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ABSTRACT

In this paper, we consider controllability as a means to satisfy dy-
namic preferences of users, enabling them to control recommenda-
tions such that their current preference is met. While deep models
have shown improved performance for collaborative filtering, they
are generally not amenable to fine grained control by a user, leading
to the development of methods like deep language critiquing. We
propose an alternate view, where instead of keyphrase based cri-
tiques, a user is provided ‘knobs’ in a disentangled latent space, with
each knob corresponding to an item aspect. Disentanglement here
refers to a latent space where generative factors (here, a preference
towards an item category like genre) are captured independently in
their respective dimensions, thereby enabling predictable manipu-
lations, otherwise not possible in an entangled space. We propose
using a (semi-)supervised disentanglement objective for this pur-
pose, as well as multiple metrics to evaluate the controllability
and the degree of personalization of controlled recommendations.
We show that by updating the disentangled latent space based on
user feedback, and by exploiting the generative nature of the rec-
ommender, controlled and personalized recommendations can be
produced. Through experiments on two widely used collaborative
filtering datasets, we demonstrate that a controllable recommender
can be trained with a slight reduction in recommender performance,
provided enough supervision is provided. The recommendations
produced by these models appear to both conform to a user’s cur-
rent preference and remain personalized.
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1 INTRODUCTION

Auto-encoder based architectures have shown impressive perfor-
mance in collaborative filtering with implicit feedback [19, 25, 30].
However, these methods may fail to model short term or dynamic
preferences of a user. Subsequently, methods to tackle this explicitly
problem have been proposed, for example, through conversations
via a conversational recommender system [13], or critiquing rec-
ommendations using language or keyphrases [18, 23, 35, 37]. In
contrast to keyphrases, typically mined from reviews or descrip-
tions (for instance), this work considers building controllable or
critique-able recommenders using attribute data for items, which
can be used to construct preference distributions at a user level. This
is in turn used in the critiquing process or to express a short-term
preference, allowing a user to exert control over a recommender in
a meaningful manner. For instance, a user who typically watches
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Action movies, or (as a consequence) exclusively receives Action
recommendations, can now explicitly request personalized movies
of other genres, like Animation.

Controllability can be achieved by utilizing the generative nature
of certain Deep Generative Recommenders [18, 23, 35, 37]. Such
models have an encoder which produces a user-latent represen-
tation, which is fed to the decoder to predict items for that user.
A manipulation of this representation, followed by decoding step
using this, should alter recommendations produced by the model.
However, since the latent spaces of these models are typically entan-
gled, the outputs produced through such manipulations are likely
to be unpredictable or random, making them unusable for this task.

We propose using a disentangled latent space which, in contrast,
can be manipulated predictably. A representation is disentangled
w.r.t known ground truth variables or generative factors (ex. genres,
availability, context, etc), if there is only one latent dimension in the
representation that is influenced when this ground truth variable
is changed [3, 12, 20, 21].

Prior work tackles critiquing/controllability by modeling a latent
space where keyphrases are co-embedded with user/item embed-
dings. By ‘zero-ing’ out a certain keyphrase, the corresponding
keyphrase embedding is used to update the user representation, pro-
ducing critiqued recommendations. Our work in contrast doesn’t
utilize a co-embedding space, and instead the latent space is directly
manipulated. This means no addition optimization (like in [18, 22])
is required to incorporate (multi-step) critiques. Furthermore, this
also allows for ‘positive’ critiques as well as ‘soft’ control (gradual,
non-binary) instead of only binary critiques.

We propose using supervision to obtain a mapping of a particular
factor/aspect to a latent dimension. Since supervision signals might
not be available for all users, we experiment with settings where
limited data is provided.

In addition, while there have been metrics previously proposed
for evaluating controllability/critiquing [32, 35, 37], these metrics
don’t explicitly account for the personalization of post-critique
recommendations. We propose multiple metrics to evaluate the per-
sonalization of critiqued recommendations, measuring both binary
critiques as well as ‘soft’, gradual controllability. To summarize, our
contributions are as follows !

e We propose using (semi-)supervised disentanglement to learn
disentangled representations for controllable, personalized
recommendations. Through experiments on two large scale
collaborative filtering datasets using 2 types of signals as
‘knobs’, we show the proposed models produce controllable
recommendations, at the cost of a slight reduction in overall
recommendation performance. In addition, we experiment
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Figure 1: Deep Controllable Recommendations with (semi-
)supervised disentanglement: A user’s interactions are cap-
tured in x,, used to infer the user representation z,. Given
a latent dimension j (the ‘knob’), corresponding to a known
factor (green items), only the values corresponding to the
jth dimension of z, are replaced to produce {Z,};23. Each
of these are then decoded to produce recommendations. The
manipulation here pushes the green items higher in the
ranked list, leading to controllable recommendations.

with different levels of supervision, and show controllability
can be achieved with limited data.

e We focus on retaining recommendation performance while
achieving effective controllability, and propose several met-
rics to extensively study (a) the degree of personalization of
controlled recommendations (b) whether control is achieved
in isolation (i.e if only one factor changes at a time) and (c)
the effect of disentanglement on controllability. Using these
metrics, we demonstrate that such models are amenable to
user control, and the controlled recommendations appear to
be personalized to an extent.

2 BACKGROUND AND RELATED WORK

2.1 Deep Recommender Systems

There have been several works that use Deep Learning for Recom-
mendation [11, 31, 33, 38]. A common theme in several deep models
is the use of auto-encoder architectures like the Collaborative De-
noising Autoencoder (CDAE) [36] or MultVAE [19]. The latter uses
the Variational Autoencoder framework [5, 17] for recommenda-
tion. Shenbin et al. [30] propose the state-of-the-art RecVAE. Deep
Recommender systems however are (typically) black-box models
which are difficult to interpret, compared to content-based methods
[38].

2.2 Disentangled Representation Learning

The use of deep generative recommenders allow for disentangled
representations, regaining some interpretability [9, 24, 34]. Most
such models use the VAE framework, where the objective is to recon-
struct the input with high probability, with an additional loss term
constraining the latent space. By imposing additional constraints,
disentangled representations can be learnt. These methods are typi-
cally unsupervised and therefore come with limitations [20]: they
were found to be very sensitive to hyperparameters, reliably learn-
ing unsupervised disentangled representations is a very challenging
task.
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There have been several works that use disentanglement in rec-
ommendation: Ma et al. [25] assume that disentanglement is gener-
ated by user behaviours on ‘macro’ and ‘micro’ levels, and show
that their models outperform non-disentangled baselines. Ma et al.
[26] apply disentanglement to the sequential recommendation task,
while Wang et al. [34] disentangle diverse user-intents using graph
based collaborative filtering; Cui et al. [9] propose DGCF, which
have ‘implicit’ (unknown) and ‘explicit’ (known) signals that are dis-
entangled using an RNN based model with a two-step method since
some computations are non-differentiable. Wang et al. [32] pro-
pose using weakly-supervised disentanglement objective on pairs
of items. This allows for attribute-based item retrieval, such that
items differ more/less on the provided attribute. In contrast to prior
work, we use semi-supervised disentanglement, while focusing on
using disentanglement for controllability.

2.3 Critiquing / Controllable Recommenders

We focus on critiquing for deep recommenders (for a full overview
of earlier work in critiquing, see Chapter 13 of [29]). The following
paragraphs detail approaches that leverage language or keyphrases
for critiquing, followed by other approaches like ours which does
not utilize any language/keyphrase. We end this sub-section with a
discussion about evaluation metrics.

Recent work has focused on using language or keyphrase based
critiquing [18, 23, 35, 37]. Wu et al. [35] propose the Deep Language
based Critiquing (DLC) paradigm, where (subjective) keyphrases
are treated both as explanations as well as a means for a user to
critique recommendations. Here, critiquing is achieved by rejecting
or ‘zero’-ing out keyphrases which are co-embedded with users.
Luo et al. [22] adapt the CE-NCF for multi-step critiquing; [18]
use a ranking optimization instead of pairwise re-scoring to re-
rank items; [23] use a VAE-based model to achieve better training
stability and lower computational complexity; [37] propose using
Keyphrase Activation Vectors instead of using a second "head’ used
in [35], and adapt it for ‘positive’ critiques. Antognini et al. [2]
propose T-RECS, which infers keyphrases from the intersection
of user profiles and an item. [1] show that a model under a weak-
supervision scheme matches or beats recommendation/explanation
and critiquing performance while being much faster. We use super-
vised disentanglement in the user-latent space instead of a separate
embedding space, while not requiring any language data (at the
cost of no explanations). Prior work focuses on binary signals ex.
reject/accept, while our work considers ‘soft’ critiques, allowing
for a gradual tuning. Note that while we experiment only with unit
critiques, compound and/or multi-step critiques is also possible
within our proposed models, which we leave for future work.

Wang et al. [32] propose an orthogonal task, where items are
retrieved on a ‘gradient’ given an attribute, focusing on gradual
change, similar to our work. Our work focuses on recommendation
performance whereas [32] focus on gradient item retrieval. Cen
et al. [7] propose ComiRec for sequential recommenders, where
control is used to balance diversity and recommendation accuracy,
from the perspective of a designer. The method presented in [25]
is closest to us, where representations are first altered, followed
by a nearest neighbours search over items using a beam search. In
contrast, we utilize the generative nature of the model instead of
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performing nearest neighbour search, in addition to using semi-
supervised disentanglement. The authors are aware of concurrent
work [28] that is close to ours. Since the paper/code was unavailable
at the time of experiments/ publication, we leave the evaluation of
[28] for future work.

Metrics for critiquing/controllability. Wu et al. [35] propose the
Falling MAP for negative critiques. Given a user and a keyphrase
(here, genre/tag) this metric measures the difference in MAP values
computed on the set of items that have the critiqued keyphrase. If
this value is positive, items of the critiqued keyphrase ‘falls’ down
the ranking list, which is desirable. Similarly [37] propose a follow
up metric, which accounts for positive critiques as well, comparing
the normalized difference of average ratings of items before / af-
ter the critique. We note that these metrics don’t explicitly model
the personalization of post-critique recommendations. In contrast,
the proposed metrics explicitly consider this, by measuring perfor-
mance on against items for which a user’s preference is known.

3 METHODOLOGY

We present disentanglement of the latent space using semi-supervision

as a means to control in Section 3.1. Adapting disentanglement rep-
resentation learning for this task is explored in detail in Section
3.2

3.1 Control using (semi-)supervised
disentanglement

We train a model using a (semi-)supervised disentanglement loss,
producing disentangled user representations. During inference,
representations for all users are inferred (possibly offline). In the
foreground, the representations are manipulated on the fly by in-
creasing/decreasing a ‘knob’, allowing for granular change. In the
background, the mapping of a knob to a latent dimension is utilized
to modify the user’s representation, which is fed to the decoder to
produce controlled recommendations. The following paragraphs
motivate the use of disentanglement and semi-supervision to build
such a recommender.

As mentioned before, the entangled nature of a typical deep
recommender renders meaningful manipulation impossible. This
is because (a) there is no guarantee that manipulations produce
changes in a single generative factor, and (b) it is not apparent which
dimension to alter given a factor. Even if we assume (b), predictabil-
ity is not guaranteed, ex. manipulating the Thriller dimension may
increase the number of Thriller movies, but it may inadvertently
increase the number of Children movies, which is undesirable.

We propose using supervised disentanglement to tackle these
issues. Disentanglement can isolate a generative factor to a single
dimension, and altering this dimension (assuming perfect disen-
tanglement) space should produce a change only in this generative
factor. Using (semi)-supervised disentanglement addresses two is-
sues: (a) unsupervised disentanglement has several shortcomings
[20], which semi-supervision may alleviate; and (b) a particular
dimension is now ‘tied’ to a generative factor, ensuring that the
correct dimension is being altered.

These recommendations should ideally be personalized, since
they were trained with a reconstruction loss. In essence, a recom-
mender system can be tuned on the fly to express user preferences
for the current session. This process is illustrated in Figure 1.

In this paper we opt for preference distributions i.e tag/genre
distributions, as generative factors or ‘knobs’ (see Section 5.1.2),
since they are widely available. However, preference distributions
are not independent and can also be very noisy [4, 10], in contrast to
independent and exact generative factors used in disentanglement
literature e.g dSprites[27]. Consequently, they may be difficult to
learn and/or disentangle. The following section discusses particu-
lars about the models.

3.2 Unsupervised and Semi-supervised
Disentanglement

In this section, two models, the f-VAE [12, 19] and the f-TCVAE [8],
are adapted for the recommendation task using a Multinomial loss
[19], resulting in recommenders that can produce disentangled rep-
resentations. Furthermore, this objective is further supplemented
with a semi-supervision loss.

3.2.1 Unsupervised Disentanglement. The VAE [17] optimizes the
marginal (log-)likelihood of the observed data x in expectation over
the whole distribution of latent factors z. It assumes that the data
is supported on a low dimensional manifold in a high dimensional
space. The assumption of a latent code allows us to express the
marginal distribution as follows: pg(x) = /z po(x]z)p(z). Since this
quantity is intractable, the Evidence Lower Bound is optimized
instead [14]:

log po(x) 2 Lvar = Ex[Egy (z)x) [log pg(x]2)|-KL[qy (z|x)|[p(2)]]

(1)
where g (z|x) is a variational approximation of the posterior dis-
tribution, which is typically a Gaussian distribution. p(z), the prior,
is usually an isotropic Gaussian: p(z) = N (0, 1). Several methods
modify this objective to encourage disentanglement:

3.22 PB-VAE. The B-VAE[6, 12] modifies the VAE loss i.e Equation
1 by adding a f-multiplier to the KL term:

Lgvar = Ex[Eq, (z1x) [log po(x|2)] = B.KL[qy (z|x)Ip(2)]] (2)

Disentanglement is encouraged by setting f > 1, which further
forces the posterior distribution gy (z[x) to be close to the isotropic
prior for every x (as opposed to only on average), imposing sta-
tistical independence. However, this involves a trade-off between
reconstruction quality and disentanglement [6, 12]. While Liang
et al. [19] use f < 1 for better recommender performance, we
opt for § >= 1 to encourage disentanglement, and achieve sim-
ilar/better recommender performance by removing the Dropout
layer, following Shenbin et al. [30]. An annealing strategy is used for
B, following [6, 19]. The resulting model, which uses a Multinomial
loss (see Section 5.3.2), is termed Mult-f-VAE .

323 PB-TCVAE. Chen et al. [8] show that by imposing a constraint
on only a part of the KL divergence term, reconstruction and disen-
tanglement increases compared to the f-VAE model. The KL term



is decomposed into 3 terms (a) an index-code Mutual Information
(MI) term, (b) dimension-wise KL, and (c) a total correlation (TC)
term. The index-code MI captures the information between the data
and latent variables, based on the empirical data distribution; the
dimension-wise KL prevents deviation of the posterior from the
prior dimensions; and the TC term encourages statistical indepen-
dence of the posterior distribution leading to disentanglement. The
key idea is that the S-VAE constrains all 3 terms, which might harm
performance, while only the TC term is penalized in this model.
The loss function of the TC-VAE is as follows:

Lg_rcvak = Ex[Eq, (2|x) [10g po (x|2)] — alq(z:n)
-y Z KL[q(zj)llp(z;)] — BKL[qy(2)|1L;q4(z5)]]
J
®3)

where a, y and f are multipliers for the index code MI, the
dimension wise KL and the TC term respectively. Following Chen
etal. [8], y = @ = 11is used, f is a hyperparameter. The final model,
which we term Mult-TCVAE , uses a Multinomial loss (see Section
5.3.2).

3.24 Semi-supervised Disentanglement. The distribution g4 (z|x)
can be constrained so that a given dimension of g(z) is associated
with a ground truth attribute. That is, given a representation (for
instance, the mean vector from the posterior) for a data point,
u € RP, and the set of known attributes a € R4 for that data
point, with A < D, the jth dimension of p is predictive of the jth
dimension of a, 1 < j < A. This is achieved by adding a semi-
supervised loss Ry :

L = -Eunsup + Yss-Ex,st(q¢(Z|X)> a) 4)

Lunsup is either Equation 2 or 3. The binary cross entropy loss
is used for Rg [21]:

A
Ry(ma) = ) ajlog(a(p) + (1 -a;) log(1 - o(m))  (5)
i=1
where o(.) is the logistic function. Note that the remaining di-
mensions of z, those that are not supervised, are not constrained
by the semi-supervision loss.

4 EVALUATION METHODOLOGY

In this section we propose an evaluation methodology and a set of
metrics that investigates the extent of controllability and personal-
ization of a recommender, described in Section 4.1. We also briefly
describe existing metrics for evaluating disentanglement in Section
4.2.

4.1 Evaluating Controllability

For ease of discussion, this section assumes a single factor g;, s.t
given a user u, and a factor g;, the set of all items with factor g; is
Igj, items encountered/rated by a user is J;;, and items with factor
g; that user u has encountered is 7 (ug;) =g, N Lu (subscripts for
z are dropped for brevity in the following descriptions). Note that
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Table 1: Metrics for Controllability, listed with the inputs
and holdouts used in its computation. g; is the genre being
manipulated, while g; is another genre

Metric Input Holdout(s)
Octrl Iy - I(u,gj) I(u,g,-)

5irre1 Iu - [(u,gj) Igj - I(u,gj)
Corr I, - I(u’gj) Z'(u,gj)
Cotternt  Ju~J(ugy) ~Lugy Liugy

Cortrand  Ju = L(ug) = Liugy Liugy

an item can have multiple factors e.g a movie can be both Action
and Adventure.

Given a user representation z, the dimension corresponding to g;
is obtained by using a mapping function k, s.t k(g;) is the dimension
corresponding to g; inz, with k(g;) € {1,... K}, withK < D, where
D is the dimensionality of the latent space. In addition, we assume
that manipulations of each dimension are in € [0, 1] (0 is minimum).
A manipulation entails the replacement of the k(g;) dimension with
a value indicating the position of a ‘knob’, producing z. In addition,
the top-n items of X is denoted by topy (X), and the number of items
of a factor g; in the top-n list is denoted by Count(topy (%), gj).
Finally, the i’ h element of a vector a is denoted by [b];, with [b]; =0
indicating that the i h dimension is set to 0.

4.1.1 Desiderata. For evaluating controllability, there are a list of
desiderata:

(1) Increasing the values of the k(g;) dimension should push
items of g; higher. In other words, given [2"] k(g;) > [Zn]k(gj)
and assuming z™ produces X and z" produces X" respec-
tively, then:

Count(topy (x™),g;) > Count(top, (x"), g;)

for small values of n. A natural consequence of this is irrele-
vant items 7 g j should be pushed down or be replaced with
relevant items, i.e. Count(top, (¥™), g-;) should decrease.
Put another way, k(g;) should only control items belonging
to gj, and not control items of other factors.

In addition, it is crucial to ensure that these recommenda-
tions are personalized i.e topn (X'™) should have items of the
requested genre, but only those items that the user might
like, i.e. items in I(u’gj).

—~
DN
~

We assume a ranking metric R-MET, computed against a held
out set of items. R-MET can be any ranking metric, e.g. NDCG,
assuming the relevance of all items except the ones in the holdout
set to zero. We consider five metrics in total, with the two § metrics,
Octrl and Oiprel, measuring the ranking changes of items of interest
versus other items; and three correlation metrics measuring the
gradual change observed as a dimension is manipulated: Corr, and
(Correyy ,Corrpang)- The § metrics measures the change induced
when a user prioritizes items of only one factor, reflecting a critique
or a short term preference i.e ‘show me Animation movies only’.
The correlation metrics on the other hand can capture exploratory
behaviours or soft preferences (‘maybe I will try at Horror movies’),
and measures to what extent the recommender is interactive and
predictable. These metrics are summarized in Table 1 along with
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their inputs and holdout sets. Note that all the metrics are averaged
across genres and then users.

4.1.2 8 metrics. Similar to F-MAP [35] and PostCritRatingDiff [37],
Octrl Mmeasures the change in the ranking as a knob is set to its
maximum value. Note, however, that only items not belonging
to g; that the user likes are fed into the model, with the intent
to observe if manipulating the k(gj)th dimension increases the
positions of the held-out items of genre g; that a user likes. As
a consequence, the model has to infer the correct items of g; to
recommend, without knowledge of the users preference towards
items of g;. Furthermore, in contrast to prior metrics, this evaluation
is personalized i.e the metric is computed against 7| (119;) and not
Iy, The process to compute the metric is detailed below.

First, before the manipulation, items of other genres that the user
hasliked, 7;, — (1,g;) 1S used to infer x. R-MET gefayyt is computed on
this, using 1| (1g;) 25 the holdout set, measuring the baseline rank-
ing score of personalized items belonging to g;. Second, [Z]k(gj) is
set to max indicating a high preference, and decoded to produce x.
This is used to compute R-MET,,] on the same holdout, express-
ing the ranking score of personalized items belonging to g; after
manipulation. The difference between the two metrics is dy:

Octrl = R-MET ] — R-MET gefault (6)

The higher the .1, the better the ability to produce personalized
and controlled recommendations.

The second metric, Jipre], is @ variation of J¢,1. While recom-
mending items of genre g; before items of other genres is important,
it is desirable to recommend items that the user might like, over
irrelevant items of gj. iyl is similar to &y, except the holdout
set are items of g; not rated by the user, 7, — Llug))- If Sippey is
high, items that the user might not like are also being promoted,
which may be undesirable. While these two metrics reflect the ex-
tent of controllability, granular metrics, reflecting gradual change
is presented in the following section.

4.1.3  Correlation Metrics. The following metrics compute the cor-
relation between changes in ranking metric R-MET and the values
of the manipulated dimension. The correlation measure used in
the experiments is the Pearson’s correlation, we leave non-linear
variants to future work.

Corr quantifies the correlation of gradual manipulations (as
opposed to setting it to the max value as with §¢,1) with R-MET
using Z(,, ) as the holdout set. Corrgy and Corry,pg measure the
same correlation with different holdout sets and identical inputs.
Corryy uses Z(y, 4,y as the hold out, measuring the effect of manip-
ulation against items of g;, whereas Corry,nq uses Z(, 4,) which
measures the effect of manipulation against items of a random con-
trol factor g;. The input set for the last 2 metrics has neither items
of g; nor g;. In the ideal case, Corry] should be positive i.e control-
ling k(g;) positively influences items of g, but Corry,pg should be
zero (no change) or negative (decrease, either due to replacement
or demotion), meaning items of another factor are not/negatively
influenced.

It is our hypothesis that keeping items of irrelevant genres low
in the ranking is harder if the genre being controlled is highly
correlated with another genre in the data (e.g many Action movies

are also tagged Adventure). To measure this, we use two g;: Jeasy
and ggjfficult, Where Jeasy 1S the least co-occurring factor with g;
and ggifcult conversely frequently co-occurs with g; producing
EasyCorr,,y, EasyCorr,, 4, DiffCorryy and DiffCorrp,png 2.

4.2 Evaluating Disentanglement

In addition to controllability, disentanglement of the user repre-
sentations can also be evaluated since the ground truth generative
factors are available. Several metrics have been proposed to eval-
uate disentanglement, such as the Mutual Information Gap (MIG)
[8], the B-VAE metric [12] or the FactorVAE metric [15]. We evalu-
ate disentanglement with the Mutual Information Gap (MIG) [8],
due to ease of implementation, wide applicability and the unbiased
nature of the metric for all hyperparameter settings [20]. Given a
generative factor, the empirical mutual information (M.I) between
the values of the ground truth generative factors and each dimen-
sion of encoded samples from the data is computed. The MIG of
this generative factor is then the difference between the highest
and second highest MI values. This quantity is averaged across
all generative factors to obtain the MIG score. A MIG of 1 for a
particular generative factor implies that one latent dimension has
MI=1, with others having MI=0.

5 EXPERIMENTS

The datasets, along with the requisite processing steps and gener-
ative factors for supervision are described in Section 5.1. The re-
search questions are described in Section 5.2, followed by specifics
of models in Section 5.3.

5.1 Datasets

In our experiments we use the Million Songs Dataset (MSD)[4]
and the Movielens-20M (ML-20M) [10], two widely used collab-
orative filtering datasets. The steps for preparing the dataset for
training are outlined in Section 5.1.1. Preference distributions are
constructed as signals for supervision and for evaluating disentan-
glement/controllability, which is described in Section 5.1.2.

5.1.1 Dataset processing. Each dataset is processed according to
the steps outlined in [19]. The users are split into test, validation
and train sets. The test/validation set size for ML-20M is 10,000
users and for MSD 1is 50,000 users, with 20% of items held-out. The
models is trained with the entire train history, and evaluated with
the 20% held out set. The data is binarized by keeping ratings of
four or higher and only users who have interacted with at least 5
movies are kept.

5.1.2  Generative Factors. The generative factors considered for
both datasets are preference distributions computed for each user
using genres (MSD/ML-20M) or tags (MSD only). The number of
users, items, generative factors are reported in Table 2. For a user u,
Genre,, is computed by calculating the proportion of movies that
belong to a genre (or tag), divided by the total number of movies
that the user has watched, capturing the (global) preferences of
a user towards a genre/tag. Since there are 522362 tags in MSD
with many repeats, only the most frequent are picked and grouped

2Co-occurrences are computed at user level and may differ across users



Table 2: Datasets used, along with signals being considered.
The last column reports the MIG score, computed on the
ground truth labels against itself using 10,000 users sampled
from the test set

Dataset (ID)

ML-20M 136,677 20108
MSD (Genre) 571,355 41140
MSD (Tag) 571,355 41140

#users #items Generative Factors G.T MIG

genre distribution  0.2019
genre distribution  0.3238
tag distribution 0.2525

together before computing the distribution?. The dimensions of
the signals for ML-20M is 19, and for MSD (Genre) is 21, and for
MSD(Tag) is 30, with the supervision constraining only the first
few dimensions.

5.2 Research Questions

This section details the experimental setup employed in the paper.
The evaluation metric for recommender performance throughout
this paper is NDCG@100, following [19, 30] i.e R-MET is NDCG
for all experiments. Controllability for models with 0 supervision
cannot be evaluated since k(.) is unavailable. In addition, the ma-
nipulations (which replaces [z]x(y,)) are produced by using the
Inverse CDF of the probability distribution used during training
[17].

5.2.1 RQ1 How much supervision is needed for achieving control-
lability? How does controllability vary across datasets and models?
To investigate this, we train Mult-$-VAE and Mult-$-VAE with
varying levels of supervision: {0%, 1%, 10%, 50%, 100%}. For each
combination of model, signal, level of supervision, we compute
the five metrics outlined earlier. To summarize, d., evaluates the
performance gain when a user sets a knob to its maximum setting,
Corr measures the gradual change via a correlation of manipula-
tions and R-MET; the other metrics contrast the controllability of a
genre against two control genres. The holdout sets used to compute
the metrics above are constructed for 100 users per genre (met-
rics remain constant beyond 100), while ensuring that there are at
least 10/5 items in the input/holdout sets described in Table 1. The
number of steps taken in the latent space is 50 for computing the
correlation metrics.

5.2.2 RQ2 To what extent does disentanglement affect controlla-
bility of models? The relationship between disentanglement and
controllability is explored in this section, where we measure if
models with disentanglement (f >= 1) perform better than models
without (f = 0). Note that § = 0 implies no disentanglement, but
for the Mult-TCVAE , only the TC constraint is set to 0, i.e which
means f = 0,y = a = 1. In addition, we investigate if models that
have higher disentanglement (MIG) scores perform better based on
recommendation/ controllability metrics. MIG is computed using
code from [20] 4, modified for use in pytorch. Since the exact M.I
is intractable, the empirical M.I is computed by discretizing the

3Due to a lack of space, these are not included in the paper, and can be accessed at
datasets/msd/selected_tags.tsv
4https://github.com/google-research/disentanglement_lib/
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values, following [8, 20]. The number of bins for the discretizer is
set to 20, and it is computed for on 10,000 samples from the test set.

5.2.3 RQ3 What effect does introducing controllability into a model
have on recommendation performance? This question deals with the
relevance of both controlled and ‘default’ recommendations. This
is paramount, otherwise recommendations can be irrelevant. As
such, NDCG@100 is computed for all models, and model selection is
done on the basis of recommendation performance on the validation
set. We remind the readers that 8. has to be interpreted with
Setrl- That is, if Sipre] is low and gy is high, recommended items
may be personalized; however, if 8 is higher, the models do
exhibit controllability, but the recommended items might not be
all personalized. Note that these metrics might be limited since a
user might like these items regardless, or, such recommendations
might be explicitly sought by the user. Performance for models
with no disentanglement (f = 0) and no supervision (% = 0) are
also reported.

5.3 Experimental Setup

This section details specifics of models being used, along with
hyperparameters:

5.3.1 Variational Distribution. Both Mult-$-VAE and Mult-TCVAE
use a isotropic Gaussian distribution for a prior (p(z) = N (0, 1)),
and a Gaussian distribution for the variational posterior gy:

¢ (z|x) = N (z|py (x), diag(ffng(x))) (7)
where p(x) and a;(x) are outputs of the encoder network.

5.3.2  Multinomial loss. We use the Multinomial log-likelihood for
Py, which has been shown to perform well over other losses like
the Gaussian/Logistic losses [19]:

log p(x|z) = ), x; log mi(2) (8)

1

The final loss used for both Mult-3-VAE and Mult-TCVAE meth-
ods are given in Equation 4, where Lynsyp is either Equation 2
for the Mult-$-VAE or Equation 3 for the Mult-TCVAE , and sec-
ond term is the binary cross entropy loss (Equation 5). In addition,
¥ss = 0 for models with no supervision (%=0), and yss = 1 other-
wise (%>0). To obtain recommendations, items are sorted in the
descending order of the likelihood predicted by the decoder.

5.3.3 Model Hyperparameters. All models use the same neural
network with a 3 layer encoder, with dimensions || — 600 —
600 — 200 and a single layer decoder which was found optimal
for a variety of settings [30]. The outputs of the encoder are two
200 dimensional real vectors representing the mean/log-variance
vectors.All models were trained with Adam [16] with a learning
rate of 0.001 and a batch size of 500 for 200 epochs for ML-20M
and 100 epochs for MSD. For both, we tried § € {1,2.5,5, 10, 100},
with the ‘best’ model selected using NDCG@100 computed on the
validation set. For the Mult-TCVAE , we set ¢ =y = 1.
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Table 3: Results for ML-20M: MIG measures disentanglement, §.,] and Corr measure control, with EasyCorr,, EasyCorr,, 4,
DiffCorr, and DiffCorr,,,,q contrasting control of one genre against another. NDCG and d;;..] (When contrasted with J.¢,1)

measure personalization of non- and controlled recommendations respectively. Values in braces are standard errors.

Model % B ‘ NDCG MIG ‘ T Sctrl 1 Sirrel ‘ T Corr ‘ T EasyCorry, | EasyCorr,, 4 ‘ T DiffCorre; | DiffCorrpang
Q?& 0 0 0.2782  0.0016 - - - - - - -

WV 50 0 | 0.2627 0.1265 | 0.1995(0.0153) 0.0658 (0.0100) | 0.8859 | 0.8880 (0.0045) -0.2487 (0.0132) | 0.8547 (0.0055) -0.5793 (0.0115)
W 100 O 0.2587  0.1417 | 0.2246 (0.0190) 0.0764 (0.0127) | 0.8628 | 0.8677 (0.0053) -0.1994 (0.0119) | 0.8408 (0.006) -0.5911 (0.0113)
\]?S; 0 0 0.2904 0.0007 - - - - - - -

\‘rﬁo 50 0 | 0.2802 0.0688 | 0.2145(0.0157) 0.0705 (0.0104) | 0.8901 | 0.8907 (0.0044) -0.2869 (0.0125) | 0.8599 (0.0053) -0.6448 (0.0104)
A\ 100 0 0.2791  0.1819 | 0.2210 (0.0198)  0.0755 (0.0129) | 0.8522 | 0.8557 (0.0055) -0.2054 (0.0113) | 0.8357 (0.0061) -0.6569 (0.0101)
5 | 0.374 .01 - - - - - - -
0 2 3740  0.0184
o® 1 100 | 03807 00208 | 0.0904(0.0091) 00313 (0.0049) | 0.8457 | 0.8449 (0.0059) -0.2010 (0.0160) | 0.7647 (0.0083) -0.5283 (0.0125)
\Vg)’ 10 2.5 | 03808 0.0858 | 0.1863(0.0128)  0.0644 (0.0091) | 0.9016 | 0.9039 (0.0038) -0.2664 (0.0134) | 0.8567 (0.0053) -0.6208 (0.0109)
A\ 50 25 | 03703  0.1360 | 0.2314(0.0173)  0.0800 (0.0122) | 0.8886 | 0.8893 (0.0046) -0.2951 (0.0122) | 0.8506 (0.0057) -0.6414 (0.0104)
1 1 .36 1476 .221 .01 . .01 .86 .8681 (0. -0. .011 . .006 -0.6 .0106
00 0 | 03675 0.147 0.2215 (0.0188)  0.0770 (0.0132) | 0.8632 | 0.8681 (0.0053 0.2304 (0.0119) | 0.8337 (0.0062 0.6483 (0.010
0 1 0.3897  0.0062 - - - - - - -
Q?& 1 1 0.3898 0.0071 | -0.0123 (0.0187)  0.0321 (0.0092) | 0.2564 | 0.2791 (0.0146) -0.1947 (0.0140) | 0.3141 (0.0143) -0.1164 (0.0159)
\V&Q 10 1 | 03884 0.0087 | 0.1283(0.0222) 0.0991 (0.0354) | 0.8662 | 0.8735(0.0035) -0.3599 (0.0131) | 0.8542 (0.0042) -0.2949 (0.0142)
W 50 1 | 0.3876  0.0597 | 0.2885(0.0327) 0.2663 (0.0610) | 0.8584 | 0.8648 (0.0053) -0.3617 (0.0125) | 0.9007 (0.0029) -0.5658 (0.0138)
100 1 0.3863  0.1967 | 0.3844 (0.0381) 0.3629 (0.0657) | 0.8279 | 0.8379 (0.006) -0.2221 (0.0110) | 0.8806 (0.0039) -0.5880 (0.0143)

Table 4: Results for MSD (Genre): Models for this dataset in particular struggle to distinguish between genres (very high Cor-

rCtrl scores)

Model % Yij ‘ TNDCG MIG ‘ T Sctrl 1 Sirrel ‘ T Corr ‘ T EasyCorry, | EasyCorr , 4 ‘ T DiffCorryyy | DiffCorrpang
Q?S) 0 0 0.2537 0.0027 - - - - - - -

W« 50 0 | 02503  0.0022 | 0.0974(0.0068) 0.0680 (0.0119) | 0.6106 | 0.7150 (0.0119) 0.2413 (0.0212) | 0.7251 (0.0117) 0.2745 (0.0235)
W 100 0 | 02459 00022 | 0.1378(0.011) 0.0972 (0.0171) | 0.6191 | 0.7173 (0.0115) 0.2448 (0.0205) | 0.7462 (0.0110) 0.2836 (0.0233)
Q?& 0 0 0.2620 0.0022 - - - - - - -

S 50 0 | 02543  0.0022 | 0.0979(0.0095) 0.0715(0.0120) | 0.6021 | 0.7122 (0.0120) 0.2309 (0.0213) | 0.7334 (0.0116) 0.2688 (0.0240)
W 100 0 | 02509 0.0022 | 0.1614 (0.0118) 0.1087 (0.0173) | 0.6522 | 0.7492 (0.0108) 0.2612 (0.0211) | 0.7715 (0.0103) 0.2674 (0.0243)
0 5 0.2768 0.0055 - - - - - - -
o® 1 100 | 02759 0.0076 | 0.0827(0.0242) (0.1535(0.0331) | OSILL | 0.5659 (0.0156) 0.2417 (0.0207) | 05739 (0.0159) 0.0855 (0.0252)
\\’%‘ 10 1 0.2745 0.0194 | 0.3561 (0.0527) 0.4560 (0.0177) | 0.7034 | 0.6824 (0.0118)  0.2903 (0.0201) | 0.6907 (0.0117) 0.1200 (0.0231)
W 50 10 | 0.2706  0.0388 | 0.4693(0.0382) 0.6822 (0.0202) | 0.7807 | 0.8014 (0.0048) 0.2587 (0.0218) | 0.8003 (0.0050) 0.1307 (0.0255)
100 1 | 02719 0.4178 | 0.4853 (0.0342) 0.7795(0.0322) | 0.7209 | 0.7596 (0.0062) 0.1894 (0.0222) | 0.7598 (0.0062) 0.0613 (0.0266)
0 1 0.2763 0.0145 - - - - - - -
Q?& 1 1 0.2777 0.0069 | 0.0131(0.0061) 0.0216 (0.0085) | 0.2302 | 0.3328 (0.0195) 0.1143 (0.0200) | 0.3352 (0.0202) 0.1461 (0.0220)
WC 10 1 | 02728 00148 | 0.3461(0.044) 0.3915(0.0296) | 0.7343 | 0.7501 (0.0082) 0.2040 (0.0226) | 0.7573 (0.0082) 0.1680 (0.0241)
W 50 1 | 02675 00471 | 0.4439 (0.0366) 0.5324 (0.0419) | 0.7820 | 0.8001 (0.0059) 0.2405 (0.0224) | 0.8099 (0.0057) 0.1438 (0.0259)
100 1 0.2671 0.3521 0.4501 (0.0328)  0.7526 (0.0405) | 0.6772 | 0.7219 (0.0073) 0.1927 (0.021) 0.7057 (0.0080)  0.0539 (0.0257)
6 RESULTS get recommended (Section 6.3). We discuss each result in detail in

The results of all experiments on ML-20M is reported in Table 3, on
MSD (Tag) in Table 4 and finally on MSD (Genre) in Table 5. The
results indicate that while increasing supervision generally tends
to increase controllability, too much supervision can sometimes
harm controllability, or alternatively increase controllability at the
cost of more non-personalized recommendations (Section 6.1). The
degree of supervision required for controllability varies across mod-
els/datasets/signals. In addition, adding a disentanglement objective
helps across all metrics, but there appears to be no conclusive trend
between degree of disentanglement and controllability (Section 6.2).
Finally, controlled recommendations seem to be more personalized
for ML-20M compared to MSD, where more non-personalized items

the sections that follow.

6.1 Semi-Supervision and Controllability

Surprisingly, apparent control over recommendations seems to be
achieved with as little as 10% of data for both datasets, as mea-
sured by high Corr and J,]. In addition, these values increase as
supervision is increased to 50% for all data and models. Supervision
beyond that, however, can produce mixed results; for instance, Mult-
B-VAE trained on 100% of ML-20M scores worse on J., and Corr.
In contrast, for MSD(Genre) and MSD(Tag) (with the exception
of Mult-$-VAE for 100%), .1 increases with supervision. These
trends also hold for the f = 0 models. Therefore, in most cases,
supervision increases apparent controllability.
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Table 5: Results for MSD (Tag): Models confuse between tags to a lesser extent compared to Genre

Model % B ‘ TNDCG MIG ‘ T Setrl 1 Sirrel ‘ 1 Corr ‘ T EasyCorry, | EasyCorrp,q ‘ T DiffCorryyy | DiffCorrpang
Q?S) 0 0 0.2537 0.0006 - - - - - - -
¥ 50 0 | 02419 00006 | 0.0832(0.0035) 0.0835 (0.0092) | 0.7608 | 0.7622 (0.0056) -0.0824 (0.0068) | 0.7168 (0.0061) -0.2136 (0.0118)
W 100 0 | 02370  0.0006 | 0.0776 (0.0050) 0.0790 (0.0111) | 0.6812 | 0.6804 (0.0064) -0.0405 (0.0052) | 0.6685 (0.0065) -0.2182 (0.0118)
Q?S) 0 0 0.2620 0.0006 - - - - - - -
& 50 0 | 0.2444  0.0006 | 0.0905 (0.0039) 0.0925 (0.0097) | 0.7546 | 0.7577 (0.0055) -0.0638 (0.0058) | 0.7292 (0.0058) -0.1664 (0.0123)
W 100 0 | 0.2403  0.0006 | 0.0828 (0.0044) 0.0807 (0.0100) | 0.6960 | 0.6989 (0.0062) -0.0539 (0.0053) | 0.6858 (0.0062) -0.1941 (0.0121)
0 2.5 0.2768 0.0038 - - - - - - -
Q?& 1 1 0.2749 0.0107 | 0.0407 (0.0095) 0.2519 (0.0358) | 0.5815 | 0.5798 (0.0083) -0.0865 (0.0083) | 0.5827 (0.0082) -0.0230 (0.0115)
b 10 1 | 02737 00233 | 0.1572(0.0120) 0.5032 (0.0310) | 0.7946 | 0.7954 (0.0041) -0.1542 (0.0083) | 0.8074 (0.0039) -0.1773 (0.0123)
A\ 50 1 0.2682 0.0847 | 0.1886 (0.0143)  0.5553 (0.0455) | 0.8194 | 0.8161 (0.0039) -0.1194 (0.0075) | 0.8141 (0.0038) -0.1912 (0.0126)
100 5 0.2655 0.2244 | 0.1874(0.0121)  0.5763 (0.0473) | 0.8170 | 0.8192(0.0037) -0.1010 (0.007) | 0.8210 (0.0038) -0.1283 (0.0130)
0 1 0.2781 0.0072 - - - - - - -
Q?S) 1 1 0.2822 0.0085 | 0.0165 (0.0042) 0.0741 (0.0160) | 0.4415 | 0.4501 (0.0095) -0.0359 (0.0088) | 0.4498 (0.0095) -0.0042 (0.0112)
\,V'ic’ 10 1 0.2761 0.0065 | 0.0925 (0.0086) 0.2490 (0.0404) | 0.7915 | 0.7948 (0.0048) -0.1374 (0.0086) | 0.7872 (0.0049) -0.0929 (0.0118)
ﬂ\'\) 50 1 0.2670 0.1123 | 0.2018 (0.0151)  0.4289 (0.0437) | 0.8481 | 0.8494 (0.0036) -0.1290 (0.0084) | 0.8431 (0.0036) -0.1133 (0.0130)
100 1 0.2628 0.2272 | 0.2029 (0.0133)  0.5042 (0.0454) | 0.8224 | 0.8224 (0.0041) -0.0709 (0.0062) | 0.8237 (0.0039) -0.1316 (0.0130)
Given a model which scores high on 8. (or Corr), finer grained 6.2 Disentanglement and Controllability

RandCorr metrics can be analyzed, to check if changing a knob
inadvertently changes other genres °. Increasing supervision for
ML-20M makes models score better on DiffCorr,,,,q (i.e more neg-
ative), while only slightly decreasing DiffCorry,, indicating that
supervision can help with similar genres in particular. While super-
vision initially improves EasyCorr,,, 4, 100% supervision actually
worsens it slightly from 50%. Therefore, for ML-20M, supervision
can help the model avoid confusing similar genres, at the (slight)
cost of controlling dissimilar genres, especially if fully supervised.

For MSD (Genre), we first note that values of EasyCorr,, 4 and
DiffCorr,,pq are positive for this dataset, indicating that other gen-
res are also being manipulated. Increasing supervision increases
EasyCorr, and DiffCorry,y i.e help control, while EasyCorr,, 4
and DiffCorr,,pq tend to become worse, indicating confusion among
other genres. While EasyCorr,; and DiffCorr.,] becomes worse
with 100% supervision, EasyCorr,, 4 and DiffCorr,,,4 improve, in-
dicating that full supervision can help with confusion. In conclusion,
for MSD (Genre), increasing supervision generally improves con-
trol, at the cost of other genres being also recommended, which
improves with 100% supervision for MSD(Genre).

In MSD (Tag), supervision generally increases EasyCorr,,; and
DiffCorret,). For the Mult-TCVAE , increasing supervision to 100%
makes the model score better on DiffCorr,,,,4, but worse on EasyCorr,
In contrast, for increasing supervision to 100% for the Mult-S-VAE
makes the model score worse on both DiffCorry,,q and EasyCorr 4.
For the MSD (Tag) dataset, therefore, while supervision increases
controllability, too much can cause confusion between tags.

In summary, while an increase in supervision generally increases
controllability across datasets and models, and additionally reduces
confusion between factors, too much supervision can harm perfor-
mance by causing other genres to also be recommended alongside
the one being controlled.

SNote that EasyCorr,, (or EasyCorr,,,q) cannot be compared with DiffCorrey (or
DiffCorryang), as the inputs for computing these metrics can be very different. In
addition, we observed that a lot of values of EasyCorr,, 4 (at user/genre level) are
equal to 0.

rand"

This section discusses if disentanglement (f >= 1) models are
necessary, and if increased disentanglement as measured by the
MIG score contributes to controllability.

6.2.1 Comparison with baselines. Models without disentanglement
B = 0, generally score worse in most respects, compared to mod-
els with disentanglement. For the ML-20M dataset, § = 0 mod-
els have comparable controllability scores compared with models
with disentanglement. However, this comes at a drastic reduction
in recommender performance i.e the best NDCG (0.2904) among
the baselines is worse than the lowest NDCG among models with
disentanglement (0.3675). This is also seen for the MSD (Genre)
datasets, although the performance drop is smaller. For both the
MSD datasets, however, the gap observed in the controllability per-
formance of entangled/disentangled models is much greater than
the gap in the ML-20M dataset, indicating that disentanglement
is necessary for controllability in these datasets. Overall, models
with disentanglement perform better than models without disentan-
glement. The next section compares the degree of disentanglement
with controllability.

6.2.2  Does increased disentanglement help? For the ML-20M dataset,
increased disentanglement results in lower recommendation (NDCG)
performance. ML-20M models with high MIG scores perform better

on ], although this doesn’t seem to be necessary for Mult-TCVAE

with % = 50, which scores high on many metrics despite having

a low MIG score. For the MSD (Genre) models, a jump in MIG is

accompanied by large increases in ¢, and Jyre]. However, as the

values of MIG scores here are either high or near zero, it’s diffi-
cult to make concrete conclusions about the precise relationship

between disentanglement scores and controllability. We note, how-
ever, that Mult-TCVAE , which achieves better disentanglement

[8] in general, seems to perform better on the ML-20M and MSD

(Tag) dataset while achieving the highest MIG scores, while Mult-j-
VAE performs better and achieves the highest MIG score for MSG

(Genre).
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6.3 Controlled Recommendation Performance

We first note that as the amount of supervision, and consequently,
controllability increases, average recommender performance (NDCG)
decreases. However, we argue that the benefits might outweigh the
cost, as this drop is relatively small while providing control for
users (or practitioners). While NDCG measures performance of
non-controlled recommendations, the degree of personalization of
controlled recommendations can be measured by comparing St
and dire].

The results vary depending on the model or dataset. For instance,
since J¢ty] is much higher than 6. for Mult-$-VAE with 100%
supervision on the ML-20M, we can conclude that it recommends
personalized items instead of random items that a user might like.
However, the opposite is true for Mult-TCVAE , as ¢t and iyrel
are at a similar level, which means that the items recommended
on controlling a genre might not be as personalized to the user.
Mult-TCVAE produces the highest d. scores for the ML-20M and
MSD(Tag) datasets, while Mult-$-VAE produces the highest ¢,
scores for MSD (Genre). In addition, while 8, is higher (more items
of that genre are being pushed to the top), djr] is also very high in
MSD (Genre), which mean recommendations are controllable, but
might not be personalized. However, as data sparsity increases, drel
might be overestimated because of missing relevance judgements,
as evidenced by high ;1] for almost all models trained on MSD. In
addition to incompleteness, this evaluation also does not account
for the exploratory/interactive/serendipitous nature of controllable
recommendations.

In summary, controlled recommendations appear to be person-
alized, as evidenced by high scores of d.,1, showing that users
can exert control and expect personalized recommendations to
an extent. However, other items of the given genre might also be
recommended, which is especially true for the MSD dataset.

7 CONCLUSION

We showed that controllable recommendations can be achieved by
leveraging the generative nature of recommenders. (Semi-)supervised
disentanglement is used both to tie a generative factor to a known
dimension, and to enforce disentanglement. Consequently, manipu-
lating a dimension produces controlled recommendations, allowing
a user to express short-term/dynamic preferences, or to explore
these recommendations in an interactive manner. We experimented
with genre/tag distributions as supervision signals on two datasets.
We proposed metrics to measure the extent of controllability in
addition to the degree of personalization of controlled recommen-
dations. Using these metrics, we showed that a user can control
recommendations, while retaining personalization to an extent. We
showed that such control comes only at a slight reduction in rec-
ommendation performance, but might require different degrees of
supervision depending on the data, model or signals used.

While the experiments here detail controlling only a single di-
mension, multiple dimensions can be manipulated allowing for
greater or more nuanced control, which we leave for future work.
In addition, the dimensionality of the supervision signal is limited
by the dimensionality of the latent space, which limits the appli-
cability to large sets of knobs. Evaluating the personalization of
controlled recommendations presents a challenge as outlined in

the previous section, which we plan to pursue in the future. In
addition, this method can be used to ‘boost’ recommendations of
items belonging to a particular category, for instance, if items of
category X are being under-recommended (possibly due biases),
they can be boosted to compensate for it.
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