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Abstract. We consider the cross-market recommendation (CMR) task,
which involves recommendation in a low-resource target market using
data from a richer, auxiliary source market. Prior work in CMR utilised
meta-learning to improve recommendation performance in target mar-
kets; meta-learning however can be complex and resource intensive. In
this paper, we propose market-aware (MA) models, which directly model
a market via market embeddings instead of meta-learning across markets.
These embeddings transform item representations into market-specific
representations. Our experiments highlight the effectiveness and effi-
ciency of MA models both in a pairwise setting with a single target-
source market, as well as a global model trained on all markets in
unison. In the former pairwise setting, MA models on average outper-
form market-unaware models in 85% of cases on nDCG@10, while being
time-efficient—compared to meta-learning models, MA models require
only 15% of the training time. In the global setting, MA models out-
perform market-unaware models consistently for some markets, while
outperforming meta-learning-based methods for all but one market. We
conclude that MA models are an efficient and effective alternative to
meta-learning, especially in the global setting.

Keywords: Cross-market recommendation · Domain adaptation ·
Market adaptation

1 Introduction

Cross-market recommendation (CMR) involves improving recommendation per-
formance in a target market using data from one or multiple auxiliary source
markets. Data from source markets, which have rich- and numerous interactions,
are leveraged to aid performance in a target market with fewer interactions. For
instance, an e-commerce company well-established in Germany may want to start
selling its products in Denmark. Using CMR methods, data from the German
market can be utilised to augment recommender performance in the Danish mar-
ket. This task is challenging since target market data can be scarce or otherwise
unavailable, and user behaviours may differ across markets [2,7,24].

Research in CMR tackles multiple challenges. One challenge is to select the
best source market, which is crucial since user behaviours across markets may
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vary [2,24], which may harm performance instead of bolstering it. Furthermore,
effectively utilising data from multiple markets at the same time without harming
performance can be challenging [2]. Another key obstacle is effectively modelling
a market, in addition to users and items. Bonab et al. [2] treat recommendation
in each market as a task in a multi-task learning (MTL) framework, using meta-
learning to learn model parameters. This is followed by a fine-tuning step per
market. These two steps enable models to learn both common behaviours across
markets as well as market-specific behaviours. However, meta-learning can be
resource intensive compared to other methods. In addition to this, utilising new
data from source markets requires re-running the meta-learning step.

We propose market-aware (MA) models to address these limitations. We aim
to explicitly model each market as an embedding, using which an item represen-
tation can be transformed and ‘customised’ for the given market. Compared to
meta-learning models, we show that MA models are far more efficient to train.
Furthermore, they are trained in one go, enabling easier model updates when
new data is collected. MA models are built on the hypothesis that explicit mod-
elling of markets allows better generalisation. In essence, an item representation
is a product of (i) an across-market item embedding and (ii) a market embed-
ding. The former is learnt from data across markets, and aims to capture an
item representation applicable across markets; the latter enables market-specific
behaviours to be captured.

In our experiments, we compare MA models with market-unaware baselines
as well as meta-learning models. We do so in multiple settings, utilising data from
several markets: the pairwise setting, which deals with a single target-source
pair, and the global setting which trains one model for recommendation in all
markets. In the pairwise setting, we show that MA models improve over market-
unaware models for many markets, and match or beat meta-learning methods.
This is significant since we show that training MA models require approximately
the same time as market-unaware models and only 15% of the time required to
train meta-learning models. We show that MA models especially excel in the
global setting, outperforming meta-learning methods for nearly every market.
We examine the following research questions1:

RQ1. Given a single source and target market, does explicitly modelling mar-
kets with embeddings lead to effective performance in the target market? We
compare MA models against market-unaware as well as meta-learning mod-
els. We show MA models achieve the best performance for most markets, and
when a single, best source is available they match or outperform baselines for
all markets.
RQ2. How computationally expensive are MA models compared to market-
unaware and meta-learning models? We show that MA models require similar
training times as market-unaware models, and require fewer computational
resources to train compared to meta-learning models while achieving similar
or better performance.

1 https://github.com/samarthbhargav/efficient-xmrec.

https://github.com/samarthbhargav/efficient-xmrec
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RQ3. How do MA models compare against market-unaware models and meta-
learning models when a global model is trained on all markets in unison?
We show that MA models outperform or match market-unaware baselines,
outperforming meta-learning models for all but one market.

2 Related Work

While both cross-domain recommendation (CDR) and CMR focus on improving
recommender effectiveness using data from other domains (i.e. item categories)
or markets, they present different challenges: CDR involves recommending items
in a different domain for the same set of users, with the general assumption that
the model learns from interactions of overlapping users. In CMR, items are
instead shared across different markets, with each market having a different set
of users. Interactions from auxiliary markets are leveraged to boost performance
for users in the target market for a similar set of items.

Cross-domain Recommendation. CDR has been researched extensively
[6,12,14,17,18,20,22,23]. Prior approaches involve clustering-based algorithms
[21] and weighing the influence of user preferences based on the domain [23]. Lu
et al. [20] show that domain transfer may sometimes harm performance in the
target domain. Neural approaches using similarity networks like DSSM [13] or
transfer learning [6,12] can be effective. DDCTR [18] utilises iterative training
across domains. Augmenting data with ‘virtual’ data [4,22], as well as consid-
ering additional sources [27] have been shown to help. Other approaches lever-
age domain adaptation [9] for leveraging content for full cold-start [15], utilis-
ing adversarial approaches [19,25] or formulating it as an extreme classification
problem [26]. Our approach is inspired by contextual invariants [17], which are
behaviours that are consistent across domains, similar to our hypothesis that
there are behaviours common across markets.

Cross-market Recommendation. CMR is relatively new and understudied
compared to CDR. Ferwerda et al. [7] studied CMR from the perspective of
country based diversity. Roitero et al. [24] focus on CMR for music, investigat-
ing trade-offs between learning from local/single markets vs. a global model,
proposing multiple training strategies. [2] release a new dataset for the Cross
Market Product recommendation problem, which we utilise in our experiments.
They design a meta-learning approach to transfer knowledge from a source mar-
ket to a target market by freezing and forking specific layers in their models.
The WSDM Cup 2022 challenge also dealt with this dataset, where most top
teams utilised an ensemble of models based on different data pairs. Cao et al.
[3] builds on the XMRec dataset and proposes multi-market recommendation,
training a model to learn intra- and inter-market item similarities. In this work,
we show that meta-learning methods are expensive to train. Instead, we show
that market embeddings can encode and effectively transfer market knowledge,
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beating or matching the performance of complex models while being much more
efficient to train.

3 Methodology

We outline market-unaware models in Sect. 3.1, followed by market-aware models
as well as meta-learning models in Sect. 3.2.

Notation. Given a set of markets {M0,M1, . . . ,Mt}, such that market l has a
items Il and zl users Ul = {U1

l . . . Uzl
l } . We assume the base market M0 has

I0 s.t. I0 ⊃ Il for all 1 ≤ l ≤ m. The task is to adapt a given market Ml using
data from other markets Mm �=l as well as data from the target market. We use
pu for the user embedding for user u, qi for the item embedding for item i, and
finally ol for the market embedding for market l. yui and ŷui is the actual and
predicted rating respectively. � denotes an element-wise product.

3.1 Market-Unaware Models

These models do not differentiate between users and items from different markets
and are termed market-unaware since they do not explicitly model the market.
We first outline three such models previously employed for CMR [2,11]:

– GMF: The generalized matrix factorization (GMF) model computes the pre-
dicted rating ŷui given pu, qi and parameters h:

ŷui = sigmoid(hT (pu � qi))

– MLP: An multi-layer perceptron (MLP) uses a L layer fully-connected net-
work, such that:

m0 =
[
pu

qi

]

mL−1 = ReLU(WT
L−1ReLU(. . .ReLU(WT

1 m0 + b1)) + bL−1)

ŷui = sigmoid(hTmL−1)

– NMF: neural matrix factorization (NMF) combines both MLP and GMF.
Given p1

u, q1
i for the MLP, and p2

i , q2
u for GMF, the NMF model computes

the score as follows:

m0 =
[
p1
u

q1
i

]

mMLP = ReLU(WT
LReLU(. . .ReLU(WT

1 m0 + b1))) + bL)

mGMF = p2
u � q2

i

ŷui = sigmoid(hT

[
mGMF

mMLP

]
)
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For adapting to CMR, different sets of users from different markets are
treated similarly, and training is performed on a combined item pool result-
ing in a single model. During inference for a user, however, only items from that
market are ranked.

3.2 Market-Aware Models

We first discuss models proposed by Bonab et al. [2], followed by our proposed
methods.

Meta-learning Baselines. Bonab et al. [2] propose using meta-learning in
an MTL setting where each market is treated as a ‘task’. model-agnostic met-
alearning (MAML) [8] is employed to train the base NMF model across markets.
MAML employs two loops for training, an inner loop that optimises a particular
market, and an outer loop that optimises across markets. This makes training
expensive, as we will show in our experiments. Once a MAML model is trained,
the FOREC model is obtained as follows for a given source/target market: (a) the
MAML model weights are copied over to a new model, ‘forking’ it, (b) parts of
the weights of the model are frozen and finally (c) the frozen model is fine-tuned
on the given market.

Both MAML and FOREC are market aware but do not explicitly model the
market i.e. a single item embedding is learned in MAML models for all mar-
kets, and while market adaptation is achieved through fine-tuning for FOREC,
it requires maintaining separate sets of parameters, unlike the proposed MA
models.

Market Aware Models. Markets here are explicitly modelled by learning
embeddings for each of them, in addition to user and item embeddings. A mar-
ket embedding adapts an item to the current market, which we argue is crucial
for items that may be perceived differently in different markets. This aspect
should be reflected in the latent representation of the item, motivating our app-
roach. Both meta-learning and MA models learn item representations across
markets, but MA models this explicitly via an element-wise product between a
representation for an item and a market embedding. This produces item embed-
dings adapted to a given market. We augment the market-unaware baselines with
market embeddings, producing MA models. We leave more complex methods,
for instance—a neural network that models item/market interactions instead of
an element-wise produce—for future work.

To obtain a market-adapted item embedding, we first (one-hot) encode a
market l, to obtain a market embedding ol; the dimensionality of ol is the same
as pu and qi. The scores are computed as follows for the three proposed models:

– MA-GMF: For a user u in market l, and item i, we have embeddings pu, ol

and qi:

ŷui = sigmoid(hT (pu � (ol � qi)))
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– MA-MLP: This is the same as the MLP, with the initial embedding m0

augmented with market information: m0 =
[

pu

qi � ol

]

– MA-NMF: The NMF model utilises both modifications listed above. That
is:

mGMF = p2
u � (ol � q2

i )

m0 =
[

p1
u

q1
i � ol

]

These models are trained similarly to the market-unaware models, except
the market is taken into consideration when making recommendations. Mar-
ket embeddings are learned via backpropagation, similar to how user and item
embeddings are learned, using a binary cross entropy loss [11].

Our proposed technique adds market awareness to all the models. Besides
this, the proposed models are easier to update with new interactions compared
to MAML/FOREC. While FOREC requires the expensive MAML pre-training
followed by the fork and fine-tune step, MA models simply can be trained with
new interaction data. In spite of this simplicity, MA models achieve similar
performance compared to meta-learning models while requiring far lesser time
to train, which we demonstrate in the following section.

4 Experimental Setup

We conduct two sets of experiments. The first set of experiments trains models
with a single auxiliary source market for improving recommendation perfor-
mance in a given target market. We term these pairwise experiments since one
model is trained for a given source-target market pair. The second set of exper-
iments deals with a global model trained on all markets in unison, with the goal
of improving overall performance. We outline the dataset, evaluation, baselines,
hyperparameters and training followed by a description of the experiments.

Dataset. We use the XMarket dataset [2] for all experiments. XMarket is an
CMR dataset gathered from a leading e-commerce website with multiple mar-
kets. We utilise the largest subset, ‘Electronics’, considering the following mar-
kets (# users, # items, # interactions): de (2373/ 2210/ 22247), jp (487/ 955
/4485), in (239/ 470/ 2015), fr (2396/ 1911/ 22905), ca (5675/ 5772/ 55045), mx
(1878/ 1645/ 17095), uk (4847/ 3302/ 44515), us (35916/ 31125/ 364339). We
consider all markets except us as a target market, with all markets (including
us) as possible source markets. Experiments are limited to XMarket as it is the
only public dataset for research in CMR.

Evaluation. The data (per market) is split into a train/validation/test set,
where one left-out item from the user history is used in the validation and test
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set. This follows the leave-one-out strategy [5,10–12,16]. We extract 99 negatives
per user for evaluating recommender performance in the validation/test set,
following Bonab et al. [2]. In the pairwise experiments, the best-source market
is picked based on the validation set performance. We report nDCG@10 on the
test set in all results, with significance tests using a paired two-sided t-test with
the Bonferroni correction. While we report only nDCG@10, we note that we
observed similar trends for HR@10.

Compared methods. Market-aware models are denoted with an ‘MA-’ prefix,
and are compared with the following models:

– Single-market models: These are models trained only on the target market
data without any auxiliary source data, see Sect. 3.1. We train all three models
GMF, NMF and MLP.

– Cross-market models: In addition to target market data, these models are
trained with either one source market (for pairwise experiments), or all source
markets (for global experiments). Models trained with at least one source
market have a ‘++’ suffix e.g. GMF++ and MA-GMF++.

– Meta-learning models (see Sect. 3.2) similarly utilise data from one or more
auxiliary markets:

• MAML [2,8]: These are models trained using MAML, with weights ini-
tialised from a trained NMF++ model [2].

• FOREC [2]: This model uses the trained MAML model to first freeze
certain parts of the network, followed by a fine-tuning step on the target
market.

Model hyperparameters. We set model parameters from [2]2: the dimen-
sionality of the user, item, and market embeddings are set to 8, with a 3-Layer
[12,23,23] network for MLP/NMF models. For MAML models, we set the fast
learning rate β = 0.1 with 20 shots.

Training. All models are trained for 25 epochs using the Adam optimiser with
a batch size of 1024. We use learning rates from [2], for GMF we use 0.005, for
MLP and NMF we use 0.01. All models also utilise an L-2 regularisation loss with
λ = 1e − 7. The NMF model is initialised with weights from trained GMF and
MLP models. MAML models are trained on top of the resulting NMF models,
and FOREC models utilise the trained MAML models for the fork-and-fine-tune
procedure [2]. MA variants use the same hyperparameters as the market-unaware
models. The objective function for all models is binary cross-entropy, given pos-
itive items and 4 sampled negatives [2,11]. For pairwise experiments, data from
the source market is (randomly) down-sampled to the target market [2], which
ensures that models are comparable across different-sized source markets. For
global models, all data is concatenated together without any down-sampling3.
2 https://github.com/hamedrab/FOREC.
3 We observed that this greatly improved performance for almost all markets.

https://github.com/hamedrab/FOREC
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Table 1. AVG results: Models are first trained on a single target-source pair and perfor-
mance across sources are averaged. We report the nDCG@10 on the test set, with best
performance in bold. Significance test (p < 0.05

9
) results are also reported comparing

MA models with market-unaware (‡), MAML (∗) and FOREC (+).

Method de jp in fr ca mx uk

GMF++ 0.2045 0.0916 0.1891 0.2026 0.1937 0.4204 0.3222
MA-GMF++ 0.2148‡ 0.1079 0.2013 0.2022 0.2203‡ 0.4283‡ 0.3327‡

MLP++ 0.2836 0.1653 0.4376 0.2704 0.2905 0.5274 0.4346
MA-MLP++ 0.2909‡+∗ 0.1741 0.4502 0.2805‡ 0.3073‡+∗ 0.5311 0.4349∗

NMF++ 0.2927 0.1826 0.4403 0.2844 0.2844 0.5367 0.4379
MA-NMF++ 0.3055‡+∗ 0.1824 0.4471 0.2893+∗ 0.3002‡+∗ 0.5387+∗ 0.4370∗

MAML 0.2808 0.1770 0.4320 0.2785 0.2794 0.5288 0.4296
FOREC 0.2835 0.1758 0.4345 0.2816 0.2772 0.5302 0.4330

Pairwise Experiments. The first set of experiments dealing with RQ1 and
RQ2, which we call pairwise (Sect. 5.1), assumes a single auxiliary market is
available for a given target market. Since there are multiple source markets, we
report both the average performance in the target market across source markets
— termed AVG — as well as performance in the target market using the best
source market, termed BST . The two tables relay different results: the average
performance indicates the expected performance of a method since the ‘best’
source market might be unknown, or only a single source may exist; whereas the
best-source results are indicative of the maximum achievable performance if a
good source market is already known (this is typically unknown [24]).

Global Experiments. The second set of experiments corresponding to RQ3
utilises data from multiple auxiliary markets at once to train a global recom-
mender, with the goal to achieve good performance for all markets. We term
these experiments Global (Sect. 5.2). We describe the results of the two sets of
experiments in the following section.

5 Results and Discussion

5.1 Pairwise Experiments

Tables 1 and 2 report the results of the pairwise experiments, where the models
only use one auxiliary market at a time. We report both AVG , the average per-
formance of models using different auxiliary markets for the same target market
(Table 1), as well as BST , the best auxiliary market (Table 2). The best auxil-
iary market is determined based on the validation set performance. Moreover,
the results of the single-market baseline models are only reported in Table 2.
We first examine RQ1, comparing the performance of MA models against base-
lines in both the AVG and BST settings. We end with discussion of RQ2, which
compares training times across models.



142 S. Bhargav et al.

Do MA models improve over market unaware models on average?
Using Table 1, we first examine if MA models outperform market-unaware mod-
els in the AVG setting e.g. GMF++ against MA-GMF++. We see that the
MA-GMF++ outperforms GMF++ for every market except fr. MA-MLP++
outperforms MLP++ for all markets, and MA-NMF++ outperforms NMF++
on all markets except jp and uk. For the de and ca markets, we see that MA
models always outperform their non-MA variant. In addition, for the uk and
mx markets, MA-GMF++ significantly outperforms GMF++; and for fr we see
that MA-MLP++ significantly outperforms MLP++. Despite large improve-
ments in some markets e.g. MA-MLP++ improves nDCG@10 by 0.12 points
over MLP++ for in, we do not see a significant result, which may be due to the
conservative Bonferroni correction, or fewer test users for in (requiring larger
effect sizes). Overall, MA models outperform their market unaware equivalent
in 18 of 21 settings. In summary, we can conclude that in the AVG setting, the
proposed market-aware models outperform market-unaware baselines for nearly
all markets. This demonstrates the robustness of MA models since these improve-
ments are across multiple source markets.

How do MA models compare against meta-learning models in the AVG
setting? We compare MA models against MAML and FOREC considering AVG ,
in Table 1. MA-GMF++ never outperforms MAML/ FOREC, but the differences
in model sizes render this comparison unfair. A fairer comparison would be with
MA-NMF++: we see that it outperforms MAML for 5 of 7 markets: de, fr, ca, mx
and uk. Additionally, FOREC is significantly outperformed by MA-NMF++ for
4 of 7 markets: de, fr, ca and mx. We note, however, that at least one MA model
outperforms both MAML/FOREC for all markets, and at least one MA model
significantly outperforms MAML/FOREC for de (both), fr (both), ca (both),
mx (MAML only) and uk (MAML only). Therefore, we can thus conclude that
market-aware models either match or outperform meta-learning models for many
markets in AVG setting.

Do MA models outperform market-unaware models when trained
with the best available source? Viewing Table 2, we first note that MA
models outperform all single market variants, highlighting the utility of selecting
a good source market, consistent with prior research [2,24]. MA models signif-
icantly outperform single-market variants depending on the market and model,
with more significant improvements seen for MA-GMF++ (5 of 7 markets) than
MA-MLP++ (3 of 7) or MA-NMF++ (3 of 7). Consistent improvements over
the single-market models are surprisingly seen for some larger markets i.e. ca
and de (but not for uk), showing larger markets can sometimes benefit from
auxiliary market data. However, the results are less consistent when comparing
the MA models with their augmented but market-unaware models, especially as
model size increases. MA-GMF++ improves over GMF++ in 4 of 7 markets,
MA-MLP++ improves over MLP++ in 3 of 7 markets, and finally, MA-NMF++
improves over NMF++ only in 2 markets. In fact, for in, fr, mx and uk, we see
that NMF++ outperforms MA-NMF++. Furthermore, only MA-NMF++ on ca
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Table 2. BST : Models are trained on all source markets, the best source is selected
based on validation set performance. We report nDCG@10 on the test set, along with
significance test results (p < 0.05

12
) comparing MA models with single market (†), market

unaware (‡), MAML (∗) and FOREC (+).

Method de jp in fr ca mx uk

GMF 0.2574 0.0823 0.0511 0.2502 0.2566 0.5066 0.4136
GMF++ 0.2670 0.1093 0.2838 0.2708 0.2818 0.5338 0.4399
MA-GMF++ 0.2831† 0.1453† 0.3338† 0.2654 0.2907† 0.5145 0.4336†

MLP 0.2986 0.1340 0.4506 0.2869 0.2934 0.5367 0.4465
MLP++ 0.3170 0.1865 0.4470 0.3016 0.3100 0.5455 0.4585
MA-MLP++ 0.3167† 0.1806† 0.4584 0.3026 0.3105†+∗ 0.5419 0.4544
NMF 0.3214 0.1717 0.4265 0.3014 0.2848 0.5430 0.4488
NMF++ 0.3332 0.1921 0.4595 0.3271 0.3008 0.5590 0.4702
MA-NMF++ 0.3415†+∗ 0.1896 0.4433 0.3228† 0.3158†‡+∗ 0.5573 0.4578
MAML 0.3168 0.2083 0.4491 0.3152 0.2989 0.5463 0.4671
FOREC 0.3040 0.1983 0.4458 0.3191 0.2927 0.5442 0.4683

significantly outperforms NMF++. We can thus conclude that while MA models
improve over market unaware models in some cases, selecting a source market
remains an important factor for improving performance given a target market.
While this conclusion holds, we note that in general, data from multiple source
markets may be unavailable, or otherwise data from target markets might be
unavailable—making best source selection unviable [24]. In such cases, results
from the average-source experiments have to be considered.

How Do MA models compare against meta-learning models when
trained on the best source? We now compare MA models against MAML/
FOREC. We first note that at least one MA model beats MAML/FOREC for all
markets but jp and uk. MA-NMF++, in particular, outperforms both MAML
and FOREC for 4 of 7 markets. We see MA-NMF++ significantly outperforms
both MAML/FOREC for de and ca. MAML achieves the best performance for
jp, beating other models by a large margin. In conclusion, we observe similar
performance of our MA models compared to meta-learning models, while outper-
forming them in some cases. This again indicates the effectiveness of our market
embedding layer, especially when the training times are considered, which we
discuss next.

How do training times compare across models? Are MA models time-
efficient? We plot the time taken to train all models for a given target market
(distributed across the seven different source markets) in Fig. 1, where the time
taken is on a log scale. From this, we can see that the meta-learning models
take far longer to train compared to MA models. We note that MA models
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Fig. 1. Time taken to train a model for a target market across all source markets,
where time is on a log scale. MA and market-unaware models require similar training
times, while meta-learning models require significantly more.

require only 15% of the time taken to train meta-learning models, with MA
models requiring about the same time to train as market-unaware models. This
is unsurprising, since MAML requires an inner and outer loop, as well as requir-
ing the expensive computation of second-order derivatives [1,8]. FOREC uses
MAML in addition to fine-tuning the target market, so training FOREC takes
up even more training time. In conclusion, MA models achieve better or similar
performance to MAML/FOREC while requiring much less training time.

Discussion. Overall, we can conclude for AVG that MA models outperform
both market-unaware baselines as well as meta-learning models, demonstrating
the effectiveness of MA models across multiple sources. For BST i.e. when best-
source selection is viable, the results are mixed: MA models always outperform
single model variants; they outperform market-unaware models for many, but
not all, markets; and an MA model either matches or outperforms meta-learning
models for all markets.

A fair question to ask is whether an increase in performance of MA over
market-unaware models can be attributed to the increase in the number of
parameters from the market embeddings. However, this increase is minuscule
compared to model sizes, especially for NMF and MLP i.e. for t markets and D
dimensional user/item/market embeddings, the increase is just tD parameters.
In the pairwise experiments, this difference is just 16(= 2 ∗ 8), much fewer than
19929, the number of parameters of a MLP model for the smallest target/source
pair (in/jp).

While meta-learning models implicitly model the market during training,
MA models show that this may be insufficient. We attribute the success of MA
models to this explicit modelling of the markets: by adapting item representa-
tions depending on the market, the model may be better able to distinguish
between recommendation in different markets more than market-unaware and
meta-learning models. As we observe a better performance on AVG , we can con-
clude for RQ1 , that market-aware models exhibit a more robust performance
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Table 3. Global experiments: All markets are trained in unison. Best model for a
market is in bold. Significance test (p < 0.05

9
) results are also reported comparing MA

models with market unaware (‡), MAML (∗) and FOREC (+).

Method de jp in fr ca mx uk

GMF++ 0.3166 0.1781 0.4535 0.2884 0.2921 0.5245 0.4481
MA-GMF++ 0.3073 0.1817 0.4554 0.2836 0.3015∗ 0.5262 0.4504
MLP++ 0.3268 0.2127 0.4479 0.2953 0.3048 0.5376 0.4491
MA-MLP++ 0.3158 0.2195 0.4398 0.2958 0.3178‡+∗ 0.5258 0.4535
NMF++ 0.3262 0.1930 0.4796 0.3030 0.2851 0.5340 0.4476
MA-NMF++ 0.3442‡+ 0.2212 0.4602 0.3052 0.3112‡+∗ 0.5536‡∗ 0.4604‡+∗

MAML 0.3281 0.1860 0.4736 0.3022 0.2836 0.5317 0.4474
FOREC 0.3249 0.1956 0.4778 0.3033 0.2947 0.5409 0.4474

compared to other models either matching or outperforming baselines in many
settings. While this indicates that market-aware models are more effective mod-
els in general, in some cases meta-learning models seem to learn better from the
most suitable market: in these cases, MA models achieve similar performance.
However, it is critical to note that MA models achieve this while requiring far
less computational power. Moreover, it is evident that MA models do not add
much complexity to non-MA models, while empowering the model to capture
the market’s attributes more effectively, resulting in an efficient and effective
model.

5.2 Global Experiments

Table 3 reports the results of training one global recommendation model for
all markets. We see that MA models outperform baselines in many cases, even
beating meta-learning models for almost all markets.

How do MA models compare with market-unaware models? MA-
variant models outperform market-unaware models in 15 of 21 settings, but
results differ across models: MA-GMF++ (5 of 7), MA-MLP++ (4 of 7) and
MA-NMF++ (6 of 7). MA-MLP++ significantly outperforms MLP++ for ca
whereas MA-NMF++ significantly outperforms NMF++ for four markets. We
also note that MA models for the largest markets, uk and ca, outperform both
market-unaware and meta-learning models. We observe mixed results for smaller
markets: for jp, MA consistently improves over market-unaware variants, but for
in, only MA-GMF++ outperforms GMF++. Overall, we can conclude that MA
models outperform market-aware models in several settings, especially for larger
markets and models.

How do MA models compare with meta-learning-based models? We
first note that an MA model (typically MA-NMF++) beats MAML/FOREC
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for all markets except in. Indeed, MA-NMF++ beats both MAML and FOREC
for all markets except in. It significantly outperforms MAML for ca, mx and
uk markets, and FOREC for de, ca and uk—the larger markets. For ca, we see
all three MA models significantly outperform MAML, with MA-MLP++ and
MA-GMF++ significantly outperforming FOREC. On the whole, we see that
in a global setting, MA models outperform meta-learning methods in nearly all
markets, and in particular the larger markets.

Discussion. We can conclude for RQ3 that MA models are more suitable than
market unaware or meta-learning models if a global model is used for recommen-
dation across all markets. This is critical for cases where various markets exist,
empowering the model to take advantage of various user behaviours across differ-
ent markets to improve recommendation in the target market. Moreover, it also
leaves the problem of selecting the ‘best source’ to the model (i.e. the market
embedding), as the model consumes the whole data and synthesises knowledge
from multiple markets. MA models seem to have an advantage over market-
unaware and meta-learning models, especially for larger markets. This is likely
due to the market embedding, allowing markets to distinguish source- and target-
market behaviours. As more data is collected, MA models, which perform better
in the global setting for larger markets, are likely to have a clear advantage.

6 Conclusions and Future Work

In this work, we proposed simple yet effective MA models for the CMR task.
In a pairwise setting where models are trained with a single source market,
MA models on average outperform baselines in most settings, showcasing their
robustness. Considering the best source market, we showed that MA models
match or outperform baselines for many markets. We showed that they require
far less time to train compared to meta-learning models. Next, we trained a
global model for all markets and showed that MA models match or outperform
market-unaware models in nearly all settings, and outperform meta-learning
models for all but one market. For future work, we plan to experiment with more
complex MA models in a limited data setting. We also plan to investigate the
utility of MA models in a zero-shot setting, substituting the market-embedding
of the new market with a similar market. In addition, we want to consider data
selection techniques, since we speculate that not all data from a given source
market will be useful for a given target market.
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