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a b s t r a c t

Query auto completion (QAC) models recommend possible queries to web search users

when they start typing a query prefix. Most of today’s QAC models rank candidate queries

by popularity (i.e., frequency), and in doing so they tend to follow a strict query match-

ing policy when counting the queries. That is, they ignore the contributions from so-called

homologous queries, queries with the same terms but ordered differently or queries that

expand the original query. Importantly, homologous queries often express a remarkably

similar search intent. Moreover, today’s QAC approaches often ignore semantically related

terms. We argue that users are prone to combine semantically related terms when gener-

ating queries.

We propose a learning to rank-based QAC approach, where, for the first time, features

derived from homologous queries and semantically related terms are introduced. In par-

ticular, we consider: (i) the observed and predicted popularity of homologous queries for

a query candidate; and (ii) the semantic relatedness of pairs of terms inside a query and

pairs of queries inside a session. We quantify the improvement of the proposed new fea-

tures using two large-scale real-world query logs and show that the mean reciprocal rank

and the success rate can be improved by up to 9% over state-of-the-art QAC models.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Query auto completion (QAC), a popular feature of modern search engines, is offered to help users formulate a query

when they have an intent in mind but not a clear way to express it. The typical query completion service of a modern

search engine takes a few initial characters entered by the user and returns matching queries to automatically complete

the search clue. Where offered, query completion is heavily used by visitors and highly influential on search results (Mitra,

Shokouhi, Radlinski, & Hofmann, 2014).

Unlike query recommendation or query suggestion, auto-completed queries strictly start with an initially typed prefix

(Cai, Liang, & de Rijke, 2014b). Most previous work on QAC is centered around the Most Popular Completion (MPC) approach,

which ranks QAC candidates by query popularity, i.e., frequency, collected either from historical logs (Bar-Yossef & Kraus,

2011; Whiting & Jose, 2014) or from future predictions (Shokouhi & Radinsky, 2012; Whiting & Jose, 2014). In the latter
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Fig. 1. An AOL session example.

Fig. 2. Ranked lists of QAC candidates for the prefix “mus”.
case, methods from time series analysis are put to work to predict the query frequency (Cai et al., 2014b; Shokouhi &

Radinsky, 2012; Whiting & Jose, 2014).

We propose to complement these time- and popularity-based QAC models with two methods based on lexical varia-

tions. First of all, popularity-based QAC models invariably count the query volumes following a strict query matching policy,

thereby ignoring the contributions from so-called homologous queries, i.e., (1) queries with the same terms as the candidate

query but in a different order and (2) queries that extend the candidate query. Formally, we define the following two types

of homologous queries for a given query q = (term1, term2, . . ., termm): (1) Given q, a super query of q is a query sq = (term1,

term2, ..., termm, termm+1, . . ., termL) that extends q; (2) A pseudo-identical query for q is a query pq that is a permutation of

q. To a certain extent, homologous queries express similar search intents. For instance, at the time of writing (late 2014), for

the two queries “Chile SIGIR” and “SIGIR Chile” (a pseudo-identical query of “Chile SIGIR”), the same SERPs should probably

be returned. And the SERPs for “Chile SIGIR” and “Chile SIGIR 2015” (a super query of “Chile SIGIR”) should probably overlap

to a very large degree. Based on these examples, we hypothesize that it is advantageous to consider homologous queries as

a context resource for QAC.

QAC features inferred from homologous queries are one important innovation that we study in this paper. A second way

of using lexical variations for QAC that we propose is based on semantically related terms. As discussed in the literature, a

user’s search history usually reveals their search intent, often expressed by the queries or clicked documents. For instance,

Shokouhi (2013) studies the similarity between a QAC candidate and previous queries in both the short-term and long-

term history for reranking QAC candidates. And Jiang, Ke, Chien, and Cheng (2014) infer features from users’ reformulation

behavior for reranking QAC candidates. We exploit a similar intuition but operationalize it differently, by considering the

semantic relatedness of terms in a QAC candidate and of terms from a QAC candidate and queries previously submitted in

the same session. Let us give an example. Consider Fig. 1, which contains a session from the well-known AOL query log.

For the sake of the example, let us assume that we have not yet seen the last query (query 6, “music videos”) and that

it is in fact the initial segment “mus” of this query for which we want to recommend completions. A regular baseline based

on query frequency is likely to rank the completion “music” first, as shown in Fig. 2a. If we consider the observed frequency

of homologous queries for a candidate, we would return the list seen in Fig. 2b, which is a reranked version of the list in

Fig. 2a. Clearly, the queries “music” and “music video” gain more benefits from homologous queries than others as they

are now ranked at the top. But if we look in the user’s search session (e.g., at query 4 and 5 in Fig. 1), we would see that

“videos” is semantically closely related to earlier queries. Based on this insight, the query “music videos” in Fig. 2a is a more

sensible completion. Considering the semantic similarity of terms both inside a candidate and of queries inside a session

can generate another reranked QAC list shown in Fig. 2c. We can see semantically close queries, e.g., “music videos” and

“music video codes,” have now been to the top of the list.

Motivated by the examples above, we study the potential of homologous queries and semantic relatedness for improving

state-of-the-art QAC methods. In particular, in addition to effective popularity-based features of QAC candidates, extended

with time-based features and features of user reformulation behavior, we consider time- and popularity-based features for
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homologous queries as well as semantic features based on semantic relatedness of terms in a candidate and of pairs of

terms from a candidate and from previous queries in the same session. Building on LambdaMART (Burges, Svore, Bennett,

Pastusiak, & Wu, 2011), we propose a learning to rank (L2R) based QAC model, called L2R-QAC, along with a number of

variations depending on different groups of features used to rerank the top N QAC candidates returned by popularity. We

evaluate the effectiveness of these models using two large publicly available query logs.

Our contributions in this paper can be summarized as

1. We propose a learning to rank based query auto completion model (L2R-QAC) that exploits contributions from so-

called homologous queries for a QAC candidate, in which two kinds of homologous queries are taken into account.

2. We propose semantic features for QAC, using the semantic relatedness of terms inside a query candidate and of pairs

of terms from a candidate and from queries previously submitted in the same session.

3. We analyze the effectiveness of our L2R-QAC model with newly added features, and find that it significantly outper-

forms state-of-the-art QAC models, either based on learning to rank or on popularity.

We describe related work in Section 2. Features for the specific QAC learning problem are described in Section 3. Then,

Section 4 presents our experimental setup. In Section 5 we report our experimental results. We conclude in Section 6, where

we suggest future research directions.

2. Related work

Since the first query auto completion (QAC) system in web search was launched by Google,1 also known as “Google

Autocomplete” in 2004, this particular feature is known as “type-ahead” or “auto-complete.” QAC has subsequently been

studied by Bar-Yossef and Kraus (2011) with the well-known Most Popular Completion (MPC) approach. Completions can

be sorted by popularity or any other metric identified by the customer, so that the most useful or advantageous query

completions are listed first. In recent years, QAC has been studied extensively in the literature (Cai et al., 2014b; Jiang et al.,

2014; Li et al., 2014; Mitra et al., 2014; Shokouhi, 2013; Shokouhi & Radinsky, 2012; Whiting & Jose, 2014) and it has been

widely adopted as a prominent feature of common search engines. We briefly summarize two aspects of recent work on

QAC, i.e., popularity-based QAC and learning-based QAC, as these approaches are closely related to our work in this paper.

Other work on query suggestion, like Liu, Song, Chen, Nie, and Wen (2012) and Ozertem, Chapelle, Donmez, and Velipasaoglu

(2012), is related to but different from QAC, hence it is not discussed here as we only focus on the task of QAC.

2.1. Popularity-based query auto completion

A useful and straightforward approach to rank QAC candidates is to use Maximum Likelihood Estimation (MLE) based on

the past popularity of queries. This approach relies on query logs to rank QAC candidates by frequency. Bar-Yossef and Kraus

(2011) refer to this type of ranking as the Most Popular Completion (MPC) model:

MPC(p) = arg max
q∈C(p)

w(q), w(q) = f (q)∑
i∈Q f (i)

, (1)

where f(q) denotes the frequency of query q in query log Q, and C(p) is a set of QAC candidates starting with prefix p.

Essentially, the MPC model assumes that the current query popularity distribution is the same as what was previously

observed, and hence it is reasonable to rank QAC candidates by their previous popularity in order to maximize the QAC

effectiveness for all users on average.

A popularity-based QAC approach can be combined with other criteria. For instance, after returning a QAC ranked list

sorted by popularity, Bar-Yossef and Kraus (2011) treat the user’s recent queries as context and exploit users with common

search activities for a QAC re-ranking task by considering the similarity between QAC candidates and this context.

However, query popularity may change over time. Consequently, QAC rankings must be adjusted to account for time-

sensitive changes. Two options have been considered to this end, using: (i) the observed query frequency within a fixed

time window as f(q) in (1) rather than the observation within the whole log; (ii) the predicted query frequency f′(q) to

replace f(q) in (1). For the former, Whiting and Jose (2014) propose several practical QAC ranking approaches, generat-

ing QAC candidates by query popularity observed within a sliding time window ranging from the past 2 to 28 days or

within a recent query chunk observed with a given prefix. For the latter, methods from time series analysis have been

used for predicting query frequency. Shokouhi and Radinsky (2012) propose a long-term time series modeling approach

to forecast the query frequency by applying a fixed moving time window. Queries recurring within specific temporal in-

tervals, e.g., day/night, workday/weekend and summer/winter, are modeled differently for predicting the future popularity

at different times. Another approach to predict query popularity is based on search trend prediction. Golbandi, Katzir, Ko-

ren, and Lempel (2013) develop a regression model to detect bursting queries for enhancing trend detection. By analyz-

ing query logs, they seek to accurately predict the most trending query terms on the Web. Various attempts have been

made to make search trend prediction more accurate with low latency relative to the actual event that sparked the trend.
1 http://googleblog.blogspot.nl/2004/12/ive-got-suggestion.html .
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Kulkarni, Teevan, Svore, and Dumais (2011) classify queries into different categories based on the changes in popularity over

time, reporting that monitoring query popularity can reveal strong signals for detecting trends in query intent. Cai et al.

(2014b) rank QAC candidates by predicted query popularity and Whiting and Jose (2014) also propose a short-range query

popularity prediction approach based on recently observed trends.

None of the work listed above has considered possible contributions from homologous queries for a given query candi-

date. However, we hypothesize that homologous queries for a query q likely address the same search intent as q. To the best

of our knowledge, we are the first to develop features from such homologous queries for QAC.

2.2. Learning-based query auto completion

In most QAC work mentioned so far, for a given prefix, QAC candidates are identified based on popularity. Learning-based

QAC approaches have gathered less attention so far. This may be due to the fact that limited features can be developed to

capture the relation between a prefix and a query. This problem can be tackled by exploiting the user’s personal context

(Jiang et al., 2014; Liao et al., 2011; Santos, Macdonald, & Ounis, 2013; Shokouhi, 2013).

Shokouhi (2013) exploits user profiles to extract user-based features to model the likelihood of query candidates and

explores the effectiveness of the user’s age, gender, location and search history for learning to personalize query auto com-

pletion. In other words, this model is learnt to find similar users who share common search activities with the current user.

Guo, Cheng, Xu, and Zhu (2011) propose a two-step approach for ranking QAC candidates by learning a user’s search sessions

as context to match against pre-generated topic models. Similarly, Cao et al. (2008) and Liao et al. (2011) match the user’s

context, captured by their recent queries, against the query clusters learnt from the click graph for ranking QAC candidates.

Other aspects of user context building on temporal intuitions, e.g., taking the search time as a user-specific context, have

also been considered for query completion (Sengstock & Gertz, 2011).

Recently, user interactions have begun to play a more prominent role in algorithms for QAC. Jiang et al. (2014) inves-

tigate the feasibility of exploiting the context to learn user reformulation behavior and propose a supervised approach for

query auto completion, where term-, query- and session-level features of user reformulation behavior are developed. This

approach can significantly improve the performance of existing context-aware QAC methods. In addition, with fine-grained

user interaction information, Li et al. (2014) observe a horizontal skipping bias and a vertical position bias in the QAC

process; they propose a two-dimensional click model for modeling the QAC process Chuklin, Markov, and de Rijke (2015).

Interestingly, Mitra et al. (2014) investigate user interaction patterns with QAC in Bing and suggest that users are most likely

to engage with auto-completion at word boundaries. They also notice that the likelihood of using auto-completion varies

with the distance of query characters on the keyboard. These findings provide valuable insights for understanding user QAC

engagement.

Most learning-based QAC approaches (re-)rank QAC candidates by measuring their similarity with the content in the

search logs, overlooking the semantic relatedness of term pairs inside a query itself while these terms are not randomly

combined when a user generates his query. To the best of our knowledge, there is no published work on QAC that considers

the semantic relatedness of term pairs within a query. We hypothesize that injecting semantic features into a learning to

rank approach to QAC boosts the QAC performance. Below, we introduce a learning to rank approach for QAC that uses

features inferred from both homologous queries and semantic relatedness as well as user reformulation behavior features

previously studied in the literature for QAC.

3. Learning to rank query auto completions

Here, we will formally describe the problem of learning to rank (L2R) for query auto completion (QAC), and then propose

a number of L2R-based QAC models. Four categories of query features that are likely to affect QAC rankings are taken into

account: query popularity, user reformulation behavior, features inferred from homologous queries, and semantic features.

See Tables 2–4 below for a tabular overview. We use LambdaMART (Burges et al., 2011) to re-rank the top N QAC candidates

initially returned by an MPC baseline. Any reasonable L2R algorithm can be employed to obtain our ranking model and will

likely yield similar results; we choose LambdaMART because it has been shown to be one of the best algorithms for L2R

tasks (Shokouhi, 2013).

3.1. Overview

We begin by describing the L2R problem for QAC. The input of a typical QAC task is a prefix pi = {char1, char2, ..., charnc},
i.e., a string of nc characters. Generally, there is a pool Qc(pi) consisting of query candidates that start with the prefix pi,

and each candidate could be issued after typing pi. These candidates could be straightforwardly collected by sorting them

by popularity. Each candidate in Qc(pi) can be represented as a prefix-query pair feature vector qf.

In a typical feature-based L2R framework for IR, the training data for a specific learning algorithm (whether pointwise,

pairwise or listwise) consists of a set of query-document pairs with relevance labels, and the goal is to learn a ranking model

by optimizing a loss function (Liu, 2003). Similarly, in a L2R framework for QAC, coupled with a slight difference in assigning

labels to query candidates for training, the model is trained on prefix-query pairs with binary labels, i.e., “submitted” or
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Table 1

Comparison of learning to rank for document retrieval (DR) vs. for query auto completion (QAC). In a document retrieval

task, for a given query qi , each of its associated documents d can be represented by a feature vector df = �(d, q), where

� is a feature extractor; m(i) is the number of documents associated with query qi , i.e., D. In a QAC task, for a given

prefix pi , each of its auto completed query candidates q can be represented by a feature vector q f = φ(p, q), where φ

is a feature extractor; n(i) is the number of query candidates associated with prefix pi), i.e., Qc(pi).

DR Input Query qi = {term1, term2, . . ., termm}
Ranking candidates Documents d

(i) = {df (i)
j

∈ D}m(i)

j=1

Candidate features TF, IDF, BM25, etc.

Output A ranked list of documents df (i)
u � df (i)

v � · · · � df (i)
l

Ground truth Mostly multi-level relevance labels, i.e., 0, 1, 2.

Major metrics MAP, P@K, NDCG@K, etc.

QAC Input Prefix pi = {char1, char2, . . ., charn}
Ranking candidates Queries q(i) = {q f (i)

j
∈ Qc(pi)}n(i)

j=1

Candidate features Popularity, length, position in session, etc.

Output A ranked list of queries q f (i)
u � q f (i)

v � · · · � q f (i)
l

Ground truth Binary labels: 1 for submitted query and 0 for the others.

Major metrics MRR, SR@K, etc.

Table 2

Summary of popularity features of QAC candidates (10 features) and the corresponding formulas. The

periods considered for the popularity features are whole, 1-day, 2-day, 4-day, 7-day for observations

and predictions.

Period Description Formula

whole, 1-, 2-, 4-, 7-day Observation fre(q, period) in Section 3.2.1

1-, 2-, 4-, 7-day Predicted by trend ŷt0
(q, i)trend as in (2)

whole Predicted by periodicity ŷt0
(q)peri as in (3)

Table 3

Summary of popularity features of homologous queries for QAC candidates (60 features) and the corresponding formulas. There are two

categories of homologous queries, super queries and pseudo-identical queries. The weight of super queries can be determined using either

query term overlap (Section 3.3.1) or common prefix weighting (Section 3.3.2). We consider two choices for each feature: maximum or

summation as described in Section 3.3.

Period Impact Description Formula

Super query

whole, 1-, 2-, 4-, 7-day w in (6) or (7) Observation fre(q′ , period) in Section 3.2.1

1-, 2-, 4-, 7-day w in (6) or (7) Predicted by trend ŷt0
(q′, i)tre in (2)

whole w in (6) or (7) Predicted by periodicity ŷt0
(q′)per in (3)

Pseudo-identical query

whole, 1-, 2-, 4-, 7-day w = 1 Observation fre(q′ , period) in Section 3.2.1

1-, 2-, 4-, 7-day w = 1 Predicted by trend ŷt0
(q′, i)tre in (2)

whole w = 1 Predicted by periodicity ŷt0
(q′)per in (3)

Table 4

Summary of semantic features of candidate (14 features) and the corresponding formulas. We consider two

choices for each feature: maximum or summation and there are 2 sources for determining the word2vec scores,

the GoogleNews corpus or one of our query logs (AOL or MSN).

Description Formula

Word2vec score from GoogleNews or query logs word2vec in Section 3.4.1

Lexical similarity score from query logs fWordSimMax and fWordSimSum in Section 3.4.1

Term pair likelihood ratio from query logs fLLRMax and fLLRSum as (8)

Term pair cooccurrence frequency from query logs fcof _max and fcof _sum in Section 3.4.1

Lexical query similarity score from query logs fQueSimMax and fQueSimSum in 3.4.2

Temporal relation from Query logs fTemRelMax and fTemRelSum as in (9)
“non-submitted,” similar to the “relevance” label of query-document pairs in L2R for document retrieval. For reference,

Table 1 compares L2R for document retrieval to L2R for QAC.

3.2. Popularity-based features

Popularity-based features are extracted from two sources: the query candidate (Table 2) and its homologous queries

(Table 3). Both the observed and the predicted query frequency are introduced.
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3.2.1. Popularity from observations

We observe the query popularity within various periods, producing pairs of time-sensitive features, denoted as fre(q,

period). The period, identified by a changing time window, can be chosen from the set {1-day, 2-day, 4-day, 7-day, whole},

where whole indicates that the popularity is determined based on the entire training query log while the others are collected

from logs for the recent 1, 2, 4, or 7 day(s) only. We only focus on these five period options as: (i) our available datasets

for learning are not big enough to sensibly consider longer intervals, e.g., the MSN log that we use only covers a one month

period; (ii) the sliding windows chosen as part of the time-sensitive approach to QAC by Whiting and Jose (2014) can

successfully reveal recent trends of query popularity.

3.2.2. Popularity from predictions

Following Cai et al. (2014b), we generate features based on predicted query popularity according to the recent trend and

according to cyclic phenomena. Specifically, we first detect the trend of query q’s popularity from the first-order derivative

of its daily count C(q, t) observed at different time points t, and then predict its future popularity at day t0, denoted by

ŷt0
(q, i)tre, based on the observation of each preceding ith day as:

ŷt0
(q, i)tre = yt0−i(q, i) +

∫ t0

t0−i

∂C(q, t)

∂t
dt, (2)

where yt0−i(q, i) is the observed frequency of q at the preceding i-th day. For simplicity, similar to the choices of period in

Section 3.2.1, we consider four options for i, i.e., i ∈ {1, 2, 4, 7}.

In addition, we predict the query popularity according to its periodicity of query volume, denoted by ȳt0
(q)per . We

detect cyclic phenomena of query popularity at a per hour level and then produce an aggregated query popularity at

a per day level. We smooth ȳt0
(q)per by simply averaging the recent M observations ytp at the preceding time points

tp = t0 − 1 · Tq, . . . , t0 − M · Tq in the log:

ŷt0
(q)per = 1

M

M∑
m=1

yt0−m×Tq
(q), (3)

where Tq denotes query q’s periodicity. For detecting cyclic aspects of q’s frequency, we use autocorrelation coefficients

(Chatfield, 2004), which measure the correlation between Ns successive count observations C(q, t) at different times t = 1, 2,

..., Ns in the query log. The correlation is computed between a time series and the same series lagged by i time units:

ri =
∑Ns−i

t=1 (C(q, t) − x̄1)(C(q, t + i) − x̄2)

(
∑Ns−i

t=1 (C(q, t) − x̄1)2)
1
2 (

∑Ns

t=i+1
(C(q, t + i) − x̄2)2)

1
2

, (4)

where x̄1 is the mean of the first Ns − i observations and x̄2 is the mean of the last Ns − i observations. For reasonably large

Ns, the denominator in (4) can be simplified by approximation. First, the difference between the sub-period means x̄1 and

x̄2 can be ignored. Second, the difference between summations over observations 1 to Ns − i and i + 1 to Ns can be ignored.

Consequently, ri can be approximated as follows:

ri ≈
∑Ns−i

t=1 (C(q, t) − x̄)(C(q, t + i) − x̄)∑Ns

t=1(C(q, t) − x̄)2
, (5)

where x̄ = ∑Ns
t=1

C(q, t) is the overall mean.

3.3. Weighting homologous queries

Now, given a query q, Hom(q), the set of homologous queries for q, consists of all super queries sq and pseudo-identical

queries pq of q found in the query logs, which have been issued before q was submitted. We extract the same popularity

features discussed in Section 3.2 for each homologous query q′
c ∈ Hom(qc) for a candidate qc; so q′

c is either a super query

sq or a pseudo-identical queries pq of q. We are not going to use all homologous queries q′
c for a candidate query qc with

the same weight when generating the final popularity features of homologous queries. Instead, we measure how similar q′
c

and qc are with weight w to be able to weigh the contribution of q′
c—this will allow us to capture the popularity of qc from

a homologous query q′
c.

After discounting the popularity of homologous queries, we calculate the maximal and aggregated values from all ho-

mologous queries as features. Next, we will introduce two approaches for discounting.

3.3.1. Query term overlap weighting

Clearly, the more terms the homologous query q′
c and qc share, the more relevant they could be to each other. Let q′

c ∩ qc

refer to the set of common terms in q′
c and qc. We multiply the term overlap ratio as a discount Discount(q′

c, qc) with the

popularity of super query sq of candidate qc:

w ← Discount(sq, qc) = |sq ∩ qc|
|sq| , (6)

where | · | returns the number of terms of the input term set.
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For pseudo-identical queries pq for qc, we set Discount(pq, qc) = 1 as we assume that they enjoy the same search

popularity.

3.3.2. Common prefix weighting

In addition to the query term set overlap discounting, we may also posit that a longer common prefix matters more than

shorter ones. This can be captured by introducing an impact factor based on the length of the overlapping prefix. Thus, we

discount the popularity of super query sq with Impact(sq, qc) as:

w ← Impact(sq, qc) = ‖CommonPrefix(sq, qc)‖
‖sq‖ , (7)

where ‖ · ‖ returns the number of characters of the input string. Rather than emphasizing the overlapping terms, this

emphasizes the longest common prefix. For pseudo-identical queries pq of qc we assign an impact Impact(pq, qc) = 1.

3.4. Semantic features

We use semantic information in two ways. Our example in the introduction to the paper suggests that queries semanti-

cally related to queries submitted earlier in a session may be more likely to be good completion candidates. We also estimate

the semantic relatedness of words occurring in a query on the assumption that semantically more coherent queries may be

better query candidates. We start with the latter.

3.4.1. Semantic relatedness in queries

We use several ways of computing semantic relatedness between terms in a query. To begin, we use a lexical simi-

larity method that combines POS tagging, Latent semantic analysis and WordNet to determine term-level similarity (Han,

L. Kashyap, Finin, Mayfield, & Weese, 2013). Given two words, it returns a string representing a number between 0.0 and

1.0 with 1.0 indicating absolutely similar. We use it to capture the word similarity, resulting in two features fWordSimMax and

fWordSimSum obtained by maximizing and summing all similarity scores of possible term pairs in a query, respectively.2

Next, we consider the query term pair likelihood ratio. Jones, Rey, Madani, and Greiner (2006) observe that frequent

query pairs from search sessions can be found by statistical hypothesis testing. Given two queries, the likelihood ratio (LLR)

between them can be calculated and the LLR testing is performed to see whether their co-occurrence in a search session is

statistically significant. Similarly, we argue that frequently co-occurring term pairs in a query could be semantically related

and introduce the LLR score to capture the semantic relatedness of term pairs inside a query. More specifically, assuming

that there are two terms term1 and term2 in a query, we calculate the LLR score for this term-pair as:

LLR(term1, term2) = −2 log
L(term2 | ¬term1)

L(term2 | term1)
, (8)

where L(term2|¬term1) denotes the number of queries containing term2 but without term1, and L(term2|term1) indicates the

volume of queries containing both term1 and term2. High LLR scores are assumed to indicate semantic relatedness. We

calculate LLR scores for all possible term pairs in a query q (excluding stop words) to measure the semantic relatedness.

Then, we return the maximal and aggregated LLR scores of all term pairs as semantic features, resulting in fLLRMax and

fLLRSum. In addition, we use the larger LLR score of a term pair (termi, termj) in a query q in spite of the term order, and then

produce the maximal and aggregated LLR scores as partial semantic features, indicated as

fcof _max = max
termi, j∈q

(max(L(termi | termj), L(termj | termi)))

and

fcof _sum =
∑

termi, j∈q

max(L(termi | termj), L(termj | termi)).

Our third way of operationalizing semantic relatedness between query terms builds on the method described by Mikolov,

Chen, Corrado, and Dean (2013a) and known as word2vec, where vector representations of words are learned from large

amounts of unstructured text resources, e.g., GoogleNews. Representations of words as continuous vectors have been shown

to capture meaningful semantic word regularities (Mikolov, Sutskever, Chen, Corrado, & Dean, 2013b). We use the idea to

capture semantic relatedness between query terms. The training objective of the Skip-gram model is to learn word vector

representations that are good at predicting the surrounding words by maximizing the average log probability

1

Tr

Tr∑
t=1

∑
−cs<= j<=cs, j 
=0

log P(termt+ j | termt ),
2 We apply a web API released by UMBC that can be used to return the semantic similarity score between words, http://swoogle.umbc.edu/SimService/

api.html.
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with inputting a sentence of terms term1, term2, ..., termTr
, where cs is the size of training context. This setup allows us to

assign a word2vec score, learnt from GoogleNews, to each term pair in a query. In this manner we produce fW2vGooMax and

fW2vGooSum by maximizing and summing scores of all term pairs.

As the trained word representation is a data-driven approach, highly dependent on the text resource and limited by its

inability to represent idiomatic queries or rare words unseen in the text resources, we also train a local Skip-gram model on

a query log dataset to represent query terms as a compensation and then calculate a local log-based semantic relatedness

score. In other words, we input queries in the query logs one by one as a sequence of training terms instead of sentences

in the unstructured text resource. Based on the word2vec model learnt from the query logs, the maximal and aggregated

word2vec scores of term pairs are returned, resulting in features fW2vLogMax and fW2vLogSum.

3.4.2. Semantic relatedness in sessions

So far, we have considered the semantic relatedness between words inside a query. Next, we consider the semantic

relatedness between query candidates and previous queries in the same session. We use alternative methods to capture this

relation.

First, we capture query relatedness between query candidates and previous queries in a session at the lexical level, by

using the combination of latent semantic analysis, POS tagging and WordNet mentioned before; this results in the features

fQueSimMax and fQueSimSum.

Second, following Chien and Immorlica (2005), we investigate query relatedness using temporal correlations. In other

words, two queries are assumed to be semantically related in this sense if their popularities behave similarly over time. We

employ Pearson’s correlation coefficient, commonly represented by the letter r, to capture this notion of similarity between

candidate qc and previous query qx. Similar to (5), we can obtain a formula for r(qc, qx) as:

r(qc, qx) = 1

nu

nu∑
i=1

(
qc,i − μ(qc)

δ(qc)

)(
qx,i − μ(qx)

δ(qx)

)
, (9)

where the frequency of query qc (or qx) over nu days is an nu-dimensional vector qc = (qc,1, qc,2, . . . , qc,nu ) with μ(qc) and

δ(qc) indicating the mean frequency and the standard deviation of its frequency, respectively. The correlation r(qc, qx) of two

queries qc and qx is a standard measure of how strongly two queries are linearly related. It always lies between +1 and −1,

with +1 implying an exactly positive linear relationship between them and −1 for an absolutely negative linear relationship.

Again, we calculate the maximal and aggregated query relatedness scores of all query pairs as temporal semantic features,

resulting in fTemRelMax and fTemRelSum, respectively.

3.5. Summary

We also make use of user reformulation behavior features following Jiang et al. (2014), derived at three levels: term-,

query- and session-level. Please refer to Jiang et al. (2014) for details. The use of features of homologous queries and se-

mantic relatedness for QAC is a new contribution of this paper. In total, we use 127 features including those from Jiang et al.

(2014).

Our features are slotted into three categories: popularity, user reformulation behavior, and semantic relatedness. For

query popularity, we collect evidence from the candidate and its homologous queries, based on observations and predic-

tions. For user behavior features, we directly use those from Jiang et al. (2014). Regarding homologous queries, there are 2

categories, 5 period options for observation (4 for prediction by trend), 2 weighting schemes (only for super queries) and

2 calculations, accounting for a total of 60 features, i.e., 30 features by observation and 30 features by prediction (24 from

trend and 6 from periodicity). Referring to the candidate’s popularity, recent observations and predictions are collected by

simply changing the time period, yielding 5 + 4 + 1 = 10 features. For semantic relatedness features, 2 sources are used to

calculate the word2vec score: GoogleNews and a local query log, i.e., AOL (MSN) queries are scored by the corresponding

word2vec model trained on the AOL (MSN) logs; 2 calculations are adopted for generating popularity features of homol-

ogous queries and semantic features: maximization and summation; 2 term-pair significant scores are included; semantic

relatedness is measured on word- and query-level, resulting in 14 features.

Accordingly, in total, we develop 70 (= 60 + 10) features for popularity, 14 features for semantic relatedness and 43

features for user reformulation behavior, yielding a total of 70 + 14 + 43 = 127 features for our L2R-based QAC approach.

4. Experimental setup

Section 4.1 summarizes the proposed models trained on different features and lists the research questions to guide our

experiments; Section 4.2 describes our datasets; Section 4.3 gives details about our evaluation metrics and baselines; we

detail further experimental settings and parameters in Section 4.4.

4.1. Model summary and research questions

To examine the contribution from each specific feature source, we specify six L2R-QAC variations depending on the

features used: L2R-U, -UP, -UPS, -UPH, -ALL and -TOP; see Table 5.
Please cite this article as: F. Cai, M. de Rijke, Learning from homologous queries and semantically related terms for query

auto completion, Information Processing and Management (2016), http://dx.doi.org/10.1016/j.ipm.2015.12.008

http://dx.doi.org/10.1016/j.ipm.2015.12.008


F. Cai, M. de Rijke / Information Processing and Management 000 (2016) 1–16 9

ARTICLE IN PRESS
JID: IPM [m3Gsc;January 9, 2016;8:54]

Table 5

An overview of the QAC models discussed in the paper.

Model Description No. of features Source

Baselines

MPC-ALL Ranking QAC candidates according to their past popularity in the whole log – (Bar-Yossef & Kraus, 2011)

MPC-R Ranking QAC candidates according to their past popularity within recent R days – (Whiting & Jose, 2014)

L2R-U Learning to rank QAC candidates using user reformulation behavior features 43 (Jiang et al., 2014)

Our models

L2R-UP Extending L2R-U by adding 10 popularity features of the same query 43 + 10 = 53 This paper

L2R-UPS Extending L2R-UP by adding 14 semantic features of the same query 53 + 14 = 67 This paper

L2R-UPH Extending L2R-UP by adding 60 popularity features of homologous queries 53 + 60 = 113 This paper

L2R-ALL All features are considered for learning to rank QAC candidates 53 + 14 + 60 = 127 This paper

L2R-TOP Extending L2R-UP by only adding top ten important features newly developed here 53 + 10 = 63 This paper
Our research questions guiding the remainder of the paper are:

RQ1 Do the features that describe the observed and predicted popularity of a QAC candidate help boost QAC performance

without negatively impacting the effectiveness of user behavior related features proposed by Jiang et al. (2014)? That

is, how does L2R-UP compare against L2R-U? (See Section 5.1.)

RQ2 Do semantic features help improve QAC performance? That is, how does L2R-UPS compare against L2R-UP? (See

Section 5.2.)

RQ3 Do homologous queries help improve QAC performance? That is, how does L2R-UPH compare against L2R-UP? (See

Section 5.3.)

RQ4 How does L2R-UPS compare against L2R-UPH? What is the performance gain, if any, if all features are added for

learning (L2R-ALL)? (See Section 5.4.)

RQ5 What are the principal features developed here for a learning to rank based QAC task? (See Section 5.5.)

4.2. Dataset

We use two publicly available query log datasets in our experiments: AOL (Pass, Chowdhury, & Torgeson, 2006) and MSN

(Craswell, Jones, Dupret, & Viegas, 2009). The AOL queries were sampled between March 1, 2006 and May 31, 2006, while

the MSN logs were recorded for one month in May 2006. For consistency, we partition each log into two parts: a training

set consisting of 75% of the query log and a test set consisting of the remaining 25% in terms of time period. We also use

the temporally last 10% samples in the training set as validation set for LambdaMART. Traditional k-fold cross-validation is

not applicable to a streaming sequence since it would negate the temporal order inherent in the data (Gama, Žliobaitė, Bifet,

Pechenizkiy, & Bouchachia, 2014). Queries in the training set were submitted before May 8, 2006 in the AOL dataset and

before May 24, 2006 in the MSN dataset.

We filter out a large volume of navigational queries with URL substrings (.com, .net, .org, http, .edu, www, etc.) and re-

move queries starting with the special characters (&, $, #, etc.) from both datasets. We divide the queries into sessions by 30

minutes’ inactivity3 and only English queries appearing in both two partitions were kept. Importantly, in our experimental

design we follow Jiang et al. (2014) and focus on sessions with at least two queries. By doing so, we can extract user behav-

ior related features. Like previous session context-based QAC approaches (Bar-Yossef & Kraus, 2011; Jiang et al., 2014), we

set the prefix in our experiments to be the first 1–5 character(s) of queries in a session. To obtain our training and test sets,

we remove input prefixes for which the ground truth (see below) is not included in the top ten QAC candidates returned by

MPC at the time point of querying; this too follows previous QAC work and is a commonly used methodology in QAC tasks

(Cai et al., 2014b; Jiang et al., 2014; Shokouhi, 2013). Table 6 details the statistics of our processed datasets.

The ground truth for a QAC task is defined as follows. Given a search session with T queries, i.e., {q1, q2, . . ., qT−1, qT }, we

want to predict each intended query qi, i = {1, 2, . . ., T} at position i of a session after typing its prefix p. Then, a query q is

a correct completion of this prefix p of qi if, and only if, q = qi.

Next we take a closer look at the processed datasets so to be able to report the ratio of queries at various lengths in

words and of queries that have homologous queries. As shown in Fig. 3a, generally, for both datasets, nearly one quarter of

the one-term queries have homologous queries, solely contributed by their super queries. For two- and three-term queries,

super queries and pseudo-identical queries contribute similarly, however for longer queries (>3 words), the latter dominate

the contribution.

Additionally, as plotted in Fig. 3b, more than half of all queries contain more than one word, which supports the feasi-

bility for semantic features between words inside a query.
3 Only applied on the AOL dataset as the MSN dataset provides session IDs.
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Table 6

Statistics of the AOL and MSN datasets used. The “�” in # Prefix-� indicates the length of the prefix in characters.

AOL MSN

Variables Training Test Training Test

# Queries 3,808,083 1,571,346 3,784,925 1,402,308

# Unique queries 452,980 452,980 304,943 304,943

# Sessions 1,149,528 465,302 674,717 256,512

Queries / session 3.31 3.38 5.60 5.46

# All prefixes 8,783,957 3,260,130 4,995,213 1,751,158

# Prefix-1 605,710 209,650 427,502 141,925

# Prefix-2 1,175,087 405,857 749,821 249,065

# Prefix-3 1,954,285 707,580 1,134,539 387,633

# Prefix-4 2,433,385 916,976 1,320,529 470,286

# Prefix-5 2,615,490 1,020,067 1,362,822 502,249

Fig. 3. Statistics of queries at various query lengths (in words) for the AOL and MSN datasets, respectively.
4.3. Evaluation metrics and baselines

To evaluate the effectiveness of QAC rankings, Mean Reciprocal Rank (MRR) is a standard measure. For a query q with

prefix p in the query set Q associated with a list of QAC candidates S(p) and the user’s finally submitted query q′, the

Reciprocal Rank (RR) is computed as:

RR =
{

1

rank of q′ in S(p)
, if q′ ∈ S(p)

0, else.

(10)

Then, MRR is computed as the mean of RR scores for all queries in Q. The choice of MRR as a performance metric is common

in settings that are concerned with finding a single known solution. However, because of the issues reported by Hofmann,

Mitra, Radlinski, and Shokouhi (2014) on the formulation of MRR (averaging over a non ratio-scale), we introduce a less

problematic metric. The success rate at top K (SR@K), denoting the average ratio of the actual query that can be found in

the top K queries over the test data, can be used for tasks whose ground truth consists of only one instance such as query

completion (Jiang et al., 2014).

For comparison, we consider several QAC baselines: (1) the Most Popular Completion (MPC) model based on the fre-

quency in the whole log, referred to as MPC-ALL (Bar-Yossef & Kraus, 2011); (2) an MPC based QAC method, using fre-

quency within a recent time window, denoted as MPC-R (Whiting & Jose, 2014), which is state-of-the-art. Here we set R = 7

days as the time window because performance peaks with this setting (Whiting & Jose, 2014); (3) a recent L2R-based QAC

model considering user reformulation behavior features (Jiang et al., 2014), denoted as L2R-U. The former two baselines are

popularity-based while L2R-U is a L2R-based QAC model.

Note that we do not compare our approach with query suggestion methods, e.g., (Liao et al., 2011; Ma, Yang, King, &

Lyu, 2008; Mei, Zhou, & Church, 2008), because such methods focus on the task of query suggestion, which is a subtly

different task from QAC (Cai et al., 2014b). For instance, in the case of query suggestion, the user input typically is a full

query but it is only a prefix in QAC. Also, for generating the original query completion list to rerank in our QAC task, only

the candidates matching the typed prefix are taken into consideration. However, for a query suggestion task, each query

in the query log could be included in the candidate list to rerank given that it is deemed relevant to the user input. With
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Table 7

Selecting our baseline. The performance of various baselines in terms of MRR and SR@K, tested

on the AOL and MSN datasets after typing one character as prefix. The best performing baseline

in each row is highlighted.

Dataset Metric MPC-ALL MPC-R L2R-U

AOL MRR 0.6157 0.6348 0.6682

SR@1 0.4532 0.4643 0.4815

SR@2 0.5914 0.6038 0.6256

SR@3 0.7016 0.7121 0.7304

MSN MRR 0.6305 0.6498 0.6821

SR@1 0.4702 0.4757 0.4876

SR@2 0.6083 0.6276 0.6385

SR@3 0.7251 0.7368 0.7437
this limitation we follow a standard practice in research on QAC (Bar-Yossef & Kraus, 2011; Cai et al., 2014b; Shokouhi &

Radinsky, 2012; Whiting & Jose, 2014), where only appropriate QAC approaches are used as baselines rather than query

suggestion approaches. In addition, QAC is different from query correction oriented tasks such as those discussed by Duan

and Hsu (2011), where the main focus is centered on correctly modifying the misspelled word or query.

The statistical significance of observed differences between the performance of two approaches is tested using a two-

tailed paired t-test and is denoted using �/� for significant differences for α = .01, or �/� for α = .05.

To select a single baseline against which we compare our newly introduced models, we compare the performance of the

three baselines just listed and report the results in Table 7. For both datasets, L2R-U outperforms the other two baselines.

For instance on AOL, it results in more than 8% and 5% improvements in MRR over MPC-ALL and MPC-R, respectively, after

typing one character as prefix. Similar results can be found on the MSN dataset. Hence, we select L2R-U as the single

baseline for comparison with our proposed models in later experiments.

4.4. Settings and parameters

Following Cai et al. (2014b), for time-sensitive query popularity prediction, we count queries per hour to detect the

periodicity and aggregate the hour-predictions within the same day to generate the day-volume. For smoothing in (3), we

set M = 3 as it performs best when M changes from 1 to 5 in our trials. Before we run our L2R-based QAC experiments, we

are given a list of top N QAC candidates by the traditional MPC approach; we set N = 10 as this is commonly used by many

web search engines and published QAC work (Cai, Liang, & de Rijke, 2014a; 2014b; Jiang et al., 2014; Shokouhi, 2013). We

use the LambdaMART learning algorithm for ranking QAC candidates across all experiments (Burges et al., 2011).

5. Results and discussions

In Section 5.1, we examine the performance of L2R-UP, which we follow with a section about the contribution of semantic

features. We examine the performance of L2R-UPH in Section 5.3 with features of homologous queries added to L2R-UP.

Next, Section 5.4 details the performance of L2R-ALL learnt from all features above and Section 5.5 provides an analysis of

feature importance. Finally, Section 5.6 zooms in on the impact of query position on QAC performance.

5.1. Effect of query popularity

Since information about the past popularity of QAC candidates can be generated offline before ranking while the true

popularity is unavailable at runtime, we develop the popularity features according to their previously observed frequency

within various periods in the query logs, known as time-sensitive popularity features. In contrast, we produce the predicted

query popularity as features based either on recent trends or on cyclic patterns. In this section, we compare the performance

of L2R-UP with that of the baseline.

Table 8 includes the results on two datasets, i.e., the AOL and MSN datasets, after entering prefixes consisting of 1 to 5

characters. On each dataset, L2R-UP generally performs better than the baseline (L2R-U) in terms of MRR.

When we take a closer look at the results across all prefixes, reported in MRR scores in Table 8, L2R-UP is considerably

more effective on longer prefixes as it produces larger MRR improvements over the baseline on long prefixes, e.g., # = 4 or

5. Longer prefixes notably reduce the space of possible QAC candidates, which simplifies the problem. In addition, L2R-UP

shows a monotonous increase in MRR as the prefix length goes up. However, the baseline shows a bit fluctuation in terms

of MRR as the prefix length changes. Expectedly, L2R-UP always receives the higher MRR scores compared to the baseline.

Next, we compare L2R-UP against the baseline (L2R-U) in terms of SR@1 and plot the results in Fig. 4. We find that, at

each prefix length, for more than half of the test prefixes, L2R-UP returns the final submitted query at the first position in

the QAC ranking list because all SR@1 scores achieved by L2R-UP are higher than 0.5; L2R-U receives a lower SR@1 score

than 0.5 on both datasets; long prefixes invariably result in higher SR@1 scores than short ones. From these findings, we
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Table 8

Performance in terms of MRR for the QAC task, at a prefix length #p ranging from 1 to 5 characters on the AOL

and MSN datasets. For each dataset the best performer per row is highlighted. Statistically significant differences

are determined against the baseline.

#p AOL

Baseline L2R-UP L2R-UPS L2R-UPH L2R-ALL L2R-TOP

1 0.6682 0.6764 0.6871� 0.6847� 0.6977� 0.6913�

2 0.6631 0.6815� 0.6939� 0.6898� 0.7024� 0.6980�

3 0.6654 0.6853� 0.7001� 0.6910� 0.7081� 0.7042�

4 0.6673 0.6921� 0.7094� 0.6981� 0.7144� 0.7127�

5 0.6704 0.6986� 0.7186� 0.7059� 0.7215� 0.7201�

#p MSN

Baseline L2R-UP L2R-UPS L2R-UPH L2R-ALL L2R-TOP

1 0.6821 0.6933 0.7028� 0.7011� 0.7136� 0.7084�

2 0.6847 0.6971 0.7112� 0.7048� 0.7204� 0.7183�

3 0.6915 0.7080� 0.7225� 0.7135� 0.7287� 0.7251�

4 0.6873 0.7113� 0.7260� 0.7164� 0.7314� 0.7300�

5 0.6895 0.7212� 0.7366� 0.7263� 0.7416� 0.7487�

Fig. 4. QAC performance in terms of SR@1 observed for L2R-U and L2R-UP, tested on the AOL and MSN datasets.

Fig. 5. QAC performance of L2R-UP and L2R-UPS tested on the AOL dataset at various prefix lengths (in characters), in terms of SR@1, SR@2 and SR@3,

respectively.
conclude that the observed and predicted popularity features of query candidates indeed help generate better QAC rankings

when embedded into a learning to rank framework.

5.2. Effect of semantic features

To answer RQ2, we learn our L2R-UPS model by extending L2R-UP with additional 14 semantic features. The MRR scores

of L2R-UPS are listed in Table 8; we also plot the scores in terms of other metrics (SR@K, K = 1, 2, 3) of L2R-UP and L2R-UPS

in Fig. 5 and 6, tested on the AOL and MSN datasets, respectively, with varying lengths of query prefix from 1 to 5.

Generally, we find that L2R-UPS beats L2R-UP for all cases on both datasets in terms of MRR and SR@K (K = 1, 2, 3). In

particular, on the AOL dataset, the MRR improvements of L2R-UPS over L2R-UP are statistically significant (at level α = .05)
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Fig. 6. QAC performance of L2R-UP and L2R-UPS tested on the MSN dataset at various prefix lengths (in characters), in terms of SR@1, SR@2 and SR@3,

respectively..

Table 9

Changes in MRR and SR@1 scores between L2R-UPH and L2R-UP at

varying prefix lengths on the AOL and MSN datasets.

#p AOL MSN

MRR SR@1 MRR SR@1

1 +1.23% +1.30% +1.13% +1.21%

2 +1.22% +1.19% +1.10% +1.09%

3 +0.83% +0.93% +0.78% +0.90%

4 +0.87% +0.86% +0.72% +0.82%

5 +1.04% +1.07% +0.71% +0.79%
for most cases, e.g., at #p = 4 and 5; however, on the MSN dataset, most of the improvements are not significant except at

#p = 5 (at level α = .05). This is due to the fact that compared to the AOL dataset, the MSN dataset contains far more short

queries, resulting in difficulties in capturing the term-pair semantic relatedness. In contrast, compared to the baseline (L2R-

U), L2R-UPS shows significant MRR improvements for all cases on both datasets. For instance, on the AOL dataset, significant

MRR improvements are observed at level α = .01 for prefix length #p = 2 to 5 and at level α = .05 for prefix length #p =
1 by comparing L2R-UPS against the baseline, respectively.

Clearly, the gains in MRR of L2R-UPS over L2R-UP are larger for longer prefixes. E.g., on the AOL dataset, L2R-UPS achieves

a 2.86% improvement over L2R-UP at #p = 5 and only a 1.58% improvement at #p = 1 in terms of MRR. Similar observations

can be made for other metrics. The results on the MSN dataset show a similar behavior even though the gaps are smaller.

With longer prefixes, query candidates are more likely composed of multiple terms, which helps to extract semantic features.

Regarding the outcomes in terms of SR@K, as shown in Figs. 5 and 6, for the majority of cases, L2R-UPS can return the

correct query in top 3 of the QAC list as the scores in terms of SR@3 are higher than 0.8 on both datasets. Hence, we

conclude that the semantic relatedness features can help generate “good” queries, in which terms are semantically close to

each other.

5.3. Effect of homologous queries

Next, we turn to RQ3 and examine the contribution from features of homologous queries for the candidate. Recall that

the resulting model is called L2R-UPH. We generate the QAC rankings for each prefix; the MRR scores are included in Table 8,

column 5. We see that L2R-UPH significantly outperforms the baseline, on both datasets, resulting in near 5% improvements

in terms of MRR for long prefixes, e.g., for #p = 4 or 5, but less for short prefixes, e.g., #p = 1. Generally, L2R-UPH achieves

4.4% and 4.1% improvements over the baseline on the AOL and MSN datasets, respectively, in terms of MRR.

Additionally, we compare L2R-UPH against L2R-UP in terms of MRR and SR@1 and report the relative changes in Table 9.

Across the board, L2R-UPH outperforms L2R-UP in terms of MRR and SR@1. L2R-UPH achieves an average improvement in

MRR scores around 1.2% on AOL and 0.9% on MSN over L2R-UP, respectively. For all cases, the improvement of L2R-UPH over

L2R-UP is not statistically significant. Interestingly, the gains in MRR of L2R-UPH over L2R-UP are larger for shorter prefixes

(e.g., #p = 1 or 2), which differs from the outcomes of comparing L2R-UPS against L2R-UP where obvious MRR gains are

found for long prefixes. We believe that this is due to the fact that shorter prefixes result in more ambiguous and shorter

candidates, leading to a higher probability for QAC candidates to possess homologous queries from which more information

can be gleaned.

Next, we zoom in on the difference between L2R-UPS and L2R-UPH. L2R-UPS tends to outperform L2R-UPH in terms of

MRR at all prefix lengths (see Table 8, column 4 vs. 5), resulting in an average improvement over L2R-UPH of around 1.5%

on the AOL dataset and 1.3% on the MSN dataset. The differences increase as the prefix becomes longer. Hence, even though
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Table 10

Per prefix bakeoff, in terms of reciprocal rank: L2R-ALL vs. other models. The ratios (%) of

test prefixes at all lengths for which L2R-ALL loses against the corresponding model listed in

column 1 have a red background, ratios with equal performance have a yellow background,

and those of prefixes for which L2R-ALL wins have a green background.
most differences are not statistically significant, semantic features are probably more important than those of homologous

queries for QAC tasks in our setting.

In sum, homologous queries help improve the ranking of QAC candidates, reflecting the fact that searchers occasionally

modify queries by changing the term order or adding terms. In addition, compared to the contribution from homologous

queries, semantic features provide a bigger contribution to L2R-based QAC tasks as L2R-UPS is more effective than L2R-UPH

on both datasets (AOL and MSN).

5.4. Performance of L2R-ALL

For research question RQ4 we examine whether our L2R-ALL model learnt from all discussed features can help boost QAC

ranking performance. The MRR scores achieved by L2R-ALL are listed in Table 8, column 6, on the AOL and MSN datasets.

Clearly, for both datasets, L2R-ALL is considerably more effective than L2R-UPS and L2R-UPH, especially for short prefixes.

In addition, we examine the difference in MRR scores between L2R-ALL, L2R-UPS and L2R-UPH, respectively. For both

datasets, the improvement of L2R-ALL over L2R-UPS is not significant. However, for all cases on AOL except #p = 1 and 2,

L2R-ALL significantly outperforms L2R-UPH at the α = .05 level; for MSN, significant improvements of L2R-ALL over L2R-

UPH are observed, except for #p = 1 at level α = .05. Generally, L2R-ALL achieves a 1.2% improvement in terms of MRR

over L2R-UPS on both datasets. Compared to L2R-UPH, L2R-ALL shows a 2.3% MRR improvement in general. Regarding the

comparisons to the baseline, L2R-ALL achieves significant improvements in terms of MRR at the α = .01 level for all prefix

lengths on both datasets. In particular, L2R-ALL achieves an average 6.8% and 6.3% MRR improvement on AOL and MSN,

respectively.

Next, we check the QAC ranking performance per prefix and list the ratio of test prefixes at all lengths for which L2R-

ALL loses against, equals or outperforms the corresponding models; see Table 10. We can see that, on both datasets, L2R-ALL

presents a majority of draws with the other models. Actually, the draws are often observed on prefixes for which all models

return the correct query submission at the top positions, e.g., 1 or 2. That is why these models receive high MRR scores (see

Table 8). Additionally, compared with the other three models in Table 10, i.e., Baseline, L2R-UP and L2R-UPH, the L2R-UPS

model beats L2R-ALL more often, especially on the AOL dataset, usually on long prefixes, e.g., #p = 4 or 5.

5.5. Feature sensitivity analysis

Finally, we analyze the relative importance of our newly developed features to answer RQ5. Following (Agichtein, Castillo,

Donato, Gionis, & Mishne, 2008), the top ten most significant features on each dataset used for learning, according to a χ2

test, are reported in Table 11.

We see that the word2vec score returned by the word2vec model on the query logs, with the maximal value of all term

pairs in a query, appears to be the most important feature. Generally, semantic relatedness features are more important than

features of homologous queries, as they are ranked higher and account for the majority of the top ten features. Popularity

features of pseudo-identical (PI) queries are notably more helpful for QAC than super queries (SQ). Also, the observations

and predictions from the recent 2 days are effective. These results are consistent with the findings from previous work (e.g.,

(Cai et al., 2014a; Jiang et al., 2014)) that the predicted popularity dominates the QAC rankings. However, other signals also

contribute many useful features, e.g., semantic query similarity represented by temporal relation and term pairwise occur-

rence frequency, e.g., fTemRelSum and fLLRSum. Two particularly interesting observations from Table 11 are that: (1) word2vec

features are ranked very high, suggesting that the developed semantic relatedness among term pairs inside a query does in-

deed help to generate appropriate queries; (2) the majority of important features use maximization rather than summation

of values.

To verify the effectiveness of features deemed to be important for QAC, we create a model called L2R-TOP that extends

L2R-UP with the features in Table 11 (on the corresponding datasets). The results in terms of MRR scores are listed in

Table 8, column 7. We see that (1) compared to features selected from a sole source into L2R-UP, i.e., semantic related-

ness or homologous queries, the important features according to Table 11 boost the performance; L2R-TOP receives higher
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Table 11

Ten most important features by χ2 test on the AOL and MSN datasets;

PI(q) and SQ(q) are placeholders for pseudo-identical queries and super

queries of query q, respectively.

Rank AOL MSN

1 fW2vLogMax fW2vLogMax

2 fTemRelSum f re(PI(q), 2)tre_max

3 f re(PI(q), 2)tre_max fW2vGooMax

4 fW2vGooMax f re(PI(q), 2)obs_max

5 f re(PI(q), 4)obs_max fTemRelSum

6 fTemRelMax f re(PI(q), 4)tre_max

7 fcof _sum f re(PI(q), 1)tre_max

8 f re(PI(q), 2)obs_max fW2vLogSum

9 fW2vLogSum fLLRSum

10 f re(SQ(q), 2)tre_sum f re(SQ(q), 4)tre_max

Fig. 7. Performance of L2R-based QAC models in terms of MRR at various query positions, tested on the AOL and MSN datasets, respectively.
MRR scores than L2R-UPS and L2R-UPH; (2) L2R-ALL invariably performs the best among all models, suggesting that L2R-

based models not only learn from the important features, but also from the less important ones. Overall, L2R-TOP produces

competitive results, implying that its 63 features (the ten most important plus 53 from L2R-UP) are highly informative for

producing high quality QAC rankings.

5.6. Impact of query position

Previous work mainly focuses on the last query in a session for QAC evaluation (Cai et al., 2014b; Jiang et al., 2014).

Instead, we implement tests on all queries in a session, which helps us to examine the performance of our L2R-based QAC

models at various query positions in a search session. We plot the results in terms of MRR in Fig. 7 for all prefixes at each

specific query position in session, tested on the AOL and MSN datasets, respectively.

We can see from Fig. 7 that: (1) for all L2R-based QAC models, the QAC performance in terms of MRR is improved when

the user continues querying in a session because the MRR scores are increased as the query position changes from the

beginning to the end of a session; (2) among these models, the performance of L2R-UP seems to be less sensitive to the

query position than other models, especially on the MSN dataset, as the MRR scores of L2R-UP are relatively stable; (3)

generally, the L2R-ALL model invariably performs best among these models at each specific query position. These findings

could be due to: (1) at the end of a search session, the information of user behaviors makes more sense for learning than

that at the beginning of a search session, which helps boost the QAC ranking performance; (2) semantic features are more

reliably extracted at the end of a session rather than at the beginning, especially for those depending on the search context,

e.g., fTemRelSum in (9) and fcof _sum in Section 3.4.1, which are important to those models, e.g., L2R-UPS, L2R-ALL and L2R-TOP.

6. Conclusion

In this paper we follow a supervised learning to rank approach to address the problem of ranking query auto com-

pletion (QAC) candidates. We develop new features of homologous queries (i.e., those with the same terms but different

orders and those extending the initial query) and semantic relatedness of terms inside a query and of pairs of terms from

a query candidate and from earlier queries in the same session. We have verified the effectiveness of our models on two

public datasets, showing significant improvements over state-of-the-art QAC baselines. Our analysis reveals that features of

semantic relatedness and homologous queries are important and do indeed help boost QAC performance.
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As to future work, we will have a closer look at the top N candidates returned by popularity based candidate ranking

(MPC) for N > 10: how much can we gain from good candidates that were ranked low by MPC? Additionally, we want

to study efficiency aspects of our approaches: parallel processing is likely to boost the efficiency of our models on feature

extraction, and the addition of more, potentially expensive ways of generating homologous queries or semantic features

could produce better QAC rankings. Finally, we aim to apply our approach to larger datasets than we considered in this

paper, especially datasets that cover longer periods of time than AOL and MSN, as we believe that QAC can benefit from

periodicity-based features.
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