-QAC 0.1224~ 0.2091~ ~0.3387~ ~0.4562~ ~0.5236~ 0.2662~ 0.3907~ ~0.5355~ ~0.6690~ ~0.7491~

��-H0-QAC 0.1224~ 0.2103~ ~0.3408~ ~0.4594~ ~0.5278~ 0.2662~ 0.3913~ ~0.5376~ ~0.6702~ ~0.7505~

The best performer in each column is highlighted in boldface. Statistically significant differences are determined against the baseline, i.e., O-MPC-R in Table 4,
and marked in the upper right hand corner of the corresponding scores; statistically significant differences between ��-H-QAC and ��-H0-QAC versus ��-TS-
QAC are also detected and marked in the upper left hand corner of the corresponding scores.
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We find that ��-TS-QAC outperforms the baseline as well
as �-TS-QAC in terms of MRR, while �-TS-QAC loses
against the baseline for #p ¼ 1 and 2 on AOL. Specifically,
��-TS-QAC offers a maximal MRR increase against the
baseline of 3.2 percent for #p ¼ 4, which is significant, and
�-TS-QAC brings an increase by up to 1.7 percent over the
baseline for #p ¼ 4 on the AOL corpus. On the SnV dataset,
we see the biggest performance improvements over the
baseline: almost 7.1 percent for ��-TS-QAC and 3.3 percent
for �-TS-QAC both when expanding a two-character prefix.
The limited improvement of �-TS-QAC is probably due to
predictions on occasional queries such as news search,
whereas ��-TS-QAC smoothes it with cyclic phenomena for
QAC.

With an optimal �� specifying the contributions from the
recent trends and cyclic behavior, TS-QAC produces better
rankings of query completions than with a fixed �, as we
can see by comparing �-TS-QAC and ��-TS-QAC in Table 6.
Generally, at different prefix lengths, ��-TS-QAC receives
larger MRR gains over �-TS-QAC on SnV than AOL. We
attribute this to the volume of periodic queries in the differ-
ent datasets as discussed in Section 5.2.

5.4 Hybrid QAC Ranking Performance

RQ3 is aimed at examining whether a user’s personal query
similarity helps generate better rankings of query comple-
tions. We first give the absolute MRR scores of ��-H-QAC in
Table 6. For convenience, we report the MRR changes pro-
duced by comparing O-MPC-R against ��-H-QAC and
��-TS-QAC against ��-H-QAC in Table 7. With the appro-
priate regression model and query similarity measure,
��-H-QAC is able to marginally outperform the baselines

on both query logs at each prefix length. Despite the addi-
tional overhead of scoring similarity between queries, ��-H-
QAC presents relatively small (�2 percent) improvements
over ��-TS-QAC on AOL. This is due to the fact that no
strongly differential features have so far been explored for
users.

Compared to AOL, ��-H-QAC on SnV achieves relative
MRR gains over the baselines and the MRR differences are
generally enlarged for longer prefixes. In part, this may be
due to the following. First, AOL contains more queries than
SnV queries, although these are spread sparsely over a
three-month period. This could suggest that a search engine
serving more queries is able to generate better query com-
pletions since it has a larger sample of similar behavior.
Second, AOL is a more general search log across topics
while SnV focuses on multimedia search. Third, there may
be underlying demographic differences between users of
the two search logs that lead to changes in query distribu-
tions, for example, AOL covers more public users while
SnV mostly serves for media professionals. The higher per-
formance of SnV as compared to AOL could be a conse-
quence of the difference in user activity as Qs/Us in Table 3
indicates SnV users submit 8 20 times more queries than
AOL users.

Clearly, for both query logs, ��-H-QAC is considerably
more effective with a longer prefix, see Tables 6 and 7. To
verify this, we examine the MRR scores with a longer prefix
of up to 10 characters in Fig. 8. We find that effectiveness
converges more quickly on SnV than AOL when the length
of prefix increases, probably because QAC is constrained by
how much evidence is available, and a slightly longer prefix
hugely narrows the number of possible query completions,
certainly on the SnV dataset.

To illustrate the effectiveness of our model, we consider
an example from the AOL query log (Fig. 9). Assume that
our user has entered the prefix vo of the last query in this
session, so that we need to recommend query completions
for this prefix. The results shown in Fig. 10 are generated by
the O-MPC-R, ��-TS-QAC and ��-H-QAC approaches,
respectively. Clearly, “volkswagon” and “volkswagen” ben-
efit more from the search context than others as they are

TABLE 7
MRR Changes Observed by Comparing O-MPC-R Against
��-H-QAC and ��-TS-QAC Against ��-H-QAC, Respectively,

with a Query Prefix p of 1–5 Characters on AOL
and SnV Query Logs

AOL SnV

#p O-MPC-R ��-TS-QAC O-MPC-R ��-TS-QAC

1 �4.00%! �1.31% �5.37%! �0.94%
2 �3.06%! �1.67% �7.68%! �1.10%
3 �3.54%! �2.07%Ï �5.99%! �3.03%!

4 �5.35%! �2.35%Ï �8.33%! �3.75%!

5 �2.85%! �1.79%Ï �6.67%! �3.84%!

The symbol “�” before MRR changes means ��-H-QAC outperforms the cor-
responding method. Statistical significance of pairwise differences (O-MPC-R
versus ��-H-QAC and ��-TS-QAC versus ��-H-QAC) is indicated.

Fig. 8. QAC performance in terms of MRR observed for each approach,
with a query prefix p of 1–10 characters for the AOL and SnV query logs.

Fig. 9. An AOL test session.

Fig. 10. Ranked lists of query completions for the prefix vo.
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ranked at the top by the ��-H-QAC approach; this is
because they are closely related to the earlier query “volks
wagon” (line 4 in Fig. 9). Hence, the queries “volkswagon”
and “volkswagen” are more sensible completions. We could
also explain it by introducing the semantic similarity
between the query completion and the previous queries in
session. We consider the query pair likelihood ratio [41,
(LLR)] in (19) as

LLRðq1; q2Þ ¼ �2 log
Lðq2 j :q1Þ
Lðq2 j q1Þ

;

where Lðq2 j :q1Þ denotes the number of queries containing
q2 but without q1, and Lðq2 j q1Þ indicates the volume of
queries containing both q1 and q2, to see whether their co-
occurrence in a search session is statistically significant.
We find that, for instance, the pairs of query “volks
wagon” and “volkswagon” or of query “volks wagon” and
“volkswagen” co-occur relatively more often in sessions
than other pairs.

5.5 Personalized QAC Performance Analysis

To help us answer RQ4, we compare the performance of
��-H-QAC with two personalized QAC scenarios (G-QAC
and Personalized QAC listed in Table 2) and record the
MRR scores of these two methods in Table 8. We also report
the MRR changes produced by comparing G-QAC against
��-H-QAC, as well as Personalized QAC against ��-H-QAC
in brackets in Table 8.

The model ��-H-QAC significantly outperforms G-QAC
and Personalized QAC on both AOL and SnV in terms of
MRR scores in all cases, which again confirms the above
observations in Table 6. For AOL, Personalized QAC does
not work well and its MRR scores are always substantially
lower than those of G-QAC, suggesting that ranking query
completions only according to query similarity on bigger
dataset is not reliable because the number of query comple-
tions is very large and users often issue new queries. Inter-
estingly, Personalized QAC outperforms G-QAC on SnV.
We believe this can be attributed to (i) SnV users frequently

issue similar queries in the current search session or in a
long-term period, yielding distinguishable similarity scores
for query completions; and (ii) the average number of
queries of SnV users is larger, resulting in a better estima-
tion of Qu in (9).

The MRR improvements of ��-H-QAC over G-QAC are
still very high, indicating that MPC-ALL in G-QAC may
often eliminate useful query completions. This may be
strengthened due to the low volume of queries, as the rela-
tive changes on SnV (around 15 percent) are larger than
those on AOL (around 7 percent). We conclude that a small
dataset suffers more from uncertainty on query popularity
for ranking query completions.

5.6 Effect of Contribution Weight g

Next, we examine the effect on overall QAC performance by
varying the contribution weight g in (13) in our hybrid QAC
model, ��-H-QAC, from 0 to 1, on AOL and SnV. See Fig. 11.
For AOL (Fig. 11a), if the value of g used in ��-H-QAC goes
up from 0 to 0.4, the performance increases more dramati-
cally compared with the results under other settings
(0:4 < g � 1). If we rank query completions only by query
similarity, i.e., g ¼ 0, the performance is worse than any
other result. The MRR value of ��-H-QAC reaches its peak
around g ¼ 0:7 for all cases, which shows that ��-H-QAC
favors time-sensitive popularity over user’s query similarity
on AOL. This finding is confirmed when we average MRR
values produced under different settings: 0 � g � 0:5 and
0:5 � g � 1 for each length of prefix. The average MRR of
the latter (0:5 � g � 1) is higher for all cases.

In contrast to AOL, the optimal value of g on SnV
(Fig. 11b) is around 0.3, which indicates that ranking com-
pletions on SnV favors user’s query similarity a bit more.
The discrepancy between the optimal value of g on SnV and
the optimal value of g on AOL can be explained by consid-
ering the number of issued queries of each user. Sufficient
personal queries results in effective personalized QAC on
SnV. The MRR of SnV tends to be more sensitive to g than
that of AOL as it varies dramatically with the increase of g,
especially when 0:5 � g � 1. The overall MRR score of
��-H-QAC is better than that produced by just setting g ¼ 0
or g ¼ 1, which is consistent with our findings for AOL.

5.7 Performance of Combined QAC Models

To answer RQ5, we compare ��-HG-QAC (in Table 2) with
��-H-QAC (MRR scores reported in Table 6). The MRR
scores of ��-HG-QAC and the corresponding changes

TABLE 8
MRR Scores of G-QAC and Personalized QAC (Per. QAC),
as well as MRR Changes in Bracket Produced by Comparing
G-QAC Against ��-H-QAC (in Table 6), and Personalized QAC
against ��-H-QAC, Respectively, with a Query Prefix p Length

of 1–5 Characters Tested on AOL and SnV Query Logs

AOL SnV

#p G-QAC Per. QAC G-QAC Per. QAC

1
0.1132! 0.0174! 0.2313! 0.2427!

(�7.52%) (�85.78%) (�13.11%) (�8.83%)

2
0.1987! 0.0688! 0.3443! 0.3619!

(�4.97%) (�67.10%) (�11.88%) (�7.35%)

3
0.3175! 0.1371! 0.4564! 0.5018!

(�6.26%) (�59.52%) (�14.76%) (�6.29%)

4
0.4180! 0.2256! 0.5658! 0.6197!

(�8.37%) (�50.55%) (�15.43%) (�7.37%)

5
0.4981! 0.3312! 0.6353! 0.7098!

(�4.88%) (�36.75%) (�15.19%) (�5.25%)

Significant differences against ��-H-QAC are indicated.

Fig. 11. Performance of ��-H-QAC when varying the combination weight
g with a query prefix p length of 1–5 characters for the AOL and SnV
query logs.
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against ��-H-QAC tested on AOL and SnV are recorded in
Table 9. We find that ��-HG-QAC performs better on SnV
than on AOL, with higher MRR scores in all cases. How-
ever, ��-H-QAC consistently outperforms ��-HG-QAC as
the MRR changes produced by comparing ��-HG-QAC
against ��-H-QAC are always negative.

Another interesting finding is that ��-HG-QAC performs
very competitive with ��-H-QAC, especially on SnV, and
the differences are limited (MRR changes �1 percent). This
appears to be due to the fact that (i) ��-HG-QAC scores the
query similarity on a close character level but confronts the
sparseness problem, and (ii) the number of grams n is artifi-
cially fixed, resulting in failure to rank query completions
properly.

5.8 Performance on Long-Tail Prefixes

To answer RQ6, we examine the performance of ��-H0-QAC
on the corresponding subset of the AOL and SnV datasets,
only containing the long-tail prefixes to compare against the
results produced by ��-H-QAC under setting g ¼ 0:5 in
(13). We report the results in Table 10 in terms of MRR at
various number of returned query completions (No.) rang-
ing from 1 to 9, including the case of No. = 1 where ��-H0-
QAC presents a draw with ��-H-QAC when only one query
completion is returned.

We can see that from Table 10, generally, ��-H0-QAC out-
performs ��-H-QAC in terms of MRR on both datasets. It
achieves 1.94 and 2.45 percent MRR improvements on aver-
age over ��-H-QAC for all long-tail prefixes in the AOL and
SnV subsets, respectively. Moreover, we checked the
weights returned by a regression model, which control the
contributions from the time-sensitive part and the personal-
ized aspect in ��-H0-QAC, i.e., g and 1� g in (13), and found
that g is less than 0.5 on both datasets �0.42 for AOL and
�0.31 for SnV), implying that personalization is more
important for long-tail prefixes. For long-tail prefixes, the
final submitted queries often occurred in the current ses-
sion. In other words, for these cases, repeated query submis-
sions in the same session are often observed.

One particularly interesting observation from Table 10 is
that ��-H0-QAC achieves relatively larger MRR gains over
��-H-QAC when the median number of query completions
(e.g., 4 or 5) are returned. This can be attributed to the fol-
lowing: (i) for cases with fewer query completions returned,
e.g., 2 or 3, ��-H0-QAC achieves similar results, resulting in

many draws; (ii) the cases with more query completions
returned, e.g., 8 or 9, account for the minority of long-tail
prefixes, as shown in Fig. 6, resulting in limited
improvements.

5.9 Performance of Modified Hybrid QAC

Finally, we examine the overall performance of ��-H0-QAC
on the whole datasets (AOL and SnV) to compare against
other models. The results in terms of MRR scores are listed
in Table 6, row 7.

We can see from Table 6 that (1) with long-tail prefix
detection, our extended hybrid QAC model, i.e., ��-H0-
QAC, receives the highest MRR scores among the five mod-
els at all lengths of prefix, suggesting that long-tail prefix
detection helps boost QAC performance; (2) for some cases,
e.g., #p ¼ 3 on AOL, significant improvements at level
a ¼ :01 are observed by comparing ��-H0-QAC against
��-TS-QAC, however, which are not seen on the compari-
sons between ��-H-QAC and ��-TS-QAC; (3) ��-H0-QAC
achieves the equal performance with ��-H-QAC at #p ¼ 1
because there is no long-tail prefix consisting of only one
character.

In general, ��-H0-QAC achieves limited improvements
over ��-H-QAC. This is because the majority of prefixes in
the datasets are returned by more than ten query comple-
tions, in other words, they are not long-tail prefixes, and in
such cases, ��-H0-QAC will degenerate to ��-H-QAC and
then reports the same MRR scores with ��-H-QAC.

6 CONCLUSION

Most previous work on query auto completion focuses on
either time-sensitive maximum likelihood estimation or
context-aware similarity. In this paper we have adopted a
combination of the two aspects of the QAC problem. To
understand a user’s personal search intent, we have
extended our time-sensitive QAC method with personal-
ized QAC, which infers the similarity between current
requests and preceding queries in a current search session
and previous search tasks at the character level. In addition,
we have adjusted the model specific for long-tail prefixes.
In particular, we assign an optimal weight �g in (13) to long-
tail prefixes after checking their prefix popularity rather

TABLE 9
MRR Scores of ��-HG-QAC, as well as MRR Changes
Produced by Comparing ��-HG-QAC Against ��-H-QAC
(MRR Scores Presented in Table 6), with a Query Prefix p

Length of 1–5 Characters Tested on the AOL
and SnV Query Logs

AOL SnV

#p MRR change MRR change

1 0.1213 �0.90% 0.2650 �0.45%
2 0.2066Ï �1.21%Ï 0.3891 �0.41%
3 0.3330Ï �1.68%Ï 0.5309 �0.86%
4 0.4476! �1.89%! 0.6617Ï �1.10%Ï
5 0.5179 �1.09% 0.7398Ï �1.24%Ï

Statistical differences (��-HG-QAC versus ��-H-QAC) are indicated.

TABLE 10
Performance of ��-H-QAC and ��-H0-QAC in Terms
of MRR at Various Numbers of Returned Query

Completions (No.) Ranging from 2 to 9 on the Subset
of AOL and SnV Datasets Only Containing Long-Tail Prefixes

AOL SnV

No. ��-H-QAC ��-H0-QAC ��-H-QAC ��-H0-QAC

1 1.0000 1.0000 1.0000 1.0000
2 0.7756 0.7842 0.8217 0.8305
3 0.6119 0.6207 0.6412 0.6547
4 0.4701 0.4863~ 0.5231 0.5398~

5 0.4197 0.4318~ 0.4729 0.4921~

6 0.3558 0.3617 0.3927 0.4035~

7 0.2987 0.3014 0.3138 0.3198
8 0.2461 0.2492 0.2793 0.2816
9 0.2074 0.2098 0.2239 0.2267

Significance differences (��-H0-QAC versus ��-H-QAC) are indicated.
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than using a fixed weight g that is optimized for normal
prefixes.

As to future work, we intend to have a closer look at the
top N query completions returned by the popularity-based
ranking method for N > 10: how much can we gain from
good query completions that were ranked at lower ranks?
Moreover, we aim to transfer our approach to other datasets
with long-term query logs, which should help us benefit
from queries with longer periodicity than we have access to
in the AOL and SnV logs used in our current work. To
which degree is it beneficial to diversify QAC results [42]?
In addition, we could consider using an optimal weight for
all prefixes in our proposal and study a cold-start problem
where a user’s long-term search logs are unavailable, which
could be addressed by using the logs from a group of simi-
lar users seen in the training period. A further possible step
is to model personalized temporal patterns for active users,
especially professional searchers, requiring a generalization
from actual query terms to topics or intents. This might help
generate a better ranking of query completions for them.
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