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Abstract

As the title indicates, there are two levels involved in the research carried out in this the-
sis: the general issue of understanding (and promoting) Logic Engineering, together with
a detailed study of its particular instantiation for Description and Hybrid Languages.

For some years now, a trend has been developing in the field of computational logic:
given the wide diversity of applications the field has advanced into (theorem proving,
software and hardware verification, computational linguistics, knowledge representation,
etc.), a multiplicity of formal languages has been developed, offering a wealth of alter-
natives to classical languages. With the advantages of the diversity of choice, comes
its complexity. How do we decide what the best formalism is for a given reasoning
or modeling task? Or even more, what are the important rules to take into account
when designing yet another formal language? How do we compare, how do we measure,
how do we test? These are the questions that the young field of Logic Engineering is
supposed to investigate and, if possible, answer.

What we know about Logic Engineering is still not a lot, and as yet there are no
general answers to these questions. Don’t expect to find a list of “recipes” of how things
should be done here. But much can be learned from analyzing in detail a particularly
interesting case. This will be the main thrust of the work carried out in the thesis.

Description logics are a family of formal languages used for structured knowledge
representation. They have been designed as a tool to describe information in terms of
concepts and their interrelation (definitions), together with means to specify that cer-
tain elements of the domain actually fit such definitions (assertions). In addition, they
provide a formal notion of inference in terms of this structured knowledge. Description
logics constitute the best example we are aware of, of a broad, homogeneous collection
of formal languages with a clearly specified semantics (in terms of first-order models)
devised to deal with particular applications. They offer an assortment of specialized in-
ference mechanisms to handle tasks like knowledge classification, structuring, etc. The
complexity of reasoning in the different languages of this family has been widely investi-
gated, theorem provers effectively deciding some of the most expressive languages have
been implemented (and they are among the fastest provers for non-classical languages
available), and these languages have been successfully applied in many realistic prob-
lems, even at an industrial level. Connections between description languages and modal
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logics have been investigated, but a unifying logical background theory explaining their
expressive power and logical characteristics was largely missing. This is the role to be
played by hybrid logics.

Hybrid languages are modal languages extended with the ability to explicitly refer to
elements in the domain of a model. They were first introduced in the mid 1960s, in the
field of temporal logic, and were subsequently developed mainly in a purely theoretical
environment. The work in the field focused on investigating complete axiomatizations
for these languages, characterizing their meta-logical properties and understanding their
semantic and proof-theoretical behavior.

Hybrid languages provide the exact kind of expressive power required to match de-
scription languages. Having been optimized for applications, description logics are dif-
ficult to handle with classical model- and proof-theoretical tools, but given the close
match between description and hybrid logics we will be able to apply these techniques
to the hybrid logic counterpart of description logics instead. Going in the other direction,
description logics provide hybrid logics with extensively tested examples of useful lan-
guages, knowledge management lore, and implementations. In this thesis we will draw
these two complementary fields together and investigate in detail what each of them
has to offer to the other. Given that the two areas have developed different techniques
and evolved in divergent directions, “trading” between them will be especially fruitful.
Description logics can export reasoning methods, complexity results and application op-
portunities; while hybrid logics have their model-theoretical tools, axiomatizations and
analyses of expressive power to offer.

The particular aim of this thesis is, then, to explore and exploit the connections
between description and hybrid logic, their similarities and differences. The main results
we will present specifically concern this issue. But we hope to take the first steps in
setting and discussing this work in the wider perspective of logic engineering, and provide
a small contribution to the general issue of better understanding the rules behind the
good design of new formal languages.

The thesis is organized in four parts. In the first, containing Chapter 1, we discuss
different ways of identifying interesting fragments (and fragments of extensions) of first-
order logic. We argue that traditional methods, like prenex normal form and finite
variable fragments, are not completely satisfactory. We propose, instead, to capture
relevant fragments via translations. The semantics of many formal languages (including
modal, description and hybrid languages) can be given in terms of classical logics, and as
such they can be considered fragments of classical languages. But now, these fragments
come together with an extremely simple presentation — modal languages, for example,
are usually introduced as extensions of propositional logic — and with novel and powerful
proof- and model-theoretical tools (simple tableaux systems, elegant axiomatizations,
fine-grained notions of equivalence between models, new model-theoretical constructions,
etc). Modal-like logics in general, and description and hybrid logics in particular, will
be presented as examples of useful fragments identified in such a way.

Part II introduces both description and hybrid logics (in Chapters 2 and 3 respec-
tively) providing the necessary background and the basic notions which will be used in
the rest of the thesis. The chapters can be read independently and serve as introductions
to the kinds of methods and results which have been developed in these areas. They
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also provide a detailed guide to the literature. As we make clear in our presentation,
description and hybrid logics are closely related, and their connections are spelled out
in Chapter 4. We start by presenting already known embeddings of description lan-
guages into converse propositional dynamic logics, and discussing why they provide a
less satisfactory match than the one obtained through hybrid languages. In particular,
we highlight that two ingredients are needed for a successful embedding: the ability to
refer to elements in the domain of a model, and the ability to make statements about the
whole model from a local point. The first ingredient is needed to account for assertions,
the second to account for definitions. Both are provided, in an elegant and direct way, by
hybrid languages in the form of nominals, the satisfiability operator and the existential
modality. We also clarify the relation between local and global notions of consequence,
the first being the standard notion of consequence for hybrid (and in general modal)
languages while the second is predominant in the description logic community.

After providing two-way satisfaction preserving translations between description and
hybrid logics (Theorems 4.5 and 4.7), we explore the transfer of results. We show how
the embedding into hybrid languages provides sharp upper and lower complexity bounds
(Theorems 4.8 and 4.9), separations in terms of expressive power and characterizations
(Theorem 4.14), and meta-logical properties like interpolation and Beth definability
(Theorem 4.15). Concerning interpolation and Beth definability, to the best of our
knowledge this is the first time that such results have been investigated in connection
with description languages. Many of these results are obtained from the general theo-
rems we will prove in Part III. We also discuss how results from description logics can
fill important gaps which have not yet received attention in the hybrid logic commu-
nity. Some examples are the known complexity bounds concerning description logics
with counting operators, or the PSPACE results when certain syntactic restrictions are
imposed on the existential modality.

Part IIT of the thesis contains the core technical work. In Chapter 5 we show how
ideas from description and hybrid logics can be put to work with benefit even when
the subject is purely modal. In particular, aided by the notions of nominal/individual,
we define well behaved direct resolution methods for modal languages. This example
shows how the additional flexibility provided by the ability to name states can be used
to greatly simplify reasoning methods. We proceed to build over the basic resolution
method and obtain extensions for description and hybrid languages. In Chapters 6
and 7 we take a hybrid logic perspective as we dive into model-theoretical issues. But
we have already demonstrated in Chapter 4 how hybrid logic results shed their light on
description languages.

In Chapter 6 we turn to expressive power. We start by considering Hs(@Q, |), a
very expressive hybrid language. The two main results concerning this language are
Theorems 6.10 and 6.27. The first theorem provides a five fold characterization of the
first-order formulas equivalent to the translation of a formula in Hs(@, |). In particu-
lar, it identifies this fragment as the set of formulas which are invariant for generated
submodels. Theorem 6.27 shows that the arrow interpolation property not only holds in
this language, but also for any system obtained from Hs(@, |) by the addition of pure
axioms. In a more general perspective, the results in Chapter 6 show that Hs(@, |) is
surprisingly well behaved in model-theoretical terms. As we discuss in this chapter, it
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can be characterized in many different and natural ways, it responds with ease to both
modal and first-order techniques, and possess one of the strongest versions of the inter-
polation and Beth properties we are aware of for modal languages. For these reasons,
Hs(Q, |) can be used as a “logical laboratory:” what we learn from it using the plethora
of techniques it offers, can provide us, in many cases, with intuitions on restrictions
and extensions. We see this process in action throughout the chapter, as we are able to
transfer certain results from Hs(@, |) to extensions and sublanguages.

In Chapter 7 we discuss complexity. We start with an excursion into undecidability
and we prove that a small fragment of Hs(|) already has an undecidable local satis-
fiability problem (Theorem 7.1). This is a hint that only very severe restrictions on
the | binder will bring us back into decidability. We show in Theorem 7.10 that if we
restrict ourselves to sentences of Hs({(R™1),E, @, |), where | appears non-nested, de-
cidability is regained. In Chapter 4 we have already shown that even this restricted
use of binding proves interesting from a description logic perspective. We then turn
to weaker languages (without binders) which remain closer to standard description lan-
guages. In Theorem 7.15 we prove that the addition of nominals and the satisfiability
operator to the basic modal language K does not modify its complexity, while it greatly
increases its expressive power. Interestingly, the same is not true when we extend the
basic temporal language K;: the addition of just one nominal increases the complexity
of the local satisfiability problem to EXPTIME (Theorem 7.18), when the class of all
models is considered. But usually temporal languages are interpreted on models where
the accessibility relation is forced to adopt a “time-like” structure, the two best known
cases being strict linear orders (linear time) and transitive trees (branching time). We
prove in Theorems 7.27 and 7.29 that over these classes of models, complexity is tamed
and again coincides with the complexity of the basic temporal language.

Part IV contains our conclusions and directions for further research. Here we high-
light some of the lessons we have learned during the research presented in this thesis.
As we said, we cannot hope yet for general answers concerning logic engineering, but we
can proceed by analogy: the same questions we posed and answered for description and
hybrid logics can be tested on other formal languages, and we have presented tools and
methodologies (bisimulations, model construction and comparison games, translations,
etc.) which are powerful and versatile enough to be useful in many diverse situations.
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Samenvatting

Zoals de titel al aangeeft, zijn er twee niveaus te onderscheiden in het onderzoek dat in deze
dissertatie wordt uitgevoerd: het betreft de algemene kwestie aangaande het begrijpen (en
bevorderen) van Logic Engineering, tesamen met een gedetailleerde uitwerking hiervan voor
het concrete geval van Descriptieve en Hybride Talen.

Over de afgelopen jaren tekent zich de volgende trend af op het gebied van de computa-
tionele logica: dankzij de diversiteit van de verschillende toepassingen waar dit gebied zich mee
bezig houdt (automatische stelling bewijzers, software en hardware verificatie, computationele
linguistiek, kennis representatie, etc.) is een verscheidenheid aan formele talen ontwikkeld die
een schat aan alternatieven bieden voor klassieke logica. Maar zoals altijd, de voordelen van
het kunnen kiezen komen samen met de moeilijkheid te moeten kiezen. Hoe nu kunnen we
beslissen wat het beste formalisme is voor een gegeven redeneer- of modeleertaak? Of sterker
nog, door welke regels zouden we ons het beste kunnen laten leiden bij het ontwerpen van een
nieuwe formele taal? Hoe kunnen we vergelijken, hoe kunnen we meten, hoe kunnen we testen?
Dit zijn het soort vragen dat het pasontgonnen gebied van Logic Engineering onderzoekt en,
waar mogelijk, beantwoordt.

Op dit moment is er nog niet zo veel bekend over Logic Engineering, en er zijn dan ook
nog geen algemene antwoorden op bovenstaande vragen. Om de verwachtingen enigzins te
temperen: ook hier zal geen lijst van recepten worden gegeven van hoe de zaken dienen te
worden aangepakt. Maar we kunnen wel veel leren door één interessant geval grondig te
analyseren. Zo een analyse vormt het hoofdbestanddeel van deze dissertatie.

Descriptieve logicas zijn een familie van formele talen die gebruikt worden voor gestruc-
tureerde kennis representatie. Ze zijn ontwikkeld als een hulpmiddel om informatie te beschrij-
ven in termen van concepten en hun onderlinge verbanden (definitions) samen met middelen
om te specificeren dat bepaalde elementen van een domein feitelijk aan die definities voldoen
(assertions). Verder leveren descriptieve logicas een formele notie van afleiding in termen van
deze gestructureerde kennis. Zo ver als ons bekend, vormen descriptieve logicas het beste voor-
beeld van een brede, homogene collectie van formele talen met een duidelijk gespecificeerde
semantiek (in termen van eerste orde modellen) die daarnaast ontwikkeld zijn met het oog op
een bepaalde toepassing; d.w.z, elke descriptieve logica bestaat uit een gespecialiseerd afleid-
ingsmechanisme waarmee een specifieke taak vervuld kan worden. Hieronder vallen taken als
de classificering van kennis, of de structurering van kennis. De complexiteit van het redeneren
in de verschillende talen binnen deze familie is grondig onderzocht en er zijn stelling bewijzers
geimplementeerd die een aantal van de meest expressieve talen op een effectieve manier kun-
nen beslissen (deze behoren tot de snelste stelling bewijzers die er op dit moment zijn voor
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niet-klassieke talen). Descriptieve talen zijn toegepast op vele realistische problemen, zelfs in
de industrie, en met succes. Er is onderzoek gedaan naar verbanden tussen descriptieve talen
en modale logicas, maar wat ontbreekt is een unificerende logische theorie die het verschil
in uitdrukkingskracht en het verschil in logische kenmerken verklaart. Deze rol zal worden
vervuld door hybride logicas.

Hybride talen zijn modale talen die verder nog de mogelijkheid hebben expliciet te refe-
reren naar elementen van het domein van een model. Deze talen zijn halverwege de jaren
zestig voor het eerst geintroduceerd binnen het gebied van temporele logicas, en zijn nadien
voornamelijk ontwikkeld in deze theoretische omgeving. Hier werd de aandacht gericht op
het onderzoeken van volledige axiomatiseringen voor deze talen, het karakteriseren van hun
meta-logische eigenschappen, en het begrijpen van hun semantisch en bewijstheoretisch gedrag.

Hybride talen bieden precies het soort uitdrukkingskracht dat nodig is om een interes-
sante tegenhanger te vormen voor descriptieve talen. Hiermee bedoelen we dat er niet alleen
een sterke overeenkomst bestaat tussen hybride talen en descriptieve talen, maar, en dat is
het interessante hieraan, dat op een bepaalde manier deze twee gebieden elkaars tegenhanger
vormen; ze lopen in verschilende richtingen uiteen en hebben verschillende technieken ont-
wikkeld. Zo zijn descriptieve talen, doordat ze zozeer geoptimaliseerd zijn met het oog op
een specifieke toepassing, moeilijk te bestuderen met klassieke model- en bewijstheoretische
hulpmiddelen. Hybride talen echter lenen zich daar uitstekend toe. Anderzijds, descriptieve
talen zijn, anders dan hybride talen, uitgebreid getest op hun bruikbaarheid, ze zijn in de
praktijk ingezet bij kennis management, en geimplementeerd. Juist daarom kan een “ruilhan-
del” tussen hen buitengewoon vruchtbaar zijn. Om in de handel-metafoor te blijven (we zijn
niet voor niets in Amsterdam), descriptieve logicas hebben redeneer methoden te verhandelen,
als ook complexiteits resultaten en toepassings mogelijkheden. Exportprodukten van hybride
logicas zijn hun modeltheoretische hulpmiddelen, hun axiomatiseringen en hun analyses van
uitdrukkingskracht.

Het specifieke doel van deze dissertatie is nu om in detail de verbanden tussen descriptieve
en hybride logica te bestuderen en te benutten; zowel hun verschillen als de overeenkomsten. De
belangrijkste resultaten die we zulen presenteren betreffen specifiek dit onderwerp. Behalve dat
deze resultaten op zichzelf genomen interessant genoeg zijn, dragen ze ook bij aan de algemene
kwestie die een logica engineer bezig houdt: ze geven een beter begrip van de richtlijnen volgens
welke een formele taal ontworpen zou moeten worden.

De dissertatie is onderverdeeld in vieren. In het eerste deel, dat bestaat uit Hoofdstuk 1, be-
spreken we verschillende manieren waarop interessante fragmenten van eerste orde logica (en
fragmenten van uitbreidingen van eerste orde logica) kunnen worden geidentificeerd. We zullen
beargumenteren dat traditionele methoden, zoals prenex normaal vorm en eindige variabelen
fragmenten, niet geheel en al tot tevredenheid stemmen. In plaast daarvan stellen wij voor rele-
vante fragmenten uit te houwen via vertalingen. Van veel formele talen (modale, descriptieve,
en hybride talen incluis) kan de semantiek gegeven worden in termen van klassieke logicas, en
als zodanig kunnen ze beschouwd worden als fragmenten van klassieke talen. Echter, door deze
talen op te vatten als vertalingen, krijgen we een aantal extras: modale logicas bijv. kunnen nu
simpel gepresenteerd worden (namelijk als eenvoudige uitbreidingen van propositionele logica),
en krijgen nieuwe en krachtige bewijs- en model-theoretische hulpmiddelen (eenvoudige tableau
systemen, elegante axiomatiseringen, verfijnde noties van equivalentie tussen modellen, nieuwe
model-theoretische constructies, etc). We zullen laten zien dat logicas die, ruw gezegd, ver-
want zijn aan modale logicas, op deze wijze kunnen worden geidentificeerd. Hieronder vallen
descriptieve en hybride logicas.

Deel II introduceert descriptieve en hybride logicas (in de Hoofdstukken 2 and 3 respec-
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tievelijk), en levert hiermee de noodzakelijke achtergrond voor de rest van de dissertatie. Deze
hoofdstukken kunnen onathankelijk van elkaar gelezen worden, en dienen ter introductie van
het soort methoden en resultaten die in deze gebieden zijn ontwikkeld. Tevens bevatten ze
volop verwijzingen naar de literatuur. Zoals in onze presentatie naar voren zal komen, zijn
descriptieve en hybride logica nauw verbonden, en deze verbanden zullen nauwkeurig wor-
den omschreven in Hoofdstuk 4. We beginnen dit hoofdstuk met het beschrijven een aantal
bekende inbeddingen van descriptieve logicas in converse propositionele dynamische logicas,
en behandelen de vraag waarom deze dynamische logicas minder goed bij descriptieve logicas
passen dan hybride talen. In het bijzonder zullen we er de aandacht op vestigen dat voor
een succesvolle inbedding twee ingrediénten nodig zijn: de mogelijkheid te refereren naar de
elementen van een model, en de mogelijkheid om vanuit een locaal punt beweringen te maken
die het gehele model betreffen. Het eerste is nodig om assertions te verklaren, het tweede voor
definitions. Beide bestanddelen worden op een elegante en directe manier geleverd door hy-
bride talen in de vorm van nominals, de vervulbaarheids relatie, en de existentiéle modaliteit.
We zullen ook de relatie tussen de locale en globale notie van gevolgtrekking ophelderen. De
eerste is de standaard notie voor hybride talen (en modale talen in het algemeen) terwijl de
tweede gebruikelijk is binnen de descriptieve logica.

Nadat we vertalingen hebben gegeven tussen descriptieve en hybride logicas die de vervul-
baarheidsrelatie in beide richtingen behouden (Theorems 4.5 en 4.7), onderzoeken we welke
resultaten zich nu laten overdragen. Voor descriptieve logicas verkrijgen we op deze manier
scherpe boven- en ondergrenzen aan de complexiteit (Theorems 4.8 en 4.9), karakteriseringen
(Theorem 4.14), meta-logische eigenschappen waaronder interpolatie en Beth definieerbaarheid
(Theorem 4.15), en scheidingen van descriptieve logicas in termen van uitdrukkingskracht. Wat
betreft interpolatie en Beth definieerbaarheid merken we op dat dit, zover als ons bekend, de
eerste keer is dat dit type vragen onderzocht is voor descriptieve logicas. Veel van bovenge-
noemde resultaten zijn verkregen via de algemene stellingen die in Deel III zullen worden
bewezen. Aan de andere kant zullen we ook bespreken hoe resultaten die bekend zijn over
descriptieve logicas belangrijke hiaten kunnen opvullen in onze kennis over hybride logicas
aangaande kwesties die nog niet eerder ter discussie zijn gesteld in dit gebied. Om twee voor-
beelden te noemen, de welbekende grenzen op de complexiteit van descriptieve logicas met een
tellings-operator, en de PSPACE resultaten die gelden als bepaalde syntactische restricties aan
de existenti€éle modaliteit worden opgelegd.

Het noodzakelijke technische werk wordt in Deel III afgehandeld. In Hoofdstuk 5 laten we
zien hoe zelfs in een zuiver modale context ideeén uit descriptieve logicas en hybride logicas van
nut kunnen zijn. Zo definiéren we bijvoorbeeld directe resolutiemethoden voor modale talen
met behulp van de noties nominals/individuals. Dit voorbeeld laat zien dat de flexibiliteit
die verkregen is uit de mogelijkheid toestanden te benoemen, gebruikt kan worden om rede-
neer methoden danig te vereenvoudigen. We zullen later deze fundamentele resolutiemethode
uitbreiden voor descriptieve en hybride talen. In Hoofdstukken 6 en 7 bekijken we model-
theoretische kwesties vanuit de hybride logica. We hebben dan al laten zien in Hoofdstuk 4
hoe resultaten over hybride logicas inzicht kunnen geven in descriptieve talen.

Hoofdstuk 6 behandelt uitdrukkingskracht. Eerst bestuderen we Hs(@Q, |), een zeer ex-
pressieve hybride taal. De twee belangrijkste resultaten over deze taal zijn Stellingen 6.10
en 6.27. De eerste stelling geeft een vijf-voudige karakterisering van de verzameling eerste orde
formules die equivalent zijn aan een vertaling van een formule uit Hs(@, |). In het bijzonder
wordt dit fragment herkend als de verzameling formules die invariant zijn voor gegenereerde
submodellen. Stelling 6.27 laat zien dat de —-interpolatie eigenschap opgaat, niet alleen
voor deze taal maar ook voor elk ander systeem dat vanuit Hs(@, |) verkregen is door een
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willekeurig aantal axiomas toe te voegen. Meer algemeen blijkt dat Hs(@, |) verrassend mooie
model-theoretische eigenschappen heeft. Zoals we in dit hoofdstuk zullen bespreken, kan het
gekarakteriseerd worden op vele verschillende en natuurlijke manieren, er kunnnen met gemak
zowel eerste orde als modale technieken op worden toegepast, en het bezit een van de sterk-
ste versies van de interpolatie en Beth eigenschappen die er bij ons weten voor modale talen
bestudeerd zijn. Dit al was voor ons reden om Hs(@, |) als een “logisch laboratorium” te
beschouwen: wat we in dit laboratorium te weten komen, levert in veel gevallen intuities over
restricties en extensies van deze taal. Dit proces zien we aan het werk in dit hoofdstuk.

In Hoofdstuk 7 richten we ons op complexiteit. We beginnen met een uitstapje richt-
ing onbeslisbaarheid en bewijzen dat een klein fragment van Hs(]) al een onbeslisbaar lokaal
vervulbaarheidsprobleem heeft (Theorem 7.1). Dit wijst erop dat een fragment dat de |-binder
bevat slechts beslisbaar is onder zeer sterke restricties. Zo een fragment is Hs((R™!),E, @, |)
waar | enkel niet-genest voorkomt (Stelling 7.10). In Hoofdstuk 4 hebben we al laten zien
dat zelfs dit beperkte gebruik van de binder interessant is vanuit een descriptieve logica per-
spectief. Vervolgens beschouwen we zwakkere systemen (zonder binder) die dichter tegen de
standaard descriptieve talen aanliggen. In Stelling 7.15 wordt bewezen dat het toevoegen van
de nominals en de vervulbaarheidsoperator aan de basis modale taal K de complexiteit van
laatstgenoemde niet verhoogd, terwijl het zijn uitdrukkingskracht enorm vergroot. Interessant
genoeg is dit niet het geval als we de basis tijdslogica K; uitbreiden: de complexiteit van
het locale vervulbaarheidsprobleem wordt al verhoogd tot EXPTIME door het toevoegen van
slechts één nominal (Theorem 7.18), als we de klasse van alle modellen beschouwen.

Gewoonlijk echter worden tijdslogicas geinterpreteerd op modellen waar de toegankelijk-
heidsrelatie een structuur heeft die min of meer de tijdsloop zou kunnen verbeelden. De meest
bekende zijn de strict lineare ordeningen (lineaire tijd) en de transitieve bomen (splitsende
tijd). We bewijzen in Stellingen 7.27 en 7.29 dat als we deze klasse van modellen beschouwen
de complexiteit niet uit de hand loopt maar integendeel overeenkomt met de complexiteit van
de basis tijdslogica.

Deel IV bevat onze conclusies en geeft de richtingen aan voor verder onderzoek. Zoals
gezegd, de tijd is nog niet daar om algemene richtlijnen te geven voor logic engineering, maar
we kunnen wel via analogie te werk gaan; dezelfde vragen die wij gesteld en beantwoord hebben
voor descriptieve en hybride logicas kunnen aan andere formele systemen worden voorgelegd
en de hulpmiddelen en methodes (bisimulaties, spelen ter constructie van modellen en het
vergelijken van uitdrukkingskracht, etc) die wij in deze dissertatie besproken hebben, bezitten
voldoende potentie om in diverse situaties van nut te kunnen zijn.
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Part 1

Logic Engineering

ocurre en todos los casos

en que participa la verdad

que se transforma todo sentido aparente
espejo falso

en lugares ciertos entre la nada y el infinito

from “Guitarra Negra,” Luis Alberto Spinetta

For many years “Logic” was “Classical Logic,” mainly classical first-order logic, and
there were good reasons for this. To mention some, first-order logic offers high expressive
power, simplicity, good behavior (both syntactically and semantically), and a clean and
well developed model theory.

This is just a complicated way of saying that first-order logic is beautiful. . . for many
tasks. But when we think about applications requiring effective inference, first-order
logic is simply not the choice: its satisfiability problem — i.e., the problem of determin-
ing whether there exists a model in which a given first-order formula is true — is not
decidable. In addition, first-order logic sometimes does not measure up to the task at
hand. It cannot, for example, capture the fact that one relation is the transitive closure
of another one, and this might be crucial for a certain modeling task.

For these reasons mainly, first-order logic has been loosing its privileged position as a
representation formalism in many areas where applications requiring effective inference
methods are central, such as Artificial Intelligence, Knowledge Representation, Com-
putational Linguistics, Software Design and Verification, or Databases. In these fields,
the applications themselves have given rise to new formalisms, specially tailored for the
problems to be addressed. In some cases, like in the early days of Artificial Intelligence,
this growth has even been chaotic, with hundreds of new proposals, and very restricted
means to evaluate them.

As an answer to this problem, a new field of Logic Engineering is starting to develop.
To judge the appropriateness of the name, consider the definition of engineer [Davidson
et al., 1994]

engineer: n. one who designs or makes, or puts to practical use [.. ]

In line with its name, Logic Engineering studies ways to construct new formalisms,
with good properties like decidability, appropriate expressive power, effective reasoning
methods, and good meta-logical characteristics (completeness, interpolation, etc.), for a
given, particular need.

How do we design “made-to-fit” logics? That is the topic we will discuss in this part
of the thesis.






Chapter 1

Cutting Out Fragments

The logic is invariant,. . .
but the data are different.
So the results are different.

from “Stranger in a Strange Land,” Robert Heinlein

1.1 Looking for the Right Language

The rules of the game are set: we are searching for good formal languages for specific
tasks, where by “formal languages” we mean languages with a precise syntax and se-
mantics, and by “specific tasks” we mean reasoning tasks. In particular, we will focus
on reasoning tasks involving inference and hence a further condition is required on our
notion of formal language, namely it should provide a calculus defining some kind of
consequence relation.

We might as well start by looking into why first-order logic (FO) is not necessarily
the best choice in all cases. First, it might be too complex for the reasoning task we
have to address.

THEOREM 1.1. The satisfiability problem for first-order logic is not decidable.

If we are in search of effective inference mechanisms, Theorem 1.1 immediately disquali-
fies first-order logic. Of course, if what we require are languages for specifying properties
to wverify in a given model, i.e. if our problem requires only model checking, then FO
enters the list of candidates again. But on the other hand, even with all its expressive
power, it is possible that FO just does not provide exactly the needed expressivity. For
example,

THEOREM 1.2. First-order logic cannot define the transitive closure of a relation.

Theorems 1.1 and 1.2 show that there might be different reasons why we need to look for
alternatives to FO, in addition they will also let us introduce a number of definitions and
notions that will keep coming up as a central theme in the thesis, like the importance
of formal syntax and semantics, the use of model-theoretical techniques like reduction
arguments and games, comparisons of expressive power, etc. To make things crystal
clear, let us start by formally introducing first-order logic.

DEFINITION 1.3. [First-order language] Let REL = {R;, Rs,...} be a countable set
of relation symbols, FUN = {fi, fo,...} a countable set of function symbols, CON =
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4 Chapter 1. Cutting Out Fragments

{c1,ca,...} a countable set of constant symbols and VAR = {1, xs,...} a countable set
of wariables. We assume that REL, FUN, CON and VAR are pairwise disjoint. To each
relation symbol R; € REL and each function symbol f; € FUN we associate an arity
n > 0. We call S = (REL,FUN, CON, VAR) a signature, and we will sometimes focus
on relational signatures where FUN = {}. This is usually not a restriction as we can
represent functions as constrained relations.

The well-formed terms of the first-order language over the signature (REL, FUN,
CON, VAR) are

TERMS = ZT; | C; | fi(tl, ce . 7tn)7

where, z; € VAR, ¢; € CON, f; € FUN of arity n and tq,...,t, € TERMS. The well-

formed formulas over the signature are
FORMS =T | tl == tg | Ri<t1, oo ,tn> | - | ¥1 VAN P2 ’ HSL’IQO,

where t1,ty,...,t, € TERMS, R; € REL is an n-ary relation symbol, ¢, ¢1, oo € FORMS
and z; € VAR. As usual, we take V, —, < and V as defined symbols.

Turning to semantics, first-order formulas are interpreted on first-order models.

DEFINITION 1.4. [First-order models and satisfiability] A first-order model for a sig-
nature S, is a structure M = (M,-™) where M is a non-empty set and ™ is an
interpretation function defined over REL U FUN U CONS such that - assigns an n-ary
relation over M to n-ary relation symbols in REL, an n-ary function "M — M to n-ary
function symbols in FUN, and an element in M to constant symbols in CONS. When
the signature is small, we will simple write M = (M, {RM},{fM},{c}'}) instead of
M = (M, M),

An assignment g for M is a mapping g : VAR — M. Given an assignment g for M,
x € VAR and m € M, we define g7, (an z-variant of g) by ¢¥ (z) = m and g7,(y) = g(y)
for x # y. Given a model M and an assignment g for M, the interpretation function
M can be extended to all elements in TERMS:

x;-M = g(z;)

flty, .. t)M = fMEM, .M.

n

Finally the satisfiability relation |= is defined as

M = Tlg] always
MEt =tfg] iff "=t
M= R(ty, ... ty)g] iff RM@EM, ... tM)
M= —plg] i M plg]
MEpiApofg] it M= pifg] and M = ¢»g]
M E Jziplg] iff M E p[ghi] for some m € M.

If a given formula ¢ is satisfied under every assignment for M, we say that ¢ is valid
in M and write M = . For a sentence ¢, let Mod(p) = {M | M = ¢}.
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A piece of notation now, for a given language £, let Sat(L) denote the satisfiability
problem for £ (i.e., the problem of deciding wether a formula of £ is satisfiable), and
Val(L) the dual validity problem.

We are now ready for the proof of Theorem 1.1. In 1936, Church put forward a
bold thesis: every computable function from natural numbers to natural numbers is
recursive in the sense of Herbrand-Godel-Kleene. He then showed that no recursive
function could decide the validity of first-order sentences, and concluded that there
was no decision algorithm for Sat(FO) [Church, 1936]. Independently, a different proof
was published by Turing a year later [Turing, 1937], by formalizing Turing machines
by means of first-order formulas, and reducing an undecidable class of particular word
problems for Turing machines to the validity problem of the encoding. But a very simple
proof can be given by means of an undecidable tiling or domino problem [Berger, 1966].

DEFINITION 1.5. [The N x N tiling problem] A tiling system is a triple 7 = (T, H, V')
where T' is a finite set (the set of tiles), and H,V C T x T are relations expressing
horizontal and vertical compatibility constraints between the tiles.

We say that 7 tiles N x N if there exists a tiling function t : N x N — T such that
for all (z,y) € N x N, whenever t(x,y) = t1, t(x + 1,y) = t2 and t(z,y + 1) = t3 then
H(tl, tg) and V(tl, t3)

In [Berger, 1966] the undecidability of the N x N tiling problem is proved by reducing
the halting problem for Turing machines to the problem of deciding whether a tiling
function exists, for any given tiling system. Tiling problems are also very useful as a
means to establish complexity lower bounds [Chlebus, 1986].

ProOOF OF THEOREM 1.1. Consider the following encoding into FO of a given tiling
system 7 = ({t1,...,t,}, H,V) (from [Gurevich, 1976]). For h,v,t,...,t, unary func-
tions, let p(z) be the conjunction of the following formulas
h(v(z)) = v(h(z)),
V{ti(z) =2 |1<i<n},
Nti(x) =2 — =(tj(2) = 2) [ 1 <i < j <n},

VA{ti(z) = x Atj(h(z)) = h(x) | H(ti, 1))},

VA{ti(z) =z Atj(u(x)) = v(x) [ V(i 1))}
It is almost trivial to verify that Va.p(z) is satisfiable iff 7 tiles N x N — T'. From right
to left, let ¢ be a tiling function, then M = (N x N, -™) where

tM(a,b) = (a,b) if t(a,b) =t;

tM(a,b) = (a+1,0+1) if t(a,b) #t
MM(a,b) = (a+1,b)
vM(a,b) = (a,b+1)

satisfies Va.p(z). For the other direction, assume M = Va.po(x) and let a € M be fixed
but arbitrary, then the function

t(n,m) =t; it M= ti(h"(0™(x))) = h" (0" (x))]a]

is a tiling function. QED
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As we see from the proof, very little of first-order expressive power is needed to arrive at
undecidability. If the language has a countable number of unary function symbols and
equality then only one variable is needed, and the formulas are purely universal. As we
already said, we can always trade the function symbols used in the encoding for relational
symbols, and use the language itself to force them to behave as functions (enforcing
totality Va.3y.(R(z,y)) and functionality Voy,ye.((R(z,y1) A R(x,y2)) — 1 = y2)),
but notice that we pay a price on more variables and a more complicated pattern of
quantification.

Studying this kind of trade-off is a long standing project of classical logic, and at-
tempts to map decidable and undecidable fragments of FO are varied [Ackermann, 1954;
Lewis, 1979; Borger et al., 1997]. We will elaborate on this point in Section 1.2, when
we analyze different fragments of FO.

The discussion so far may be summarized by saying that FO is, in some cases, too
expressive: it allows us to encode undecidable problems. At the same time it is often
not expressive enough. A typical example when expressivity beyond first-order logic is
called for, is the need to refer to the transitive closure of a relation in a model. As we
stated in Theorem 1.2, first-order logic lacks the expressive power required to define the
transitive closure of a relation. For the proof of the theorem we will introduce another
important tool: a way to compare models.

Suppose we want to prove that a certain property P is not expressible in first-order
logic. One way of showing this is to exhibit two first-order models, which agree on
all first-order sentences, but such that P is true in one and false in the other. This
argument can be refined further: suppose we are able to prove that for any £ € N there
are two first-order models M; and N} such that they agree on all first-order sentences
up to quantifier rank k but they disagree on the truth value of P. This is enough, as
any first-order sentences defining P will have a certain fixed finite quantifier rank.

Ehrenfeucht [1961] established a strong correlation between the truth of sentences
of quantifier rank £ in a pair of models, and the rounds of a model comparison game.
Let us define things formally. The notion of partial isomorphism is one of the crucial
ingredients.

DEFINITION 1.6. [Partial isomorphism] Let M and N be first-order models over a re-
lational signature §. Let p : M — N be a partial map. p is said to be a partial
isomorphism from M to N iff
1. p 1s injective,
ii. Yc € CONS, M € dom(p) and p(cM) =V,
ii. VR € REL, and a4, ..., a, € dom(p), RM(ay, ..., a,) iff RN (p(ay), ..., play)).

Notice that, in general, partial isomorphisms do not preserve the validity of formulas
with quantifiers as isomorphisms do. But interestingly, they allow us to introduce a
notion of extensions which will match the restriction to a fixed quantifier rank. This
will become clear in Definition 1.8 below. First, we introduce the game-theoretical
perspective, which is more intuitive in many cases.

DEFINITION 1.7. [Ehrenfeucht games| Let M and A be first-order models over the same
relational signature. The Fhrenfeucht game Gi(M,N) is played by two players called
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the Spoiler and the Duplicator. Each player has to make k moves in the course of a
play. The players take turns. In his ¢-th move the Spoiler first selects a structure, M or
N, and an element in this structure. If the Spoiler chooses e; in M, then the Duplicator
in his i-th move chooses an element f; in A. If the Spoiler chooses f; in N, then the
Duplicator chooses an element e; in M. The Duplicator wins the game if € — f is a
partial isomorphism from M to N. Otherwise the Spoiler wins. We say that one of the
players has a winning strategy in Gp(M,N), if it is possible for him to win each play
whatever choices are made by the opponent.

Ehrenfeucht games provide a natural characterization of elementary equivalence up to
rank k. If Duplicator has a winning strategy for the game Gy(M,N), then M and N
agree on all sentences up to quantifier rank & (notation M =, N). The advantage of
Ehrenfeucht games is that the existence of a winning strategy for Duplicator is often
easy to grasp. Their disadvantage is that sometimes, arguments proving this are hard
to describe.

Instead, Fraissé [1954] provided a purely algebraic characterization by means of k-
back-and-forth systems.

DEFINITION 1.8. [k-back-and-forth systems]| Let M and N be two first-order models on
a relational signature. A k-back-and-forth system is a sequence (I;),<; with the following
properties:
i. Every I; is a non-empty set of partial isomorphisms from M to N.
ii. (Forth property) Vj < k, p € 141, and m € M there is ¢ € I; extending p and
m € dom(q).
iii. (Back property) Vj < k, p € I;11, and n € N there is ¢ € I; extending p and
n € ran(q).
We say that M and N are k-isomorphic (notation M =, N) if there is a k-back-and-
forth system between them.

The pieces are put together in the following result.

THEOREM 1.9. [Ehrenfeucht-Fraissé Theorem] Given two first-order models M and N
on a relational signature, and k € N, the following are equivalent
i. Duplicator has a winning strategy in Gx(M,N).
. M= N.
iii. M=, N

We have now all the machinery we need to embark on the proof of Theorem 1.2 (from
[Ebbinghaus and Flum, 1999]).

PROOF OF THEOREM 1.2. We want to show that the relation TC(R) = R* of tran-
sitive closure is not first-order definable. We start by proving a simpler claim. A first-
order model over the relational signature ({R},{},{},{}), where R is binary is called
a (simple, possibly infinite) graph. We say that a class C of models in this signature is
first-order definable if there exists a first-order sentence ¢ such that C = Mod(yp). We
say that a graph (M, R) is connected if any two different elements in M are related in
R*, the transitive closure of R.
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CrAamM 1.10. The class CONN of connected graphs is not first-order definable.

ProoF oF CramM. For [ € N, let C; be the graph given by a cycle of length [ + 1:
Co={0,...,1},{G,i+1),(i+1,0) | 0<i<I}U{(0,0),(1,0)}).

We will show that
for every k e N1 > 2% C, =, QW (, (1.1)

where W denotes disjoint union. The claim follows from (1.1), because suppose ¢ defines
CONN, and let k£ be the quantifier rank of ¢. As Cyr is connected, then Cor | ¢,
as Cor = Cor W Cor then also Cor W Cor = ¢, and Cox W Cor € Mod(p) = CONN, a
contradiction.

We use Theorem 1.9 to prove (1.1). Intuitively, the winning strategy of Duplicator
works by picking points which are sufficiently far apart. Whenever Spoiler tries to
signal a difference between C; and C; W C; by choosing points in the different connected
components of C; W (;, during round j, Duplicator chooses points in C; which are at least
at a distance 2/. This is enough for the logic to think of them as unreachable. Formally,
for a graph G, let d9 : G x G — N be the length of a minimal path between two elements
of G if such path exists, or oo otherwise. Define for 7 € N, the “truncated” j-distance
function djg- by

a9

J

, d9(e,e’) if d9(e,e’) < 27H1
(e,€¢') = :
00 otherwise.

It is easy to verify that (%) j<m 18 an m-back-and-forth system between C; and C; W C; if
[ > 2™, where I; = {p | dj'(e,¢’) = dClUCl(p(e),p( ")), for e, e € dom(p)}. =

From the claim, it follows that TC(R) is not first-order definable. For suppose it were
definable; let ¢(z,y) be a first-order formula defining TC(R), i.e., M | p[m,m’] iff
(m,m’) € RT. Then CONN can be defined as the class of models {M | M = Vzy.(—(z =

y) — p(z,y))} QED

After all the work we have done in this section we can happily agree that first-order
logic comes with many powerful techniques, which is perhaps one of its strongest points.
But these same tools let us establish results like Theorems 1.1 and 1.2, which signal
important weaknesses when we have certain kind of applications in mind.

In the chapters to come we will discuss how fragments of FO, or fragments of exten-
sions of FO, can be fine-tuned to provide effective reasoning methods, good meta-logical
properties, better complexity results, and the exact expressive power needed.

1.2 Fragments of FO, and Extensions

But, there are continuum many different fragments. Obviously, we don’t want to con-
sider all of them. How do we define “nice fragments”? A first possibility is to restrict
attention to classes presentable in some fixed way. For example, to consider finite classes
(i.e., classes with a finite number of models) would be an option, but these classes might
be of little applicability if we are interested in inference.
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General syntactic and semantic constraints are probably better suited for the job.
For example, we could use the semantic consequence relation: for a sentence «, let
Cn(a) be the set of all first-order consequences of a. We can now consider the following
problem, given a sentence «, decide whether the decision problem for Cn(«) is decidable
(i.e., whether for an arbitrary sentence (3 it is possible to decide if § € Cn(«)). A simple
reduction argument shows that this problem is as hard as Sat(FO) itself. Another
possibility is to choose a certain class of structures (lattices, rings, ...) and attempt
to characterize its first-order theory, but this seems to be more the work of (perhaps
Universal) Algebra.

In Logic, the syntactic path has been (much) more prevalent. For a long time, logi-
cians have been interested in classes of formulas defined by simple syntactic restrictions.
In [1915], Lowenheim gave a decision procedure for the satisfiability of sentences with
only unary predicates. He also proved that sentences with only binary predicates form
a reduction class for validity, i.e., this set of sentences is such that there is a recursive
function f from first-order sentences into sentences with only binary predicates with the
property that ¢ is valid iff f(y) is. Lowenheim’s undecidability result was sharpened
by Kalmér in [1936]: one binary predicate suffices. This implies, for example, that the
first-order theory of graphs is undecidable.

Even if we restrict ourselves to syntactic ways of cutting out fragments, there are
different possibilities.

1.2.1 Prenex Normal Form Fragments

Some of the most familiar fragments of first-order logic are defined by means of restric-
tions on the quantifier prefix of formulas in prenex normal form. As is standard, we
will refer to prenex normal form fragments by using finite strings over {3, 3*,V,V*}. For
example, the string V3* represents the class of first-order formulas in prenex normal
form, where the quantifier prefix starts with a universal quantifier which is followed by
zero or more existential quantifiers.

Theorem 1.1 shows that if functional symbols are allowed in the language, then the
simple V fragment is already undecidable. As is traditional, in what follows we will only
discuss fragments over relational signatures. Here are some of the best known results.
In 1920, Skolem showed that V*3* sentences form a reduction class for satisfiability.
In 1928, Bernays and Schonfinkel gave a decision procedure for the satisfiability of
F*V3* sentences. Godel, Kalmar and Schiitte, independently in 1931, 1933 and 1934
respectively, discovered decision procedures for the satisfiability of 3*V?3* sentences. In
1933, Godel showed that V33* sentences form a reduction class for satisfiability. More
recently, Kahr in 1962 proved the undecidability of Sat(V3V).

These results are interesting and useful, as is witnessed by the following immediate
application. Suppose we built a formal specification (for example, of a certain mathemat-
ical structure) by means of first-order sentences which enumerate the needed properties.
If all the formulas used lie inside one of the decidable classes mentioned above, then
there exist a completely mechanic way of determining if such a structure exists (i.e., by
checking the consistency of the specification).

The collection of similar results was eventually organized in what is known today as
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the Classification Problem for first-order logic:

— Which fragments are decidable for satisfiability and which are undecidable?

—  Which fragments are decidable for finite satisfiability (satisfiable in a finite model)
and which are undecidable?

— Which fragments have the finite model property and which contain axioms of
infinity (that is, satisfiable formulas without finite models)?

Finite models are important because for any fragment F of first-order logic having the
finite model property, Sat(F) can be decided provided that we can decide membership
of a formula in F. The classification problem for prenex normal form fragments admits
a complete finite solution. This follows from the Classifiability Theorem of Gurevich
[1969]. Also the complexity, for the cases where the fragment is decidable, is fairly well
mapped out (see [Borger et al., 1997] for the most up-to-date account).

In other words, the issue of decidability /undecidability for prenex normal form frag-
ments of FO is pretty much settled. But in other aspects these fragments are not
satisfactory at all. In almost all cases, the study of their meta-logical properties is dif-
ficult as they don’t have a neat model theory. The restrictions are “too syntactical” in
nature for issues like axiomatization or semantic characterization to be manageable.

1.2.2 Finite Variable Fragments

Let FO* be the restriction of first-order logic over a relational signature to formulas
that contain only the variables xq, ..., xg, from some fixed enumeration of VAR. Finite-
variable fragments of first-order logic were introduced for technical reasons in [Henkin,
1967]. Logics with only a finite number of variables are important in many branches of
mathematical logic and its applications, including finite model theory, model checking,
database query languages and knowledge representation. Notice that these fragments
cannot be “turned into prenex normal form.” In the transformation to prenex normal
form new variables are needed to push out quantifiers. In fact, the clever reuse of
variables is crucial.

ExXAMPLE 1.11. [Borger et al., 1997] Given a graph G, we need n + 1 variables to char-
acterize a path of length n in G, if we require the formula to be in prenex normal form

Jzg ... xn.( /\ E(x;,2i41)),

0<i<n
but a formula in FO? is enough if we allow reuse
Ell'o.ﬁl?l.(E(xo, IE1) A\ E|£L‘0.<E<£L‘1, £I§‘0> AN ))

The satisfiability problem for FO* is undecidable, even for formulas without equality,
for all k > 3, given that FO? already extends the prefix class ¥3V. That FO? (without
equality) is decidable was first proved in [Scott, 1962], the result was extended to the
language with equality in [Mortimer, 1975].

THEOREM 1.12. FO? has the finite model property, hence Sat(FO?) is decidable.
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In [Gradel et al., 1997a] the complexity upper bound set by Mortimer is improved
to an essentially optimal single exponential in the model size, proving Sat(FO?) &
NTmME(29()). This result can be extended to FO® with constant symbols, but that
seems to be the decidability boundary: the Sat problem of FO? (even without equality)
extended with a single unary function is undecidable. Also, the satisfiability problem
for the one variable fragment of FO is undecidable if unary functions are allowed.

[Gréadel et al., 1997b; Pacholski et al., 1997; Gradel et al., 1999] provide a detailed
analysis of (un)decidability phenomena for FO? and extensions. A particularly inter-
esting case (see Section 2.2) is C*, the extension of FO? (with equality) by counting
quantifiers 32 and 3=™ for m € N. It is almost immediate to see that C* does not have
the finite model property. The formula

Vo 37y Rz, y) AVy. I 2. Rz, y) A JyVo.~R(x,y)

forces R to be the graph of an injective and not surjective function in the domain,
which can only be satisfied on an infinite model. However, Sat(C?) is shown to be
NExpPTIME-complete if unary coding for numbers in quantifiers is used.

For further results and critical discussions of pros and cons of FO*, see [Andréka et al.,
1998]. This paper shows failure of the Los-Tarski and Craig interpolation theorems inside
finite variable fragments. In [Areces and Marx, 1998], failure of (even weak) interpolation
in FO® for k > 2 is proved as a corollary of a more general result concerning failure of
the interpolation property. A short direct proof is also provided, showing that very little
is needed to achieve failure of interpolation in finite variable fragments. Let 5 be the
derivation system defined as follows

Ax1 Every propositional tautology is an axiom scheme.
Ax2; V. (p — ) — (Va,.o — Va;.9), for i € {0,1}.
Ax3 Varizg.0 — Vror,.p.

MP  From ¢ and ¢ — % infer .

UG; From ¢ infer Vz;.p, for i € {0,1}.

Clearly F is sound for first-order logic, but hopelessly incomplete. Trivial validities like
Vao.(xg = x9) and Jzgzg. <> J0.¢0 are not theorems of .

THEOREM 1.13. [Areces and Marx, 1998] For every k, there exist FO* formulas ¢ and
W such that

. @ o, and

i. for every FOF formula 6 in the common language of ¢ and 1, either ¢ K 6 or

0 F~= 1.

These formulas can be algorithmically obtained and have size polynomial in k. FEither
@ and Y are in disjoint languages but both contain the equality symbol, or they are
equality-free but the common language contains one binary predicate.

Even though it is difficult to put a finger on it, and in spite of the previous negative
results, finite variable fragments seem better suited to our purposes than prenex normal
form fragments. At least they seem to have better meta-logical properties than the prefix
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fragments. For instance, we can use the notion of k-back-and-forth-systems to provide a
model-theoretical characterization of FO*. Call a formula invariant for k-back-and-forth
systems if and only if whenever there is a k-back-and-forth system linking two models

M and N then M = o & N = o.

THEOREM 1.14. [van Benthem, 1995] A first-order formula ¢ is equivalent to a formula
in FO® iff it is invariant for k-back-and-forth systems.

And we can use a version of Ehrenfeucht games, called pebble-games (see [Immerman
and Kozen, 1989; Ebbinghaus and Flum, 1999]), to obtain game-theoretical characteriza-
tions. Furthermore, modified versions of Los-Tarski and Craig Theorems do go through
(see [Andréka et al., 1998]).

The main disadvantage of finite variable fragments, though, seems to be their coarse-
ness: FO! is barely interesting, FO? is just fine, but most of its extensions aren’t. With
respect to decidability, FO? is not what Vardi [1997] has called robustly decidable, i.c.,
it does not remain decidable when suitable extensions of the language are considered.
Also, k-variable fragments have a poor proof theory. No finitely axiomatized Hilbert
style system exists [Monk, 1969], and the complexity of the necessary axiom schemes is
inevitably high [Andréka, 1991].

1.2.3 Guarded Fragments

Clearly, the expressive power of FO comes from its quantifiers. In recent years, yet
another way of defining fragments of first-order logic and its extensions was introduced
by Andréka, van Benthem and Németi [1998], by imposing restrictions on the way a
quantifier can be introduced in a formula.

Let GF, the guarded fragment of first-order logic, be defined as

— Every relational atomic formula R(?) or z; = x; belongs to GF.

—  GF is closed under Boolean operations.

— If v, w are tuples of variables, a(v,w) is an atomic formula and ¢ is a formula in
GF such that all free variables of ¢ occur in «a, then also the formulas Jw.(a(v, w) A
(v, w)) and Yw.(a(v, w) — ¢(v,w)) belong to GF.

The intuitions behind GF are as follows: the new variables w, introduced in (v, w)
by the quantifiers are “bound” to a very simple syntactic condition (the atom «). The
guard « constrains the part of the model that can be reached by the quantifier, thus
making decidable the satisfiability problem of the fragment. These intuitions are very
closely related to the techniques of algebraic relativization (see [Monk, 1993]). Notice
an important property of the guarded fragment: it restricts neither the pattern of alter-
nation of quantifiers as prenex normal form fragments do, nor the number of variables
used as is done in FOF.

In the same spirit, the loosely guarded fragment for first-order logic (LGF) is obtained
by replacing the last clause in the definition of GF by a less strict one:

— If 9, w are tuples of variables, a(v,w) = A o is a conjunction of atoms and ¢ is a
formula in LGF, then also the formulas Jw.(a (v, w) A ¢(v,w)) and Yw.(a(v, w) —
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©(v,w)) belong to LGF, provided that Free(yp) C Free(«), and for any two variables
z € w,7 € vUw there is at least one atom «; that contains both z and 2.

Grédel [2000], proved that the satisfiability problems for GF and LGF is complete for
2EXPTIME. Even further, the satisfiability problem for guarded fized point logic (uGF)
is also complete for 2EXPTIME [Gréadel and Walukiewicz, 1999], where uGF is obtained
by adding to the definition of GF the clause

— Let R be a k-ary relation variable and let v = vy,...,v, be a k-tuple of distinct
variables. Let p(R,v) be a guarded formula where R appears only positively and
not in guards and that contains no free variables other than ¥. Then the formulas

[ILFPRv.¢(v)] and [GFPRu.(v)] are in uGF.
1GF is actually a very powerful language, with expressivity beyond FO.

ExAMPLE 1.15. [Grédel, 1999] Let ¢ be the conjunction of the formulas

3.1'01}1.R(.’130,£U1),
\V/ZE()Jfl.(R(ZL‘O,Il) - HlEo.R(l'll'O)),
VZE()JJl.(R(Io,SL’l) — [LFPSZ‘()V.CL’l(R(Il,I()) — SI‘I)](I()))

The first two conjuncts force the model to have an infinite “forward” path through the
R relation, while the third says that each point in the path is in the least fixed point of
the operator S +— {e | all R-predecessors of e are in S}, which is the set of points that
have only finitely many R-predecessors. In particular, this forces the path to be acyclic
and hence the formula has only infinite models.

Many further results show that guarded fragments have nice behavior. Andréka et al.
[1998] prove a Los-Tarski theorem for preservation of guarded formulas under submod-
els, and also a model-theoretical characterization by means of a suitable definition of
back-and-forth systems. Hoogland et al. [1999] provide the correct notions of interpola-
tion and Beth definability for guarded fragments. Gradel and Walukiewicz’ complexity
results show that these fragments are, to a large extent, robustly decidable.

It is interesting to investigate how the intuitions built into the guarded fragments
came to be. They are deeply rooted in modal languages.

1.3 Why Modal Logic?

Modal Logic [Blackburn et al., 2000], originally conceived as the logic of necessity and
possibility, has developed into a powerful mathematical discipline that deals with (re-
stricted) description languages for talking about various kinds of relational structures.
For many years, modal logic was viewed as an extension of propositional logic by the
addition of the modal operators & and O, but nowadays the picture has changed in
many directions.

First, & and O have lost their privileged position, as a wide variety of new modali-
ties have been introduced in recent years, witness for instance the work on Since-Until
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logics [Gabbay et al., 1994], the universal modality [Goranko and Passy, 1992], the dif-
ference operator [de Rijke, 1992], propositional dynamic logic [Harel, 1984], counting
modalities [de Rijke and van der Hoek, 1995], etc. Moreover, modal logic is no longer
seen as just an extension of propositional logic, but also as a restriction of FO.

Again, it is better to do first things first and to start by introducing the basic modal
language and its formal semantics.

DEFINITION 1.16. [Basic modal logic] Let PROP = {p;,ps,...} be a countable set of
propositional variables. The well-formed formulas of the basic modal language over
PROP are

FORMS :=T | p; | ¢ [ o1 A2 | Co,

where p; € PROP and ¢, ¢1, o € FORMS. We take Oy as a shorthand for =~$—p.

A modal model M for L is a triple M = (M, R, V') such that M is a non-empty set,
R a binary relation on M, and V' : PROP — Pow(M). Let M = (M, R, V) be a model
and m € M, then the satisfiability relation IF is defined as

Mml-T always
M,mlFp; iff m e V(p;), p; € PROP
M,m k= iff M,mlfp
M,mlE @1 Ay iff M mlF ¢ and M, m IF ¢
M,m - Gy iff for some m’ € M such that R(m,m’) holds, M, m’ IF ¢.

From the definition it is clear that the language can be seen as an extension of propo-
sitional logic. But we can now make precise our remark that it is also a fragment of
first-order logic. Notice that a modal model (M, R, V') can be seen as a first-order model
by considering V' as the part of the interpretation function defining the meaning of unary
predicate symbols. Also, the conditions defining IF are purely first-order. Putting these
two intuitions together we obtain the following embedding.

DEFINITION 1.17. [Standard translation] Consider the signature S = ({R} U{P; | p; €
PROP}, {},{}). And define the translation ST from modal formulas to first-order for-

mulas over S as follows:

ST(p]) = Pj(.fv()), Dpj € PROP
ST(=p) = ~ST(p)
ST(eAY) = ST(p) NST ()
ST(Op) = Fxj.(R(xo,z5) ANST(p)xo/x4]),

where j is the smallest index such that z; does not appear in ST'(¢).

THEOREM 1.18. [Satisfiability preservation] Let ¢ be a formula in the modal language,
then for any model M in the appropriate signature, M,m Ik ¢ iff M = ST (p)[m].

Performing the translation with slightly more care and reusing variables, we can actually
embed a basic modal formula ¢ into FO?.

DEFINITION 1.19. [Standard translation into FO?] In [Vardi, 1997] the following trans-
lation is introduced
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ST(pJ) = Pj(l‘o), pj € PROP
ST(my) = —5T(p)
ST(pnw) = ST(g)AST(H)
ST(Op) = FJzi.(R(xo,x1) AVxo.(zo = 21 — ST (9))),

but this uses a more complicated pattern of quantification and also identity. We can do
even better by using a pair of mutually recursive functions.

STz, (pj) = Pj(wo), p; € PROP 5Tz, (pj) = Pj(x1), p; € PROP
STy (—p) = 28T () STy, (= @)ZﬁSTxl( )

STy NY) = STy () A STy (1) STy (p ANp) = STy (0) N STwy (¢)
STy (O) = Fu1.(R(wo, 1) A STy (0)) | ST, (Op) = Fwo.(R(21, 20) A STo(0))-

Clearly, Theorem 1.18 can also be proved for these new translations. And notice that
we have immediately obtained two different proofs of the decidability of the satisfiability
problem for the basic modal logic, as the range of ST is both inside FO? and GF. Actually,
robust decidability obtains, as even the p-calculus [Kozen, 1983] (the extension of the
basic modal language with fixed points) has an exponential-time decision procedure for
satisfiability (a double exponential upper bound can easily be obtained via translation
into uGF).

The embedding of the modal language into the guarded fragments comes as no
surprise, as these fragments were actually first thought of as generalizations of the basic
modal language. But “generalizations” are at odds with our aim of obtaining specialized,
hand-tailored languages. Modal languages instead, can be used themselves as ways to
identify interesting fragments of first-order logic, and even of extensions as is shown by
examples such as the p-calculus mentioned above, Propositional Dynamic Logic [Harel,
1984, or the Computational Tree Logic of Clarke and Emerson [1982].

Some attractive properties are often shared by modal languages: a propositional fla-
vor, a simple and uniform semantics, elegant completeness results, strong decidability,
interpolation and Beth definability, effective reasoning systems, model-theoretical char-
acterizations, adequate tools to compare models. The list is just too long to be given in
full. In other words, using modal languages as a means to define well behaved fragments
of first-order logic and extensions seems a promising project.

1.4 Some Concrete Examples

EXAMPLE 1.20. Suppose we want to capture the information conveyed in the following
paragraph:

‘And there is one among them that might have been foaled in the morning of
the world. The horses of the Nine cannot vie with him, tireless, swift as the
flowing wind. Shadowfax they called him. By day his coat glistens like silver;
and by night it 1s like a shade, and he passes unseen.’

from “The Lord of the Rings,” J. R. R. Tolkien

We can think of the domain of models as “the set of all things” in Tolkien’s world and
define certain relations among them, like for example the unary relation “tireless-things”
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which consist of the set of things that never tire, or the binary relation “has-coat-like”
which relates a thing a with a thing b if a happens to have a coat that looks like b.
“Shadowfax” is, of course, one of the elements in the domain, and we can define a
special unary relation symbol shadowfax, whose denotation is the singleton subset of
the domain containing it. Consider the following formulas,

(foaled) things-existing-in-the-morning-of-the-world A

tireless-things A swift-as-the-wind-things A
shadowfax — ) . . . . .
[has-coat-like] things-glistening-like-silver-by-day A
[has-coat-like] things-like-shades-by-night A [pass-like] unseen-things
horses-of-the-Nine — —(vie) shadowfax.

They seem to capture a good deal of the information contained in the text. And we can
use some of the extensions to the basic modal language we already mentioned, to define
very expressive concepts. For example, if the “purest-breed” are those horses sired by
Shadowfax or his descendants, using fixed points we define

purest-breed < LFPX.(shadowfax V [sired-by| X).

ExAMPLE 1.21. From a different angle, suppose we want to describe a set of structures,
like for example, full binary trees. We can define in the basic modal language, for any
n € N a formula ¢,, such that

— the size of ¢, is quadratic in n,

— (o, is satisfiable,

— it M,wIF ¢,, then M contains as a substructure an isomorphic copy of the binary

tree of depth n with root w.

We fix a set {po, . .., pa_1} of propositional symbols, and start by defining the shorthands
branch(p;) = Op; A O—p; and store(p;) == (p; — Op;) A (—p; — O-p;). Then

on = branch(po) A\ O'(branch(p;) A\ store(p;)),

1<i<n 0<j<i

in which 0% abbreviates an i-long sequence of boxes. The formula works as follows.
Suppose M, m |- ,. Then, because O'branch(p;) is satisfied, every node m’ reachable
in ¢ R-steps from m has two different successors, one forcing p; and one forcing —p;.
But in each R-step we used the store formula to ensure that the value of p; for j < i
is “carried over” into the next state. It is easy to check that the interplay of branch
and store forces a binary tree of depth n. As an aside, notice that this implies that the
size of the smallest model satisfying ,, is exponential in |¢,|. That the basic modal
language is expressive enough to force big models is a well known fact, see [Marx and
Venema, 2000] for example, for an up-to-date survey on the topic.

Modal languages are very well suited to describe graphs as we did above and this,
together with their effective decision methods, produces a powerful combination.

In [Areces et al., 1999b] for example, we use modal languages to encode the transition
diagrams of simple telephony protocols, together with specific telephony features —
special telephony services like Call Waiting or Call Forwarding. We then formally verify
that the behavior of a feature does not interfere with the behavior of others in an
unexpected way, by means of automatic tools.
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ExXAMPLE 1.22. Believe it or not, modal logics can also help you to properly set a table
for a formal dinner. Aiello and van Benthem [1999] discuss modal languages to describe
topological structures. In this work, topological spaces are used instead of relational
models and the basic modalities ¢ and O are interpreted as the interior and the closure
of a region, respectively. When further expressive power is added, the language can
express betweenness and hence distinguish between the well set table on the left and the
messy one on the right in Figure 1.1.

AL LA — e

Figure 1.1: Properly setting a table

In [Aiello et al., 1999] we use similar ideas to propose an image description language
and an image retrieval engine. Topological operators are used to describe the relations
between regions in an image. In addition, further information can be naturally added,
similarly as how we did in Example 1.20. A query to the image database can then be
recast as a formula, and the retrieval process transformed into inference: given a query
¢ retrieve all pictures P such that their description dp implies the query, = dp — .

1.5 This Thesis

The topics discussed in this chapter should give the reader a taste of what is to come.
As we mentioned before, we will investigate modal systems (broadly conceived) as a
way to define well behaved fragments. In particular, we will investigate the family of
systems known as Description Logics which are probably one of the best examples of
“application-driven” formal languages.

Description logics form a collection of languages that come equipped with effective
inference methods. These languages were born in the Knowledge Representation com-
munity, and this shows in the mixture of theoretical and practical results which is almost
a hallmark of the literature in the field. These languages are closely related to the basic
modal language, but they usually add further expressivity depending on the specific
problem at hand. Systems containing operators like counting, transitive closure, fixed
points or nominals, to mention some, have been proposed and widely used. In each case,
effective decision methods have been devised and their complexity carefully analyzed.
On the other hand, and probably as a result of the fact that many of these languages
were introduced to tackle a particular problem, an unifying logical background theory
to permit for example, the comparison of their respective expressive power, is largely
missing. In this thesis, we will put forward the claim that hybrid logics, extensions of
the basic modal language with the ability to explicitly refer to elements in the domain,
provide such a unifying framework.



18 Chapter 1. Cutting Out Fragments

The themes we discussed in this introduction are at the root of the work we will do
throughout the thesis. If you survived up to here, you are ready to go on. Theorem 1.1
focused on undecidability and, more generally on complexity of reasoning problems.
For first-order logic we have only discussed satisfiability and validity, but when moving
to modal languages we will see different examples of reasoning tasks, in addition to
these two. We will also touch on different reasoning methods like tableau and resolution
calculi, and on the advantages and disadvantages of each of them, both from a theoretical
point of view and in implementations. In Theorem 1.2 we discussed matters related to
expressive power. This is a core issue, as little is known about ways of comparing
the expressive power of description languages. The tools here are model comparison
techniques such as the Ehrenfeucht games, and the central notion of bisimulation (the
modal counterpart of partial isomorphisms). Finally, with Theorem 1.13 we touched
on particular meta-logical properties like interpolation and Beth definability, which are
usually a sign of a “healthy” reasoning system.

Part II of the thesis, starts by introducing the two different families of languages
we will study, and concludes by building a bridge between them. Chapter 2 will cover
Description Logics, while Chapter 3 will introduce Hybrid Logics. Chapter 4, which is
based on early results in [Areces and de Rijke, 1998], and on the more up to date [Areces
and de Rijke, 2000], establishes the logical correlation between the two different frame-
works. In this chapter we show the strength of the connection between description and
hybrid languages, and exemplify in detail how results in one of the fields yield interesting
facts in the other.

The three chapters in Part III form the core of the thesis, each of them channeling
results into the logical connections we discuss in Chapter 4. In [Areces et al., 1999¢],
we present a resolution system for modal and description languages. These results are
discussed in Chapter 5, and the resolution calculus is extended to deal with hybrid
binders. In Chapter 6 we present the characterization results obtained in [Areces et al.,
2000b], together with interpolation and definability results for hybrid systems. Chapter 7
is devoted to (un)decidability and complexity issues. The articles [Areces et al., 2000a]
and [Areces et al., 1999a] are concerned with sharp undecidability results (what is the
borderline between decidability and undecidability for very expressive hybrid systems?),
and with the effect that “hybridization” (the addition of the particular ability to refer to
states) produces in modal languages from the complexity point of view. These results
are related to the already known results for certain description languages. The key
results discussed in Part III of the thesis were obtained in collaboration with Patrick
Blackburn, Maarten Marx, Hans de Nivelle and Maarten de Rijke. Not only did I learn
a great deal from them, but also I enjoyed myself immensely during this joint work, and
I can hardly thank them enough for all the help I've received from them.

Finally, Part IV concludes with Chapter 8 where we draw our conclusions and point
to directions of further research.



Part 11

Two Kingdoms

FEvery year of her life, she had invented something. The first invention
she could remember was the separated-vision experience, conducted in bed
with one eye above the blanket and one below. She had been four then.
Although she recalled that there had been inventions even before that age,
the separated-vision experience had been so seminal that it obliterated

its feebler forerunners. Most of the later inventions owed something

to the separated-vision experience, which had revealed to her

— and still continue to reveal — that if you took up certain positions
you could receive dual and conflicting impressions of the universe.

from “Year by Year the Evil Gains,” Brian Aldiss

In this part of the thesis we will introduce the basic details of the two families of
languages we will study: description and hybrid logics.

Description logics are a collection of specialized languages for the representation and
structuring of knowledge, together with efficient methods to perform different “reasoning
tasks.” Nowadays, the fact that these languages can be regarded as variations of first-
order logic, either restrictions or restrictions plus some added operators, is broadly ac-
cepted. These variations are mainly motivated by the undecidability of the satisfiability
problem for first-order logic, but they are also rooted in a desire to preserve the structure
of the knowledge being represented, and to capture a finer grained notion of “reasoning.”
The main tools used for providing decision methods and studying complexity-theoretical
aspects in the area of description logic are based on labeled tableaux.

The history of description logics (or concept or terminological languages as they were
initially called) is relatively short, starting around the KL-ONE system of Brachman and
Schmolze [1985]. But in virtue of their applicability to problems as varied as deductive
databases, image retrieval, system modeling and information classification, they flour-
ished rapidly. Applications and effective inference algorithms are the bread and butter
of the field.
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Hybrid logics on the other hand, are much older, starting with the work of Arthur
Prior on the logic of time and tense in the mid 1960s. The earliest published reference
is probably [Prior, 1967, Chapter 5 and Appendix B3]. The original intuitions of Prior
were built around the phrase terms as formulas. Prior’s intentions of providing an
implicit account of tense by means of modal languages, collided with the generalized use
of explicit references like now, yesterday, on May 21st, etc. in tensed expressions. By
treating terms as formulas, he discovered a way of dealing with references in a genuinely
modal way. Prior usually worked with what today are known as strong hybrid languages,
in which references could even be bound by quantifiers. The ideas of Prior were later
investigated by his student Robert Bull. [Bull, 1970] contains important technical ideas,
and also introduces special “course of history” nominals to name paths through models,
bringing into the picture the general theme of sorting.

Hybrid languages developed in a purely logic environment, and bear all the marks
of it. The main results concern expressive power, axiomatizations and completeness.
The field went into a revival with the work of Gargov, Passy and Tinchev [Passy and
Tinchev, 1985a, 1985b; Gargov et al., 1987; Gargov and Passy, 1988]|, who indepen-
dently rediscovered the idea of hybrid languages and nominals. The work of the Sofia
School, as this group came to be known, focused on hybrid languages built over propo-
sitional dynamic logic, and includes some of the first results on (un)decidability. They
also examined quantifier-free systems, thus initiating the trend towards weaker hybrid
languages.

In this part of the thesis we will first introduce the two families of languages indepen-
dently in Chapters 3 and 4, defining the basic notions we will need in the chapters to
come, and highlighting the strengths that each of them has.

As we will make clear in our presentation, the two families are closely related. It is
well-known that the description language ALC is a notational variant of multi-modal
logic, but this relation only holds for very weak inference tasks. Hybrid logic’s ability to
explicitly refer to elements in the domain together with operators to change the point
of reference, will make it possible to account also for reasoning involving terminological
definitions and assertional information.

The bridge we will build in Chapter 4, will lead to cross-fertilization between the
two fields. Given that the two areas have developed different techniques and evolved
in divergent directions, “trading” between them can be specially fruitful. Description
logics can export reasoning methods, complexity results and application opportunities;
while hybrid logics have their model-theoretical tools, axiomatizations and expressive
power analysis to offer.



Chapter 2

Introducing Description Logics

Esas ambigiiedades, redundancias y deficiencias recuerdan las que el doctor Franz Kuhn
atribuye a cierta enciclopedia china que se titula Emporio celestial de conocimientos
benévolos. En sus remotas pdginas estd escrito que los animales se dividen en (a)
pertenecientes al Emperador, (b) embalsamados, (c) amaestrados, (d) lechones, (e) sirenas,
(f) fabulosos, (g) perros sueltos, (h) incluidos en esta clasificacion, (i) que se agitan como
locos, (j) innumerables, (k) dibujados con un pincel finisimo de pelo de camello, (1) etcétera,
(m) que acaban de romper el jarrén, (n) que de lejos parecen moscas.

from “El Idioma Analitico de John Wilkins,” Jorge Luis Borges

2.1 Structure: the Key to Knowledge

Knowledge about anything abounds. For a test, think of any single word and run a query
on a search engine on the Internet. It doesn’t matter which word, you will probably get
(at least) hundreds of hits. The problem of course, is that we are usually not interested
in any kind of knowledge, and probably only few of the hundreds of hits are actually
relevant to us. In other words, information should be structured to be useful, so that
we can decide which part of it is important to our problem. But classifying information
is a difficult and expensive task.

Structured representation of knowledge aims to address both conceptual and compu-
tational complexity. Conceptual economy amounts to building hierarchical structures,
where inheritance of attributes through the hierarchy is used to avoid redundancies in
the representation. Computational economy refers to the efficiency of reasoning upon
such structures. The idea of developing systems based on a structured representation
of knowledge has been pursued for a long time in Artificial Intelligence. One of the
earliest knowledge representation tools has been the Semantic Networks, and the work
of Quillian [1967] on the Semantic Memory Model. Semantic networks represent knowl-
edge in the form of a labeled directed graph. Specifically, each node is associated with
a concept, and the arcs represent the various relations between concepts.

In a similar line, the work of Minsky [1974] on the Frame Paradigm, aims to achieve
structured knowledge. A frame represents a certain concept (usually a class of individ-
uals), and is characterized by a number of attributes (called slots) that members of its
class can have. Each slot contains information about the corresponding attribute, such
as default values, restrictions on the elements that can fill the attribute (slot fillers),
attached procedures or methods for computing values when needed, and procedures for
propagating side effects when the slot is filled. The values of the attributes are either
elements of a concrete domain (e.g., integers, strings) or identifiers of other frames. A
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frame can also represent a single individual, in this case it is related with the attribute
instance-of to the frame representing the class of which the individual is an instance.

The main drawback of both proposals was their unclear semantics. As pointed out
in [Woods, 1975] with respect to semantic networks, the arcs between the nodes and the
nodes themselves can represent different kinds of information, and making this difference
explicit can be crucial. Consider the following example.

15-a 15-a

| SHADOWFAX |

Figure 2.1: Shadowfax the stallion

The network is meant to encode the following information: Shadowfax is a stallion and
also a horse, stallions are male, horses gallop, and stallions are horses.

Woods defines two main types of arcs, that he identifies as encoding either inten-
sional or extensional information. An arc that contributes to the definition of a concept
carries intensional knowledge. The arc labeled locomotion between HORSE and GALLOP
is of this kind. On the other hand, the arc from SHADOWFAX to STALLION, labeled is-a,
asserts the fact that Shadowfax is a stallion, which Woods classifies as extensional knowl-
edge. But things are more subtle, because also the nodes carry different information:
STALLION is a class, while SHADOWFAX is a distinguished individual. And furthermore,
the “intensional” relation between STALLION and HORSE is of a different kind than the
relation represented by locomotion. The distinction between extensional and intentional
links, neither exhausts nor characterizes all the possibilities.

The need for a formal semantics was clear, and [Brachman, 1977, 1979] are some of
the early references which aimed to address this problem. The work of Brachman led to
the development of KL-ONE [Brachman and Schmolze, 1985], one of the first knowledge
maintainance systems for which some kind of formal semantics was specified. The KL-
ONE system fathered a number of successors such as KRYPTON [Brachman et al., 1985],
LOOM [MacGregor and Bates, 1987], cLAssIC [Borgida et al., 1989], BACK [Quantz
and Kindermann, 1990] and KRrISS [Baader and Hollunder, 1991]. But, perhaps more
importantly, this work also gave rise to theoretical research on what were first named
concept or terminological languages, and which are today called description logics.

Description logics (DLs) are a family of formal languages with a clearly specified
semantics, usually in terms of first-order models, together with specialized inference
mechanisms to account for knowledge classification. It was clearly one of the original
and main aims of the research in this field to identify the exact fragments of FO and
extensions able to capture the features needed for representing a particular problem,
and which can still allow for the design of efficient reasoning algorithms.

DLs have found a variety of applications in diverse areas. To mention some, [Borgida,
1995] is a survey of the application of DLs to the problems of information management,
proposing ways to achieve enhanced access to data and knowledge by using descriptions
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in languages for schema design and integration, queries, updates, rules, and constraints.

Another example is [Devanbu and Jones, 1997]. The increasing size and complex-
ity of software systems demand every day a greater emphasis on capturing and main-
taining knowledge at different levels within the software development process. The
knowledge-based software engineering (KBSE) paradigm is concerned with systems that
use formally represented knowledge, with associated inference procedures, to support the
various sub-activities of software development. Devanbu and Jones investigate the ap-
plication of DLs to KBSE, describing their use in three well-developed KBSE systems:
LaSSIE and KITSS in the telephony domain and COMET in the radar tracking domain.

PROSE (PRoduct OfferingS Expertise) is a knowledge based engineering and or-
dering platform that supports sales and order processing at AT&T Network Systems.
The cornerstone of the PROSE architecture is a product knowledge base written in C-
cLAssIC. PROSE is used to provide configurations for sales proposals and to generate
factory orders for manufacturing. A fairly detailed description of the system can be
found in [Wright et al., 1993].

DLs have also been used extensively for general information retrieval as is described
in [Meghini et al., 1993] where the system MIRTL (Multimedia Information Retrieval
Terminological Logic) is introduced. In [Aiello et al., 1999] we investigated special mixed
description languages which coordinate satisfiability and model checking to provide ex-
pressive image retrieval which can account for topological relations between objects in
pictures. As a final example, in [Areces et al., 1999b] we use description languages
to model BCS, the Basic Call System used in telephony domains and formally investi-
gate the issue of feature interaction, analyzing the problems arising when merging new
services like Call Waiting, Call Forwarding, etc. DLs have even found their way into
general, school level Artificial Intelligence, and they are already discussed in text books
like [Russell and Norvig, 1995].

2.2 Basic Issues in Description Logic

Probably rooted in the original distinction of Woods, most description languages split
the available knowledge about a given situation into

— terminological information: definitions of the basic and derived notions and of the
ways they are inter-related. This information is “generic” or “global,” been true
in every model of the situation and of every individual in the situation. And

— assertional information: which records “specific” or “local” information, being
true of certain particular individuals in the situation.

All known information is then modeled as a pair (T, A), where T is a set of formulas
concerning terminological information (the T-Box) and A is a set of formulas concerning
assertional information (the A-Box).

Another way to look at this separation of information is from a database point
of view: the T-Box is a general schema concerning the classes of individuals to be
represented, their general properties and mutual relationships, while the A-Box is a
partial instantiation of this schema, containing assertions relating either individuals to
classes, or individuals to each other.
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Constructor Syntax Semantics
concept name C ct
top T AT
negation (C) -C AT\ C*
conjunction CinCy ctnct
disjunction (U) Cr UCy ctuct
universal quant. VR.C {dy | Vdo € AT.(RT(dy,ds) — dy € CT)}
existential quant. (5) dR.C {dl | dds EAI.(RI(dl, dg) ANdy € OI)}
number restr. (N) (>n R) {dy | |{d2 | R¥(d1,d2)}| > n}
(<nRB) | {di | [{ds | R¥(dy,dy)}] < n}
one-of (0) {ai,...,an} | {d|d=a? for some a;}
role filler (B) IR{a} {d | R*(d,a%)}
role name R RT
role conjunction (R) Ri MR,y RINR:
inverse roles (7) R1 {(d1,d2) | R*(da,d1)}

Table 2.1: Common operators of description logics

2.2.1 Concepts and Roles

Let us make things more precise now.

DEFINITION 2.1. [Description logic semantics| Let CON = {C}, Cs, ...} be a countable
set of atomic concepts, ROL = { Ry, Ry, ...} be a countable set of atomic roles and IND =
{ai1,as,...} be a countable set of individuals. For CON,ROL,IND pairwise disjoint,
S = (CON,ROL,IND) is a signature. Once a signature S is fixed, an interpretation T
for S is a tuple Z = (AZ,.T), where

— A7 is a non empty set.
— Tis a function assigning an element a? € AT to each constant a;; a subset CZ C A?
to each atomic concept Cj; and a relation RZ C AZ x AT to each atomic role R;.

In other words, a description logic interpretation is no more than a model for a particular
kind of first-order signature (see Definition 1.4), where only unary and binary predicate
symbols are allowed and the set of function symbols is empty.

The atomic symbols in a description logic signature can be combined by means of
concept and roles constructors, to form complex concept and role expressions. Each
description logic is characterized by the set of concept and roles constructors they allow.
Table 2.1 defines the roles and concepts constructors for the description logics we will
discuss, together with their semantics.

Historically, a number of description logics have received a special name. The lan-
guage FL~ [Brachman and Levesque, 1984] is defined as the description logic allowing
universal quantification, conjunction and unqualified existential quantifications of the
form dR.T. FL~ was proposed as a formalization of the core notions of Minsky’s
frames. Concept conjunction is implicit in the structure of a frame, which requires a
set of conditions to be satisfied. Role quantifications allow one to characterize slots:
the unqualified existentials state the existence of a value for a slot, while the universal
quantifier requires that the values of a slot satisfies a certain condition.
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The logic AL [Schmidt-Schauss and Smolka, 1991] extends FL~ with negation of
atomic concepts. It is customary to define systems by postfixing the names of these
original systems with the names of the added operators from Table 2.1. For example,
the logic ALC is AL extended with full negation.

We will not discuss in detail all possible languages which can be obtained by com-
bining constructors from Table 2.1. In particular, we will be interested in languages
having full Boolean expressivity and usually consider ALC and its extensions. For a
given language £, let CON(L) be the set of complex concept expressions and ROL(L) be
the set of complex role expressions which can be formed by using the constructors of L.
It is interesting to notice that the constructs in Table 2.1 are not necessarily indepen-
dent of each other. Given a language £ and a constructor x, we say that £ simulates
* if for every complex concept of Lx there exists an equivalent concept in £. Formally,
for any C; € CON(Lx), there exists Cy € CON(L) such that for all interpretations Z,
CI = CZ. Given this definition, proving for example that ALEU simulates C or that
ALEQO simulates B is straightforward, by means of simple reductions. We will usually
assume that all constructors which can be simulated in £ are already present in the
language, e.g., we will say that U is one of the constructors of ALC.

2.2.2 Knowledge Bases and Inference

In description logics we want to perform inferences given certain background knowledge.

DEFINITION 2.2. [Knowledge bases] Fix a description language £, a knowledge base X
in £ is a pair ¥ = (T, A) such that

— T is the T(erminological)-Box, a finite, possibly empty, set of expressions of the
form C; C Cy where C1,Cy are in CON(L). €} = (5 is notation for C; C Cy and
Cs € 4. Formulas in T" are called terminological axioms.

— A s the A(ssertional)-Box, a finite, possibly empty, set of expressions of the forms
a:C or (a,b): R where C' is in CON(L), R is in ROL(£) and a, b are individuals.
Formulas in A are called assertions.

The definitions of terminological axioms and assertions above are among the most gen-
eral in the description logic literature (and we will generalize them even further in
Chapter 4). Terminological axioms were originally thought of as definitions, and a num-
ber of more restrictive conditions were imposed. The two most important restrictions
were the following.

. Simple terminological axioms: in any terminological axiom C; C C,, (] is an
atomic concept in CON. And any atomic concept in CON appears at most once in
the left hand side of a terminological axiom in the T-Box.

1. Acyclic definitions: the graph obtained by assigning a node n,4 to each atomic
concept A in the T-Box T" and drawing an arrow between two nodes n4 and ng
if there is a terminological axiom C} C (5 in T such that A appears in C; and B
appears in (s, does not contain cycles.

These restrictions were rooted in the idea of considering terminological axioms as (par-
tial) definitions of concepts. An axiom of the form A T C was meant to represent
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the fact that C' encoded necessary conditions for A to be the case, A = C indi-
cated that C' encoded both necessary and sufficient conditions. From this point of
view, conditions ¢) and i) above are very natural. In particular, restriction i) was
aimed at avoiding circular definitions, where a concept is defined in terms of itself.
It was argued that this kind of definitions called for some sort of special semantics,
like for example fixed points or non-well-founded sets [Nebel, 1990a; Baader, 1990;
Dionne et al., 1992]. But general terminological axioms as introduced in Definition 2.2
act naturally as constraints on models of the knowledge base, without any need for a
special semantics; this way of interpreting terminologies is usually called “descriptive
semantics” in the DL literature.

More importantly from an application point of view, restrictions ¢) and i) have a
strong impact on the reducibility of certain reasoning tasks into others as we will discuss
in Section 2.3. Clearly, this kind of syntactic restrictions undercut the expressive power
of the language, but they simplify the definition of decision algorithms. As we discuss
in Chapter 4, the complexity results we prove in Chapter 7 show that in many cases we
can actually introduce a more general notion of knowledge base than the one given in
Definition 2.2 without modifying the worst case complexity of the reasoning tasks for
the language.

It is time to define the appropriate notion of inference for description logics.

DEFINITION 2.3. Let Z be an interpretation and ¢ a terminological axiom or an asser-
tion. Then Z models ¢ (notation, Z |= ) if

— gpolgCgandClngQI,or

— p=a:Cand af € C%, or

~ ¢ =(a,b): R and (a*,b*) € R~.
Let 3 = (T, A) be a knowledge base and Z an interpretation, then Z models ¥ (notation,
T EY)ifforall p € TUA,Z = ¢. We say in this case that Z is a model of the knowledge

base 3. Given a knowledge base ¥ and a terminological axiom or assertion ¢, ¥ = ¢ if
for all models Z of ¥ we have 7 = ¢.

The notion of semantic consequence we have just defined, ¥ |= ¢, is central in modern
logic. Notice that if a deduction theorem fails for the logic, it needs not be reducible
to “tautology hood,” i.e., to a given formula in the language being satisfied under any
interpretation Z. We will return to this in Section 4.2.1.

2.3 Reasoning Tasks

In description logics the term T-Box reasoning is used to refer to the ability to perform
inferences from a knowledge base ¥ = (T', A) where T is non-empty, and similarly, A-Boz
reasoning is inference for A non-empty.

EXAMPLE 2.4. Let ¥ be a knowledge base (T, A) where

T = {STALLION = HORSE VSex.MALE}
A = {shadowfax:STALLION}.
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Informally, the formula in 7" says that male horses are called stallions, while the formula
in A says that a particular horse, named Shadowfax, is a stallion. The formal semantics
we gave in Definition 2.3 lets us verify that ¥ has at least a model (i.e., it is consistent).
And from ¥ we can infer further information like, for example, that the concept HORSE is
consistent with respect to ¥ (there exists some interpretation satisfying 3 which assigns
a non-empty extension to HORSE:

> b~ HORSE = L.

Notice though, that we cannot express the stronger (true) fact that in any model of
(T, A), the extension of HORSE is non-empty.

5 |= ~(HORSE = L),

because of syntactic limitations in the standard definition of assertions. In Chapter 4
we will further discuss this issue, and clarify why ¥ = —(HORSE = 1) is not equivalent
to Y b~ HORSE = L.

We can actually map out a set of reasoning tasks or reasoning services which can be
provided by a knowledge representation system. The following are some of the standard
reasoning tasks usually considered in description logics.

DEFINITION 2.5. [Reasoning tasks| Let X be a knowledge base, C1,Cy € CON(L), R €
ROL(L) and a,b € IND, we define the following reasoning tasks

— Subsumption, ¥ = C; C Cs.
Check whether for all interpretations Z such that Z = X we have C{ C CZ.
— Instance Checking, ¥ = a:C.
Check whether for all interpretations Z such that Z = ¥ we have a? € CZ.
—  Relation Checking, o |= (a,b): R.
Check whether for all interpretations Z such that Z = ¥ we have (a?,b?) € RZ.
—  Concept Consistency, X = C = L.
Check whether for some interpretation Z such that Z = % we have C* # {}.
— Knowledge Base Consistency, ¥ |~ L.
Check whether there exists Z such that Z = 3.

Subsumption is one of the classical reasoning tasks performed in most knowledge repre-
sentation systems. It is directly related to the quest for information classification: it is
useful to organize concepts into “is-a” hierarchies, finding for each class the most specific
other classes that subsume it. This classification algorithms relies directly on the sub-
sumption check. The subsumption relation implicitly defines a taxonomy of concepts,
which can actually be used to solve some of the other reasoning tasks; for example, a
concept is unsatisfiable if it is subsumed by the empty concept L.

Instance checking is used to verify whether the knowledge base entails that an indi-
vidual is an instance of a concept, while relation checking determines if two individuals
in the knowledge base stand in a given relation. These two operations can be considered
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the central reasoning tasks for retrieving information about individuals from a knowl-
edge base. Finally, consistency is used for verifying whether the information contained
in a knowledge base is coherent.

As we already said, the basic reasoning tasks can be used to define more complex
ones. In particular

— Retrieval: given a concept, find all the individuals mentioned in the knowledge
base that are instances of the concept.

—  Realization: given an individual mentioned in the knowledge base, find the most
specific concepts, with respect to the subsumption relation, of which the individual
is an instance.

Let’s start by defining the following notation. For any set S of formulas let IND(S)
and CON(S) be, respectively, the set of individuals and atomic concepts appearing
in formulas in S. Then, the retrieval problem can be formulated as follows: given a
knowledge base ¥ and a concept C, find the set {a € IND(X) | ¥ |= a:C}; and it can
be performed simply by iterating instance checking for all the individuals in . The
realization problem can be solved by finding the set {C' € CON(X) | ¥ E a:C & V(' €
CON(X).(X EF a:C" = ¥ = C C (")}; this can be done in terms of instance checking
and subsumption.

Research on description logics has focused mainly on understanding the relations be-
tween the reasoning tasks mentioned above, and on establishing their computational
complexity. The study of the computational behavior of DLs has provided a good un-
derstanding of the properties of the language constructs and their interaction. This is not
only valuable from a theoretical point of view, but also provides insight to the designer
of deduction procedures, with indications of which language constructs are difficult to
handle and general methods to cope with the computational problems.

Complexity analyses of subsumption originated with the seminal paper of Brachman
and Levesque [1984], where they provide a polynomial algorithm to decide subsumption
for FL~. In the early days of description logics, the emphasis was on mapping out the
tractable reasoning tasks, with an upper bound of polynomial complexity. Clearly, only
very weak (non-Boolean) languages were able to survive the test, as already the satisfi-
ability problem of mere propositional logic is NP-complete. The U and & constructors
were identified as the main culprits of “intractability,” the first one introducing non-
determinism while the second can be used to force big models [Baader and Hollunder,
1991; Schmidt-Schauss and Smolka, 1991; Donini et al., 1992, 1997; Buchheit et al.,
1993]. Notice that with a bound of polynomial complexity, almost no exploration is
possible. In a sense, this is at odds with the intuitive notion of inference, which calls for
considering all possible outcomes given the present information.

Interestingly, the technological developments that took place in the intervening years
have moved the boundaries of “tractability” further away. During a discussion at the
1998 Description Logic Workshop, Franz Baader put forward a bold claim. Nowadays,
he argued, with the advances in both computing power and theorem proving techniques,
tractability means something very near to EXPTIME. Of course, this completely changes
the perspective. The claim is supported by the performance of new theorem provers, as
standard test beds like those proposed in [Heuerding and Schwendimann, 1996; Balsiger
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and Heuerding, 1998] have become too easy and fall in disuse. They are no longer
appropriate for measuring the performance of state of the art provers (see [Horrocks et
al., 2000a] for an overview).

In sufficiently expressive languages, like ALC and extensions, all reasoning tasks we
introduced can be reduced to instance checking (see [Donini et al., 1994]). Let £ be
a language containing the C and U constructors, then subsumption and consistency in
L can be reduced to instance checking. If £ contains the B constructor, then relation
checking can be reduced to instance checking.

PROPOSITION 2.6. [Reductions| Given a knowledge base 3, C1,Cy € CON(L), R €
ROL(L) and a,b € IND, the following equivalences hold
i. YECICCy iff ¥ = a:(—Cy UCy), for some a € IND\IND(X U {C},Cs}).
i. YEC =1 iff ¥ a:~C, for some a € IND\IND(Z U {C?}).
. X = L iff ¥ Ea:C, for some C € CON\CON(X).
iv. X = (a,b): R iff ¥ = a:3IR.Ab}.

A more delicate reduction is related to the transformation of T-Box and A-Box reasoning
into pure reasoning, i.e., inference from an empty knowledge base. This is similar to
what in classical logic is known as a deduction theorem. For example, for first-order
logic the following property holds.

THEOREM 2.7. [Deduction theorem for first-order logic| Let ¥ U {p, v} be a set of sen-
tences of first-order logic, then

SU{ptEY iff S @ —

If ¥ is a finite set or if the logic is compact, then ¥ |= ¢ can be reduced to {} = ¢’ by
iterating the application of the deduction theorem. But a property like the deduction
theorem does not necessarily hold. Here is where the restriction to simple and acyclic
definitions we discussed in Section 2.2.2 comes to help. Clearly, with such restricted
definitions we can do the following.

— Let X =(T'U{BLC C}, A) be a knowledge base and let B’ ¢ CON(X), then
(TU{BCC}A)Ea:Diff (TU{B=CMNB} A Ea:D.

This is known as completion of definitions.
— Let ¥ = (T'U{B = C}, A) be a knowledge base, then

(TU{B=C},A) Ea:Dift (T|B/C],A|B/C]) E a:D[B/C].
This is known as unfolding of definitions.

By repeatedly applying completion and unfolding of definitions we can transform > = ¢
into an equivalent task ¥ |= ¢’ where ¥’ has an empty T-Box, provided that definitions
in ¥ are simple and acyclic [Nebel, 1990b]. Notice, though, that the sizes of ¥’ and ¢’ can
be exponential with respect to the original > and ¢. In certain languages, unfolding can
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be done “on the fly” avoiding this complexity explosion (see [Baader et al., 1994; Lutz,
1999a, 1999b)). It is also straightforward to see that we have a “deduction theorem” for
A-Boxes

{},Au{b:B}) Ec:Cift {},A) E~(b:B)Uc:C. (2.1)

And similarly for assertions (a,b): R. But notice that standard description languages
do not allow the Boolean combination of assertions as we did in (2.1). As before, we
run into problems with some of the syntactical restrictions imposed by DLs. We will
analyze the matter in detail in Chapter 4.

2.4 Constraint Systems

Even though we have formally discussed the different reasoning tasks, up to now we
have said nothing about algorithms to decide any of them. Given that we will focus on
languages extending ALC, and the properties we listed in Proposition 2.6, we only need
an algorithm to decide instance checking.

Calculi based on constraint systems were introduced by Schmidt-Schauss and Smolka
in [1991] to decide satisfiability for empty knowledge bases in ALC and its sublanguages.
Later, the framework was extended to decide different reasoning tasks for a variety of
languages [Donini et al., 1991, 1992, 1997; Baader and Hollunder, 1991]. Constraint
systems are generalizations of tableau calculi [Ladner, 1977; Fitting, 1983; Rautenberg,
1983; Goré, 1999]. The constraint system we present below is from [Schaerf, 1994].

We assume without loss of generality that roles and concepts are given in negation
normal form (i.e., negation is applied only to atomic concepts or to expressions of the
form {ay,..., a,}) and, furthermore, that the ! operator is only applied to atomic
roles. Let VAR be a countably infinite set disjoint from IND, a constraint is a formula
of one of the following forms

s:C|(s,t):R|s#t]|Vrx:C,

where s, € INDU VAR, C € CON(L) and R € ROL(L).

Let Z be an interpretation, an Z-assignment is a function « that maps every variable
in VAR to an element of AZ and every individual a in IND to a*. We use pairs (Z, ) to
define satisfiability of constraints. Let s&% be s* if s € IND and a(s) if s € VAR,

(IaH:sC’ﬂsIa)GCI
T.0) | (5,0): R iff (s7) 1) € R,
(IozH: #tlffsza#tIa
(Z,a) EVz.x:Ciff CT = AL

A constraint ¢ is satisfiable if there is an interpretation Z and an Z-assignment « such
that (Z,a) = ¢. A constraint system S is a finite, non-empty set of constraints. A pair
(T, ) satisfies S if (Z, «) satisfies every constraint in S, in which case we say that S is
satisfiable. A knowledge base ¥ = (T, A) in a language with the C and U constructors
can be easily translated into a constraint system Sy, by taking

Ss=AU{Vz.x:-CUD|CLCDeT}.

The following proposition is immediate (notice the relation with Proposition 2.6).
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PROPOSITION 2.8. Given a knowledge base ¥, C, D € CON(L), R € ROL(L), a,b €
IND, and x € VAR, the following equivalences hold

i. YECLCDiff SsU{x:C M1 =D} is unsatisfiable.
it. X C =1 iff S U{x:C} is unsatisfiable.
iii. ¥ | L iff S is unsatisfiable.
iv. X = (a,b): R iff Ss U {a:—~3R.{b}} is unsatisfiable.
v. ¥ a:C iff Sg U{a:=C} is unsatisfiable.

In what follows, we will introduce a set of completion rules which, when applied to a
constraint system S, returns a constraint system S’ such that S is satisfiable if and only
if §" is. Furthermore, by repeatedly applying completion rules we will eventually either
reach a complete constraint system where no further rules can be applied (implying
that the system is satisfiable), or we will reach a clash (signaling that the system is
contradictory). We first need some general definitions.

DEFINITION 2.9. Let S be a constraint system, x € VAR, s,t € VARUIND, and R €
ROL(L). Then S[z/s] is the constraint system obtain by replacing each occurrence of
x by s. We say that t is a direct R-successor of sin S, if (s,t): R € S, and we define
direct R-predecessors similarly. Furthermore, t is a direct successor (direct predecessor)
of sin S if it is a direct R-successor (direct R-predecessor) for some R. The successor
(predecessor) relation is defined as the transitive closure of the direct successor (direct
predecessor) relation. We say that s and t are separated in S if s #t € S. Finally, we
say that t is a filler of R for s in S if either ¢ is an R-successor of s in S, or one of the
following conditions holds

— R is an atomic role and (¢,s): R™' € S,
— R is of the form S7! and (t,5):S € S, or
— Ris RiM Ry and t is a filler of Ry and R, for sin S.

Figure 2.2 lists the different completion rules. The full set of rules handles the lan-
guage ALCN OBRI with non-empty T- and A-boxes, and can, therefore, also handle
sublanguages and simpler forms of knowledge bases.

What remains to do is to define the notion of a clash in a constraint system.

DEFINITION 2.10. [Clash] We say that a constraint system S contains a clash if one of
the following conditions holds.
1. For some s, s: 1L € S.
i. For some s and some atomic concept A, {s:A,s:=A} C S.
ii. For some s, {s:(<n R)}U{(s,t;): R |1 <i<n+1}U{t; #t; |1 <i<j<

n+1} CS.
iv. For some s and n > m, {s:(>n R),s:(<m R)} C S.
v. For some s, s:{aj,...,a,} € S, and s # a; for all j.
vi. For some s, s:—{ay,...,a,} € S, and s = a; for some j.

In [Schaerf, 1994], the following completeness result is stated.
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- S —n{s:C1,5:C}US
if s:C1MCyisin S, and either s:C or s:C5 is not in §;
- S—,{s:D}US
if s:C1UC5is in S, neither s:C nor s:Cs is in S,
and D = C; or D = (5;
- S—3{(s,9):R,y:C}US
if s:dR.C isin S, there is no t such that ¢ is a direct R-successor
of sin S and t:C is in §, and y is a new variable;
- S—y{t:C}US
if s:VR.C'isin S, t is a filler of R for s, and ¢:C is not in S;
- S—>{(s,y1):R,....(s,yn): RYU{y; #y; | 1 <i<j<n}US
if s:(>n R) is in S, there do not exist n pairwise separated fillers
of R for s in S, and y, ..., y, are new variables;
- S —< St/
if s:(<n R) is in S, s has more than n fillers of R for s
and t, z are two fillers of R for s that are not separated;
- S —p Slz/ay
if x:{ay,...,a,}isin Sand 1 <i < m;
- S—5{(s,a):R}US
if s:3R.{a} isin S, and (s,a): R is not in S;
- S = {(s,t): Ry, (s,1): Ry} US
if (s,t):R1 M Ry is in S, and either (s,t): Ry or (s,t): Ry is not in S;
- S—_1{(t,s):R}US
if (s,t):R~'isin S, and (¢,s): R is not in S;
- S >y {s:C}US
if Ve.x:Cisin S, s appears in §, and s:C' is not in §.

Figure 2.2: Completion rules

THEOREM 2.11. Let § be a constraint system, then it contains a clash only if S is not
satisfiable, and a complete constraint system S is satisfiable if it contains no clash.

We can prove that instance checking (and hence all other reasoning tasks we have in-
troduced) for the full language ALCN OBRZ is decidable (actually solvable in NEXP-
TiME). We will reduce it to satisfiability in C? (recall our discussion in Section 1.2.2)
by providing a pair of mutually recursive translation functions ST, and ST, as we did
in Definition 1.19, and following ideas from [Borgida, 1996].

PROPOSITION 2.12.  The instance checking problem for ALCN OBRI is decidable, as
it can be reduced to satisfiability in C?.

Proor. We define ST, ST, being identical but swapping the positions of z and y.
We first translate complex roles as follows. Remember that we assumed that the inverse
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operator ~! was applied only to atomic roles. We consider each atomic role R in ROL

as a binary predicate symbol in the first-order language.

ST.(R) = R(z,y), for R an atomic role
ST.(R™') = R(y,z), for R an atomic role
We can now provide the translation of complex concepts. Many constructs can be

simulated in ALCNOBRZ and we do not need to translate them. We consider each
atomic concept C'in CON as a unary predicate symbol.

ST (C) = C(x), for C' an atomic concept
To(=C) = =8T,(C)
ST (C’l MCy) = ST.(C1)AST.(Cy)
T.(3R.C) = Fy.(ST.(R)AST,(C))
T.(>nR) = 3F2"y.ST.(R)
ST ({al,...,an}) = Vicicn(® = a).

Finally we translate terminological axioms and assertions ((a,b): R can be simulated as
a:3R.Ab}).
ST, (CCD) = VYy.(ST,(C)— ST,(D))
ST.(a:C) = ST.(C)[z/a].

It is easy to prove that for a knowledge base ¥ = (T, A) and an assertion a:C,

SEa:Ciff o\ (STw(p)) = STa(a:C).

peTUA

As the formula on the right hand side is in C* we are done. QED

The reduction above also makes explicit how DLs are fragments of first-order logic.
Another interesting fact that comes out from the reduction is that reasoning tasks
in description logics are recast as validity of sentences. Or in other words, the local
evaluation which is traditional in modal languages (satisfiability of a formula with a free
variable at a given point in the model) has not received attention in the DL community.
This is another point we will investigate in Chapter 4.

Going back to constraint systems, we should point out that the completion rules in
Figure 2.2 do not constitute a decision method, as an infinite sequence of applications
can arise (for example, the trivial interaction between the —< and —> rules where a
new variable is generated and immediately identified with an existing one).

But the rules of the calculus can be carefully specialized, even to the point of obtain-
ing not only decidability but also very sharp complexity results. For example, replacing
the —3 and —> rules by trace versions —p3 and —rp>:

- S—r3{(s,y):R,y:C}US
if s:dR.C'isin &, there is no t such that t is an R-successor of s
in S and ¢t:C' is in S, y is a new variable, and for all constraint
(t,z):Rin S, t is a predecessor of s or s = t;
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- S—=rs s, y):R, .. (s,yn): RYU{y; #y; [ 1 <i<j<n}US
if s:(>n R)isin S, there do not exist n pairwise separated fillers

of R for sin S, y1,...,y, are new variables, and for all

constraint (¢,z): R in S, t is a predecessor of s or s = t;

the decidability of concept satisfiability and subsumption for empty knowledge bases
in ALCNR can be proved [Donini et al., 1997]. In a similar way, the complexity of
the different reasoning tasks for sublanguages of ALCO has been carefully mapped out
(see [Schaerf, 1994]). In [Tobies, 2000b] the constraint system approach is used to prove
that pure concept satisfiability, i.e., with respect to empty knowledge bases, in ALCOR
is PSPACE-complete. The constructor Q of qualified number restrictions is an extension
of N and we will discuss these results further in Section 4.5.5. And in [Horrocks et al.,
1999, 2000b, 2000c; Tobies, 2000a] the decidability of both T-Box and A-Box reasoning
is proved for very expressive description logics together with a complexity analysis of
sublanguages, also by means of constraint systems.

But perhaps the most important characteristic of constraint systems, from a compu-
tational logic perspective, is that they readily provide implementations. Implementing
the completion rules of Figure 2.2 is simple, and many DL theorem provers, like for ex-
ample FACT [Horrocks, 1999], DLP [Patel-Schneider, 1998] or RACE [Haarslev and Méller,
1999], are based on this technique. These systems have been highly optimized and are
able to cope with extensive knowledge bases in very expressive description languages.
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Introducing Hybrid Logics

hybrid: n. an organism which is the offspring
of a union between different races,
species, genera or varieties.

from “The Wordsworth Concise English Dictionary”

3.1 On Naming

There is an asymmetry at the heart of modal logic. Consider the definition of the classical
<& modality (see Definition 1.16):

M, m - O iff for some m’ € M such that R(m,m’) holds, M, m' IF .

We see that formulas are evaluated at a given state in the model and that their truth
values depend on the value of formulas in some other related states. And still, nothing
in modal syntax gets to grips with the states themselves. States have no names, and no
rights, even though they carry out the main trust of the work in defining the meaning
of a modal language.

In their simplest form, hybrid languages are modal languages which solve this “refer-
ence problem” at the root, by introducing special symbols to explicitly name the states
in the model. The beauty lies in the fact that these new symbols, which we call nomi-
nals, enter the stage gracefully: no big change is needed, simply add a new sort of atomic
symbols NOM = {3, j, k,...} disjoint from the set PROP of propositional symbols and
let them combine freely in formulas. For example

SENAP)ANO(ENG) — C(pAq) (3.1)

is a well formed formula. Now for the important twist: because nominals are supposed
to explicitly stand for states in the model, they should be denoted by singleton sets. In
other words, if ¢ is a nominal, then 7 should be true at a unique point in any model M.
Once we have taken this step, the whole landscape changes. For example, (3.1) becomes
a validity: let M be a model, m € M and suppose M, m |F C(i Ap) AO(i A q), then

M, m' Ik i A p for some R-successor m’ of m, and

M,m" Ik i A q for some R-successor m” of m.

But because ¢ is a nominal, it is true at a unique point in M. Hence m’ = m” and we
have M, m |- &(p A q). Notice that instead, if we change i for a propositional symbol
r, the formula (r Ap) A O(r A q) — O(p A q) can be falsified.

35
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Once we have nominals, another interesting idea immediately suggests itself: why
not introduce an operator that allows us to jump to the point named by a nominal? This
is what the @;p (read “at i, ¢”) formula does: it moves the point of evaluation to the
state named by ¢ and checks whether ¢ is true there. @,y is Prior’s T'(i, ) construct (“gp
is true at time ¢”), which he used to define his “third grade tense logics” [Prior, 1967].
It is also the Holds(i, ¢) operator introduced in [Allen, 1984] for temporal representation
in AL. The same operator is used in the “Topological Logic” of Rescher and Urquhart
[1971].

The @ operator has many nice logical properties. For a start, it is a normal modal
operator as it satisfies distributivity over — (Q;(¢ — ¥) — (Q;po — @;2))) and the
necessitation rule (from F ¢ infer = @;p). It is also self dual: @;p « —@Q;—¢p is valid.
But most importantly, it works as a bridge between semantics and syntax. The intuition
here is the following connection

M, w Ik @ iff M IF @,

where 7 is a nominal naming w. In other words, @ allows the satisfiability relation itself
to be talked about in the object language. For this reason, @ is sometimes called the
satisfiability operator.

Once we have realized the potential provided by direct reference to specific points
in the model, the way lies open for further enrichments. The most obvious is to regard
nominals not as names but as variables over individual states, and to add quantifiers.
That is, we would be able to write formulas like

v = Vy.Ou.

The translation of ¢ into first-order logic is Vy.3z.(R(z, 2) Az = y) or, simply, Vy.R(z,y),
forcing m to be related to all other elements in the domain whenever M, m I . But the
V quantifier is too expressive for our purposes. As discussed in [Blackburn and Seligman,
1998], even the minimal hybrid language extended with the universal quantifier (i.e., no
nominals or @ but just state variables and V) is undecidable. Moreover, ¥V and @ give
us already the full expressive power of the one-free-variable fragment of first-order logic
(see the end of Section 3.3).

However, the V quantifier is historically important; it has been introduced on sev-
eral occasions, for quite different purposes. The earliest treatments are probably those
of [Prior, 1967, 1968], and [Bull, 1970]. About fifteen years later (and independently of
Prior and Bull) Passy and Tinchev hybridized propositional dynamic logic with the help
of V. They remark that the idea of V was suggested to them by Skordev (who in turn
was inspired by certain investigations in recursion theory). The idea of binding variables
to points underlies much current work on hybrid languages. The recent PhD thesis of
Tzakova [1999a] explores very expressive hybrid languages with binding operators in
detail, both axiomatically and by means of tableaux systems.

The V quantifier is very “classical.” If we think modally, and remember again that
evaluation of modal formulas takes place at a given point, a different kind of binder is
born. The | binder binds variables to points but, unlike V, it binds to the current point.
In essence, it enables us to create a name for the here-and-now, and lets us refer to it
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later in the formula. For example, if we now write

o= 1y.Cy

we have that M, m IF ¢ will force only the point m to be reflexive on R. The intuitive
reading is quite straightforward: the formula says “call the actual point z and ensure
that x is reachable.” The difference between V and | is subtle, but important. V is global,
as formulas containing V are not preserved under generated submodels [Blackburn and
Seligman, 1998]. On the other hand, | is intrinsically local and, as we will show in
Chapter 6 (Theorem 6.10) it characterizes the operation of taking generated submodels.

Like V, the | binder has been independently invented on a number of occasions. For
example, [Richards et al., 1989] introduces | as part of an investigation into temporal se-
mantics and temporal databases, [Sellink, 1994] uses it to aid reasoning about automata,
and [Cresswell, 1990] uses it as part of his treatment of indexicality. Nonetheless, none
of the systems just mentioned allows the free syntactic interplay of variables with the
underlying propositional logic; that is, they make use of |, but in languages that aren’t
fully hybrid. The earliest paper to introduce it into a fully hybrid language seems to
be [Goranko, 1994]. While [Blackburn and Tzakova, 1998a, 1999; Tzakova, 1999a| are
the basic references for |, an interesting discussion of this binder as part of a stronger
system can be found in [Goranko, 1996].

Note that the @ operator works in perfect coordination with |. Whereas | “stores”
the current point (by binding a variable to it), @ enables us to “retrieve” the information
stored by shifting the point of evaluation in the model.

For an introduction to hybrid logics “for the broad audience,” read [Blackburn,
2000b]. You will enjoy it.

3.2 Why Hybrid Logics?

The question is ambiguous, as is usually the case in natural language. But two of the
different possible interpretations deserve to be commented upon.

First, why are these logics called hybrid? One explanation comes from Prior’s work.
Following McTaggart’s [1908] analysis of time in terms of the A-series of past, present
and future and the B-series of earlier and later, Prior discusses two logical systems: the
U-calculus aims to capture the properties of the A-series and takes variables ranging over
instants as primitive, while the T-calculus examines tenses and takes variables ranging
over propositions. In Chapter V.6 of [Prior, 1967], he actually proposes a way to develop
the U-calculus inside the T-calculus, and for this he allows the instant-variables to be
used together with propositional symbols. He will call this step “the third grade of tense-
logical involvement” in [Prior, 1977, Chapter XI|, where instant-variables are treated as
representing (special) propositions. From this perspective, the terms hybrid applies to
the “confusion” of terms (the variables over instants) with formulas (the proposition
symbols). But a hybrid behavior also shows up in a different aspect of hybrid logics:
the techniques used when dealing with hybrid languages are a true mixture of modal
and first-order ideas, as we will see throughout the thesis.

But probably more interesting is to wonder why hybrid logics are useful. We will
answer this by example and discuss the connection between hybrid languages and many



38 Chapter 3. Introducing Hybrid Logics

other fields. In most cases, hybrid languages can be used to provide a flexible and
effective background theory.

Hybrid Logics and Proof Theory. One way to see why hybrid languages are proof-
theoretically natural, is to observe that nominals and @ can capture the main ideas of
labeled deduction. In [Gabbay, 1996] the notation I: ¢ is introduced, where the meta-
linguistic symbol : associates the meta-linguistic label [ with the object language formula
. Labeled deduction proceeds by manipulating such labels to guide proof search. The
first ideas concerning labeled deduction were probably introduced by Wadge [1975] in his
system of natural deduction for the relational calculus. Hybrid languages “internalize”
labeled deduction into the object language: nominals are essentially object-level labels,
and the formula @;p asserts in the object language what [ : ¢ asserts in the meta-
language [Blackburn, 2000a].

Tzakova [1999b] presents a general approach to hybrid proof theory using Fitting-
style prefix calculi. When the underlying modal logic is temporal logic, even more
flexibility is possible: [Demri, 1999] presents a sequent system for nominal tense logic
without @ that has much in common with the @-based internalized labeled deductive
systems. In a different line, Seligman’s work [1991, 1997] deals with strong (V-based)
systems, but many of the key ideas underlying hybrid deduction (in particular, the
deductive significance of @) were first explored in these papers.

Hybrid Logics and Model Theory. Hybrid logics have also a very well developed
model theory. Part of this comes by inheritance from modal logics, but as we remarked
above, it can amalgamate nicely with first-order ideas. One example is the “Henkin con-
struction of canonical models” used in completeness proofs for hybrid languages [Passy
and Tinchev, 1991; Blackburn and Tzakova, 1998a]. These techniques can be used to
establish general results, like automatic completeness for pure formulas [Blackburn and
Tzakova, 1999], or the general interpolation results we prove in Section 6.2.

Hybrid Logics and Temporal Logic. As indicated in the work of Prior and Bull,
hybrid languages allow us to make explicit references to specific times (days, dates, years,
etc.), and also to cope with temporal indexicals (such as yesterday, today, tomorrow and
now). In addition, they can define many temporally relevant frame properties (such as
irreflexivity, asymmetry and trichotomy) that ordinary modal languages cannot express.
Furthermore, when nominals and @ are added to interval-based logic, the result is a
Holds(¢, ¢)-driven interval logic in the style of those introduced into Al by James Allen
[1984], with @ playing the role of Holds (see [Areces et al., 2000a]). Because hybrid
logics make temporal reference possible, they remove the most serious obstacle to a
modal analysis of temporal representation and reasoning. Nominal tense logics have
been studied in detail in [Blackburn, 1990].

Hybrid Logics and PDL. Hybrid languages where rediscovered many years after
the work of Prior and Bull by a group of logicians at the Sofia University in Bulgaria.
Gargov, Passy and Tinchev were interested on neat axiomatizations of operations in
PDL, and they realized that while certain operations like for example the union of
programs were easy to capture ({(aUB)p < (a)pV(B)p), a simple axiomatization of others
like intersection or complement called for extra expressive power. In [1985a], Passy and
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Tinchev show that the addition of nominals is enough to provide succinct and very
natural characterization of these operations. The addition of other kind of “constants” to
the language permits the representation of notions like determinism and looping [Gargov
and Passy, 1988]. In addition, the work of the Sofia school showed how nominals could
also be used to simplify the construction of models during completeness proof [Passy and
Tinchev, 1985b]. See [Passy and Tinchev, 1991] for an excellent overview on combinatory
dynamic logics.

Hybrid Logics and Natural Language. Hybrid languages are also a powerful re-
source for studying indexicality in natural language, as an alternative to the more clas-
sical use of multi-dimensional modal logic. In the multi-dimensional modal approach,
formulas are evaluated at sequences of points, where one point of the sequence is thought
of as the point of evaluation, while the others are used as memory locations to store
references [Kamp, 1971; Vlach, 1973; Gabbay, 1976; Cresswell, 1990, 1996].

Hybrid languages move multi-dimensional logic’s sequence of evaluation points from
the meta-language to the object language, with hybrid variables acting as names for
indices. See [Blackburn, 1994] for a very clear exposition. Moreover, when equipped
with the @ operator, hybrid languages offer the ‘de-scoping’ behavior typical of such
multi-dimensional operators as here and there. There are also links between hybrid
logic and mathematical aspects of multi-dimensional modal logic, particularly the multi-
dimensional modal perspective on cylindric algebra (cf. [Marx and Venema, 1997]). As
we will see in Definition 3.3, | and @ can be considered as explicit substitution devices.

Hybrid Logics and Feature Logic. The mechanisms underlying PATR-II and other
unification-based approaches to grammar are based on the use of attribute value matrices
(AVMs) with “tags” to indicate re-entrance of feature structures [Rounds, 1997]. Given
the tight connection between AVMs and deterministic multi-modal logic half of the
work is done. In addition it is easy to account for re-entrance in the setting of hybrid
logic: “tags” are simply nominals. The hybrid approach to feature logic differs from
that taken in Kasper-Rounds logic in a number of respects. Kasper-Rounds logic is
essentially a fragment of deterministic propositional dynamic logic with intersection,
encoding re-entrance in a less direct way than nominals. See [Blackburn and Spaan,
1993; Blackburn, 1993; Reape, 1994].

Hybrid Logics and Information Systems. Nominals have turned up in yet another
setting, namely the Polish tradition of modal logics for information systems initiated
by Pawlak (see [Orlowska, 1997]). Themes in this tradition include the development
of modal logics of similarity (or relative similarity) and there are strong links with the
tradition of rough-set theory. Konikowska [1997] has introduced nominals to such logics.
Her work is motivated primarily by proof-theoretical considerations: the ability to name
states leads to smoother and more intuitive proof systems.

3.3 Hybrid Details

We are now about to start our formal work on hybrid logics. As we did with description
logics, it is best if we introduce some standard notation to name the different languages
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we will be dealing with.

The basic hybrid language is Hpy, basic modal logic extended with nominals. We
will also consider the extension which adds state variables in addition to nominals and
we will call this system Hs. Further extensions will be named by listing the added
operators. The most expressive system we will discuss is Hs((R™1),E, @, |), the hybrid
temporal system extended with the converse (past) and existential modalities, the @
operator and the | binder.

The full Hs({(R™'),E, @, |) language is too expressive for our purposes as already
Hs(E, |) can define the V quantifier: let A be the dual of E (i.e., Ap < —E=yp), then
Vr.p:= ly.Alz.A(y — ) for y a variable not occurring in . By the way, Hs(E, |) can
also define the past operator: (R )¢ := |y.E(O(¢ A y)) for y a variable not occurring
in . And @, is equivalent to E(i A ). In other words, Hs((R™1),E, @, |) is equivalent
to Hs(E,V) and hence too powerful for our enterprise. But we will explore many of its
sublanguages in detail.

DEFINITION 3.1. [Syntax| Let REL = { Ry, Rs, ...} be a countable set of relational sym-
bols, PROP = {p1, ps, ...} a countable set of propositional variables, NOM = {iy,is,...} a
countable set of nominals, and SVAR = {x1, x5, ...} a countable set of state variables. We
assume that these sets are pairwise disjoint. We call SSYM = NOMUSVAR the set of state
symbols, and ATOM = PROPUNOMUSVAR the set of atoms. The well-formed formulas
of the hybrid language Hs((R™'),E, @, |) in the signature (REL, PROP, NOM, SVAR) are

FORMS :=T |a|—¢ | pi1Aps | (R | (R )¢ | Ep| Qup | |z,

where a € ATOM, = € SVAR, s € SSYM, R € REL and ¢, ¢, 05 € FORMS. For T' C
FORMS, PROP(T'), NOM(T") and SVAR(T') denote, respectively, the set of propositional

variables, nominals, and state variables which occur in formulas in 7.

Note that all types of atomic symbol (i.e., proposition symbols, nominals and state
variables) are formulas. Further, note that the above syntax is simply that of ordinary
(multi-modal) propositional temporal logic extended with clauses for Ep, Q¢ and |z;.¢.
Finally, the difference between nominals and state variables is simply this: nominals
cannot be bound by |, whereas state variables can.

The notions of free and bound state variable are defined as in first-order logic, with |
as the only binding operator. Similarly, other syntactic notions (such as substitution, and
of a state symbol ¢ being substitutable for x in ) are defined just like the corresponding
notions in first-order logic. A sentence is a formula containing no free state variables.
Furthermore, a formula is pure if it contains no propositional variables, and nominal-free
if it contains no nominals. Now for the semantics, in the rest of the chapter we assume
fixed a signature (REL, PROP,NOM, SVAR).

DEFINITION 3.2. [Semantics] A (hybrid) model M is a triple M = (M, {R;}, V) such
that M is a non-empty set, {R;} is a set of binary relations on M, and V' : PROP U
NOM — Pow(M) is such that for all nominals ¢ € NOM, V(i) is a singleton subset of
M. We usually call the elements of M states or worlds, R; the accessibility relations,
and V' the valuation.
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An assignment g for M is a mapping g : SVAR — M. Given an assignment g, we
define g%, (an x-variant of g) by gr (x) = m and ¢¥,(y) = g(y) for  # y.

Let M = (M,{R;},V) be a model, m € M, and ¢ an assignment. For any atom a,
let [V, g](a) = {g(a)} if a is a state variable, and V'(a) otherwise. Then the satisfiability
relation is defined as follows

M,gmlET always
M,gmlFa iff mel[V,gl(a), a € ATOM
M,gmlF—p iff M g mlfe
Mg mlE g Ay it M, g, mlF @ and M, g, m - oy
M,g,mlF (R)yp iff Im'.(R(m,m’) & M,g,m'IF )
M,g,mI- (R Yy iff Im/(R(m',m) & M,g,m'IF @)
M, g,ml-Ep iff Im'.(M,g,m Ik p)
M,g,ml-Qup iff M,g,m' Ik, where [V, g](s) = {m'}, s € SSYM
M,gml- lz.p iff M, g%, ml- .

If M and ¢ are understood from the context, we simply write m I ¢ for M, g,m I ¢.
We write M, g IF ¢ iff for all m € M, M, g, m Ik ¢; and M I ¢ iff for all g, M, g IF .
These notions extend to sets of formulas in the standard way.

A formula ¢ is satisfiable if there is a model M, an assignment g on M, and a
world m € M such that M,g,m IF ¢. A formula ¢ is valid if for all models M,
M- . A formula ¢ is a local consequence of a set of formulas 7' if for all models M,
valuations g, and points m € M, M, g,m I+ T implies M, g,m I p. A formula ¢ is a
global consequence of a set of formulas T if for all models M, M IF T implies M IF .
We denote local consequence by T =" ¢ and global consequence by T =" ¢. As in
ordinary propositional modal logic, local consequence is strictly stronger than global
consequence. When 7 is the empty set {} =" ¢ iff {} E' ¢, and we will write = ¢.

The first six clauses in the definition of the satisfiability relation define essentially the
standard Kripke satisfiability relation for propositional temporal logic; the only differ-
ence is that whereas the standard definition relativizes semantic evaluation to worlds m,
we relativize to variable assignments g as well.

Note that the clause for atoms covers all types of atomic symbols (propositional
variables, nominals, and state variables) and that given any model M and assignment
g, any state symbol (whether it is a nominal or a state variable) will be forced at a
unique world. As promised, | binds state variables to the state where evaluation is
being performed (the current world), and Qg shifts evaluation to the state named by s.

Just as in first-order logic, if ¢ is a sentence it is irrelevant which assignment ¢ is
used to perform evaluation: M, g, m IF ¢ for some assignment g iff M, g, m IF ¢ for all
assignments g. Hence for sentences the relativization to assignments of the satisfiability
relation can be dropped, and we simply write M, m IF ¢ instead of M, g, m IF ¢. In
particular, this is always the case in languages with no state variables, like for example
Hn. In these cases we completely forget about assignments.

Notice that we have introduced, in one sweep, the syntax and semantics of all sub-
languages of Hs((R™1),E, @, |). Among the different sublanguages, Hs(@, |) will play
a special role, as one of the best behaved systems. It is also a prime example of the
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hybrid ideas at work, as it includes nominals, the satisfiability operator @ and the local
binder |. We will take this language as our central system, and study extensions and
restrictions as variations on a theme.

3.3.1 Translations

Perhaps the best way to get the feeling of hybrid languages is to see what they have to
offer in terms of new fragments of first-order logic, reachable by translation. We will
take special care in this case, because we will use the basic results presented in this
section in our characterizations of Chapter 6.

We focus on two kinds of signature for first-order logic with equality. First we have
(multi) modal signatures (familiar from correspondence theory [van Benthem, 1983])
which consist of binary predicates R;, countably many unary predicates, and no function
or constant symbols. Thus, a modal signature has the form ({R;} UUREL, {},{}, VAR).
A hybrid signature is an expansion of the modal signature with countably many constant
symbols ({R;} UUREL, {}, CONS, VAR).

Any hybrid model M = (M, {R;}, V) can be regarded as a first-order model over the
hybrid signature, for the accessibility relations R; can be used to interpret the binary
predicates R;, unary predicates can be interpreted by the subsets that V assigns to
propositional variables, and constants can be interpreted by the worlds that nominals
name. We let the context determine whether we are thinking of first-order or hybrid
models, and continue to use the notation M = (M, {R;}, V).

We can extend the standard translation ST to Hs((R™!),E, @, |), but we have to be
careful now with which variables we will be using, and how we treat equality.

DEFINITION 3.3. [Standard translation for Hs((R™'),E, @, |)] The mutually recursive
functions ST, and ST, from the hybrid language Hs({R™'),E, @, |) over (REL, PROP,
NOM, SVAR) into first-order logic over the signature (RELU{P; | p; € PROP}, {},NOM,
SVARU {z,y}) are defined as follows

ST,(i;) = (v =1i;),i; € NOM ST,(i;) = (y=ij),i; € NOM
ST, () (x = x;), x; € SVAR ST,(z;) = (y==j), z; € SVAR
ST.(pj) = Pj(x), p; € PROP STy(p;) = Pi(y), p; € PROP
ST.(—p) = —8T.(p) STy(=p) = —ST,(¢)
STo(p A1) = STy(p) A ST () ST (o NY) = S y(0) N ST, (¥)
ST.((R)yp) = Fy.(R(z,y) NSTy(p)) | ST ((R)p) = 3Fz.(R(y,z) AST.(p))
ST.((RY)e) = 3y.(R(y,z) NSTy(p)) | ST,((R™")p) = 3 (R( y) A STo(¢))
ST.(Ep) = HyST (90) ST, (Ep) = T()
ST.(Qsp) = (ST(p))[z/s] ST,(Qup) = ( y(0)[y/s]
ST.(lzj.0) = (ST.(p))[z;/] ST,(lzj.p) = (STy(¥))lz;/yl.

The role of nominals and state variables is clear from the translation. They offer us
first-order equality, something which is outside the reach of basic modal languages.
The “equality effect” of state symbols is strengthened by the effect of @. Notice that
ST, (Qgt) gives us s = t, i.e., we can not only claim equality with the point of evaluation,
but between any two named points in the model.
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The translation above also highlights the interaction between @ and |. The original
translation in [Blackburn and Tzakova, 1998a] handles | as follows

ST, (lxj.p) = Fxj(x=1x;NST.(p)).

Blackburn and Tzakova’s translation makes the quantificational effect of | clear, but our
translation draws attention to another perspective: in adding | and @ we have enriched
the modal language with an explicit substitution operator. Such operators are used in
the study of cylindric algebras, and were added to cylindric modal logic in [Venema,
1994]. The link between | and explicit substitution can be made even more clear if
we expand the first-order language with an explicit substitution operator (like sé- in the
theory of cylindric algebras) and adjust our definition of ST' to take advantage of it. We
do this as follows. Add the following clause to the grammar generating the first-order
language: if ¢ is a formula, z is a variable and s is a variable or a constant, then S¥¢p
is a formula. Interpret S7 as follows:

] for x = s
M E Sielgl & ¢ M= olgy | for s avariable, x # s

Clearly STy and ¢[x/s] are equivalent. This extension can be axiomatized by adding
the formulas S*y < ¢ and STy < Jzx.(r = s A p) for & # s as axiom schemas, to a
complete axiomatization of first-order logic with equality

And now we can give transparent translations of | and @Q:

STm(lxj-SO) = SszTx(QD)
ST.(Qsp) = S7ST.(e).

Theorems like |v.@,p < |v.¢ can be proved immediately in this way, for ST, (|v.@Q,p)
= SVSTST.(p), which is equivalent to SYST.(y), because SUSTp = SUSTp = SYp.
However we will stick to our original formulation of ST in what follows.

PROPOSITION 3.4. [ST preserves truth| Let ¢ be a hybrid formula, then for all hybrid
models M, m € M and assignments g, M, g, m - ¢ iff M = ST.(¢)[g%]

PrOOF. A straightforward extension of the induction familiar from basic modal logic.
The only new cases are ST,(lz;.¢) and ST,(Qp). But, by its semantic definition,
M, g,m It |z iff M, gni,m I ¢, by induction hypothesis, iff M E ST.(¢)[(gn %],
iff M = (ST.(¢))[xj/x]l¢%]. The argument for ST,(Q,p) is similar. QED

Another way to understand how the new operators work is by example.

ExAMPLE 3.5. Hs(@Q, |) already offers us considerable expressive power over models.
For example we can define the Until operator. Remember that m |- Until(¢, ¢) if there
is a successor m’ of m where ¢ is true, and all intermediate states between m and m/’
satisfy 1). We define

Until(p, ) = lz.(R)|y.Q.((R)(y A ) A[RI(R)y — ).
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That is, we name the current world z, use (R) to move to an accessible world which
we name y, and then use @ to jump back to z. We then use the modalities to insist
that ¢ holds at the world named y, and ¢ holds in all successors of x that precede this
y-labeled world.

Another example is counting: | and @ are expressive enough to encode expressions
of the form “there are at least n R-successors satisfying ¢.” For n = 2 we write:

lz(R)|lx1.(o N Qu(R) | xo.(@ A Q(R)(z1 A —23))).

But there is an obvious (and modally natural) limit to the expressive power of Hs(@Q, |):
any nominal-free sentence is preserved under the formation of point-generated (or rooted)
submodels. That is, if a sentence ¢ is satisfied at a world m in a model M, and we form
a submodel M,,, by discarding from M all the worlds that are not reachable by making
a finite (possibly empty) sequence of transitions from m, then M,, also satisfies ¢ at
m. (The key point to observe is that in any subformula of ¢ of the form @1, ¢ must
be a state variable bound by some previous occurrence of |. As | binds to the current
world, ¢ is bound to some world in the submodel generated by m, thus ¢ is unaffected
by the restriction to M,,.) That is, Hs(@, |) is genuinely local: only worlds reachable
from named points are relevant to semantic evaluation. In Chapter 6 we will return to
this observation, show that we have not merely preservation but invariance, and that it
characterizes the expressivity of Hs(@, |) (see Theorem 6.10). The result can easily be
generalized to Hs({(R™'),@, |) as we discuss in Section 6.1.5, and in this language we
can actually do without Q.

To end this section, we make explicit our previous informal remark that V is too ex-
pressive for our purposes. We will show that Hs(@,V) gives us already full first-order
expressivity. Consider the following translation from a first-order language with identity
(over a hybrid signature) into Hs (@, V):

HT(Ri(s,s")) = Qu(R;)s
HT(Pi(s)) = Qup;
HT(s=4¢) = Q¢

HT(=p) = —HT(p)
HT(pAY) = HT() A HT(0)
HT(3z.p) = 3Fx.HT(p).

We have to prove that the translation preserves satisfiability. We first establish the
following proposition:

PROPOSITION 3.6. Let ¢ be a hybrid formula obtained from formulas whose main op-
erator is Q by use of =, A and 3. Then for any model M, any assignment g, and
m,m' € M

M, g,ml- @ iff M, g,m' I .

PROOF. The base case is simple, let ¢ = @), and let s™ be the denotation of s in M.
Then, M, g,m I+ Q. iff M, g, sM |- iff M, g,m’ IF Q).

The Booleans are trivial, and for ¢ = dz.¢) reason as follows. M, g,m IF Jz.o)
ifft M,qg',m I+ 9 for ¢’ an z-variant of ¢g. By induction hypothesis, M, ¢',m |- 1 iff
M, g m' Ik, iff M, g,m'IF Jxap. QED



3.4. Axiomatizations 45

The following result is now straightforward.

PROPOSITION 3.7. Let ¢ be a first-order formula in the hybrid signature. Then for every
model M and any assignment g, M = ¢[g| iff M, g - HT ().

PRrOOF. The proof is by induction on the complexity of ¢. We only provide some of
the cases. Notice first that given Proposition 3.6, it doesn’t matter in which state of M
we evaluate HT' (). Suppose ¢ = R;(s,t), and let s™, t* be the denotations of s and ¢
in M. Then M = R;(s,t) iff (sM,tM) € R;. But M, g IF Q (R;)t iff M, g, sM IF (R;)t,
iff there is an R;-successor of s™ satisfying t. Hence, M, g IF Q. (R;)t iff tM is an R;-
successor of s™. For ¢ = Jz.¢, the result is also straightforward. M |= Jw.¢[g] iff
M = p[g] for ¢’ some z-variant of g. By induction hypothesis, iff M, ¢ I+ HT(y), iff
M, g3z HT (p). QED

3.4 Axiomatizations

Hs(@, |) is also very expressive with respect to frames. We first need to define this
notion and what do we mean by a formula defining a property of frames.

DEFINITION 3.8. A frame is a model without a valuation, i.e., a tuple F = (M, {R;}).
A formula ¢ is valid on a frame F = (M,{R;}) if for every valuation V on F, every
assignment g on F, and every m € M, (F, V) g,m IF ¢. A formula is valid on a
class of frames F if it is valid on every frame F in F. A formula ¢ defines a class of
frames if it is valid on precisely the frames in F, and it defines a property of frames (for
example, transitivity of the accessibility relation) if it defines the class of frames with
that property.

In what follows we will mainly discuss mono-modal Hs(@, |) for simplicity.

ExXAMPLE 3.9. Many properties are definable using pure, nominal-free, sentences:

lx.0-zx 17— 1 Irreflexivity
lz.00-2 17— 001 Asymmetry
lz.0(Cr — ) i — O(Ci —4) Antisymmetry
lz.0]y.@, o0y O1 — OOt Density
lx.00]y.@, Oy OO — O Transitivity

With the exception of transitivity and density, none of these properties are definable in
ordinary modal logic. In Section 6.1.4 we will exactly characterize the classes of frames
that pure, nominal-free sentences can define.

[Tzakova, 1999a] provides the following complete axiom system for Hs(@, | ).

DEFINITION 3.10. [Axiomatization| Let ¢, be formulas, v a metavariable over state
variables, ¢ a metavariable over nominals, and s, ¢ metavariables over state symbols. The
hybrid logic K[Hs(@, |)] is the smallest subset of formulas in Hs(@, |) containing all
instances of propositional logic tautologies, all instances of the following axiom schemas,
and closed under the following deduction rules
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MP o — 1, Fp = F

K D(p — ¢) — (Be — OY)

N Fe = FOp

Q1 lv.(¢ = ¥) — (¢ — |va), ¢ without free occurrences of v
Q2 lv.p — (s — ¢[v/s]), s substitutable for v in ¢

Q3 [0 = @) — Lug

Self Dual] |v.p < =]v.—p

N, Fo=Flu.p

Ka Q(p = P) = (Qup — Q1))

Self Dualg Qg p «— —Qz—p

Elime (s ANQgp) —

Label Qs

Scope @@ — Qg

Na Fo = FQgp

Ma Qo — DQyp

Naming Fyp — -c=Fp — L, c&Z NOM(p)

Paste Fo — Q0 — —¢) = Fp — Q0 — L), s € NOM({p, ¢, c}).

The completeness result proved in [Blackburn and Tzakova, 1999; Tzakova, 1999a] is
very general: not only does this axiomatization generate all valid formulas, but it auto-
matically extends to many stronger logics. The relevant theorems read as follows. Let a
pure schema be a pure formula where we uniformly replace all occurrences of free state
variables and nominals by metavariables over state symbols, and bound variables by
metavariables over state variables.

THEOREM 3.11. [Tzakova, 1999a, Theorems 67 and 68]

i. Let S be a set of pure sentences in Hs(Q,]), and let S be the extension of the
logic K[Hs(Q, | )] obtained by adding S as axioms. Then, every S-consistent set of
formulas in Hs(Q, |) is satisfiable in a countable hybrid model, based on a frame
that validates every formula in S.

ii. Let S be a set of pure schemas in Hs(@, |), and let S be the extension of the logic
K[Hs(Q, |)] obtained by adding all instances of the schemas in S as axioms. Then,
every S-consistent set of formulas in Hs(Q, |) is satisfiable in a countable hybrid
model, based on a frame that validates every formula in S.

Again, the characterization results in Chapter 6 will exactly delineate the boundaries of
these general completeness results.

3.5 Bisimulations

The notion of bisimulation is a crucial tool in modern modal model theory. Recall that
for basic modal logics, bisimulations are non-empty binary relations linking the domains
of models, with the restriction that only worlds with identical atomic information and
matching accessibility relations are connected (see [van Benthem, 1983, Definition 3.7]
where bisimulations are called p-relations). Formally,
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DEFINITION 3.12. [Bisimulation] Let M = (M, RM, VM) and N'= (N, RN, V) be two
(modal) models. A non-empty binary relation ~ on M x N is a bisimulation between
M and N if the following clauses hold

(prop) If m ~ n, then m € VM(p) iff n € VV(p), for p € PROP.
(forth) If m ~ n and R (m,m’), then In’ € N such that RV (n,n’) and m’ ~ n’.
(back) A similar condition from N to M.

We will write M ~ N if there is a bisimulation between M and A, and we will call m
and n bisimilar if m ~ n holds.

Bisimulations are the key to understanding modal expressive power, because bisimilar
states satisfy the same basic modal formulas. I.e., bisimulations are to modal languages
what partial isomorphisms are to first-order logic (see Definition 1.6). In the case of
hybrid languages, the connection between bisimulations and partial isomorphisms will
be even stronger (see Proposition 6.8).

We already discussed the fact that hybrid languages seem to blend nicely with first-
order notions, and we will investigate the strong connection between hybrid bisimulations
and k-back-and-forth systems (Definition 1.8) in Section 6.1. Now, if we want to extend
the notion of bisimulation to Hs(@, |), we need to take care of assignments to state
variables. To this end, hybrid bisimulations will not simply link worlds, rather they
will link pairs (m,m), where m is a world and m is a partial assignment. We start by
defining k-seq-bisimulations, which are the correct notion of bisimulation for formulas
¢ such that SVAR(y) C {z1, ...,z }.

DEFINITION 3.13. [k-seq-bisimulation] Let M and N be two hybrid models. Let ~ be a
binary relation between * M x M and *N x N. So & relates tuples ((my, ..., my), m) with
tuples ((nq,...,n),n). We write these tuples as (m,m). Note that m can be seen as
an assignment over (xy,...,7;). A non-empty relation & is called a k-seq-bisimulation
if it satisfies the following properties:

then m € VM(a) iff n € V¥ (a), for a € PROP UNOM.

(var) If (m, n,n), then for j <k, m; =m iff n; = n.

(forth) If (m,m) & (2, n) and RM(m,m’), then there exists n’ € N such that RV (n,n’)
and (m,m’) ~ (n,n').

(back) A similar condition from N to M.

(@) If (m,m) & (f,n), then for every nominal i € NOM, if m’ € VM(i) and
n' € VN (i) then (m, m’) & (n,n’), and for j < k, (m, m;) & (A, n;).

@) If (m,m) & (n,n), then for j < k, (mm,m) ~ (A, n).

(prop) If (m,m) ~ (n,n),
m) ~ (n,n)

k
~
k
~
k

Since | and @ are self-dual, we can collapse the back and forth clauses for these operators
into one. We write M & N if there exists a k-seq-bisimulation between the two models.
To extend the notion to the full language we need to add only one further condition.

DEFINITION 3.14. [w-seg-bisimulation] Let M and N be two hybrid models. An w-seq-
bisimulation between M and N is a non-empty family of k-seq-bisimulations satisfying
the following storage rule:
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(sto) If (i, m) & (72,n), then (m *m,m) ‘T (7 *n,n).

Here and elsewhere, m % m denotes the tuple obtained from concatenating m and m.
Let m (n) be a *M-tuple (*N-tuple). Then (M,m) < (N,7) means that there exists
an w-seq-bisimulation between M and N such that (m,m(0)) £ (71, 7(0)).

Some remarks. First, k- and w-seq-bisimulations can be restricted to a given set
of propositional variables and nominals PROP U NOM by restricting (prop) and (@)
accordingly. Second, the modular character of the definition of bisimulation will lead to
results for reducts and extensions of Hs(@, |) as well. For instance, if we delete | from
the language, we just delete the (|) clause from the definition of bisimulation and we
obtain the appropriate notion for Hs(@). Of course, if we also delete the variables from
the language and we move to Hy(@), we don’t need the assignment tuples anymore,
and the bisimulation becomes just a relation between worlds, as usual. Then for Hy,
the standard definition of bisimulation applies (the condition (prop) takes care of the
nominals). If we add @ to this language, we just have to add the following clause

(@) For all nominals i, if VM(i) = {m} and VN (i) = {n}, then m ~ n.

Finally, if we add the past operator (R™!), we need (back™') and (forth™—') conditions
defined over the converse of the accessibility relation, and to account for E we ask for
the bisimulation to be a total and surjective relation. In all cases, the extension to
many modalities amounts to requiring the (back) and (forth) conditions (and their —*
versions if (R™!) is present) of each of the accessibility relations.

An important fact about bisimulations is that they preserve truth:

PROPOSITION 3.15.

i. If M & N, with & over a given set PROP U NOM, then for all formulas ¢ €
Hs(Q, |) over the signature (REL, PROP,NOM, {z1, ..., z1}), (m,m) ~ (7, n) im-
plies M, m,m I+ o < N, n,n - .

. If (M, m) & (N,n), with < over a given set PROPUNOM, then for all sentences
v € Hs(Q, |) over (REL,PROP,NOM,SVAR), M, m |-y < N, nl- ¢.

PROOF.

i) By a straightforward inductive argument.

ii) Let (M,m) 2 (N,n) and let ¢ be a hybrid sentence. Then it contains variables
(after renaming) say {z1,...,x;}. We have ((m),m) ~ ({n),n), so k — 1 applications
of the storage rule give us (m,m) % (i, n), where m is a k-tuple consisting of m’s and
similarly for n. But then, by i), M,m,m Ik ¢ & N, f,n Ik ¢, whence since ¢ is a
sentence M, m I p & N, n - . QED

Preservation results for all the different sublanguages and extensions can be given by
using the adequate notion of bisimulation. We will discuss more in detail some particular
cases in Chapters 4 and 6.
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The Connection

Language is a virus from outer space.
William S. Burroughs

from “Home of the Brave,” a film by Laurie Anderson

4.1 Similarities and Differences

The language used to define concepts in description logics is very close to the modal
language. This similarity was first noticed by Schild [1991], who used it as a bridge to
transfer complexity results and axiomatizations from modal logics to description logics.
But as Schild carefully noticed, the link between basic modal logics and description
logics can only be established at the level of concept satisfiability. Basic modal logic is
not expressive enough to account for either A-Box reasoning or inference in the presence
of definitions (non-empty T-Boxes).

In addition, as we saw in Chapter 2, some very expressive description languages
include constructions for building complex roles like intersection, converse, and even
transitive closure. By lifting the correspondence to Converse Propositional Dynamic
Logic (CPDL) [Fischer and Ladner, 1979], Schild accounts for these constructions and,
using the collapsed model property of CPDL and the availability of the Kleene star,
also for inference from non-empty T-Boxes. In [1994] De Giacomo and Lenzerini extend
these results and in particular they also encode A-Box reasoning into CPDL. As the
results in [De Giacomo, 1995] show, the project of embedding description logics into
CPDL has proven successful, but it has two important disadvantages.

—  With respect to complexity: the local satisfiability problem of CPDL is already
ExpPTiME-complete, and this blurs sharp complexity results.

—  With respect to expressive power: the model theory of CPDL is complex, because
the Kleene star (and hence a weak notion of induction) needs to be taken into
consideration.

In this chapter we will replace CPDL by hybrid languages and in this way improve on
the items above.

As we will show in Theorems 4.5 and 4.7 the connection between description and
hybrid logics is indeed tight. It doesn’t take much to realize some of the similarities
between description and hybrid logics. To start with, both can be seen as fragments of a
first-order language as we made explicit with the translations given in Proposition 2.12
and Definition 3.3. And the similarities between the two translations are striking: in

49



50 Chapter 4. The Connection

both cases we used relational similarity types and we can easily spot pairs of operators
where the translation literally coincides. In particular notice that

ST,(CCD) = Vy.(ST,(C)— ST, (D)).
ST.(a:C) = ST,(C)[x/al.
And

ST(Ale =) = Vy.(STy(p) — STy(¥)).
STo(Qap) = STa(p)[z/al.

To make things interesting, there are also differences. As we saw in Chapter 3, hybrid
languages incorporate variables and the notion of binding, and as we started to investi-
gate in Section 3.3.1, @ and | work together in a nice synchrony. It seems worthwhile to
explore what | would have to offer from a knowledge representation perspective. Moving
in the other direction, once a tight logical link has been established between the two
families of languages, we can export the huge experience on optimization techniques and
algorithms developed for description logic, and replace the logically elegant but compu-
tationally poor axiomatic systems we introduced in Definition 3.10 for hybrid languages
by more effective inference mechanisms, as we will do in Chapter 5. To mention just one
more point (and perhaps the one that will be most developed in this thesis), we will be
able to take full advantage of modal model-theoretical techniques to explore expressive
power (the main theme of Chapter 6) and complexity (as we do in Chapter 7).

But let’s start by introducing in detail the work of Schild, and De Giacomo and
Lenzerini on the connections between modal and description languages.

4.2 Schild’s Terminologies

It is straightforward to map concepts in ALC into PDL preserving satisfiability, actually
basic multi-modal logic is enough. Just define the translation - as

(Cy)' = p;, for C; an atomic concept
(=C) = ~(C)

(CnD)t = C'AD

(3R.C) = (R)C".

It is clear that ! preserves satisfiability. But we need further expressive power if we
want to account for T-Box and A-Box reasoning. The standard notion of bisimulation
helps us prove this claim. Consider the signature & = ({Cy, Ca}, {R}, {a}) and the
interpretations Z; = ({my, mo}, ') and I, = ({ms, my, ms}, -22) where

ct = {m} CE = {my}
3t = {mi,my} 3 = {ms}
R% = {} R” = {}
ah mq a? = ms.
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Clearly, Z; models both €'y C C5 and a:C} while Z5 models neither. On the other hand,
when we consider Z; and Z, as modal models, the relation {(mg, m3)} is a bisimulation.
But we should take care, C; C C5 and a : C; are global notions, they are true of an
element of a model if and only if they are true of all elements. On the other hand
basic modal formulas are local, the point of evaluation is relevant for their truth. Let’s
go through our argument taking special care of this issue. If a modal formula ¢ is
equivalent to C; C (5 then it would also behave globally, and C; E C5 being true of Z;
would imply ¢ being true of my. By bisimulation ¢ would also be true of m3 and by
“global behavior” of Z,. But it isn’t. We can give a similar argument for a:C}.

One of the main differences between basic modal languages and description languages
is this switch between a local and a global perspective. And this is the reason why we
have incorporated the existential modality in hybrid languages. Given that

M IF ¢ iff M, m |k —E=p for some m € M,

E lets us talk about globality from a local perspective.

Instead of using E, Schild accounts for terminological axioms by using the collapsed
model property of CPDL and the availability of the Kleene star. Due to the collapsed
model property (which states that any satisfiable CPDL formula is satisfiable in a con-
nected model) we can ignore states which are not reachable by a finite sequence of
backwards and forwards transitions through the accessibility relations. Thanks to the
Kleene star we can “step over” all these transitions in one step. Formally, extend ! as
follows

(C E D) = (C" — D).

And for a finite set of terminological axioms T, let T* be A ¢! for p; € T. Now, let
T U {¢} be a finite set of terminological axioms and let Ry,..., R, be all the roles
mentioned in 7"U {p}, then

(T{}) Eeiff FI(RIURTU-UR,UR)IT — ¢,

As Schild remarks, this translation would not work for an infinite 7. On the one hand,
T might contain an infinite number of roles, but even in the case of a finite signature,
PDL is not compact (see [Harel, 1984, Theorem 2.15]), hence it is not always possible
to reduce inference from an infinite set to inference from a finite part of it. In addition,
lack of compactness has a striking effect on the complexity of the consequence problem,
which becomes highly undecidable, and indication that PDL is not computationally
well behaved. The computational problems raised by the Kleene star have been well
investigated both in the modal and description logic community [Ladner, 1977; Halpern
and Moses, 1992; Sattler, 1996; Horrocks and Gough, 1997]; and authors like Sattler,
and Horrocks and Gough have argued that in many cases the ability to define a role
as transitive is all what you need in applications, instead of the full power of transitive
closure. For example, transitive roles are enough to provide an adequate representation
of aggregated objects, as they allow these objects to be described by referring to their
parts without specifying a level of decomposition [Horrocks and Sattler, 1999].

Again it pays off to look carefully to the global vs. local issue. To fully appreciate
the subtleties here, we will digress into a discussion on global and local notions of
consequence.
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4.2.1 Global and Local Consequence

In Definition 3.2 we introduced two different notions of consequence for hybrid languages,
which we called local and global:

— T 9 ¢ iff for all models M, M Ik T implies M I+ .
— T E" ¢ iff for all models M, assignments g and m € M, M, g,m |k T implies
M, g, mlF .

One word of warning to avoid confusion. As we said before, for languages without
state variables we can cross out the assignment in the definition of ="*. Still, the two
notions of consequence are different because of the relativization to worlds. Perhaps it is
simpler to discuss consequence in first-order terms, thinking on the first-order translation
of modal, hybrid or description formulas. The availability of the two possibilities above
is characteristic of a notion of consequence dealing with formulas instead of sentences.
Given a set I' U {¢} of formulas which might contain free variables, the way we define
the quantification on models and (first-order) assignments becomes meaningful.

The global consequence relation is the one familiar from first-order logic, but it is
always defined for I'U {¢} a set of sentences (if they are formulas, the universal closure
is usually considered). When I"U {¢} is a set of formulas — and they are indeed treated
as formulas — the local definition becomes interesting (see for example the definition
just before Proposition 2.3.6 in [Chang and Keisler, 1990]).

Because modal and hybrid formulas may contain free variables when translated into
the FO, it is important to understand the connection between these two notions of
consequence.

PROPOSITION 4.1. [van Benthem, 1983, Lemma 2.33] For T' a set of basic modal for-
mulas (in a mono-modal language), let BOXED(T) = {0%) | € T & i > 0}. Then, for
any set T'U {p} of basic modal formulas

T = ¢ iff BOXED(T) =" ¢.

The proof uses the fact that the collapsed model property holds for modal languages.
The extension to multi-modal languages is trivial, just redefine BOXED to include all
possible boxed prefixes in the multi-modal signature.

The extension to hybrid languages needs more care. As we will see in Chapter 6, if
the language does not contain the existential modality E, we can define a natural notion
of generated model for hybrid languages and obtain the corresponding collapsed model
property. And by defining BOXED properly, Proposition 4.1 also obtains in this case.
Basically, if the language contains the @ operator then we should also generate from all
named points, and accordingly, start by extending the set T to 7" = TU{Qu) | ¢ € T},
and only then perform boxing by taking BOXED(T").

If the language does contains E then things are simpler, even though we cannot expect
the collapsed model property to hold. Notice that in this case the relation between ="
and =" is straightforward

TR o iff {Ay | ¢ € T} £ . (4.1)
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In [1992], Goranko and Passy study the properties of languages containing the existential
modality, and prove that the global properties of a logic £ correspond to the local
properties of the logic £E which arises from £ by adding E. In particular, [Goranko and
Passy, 1992] shows that for basic modal logics, global decidability, global finite model
property, and global completeness of a logic £ are equivalent to their local versions for
LE (see [Kracht, 1999, Theorem 3.1.13] for a short proof). This result can be extended
to hybrid languages without the | binder as follows. We first establish a normal form
for hybrid formulas not containing |.

PROPOSITION 4.2. [Normal form]| Let ¢ be a hybrid formula not containing the | binder.
Then ¢ is equivalent to a formula ¢’ where subformulas of the form Eip and Q;) (if any)
occur only at modal depth zero. In particular ¢’ can be taken to be

/\( \/ Ap(l,m) V Eoy v \/ @ﬂ/(l’i) V Tl)

leL meM 1€ENOM(¢)

for some (possible empty) index sets L, M, where pm, 01, V) and 7 contains neither
E nor Q. Furthermore |¢'| is polynomial in |p|.

Proor. We start by translating ¢ into negation normal form. Now we use the following
equivalences to “push out” the E and A operators from inside the other modalities

[Ri]AY — [Ri]LVAY QAY < AY
[Ri|EY < [Ri]LVEY QY < EY
[Ri](OV AY) « [R]OV Ay Q,(0VAY) <« QbVAY
[Ri](0 VEY) < [Ri]6VEY Q,(fVEY) — @,0VEy
[Ri](0 ANAY)  — [Ri]0 A [Ri|AY Q(0NAY) — QHANAY
[RJ(OANEY) «— [R]LV ([R]OAN[R]EY) | Q0 ANEY) «— Q.0 AE.

Similar equivalences hold for the dual modalities (R;) (@ is self dual). For pushing out
@ we have

[Ri]Qip « [R]LV@qy Q,Qy < Qy

And similarly for the @ operators appearing under (R;). Now, it only rests to use
propositional equivalences to obtain the normal form for ¢. QED

We are now ready to extend Goranko and Passy’s result to Hy({R™1), @) and its sub-
languages.

THEOREM 4.3. Let the property P be either decidability, finite model property, or com-
pleteness, and lel L be any sublanguage of Hy((R™'),@). Then L has P globally iff LE
has P locally.
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PROOF. The equivalence in (4.1) is enough to prove the left to right implication. For the
other, we need a way to relate local validity of a formula in £F to consequence in terms
of E%°. We assume that ¢ is in the normal form of Proposition 4.2. We can do away
with conjunctions in ¢, as |=re ¢1 A @9 if and only if =, ¢ and =g 2. Hence, we
need only consider ¢ = (\/ Ap;) VEo V0. We will prove that |=e ¢ iff o =2 (\/ pi) V.

[<]. We reason by contraposition. Assume ~ge (\/ Ap;) V Eo V 6. Then there exists a
model M and m € M such that M, m I (A =Ap;) A A= A —0. Hence M I =0 and
MV p) V0. So a0 12 (\ pi) V 6.

[=]. Again we argue by contraposition. Assume —o £%° (\/ p;) V 6. Then there is M
such that M IF =g and M I (\/ p;) V 0; i.e., for some m € M, M,m Ik (A —p;) A 0.
But then M, m I (A\ =Ap;) A =Eo A =0 and [~ e . QED

Going back to description languages, notice that if we use =" instead of =", then basic
modal logic is enough to encode terminological axioms, as the following equivalence holds

(T.{}) Eeiff T =" ",

By using (4.1), in the presence of E we can further move to

(T.{}) o iff {AT")} = ¢

And given that the local consequence relation satisfies the deduction theorem

(T A}) Eeiff EAT) — ¢

Finally, if the logic is compact we can perform this reduction even for infinite T-Boxes.
And by Theorem 4.3, we can investigate logical properties of inference from non-empty
knowledge bases by studying the local properties of the language containing E.

4.3 De Giacomo’s Individuals

Accounting for assertional information in CPDL is more complicated than encoding
terminological axioms. In [De Giacomo and Lenzerini, 1994], a much more involved
variation of the translation we discuss below is proposed. De Giacomo and Lenzerini
enforce the unique name assumption (i.e., for a,b € IND, for all interpretation Z, a # b
implies a? # b7), and also deal with complex structure on roles (union, composition,
transitive closure, etc.) which makes for the additional complexity. Here we will only
discuss the handling of individuals.
Extend -! to assertions by defining

(a:C) = p, — C",
((a,0):R)" = po — (R)py,
where p, and p, are propositional symbols.

Let A be a finite set of assertions, define A" as A ¢! for p; € A. The problem now
is that in translating individuals as propositions in CPDL we have lost the information



4.8. De Giacomo’s Individuals 55

that individuals denote a single element in the domain. Hence, we have to explicitly
force these symbols to behave as individuals.

Let ¥ = (T, A) be a knowledge base, let Ry,..., R, be the roles appearing in 3, let
ai, ..., a, be the individuals mentioned in 3, and let SF(p) be the set of all subformulas
of . Let [U] stand for [(RiUR;'U---UR,UR;)*], and let S be a role not appearing
in . Let X! be

[SIUIA AT A NCS)pa AC N\ ISI{U) oy A ) = [U](pa; — ).

1<i<m YESF(TEAAYL)

We will prove that X is consistent if and only if X! is satisfiable. This is enough because,
as we discussed in Proposition 2.6, in sufficiently expressive languages all reasoning tasks

can be reduced to instance checking and, in its turn, (7, A) |= a:C is the case if and
only if (T, AU{a:=C}) = L.

PROPOSITION 4.4. A knowledge base X is consistent if and only if Xt is satisfiable.

PROOF.
[=]. Let T = (T, A). For s ¢ A%, define a CPDL model M = (M,{R;} U{S},V),
where M = ATU{s}, R, = R}, S = {(s,m) | m € AT}, V(C;) = C} and V(p,,) = {al}.
We prove that M, s |- 3¢,

For any m € A?, a simple induction proves that M, m |- A* A T*. Hence, M, s IF
[S|[U](A* AT?). Because s is S-related to all elements in A%, also M, s I (S)p,,. It rest
to prove for any a;,

MslE N\ SIU) (pa, A ) = [Ul(pa; — )

YESF(TAAL)

But this follows from the fact that the denotation of each p,, is a singleton.

[«<]. Now suppose M = (M,{R;} U{S},V) is a CPDL model, and for s € M we
have M, s IF 3t Because of the collapsed model property of CPDL, we can assume
that M is a connected model. Define M’ = (M’ {R.}, V') where M’ = {m | S(s,m)},
R; = (Ri>[M’ and V' = V{M’-

Clearly M’ |- [U](A* A T"), and hence M’ I A" AT". Also, the following formula is
globally true in M's A cspron o (U} (o, AY) = [U)(pa, — 16)). So for 1 € SF(TEAAY),
if for some m € M';, M',m I+ p,, A then M’ IF p,. — 1. Furthermore, for any p,,,
there is m € M’ such that M’ m IF p,,. Notice that M’ is a modal model. Define
M = (M7 {RI}, V1) as a filtration of M’ through SF(T* A A'). We prove that for
any a;, V/(p,,) is a singleton. Because, let mi,my € V/(p,,) and let ¢ € my, then
M my Ik pa, A, and hence M’ mo IF ¢ and ¢ € my. This proves m; = mo.

Now, consider M/ as a description logic interpretation -Z, where af = m, for m €
VI(ps,). Clearly T | 3. QED

As remarked in [Horrocks et al., 2000b], De Giacomo’s translation is probably too in-
volved and costly to provide effective decision methods. It is also difficult to extract
theoretical results from it, except for the general complexity results presented in [De
Giacomo and Lenzerini, 1994]. As we already remarked, the model theory of PDL is
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intricate because of the inductive nature of the Kleene star, and the cryptic translation
provides little help on simplifying things out.

The main difficulty of the translation above is on forcing propositional symbols in
CPDL to behave as individuals. If we use hybrid logics instead, we can simply use
nominals. In addition, given our discussion in Section 4.2.1 the E modality gives us
access to globality and we don’t need to rely on the Kleene star. So, hybrid logic and
not CPDL seems to be the language of choice for a modal counterpart of description
languages able to deal with full terminological and assertional reasoning.

4.4 Into Hybrid Logics

Consider the following translation -*,

(Ci)

(—C)
(CnDy» = ChADP
AR.C)* = (R)C"
ARLOY = (R7HCO!

)

)

)

C)

R)

h = p;, for C; an atomic concept

h —\(Oh)

({ar,...,a, )" = a1 V---Va,
BRA{a})" = (R)a

(CE D) = A(C"— D"

(a:

((a,b):

THEOREM 4.5. Let > = (T, A) be a knowledge base in ALCOBZ, and ¢ a terminological
axiom or an assertion, then

(T A Eeiff E(N\v"A N\ ") —

YeT YeA

h @ach
ho= @, (R)b.

The proof in this case is obvious (and the connection between the two languages stronger
than with CPDL), as any model of (T, A) and ¢ can be viewed directly as a model of
(Aper " A Nyea¥") — @ and vice versa. By using additional nominals we can also
account for conjunction of roles:

(3(R, 1 Ry).C)" = (Ry)i A {Ry)i A @Q;C* for i a new nominal, while
((a, b) ZRl I Rg)h = @a<R1>b A @G<R2>b.

Equivalently, we could have put (3(R; M Ry).C)* = (R1)(i A C") A (Ry)(i A C"), and
do without @. But this is not a linear translation and, as we will soon see, using @
and restricting the use of nominals is more “natural” from a description logic point of
view. Notice that in any case, we need to move to an extended language to account for
role conjunction (as we need new nominals) in this way. To remain in the spirit (and
strength) of the previous translation we would do better by introducing role conjunction
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into hybrid logics as investigated in [Passy and Tinchev, 1985a]. Similarly, we could add
counting modalities to account for the A/ constructor.

Blackburn and Tzakova [1998c| also propose using hybrid languages to embed de-
scription logics, highlighting the connection between assertional information and nom-
inals, and the use of the existential modality to encode terminological axioms. But
Blackburn and Tzakova introduce undecidable hybrid languages (containing the V¥ quan-
tifier) for this account, arguing in favor of the gains on expressiveness that these more
powerful languages have to offer. Instead, our translation tries to remain as faithful as
possible to the original description language, and pay special attention to decidability
issues.

It is important to pin down exactly which expressive power we need to encode the
different languages and reasoning tasks. For example, the existential modality is required
only for translating terminological axioms, while @ is only used for assertions.

DEFINITION 4.6. In the next sections we will discuss properties concerning the following
hybrid languages. The first two were introduced already in Section 3.3.

— Hn((R71),@,E), in which the full -* translation can be made.

— Hn((R™Y),@), in which we can only encode knowledge bases with empty T-Boxes
as we have dropped the existential modality.

The next two languages restrict the use of nominals, so that they can only appear as
sub-indices of @ and in the construction @,(R)b or @,(R~1)b. We have dropped the
in the name to mark this restriction. On the description logic side, these restrictions are
equivalent to the absence of the one-of O operator from the concept language, and the
circumscription of nominals to A-box statements.

— H{R™'),@, @O, E), in which we cannot translate the one-of operator O.
— H{(R™!),@, @0), the “empty T-Boxes” version of the previous language.

H((R™'),@, @) is a sublanguage of Hy((R™'), @), and the languages H((R™'), @, @O,
E) and Hn((R™'),@, E) are obtained from the other two by the introduction of the
existential modality. From a hybrid logic point of view, Hy((R™!), @) is probably the
most natural language. The other three languages are specially devised to address two
issues: restricting the use of nominals to the way they are traditionally introduced in
description logics, and obtaining global expressivity to represent terminological axioms.
We will also discuss the “pure future” versions of these languages, where we drop the
(R™1) operator. We will see that this can, in some cases, make an important difference
in terms of complexity.

We have defined each of the logics mentioned above to be expressive enough to permit
the encoding of certain specific description logics. But it is also important to investigate
in which ways we have extended the expressive power of the language with the move into
hybrid languages. The general answer is: we have incorporated Boolean structure into
the knowledge base, and allowed explicit interaction among T-Box definitions, A-Box
assertions and concepts.
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Take for example the most expressive language Hy({(R™'),@, E). Given Proposi-
tion 4.2 we can assume ¢ € Hy((R™1), @, E) to be

/\( \/ Apam) V Eoy vV \/ Qv V 1),

leL meM iENOM
where p( ), 01, V) and 7; contains neither E nor @. By allowing negations in the T-Box
we can encode validity of formulas in Hy((R™1), @, E) as instance checking as follows.
Define Boolean knowledge bases as pairs X = (T, A) where T is a set of Boolean com-
binations of terminological axioms, and A a set of Boolean combinations of assertions.
For | € L, define X!, = (T}, AL) to be

TL = {~(T C pfym) | m € MYU{T C -0} '}
Al = {i:—w(};’i) | i€ NOM(p)}

where " is the backwards translation from the hybrid language into ALCOZ, mapping
Boolean and modal operators into the corresponding description logic ones and using
singleton one-of sets {i} for translating nominals. Then

THEOREM 4.7. For any formula ¢ in Hy((R™'),Q,E), let a € NOM(yp), then ¢ is valid
iff for alll € L, EZD = a:Tlh_l.

It is interesting to remark that even allowing Boolean knowledge bases, we cannot recast
validity of hybrid formulas as inference in terms of a unique knowledge base. This is
because the separation between terminological axioms, assertions and simple concepts
still impose syntactic restrictions which don’t exist when we wear our hybrid logic spec-
tacles. Trivially, if the index set L above is a singleton, then a unique knowledge base is
sufficient. Le., we can characterize precisely the fragment of Hy({(R™'), @, E) perfectly
matching the expressivity of ALCOZ with Boolean knowledge bases.

As we will see in the next section, allowing the extra flexibility that Boolean knowl-
edge bases offer does not modify the complexity class in which the reasoning tasks
fall (for the languages we are considering), but it does increase expressivity. Boolean
knowledge bases have also been considered by Wolter and Zakharyaschev in a series of
papers investigating ways of combining description and modal languages [Wolter and
Zakharyaschev, 1998, 1999b, 1999, 1999a, 2000; Wolter, 1999].

4.5 Pay Day

The links between hybrid and description logics are so strong that we can immediately
start the harvest by interpreting result in one of the fields in the light of the other.
This is what we are going to do now, and from many different perspectives: complexity,
expressive power, meta-logical properties, new operators, etc. We will mainly draw
results from the work we will carry out in the remaining chapters of the thesis, and
also on well known result which can be put to new use. Sometimes, an exhaustive
investigation will not be possible, but we will always introduce the main ideas and
techniques.

In any case, by the end of this section we should have drilled ourselves into looking
at results in hybrid logics with description logic eyes and vice versa.
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4.5.1 Complexity

Also for complexity we need to pay attention to the difference between local and global
notions. For a modal language, we can distinguish between the local Sat problem
(determining whether for a given formula ¢ there exists a model M and m € M such
that M, m I ¢), and the global Sat problem (where we require a model M such that
M IF ¢). Of course, if the logic contains the E modality, both problems collapse to
the same. And as we argued in Section 4.2.1, we can study the global Sat problem
of a language £ by analyzing the local Sat problem of £E. In addition, we can study
different classes of frames as is standard in modal logic (transitive, linear, etc.), hence
a Sat problems should also be qualified with respect to a given class of models. For F a
class of models and a language £, F-Sat(L) is the (global or local) satisfiability problem
of the language when its class of models is restricted to F. In this section we will be
mainly interested in the class K of all models.

The complexity of the satisfiability problem of the four languages in Definition 4.6
can be established by drawing from some of the results we will discuss in detail in
Chapter 7. Let us first consider the “pure future” fragments, i.e., we only consider
formulas without the (R~') operator.

In Theorem 7.15 we prove that the local K-Sat problem for Hy(@Q) is PSPACE-
complete. This results sets also the complexity of H(@,@<), because this language
contains the basic modal language. We obtain an EXPTIME upper bound for the lo-
cal K-Sat problem for Hy(@, E) as a corollary of Theorem 7.20. Given Spaan’s result
concerning the EXPTIME completeness of modal logic expanded with the existential
modality [Spaan, 1993], both H(@Q, QO E) and Hy (@, E) are EXPTIME-complete.

If we now switch to the description logic perspective, the results above imply that it is
the move from empty T-Boxes to full T-Boxes which modifies complexity, independently
of whether we consider standard or Boolean knowledge bases, as the same complexity
obtains for the knowledge bases introduced in Definition 2.2. Furthermore, the addition
of the one-of operator O and role fillers B offers more expressivity at no cost (up to a
polynomial). Notice how the encoding into hybrid languages instead of CPDL works to
our advantage here, as we can identify cases falling into the PSPACE complexity class.
Let’s gather these results neatly.

THEOREM 4.8.

i. Instance checking for Boolean knowledge bases with empty T-Boxes is solvable in
PSPACE (hence PSPACE-complete) for the language ALCROB.

ii. Instance checking for Boolean knowledge bases is solvable in EXPTIME (hence
ExpPTIME-complete) for the language ALCROB.

Notice that we don’t need to restrict to empty A-boxes in item ), and remember that by
Proposition 2.6, the complexity results for instance checking extend to all the reasoning
tasks we defined in Section 2.3.

Things are different when the (R™!) operator is present. As we prove in Theo-
rem 7.18, adding just one nominal to basic temporal logic moves the complexity of
the local satisfiability problem over K from PSPACE- to EXPTIME-hard. As the EXp-
TIME upper bound of Theorem 7.20 actually covers also Hy({(R™'), @, E), we have that
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the local K-Sat problems of Hy((R™1), @), H((R™ '), @, @O, E) and Hy((R™1), @, E) are
ExpTIME-complete.

A PSPACE upper bound for H((R™!), @, @) is easy to establish by using the fact
that @ operators need only appear at modal depth zero. We give a sketch of the proof.
To avoid confusion we will write @;(R,)j as R.(i,7). Let

90:/\( \/ @z‘V(l,i)\/\/Tl\/Ul),

leL ieNOM

where each T; is a collection of formulas of the form R.(7,7) or —R.(7,7), and v, oy
contain neither @ nor nominals. As PSPACE = NPSPACE, non-deterministically choose
from each conjunct of ¢ the disjunct satisfied by a model of . Call such a set CHOICE.
Now, for each i, let S; = {p | @Q;p0 € CHOICE}, create a polynomial model satisfying S;
at the point m; (notice that all formulas in S; are basic temporal formulas and hence
a PSPACE model can be constructed). Similarly, create a polynomial model for all
formulas in CHOICE which are not @-formulas. Let M be de disjoint union of all these
models. Finally, if R,(i,7) € CHOICE, add the pair (m;, m;) to R,. The model of ¢
obtained in this way has size polynomial in |¢]|.

Again, evaluating the difference in terms of complexity that the presence or absence
of the (R~') makes, wouldn’t be possible using the CPDL translation.

THEOREM 4.9.

i. Instance checking for Boolean knowledge bases with empty T-Boxes is solvable in
PSPACE (hence PSPACE-complete) for the language ALCRBI.
i1. Instance checking for knowledge bases with empty T- and A-Boxes is EXPTIME-
hard for the language ALCZO.
ii1. Instance checking for Boolean knowledge bases is solvable in EXPTIME (hence
ExXPTIME-complete) for the language ALCROBI.

The EXPTIME-hardness result for Hy((R™')) (basic temporal logic with at least one
nominal) contrast sharply with the good complexity behavior of Hy(@). For example,
as we will see in Theorems 7.22 and 7.24, if we move to the class of transitive models,
even Hy(@, E) is PSPACE-complete (meaning that there are PSPACE algorithms even for
inference from non-empty T-Boxes), while Hy((R™")) remains obstinately in EXPTIME.

In Chapter 7 we will investigate further the issue of complexity in different classes
of models. One of the main results (Theorem 7.29 and Corollary 7.31) implies that
instance checking for Boolean knowledge bases in ALCROBZI can be solved in PSPACE
if we consider only transitive trees as models.

On the other hand, known complexity results from description logics can be usefully
translated into hybrid terms. For example, as we will discuss in Section 4.5.5, little is
known with respect to the extension of hybrid languages with counting.

Also, the “folklore” result concerning the PSPACE-completeness of instance checking
for ALC when T-Boxes are restricted to simple and acyclic terminological axioms (recall
our discussion in Section 2.2.2) implies that when syntactic restrictions are imposed on
the use of E we can avoid ExpTIME-hardness for the local K-Sat problem of H(@, @& E).
[Lutz, 1999a, 1999b] provide the first detailed complexity analysis of inference from
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simple, acyclic T-Boxes. Interestingly, as Lutz proves, the restriction to simple, acyclic
T-Boxes not always preserves complexity: instance checking in ALCF (ALC extended
with features, feature agreement and feature disagreement) is PSPACE-complete for
empty T-Boxes, but it turns NEXPTIME-complete even when only simple, acyclic T-
Boxes are allowed. Lutz’ results are in line with Spaan’s [1993, 1996], where it is shown
that extensions with the E operator behave rather chaotically, complexity-wise.

4.5.2 Expressive Power

Baader [1996] and Borgida [1996] were the first to address the issue of expressive power
for description languages. Each author proposes different means to measure expressive
power. Borgida compares complex concepts and roles in description languages with
first-order formulas: there should be a translation from complex concept and roles of
a DL into first-order formulas in one and two free variables respectively, such that for
each interpretation their denotations coincide. Baader, on the other hand, remains
“on the description logic side.” To compare the expressive power of two DLs £; and
L5 he proposes to define translations between the atomic concepts of the T-Boxes in
each language, and compare the denotation of concepts in a T-Box T} € £; with the
denotation of the translated concepts in T, € L5 on models of T} and T, respectively.
Interestingly, the translation function maps only atomic concept to atomic concepts and
is allowed to be different for each T-Box.

More recently, Kurtonina and de Rijke [1999] have taken a modal perspective on the
topic and provided a detailed analysis of the expressive power of concepts in DLs by
means of (bi-)simulations. The most interesting result, from a logic point of view, dis-
cussed by Kurtonina and de Rijke is their “deconstruction” of the notion of bisimulation
to address languages which lack full Boolean expressivity. But Kurtonina and de Rijke
only address the expressive power of concepts.

Instead, in this section we will study the expressive power which full knowledge bases
offer, taking advantage of the tools we have introduced in Chapter 3. In particular,
we will use hybrid bisimulations. In Definition 3.13 and the discussion that follows,
we spelled out almost all the necessary bits for defining the appropriate notions of
bisimulation for the languages in Definition 4.6.

DEFINITION 4.10. [Bisimulations] Let M = (M, {RM} VM) and N = (N, {RN}, VV)
be two hybrid models. Let ~ be a non-empty binary relation on M x N, and consider
the following properties on ~:

(prop)  If m ~ n, then m € VM(p) iff n € VV(p), for p € PROP.
(nom)  If m ~ n, then m € VM(i) iff n € VN (4), for i € NOM.

(forth)  If m ~ n and RM(m,m/), then In’ € N.(RN (n,n’) & m' ~ n').
(forth™1) If m ~ n and RM(m/,m), then In’ € N. (RN(n n) & m' ~n').
(back) A condition similar to (forth), but from N to M.

(back™) A condition similar to (forth™'), but from N to M.

(@) For all nominals i in NOM, iM ~ V.

(@) Let 4,7 be nominals in NOM, then R,(#, M) iff R,(iV, V).

(E) ~ is total and surjective.
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Now for the final definitions:
i. ~isan H((R™!), @ @<O)-bisimulation if it satisfy the conditions (prop), (forth),

(forth™1'), (back), (back™), (@) and (@<).

. ~ is an Hy((R™'), @)-bisimulations if in addition it satisfies (nom). (And in this
case (@Q<) can be derived from the others.)

iwi. H((R™'),@, @O, E)- and Hy((R™!), @, E)-bisimulations are obtained, respectively,
from H((R™'),@, @Q0)- and Hy((R™ '), @)-bisimulations by requiring the addi-
tional condition (E).

Definition 4.10 has been devised to obtain the following result.

PROPOSITION 4.11. Let H be any of the languages H((R™'), @, @O), Hy((R™1), @),
H{(R™1), @ @O,E) or Hy((R™Y),@,E). Let M and N be two models, and ~ an H-
bisimulation between M and N .

Then for m € M,n € N, and for any formula ¢ in H, m ~ n = (M,m |-

o iff Nynlk o).
Proposition 4.11 alone lets us establish a hierarchy of expressive power.

DEFINITION 4.12. For two logics H and ‘H', H < H' denotes that for each formula ¢ in
H there exists a formula ¢’ in H’ such that for each model M and m € M, M, m I+ ¢
ifft M,m Ik ¢'. We write H < H' if H < H' and not H' < 'H.

Our approach to comparing the expressive power of languages is different from the
proposals of Borgida and Baader we discussed above. From the local, hybrid logic
perspective, we can compare the relative expressive power of two languages by simply
requiring the existence of an equivalent formula (a formula which receives the same
denotation under all interpretations). This notion is stronger that simple satisfiability
preservation. The interesting twist is that we have internalized terminological definitions
and assertions into the hybrid language, and hence implemented an approach similar
to the one used in [Kurtonina and de Rijke, 1999] but this time accounting for full
knowledge bases. Let’s see how this works.

It is immediate that H((R™!), @, @0) g Hy((R™),@) and H((R™!),@, @0, E) <
Hn((R™'), @, E). More interestingly, each of the relations is strict. Given H < H’, to
prove H < H' it is enough to provide models M and M’ points m € M, m' € M’,
an H-bisimulation linking m and m’ and a formula in H’ such that M, m I+ ¢ and
M’ m! If p. Consider the models in Figure 4.1.a) and the bisimulation relation linking
all points in M with all points in M. All conditions in Definition 4.10 except (NOM)
are easy to check. So, the relation is both an H((R™'), @, @<)-bisimulation and an
H((R™'), @, @O, E)-bisimulation. Furthermore, My, m; IF =@;j while My, mg Iff =Q;j.
Hence H((R™!), @, @0) < Hy((R™!),@) and H((R™'), @0 E) < HN((R™Y), @, E).
The relation between Hy((R™'),@) and H((R'),@,@<,E) is more complex. We
can prove both that Hy((R™1),@) £ H((R™'),@ Q0 E) and H((R™ '), @ QO E) #
Hn((R™'),@). For the first, we need but reuse the models in Figure 4.1.a). While the
models in Figure 4.1.b) and the Hy((R™!), @)-bisimulation sending m; to ms proves
H((R™Y), @ @O E) £ Hn((R™!),@), as Ap holds in m3 and not in m;. Nevertheless,
we can prove that H((R™1), @, QO E) is at least as expressive as Hy((R™!), @) if we are
only interested in satisfiability (and not in the existence of an equivalent formula).
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my ma ms my ma ms3

Figure 4.1: Separating languages

PROPOSITION 4.13. Let ¢ be a formula in Hy((R™'), @), then there exists a formula
¢ € H{R™Y),@, @O, E) such that ¢ is satisfiable iff ¢’ is satisfiable.

PROOF. Given a formula ¢ € Hy((R™!), @), introduce for each a; € NOM(y) a propo-
sition letter p,, not in PROP(¢p). Define ¢’ as

O = plar/pays -5 An/Pa,] A /\ COND(a;, ¢)
a; ENOM(p)

where
COND(a;, ¢) 1= Qq,pa, A Alpa, — /\ (Qu ¥ — ).
YESF(plar/pay s-san/Pan])

Notice first that ¢’ is a formula in H((R™!), @, @O, E). Actually, the range of the trans-
lation falls into the weaker language H((R™'),@,E). Notice also that the translation
is polynomial. The intuition behind COND(i, ) is as in Proposition 4.4: we should
force all states satisfying p,, to agree in all subformulas of ¢lai/pa,,---,an/Pa,]- But
now, instead of having to reach for the values through the accessibility relations using
[RiUR;'U---UR; ], we can simply jump to a; by using @. It rests to prove satisfiability
preservation.

The left to right direction is simple. Given M, w |- ¢, define M" = (M’ {R.}, V')
as follows: M’ = M, R, = R, and V'(p,,) = V(a;) for p,, one of the propositions used
in the translation, and V’(a) = V(a) for any other atom. M’ w I+ ¢'.

For the other direction, let M’ = (M’ {R.},V'), w' € M’ be such that w' IF ¢'.
Let M/ be a filtration of M’ through SF(o[ay/pay; - - - an/Pa,]). We can prove that for
ir. € NOM(y), V/(p,,) is a singleton with a similar argument than in Proposition 4.4,
but now using @,,. Extend V/ by setting V/(a;) = V/(p,,), and VI (a) = |w'| for any
other nominal. We will obtain M/, |w'] I ¢. QED

These expressive separation results easily translate to description languages. For two
description languages £, and L, define £ < L, if for any knowledge bases ¥ in £
there is a knowledge base ¥’ in £, such that for all interpretations Z, 7 = X iff 7 = ¥
Notice now that the formulas we have used to separate the languages can easily be recast
as assertions (@Q;j < i:{j}) or terminological definitions (Ap < T C p), and similarly
for the translation used in the proof of Proposition 4.13.

The notions of bisimulation we have defined not only separate the fragments of first-
order logic which corresponds to the hybrid logics we have been discussing, they also
characterize them. For H any of our hybrid languages, we say that a first-order formula
a(z) in the first-order language over (RELU{P; | p; € PROP},NOM, {z,y}) is invariant
for H-bisimulations if for all models M and N, and all states m in M, n in N/, and
all H-bisimulations ~ between M and N such that m ~ n, we have M |= «a(z)[m] iff

N | a(z)[n)].
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THEOREM 4.14. For H any of H({R™'),@, @), Hy((R7Y), @), H((R™!), @ @O, E)
or HN((R™Y),@,E), a first-order formula o(z) over the signature (REL U {P; | p; €
PROP},NOM, {z,y}) is invariant for H-bisimulations iff it is equivalent to the hybrid
translation of a hybrid formula in H.

The proof is a standard diagram chasing. We will see more details in Chapter 6.

4.5.3 Interpolation and Beth Definability

In Chapter 6 we will investigate the interpolation and Beth definability properties for a
variety of hybrid languages. What is the role of these two properties in the setting of
description logics?

Let’s first introduce some notation. For ¥ = (T, A), ¥/ = (T’ A’) two knowledge
bases, let YUY be (TUT', AU A’), and X[C/D] be the knowledge base obtained from
> by replacing each occurrence of the concept C' by D. Now, suppose that for a given
knowledge base ¥ the following holds,

Z[C/Dl] U E[C/DQ] ): D1 = DQ for some Dl, DQ ¢ CON(E) (42)

Notice that (4.2) needs not be the case for all knowledge bases ¥ and concepts C. For
example, for the simple knowledge base ¥ = ({C' C A}, {}) we have

({D1 C A, Dy C A}, {}) £ Dy = Ds.

Actually, (4.2) implies that ¥ encodes enough information concerning C' to provide
a complete — though not necessarily explicit — definition. Now, if the (global) Beth
definability property (see Definition 6.18) holds for the language of ¥, then there actually
exists an explicit definition of C. l.e., there is a concept D not involving C' such that

S EC=D.

Given that description languages take definitions very seriously, the Beth definability
property (i.e., the capacity of the language to turn implicit definitions into explicit)
seems highly relevant.

There are well know examples of languages for which the Beth definability property
fails: the finite variable fragments of first-order logic, the —-fragment of classical propo-
sitional logic, or full first-order logic when interpreted on finite models. On the other
hand for example, all modal logics extending K4 have the Beth definability property.
The work of Maksimova [1991a, 1991b, 1992a, 1992b, 1992¢| is the main reference on
interpolation, Beth definability and their interrelations for modal languages.

There doesn’t seem to be one uniform direct way of proving or disproving Beth
definability. The standard approach to establish the property is via a detour through
interpolation (see Definition 6.15). In first-order and modal languages, the (arrow)
interpolation property implies the Beth definability property and, as we will discuss in
Section 6.2.2; the same relation holds for hybrid languages.

Hence, positive interpolation results for hybrid languages would translate into nice
definability properties of the corresponding description language. Sadly, for languages
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where nominals appear free in formulas, and which do not provide a binding mechanism,
failure of arrow interpolation seems to be the norm. In particular, in Section 6.2 we pro-
vide counter-examples to the arrow interpolation property for the basic modal language
extended with nominals, Hy(@) and Hs(@). The extensions of these languages with the
(R™1') operator fare no better, and adding the E operator doesn’t help either. Hence, in
all these cases, the most traded path to establish Beth definability is closed for us.

The case is different for H(@Q, @0) and H((R™1), @, @), As we will now show,
we can extend the constructive method for establishing arrow interpolation presented
in [Kracht, 1999, Section 3.8], to handle @ and @&, Again we will make use of the
normal form introduced in Proposition 4.2.

Kracht proves interpolation for a family of modal languages by means of tableaux.
Given a complete tableau system for a logic £, consider a closed tableau for ¢ A—1). Now,
proceed inductively from the tableau leaves up to the root and for the set of formulas X
in each node, provide a splitting X = X*U X¢ into antecedent and consequent formulas
together with an interpolant for A X and A X¢. This is done by analyzing one by one
each of the tableau rules. At the end of the process we arrive at a formula # in the
common language such that ¢ A =6 and 6 A =) have closed tableaux. Hence 6 is an
interpolant of p — .

Investigating interpolation always involves paying special attention to the exact lan-
guage in which deduction is carried over. The tableaux used in this kind of proofs should
be specially designed along these lines, and be careful on the vocabulary used during a
proof. For example, systems introducing new labels, as the constraint systems we dis-
cussed in Section 2.4, are usually of no help. The connection between tableaux systems
and interpolation for modal languages has been explored in detail in [Rautenberg, 1983].

To prove interpolation for H(@Q, @), we extend the tableau system 7 for K intro-
duced in [Kracht, 1999] with rules to handle @ and @<, and prove that the inductive
construction of the interpolant can be carried over in the extended system. Our work
is particularly simple: given the normal form of formulas in H(@, @<), the rules for
@ and @O need to be applied only once in any closed tableau. The tableau system
T for K is the following. The rules in 7 transform sets of modal formulas into new
sets. Below, XY are sets of formulas, ¢, are formulas, [R,]S = {[R,]¢ | ¢ € S}, and
Xip=XU{p}

Xip N Xiop
X530 (AE) X B
X;oV XY
Ko %5 P x W)
R,]X;-[R,
]

X; -

Extend 7 to 7’ with the following rules. Below, @;S = {@Q;p | ¢ € S} and we write
Q;(R,)j as R,(i,7) to avoid confusion with our notation @;X.

X (@1E> X1;X2 (RT(Z7])E)'

If a hybrid formula is in normal form, then (@,E) and (R, (4, j)E) need to be applied
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only once in a branch of a tableau, because the consequence of each rule is a set of
basic modal formulas. Hence any closed tableau in 7’ involving some application of
the two new rules, can be turned into an equivalent one which starts with a number
of applications of the Boolean rules till they cannot be applied further, followed by an
application of either (@;E) or (R,(i,7)E) (but not both) and ending as a tableau in 7.
To complete the argument provided by Kracht for the new two rules, we need only verify
that given an interpolant 6 for X = X%; X¢ @,0 is an interpolant for @, X = @, X*, @, X°.
And similarly, given an interpolant 6 for X;; Xy = X{; X§; X7; X§, @Q;0 is an interpolant
for @; Xy; Q;[R,] Xo; R, (i, ) = Q; X{; Q;[R;] X; Q; X7, Q;[R, | XS; R, (i, j)°.

Notice that the proof above is constructive, i.e., we can explicitly obtain an inter-
polant for ¢ — 1 from a tableau for p; —1). Arrow interpolation for H({(R™!), @, QO)
can be established in a similar way, my means of an extension of the tableau construction
for the temporal basic logic K;. Hence

THEOREM 4.15. H(Q@, @O) and H((R™!'), @, @O) have arrow interpolation.

As we said, arrow interpolation implies global Beth definability: implicit definitions in
H(@, @) can be turned into explicit definitions. And we can attempt to transfer this
property to the description logic counterpart of H(@, @<). We would do as follows,
suppose a knowledge base ¥ = (T, A) in ALC satisfies the conditions in (4.2). Then
we can translate > into a theory T of H(@, @) (as we are using global consequence
this time we don’t need E), and T'[pc/pp,| U T'[pc/pp,] = pp, < Pp,- Applying Beth
definability for H(@, @) we obtain a formula 6 such that T =" 6 < pc. Now, 6 is an
explicit definition of C, but it is in the full language H(@Q, @), i.e., it might contain
subformulas of the form @;y) and @;$j. Because of the syntactic restrictions imposed
by the division into T- and A-Box information it will not always be possible to translate
f into a concept in ALC. To see an example, suppose 6 is of the form @;v V ). Hence
we will have that ¥ | (Qv — (pc < T)) A (Q;=v — (pe < ¢)). That is, we obtain a
definition of C' conditioned on assertional information.
More generally, we first write 6 in normal form to obtain

T ):glo (/\( \/ @Z-I/(“)) Vv Tz) < Pc-

leL ieNOM

Notice that for a hybrid formula ¢ and @Q;v € SF(¢)) such that @ does not appear in v,
¥ is equivalent to (Q,v — ¥[Q;v/T]) A (Q;—v — [@Q;r/L]). By iterating this rewriting
on (N (Vienom Qiviin) Vi) < pe we finally obtain a series of definitions of C' in terms
of concepts of ALC, but conditioned on assertional information to be inferred from 3.

There is an interesting connection between the Beth definability property and our
discussion in Section 2.2.2 concerning restricted definitions. As we mentioned there,
the restriction to acyclic definitions was aimed at avoiding the introduction of circular
concepts, i.e., concepts defined in terms of themselves. This kind of concepts, it was
argued, called for some kind of fixed point semantics and this kind of semantics was
computationally expensive [Nebel, 1990a; Baader, 1990]. But if the language has the
Beth definability property, any concept implicitly defined in a knowledge base also has
an explicit definition without self reference. Hence, considering only acyclic definitions
does not carry any expressivity loss.
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4.5.4 Variables and Binders

What about the idea of introducing variables and binders? It turns out that free variables
do not fit well in a global perspective. As we prove in Theorem 7.17, the global K-
Sat problem of Hs(@) is not decidable. The reason is that with the global notion
of consequence, free variables are interpreted as universally quantified and the global
hybrid quantifier V is surreptitiously creeping into the picture.

Too bad, but we could still consider only sentences if we add the | binder to the
language. Undecidability strikes again: by Theorem 7.1 even the fragment of Hs(|)
consisting of pure nominal-free sentences has an undecidable local K-Sat problem. But
if we restrict | to appear non-nested, the language turns decidable. We will prove this
in Theorem 7.10, here instead we will show that this non-nested use of | actually has a
quite natural interpretation in description logic terms.

Extend ALCOZ to ALCOTI| with the addition of two new operators THOSE-X and
{X}, and allow {X} and THOSE-X.C' as concepts if C' is a concept. Semantics for
ALCOZ| will be defined in terms of extended interpretations which are pairs (Z,1)
where 7 is a standard interpretation Z = (AZ,-T) and i € AZ. Now define,

{XpE0 = {i}
THOSE-X.CT? = {ae AT|ae CTI}

The best way to understand how THOSE-X and {X} work together is by trying our hand
with some examples.

EXAMPLE 4.16. Consider the following definitions in ALCOT|,

NOT-SELF-EMPLOYED = THOSE-X.(VEMPLOYED-BY.—~{X}) M HUMAN
CORRESPONDED-LOVE = THOSE-X.(3LOVES.3LOVES~'.{X}).

The first concept defines the set of all those elements in the domain which are both
human and which are not employed by themselves. While the second, define those
happy people loving somebody who loves them back.

It is easy to show with techniques similar to the ones we used in Section 4.5.2; that the
addition of these new operators (even with the restriction to non-nested occurrences)
indeed provides extended expressive power. If we restrict to sentences and non-nested
occurrences of THOSE-X, we obtain a new decidable description language which seems
well suited to define notions involving self reference, as the concepts in Example 4.16
show. In Chapter 5 we will discuss how to provide reasoning methods for handling |.

4.5.5 Accounting for Counting

Graded or counting modalities (n)p allow us to restrict the number of possible successors
of a given state satisfying ¢.

M,mE (nyp iff Imq, ... m,.( /\ m; #m; & /\R(m,mi) & /\M,ml- - ).

1<i<j<n 1<i<n 1<i<n
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Even though these modalities have been introduced into modal languages in the 1970s
[Goble, 1970; Fine, 1972], their theory is not so well developed. On the other hand, the
corresponding operators (<n R)C and (>n R)C called qualifying number restrictions
are actively used in description languages, as they lend themselves well to represent
information like “every human has exactly two parents” or “applicants should provide
at least two references from professors”:

HUMAN C (<2 Parent)T I (>2 Parent)T,
APPLICANT L (>2 Reference)PROFESSOR.

Notice that the operator O of qualifying number restriction is more expressive than the
simple number restrictions N we introduced in Table 2.1. The definition of APPLICANT
above is not possible using just N

Only recently, and actually stemming from the interaction between the description
and modal logic communities, new result concerning counting operators have been pre-
sented. The first complexity results appeared in [de Rijke and van der Hoek, 1995],
where a PSPACE-completeness result is proved for the local satisfiability problem for
multi-modal Gr(K) (multi-modal K extended with graded modalities). But the proof
only covers the case when numbers in graded modalities are encoded in unary. Tobies
[1999], shows that the same result obtains even when the encoding is done in binary.

Concerning model-theoretical results, [de Rijke, 2000] presents the appropriate no-
tion of bisimulation for graded modalities, and provides a simple proof of the finite
model property together with a characterization of the fragment of first-order logic cor-
responding to the basic modal language extended with graded modalities in the line of
Theorem 4.14.

As we showed in Example 3.5, Hs(@Q, | ) is expressive enough to encode graded modal-
ities. But very little is known concerning counting modalities in less powerful hybrid
logics. The only two references we are aware of come from the description logic com-
munity. In [Horrocks et al., 2000c] a decision method for determining the consistency of
(non Boolean) knowledge bases for the description language SHZQ is given. SHZQ is
an extension of ALC which includes transitively closed primitive roles, inverse roles, role
hierarchies and qualifying number restrictions. The algorithm is an extension of a pre-
vious decision method for consistency of SHZQ knowledge bases with empty A-Boxes,
and relays in techniques similar to the ones used in [Areces et al., 1999¢c| and the ideas
we have been using in previous sections: and A-box can be modeled by a forest, a set of
trees whose root nodes form an arbitrarily connected graph, where the number of trees
is limited by the number of individual names occurring in the A-Box.

In [Tobies, 2000a], complexity results for ALCQ, the description logic counterpart of
Gr(K), are investigated. Tobies considers T-Boxes with cardinality restrictions. Cardi-
nality restrictions are expressions of the form

(>n C) and (<n C)

for C' a concept in ALCQ. An interpretation Z satisfies (>n C) iff |CF| > n. This
kind of knowledge bases encodes a form of global counting and are more expressive than
those containing only terminological axioms. To witness, (C' C D) is equivalent to
(<0 (C'1=D)). Tobies proves that deciding consistency of knowledge bases containing
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cardinality restrictions for the language ALCQ is EXPTIME-complete, while it moves
to NExpPTIME-complete for ALCQZ. Tobies also reports a behavior similar to what
we discuss in Theorem 7.18: even though the satisfiability problem in terms of empty
knowledge bases for ALCQT is PSPACE-complete, it jumps to NEXPTIME-complete by
the addition of a single nominal.

One interesting point for further research is the following. It will become clear in
Section 6.2 that the counter-examples to arrow interpolation we present are based on
a counting argument. Because the language is not expressive enough to bound the
number of successors of a given state we can draw bisimulations between points with
different number of successors and use this to prove failure of the interpolation property.
The language extended with counting operators (even unqualified counting) would, of
course, destroy the bisimilarity and hence our counter-examples, opening the way to
interpolation.

4.6 Differences and Similarities

As we said in the introduction of Section 4.5, there are many more possible connections
between description and hybrid languages which we didn’t discuss.

On the complexity line, for example, there are interesting links between the filtra-
tion technique and the selection of maximal and minimal witnesses (see the proof of
Theorem 7.22), and the blocking technique used to prove termination of completion of
constraint systems when transitive roles are allowed (see [Horrocks et al., 2000b]). Also
having to do with complexity and decision methods, the tableau systems provided in the
hybrid literature [Tzakova, 1999a; Blackburn, 2000a] differ from the constraint systems
we introduced for description languages in Section 2.4, and a comparison would surely
lead to new discoveries. In addition, as we discussed in Section 3.2 there are important
connections between hybrid languages and labeled deduction, and these connections are
now made extensive to description languages. And there is of course, the issue of imple-
mentations. Many, very powerful provers (DLP, FACT, RACE) are available for a variety
of description languages. They can already today deal with many modal languages, and
it would be simple to extend them to deal with hybrid languages.

We have only scratched the surface on expressivity issues. For example, definability
results for hybrid languages (like those in [de Rijke, 1992; Gargov and Goranko, 1993;
de Rijke and Sturm, 2000]) shed light on which are the models which can be captured
by the knowledge bases of certain description languages. More generally, [Gargov and
Goranko, 1993] discusses transfer results when moving from basic modal languages to
languages with nominals, while [Goranko and Passy, 1992] does a similar analysis for the
extension with the existential modality. These results are closely related to the move
from empty knowledge bases to non-empty A- and T-Boxes, respectively. In his original
article, Schild discusses axiomatizations for description languages drawing from modal
logics and CPDL. We can explore a similar path by means of the axiomatizations and
completeness results for hybrid logic [Passy and Tinchev, 1991; Tzakova, 1999a].

In Sections 4.5.4 and 4.5.5 we picked just two examples of the different directions in
which the two families of languages have developed, but the possible options were many.
On the hybrid side, for example, the general theme of sorting (inclusion of new sets of
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symbols to represent a given type of information), instead of just naming, gives rise to
hybrid languages which can handle intervals [Areces et al., 2000a], paths [Bull, 1970;
Goranko, 2000], or time granularity and reference [Blackburn, 1994]. And the available
choices on the description logic side are innumerable: transitive closure, transitive roles,
role hierarchies, role composition, disjointness axioms, etc.

It looks like the bridge between description and hybrid logics we have constructed
will be well-traveled.



Part III

Going Places

‘I know what you’re thinking about,’

said Tweedledum, ‘but it isn’t so, nohow.
‘Contrariwise,” continued Twedledee,

“if it was so, it might be; and if it were so,
it would be; but as it isn’t it ain’t.

That’s logic.’

2

from “Alice’s Adventures in Wonderland,” Lewis Carroll

In this part of the thesis we will tread three roads crossing the lands between and
around the two kingdoms we presented in Part II. These roads are Reasoning Methods,
Expressive Power, and Complexity. Each road has its own main panoramic stops, and
even its own rhythm and direction. Each of them can be taken independently, relying
only on the notions, results and connections we have introduced up to now.

As we saw in Chapter 4, results on description logics cast their shadows on hybrid
logics and vice versa. In the chapters to come we will mainly favor a hybrid logic
perspective, but Section 4.5 should have provided enough hints on the way of looking
into these matters under two different lights.

In Chapter 5 we draw on lessons from description and hybrid logics to provide a
direct resolution method for modal languages. Here again, individuals/nominals play
a role in simplifying proof theory: state labels transform previous complex proposals
for direct resolution for modal languages into elegant systems. And once the basics
have been cleared up, the resolution system can easily be extended to more expressive
description/hybrid languages.

In Chapter 6 we discuss expressivity. In the first half of the chapter we provide a
precise characterization (both syntactically and semantically) of Hs(@, |) and some of
its sublanguages and extensions. These results let us grasp which classes of frames can
be defined in these languages. In the second half we turn to interpolation and Beth
definability, completing the picture we started drawing on Section 4.5.3.

Finally, in Chapter 7 we discuss complexity results. We have already taken advantage
of these results in Section 4.5.1, and we now provide full details. In particular, we will
discuss the effect of considering different languages and classes of frames.

Enjoy the ride!






Chapter 5

Improving Reasoning Methods

Luchando por una verdad
pero que sea rentable.

from “El Ente,” Los Visitantes

As a warming up to the purely theoretical work we will do in Chapters 6 and 7, we will
now show how ideas from description and hybrid logics can be put to work with benefit
even when the subject is purely modal. In particular, aided by the notions of nominals
or labeling, we will show how to define well behaved direct resolution methods for
modal languages. This “case study” is a clear example of how the additional flexibility
provided by the ability to name states can be used to greatly simplify reasoning methods.
In addition, we can build over the basic resolution system and obtain extensions for
description and hybrid languages.

Reasoning methods for modal-like languages, can be broadly divided in two cate-
gories: direct and indirect. Indirect methods start by translating modal formulas into
some first-order language preserving satisfiability, and then take advantage of reasoning
methods for FO [de Rijke et al., 2000]. Direct methods instead, work directly on modal
formulas devising specialized algorithms for each modal language [Fitting, 1983].

The most developed reasoning methods for modal and modal-like languages today
are direct methods, and they are mainly tableau based. Most indirect methods use first-
order resolution. In contrast, direct modal resolution methods are poorly developed.
By drawing on what we have learned in previous chapters about hybrid and description
languages, we will provide a direct resolution-based proof procedure for modal languages
which improves many aspects of previous proposals. After explaining in detail the
resolution method for basic modal languages we will discuss extensions in the three
fields of modal, description and hybrid logics. The main characteristics of the new
resolution method can be summarized as follows:

— by using labeled formulas it avoids the complexity of earlier direct resolution-based
methods for modal logic.

— it does not involve skolemization beyond the use of constants;

— it does not involve translation into large undecidable languages, working directly
on modal, hybrid or description logic formulas instead;

— as far as we know, its extension to DLs is the first to account for knowledge base
inference by means of a direct resolution approach;

— it is flexible and conservative in more than one sense: it allows the amalgamation
of different ideas. In particular it incorporates the method of prefixes used in
tableaux into resolution in such a way that different heuristics and optimizations
devised in either field are applicable.

73
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5.1 Resolution

Resolution, introduced originally for FO in [Robinson, 1965], is the most widely spread
reasoning method for first-order logic today: most of the available automatic theorem
provers for FO are resolution based. The elegance of the resolution method and its
appeal for implementation rely on its bare simplicity.

Let us discuss the propositional case. To check whether a propositional formula ¢
is inconsistent, we first turn it into clausal form. To this aim, write ¢ in conjunctive

normal form
Y= /\ \/ ¢(l,m)a

leL meM

and let the clause set associated with ¢ be
CISet(ss) = {{am) | m € M} | L € L}.

Now define ClSet"(p) as the smallest set containing ClSet(y) and closed under a unique,
very simple to grasp rule,

CluU{N} € CiSet*(p) ClyU{-N} € ClSet*(p)
Cly UCly € ClSet*(p)

(RES).

If {} € ClSet*(p), then ¢ is inconsistent. The intuition behind the (RES) rule is as
follows: given that either N or =N is always the case in any model they can be “cut
away” if the sets of clauses are conjoined. The aim of the whole method is to “cut away
everything” and arrive to the empty set.

The resolution method seems to be specially devised for a dumb machine able to
crunch symbols quickly. The only computational cost is a search for complementary
atoms in the set of clauses. Of course, actual system implementations for first-order
logic are not “dumb” at all. On the contrary, the field has developed into an extensive
community, with an impressive collection of methods, optimizations, etc. [Bibel and
Schmitt, 1998; Robinson and Voronkov, 2000].

In contrast, modern modal theorem provers, as well as the fastest description logic
provers we mentioned in Chapter 2, are generally based on tableau methods. Strangely
enough, nowadays resolution and modal languages seem to be related only when in-
direct methods are used. In translation-based resolution calculi for modal logics, one
translates modal languages into a large background language (typically first-order logic),
and devises strategies that guarantee termination for the fragment corresponding to the
original modal language [Fermiiller et al., 1993; Hustadt, 1999; de Nivelle et al., 2000;
Areces et al., 2000d]. First-order resolution provers like BLIKSEM or SPASS handle modal
formulas in this way. This approach has both advantages and disadvantages with re-
spect to the tableau approach. On the one hand we can translate many systems into
the same background language and hence explore different, and also combined, systems
without the need to modify the prover. But empirical tests show that the price to pay is
high [Horrocks et al., 2000a; Areces et al., 2000d]. The undecidability of the full back-
ground language usually shows up in degraded performance on the modal fragments,
and first-order provers can hardly emulate their tableau based competitors.
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It is natural to wonder why direct resolution methods for modal languages don’t
figure in the picture. Designing resolution methods that can directly (that is, without
having to perform translations) be applied to modal logics, received some attention in
the late 1980s and early 1990s [Enjalbert and Farinas del Cerro, 1989; Mints, 1989;
de Nivelle, 1994]. Also the first (non-clausal) resolution methods for temporal languages
go back to that period with the work of Abadi and Manna [1985]. Recently, new results
on clausal temporal resolution have been presented (see [Dixon et al., 2000]). But
even though we might sometimes think of modal languages as a “simple extension of
propositional logic,” direct resolution for modal languages has proved a difficult task:
in basic modal languages the resolution rule has to operate inside boxes and diamonds
to achieve completeness. This leads to more complex systems, less elegant results, and
poorer performance, ruining the one-dumb-rule spirit of resolution.

5.1.1 Direct Resolution for Modal Languages

To understand exactly how we can use hybrid and description logic ideas to improve
direct modal resolution, we introduce the system presented by Enjalbert and Farinas del
Cerro in [1989]. We first provide some definitions and notation from [Enjalbert and
Farinas del Cerro, 1989], as they are not completely standard.

A modal formula is in disjunctive normal form if it is a (possibly empty) disjunction

of the form
p=\Liv\/OD;v\/ oA,

where each L; is a literal, each D; is in disjunctive normal form, and each A; is in
conjunctive normal form. A modal formula is in conjunctive normal form if it is a
conjunction ¢ = A C;, where each C; is in disjunctive normal form. A formula in
disjunctive normal form is called a clause. The empty clause is denoted as 1. We
identify a conjunction C; A ... A C, with the set (Cy,...,C,). Clearly any modal
formula is equivalent to a clause, and from now on we need only consider clauses.

The following examples of applications of the resolution rule “in modal contexts” are
discussed in [Enjalbert and Farinas del Cerro, 1989

O(pVq) O-p O(pV q) O-p
(=, q) D

Both inferences are sound, and are clearly instances of the (RES) rule. But if we
attempt to apply a similar rule to the clauses &(p V q) and O—p to derive O(—p, q) we
don’t preserve soundness. Also, inferences with only one premise seem to be needed, as
for example

O(=p.p V)
O(=p.pVa,q)
In line with these intuitions, the following resolution system is introduced and proved
complete for K. Define inductively two relations on clauses ¥(A, B) — C (C'is a direct
resolvent of A and B) and I'(A) — C (C is a direct resolvent of A), as indicated in
Figure 5.1, where a, (3, k, 01, d3 are clauses, ¥, ® are sets (conjunctions) of clauses, and
(cv, ¥) denotes the result of appending the clause a to the set W.
Define the simplification relation A ~ B as the least congruence containing
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Axioms
(A1) E(p,—p) — L
(A2) (L,a) — L
Y-Rules I'-Rules
S(a,8) — & S(a.8) — r
M Savagve) snvave | Y T00.5.9) - o rd)
E(a,B) = K (o) — 8
(00 S@Ea03,9) S oG | Y T 8) = 0@, .
Y(a,B) — Kk Na)— g
(B0) ¥(Oa,08) — Ok V) MNaVk)— BVE
(o) — B
(D) F(Da) — 0g

Figure 5.1: Resolution rules

Sl o~ 1
lvD =~ D
(LLE) ~ L

AVAVD =~ AvVD.

For any formula F' there is a unique F’ such that F' ~ F’ and F’ cannot be simplified
further. We call F’ the normal form of F. C'is a resolvent of A and B (respectively
A) iff there is some C’ such that ¥(A, B) — C’ (respectively, I'(A) — C”) and C is the
normal form of C’. We write (A, B) = C (respectively, I'(A) = C) if C is a resolvent
of A and B (respectively, of A).

Given a set of clauses S, let ClSet”(S) be the smallest set containing S and closed
under resolvents of elements in ClSet*(S). We say that D is a resolution consequence of
a set of clauses S (notation S = D) iff D € ClSet*(S).

THEOREM 5.1. For S a set of clauses and D a clause, S+ D iff Ex S — D.

So much for the one-rule-spirit of resolution. Let us go through an example to better
understand how this resolution method works.

EXAMPLE 5.2. Consider the formula & (pA(—pVvOrve))AO-gAOO—r. In the resolution
proof below we underline the literals on which resolution takes place, and simplify many
steps for succinctness.

L (O(p,op Vv OrVg),0-g,00-r)
by (A1), (V) and (<¢1)

2. (C(p,—pVvOrVgOrVg),d-q,00-r)
by (A1), (V) and (OC)

3. (C(p,—pVvOrVg,OrVg Or),0-¢,000r)
by (A1) and two applications of (O<)

4. (O(p,—~pV OrVvgq,OrVg Or,O(—r, L)), O05¢, 00-r)
by the simplification &L = 1, (A2) and (<1)

5. L
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As we see, the direct resolution method for modal logics presented in [Enjalbert and
Farinas del Cerro, 1989] (and similarly those in [Farinas del Cerro, 1982; Mints, 1989;
de Nivelle, 1994] perform resolution “inside” modalities (in a similar way as how new
tableaux have to be started in non-prefixed tableaux systems).

In the next sections we develop a direct resolution method for modal, description
and hybrid logics that retains as much as possible of the lean one-rule character of
traditional resolution methods. The key idea introduced here, from a basic modal logic
perspective, is to use labels to decorate formulas with additional information. Labels
allow us to make information explicit and resolution can then always be performed at
the “top level.” From a description or hybrid logic perspective we have just taking
advantage of the new expressive power that individuals/nominals provide.

5.1.2 Labeled Resolution

In this section we introduce a direct resolution proof procedure for the basic multi-modal
logic K,,,. In what follows, we assume fixed a modal similarity type S = (REL, PROP),
together with a hybrid/description logic similarity type (without state variables) &' =
(REL, PROP, LAB) where LAB is a countably infinite set of nominals/individuals.

DEFINITION 5.3. [Weak negation normal form]| Define the following rewriting procedure
wnnf on modal formulas
i % g,

ii. (R "% —([R]~yp),
iii. (o1 V p2) B —(—p1 A —2).

For any formula ¢, wnnf converges to a unique normal form wnnf(¢) which is logically
equivalent to ¢. If we take V and (R)¢ as defined operators, then wnnf is slightly more
than an expansion of definitions.

DEFINITION 5.4. [Clauses| A clause is a set Cl such that each element of Cl is a labeled
formula of the form t : ¢ or (t1,t2) : R for t,t1,t € LAB, R € REL and ¢ a basic
multi-modal formula. Let ¢ be a basic multi-modal formula. The set S, of clauses
corresponding to ¢ is simply {{a : wnnf(¢)}}, for a an arbitrary label in LAB.

Notice that formulas in a clause can be seen as assertions in a description language.
Let Cl be a clause, and Z = (A, %) be a description logic interpretation on &', we write
ITECIHT EVCIL A setof clauses S is satisfiable if there is interpretation Z such
that for all Cl € S, T = CI.

The following proposition is straightforward,

PROPOSITION 5.5. Let ¢ be a basic multi-modal formula and S, its corresponding set
of clauses. Then ¢ is satisfiable iff S, is satisfiable.

PrOOF. For the left to right implication, given a model M and m € M such that
M,m IF ¢, just define aZ = m and give any interpretation to others elements in LAB.
For the other direction, just drop the interpretation of elements in LAB. QED
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CLU{t:¢1 A o} ClU{t:—(¢1 A @2)}

T P e IV (R e R T )
ClU {t:pq}
([R]) Cly U {t::[Rlp} ClaU{(t1,t2): R}

Cll U Olg U {tg:gp}
ClLU {t:=[R]p}

Clu{(t,n): R}
ClU {n:wnnf(—p)}

(=[£])

, where n is new.

Figure 5.2: Labeled resolution rules

Figure 5.2 provides a set of rules transforming sets of clauses into sets of clauses.

If you read the rules with the standard translation ST of Definition 1.19 in the back
of your mind, the meaning of ([R]) and (—[R]) will be immediately clear. ([R]) is needed
to account for the “hidden” negation in the guard of the quantifier in the translation
of the box, and in that sense it is indeed a standard resolution rule which cuts away
complementary binary literals. On the other hand, (—[R]) can be seen as a mild kind
of skolemization which only involves the introduction of constants. From this point of
view we can consider the (A), (=A) and (—[R]) rules as preprocessing the input formula
and feeding it into the resolution rules (RES) and (—[R]). Equivalently, we can view
the system as intermingling the reduction towards a standard clausal form with the
resolution steps as in [Fitting, 1990]. One immediate advantage of this method is that
resolution can be performed not only on literals, but on complex formulas.

DEFINITION 5.6. [Deduction] A deduction of a clause Cl from a set of clauses S is a
finite sequence S, ..., S, of sets of clauses such that S = S;, Cl € S,, and each S; (for
i > 1) is obtained from S;_; by adding the consequent clauses of the application of one
of the resolution rules in Figure 5.2 to clauses in S;_1. Cl is a consequence of S if there
is a deduction of CI from S. A deduction of {} from S is a refutation of S.

The set ClSet*(S), defined as the smallest set containing S and all its consequences,
need not be finite because the rule (—[R]) can introduce infinitely many clauses which
only differ on the label. By restricting (=[R]) to be “fired only once” in a way similar as
how is done for constraint systems in Table 2.2, we can ensure finiteness of CISet"(S),
and hence termination of the search for consequences.

Before moving on, let’s redo Example 5.2 in the new resolution system. Again we
underline the part of the formula where a rule applies. Notice that we are now explicitly
showing all steps.

EXAMPLE 5.7.
L {i:20=(p A =(p A =Or A =q))}, {i:O=g}, {i:0-0r}, by (-0)
2. {R(3,5)}{7: (pA~(p A =Or A =g))}, {i:0~g}, {i:0-0r}, by (A)
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3. {R>, )} i} i 2(pA-0rA=g)}, {i:0=g}, {i:0-0r}, by (=A)
4. ARG, )}, {j:ph{j:op,j:0Orj:q},{i:0~q}, {i:0-0r}, by (RES)
5. {R(i,j)},{j:0r,j:q},{i:8~q}, {i:0-0r}, by (0)
6. {j:0rj:q},{j:q}, {j:—0Or}, by (RES)
7. {j:0r}, {j:20r}, by (RES)

8. {}.
It is straightforward to prove that the resolution rules in Figure 5.2 preserve satisfiability.
That is, given a rule, if the premises are satisfiable, then so are the conclusions. In
Section 5.2.2, we will extend the system to deal with knowledge bases in the description
language ALCR, and prove there in detail, soundness, completeness and termination.

5.2 Extensions and Variations

The system we have just introduced can be extended in different directions. In this
section we discuss first how to account for modal systems different from K,,. The next
step — one which should by now come very naturally to us — is to internalize into the
object language the labels we used to assist resolution. In particular, we will extend
the calculus above to deal with (simple, acyclic) knowledge bases in ALCR. Finally, we
briefly discuss extensions for hybrid languages.

5.2.1 Modal Logics

From a traditional modal point of view we often want to consider systems above K,,.
We choose systems T, D, and 4 as examples. Each system is axiomatically defined as an
extension of the basic system K by the addition of an axiom scheme which characterizes
certain property of the accessibility relation.

Name | Axiom Scheme Accessibility Relation
T p— Op reflexivity: Va.R(x, )
D Op — Op | seriality: Vaedy.R(zx,y)

4 OOp — Op | transitivity: Vayz.(R(z,y) A R(y, z) — R(z, 2))

Corresponding to each of the axioms we add a new resolution rule.

ClU{t:0p}
(T) ClUA{t:p}
D) ClU{t:0p}

ClU {t:=Ownnf(—p)}

(4) Cll U {tl . D(p} ClQ U {(tl,tQ) R}
Cl1UCl2U{t22 D(p} '

Soundness for these systems is immediate:

THEOREM 5.8. The resolution methods obtained by adding the rules (T), (D) and (4),
are sound with respect to the class of models where the relation R is reflezive, serial and
transitive, respectively.
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For completeness and termination we should modify the constructions in Section 5.2.2
(in particular (4) needs a mechanism of cycle detection); this can be done using methods
from [Enjalbert and Farifias del Cerro, 1989].

THEOREM 5.9. The resolution methods obtained by adding the rules (T), (D) and (4),
are complete and terminate with respect to the class of models where the relation is
reflexive, serial and transitive, respectively.

5.2.2 Description Logics

In this section we will spell out the details of a labeled resolution system to decide
consistency of simple, acyclic knowledge bases in the description logic ALCR (see Sec-
tion 2.2.2). We assume fixed a description logic signature (CON, ROL,IND) together
with an additional countable set of labels LAB.

The new definition of weak negation normal form is simply a notational variation,
obtained by exchanging V by LI, A by I, etc. Again, for any concept C, wnnf always
converges to a unique normal form which we denote as wnnf{C'). The definition of clauses
and set of clauses associated to a knowledge base are only slightly more involved.

DEFINITION 5.10. A clause is a set Cl such that each element of C1 is either a concept
assertion of the form ¢:C where ¢t € INDULAB, or a role assertion of the form (t1,%3): R,
where %1, t5 are in IND U LAB.

We will use the notation t:C for concept assertions and (t1,ts): R for role assertions.
We use the notation ¢: N to refer both to concept and role assertions.

A formula in a clause is a literal if it is either a role assertion, a concept or negated
concept assertion on an atomic concept, or a universal or negated universal concept as-
sertion. The notions of model for a clause and for a set of clauses are as in Definition 5.4.

Let ¥ = (T, A) be a knowledge base with simple, acyclic definitions. As we discussed in
Section 2.2.2, any such knowledge base can be transformed into an “unfolded” equivalent
knowledge base of the form ({}, A). Hence, from now on we will only consider knowledge
bases with empty T-boxes.

DEFINITION 5.11. [Set of clauses of a knowledge base] The set Sy, = ({}, A) of clauses
corresponding to X is the smallest set such that

— ifa:Ci11---NC, = wnnfla:C) for a:C € A then {a:C;} € Sy,
— if (a,b): Ry M-+ MR, € A then {(a,b):R;} € Ss.

We can identify in Sy, a (possibly empty) subset of clauses RA of the form {(a,b): R}
which we call role assertions, and for each label a a (possibly empty) subset CA, of
clauses of the form {a:C} which we call concept assertions for a. Because of the format
of a knowledge base it is impossible to find in Sy, mized clauses containing both (in
disjunction) concept and role assertions. Furthermore there are no disjunctive concept
assertions on different labels, i.e., there is no clause Cl in Sy, such that Cl = Cl' U {a:
C1} U {b:Cy} for a # b. We will take advantage of these properties in the first steps of
the completeness proof.
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Cl U {{ZNl M NQ}

ClJ {tl_'(cl Il 02)}

ClLUCl,
ClLU{t;:YR.C}Y ClyU{(t,t:): R}
ClLLUCl U {t;:C}

ClU {t:—VR.C}

ClU{(t,n): R}
ClU {n:wnnf(—-C)}

(V)

, where n is new.

() ClU{t: N1} (=) ClUA{t: wnnf(—CY),t: wnnf(—Cs)}
ClU{t: N>}
(RES) ClhLU{t:N} ClbUu{t:-~N}

Figure 5.3: Labeled resolution rules for ALCR
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Proving that ¥ is consistent if and only if Sy, has a model is straightforward. Fig-
ure 5.3 shows the labeled resolution rules, but this time recast for the language ALCR.
Before proving soundness, completeness and termination we present a simple example

of resolution in our system.

ExXAMPLE 5.12. Consider the following description. Ignoring some fundamental genetic
laws, suppose that children of tall people are blond (1). Furthermore, all Tom’s daugh-
ters are tall (2), but he has a non-blond grandchild (3). Can we infer that Tom has a

son (4)?
(0) FEMALE = —MALE
(1) TALL C VChild.BLOND
(2) tom:VChild.(—FEMALE LJ TALL)
(3)  tom:3Child.3Child.—~BLOND
(

4) tom:3Child.MALE.

As is standard, we use a new proposition letter REST-TALL to complete the partial
definition in (1) and we resolve with the negation of the formula we want to infer. After

unfolding and applying wnnf we obtain the following three clauses

1. {tom:¥YChild.—(—MALE M —((¥Child.BLOND) M REST-TALL))}

2. {tom:—VChild.VChild.BLOND}
3. {tom:VChild.—MALE}.

Now we start resolving,

4. {s:—VChild.BLOND} by (—V) in 2
5. {(tom,s):Child} by (—V) in 2
6. {s:—MALE} by (V) in 3
7. {s:=(=MALE M —((VChild.BLOND) M REST-TALL)} by (V) in 1
8. {s:MALE,s:((VChild.BLOND) M REST-TALL)} by (=M) in 7
9. {s:((VChild.BLOND) INMREST-TALL)} by (RES) in 6 and 8
10. {s:VChild.BLOND} by (M) in 9
11. {s:REST-TALL} by (M) in 9

12. {} by (RES) in 4 and 10.
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THEOREM 5.13. [Soundness| The rules described in Figure 5.3 are sound. That is, if 3
1s a knowledge base, then Sx; has a refutation only if 3 is unsatisfiable.

Proor. We prove that labeled resolution rules preserve satisfiability. We only discuss
(=V). Let Z be a model of the antecedent. If 7 is a model of Cl we are done. If 7
is a model of t: =VR.C, then there exists d in the domain, such that (t£,d) € R? and
d € -C?. Let T’ be identical to Z except perhaps in the interpretation of n where
n? =d. As n is a new label, also Z’ |= t: =VR.C. But now Z’ = Cl1 U {(t,n): R} and
7' = ClU{n:wnnf(-C)}. QED

We now prove completeness. We follow the approach used in [Enjalbert and Farinas del
Cerro, 1989]: given a set of clauses S we aim to define a structure Tg such that

(t) if S is satisfiable, a model can be effectively constructed from Ts; and
(t1) if S is unsatisfiable, a refutation can be effectively constructed from 7.

But in our case we have to deal also with A-Box information, that is, with named objects
(concept assertions) and fixed constraints on relations (role assertions). We will proceed
in stages. To begin, we will obtain a first structure to account for named states and
their fixed relation constraints. After that we can use a simple generalization of results
in [Enjalbert and Farinas del Cerro, 1989]. We base our construction on trees which will
help in guiding the construction of the corresponding refutation proof.

Let ¥ be a knowledge base and Sy, its corresponding set of clauses. Let a be a
label and C'A, the subset of C'A of concept assertions concerning the label a. Construct
inductively, for each CA,, a binary tree T,. Let the original tree u consist of the single
node CA, and repeat in alternation the following operations.

Operation A1l. Repeat the following steps as long as possible:
— choose a leaf w. Replace any clause of the form {a:—(C; M C2)} by {a:wnnf(—Ch),
a:wnnf(—C3)}; and any clause of the form {a:C; M Cy} by {a:C1} and {a:Cs}.

Operation A2. Repeat the following steps as long as possible:
— choose a leaf w of u and a clause Cl in w of the form Cl = {a:Cy,a:Cy} U CUl';
— add two children w; and wy to w, where w; = w\{Cl} U {{a: C1}} and wy =
w\{Cl} U {{a:Co}UCl'}.

The leaves of T, give us the possibilities for “named states” in our model. We can view
each leaf as a set S7, representing a possible configuration for state a.

PROPOSITION 5.14. Operation A (the combination of A1 and A2) terminates, and upon
termination
i. all the leaves SL, ..., S™ of the tree are sets of unit literal clauses,
. if all SY, ..., S™ are refutable, then CA, is refutable,
iii. if one SJ is satisfiable, then CA, is satisfiable.

PROOF. Termination is trivial. ¢) holds by virtue of the construction, and i) is proved
by induction on the depth of the tree. We need only realize that by simple propositional
resolution, if the two children of a node w are refutable, then so is w. ii) is also easy.
Informally, Operation A “splits” disjunctions and “carries along” conjunctions. Hence
if some S7 has a model we have a model satisfying all conjuncts in C4, and at least one
of each disjunct. QED
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We should now consider the set RA of role assertions. Let NAMES be the set of la-
bels which appear in X. If a is in NAMES but CA, is empty in Sy, define S} =
{{a:C,a:—C}} for some concept C. We will construct a set of sets of nodes N =
{N; | N; contains exactly one leaf of each T,}. Each N; is a possible set of constraints
for the named worlds in a model of Sy.

PROPOSITION 5.15. If for all i, |J N; U RA is refutable, then so is Ss..
Proor. If for all 4, | J N; U RA is refutable, then for some label a we have that for all
S7 obtained from CA,, S? U RA is refutable. Hence by Proposition 5.14, CA, U RA is

refutable, and so is Sy. QED

For all 7, we will now extend each set in N; with further constraints. For each S, € NN;,
start with a node w, labeled by S,.

Operation B1l. Equal to Operation Al.

Operation B2. Repeat the following steps as long as possible:
— choose nodes wg, wy such that {(a,b): R} in RA, {a:VR;.C;} € wq, {b:C;} & wy,
where wy, is without children;
— add a child to wy, wy, = wy U {{b:C;}}.

Call N; the set of all leaves obtained from the forest constructed in B.

PROPOSITION 5.16. Operation B terminates, and upon termination
i. all nodes created are deriwable from | J N; U RA, and hence if a leaf is refutable so
18 U Nz U RA,
ii. if some | J N} is satisfiable, then Sy, is satisfiable.

PRroor. To prove termination, notice that in each cycle the quantifier depth of the for-
mulas considered decreases. Furthermore, it is not possible to apply twice the operation
to a node named by a and b and a formula a:VR;.C;.

As to 1), each node is created by an application of the (V) rule to members of N;URA
or clauses previously derived by such applications. To prove i), let Z be a model of
N#. Define I/ = (A, F') as A’ = A, a¥ = a? for all labels a, C*' = C? for all atomic
concepts C, and R = R* U {(a*,V?) | {(a,b): R} € RA}.

Observe that 7’ differs from Z only in an extended interpretation of role symbols.
By definition, Z' = RA. It remains to prove that 7’ = CA. By Proposition 5.14, we
are done if we prove that Z’ = [J N/. Since we only expanded the interpretation of
relations, Z and Z’ can only disagree on universal concepts of the form a:VR.C. By
induction on the quantifier depth we prove this to be false.

Assume that Z and 7’ agree on all formulas of quantifier depth less than n, and let
a:VR.C be of quantifier depth n, for {a:VR.C'} € S¥. Suppose 7' = VR.C. This holds
iff there exists b such that (a*',b*) € R* and I’ [~ b:C. By the inductive hypothesis,
T W~ b:C. Now, if (a*,b%) € RT we are done. Otherwise, by definition {(a,b): R} € RA.
But then {b:C} € Sy by construction and as Z = S;, we also have Z = b:C — a
contradiction. QED
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As we said above, each N} represents the “named core” of a model of S. The final step
is to define the non-named part of the model. The following operations are performed
to each set in each of the NV obtaining in such a way a forest F;.

Fix N}, and a. We construct a tree “hanging” from the corresponding S} € N/.
The condition that each node of the tree is named by either an individual or a new
label (that is, all the formulas in a node have the same prefix) will be preserved as an
invariant during the construction. Set the original tree u to S and repeat the following
operations C1, C2 and C3 in succession until the end-condition holds.

Operation C1. Equal to Operation Al.
Operation C2. Equal to Operation A2.

Operation C3. For each leaf w of u,

— if for some concept we have {C'},{—~C} € w, do nothing;

— otherwise, since w is a set of unit clauses, we can write w = {{t:C1}, ..., {t:Cpn.},
{t :VRy, . Ar}, .., {t : VR, An}, {t: VR, .P1}, ..., {t: VR .P;}}. Form the
sets w; = {{wnnf(t’: =P;)}} U S;, where t’ is a new label, and S; = {{t': Ap} | {¢t:
VR;.Ap} € w}, and append each of them to w as children marking the edges as R;
links. The nodes w; are called the projections of w.

End-condition. Operation C3 is inapplicable.

PROPOSITION 5.17. Operation C' cannot be applied indefinitely.

DEFINITION 5.18. We call nodes to which Operation C1 or C2 has been applied of type
1, and those to which Operation C3 has been applied of type 2. The set of closed nodes
is recursively defined as follows,

— if for some concept {t:C},{t:=C} are in w then w is closed,
— if w is of type 1 and all its children are closed, w is closed,
— if w is of type 2 and some of its children is closed, w is closed.

Let F; be a forest that is obtained by applying Operations C1, C2, and C3 to N/ as
often as possible. Then F; is closed if any of its roots is closed.

LEMMA 5.19. If one of the forests F; is not closed then Sy, has a model.

PrOOF. Let F; be a non-closed forest. By a simple generalization of the results in
[Enjalbert and Farinas del Cerro, 1989, Lemma 2.7] we can obtain a model Z = (A, %)
of all roots S’ in F;, from the trees “hanging” from them, ie., a model of |J N;. By
Proposition 5.16, Sy; has a model. QED

Lemma 5.19 establishes the property (f) we wanted in our structure Ts. To establish
(1T) we need a further auxiliary result.

PROPOSITION 5.20. Let w be a node of type 2. If one of its projections w; is refutable,
then so is w.
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PROOF. Let w be a set of unit clauses w = {{t:C1}, ..., {t:Cpn}, {t : VR, . A1}, ...,
{t:YRy, An}, {t:=VRy, P}, ..., {t:~VR,.P,}}. And let w; be its refutable projection:
w; = {{wnnf(t':=P;)}} US;, where t' is a new label, and S; = {{t': Ay} | {t:VR;. A} €
w}. We use resolution on w to arrive at the clauses in w; from which the refutation
can be carried out: Apply (=V) to {¢t: =VR;.F;} in w to obtain {t': wnnf(t': —P;)} and
{(t,t): R;}. Now apply (V) to all the clauses {t:VR;. A} in w to obtain {t': Ay}. QED

LEMMA 5.21. In a forest F;, every closed node is refutable.

PROOF. For w a node in Fj, let d(w) be the longest distance from w to a leaf.

If d(w) = 0, then w is a leaf, thus for some concept C, {¢t:C} and {t:—=C} are in w.
Using (RES) we immediately derive {}.

For the induction step, suppose the proposition holds for all w’ such that d(w’) < n
and that d(w) = n. If wis of type 1, let wy = w\{Cl}U{Cl} and wy = w\{Cl}U{Cls}
be its children. By the inductive hypothesis there is a refutation for w; and w,. By
propositional resolution there is a refutation of w: repeat the refutation proof for ws
but starting with w, instead of the empty clause we should obtain a derivation of Cly;
now use the refutation of ws. Suppose w is of type 2. Because w is closed, one of
its projections is closed. Hence, by the inductive hypothesis it has a refutation. By
Proposition 5.20, w itself has a refutation. QED

THEOREM 5.22. [Completeness| The resolution method described above is complete: if
Y is a knowledge base, then Sy, is refutable whenever X is unsatisfiable.

PROOF. We only need to put together the previous pieces. If ¥ does not have a model
then neither does Sy. By Lemma 5.19 all the forests F; obtained from Sy are closed,
and by Lemma 5.21, for each N, one of the sets S*, is refutable. By Proposition 5.16,
for all 4, |J NV; U RA is refutable. By Proposition 5. 15 Sy is refutable. QED

Because we have shown how to effectively obtain a refutation from an inconsistent set of
clauses we have also established termination. Notice that during the completeness proof
we have used a specific strategy in the application of the resolution rules (crucially, the
(V) rule is never applied twice to the same formula). By means of this strategy, we
can guarantee termination of labeled modal resolution when verifying the consistency
of any knowledge base in ALCR.

THEOREM 5.23. [Termination] Labeled resolution can effectively decide the consistency
of simple, acyclic knowledge bases in ALCR.

We have spelled out in detail the method for the basic description logic ALCR, the next
natural step is to consider extensions. For instance, in [Calvanese et al., 1997] some
attention has been given to n-ary roles (in modal logic terms, n-ary modal operators).
Our approach generalizes to this case without further problems.

Considering additional structure on roles is another possibility. We have limited
ourselves to conjunction, but disjunction, negation, composition, etc. can be considered.
And, of course, the addition of counting operators should be hight on our to-do list. A
very attractive idea which matches nicely with the resolution approach is to incorporate
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a limited kind of unification on “universal labels” of the form x:C, to account for on the
fly unfolding of definitions and more general T-Boxes. The use of such universal labels
would make it unnecessary to perform a complete unfolding of the knowledge base as a
pre-processing step. The leitmotiv would be “to do expansion by definitions only when
needed in deduction.” On the fly unfolding has already been implemented in tableaux
based systems like KRIS [Baader et al., 1994]. See also our discussion in Section 4.5.1.

5.2.3 Hybrid Logics

It’s the turn of hybrid languages now. But of course, we have already been dealing with
hybrid languages throughout the previous section: just remember the tight connections
between description and hybrid logics that we built in Chapter 4.

But what about binders? Extending the system to account for hybrid sentences
using | is fairly straightforward. Consider the rules

Clyu{t:lz.o} Clyu{t:—|x.o}
Cly U{t:plz/t]} ClyU{t: lz.wnnf(—p)}

Notice that the rules transform hybrid sentences into hybrid sentences. If, in addition,
we add the following rules to handle nominals

(1)

(=1)

Cll U CZQ U {th}

Clu{t:i}

(NOM) Cluf{i:t}

(SYM)

we obtain a complete calculus for sentences in Hs(|). Of course, in this case we cannot
expect a heuristic ensuring termination as the satisfiability problem for full Hs(]) is
undecidable. As we discuss in Section 4.5.4, we need strong restrictions in the language
to achieve decidability like considering only sentences with non-nested occurrences of |
(see Theorem 7.10).

Let’s work out a short example. We prove that |z.O(z A p) — p is a tautology.
Consider the negation of the formula in clausal form

L {i:lz.~0O=(z Ap)}, {i:—p}, by (1)
2. {i:z0-(i Ap)}, {i:-p}, by (—0)
3. {R(i,5)}, {5:(iAp)}, {i:—p}, by (A)
4. Ag:i}, {5}, {i-p}, by (SYM)
5 {i:j} {s:p}, {i:p}, by (NOM)
6. ?}":1_7}, {i:-p}, by (RES)
7. 1\

5.3 Reflections

In Section 2.4 we showed how constraint systems for instance checking could decide
the different reasoning task we introduced in the previous sections. In Section 3.2 we
argued how hybrid languages were able to internalize labeled deduction. The same ideas
play a fundamental role in the labeled resolution systems we introduced in this chapter.
Once again, individuals/nominals/labels together with the satisfiability operator : or @
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are the key to achieve smooth and well behaved reasoning methods. And the systems
we introduced in this chapter should have made clear that labeled resolution has many
advantages with respect to previous direct resolution proposals, supporting our claim
that description/hybrid logic ideas can indeed be used to improve reasoning methods.
We complete the chapter with a discussion on a number of independent directions for
future research.

Once labels are introduced the resolution method is very close to the tableaux ap-
proach, but we are still doing resolution. As we said, the rules (M), (=) and (=V),
prepare formulas to be fed into the resolution rules (RES) and (V). And the aim is still
to derive the empty clause instead of finding a model by exhausting a branch. But, is
this method any better than tableaux? We don’t think this is the correct question to
ask. We believe that we learn different things from studying different methods. For ex-
ample, Horrocks and Patel-Schneider [1999] study a number of interesting optimizations
of the tableaux implementation which were tested on the tableaux based theorem prover
DLP. Some of their ideas can immediately be (or have already been) incorporated in our
resolution method (lexical normalization and early detection of clashes, for instance),
and others might perhaps be used in implementations of our method. On the other
hand, optimizations for direct resolution such as those discussed in [Auffray et al., 1990]
can also be exploited in conjunction with the others. For example, in implementations
of the resolution algorithm, strategies for selecting the resolving pairs are critical. This
kind of heuristics has been investigated by Auffray et al. and some of their results easily
extend to our framework. In certain cases, establishing completeness of these heuristics
is even simpler because of our explicit use of resolution via labels.

The issue of heuristics is very much connected with complexity. The basic heuristic
we used in the proof of Theorem 5.22 keeps the complete clause set “in memory” all
the time and hence requires non-polynomial space. A similar situation occurs in clausal
propositional resolution where the translation into clausal form can introduce an ex-
ponential blow up. We conjecture that a PSPACE heuristic for labeled resolution can
be obtained by exploiting further the presence of labels (and given that we don’t force
a translation into full clausal form). Notice that labels and role assertions let us keep
track of the accessibility relation and we can define the notion of “being a member of
a branch.” Now we can attempt to use the tree property of modal languages to guide
resolution. We used similar ideas in [Areces et al., 2000d] to improve the performance
of translation based resolution provers.

The ideas behind labeled resolution are simple enough so that adapting available
provers should not prove to be a very difficult task. It would be interesting to perform
empirical testing on the performance of this resolution prover following the lines drawn
in, for example [Horrocks et al., 2000a], both in comparison with translation based
resolution provers and those based on tableaux.

Finally, our completeness proof is constructive: when a refutation cannot be found
we can actually define a model for the formula or knowledge base. Hence, our method
can also be used for model extraction. How does this method perform in comparison
with traditional model extraction from tableaux systems?






Chapter 6

Investigating Expressive Power

When once you have taken
the Impossible into your calculations
its possibilities become practically limitless.

from “The Peace of Mowsle Barton,” Saki

In this chapter we investigate the expressive power of hybrid languages, both through
semantic and syntactic characterizations, and by means of the meta-logical properties
of interpolation and Beth definability. The work in the chapter is centered around the
language Hs(@, |), which is analyzed in detail. Even though the satisfiability problem
for Hs(@, |) is undecidable, this language presents a particularly good meta-theoretical
behavior. We will also comment on how and when the results we prove for Hs(@Q, |) can
be adapted to sublanguages and extensions. From a description logic perspective, these
results can be seen as marking the farthest boundaries of expressivity.

We begin by providing both model-theoretical characterizations (via a restricted
notion of Ehrenfeucht game and an enriched notion of bisimulation) and a syntactic
characterization (in terms of bounded formulas) for Hs(@, |). The key result to emerge
is that Hs(@, |) corresponds precisely to the first-order fragment which is invariant for
generated submodels. This is in line with the investigations in [van Benthem, 1983],
where characterizations of some natural modal model-theoretical operations were pro-
vided. If we add (R™!) to the language and modify the notion of generated submodels
accordingly, then the @ operator can be dropped. For hybrid languages without binders,
we provide characterizations in terms of bisimulations.

We then move to interpolation and Beth definability. After introducing the different
ways in which these properties can be defined and explaining their inter-relations, we
establish that Hs(@, |) has (strong) interpolation and, as a corollary, also the Beth
definability property (both global and local). The proof of strong interpolation for
Hs(@Q, |) can be generalized to any pure extension of the logic. This behavior contrasts
sharply with what is known for basic modal languages, where general interpolation
results are scarce. Interpolation (both strong and weak) does not go through, though,
when we restrict Hs(@, |) to its finite variable fragments. We also prove that only weak
interpolation obtains for Hs(@).

For languages where nominals appear free in formulas and which do not provide a
binding mechanism, failure of arrow interpolation seems to be the norm. In particular,
we provide counter-examples to interpolation for the basic modal language extended
with nominals, Hy(@) and Hs(@). The extensions of these languages with the (R™!)
or E operators fare no better. But in Section 4.5 we have proved that interpolation
reappears if we restrict the use of nominals by moving to the languages H(@, @) and
H((R™'),@,@d) (see Theorem 4.15).

89
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6.1 Characterizations

We begin by providing a syntactic characterization. In particular, we will specialize
the standard translation ST introduced in Definition 3.3 to the Hs(@, |) language. It
will be clear that the range of the translation lies in a certain bounded fragment of FO,
and we will define a reverse translation HT which maps the bounded fragment back
into the hybrid language. Thus, we are free to think either in terms of Hs(@Q, |) or the
corresponding bounded fragment.

We will then turn to semantic characterizations. Clearly, Hs(@Q, |) is a genuine hybrid
of modal and first-order ideas (after all, it combines Kripke semantics with the idea of
binding variables to worlds), thus there are two ways to proceed. The first is essentially
first-order: we will look for a weak notion of Ehrenfeucht games (see Definition 1.7).
The second is essentially modal, using hybrid bisimulation (Section 3.5). As we will see,
both paths yield natural notions of equivalence between models, and by relating them
(and drawing on our syntactic characterization) we can provide a detailed picture of
what Hs(Q, |) offers.

6.1.1 Translations

In the sections that follow we will mainly discuss uni-modal languages but the results
are easy to extend to the multi-modal case.

Recall the standard translation we introduced in Definition 3.3, but now specialized
to the Hs(@, |) language.

DEFINITION 6.1. [Standard translation for Hs(@, |)] The functions ST, and ST, are
defined by mutual recursion as follows

ST,(i;) = (z=1;), i, € NOM T,i;) = (y=1ij;),1; € NOM
ST.(x;) = (r=uw;),z; € SVAR T,(x;) = (y=uw;),z; € SVAR
ST.(pj) = Pi(z), pj € PROP T,(p;) = Piy), p; € PROP
ST,(=p) = =8T.(p) ( p) = —S5Ty(p)

STo(pNY) = STy(p) A ST () ( ANY) = STy(e) ANST, ()
ST.(Op) = Fy.(R(z,y) ASTy(p)) ST y(Op) = Fz.(R(y,z) A ST.(p))
ST.(Qsp) = (ST(p))[z/s] ( ) = (ST,(e ))[y/S]

ST.(lzj.0) = (ST.(p))[z;/x] ST (l% p) = (STy(p))lz;/yl.

Now for the interesting question: what is the range of ST? In fact, it belongs to a
bounded fragment of first-order logic.

Given a first-order signature ({ R} U UREL, CONS, VAR) we define the bounded frag-
ment BF as the set of formulas generated by the following grammar:

FORMS = R(t,t') | P;(t) |t =t | =@ | 1 Ao | Tz (R(t, 2;) A ) (for z; # 1),

where z; € VAR, t,t' € VARU CONS, P, € UREL, ¢, ¢1, vo € FORMS. Notice
the important side-condition on the generation of existentially quantified formulas. It
prevents sentences like Jz.(R(z,z) A x = z) from falling into the fragment. As we
will see, there is a strong connection between formulas in the bounded fragment and
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invariance under generated submodels, and formulas like Jz.(R(z,x) A © = z) are not
even preserved under this operation.

The bounded fragment arose in set theory, where the bounding relation R would
be interpreted as membership €. Most properties of sets can be formalized in BF. A
characterization for BF was provided in [Feferman, 1968] in terms of outer extensions of
first-order models using proof-theoretical means (as an instance of a more general result
involving infinitary languages). In [1983], van Benthem provides a model-theoretical
proof in terms of generated subframes.

Clearly ST generates formulas in the bounded fragment. In addition, we can also
translate the bounded fragment into Hs(@, |). The translation HT from the bounded
fragment over ({ R} U UREL, CONS, VAR) into the hybrid language over (UREL, CONS,
VAR) is defined as follows. For ¢,# € VAR U CONS

HT(R(t,t)) = @Ot
HT(P;(t)) = Qp;
HT(t=t) = @t
HT(=p) = —HT(p)
HT(p A1) = HT(p) NHT(Y).
HT(3z.(R(t,z) N¢)) = @S|l HT (p).

By construction, HT(y) is a hybrid formula built as a Boolean combination of @-
formulas (formulas whose main operator is @). We can now prove the following strong
truth preservation result.

PROPOSITION 6.2. [HT preserves truth| Let ¢ € BF. Then for every first-order model
M and for every assignment g, M |= ¢|g] iff M, gl HT(p).

ProoOF. We use the following fact: let ¢ be a Boolean combination of @Q-formulas, then
there exists an m such that M, g,m IF ¢ it M, gl ¢.

HT(3z.(R(t,z) A ¢)) is the interesting case. We have M |= Jz.(R(t,z) A ¢)|g] iff
M E (R(t,x) N @)lgr] for m € M. Let t be the denotation of ¢ in M under g%,
Given the restriction on variables in bounded quantification, t # x, whence t is also
the interpretation of ¢ in M under g. So RM(t,m) and M [= ¢[g%]. By induction
hypothesis, M, g I+ HT(p) ifft M,g,m |+ |z.HT (p), if M,g,t I+ Ola.HT (p) iff
M, g,t - @O |2 HT () iff M, g IF @0 |2 HT (). QED

As simple corollaries we have:

COROLLARY 6.3. Let ¢(x) be a bounded formula with only = free, then for all models
M and for allm € M, M = ¢[m] iff M,m I+ |z.HT(p).

COROLLARY 6.4. Let ¢ be a first-order formula in the hybrid signature. Then the fol-
lowing are equivalent

i. @ 1s equivalent to the standard translation of a hybrid formula.

it. @ 1s equivalent to a formula in the bounded fragment.
Moreover, there are effective translations between Hs(Q, |) and BF.
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6.1.2 Generated Back-and-Forth Systems

We now turn to the problem of providing semantic characterizations of Hs(@, |). In
this section we will adopt an essentially first-order approach: we define generated back-
and-forth systems, basically a restricted form of Ehrenfeucht games, and link it to the
concept of generated submodels.

DEFINITION 6.5. [Generated back-and-forth systems] Let M and A be two first-order
models in the hybrid signature. A generated back-and-forth system between M and N
is a non-empty family F' of finite partial isomorphisms between M and N satisfying the
following two extension rules:

(©-extension)
(forth) if he F, me€ dom(F) & RM(m,m’), then hu{(m', n’)} € F for somen’ € N,
(back) if h€ F, n€ran(F) & RN (n,n’), then hU {(m/,n’)} € F for some m’ € M.

(nominal extension)

(forth) if h € F and there exists m € M such that VM (i) = {m} for some nominal
i, then there exists n € N such that hU {(m,n)} € F,
(back) a similar condition backwards.

Let m € *M, n € *N, then (M,m) =g (N,n) means that there is a generated back-
and-forth system linking M and N with a partial isomorphism sending m(7) to n(7).

Note how closely this definition follows Definition 1.8. In fact, if we think of a generated
back-and-forth system as describing an Ehrenfeucht game, then the only difference is
that in the “generated back-and-forth game” the universal player must choose his moves
from R-successors or worlds named by a nominal, whereas any choice is allowed in the
full first-order game. Unsurprisingly, restricting the play to accessible worlds closely
connects generated back-and-forth systems and generated submodels.

DEFINITION 6.6. [Generated submodel] Let M = (M, R, V) be a hybrid model and
S C M. Let NAMED denote the subset of M whose elements are the denotation of some
nominal. The submodel of M generated by S (or the S-generated submodel of M) is the
substructure of M with domain {m € M | there is s € SUNAMED such that R*(s,m)},
for R* the reflexive and transitive closure of R.

Note that if NAMED = {} we obtain the familiar modal notion of a generated submodel,
and that if in addition S is a singleton set, we have the usual modal notion of a point-
generated (or rooted) submodel.

We now define two notions of invariance. A first-order formula (Z) in free variables &
in a signature with one binary relation R, unary predicates and constants (and equality)
is invariant for generated submodels if for all pairs (M, m) and (M’,m) such that M’
is the m-generated submodel of M,

M E pm] if and only if M’ = p[m)].

Similarly, we say that ¢(z) is invariant for generated back-and-forth systems if for all

pairs (M, m) and (N, 7n), (M, m) =g (N, n) implies
M = p[m] if and only if N = ¢[n].
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THEOREM 6.7. Let ¢(x) be a first-order formula in the hybrid signature. Then the
following are equivalent
i. () is equivalent to a formula in the bounded fragment.

ii. ©(Z) is invariant for generated submodels.

iii. () is invariant for generated back-and-forth systems.

PROOF.

i) = i) is obvious.

i1) = 1) First note that ¢(z) is invariant for generated submodels iff —¢(Z) is. Now,
suppose ¢(Z) is invariant for generated submodels but not preserved under generated
back-and-forth systems. Then we have pairs (M, m) and (N,n) such that (M, m) =g
(N, 1), and M = ¢[m] while N = —¢[n].

Let M’ (N') be the m- (n-) generated submodel of M (N). Then still M’ | p[m]
and N/ | —p[n| by invariance, and clearly (M’;m) =g (N’,n). But then (M’ m)
and (N’,n) have the same first-order theory by the following argument. Because
(M';m) =2¢ (N',n), Duplicator has a winning strategy in all games where Spoiler
only plays immediate R-successors or points named by a nominal. But since the models
are generated, in the first-order back-and-forth game Spoiler can only play worlds which
are accessible by a finite R-transition from either the root or one of the named worlds.
But then Duplicator can compute a winning answer for the classic Ehrenfeucht game
from his winning generated back-and-forth strategy. This contradicts the claim that
M’ | olim] and N' | ~g[i].

iii) = 1) This implication follows from a diagram-chasing argument [van Benthem,
1996]. Let ¢(Z) be as in the hypothesis, and BC(p(Z)) be the bounded consequences
of p(z) (that is, the consequences of ¢(z) that belong to BF). We have to show that
BC(¢(7)) = ¢(z), from which the result follows by compactness. (Here we interpret
the Z as constants, or equivalently we use the local version of first-order consequence.)

If BC(¢(x)) is inconsistent we are done. Otherwise, let M, m satisfy BC'(¢(Z)) and
N, 7 satisfy o(Z) together with the bounded theory of M, m. (Such a pair of model and
assignment can easily be shown to exist.) Take w-saturated extensions (M™,m) and
(Nt,n). Create a family F of finite functions between M+ and N T as follows: f: Z +— 3
is in F iff (M%) and (N, 7) make the same bounded formulas true. F is a generated
back-and-forth system linking m and 7. Now we can start diagram chasing: N = ¢[n]
then (by elementary extension) N* |= ¢[n], then (by invariance) M™ = ¢[m], then
(passing to an elementary submodel) M |= ¢[m] as desired. QED

6.1.3 Hybrid Bisimulations

We have just seen that by weakening the notion of an Ehrenfeucht game we can link the
bounded fragment (and hence Hs(@, |)) with generated submodels. But in spite of its
binding apparatus, Hs(@, |) has a distinctly modal flavor. By using hybrid bisimulation
we will now characterize Hs(@, |) in intrinsically modal terms. The approach has an
advantage over the use of generated back-and-forth systems as results can be easily
obtained for reducts as well.
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Remember that we introduced the truly modal notion of k-seg-bisimulations in Def-
inition 3.13. Well, something very much first-order is hidden behind: partial isomor-
phisms.

PROPOSITION 6.8. Let k > 2, and let M & N. If (m,m) & (a,n), then the func-
tion f defined as f(m) = n and f(m(:)) = n(i) is a partial isomorphism between
{m(1),...,m(k),m} and {n(1),...,n(k),n}.

PROOF. The map f is a bijection by (var) and (@). By (prop) and (@), f preserves
nominals and propositional variables. To see that it preserves the accessibility relation
suppose R™(z,y). There are three cases: i) Suppose * = m and y = m;. Then by
(forth) there is n’ such that RV (n,n’) and (m,m;) & (A,n'). But m(i) = m;, so by
(var), n’ = n(i), whence RV (n, f(m(i))). 4) Suppose x = m; and y = m. Let j # i.
Such a j exists because we assumed that & > 2. By (1), (mf,,m) ~ (7?d,n). Then by
(@), (md,, m;) ~ (7d,n;). Now continue as 7). #ii) Finally, suppose z = m; and y = m.
By (@), (m,m;) & (2,n;). Continue as in 7). Thus RM(z,y) implies RN (f(z), f(y)).
For the other direction use (back) in the same way. QED

Note that the condition & > 2 is crucial. We use it together with (]) to store the
information about m. Proposition 6.8 shows that there is a clear link with our earlier
work on generated back-and-forth systems, and the next theorem shouldn’t come as a
surprise:

THEOREM 6.9. (M,m) & (N, n) if and only if (M, m) =g (N, 7).

PROOF.
[=]. Let (M,m) < (N,n). Define a family F of maps as follows: f € F if there exists
(z,2') & (g,y) and f is defined as in Proposition 6.8.

Clearly m and n are connected by a map. By Proposition 6.8 all maps are partial
isomorphisms. We show the (forth) side of (nominal extension); all other conditions
have a similar proof. Suppose f € F' and let ¢ be a nominal. Then for some z, z, v, ¥,
(Z,2') ~ (7,9') by definition of F. Then (z * 2/,2') "<" (7 *y/,y') by (sto). But then
by (@), (z *2/,7M) "L (7 x5/,#V). Thus, the required extension is in F.

[<]. Let (M, m) =g (N,n). We define the following family of relations: for any f € F,
for any k, for any tuple m in the k-th power of the domain of f and for any m in
the domain of f, we set (m,m) & (f(m), f(m)). It is easy to check that this is an
w-seq-bisimulation. QED

It is possible to prove a direct characterization result for Hs(@, |) in terms of invariance
for k-bisimulations, using a diagram-chasing argument. We are not going to do this here
since in the next section we will take a detour via the bounded fragment to reach the
same result. It is also possible to develop k-pebble versions of generated back-and-forth
systems; this notion takes the exact number of variables used in formulas into account.
It is not difficult to see that k& + 1-pebble generated back-and-forth systems correspond
to k-bisimulations.
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6.1.4 Harvest

It is time to draw together the threads we have developed. First we note their con-
sequences for the expressive power of Hs(@, |) over models. Then we note the conse-
quences for frames and what this tells us about hybrid completeness.

Expressivity over Models. We have arrived to the following five-fold characteriza-
tion of Hs(@, |):

THEOREM 6.10. Let o(Z) be a first-order formula in the hybrid signature (with equality).
Then the following are equivalent

i. ©(Z) is equivalent to the standard translation of a Hs(Q, |) formula.

1. ©(Z) 1s invariant for generated submodels.
1. P
w. @
V. ©

(7)
(Z) 1s invariant for generated back-and-forth systems.
(%) 1s invariant for w-seq-bisimulation.

(%) 1s equivalent to a formula in the bounded fragment of first-order logic.
Proor. By Corollary 6.4, Theorem 6.7, Proposition 3.15 and Theorem 6.9. QED

But these have obvious consequences for the ordinary modal correspondence language.
In particular, if we consider nominal-free hybrid sentences, then we obtain a five-fold
characterization of the fragment of first-order logic in the classical modal signature which
is invariant for generated submodels.

COROLLARY 6.11. Let p(z) be a first-order formula in the modal signature (with equal-
ity). Then the following are equivalent

i. o(z) 1s equivalent to the standard translation of a nominal-free Hs(Q, |) sentence.
ii. p(x) is invariant for generated submodels (now in the standard modal sense).
iii. o(x) is invariant for R-generated back-and-forth systems (an R-generated back-
and-forth system is a back-and-forth system satisfying only the O-extension rule).
. @(x) is ivariant for w-seq-bisimulation.
v. @(x) is equivalent to a formula in the bounded fragment of first-order logic without
constants.

A simple generalization of the reduction of the universal validity of a first-order formula
« to bisimulation invariance of a formula o/ given in [van Benthem, 1996, Remark 4.19],
shows that the problem of verifying if a given formula is equivalent to a formula in
the bounded fragment of first-order logic (even with no constants) is undecidable. And
hence by the equivalences above, so are all the other problems (i.e., verifying whether
a formula is invariant for generated submodels, invariant for generated back-and-forth
systems, etc.).

But the problem might admit effective solutions in certain particular cases (like, for
example, when the original formula is already in a restricted class), and it is possible
that this is easier to establish in terms of one of the five equivalent but different versions.
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Frames and Completeness. Since the late 1950s, one of the central topics in modal
logic has been linking modal formulas to properties of frames and investigating when
they give rise to complete axiomatizations for the frame classes they define. The work of
the previous section easily yields a characterization of the frame-defining abilities of pure
nominal-free sentences. Moreover, the axiomatic investigations of [Tzakova, 1999a] show
that there is a perfect match between definability and completeness for pure nominal-free
sentences. By combining these results we obtain matching definability and completeness
results for a wide range of first-order definable frame classes.

In modal correspondence theory, the first-order language (with equality) over the
signature consisting simply of a binary symbol R is called the (first-order) frame lan-
guage. A frame condition is a formula in the frame language containing exactly one free
variable. The class of frames defined by a frame condition () is the class in which the
universal closure Va.p(x) is true; we call this class FRAMES(Vz.¢(x)).

Before proceeding, two simple observations are in order. First, note that if we apply
the standard translation ST to a pure nominal-free sentence «, then ST'(«) is a frame
condition with free variable z. Furthermore, note that for any frame F = (M, R) we
have that F IF « iff F = Va.ST(«); this is an immediate consequence of the definition
of frame validity.

THEOREM 6.12. Let K[Hs(@Q, | )] be the axiomatization given in Definition 3.10, and
for any hybrid sentence a let K[Hs(Q, |)] + a be the system obtained by adding o as
an additional axiom. Then, if o(x) is a frame condition and p(x) is invariant under
generated submodels (in the usual modal sense) we have that:

i. If o(x) is in the bounded fragment then the pure nominal free sentence |x. HT (p(x))
defines FRAMES(Vz.p(x)), and K[Hs(Q, |)] + |x.HT (p(x)) is strongly complete
with respect to FRAMES(Vx.¢(x)).

ii. If p(z) is not in the bounded fragment, there is a pure nominal free sentence «
such that o defines FRAMES(Vz.p(x)), and ST («) is equivalent to ¢(x). Moreover,
K[Hs(Q, |)] + « is strongly complete with respect to FRAMES(Va.(x)).

Conversely, if a sentence o is pure and nominal-free, then o defines the class of frames
FRAMES(Vz.ST (a())), and K[Hs(Q, |)] + « is a complete axiomatic system.

PROOF. The converse condition was proved in [Blackburn and Tzakova, 1998b], so let’s
examine the other direction.

For item ), we first remark that as ¢(x) belongs to the frame language, it contains no
unary predicate symbols, hence HT (p(x)) is a pure formula; that |x. HT (p(z)) is a pure
nominal-free sentence is thus clear. Now, by Corollary 6.3, for any model M = (F,V)
and any m € M, (F,V) E ¢lm| iff (F,V),m Ik |2.HT(p). But this means that
(F, V) E Vz.piff (F,V)IF |2.HT(p). As ¢(x) contains no unary predicate symbols
(and |z.HT(¢) no propositional variables) V' is irrelevant, and hence F = Vz.p(x) iff
F I laz.HT (). This means that |x. HT (¢(x)) defines FRAMES(Vz.p(z)). Completeness
follows using the arguments of [Blackburn and Tzakova, 1998b].

For item i) we know that ¢(z), being invariant under generated submodels, is equiv-
alent to a formula in the bounded fragment — but is it equivalent to a frame condition
¢'(x)? In fact, this can be established by diagram-chasing argument as in the proof of
Theorem 6.7. The key point to observe is that instead of showing that BC'(p(z)) = ¢(z),
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we can show by the same method that FC(¢(x)) = ¢(x), where FC are all the frame
conditions implied by ¢(x). Thus there is an equivalent frame condition ¢'(z), and we
can take v to be |x. HT (¢'(x)). The remainder of the proof is as for item 1). QED

6.1.5 Variations

The Hs((R™!),Q, |) Language. The characterization results given in Section 6.1.4,
become particularly natural when we introduce the (R™!) operator. To cope with the
backward looking operators, we need a slightly more liberal notion of generated sub-
model: a point t belongs to the submodel temporally generated by a subset S if t is
reachable from some point s € S by making a finite sequence of moves through the
accessibility relation, where both forward and backward steps are allowed. The charac-
terization results we have proved hold for Hs({R™'), @, |) under this notion of generated
submodel.

But let’s press matters a little further. Note that in nominal-free sentences of
Hs((R71),@Q, |), all occurrences of @ can be eliminated. As a simple example, con-
sider the definition of the Until operator:

Until(p, ) = lz.(R)]y.Q.((R)(y A ) A[RI(R)y — ).

Observe that the following @-free sentence has the same effect:

Until(p, ) = Lo (R)ly(R™")(x A ((R)(y Ap) A RI((R)y — ¢))).

In other words, instead of retrieving the point named by z using the @ operator, we can
reach it by means of (R™!). This observation (first made in [Blackburn and Tzakova,
1998a]) is completely general. As long as a Hs({R™!), @, |) formula does not contain
nominals or free state variables, it is always possible to simulate @ by zig-zagging back
to the binding point using (R) and (R™1).

More precisely, suppose a nominal free sentence ¢ has a temporal depth of n (that
is, the maximal depth of embedding of tense operators is n) and that ¢ is satisfied at
a state m. When we evaluate a subformula of ¢ of the form @, at some point m’ —
which cannot be more than n forward and backward steps from m — we know that
2 must be bound to a point m” which is also not more than n forward and backward
steps from m. Hence m’ and m” are separated by at most 2n steps. We can define an
operator @" that allows us to zig-zag to a named state lying within 2n steps as follows.
Let 2n-ZZ be the set of all non-empty finite sequences of (R) and (R~') operators of
length at most 2n. Then for any formula ¢ and any variable x we define:

@ o= (zAyY)v\ zl@Ay).

z€2n-77

Hence, given a nominal free sentence ¢ of temporal depth n, we eliminate all occurrences
of @ as follows. Let @, be a subformula of ¢ where 1) contains no occurrences of Q.
Replace @, by @™y to form ¢’. Repeating this procedure (starting with ¢’) produces
an equivalent nominal-free sentence containing no occurrences of @. Thus, in the setting
of tense logic, our characterization results for nominal free sentences go through without
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the help of @. (R), (R™'), and | work together beautifully. No auxiliary apparatus (not
even @) is required, and the outcome is a language which exactly captures first-order
temporal reachability.

The Hs(@Q) Language. To close this section we will discuss one further characteriza-
tion: Which classes of frames are definable using Hs(@) formulas whose only atoms are
state variables?

In a sense, the standard translation ST already gives us an answer to this question.
Let F be a class of frames defined by a sentence ¢ of the first-order frame language.
Then F is definable by a formula of Hs(@) whose only atoms are variables iff there
is some formula « in this fragment such that ¢ is equivalent to the universal closure
of ST («). Unfortunately, this is not very helpful. Ideally we would like a syntactic
characterization of the range of ST when restricted to Hs(@) formulas whose only
atoms are state variables, together with a reverse translation (like our earlier HT).

What about a semantic characterization? Here we can do a little better by using the
notion of @-k-seq-bisimulation (see the discussion following Definitions 3.13 and 3.14).
Let M L4 N denote the fact that there is an @-k-seq-bisimulation linking M and N.
A first-order formula ¢(z,y), for |Z| = k is called invariant for Q-k-seq-bisimulation, if

for all models M, A such that M Lq N
(m,m) ~a (7,n) = M = plm,m] it N = ¢[n, n].

THEOREM 6.13. A first-order formula ¢(Z,y) is invariant for Q-k-seq-bisimulation if
and only if it is equivalent to the standard translation of an Hs(Q)-formula containing
the variables .

PROOF. Preservation is straightforward. For the characterization part we do a diagram-
chasing. Let M, m, m and N, 7, n have the same hybrid theory. Define a relation ~ on
the w-saturated extensions M™* and N'* of M and N as follows:

(m,x) ~ (n,y) € B& Vo.M m,zl-oe Nt nylkp).

The standard proof shows that ~ is a modal bisimulation. We check the extra condi-
tions. For all 4, (m, m;) ~ (7, n;) holds by the following argument. M™ m, m; IF ¢ iff
M m,m - Qo iff N7 oa,n lE Qo iff N1, 7, n; I p. The other two conditions are
satisfied because of the following. Let (m,m;) ~ (fi,y). Since M* m,m; b x;, also
Nt n,ylF z;. But then y = n,. QED

Using this results it is easy, for example, to show that Jy.(R(x,y) A R(y,y)) is not equiv-
alent to an @-formula with one free variable, and that R(z,y) A R(z, z) — Jw.(R(y, w) A
R(z,w)) is not equivalent to an @-formula in three free variables. And it does tell us
something about frame definability:

COROLLARY 6.14. Let F be a class of frames defined by a sentence ¢ of the first-order
frame language. Then F is definable by a formula of Hs(@Q) whose only atoms are
variables iff ¢ is equivalent to the universal closure of a formula that is invariant under
@-k-seq-bistmulations.



6.2. Interpolation and Beth Definability 99

6.2 Interpolation and Beth Definability

In 1957, Craig proved the interpolation theorem for first-order logic [Craig, 1957]. Since
Craig’s paper, interpolation has become one of the standard properties that one investi-
gates when designing a logic, though it has not received the status of a completeness or
a decidability theorem. One of the main reasons why a logic should have interpolation
is because of “modular theory building.” As we will see below, interpolation in modal
logic is equivalent to the following property (which is the semantic version of Robinson’s
consistency property).

If two theories T and T are consistent (have a model), and they are complete
and agree on the common language (i.e., for any formula 6 built up from
atoms occurring both in 7} and in T3 either 7 =60 and T3 =0, or T} = —0
and Ty = —0), then 77 U T, has a model.

The property is not only intuitively valid for scientific reasoning, it also has practical
consequences. In computer science for example, it shows up in the incremental design,
specification and development of software and has received quite some attention in
that community, (see, e.g., [Renardel de Lavalette, 1989]). There are also technical
reasons why interpolation is desirable. In particular, it can be used to establish the Beth
definability property which we already discussed in Section 4.5.3 and we will formally
introduce in Section 6.2.2.

6.2.1 Kinds of Interpolation

For first-order logic we find the following notions of interpolation in the literature.

DEFINITION 6.15. [Interpolation property] Let IP(¢) be the set of atomic symbols oc-
curring in .

— The Arrow Interpolation Property (AIP) holds if, whenever = ¢ — 9, there exists
a formula 6 such that = ¢ — 6, =60 — ¢ and IP(0) C IP(¢) NIP(¢)).

— The Turnstile Interpolation Property (TIP) holds if, whenever ¢ |= 9, there exists
a formula 0 such that ¢ =0, 0 =1 and IP(0) C IP(¢) NIP(¥).

For first-order logic the two versions are equivalent but in general this is not the case (as
we see below this depends on both compactness and the availability of a deduction theo-
rem, see [Czelakowski, 1982].) The meaning of TIP in modal logics depends on the way
we define the consequence relation ¢ = 1. Remember our discussion in Section 4.2.1.
In modal and hybrid logic the different interpolation properties are related as follows.

PROPOSITION 6.16.
i. With the local consequence relation =", AIP and TIP are equivalent.

ii. If E" is compact, then AIP implies TIP.
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For this reason, from now on we take TIP to be defined using the global consequence
relation. AIP and TIP are often referred to as the strong and weak interpolation prop-
erties respectively, and we will sometimes use this terminology. In what follows, = will
represent ="°, and we will explicitly write =" when we refer to global consequence.
Coming back to merging of theories, by a standard proof one can show that

PROPOSITION 6.17. If the local consequence relation is compact, the arrow interpolation
property and the Robinson consistency property are equivalent.

6.2.2 Beth Definability

The Beth definability property [Beth, 1953] is usually studied together with interpo-
lation (and in many cases interpolation is considered just a step in the proof of Beth
definability). Loosely speaking, a logic has the Beth definability property if any implicit
definition has also an explicit definition. More precisely:

DEFINITION 6.18. [Beth definability property]

— A logic has the local Beth definability property if for all formulas ¢(a,a) whose
atomic symbols occur among a, a, if = ¢(a,a/b;) A p(a,a/by) — (by < by) then
there is a formula #(a) such that = ¢(a,a) — (6(a) < a).

— A logic has the global Beth definability property if for all formulas p(a,a) whose
atomic symbols occur among a, a, if p(a, a/by) A p(a,a/bs) = by < by then there
is a formula 0(a) such that ¢(a,a) " 6(a) < a.

In first-order and modal logics the local Beth definability property is equivalent to arrow
interpolation (see [Kracht, 1999] for a detailed discussion) and this relation also holds
for hybrid languages.

In contrast, the relation between global Beth and turnstile interpolation is not as
tight. It can be shown that there exist logics without global interpolation while having
the global Beth definability property, and that there are logics with global interpolation
without Beth definability. See [Maksimova, 1991b].

In the next section, we will investigate interpolation for certain hybrid languages.
Given Proposition 6.19 below, whenever we succeed in establishing arrow interpolation
for a hybrid language, we immediately obtain both global and local Beth definability.

PROPOSITION 6.19. Let L be a hybrid language having the arrow interpolation property.
Then L has both the global and local Beth definability property.

PRrROOF. The proof is standard. See [Kracht, 1999]. QED

6.2.3 Interpolation for Hs(@,]), Fragments and Extensions

In this section we will prove AIP for Hs(@, |), disprove AIP and TIP for its finite
variable fragments (our earlier work on k-seg-bisimulations will enable us to construct
straightforward counterexamples) and some other fragments, while we show that TIP
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holds for the sublanguage Hs(@). Interestingly, we will be able to generalize the positive
results by drawing on the general completeness result we discussed in Theorem 6.12.

Even though interpolation was originally considered a property of deductive systems
and established using proof-theoretical arguments as we did in Section 4.5.3, here we will
take it as a property of consequence relations and prove it using semantic arguments (as is
done, for example, in [Chang and Keisler, 1990]). Jerry Seligman has recently announced
a proof-theoretical version of our result which has not yet been made available.

We turn to the technicalities of the interpolation result. As is usual in interpola-
tion proofs, where language related issues require special care, we replace the notion of
consistency by the finer-grained notion of separability.

DEFINITION 6.20. [Separability] Let T, U, L be sets of formulas. We say that the pair
(T, U) is separable with respect to L if there exists a formula 6 € L such that T' |= 6 and
Uk —0. (T,U) is inseparable with respect to L if it is not separable with respect to L.

The following theorems can be derived from the axiomatization introduced in Defini-
tion 3.10 (see [Blackburn and Tzakova, 1999, Lemma 4.1] and [Blackburn and Tzakova,
1998b, Lemma 7] for details).

PROPOSITION 6.21. [Derived theorems and properties]

K. (e —=9¢) = (lvg— lvy).
Distra. Qg(p A1) < (Qgp A Qg1)).
Intra. (s A ) — Q.

In addition, if = ¢ and i is a nominal in @, then for some state variable x not occurring
in @, b lepli/z]. If b @ and x is a free variable in @, then for some nominal i not
occurring in @, F plz/i].

We are ready to prove the main result of this section.

THEOREM 6.22. [Arrow interpolation for Hs(@Q, | )] Let ¢ and ¢ be formulas in the lan-
guage Hs(Q, |), such that = ¢ — 1. Then there exists a formula 6 such that

i. Eo—0and =0 — .
ii. IP(8) C IP(¢) N IP().

PROOF. Suppose we are given formulas ¢y and 1)y such that there is no interpolant for
wo — Y. We will prove that [~ ¢y — 19 by producing a model M = (M, R, V) and
an assignment g such that for some m € M, M,g,m IF ¢y A =tby (the proof follows
the method of [Chang and Keisler, 1990] in which two models are simultaneously built
using fresh constants).

We can assume that {¢pg} and {—1y} are consistent (for if they are not, then either
L or T is an interpolant). Furthermore they must be inseparable over the formulas in
Hs(@Q, |) with atomic symbols in IP(¢g) N IP ().

Let £ be the set of formulas of Hs(@,|) over the expanded signature (PROP,
NOM, SVAR), and L' the set over the expended signature (PROP,NOM U N,SVAR)
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where N = {ng,...,ng,...} is a countably infinite set of new nominals. For a for-
mula ¢ define the restricted language £, as {{ € L | IP(§) C IP(p)} and L], as
{€€ L IP(E) CIP(p) UNY. Let Ly, = Loy N Ly

Let v1,..., ¢k, ... (respectively, ¥q,...,1g,...) be an enumeration of all formulas
in L'y, (L'y,). We define the sequences {no} U {wo} = To € T3 € T, C ... and
{no} U {1} =Uy CU; CU; C ... as follows:

If T; U {p,} and U; are separable over L', then T = T}, otherwise

— if ¢; # Qgs and p; # QO for s € SSYM, then Ty =T U {p;},

— if ¢; = Qgs, then Tjy = T; U {p;} U{Q4(ni A s) | ni, € N\NOM(T; UU;)},

— if Y; = @3090/7 then T’j+1 = 7} U {(,0]} U {@SO(nk VAN QO/) | ng € N\NOM(Y} U Uj U
{wih)}-

If T;41 and U; U {¢;} are separable over L', then U, = Uj;, otherwise

— if ¢; # Qs and ¢; # @Oy for s € SSYM, then Uy = U; U {4},

— if ”ij = @SS, then Uj+1 = Uj U {%} U {@s(nk N S) | ng € N\NOM(Y}+1 U Uj)},
if 1; = @Oy, then T4y = T; U {0, } U{Q;O(np AY') | ny, € N\NOM(Tj4, UU; U
{vH}

The fresh nominals play the same role as Henkin witnesses in first-order proofs: they
ensure that we obtain models in which every world has a name. Define

T,=UT and U, =JU;.
JEW JEW
CLAIM 6.23. For all j € w, (T};,U;) is inseparable with respect to L'y, Whence
(T, U,) is an inseparable pair in this language. Furthermore T}, and U,, are maximally
consistent in L'y, and L'y, respectively. Hence for all 0 € L',y 0 € T, & 0 € U,,.

PROOF OF CrAIM. The proof is by induction on j. Separability/inseparability below
is with respect to L'y, except when otherwise mentioned.

BASE CASE j = 0. Suppose (I, Uy) is separable. Then there is a formula 6 € L'y,
such that = ng A g — 6 and = ng A by — —6. 0 might contain some nominals of N,
say {ni,...,ni bk > 0. Let 2o, 24, ..., 2, € SVAR which don’t occur in g, g, 8. We
will write @[xox;, ... x;, ] for the formula obtained from 6 by replacing n;; by x;;, and ng
by xg. Then, making use of the complete axiomatization given Definition 3.10, we have

= @0 — (no — 0)

E 2, (9o — (no — 0[z;,])) Proposition 6.21
= w0 — (ng — oy, .0z,]) Q1 twice
Ewo— (ng— L. oy, Oz, .o x,]) Similarly

E lzo.(po — (2o — oy ... Loy, Olxow, ..., 2;])) Proposition 6.21
E vy — lxg.(xvo — lxiy. .. Loy, Olwoxy, ... 2,)) Q1

E oo — lwo L. ... Loy, Olwozs, ... 24 Q3
I: _|'l/}0 — (TI,O — —|9)
E o — Lz lxg, ..o Loy, —Olwoxy, . 1y, As before

E -y — —lxo @, . L, Olzoxy, .2y, Self Dual|
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Olxozi, ...,z is a formula in £, N Ly, and thus ({@o}, {—10}) is separable over L, N
Ly,. Contradiction.

By using the inductive hypothesis “(7},U;) is an inseparable pair” and going step by
step through the construction, the inseparability of (741, Uj11) is easily established.

We are going to construct now a “named” or “labeled” model. Labeled models have
played a crucial role in the development of the model theory of hybrid languages and
they were successfully used already by the Sofia school in their axiomatic investigations
for combinatory PDL (see for example [Passy and Tinchev, 1985b]). There is also a
strong connection with Venema’s work on general completeness results for modal logics
containing the D difference operator [1991]. Venema discusses logics over a wersatile
signature containing D, but from the proof in Chapter 2 of [1991] we can see that the
condition of versatility can be replaced by the inclusion of @ in the signature, and that
the D operator is actually used only to force propositions to behave as nominals.

To start the construction we recall the notion of pasted maximal consistent sets
(MCS) and labeled models from [Blackburn and Tzakova, 1999]. A maximal consistent
set T' is pasted if Qgp € T' implies Q4(i A ) € I' for some nominal i, and @, € T
implies @,O(7 A @) € T' for some nominal i. A pasted MCS T is labeled by a nominal
1 precisely when ¢ € T'. Let I" be a pasted MCS labeled by a nominal, then for all
state symbols s appearing in I, let Ay = {¢ | Qyp € I'}. Then the labeled model
yielded by I' is M = (M, R, V), where M = {A; | s is a state symbol in I'}, R(A, A’)
iff {o | Op € A} CA’and A € V(p)iff p € A, for p a propositional variable or nominal.

We define the natural assignment g : SVAR — M by g(z) ={m € M | x € m}.

By construction T, and U, are pasted MCSs labeled by the nominal no € N. Let M, =
(M, Rpy, Vi) be the labeled model obtained from T, and My, = (My,, Ry,, Vi) the
one obtained from U,. Finally, let g,, and gy, be the natural assignments defined as
Goo() = {m € M,, | x € m} and gy, (x) = {m € My, | x € m}. We use A? and AY°

to denote elements of M, and My, .

CLAIM 6.24.
i. AL =T, and AL = UL,.
. For A% € M, there is n € N such that n € A¥° (or equivalently A% = A¥0).
Similarly for A¥ € M,,.

PROOF OF CLAIM.
i) We show that A%0 = T,,; the other case is similar. A is an MCS because @,,, is self-
dual. So it is sufficient to show that A7° O T,,. Let ¢ € T,,. By Intra EnoAp — @, .
Because Q,, ¢ € L'y, ng € T, and T}, is maximal in E;O, Q,,p € T,. By definition
p € A¥o.
ii) Lemma 4.3.5 in [Blackburn and Tzakova, 1999] proves that for n a nominal, A, a
maximal consistent set labeled by n, and I' a maximal consistent set, if n € I' then
A,, =T'. Using this result we can establish i) as follows.

We prove the case for M,,,. Qs is a formula in £, , hence Q s = ; for some j,
and furthermore a theorem. Hence {@Q,s} will be added to T} together with @ (sAny)
for a new nominal ny. Hence ny € A and A7 = A¥e. =
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From Claim 6.24 and following [Blackburn and Tzakova, 1999, Lemma 4.8], it follows
that My, gy, and My, gy, satisfy a Truth Lemma, and thus

Mg, 9o, AL I @ and My, gy, Aﬁg IF =), (6.1)
Furthermore the two models are very closely related in the following sense.

CLAIM 6.25. Let a function h : M,, — My, be defined as h(A#°) = A¥%, for n € N.
Then & is a homomorphism in the common language £,y Moreover, gy, = h 0 gy,.

PROOF OF CLAIM. h is defined at every member of the domain of M,,, by Claim 6.24.77)
and the fact that for any n € N, both A%° and A% are uniquely defined. Moreover, h is a
bijection because @, T € T, iff @, T € U, and in M,,, and M, nominals are interpreted
as singleton sets. For any proposition symbol p in L', 4 we have AY° e V,, (p) iff
Q,p € T, iff @Q,p € U, iff h(A%°) € Vi, (p). For the relation R, R, (A7, A?) iff
Q,on’ € T, iff @, On' € U, iff Ry (h(A£), h(A?7)). A similar argument shows that
Gpo = ho G- -

Since the two models share the same frame and agree on the common language, there
is a model M and an assignment g for the union of the two languages which have M.,
Gy and My, gy, as reducts. But then by (6.1), M, g,A,, IF @9 A =tpy, and we are
finished. QED

Actually, we can prove a stronger result: we can restrict the free variables occurring in
the interpolant 6 to only those appearing both in ¢y and 1)y. Reason as follows. Assume
= ©o(Z, Z2) — Yo(y, 2); here we explicitly show the state variables free in ¢y and ¢y and
indicate which are shared. By Proposition 6.21 we can replace sequences of free variables
T, y, Z by new nominals ., i,, 7, such that |= ¢ (iz,1,) — ¥o(iy,7,). Use Theorem 6.22
to find an interpolant 0(5,4.). The 5 are free variables that might appear in 0; we can
assume 5 to be disjoint from Z,y,z. By N and Q; we obtain = ¢g(iz,1,) — [5.0(.)
and = 5.0(i,) — to(iy,7,). We now rename again the formulas to the original z, 7, z
and the interpolant will only contain free state variables common to ¢y and .

Furthermore, note that nothing in the proof is intrinsically tied to the number of
modalities in the language. In other words, arrow interpolation also holds for the multi-
modal versions of Hs(@, |) if modalities are allowed freely in the interpolant, i.e., if
modalities are taken as logical operators and not considered part of the restriction on
common languages.

COROLLARY 6.26. Multi-modal Hs(Q, |) has AIP if no restriction on occurrences of
modalities is imposed for the interpolant.

However when we restrict the interpolant to contain only the modalities in the common
language, then interpolation does not follows immediately, especially if the modalities
interact (for example, if the theory contains axioms involving more than one modality;
see [Marx, 1999] for examples of this type). We conjecture that interpolation goes
through even if the interpolant’s modalities are restricted to the common language, for
logics where the modalities don’t interact.
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But the most important generalization is that strong interpolation holds not only
in the minimal logic of Hs(Q, |) but in any pure aziomatic extension. As is shown
in, for example, [Blackburn and Tzakova, 1998a], labeled models validate pure axioms.
Now, we have shown how to use labeled models to prove interpolation in Theorem 6.22.
So if we use the same construction for any extension of Hs(@, |) by adding pure ax-
ioms, the resulting frame will validate the extra axioms. Hence in view of our earlier
characterization (Theorem 6.10) of the bounded fragment we have:

THEOREM 6.27. Let o(Z) be a frame condition in the bounded fragment. The theory in
the hybrid language Hs(Q, |) of the class FRAMES(VZ.¢(Z)) has AIP.

This result stands in sharp contrast with the scarcity of general interpolation results
obtained for the basic modal language; see for example [Maksimova, 1991a).

On the other hand, it is clear from the proof that the number of state variables
needed cannot be bounded (they are used to quantify away the nominals in the proof
of Claim 6.23). Indeed, if we restrict Hs(@, |) to only a finite number of variables,
then arrow interpolation fails. We use the notion of k-seqg-bisimulations to provide
counterexamples. Let’s consider the case of Hs(@Q, |) restricted to only one state variable.

- by W

Figure 6.1: Counterexample to interpolation

Take the models in Figure 6.1 and the formulas

=AY ANO(FpAG) ANO(=p A—g)

b= (Or AO(r — i) = (O(=r A §) = O(=r A —j)). (62

@ — 1 is valid because for any world with at least three different successors, if there is a
unique accessible r-world and one of the accessible —r-worlds is named by the nominal j,
then the second accessible —r-world is named —j. Furthermore, M and A 1-bisimulate
in the common (empty) language of ¢ and ¢ via the relation

(m,m') ~ (n,n') iff d(m) =d(n) & d(m') =d(n') & (m=m' & n=n'),

where d(w) is the distance from the root to w. Finally, ¢ is true in M, a, while v is
false at V', a’ which proves that an interpolant with only one propositional variable does
not exist. Actually, the simpler formulas ¢ = Op A O=p and ¢ = O1 — $O—i provide
a counterexample to strong interpolation in the one-variable fragment, but they have
OT A (Ox — O-x) as weak interpolant. The more complex example proves failure in
the weak case also.
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Notice that the heart of the counterexample is just a counting argument, which can
be reproduced for the other finite variable fragments of Hs(@, |) by taking bigger and
bigger models M and N exhibiting the same basic pattern. Hence:

THEOREM 6.28. AIP fails in all finite variable fragments of Hs(Q, |).

A more complex counterexample based on the same idea can be set up to prove failure
of weak (turnstile) interpolation. Consider again the formulas ¢ and v in (6.2). Clearly
¢ 9 1. Take now the model M and define M’ by linking new copies of by, b; and by
to each terminal world in M. Let M, be the infinite model obtained by iterating this
operation w times and similarly for AV,. Now M, makes ¢ globally true. Suppose 6 is
an interpolant on one variable. Then as ¢ = 6, 0 is globally true at M,,.

We need something stronger than a mere 1-bisimulation linking M, and N, as we
want to transfer global truth. With ordinary modal languages, requiring ~ to be total
and surjective is enough, but we have to take care of assignments as well. We will say
that a k-seq-bisimulation between M and N is full if for every (m,m) € *M x M there
is (n,n) € *N x N such that (m,m) & (n,n) and vice versa. If we can define a full
1-bisimulation between M, and N, then A, =" . But ~ defined as in the previous
case is indeed full. Hence, as 6 = v, ¢ should be globally true in A, — but it is not.

THEOREM 6.29. TIP fails in all finite variable fragments of Hs(Q, |).

The models in Figure 6.1 and the formulas in (6.2) can also be used to prove failure
of arrow interpolation for a number of fragments of Hs(@, |). It is just a question of
verifying that the formulas lie in the appropriate language and that the right bisimulation
links a and a'.

THEOREM 6.30. AIP fails for the basic modal language extended with nominals, for
Hn(Q), and for their extensions with the (R™') and the E operators.

Finally, we see from the proof of Theorem 6.22 that the | binder is needed in Claim 6.23.
So what about interpolation in the sublanguage Hs(@)? We can again use models M
and N to prove that arrow interpolation fails. We use the restricted version of k-seq-
bisimulation which leaves out condition (]). In this framework we can define for any
k, a k-seq-bisimulation between M and N such that for any m € *M and any n € ¥V,
(m,a) ~ (fi,a’). This proves that there is no arrow interpolant for ¢ — 1 in Hs(@).

THEOREM 6.31. AIP fails in Hs(Q).

But weak interpolation holds for Hs(@) because the role of | is played by the implicit
quantification in the definition of ¢ =" 1.

THEOREM 6.32. Let ¢ and ¢ be sentences of Hs(Q) such that ¢ = 1. Then there is
a formula 0, which may contain additional free variables, such that

i. @ E" 0 and 0 = 1.
ii. P(6) C IP() N IP(w).
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OUTLINE OF PROOF. We show how to modify the proof of arrow interpolation for
Hs(Q, |) (cf. Theorem 6.22) to obtain the result.

First, the construction of the pasted sets T, and U, needs to be adjusted as we have
to ensure that the labeled models obtained from them globally satisfy ¢y and —)y. To
that end, whenever we run into a formula of the form Qs or @,O€ we paste not only a
new nominal ny but also the formulas we want to make globally true. For example one
clause in the definition of T}, would read

— @; = Qgs, then Tj1 = T; U {p;, Qs(ng A s A o)}, for n, € N\NOM(T; U Uj;).

We will need to show that for all j € w, (T}, U;) is (globally) inseparable with respect to
L' 4ou0- The base case is simple: if  (including perhaps some new nominals {n;,, ..., n;, })
separates (T, Up) on L'y, then 0[z;, ... x;, ] separates ({¢o}, {—10}), for new variables
{z4;,...,x; }; this is precisely where the free variables in the interpolant are needed.

What about the inductive step? Consider, for example, the case of ¢; = @ s. Assume
that (T; U {y,},U;) is inseparable in L', ,,; we want to prove that (7; U {¢;, Qs(n; A
s A\ o)}, U;) is inseparable. Suppose 6 separates this last pair. Then U; = —§ while
T; U{Qs,Q(ng, A s A o)} E 6. Because Qz(ng A s A gg) is an @-formula, this is
the case iff T; U {Q,s} =7 Q(ni A s A ¢o) — 6. Furthermore, as ¢y € T; and ny is
a new nominal by definition, for all M, M Ik T} implies M |- @ (n; A s A ¢g). Hence
T; U {Qgs} =2 6. Contradiction.

From now on the proof follows the same lines as before. We obtain labeled models
such that M, IF ¢9 and My, I =1y sharing the same frame, from which we build a
model M where ¢y A =1y holds globally. QED

We will prove in Chapter 7 that Hy (@) is well behaved with respect to complexity: like
ordinary uni-modal logic it has a local PSPACE-complete satisfiability problem. On the
other hand, Hs(@, |) is known to be undecidable. Hy(@) does not have interpolation
(not even weak interpolation), while Hs(@, |) has one of the strongest versions of inter-
polation for modal languages. Extending Hy (@) to Hs(@) gives us weak interpolation,
but as we prove in Theorem 7.17, it turns the global Sat problem undecidable. It is
natural to ask if there is any computationally well behaved hybrid language extending
Hn(@) that enjoys arrow interpolation. Our conjecture is that the addition of graded
modalities to Hn(@) would provide such a system (see the discussion at the end of
Section 4.5.5).

The table below summarizes the positive results concerning interpolation we have
established in this section and in Section 4.5.3. Let ¢(Z) be a frame condition in the
bounded fragment,

Language ATP | TIP
Hs(Q, |) over the class FRAMES(VZ.p(Z)) | ves | yes
Multi-modal Hs(@, |) yes | yes
Hs(@, ) yes | yes
Hs(@) no | yes
H((R™), @ Q) yes | yes
H(@, @) yes | yes
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On the other hand, all the following logics fail to have both arrow and turnstile interpo-
lation: the finite variable fragments of Hs(@, |), Hn, Hn((R™1)), Hn(E), HN((R™1), E),
HN(@), HN(@, <R_1>), HN(@, E) and HN(@, <R_1>, E)

6.3 Reflections

From a model-theoretical point of view the language Hs(@, |) is surprisingly well be-
haved. As we discussed in this chapter, it can be characterized in many different and
natural ways, it responds with ease to both modal and first-order techniques, and has
one of the strongest versions of the interpolation and Beth properties we are aware of
for modal languages. This is in addition to the general completeness results we already
discussed in Sections 3.4 and 6.1.4.

Sometimes it happens that a particular language is in a state of “perfect equilibrium,”
offering high expressive power, simplicity, well understood proof and model theory, etc.
The first-order language is such an example, and the results above seem to indicate
that Hs(@, |) is another. Such systems can be used as a “logical laboratory:” what
we learn from them using the plethora of techniques they offer can, in many cases,
provide intuitions on restrictions and extensions. We saw this process in action during
this chapter, as we were able to transfer certain results from Hs(@, |) to extensions and
sublanguages.

As we said above and as we will prove in detail in the next section, Hs(@, | ) is unde-
cidable, just like FO is. And in that respect, it is probably not adequate for applications
requiring inference if we can do with a language of lower expressivity. But we conjecture
that the intrinsic locality of Hs(@, |) would translate in more efficient decision methods
than those available for FO. In particular, it would be interesting to extend the resolu-
tion method of Section 5.2.3 to full Hs(@, |) and compare its performance with respect
to, for example, a first-order resolution prover working on formulas from the bounded
fragment.

Concerning languages weaker than Hs(@, |) an interesting phenomena occurs. On
the one hand, we have shown that they are extremely well behaved computationally
as the presence of nominals and @ lets us define simple and elegant reasoning methods
(both tableaux and resolution based), and they also show good behavior complexity wise
as we will investigate in Chapter 7. But on the other hand, even though interpolation is
usually taken as a sign of a balanced inference system, we have proved that this property
usually fails for languages containing nominals but no binders. As we mentioned above,
our conjecture is that this “expressivity gap” might be filled with the addition of counting
operators.



Chapter 7

Mapping Out Complexity

Jack: [...] That, my dear Algy,

1s the whole truth pure and simple.

Algernon: The truth is rarely pure and never simple.
Modern life would be very tedious if it were either,
and modern literature a complete impossibility!

from “The Importance of Being Earnest,” Oscar Wilde

In this chapter we analyze the (un)decidability and complexity of a number of hybrid
logics. We discuss the effects of extending the basic modal language with nominals and
state variables, the (R~') modality, the @ operator, the existential modality E, the dif-
ference operator D, and the | binder. In Chapter 4 we have already transferred some of
these results into description logics. A new angle which we will be investigating here is
the behavior of hybrid languages (and hence description languages) on classes different
from K, the class of all models. In particular, we will discuss the behavior of hybrid
languages containing the past operator (R~!), on models which satisfy more natural
conditions for time structures (i.e., transitivity, strict linearity and branching.) Ana-
lyzing complexity results on different classes of models comes naturally in the standard
modal logic approach, and can be related to the work of Horrocks and Sattler [1999] on
transitive roles in description languages.

We start by proving a sharp undecidability result for Hs(]). This result is so general,
that it calls for drastic restrictions on Hs(]) to come back to decidability. We will prove
that the satisfiability problem for formulas of Hs({(R™'),E, @, |) where | cannot be
nested is decidable. We will then explore the landscape of logics around Hs(@). We
start by proving that local K-satisfiability for Hs(@) is PSPACE-complete. In other
words, (up to a polynomial) there are no extra computational costs when expanding
uni-modal logic (or even multi-modal logic) with @, nominals and free variables. And,
as we discussed in Chapter 3, these extensions do increase the expressive power of the
language. The complexity results for Hs(@) contrast with the case for Hs((R™!), @).
Extending uni-modal temporal logic with just one nominal brings the complexity of
local K-Sat to EXpPTIME-completeness. We will see that this EXPTIME-completeness
result over arbitrary frames can be tamed either by working with a more appropriate
class of frames or by restricting to a fragment of the language. Along the way we make
a detour through hybrid PDL: we establish upper bounds for a number of hybrid logics
by generalizing results due to Passy and Tinchev [1991], and De Giacomo [1995].

We conclude by drawing attention to the spypoint technique from [Blackburn and
Seligman, 1995], which we use to prove both upper and lower bounds. We believe this
technique may be useful in other settings.

109
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7.1 Into Undecidability and Back

Beautiful as Hs(@, |) is, it has a drawback: its Sat problem is undecidable [Blackburn
and Seligman, 1995]. The culprit is the | binder, @ is not needed. And the result of
Blackburn and Seligman can be strengthened as follows.

THEOREM 7.1. The fragment of Hs(|) consisting of pure nominal-free sentences has an
undecidable local K-Sat problem.

We begin by quickly sketching an easy undecidability proof for the full language Hs(@,
1). By generalizing the methods used in this simple proof, we will be led to the Spypoint
Theorem (Theorem 7.9) and the undecidability result just stated.

THEOREM 7.2. Local K-Sat for Hs(Q, |) is undecidable.

PRrOOF. We will use Spaan’s result [1993, Theorem 4.2.1] concerning the undecidability
of global Sat for the class Koz of all modal frames in which every state has at most 2
R-successors and at most 3 two-step R-successors. We reduce the global Sat problem
of this logic to Hs(@, |). Our reduction uses the spypoint technique. Let Grid be the
conjunction of the following formulas, for s an arbitrary nominal:

G, Q,~Cs

Gy Q0T

G3 @, (00]2.Q,01)

Gy Qy(0]y.0|x,.Q,0|20.@Q,0|x5.(Q,, 0 V Qx5 V Q,yx3))

G @S(E\ly.DDlxl.@yDDlasz.@yDDlxg,.@yDDlas4.(\/1§i7ﬁj§4 Q,,x;)).

The exact meaning of Grid will be discussed below in the proof of Claim 7.3, but
intuitively, it is forcing the model to contain an irreflexive point s (the spypoint) which
has full access to a grid (i.e., a frame in Ky3). A warning, during this chapter we will
sometimes denote a state in a model simply by a nominal naming it, as we just did.

Cram 7.3. For every formula ¢, ¢ is globally satisfiable on a Kys-frame iff Grid A QO
is satisfiable in some state of a hybrid model.

PROOF OF CLAIM. For the left to right direction, let M I+ ¢, where M = (M, R, V') is
an ordinary Kripke model. Define M’ as follows: M’ = M U{s}, R' = RU{(s,m) | m €
M}, VI =V U{(n,{s}) | for all nominals n}. M’ is a hybrid model, for all nominals
(including s) are interpreted as the singleton set {s}, our spypoint. We claim that if
M IF ¢ then M, s Ik Grid A @,0¢p. Clearly, s satisfies G, Gy and G3. To prove G4 and
G5, use the fact that M is based on a Kgg frame. As ¢ is globally true at M, s also
satisfies @,O¢p.

For the other direction, suppose Grid is satisfied in a model M. Then there exists
a state named by s (the spypoint). By G, s is not related to itself. By G, s is related
to some state, and by (3, every state which can be reached from s in two steps can
also be reached in one step. This means that in M — the submodel of M generated
by s — every state is reachable from s in one step. Now G4 and G5 express precisely
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the two conditions characterizing the class K3 on one step successors of s. So, let
M, w Ik Grid A @Q,O¢p, where M = (M, R, V') is a hybrid model. Define M’ as follows:
M ={me M| R(s,m)}, R = Ry, V' = Vipr. Then M’ is based on a Kys-frame,
and furthermore M’ I . =

The theorem follows from the claim. QED

We are on our way to prove Theorem 7.1. We start by analyzing the previous proof and
generalizing the underlying ideas. The models we used in the proof above had a certain
characteristic form. Let’s pin this down:

DEFINITION 7.4. A model M = (M, R,V) is called a spypoint model if there is an
element s € M (the spypoint) such that —R(s,s), and for all w € M, if w # s, then
R(s,w) and R(w, s).

Notice that any spypoint model is generated by its spy point. We will now show that with
| we can easily create spypoint models. On such models we can simulate the @, operator
for every variable x introduced by |z. The following proposition is straightforward:

PROPOSITION 7.5. Let M = (M,R,V) and s € M be such that M,s IF |s.(=Cs
AOO|x.O(s A Ox) ADOOs). Then

i. The submodel M generated by s is a spypoint model with s the spypoint.
ii. Qg is definable on Mg by (s N )V O(s A ).
1i. Let g be any assignment. Then for all m € M, Mg, g, m IF Q. iff My, g,m I
Qs(p vV O(x A ).

Spypoint models are very powerful: we can encode lots of information about Kripke
models inside a spypoint model. More precisely, for each Kripke model M, we define
the notion of a spypoint model of M.

DEFINITION 7.6. Let M = (M, R, V) be a Kripke model in which the domain of V' is
a finite set {p1,...,pn} of propositional variables. The spypoint model of M (notation
Spy[M]) is the structure (M’, R', V') in which
i. M'=MU{s}U{wp,...,wp,}, for s,wy,,...,w, & M,

ii. R =RU{(s,2),(x,s) |z e M\{s}}U{(z,w,,) |z € M and z € V(p;)},

iii. V' = {}.
Let {s,xp,,...,xp, } be a set of state variables. A spypoint assignment for this set is
an assignment g which sends s to the spypoint s and z,, to w,,. We use m as an
abbreviation for —s A =z, A ... A=z, . Note that when evaluated under the spypoint
assignment, the denotation of m in Spy[M] is precisely M.

Spy[M] encodes the valuation on M and we can take advantage of this fact. Define the
following translation from uni-modal formulas to hybrid formulas:

IT(pi) = O(zp,)
IT(=p) = ~IT(p)

(
IT(eANy) = IT(p) NIT(¥)
IT(Op) = O(mAIT()).
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PROPOSITION 7.7. Let M be a Kripke model and ¢ a uni-modal formula. Then for any
spypoint assignment g, M I+ ¢ iff Spy[M], g, s |F O(m — IT(p)).

Modify the hybrid translation HT given in Section 6.1.1 to its relativized version HT™
which also defines away occurrences of @. Let HT™(Jv.(R(t,v) A ¢)) be Q<& lv.(m A
HT™p) and replace @ by definition as in Proposition 7.5.77) and ).

The crucial step now is the fact that | is strong enough to encode many frame-
conditions.

PROPOSITION 7.8. Let M = (M, R,V) be a Kripke model. Let C(y) be a formula in
the bounded fragment in the signature {R,=}. Then for any assignment g, (M, R) |-
Vy.C(y) if and only if Spy[M], g, s IF Oly.(m — HT™(C(y))).

ProOOF. Immediate by the properties of HT', Proposition 7.5, and the fact that the
spypoint is R-related to all states in the domain of M. QED

THEOREM 7.9. [Spypoint theorem| Let ¢ be a uni-modal formula in {p1,...,p,} and
Vy.C(y) a first-order frame condition in {R,=} with C(y) in the bounded fragment.
The following are equivalent.

i. There is a Kripke model M = (M, R, V') such that (M, R) I Vy.C(y) and M IF .
ii. The following pure hybrid sentence F in the language Hs(|) is satisfiable.

F = |s.(SPY AO|z,,.@,0|2,,@, ... Ola, @,(DIS A VAL A FR)),

where
SPY = —=0sA00|x.0(sAOx) AOOs
DIS = O(Ajcicn(@p, = N{mzp, [ 1 < #i<n}))
VAL = DO(m — IT(p))
FR = Oly.(m— HT™(C(y)).

PRrROOF. The intuitions behind SPY, DIS, VAL and FR are as follows. SPY makes s a
spypoint. DIS takes care that x,, and z,, do not hold at the same point of the model,
for i # j. VAL makes ¢ globally true in m. And FR forces the condition C'(y) in m.
The way we have written it, F' contains occurrences of @, but this does not matter, by
Proposition 7.5 all these occurrences can be defined away.

To prove i) = i), let M be a Kripke model as in 7). We claim that Spy[M], s IF F.
The first conjunct of F' is true in Spy[M] at s by Proposition 7.5. The diamond part of
the second conjunct can be satisfied using any spypoint assignment g. In the spypoint
model all w,, are pairwise distinct, hence Spy[M], ¢,s I DIS. By Propositions 7.7
and 7.8, also Spy[M],g,s |- VAL A FR.

For the other direction, let M,s I F. By Proposition 7.5, the submodel M, =
(Mg, R, V) generated by s is a spypoint model. Let g be the assignment such that
M, g,sl= DIS N VAL A FR. By DIS, g(xp,) # g(xp,) for all i # j, and (since ~R(s, s))
also g(x,,) # s, for all i. Define the following Kripke model M" = (M’', R', V'), where
M’ = M\ {g(s),9(2p,), - 9(xp) b, B = R Lo and V/(p) = {w | R(w, g(a,))}. Note
that Spy[M'] is precisely My, and ¢ is a spypoint assignment. But then by Propo-
sitions 7.7 and 7.8, and the fact that M,,g,s I VAL A FR, we obtain M’ IF ¢ and
(M', R IF Yy.C(y). QED
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The proof of the claimed undecidability result is now straightforward.

PrOOF OF THEOREM 7.1. We reduce the undecidable problem of deciding global sat-
isfiability in the uni-modal language over the class Koz as we did in Theorem 7.2. The
first-order frame conditions defining Koz are of the form Vy.C(y) with C(y) in the
bounded fragment. Apply the Spypoint Theorem. The formula F' (after all occurrences
of @, have been term-defined) is a pure nominal-free sentence in Hs(|). QED

The generality of the Spypoint Theorem can be interpreted as a sign that only very
restricted forms of binding will preserve decidability. In the rest of the section, we
focus on the fragment of Hs({(R™'),E, @, |) containing only sentences where | cannot
be nested. We will prove that this fragment is indeed decidable.

THEOREM 7.10. The set of sentences of Hs((R™'),E, @, |) where | appears non-nested
has a decidable K-Sat problem.

We need some preparation before embarking into the proof of Theorem 7.10. The
following are properties of formulas in Hs((R™!),E, @, |).

PROPOSITION 7.11.
i. For any M, g, m and x not in ¢: M,g,m - ¢ iff M, giu, m - pli/z].
1. Let @ be a formula with no state variables. Then for any M, m, M,m I i A ¢
implies M, m I+ |x.p[i/x].
ii. Let ¢ be a formula with only x free. Then for any M,g, m, M, gt m =i A
implies M, m I [z /i].

PROOF. i) is proved by induction on ¢. To prove i), suppose M, m I i Ap. Then by 1),
M, [z =iM],m |- pli/z]. But because M, m IF i, i = m and hence M, m I+ |z.¢li/x].
For iii), suppose M, g%,,m I i A . Because m = i™M, M, g%, m IF [z /i][i/z] and by
i), M, g,m Ik p[z/i]. As x was the only free variable in ¢ we can drop g. QED

PrROOF OF THEOREM 7.10. We prove via filtrations that the fragment consisting of
the non-nested sentences of Hs((R™!),E, @, |) has the finite model property.

Let ¢ be a sentence in Hs({(R™1), E, @, |) without nested occurrences of | and M =
(M, R,V) be a hybrid model over (REL, PROP,NOM, SVAR) such that M, m IF ¢. We
can assume that M is labeled, i.e., each state in M makes a nominal true.

Define the relation ~ on M as m ~ m' iff for all ¥y € SF(¢), M, [z = m|,m |-
v < M, [x = m],m' IF . Let REP be a subset of M containing exactly one member
of each equivalence class in M/~ and let LAB be the set of its labels (LAB C NOM).
Define M/ = (M7 R/ V) as follows, M/ = REP, R/(m,m’) iff for some n € |m|,n’ €
|m/|, R(n,n’), and V(a) = {m € REP | M, m IF a} for « € PROP U LAB. Notice that
M/ is a finite labeled hybrid model over the signature (REL, PROP, LAB, SVAR).

Let Cl(g) be the smallest set containing {¢} ULAB, closed under subformulas, single
negation and the condition {|x.¢),i} C Cl(p) = [z/i] € Cl(p). We will prove that
M/ satisfies the following truth lemma

CLAIM 7.12. If ¥ € Cl(yp) is a sentence, then MY, m I 1 iff M, m IF 2.
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ProOF OF CLAIM. The proof proceeds by induction on the complexity of 1. The atomic
case is by definition of V/ and the Boolean cases by induction hypothesis. The cases for
the modalities, E and @ are straightforward. The only interesting case is ¢ = |z.6.

[=]. Suppose M/, m IF |2.0, then M/, [z = m],m IF §. Let i be the nominal labeling
m, then by Proposition 7.11.451) MY m IF [z /i]. Notice that f[x/i] is a sentence in
Cl(p), hence by inductive hypothesis M, m IF [z /i]. Using Proposition 7.11.77), we
obtain M, m Ik |z.0[x/i][i/x] as needed.

[<] is proved similarly. y

The theorem follows immediately from the claim. QED

7.2 A Note on Nominals, @, E and D

The existential modality E, and to a lesser extent the difference operator D, have played
an important role in the development of hybrid languages. Note that in the presence of
state variables E can mimic @, for E(s A ¢) means exactly the same thing as Qgp. This
is why practically everyone who has worked with nominals has also experimented with
E. In a sense, @ amounts to a guarded use of E, where we mean “guarded” in the sense
of [Andréka et al., 1998], i.e., the scope of the quantifier introduced by E is restricted to
the single point where the nominal holds. As we will see, this kind of guarding can be
effective: hybrid logics with @ are often less complex than those which allow unrestricted
use of E.

The difference operator D is stronger than E, for we can define Ep as ¢ V Dy but
E is not strong enough to define D. Actually, D is so strong that it can even simulate
nominals: clearly the formula Ep A A(p — —Dp) forces p to be true at only one point
in the model. This is not a new observation, Gargov and Goranko raise the same point
in [1993] and proof systems for D-logics based on Gabbay style rules trade on this [de
Rijke, 1992; Venema, 1991, 1993]. The following fact is perhaps more surprising:

THEOREM 7.13. There is a polynomial reduction preserving satisfiability from any hy-
brid language containing D to the fragment containing only E and nominals.

PROOF. Let ¢ be a formula in the full language. In two steps, we construct a formula
@' N0 without D such that ¢ is satisfiable iff ¢’ A6’ is. We take care that this construction
can be performed in time polynomial in |p|. We use the fact that in any Kripke model
M, the denotation [Dpjy = {m € M | M,m IF Dy} of Dy can only take three values,
namely:

M if [[plm] > 1
Delm =14 {} if [plm = {}
M\ A{m} if [p]y = {m}.
We now delete all occurrences of D, replacing them with nominals and A. We proceed
inductively in the number of D operators in ¢. If ¢ contains no D we are done. Otherwise,

consider a subformula of the form D1 where v contains no occurrences of D. Let ¢’ be
¢ with this subformula replaced by a new variable p; and let 8, = A(py <> Dv). Clearly
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© is satisfiable iff ¢’ A6y is. An inductive application of this procedure eventually yields
a formula ¢" without occurrences of D and a conjunction 6 of formulas of the form
A(pyr < Dt) with D not in .

Now we “axiomatize” all the Dy using nominals, E, and A. For every conjunct
0, = A(pr. <> Dv), we create a formula 6}, which is the conjunction of

Api vV A=p V (A(pr < —ig) A Epy)
Apr, — E(¥ A i) A E( A —ig)
A—|pk — A—\w

(A(pr < —ix) A Epr) — A — ).

For every 6, we use a new nominal ix. Let 6’ be A ). It is clear that ¢’ A6 is satisfiable
iff o' A @' is, and @' contains no occurrences of D. The translation produces at most a
quadratic blow-up in the size of the formula. QED

COROLLARY 7.14. Let F be any class of Kripke frames, and let L be a modal language.
Then
i. if L contains D then adding nominals, Q, and E modifies the complexity of F-Sat
by at most a polynomial,

1. if L contains nominals and E then adding D modifies the complexity of F-Sat by
at most a polynomaial.

7.3 Restricting the Language

For most of this and the next sections we will study local K-satisfiability problems. Note
that as far as local satisfiability problems are concerned, if we replace all state variables
in ¢ by nominals, obtaining ¢’, then ¢ is satisfiable if and only if ¢’ is satisfiable. For
this reason we can restrict ourselves to formulas without variables in the proofs, and
we won’t need to mention variable assignments. However at the end of Section 7.3.1
we examine the complexity of the global K-satisfiability problem for Hs(@) and an
interesting difference between nominals and state variables emerges. Also, if a language
without state variables contains the E operator then the local and global satisfiability
problems collapse into the same. In other words, complexity results for local Sat transfer
from Hy to Hs and if the language contains E then complexity for the local Sat transfers
to global Sat for languages without state variables.

7.3.1 Around Hs(@)

Hs(@) is a very interesting sublanguage of Hs(@, |). As we have seen in Section 6.2,
although Hs(@) does not enjoy strong interpolation, it does have weak interpolation.
Moreover, as is shown in [Blackburn, 2000a], simple tableaux and sequent systems for
Hs(@) can be defined by exploiting the interplay between nominals (or free variables)
and @; the underlying ideas trace back to [Seligman, 1991]. Furthermore, Hs(@) pro-
vides new expressivity at the level of frames: we can define many properties that are not
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definable in ordinary propositional modal logic. Moreover, pure formulas automatically
yield complete axiomatizations for the frame classes they define.

Thus there are many reasons for being interested in Hs(@), and a natural question
to ask is: how high a computational price do we pay for these benefits? It turns out
that (up to a polynomial) there is no extra computational costs.

THEOREM 7.15. Local K-Sat for Hs(@) is PSPACE-complete.

PROOF. The lower bound follows from [Ladner, 1977]. We show the upper bound by
defining the notion of a £-game between two players. We will show that the existential
player has a winning strategy for the &-game if and only if ¢ is satisfiable. Moreover
every &-game stops after at most as many rounds as the modal depth of ¢ and the
information on the playing board is polynomial in the length of £. Using the close
correspondence between alternating Turing machines and two player games [Chlebus,
1986, it is straightforward to implement the problem of whether the existential player
has a winning strategy in the ¢-game on a P alternating Turing machine. This in turn
can be transformed into a PSPACE Turing machine. We present the proof only for
uni-modal Hs(@); it can be straightforwardly extended to the multi-modal case.

Fix a formula £. A ¢-Hintikka set is a maximal consistent set of subformulas of
€. The &-game is played as follows. There are two players, Vbelard (male) and Jloise
(female). She starts the game by playing a collection { X, ..., X;} of Hintikka sets and
specifying a relation R on them.

Jloise loses immediately if she cannot meet one of the following conditions:

. £ € Xo, and all others X; contain at least one nominal occurring in &,

77. no nominal occurs in two different Hintikka sets,

iii. for all X, for all @, € SF(€), Q0 € X; iff {i, ¢} C X, for some k,

iv. for all Gy € SF(E), if R(X;, Xx) and Oy € X, then ¢ & X
Now Vbelard may choose an X; and a “defect-formula” Gp € X;. dloise must respond
with a Hintikka set Y such that

i. ¢ €Y and for all Oy € SF(E), O € X implies that ¢ € Y,

ii. for all @;p € SF(E), Q;p € Y iff {7, p} C Xy, for some k,
1e. if ¢ € Y for some nominal 7, then Y is one of the Hintikka sets she played at the
start. In this case the game stops and dloise wins.
If dJloise cannot find a suitable Y, the game stops and Vbelard wins. If Jloise does find
a suitable Y (one that is not covered by the halting clause in item 4ii) above) then Y is
added to the list of played sets, and play continues.

Vbelard must now choose a defect Gy from the last played Hintikka set with the
following restriction: in round k he can only choose defects &g such that the modal
depth of o is less than or equal to the modal depth of &€ minus k. Jloise must respond
as before. She wins if she can survive all his challenges (in other words, he loses if he
reaches a situation where he can’t choose any more defects).

Clearly the £-game stops after at most modal depth of £ many rounds. At any stage
of the game, the size of the information on the board is at most polynomial in the length
of £&. We claim that Jloise has a winning strategy iff ¢ is satisfiable.

The right-to-left direction is clear: dloise has a winning strategy if £ is satisfiable,
for she need simply play by reading the required Hintikka sets off the model. The other



7.3.  Restricting the Language 117

direction requires more work. Suppose dloise has a winning strategy for the £-game. We
will create a model M for £ as follows. The domain M is build in steps by following
her winning strategy. M, consists of her initial move {Xo,...,X,}. Suppose M; is
defined. Then M, consists of a copy of those Hintikka sets she plays when using her
winning strategy for each of Vbelard’s possible moves played in the Hintikka sets from
M, (except when she plays a Hintikka set from her initial move, then of course we do
not make a copy). Let M be the disjoint union of all M; for j smaller than the modal
depth of £&. Set R(m,m') iff for all Gy € SF(§), Cp & m implies ¢ ¢ m’; and put
V(p) ={m € M | p € m}. Note that the rules of the game guarantee that nominals are
interpreted as singletons. The following truth-lemma holds:

CLAIM 7.16. For all m € M which Jloise plays in round j (i.e., m € M;), for all ¢ of
modal depth less than or equal to the modal depth of £ minus j, M, m IF ¢ iff p € m.

Proor or CLAIM. By induction, the cases for atoms, Booleans and @ are simple. For
O, if G € m, then Vbelard challenged this defect, so Jloise could respond with an m’
containing . Since for all G € SF(E), O € m = ¢ ¢ m/ holds, we have R(m,m’)
and by induction hypothesis M, m IF Gp. If O & m but R(m, m’) holds, then by our
definition of R, ¢ & m/, so again M, m I} O, -

Since she plays a Hintikka set containing £ in the first round, M satisfies €. QED

Theorem 7.15 shows that for arbitrary frames, the guarding strategy (that is, using
@ instead of E) pays off: adding the existential modality to ordinary uni-modal logic
results in an EXPTIME-complete satisfiability problem (see [Halpern and Moses, 1992]
and [Spaan, 1993]).

But what about the global K-Sat problem? EXPTIME-hardness for Hy(@) obtains
as a corollary of Spaan’s proof [1993] of the EXPTIME-completeness of the local K-Sat
problem of uni-modal logic plus the existential modality. A matching upper bound
follows from Corollary 7.21 below. Interestingly, things are very different if we expand
the uni-modal language with variables instead of nominals.

Recall from Section 3.3 that M I ¢ is defined to hold iff for all g, M, g IF . That
is, g is not held constant. Now, if there are no state variables in ¢, ¢ is irrelevant and
global satisfiability is EXPTIME-complete. But if ¢ is allowed to contain free variables,
the implicit universal quantification in the definition certainly does change matters. In
effect, we are surreptitiously using the V quantifier, and we wind up with an undecidable
global Sat problem.

THEOREM 7.17. The global K-Sat problem of Hs(Q) is undecidable.

PROOF. Let ¢ be the formula (Cxy A Cxg A Oxg) — O(xp <= 29 V 2 <> X3 V Ty <> T3).
Then for every model M, M I+ ¢ ifft M Ik Vyxixox3.((Ryx1 A Ryzs A Ryxs) — (r1 =
xo V x1 = x3V 29 = x3)). le. ¢ expresses that every world has at most two R-
successors. Similarly we can create a formula without propositional variables expressing
that every world has at most three two-step R-successors. Hence we can enforce Kys
models and Spaan’s undecidability result applies. QED
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Note that this argument makes no use of @, hence undecidability actually obtains for
Hs. And the result can be sharpened even further: if the language contains at least
three modalities, then we obtain an undecidable global consequence problem for the
sublanguage containing only one propositional variable; again, no use is made of Q.

7.3.2 Around Hs({R!), Q)

The addition of nominals in temporal logics behaves quite differently than for the modal
language. In fact, expanding the basic tense logic with even a single nominal or free
variable leads to an exponential increase in complexity for the local satisfiability problem
(assuming PSPACE # EXPTIME).

THEOREM 7.18. Local K-Sat for Hn((R™')) with at least one nominal is EXPTIME-
hard.

Proor. We will reduce the EXPTIME-complete global K-Sat problem for uni-modal
languages to the local K-Sat problem for Hy({(R™')) containing at least one nominal s
which we will use as our spypoint.

Define the following translation function -: p' = p, (=)' = =", (p A)E = ' A,
(Cp)t = (R)({R7')s A ¢'). Note that s is a fized nominal in this translation. Clearly -f
is a linear reduction. We claim that for any formula ¢, ¢ is globally K-satisfiable if and
only if s A [R]((R™1)s — ¢') is K-satisfiable.

For the left to right direction, let M Ik ¢, where M = (M, R, V) is an ordinary
Kripke model. Define M’ as follows: M’ = M U {s}, R = RU{(s,m) | m € M},
V' =V U{(n,{s}) | for all nominals n}. We claim that for all m € M, for all ¢, we
have M, m I ¢ if and only if M’ m IF *. This follows by a simple induction. The only
interesting step is for <:

M, m IF O
& Im' e M(R(m,m') & M,m’ IF )
< Im'e M' (R (m,m') & M',m’ Ik ¢' & R'(s,m’) (by IH and definition of R’)
s M mik (R)((R7')s A )
o M, mIF (Ov)-.

It follows that M, sl s A [R]((R™!)s — '), as desired.

For the other direction, let M, w I sA[R]((R™1)s — ¢'), where M = (M, R, V) is a
hybrid model. Define M’ as follows: M’ = {m € M | R(w,m)}, R' = Ry, V' = Viap.
We claim that for all m € M’, for all v, M, m I ¢! if and only if M, m IF ). Again we
only present the inductive step for <:

M,m - (RY((R™)s AyY)
< 3Im’ € M.(R(m,m') & R(w,m’) & M, m' I ¢")
< 3Im’ € M'.(R(m,m') & R(w,m’) & M, m’ Ik ")
< dm' e M'.(R'(m,m’) & M',m’ I ) (by IH and definition of M’)
= M, m - .

For all m € M’, R(w,m) holds and then M, m I+ (R™1)s. So, since also M,w I-
[RJ((R™1)s — ¢!), we have for all m € M', M, m |k ¢'. Hence M’ It . QED
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We can use similar ideas to provide a lower bound for satisfiability of sentences with

non-nested | in Hs(@, |). Define (Op)t as (R)((Q)s A |2.@Q(Q)x A ¢'). Then again

PROPOSITION 7.19. A basic modal formula ¢ is globally satisfiable iff sA[Q]((Q)s — ¢")
1s locally satisfiable.

Hence the local satisfiability problem of the non-nested downarrow fragment of Hs(Q, |)
is ExpPT1ME-hard. Even though we used two modalities in the encoding above, we can
do with only one by using the EXpT1iME-hard global satisfiability problem of the basic
modal language over symmetric frames.

We should now provide a matching upper bound for Theorem 7.18, but in fact we
will prove a stronger result. Even though the addition of just one nominal to the basic
tense language yields an EXPTIME-hard local K-Sat, adding further nominals, multiple
forwards and backwards looking modalities, and even the existential modality, does not
take us any higher in the complexity hierarchy.

We will establish this by extending known results for nominal PDL. It is known
that the local satisfiability problem of nominal PDL enriched with E is solvable in Exp-
TiME [Passy and Tinchev, 1991]. Moreover, De Giacomo’s results [1995] on PDL-like
description languages containing the O operator show that the satisfiability problem for
nominal PDL with converse is solvable in EXPTIME. On connected frames — assuming
a finite repertoire of atomic programs — the existential modality is definable in converse
PDL. But to establish the upper bounds we want, we need to know that we can have
access to both converse programs and E on arbitrary frames and still stay in EXPTIME.
And in fact, we can. Once again, we make use of a spypoint argument, but this time to
obtain an upper bound.

THEOREM 7.20. Local K-Sat for nominal PDL with converse and the existential modal-
ity is solvable in EXPTIME.

PROOF. Let £ be a formula in this language. Without loss of generality we may assume
that the converse operator is only applied to atomic programs. We will transform & into
a formula without occurrences of E and then use De Giacomo’s result. Let s be a nominal
and o be an atomic program not occurring in €. Define &' by recursively replacing every
occurrence of Ep in £ by (c71)(s A (o)), obtaining a formula without occurrences of E.
Now transform the programs occurring inside the modalities in £ by replacing atomic
programs p (converse programs p~') by p; (c71)s? (respectively p~'; (071)s?7). We claim
that ¢ is satisfiable iff &8 A (07 !)s is satisfiable. Since &' A (o71)s is in the language
covered by De Giacomo’s EXPTIME-algorithm, this claim proves the theorem.

The left to right direction of the claim is obvious: just add a new state to the model,
make s true there, and let that state be o-connected to all other states.

For the other direction, let M = (M, {R;}, V) satisfy £ A (c7!)s at w and let s be
the denotation of s. Let M’ be the submodel of M obtained by restricting the universe
M to the set M' = {x € M | R,(s,z)}. We claim that for all subformulas v of &, for all
reM M, zl-p < Mzl

As w € M’, this provides us with the desired result. The proof of the claim goes by
the usual double induction needed for inductive proofs in PDL. The proof is straightfor-
ward given the following observations: the translation of E formulas works because we
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restricted the model to successors of the spypoint s; and M’ is a generated submodel of
M for the new “atomic” programs p; (c~1)s? and p~!; (6071)s? occurring in &' QED

COROLLARY 7.21. Local K-Sat for Hs((R™'),E) is EXPTIME-complete.
PROOF. Define a linear translation - of formulas of nominal tense logic (without @)
into formulas of nominal PDL with converse as follows: (a)'=a for all atoms a, (=§)?
= (@), (EA0) = (6 A 0), ((RE) = ((E), (RME) = (r)(€)!, and (EE)' =
E(¢)". Here r is a fixed atomic program. It is easy to see that ¢ is satisfiable iff (@)’ is
satisfiable. QED

7.4 Restricting the Class of Frames

The ExpPTIME-complete result for Hy((R™!)) sounds like bad news, but perhaps we
can do better. (R™!') usually receives a temporal interpretation (we have ourselves been
referring to temporal and tense logics in the previous section). So we should investigate
the behavior of Hy({(R™!)) of frames which are “time like” and not just on any arbitrary
frame. If we think of the states of a Kripke model as time points, view R as the temporal
precedence (or earlier-than/later-than) relation and read (R™')¢ as “¢ occurs in the
past,” then we should require R to be (at least) transitive. We will now examine the
complexity of hybrid logics over frame classes that are relevant for temporal logic, like
strict partial orders (linear time) and transitive trees (branching time).

7.4.1 Transitive Frames

We start with hybrid languages without (R™'). We know from [Ladner, 1977 that
the local Sat problem for ordinary uni-modal logic over transitive frames is PSPACE-
complete. What happens when we add nominals and @7 Again, nothing. In fact we
can even add the existential modality E while staying in PSPACE.

THEOREM 7.22. Sat over transitive frames for Hn(Q, E) is PSPACE-complete.

Proor. Given Ladner’s result, we only need to provide an upper bound. We only
consider formulas without occurrences of @ as this operator can be defined away using
E: @;pis equivalent to E(iAp). The proof will be similar to Theorem 7.15. For a formula
¢ we will define a two player £-game. The -game is designed so that it halts after at
most |SF(&)| rounds. Moreover, at each stage of the game at most |SF(§)| Hintikka sets
are on the board.

Fix a formula £. The -game is played as follows. dloise starts by playing a collection
{Xo, ..., Xy} of Hintikka sets. She must now choose Hintikka sets so that the following
three conditions hold:

i. £ € Xg, and [{Xo, ..., Xy}| is smaller than |[SF(£)],
7. no nominal occurs in two different Hintikka sets,
ii1. for all X, for all Ep € SF(§), Ep € X iff ¢ € X}, for some k.
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If dloise cannot find Hintikka sets satisfying these conditions, she loses the game imme-
diately. If she can, the game continues. Vbelard chooses an X; and a “defect formula”
O e X dloise must respond with a Hintikka set Y such that

i. ¢ €Y and for all Oip € SF(E), O € X implies that Gy € Y and ¢ € Y,
ii. for all Ep € SF(&), if o € Y then Ep € Y, and Ep € Y iff Ep € X,
1i. if ¢ € Y for some nominal ¢, then Y is one of the Hintikka sets she played at the
start. In this case the game stops and Jloise wins.

If dloise cannot find a suitable Y, the game stops and Vbelard wins. If Jloise does find
a suitable Y (one that is not covered by the halting clause in item 4ii) above) then Y is
added to the list of played sets, and play continues. At each stage, Vbelard must choose
a defect O from the last played Hintikka set. To ensure that the the length of the game
is bounded by |SF(§)], we keep a list of the G-formulas Vbelard plays, and we insist that
if he plays a formula < a second time, Jloise has to respond with the Hintikka set she
played when he challenged with C¢p the first time. If this (forced) response does not
meet the three criteria just listed, she loses; but if it does meet these criteria, she wins.
Either way, the game stops immediately.

CrLAM 7.23. dloise has a winning strategy in the &-game iff £ is satisfiable in the class
of transitive hybrid models.

ProOOF OF CLAIM.

[=]. Suppose Floise has a winning strategy for the {-game. We build a model M for £ as
follows. The domain M is built as in Theorem 7.15. Set R(m,m’) iff for all G € SF(&),
Sodgm=[Cogm & o &gm']. Let V(a) = {m € M | a € m}, for all atoms a in
SF(¢); and if ¢ is any nominal not in SF(§), then V(i) is an arbitrary singleton subset
of M. Clearly M is a transitive hybrid model. The following truth-lemma holds is easy
to prove: for all v € SF (&), for all m € M, M, m |- ¢ if and only if ¢ € m.

[«<]. Suppose ¢ is satisfiable. That is, suppose there is some hybrid model M and
a point mg such that M,mq IF & We define the model M/ = (M/ R/, V/) as the
transitive filtration of M through SF(§). I.e., or each state m € M, let |m| be the set
of all states in M that agree on all formulas in SF(&). Then,
i. M7 ={|m|| is a state in M},
ii. R (Im|, |m’|) iff for all ¢, if O¢p € SF(€) and M, m If Oib, then M, m’ IfF 4, and
M m/ I O,
iii. VI(a) = {Im| | M,m I a}, for all atomic symbols a € SF(£), and V/ assigns
arbitrary singletons to nominals not in SF(§).
Then M/ is a finite model, M/ |mg| IF €, and moreover each state in M7 is a Hintikka
set over £. Think of Jloise as consulting M/ as she plays, and choosing her moves from
its states. For her first move, Jloise chooses |my| (as this is a point in M7 that contains
¢), and each state of M7 that contains a nominal and for every Ey» € SF(&), if ¢ is
satisfied in MY, just one |m| such that M/ |m| IF 4. Clearly her first move satisfies
the required conditions. Now for the crucial point: when Vbelard chooses a defect $g
from a Hintikka set X, Jloise responds with a mazimal Rf-successor Y of X such that
Y contains ¢; as M is finite, such a Y exists. It is this choice that enables Jloise to
successfully play the same Hintikka set twice if Vbelard chooses a defect G twice. For
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suppose dloise has played Y in response to a defect ¢ in X. Then suppose that at
some later stage Vbelard points to the defect G in Z, for Z a successor of X. dloise
consults the model, looking for a maximal R/ successor of Z that contains ¢. But as
RY(X,Z7), any such point will also be a maximal R’ successor of X that contains .
Thus Y is a suitable choice, and by playing it again she wins immediately. Thus dloise
has a winning strategy for the £-game. This completes the proof of the right to left
direction of our claim. .

The theorem follows directly from the claim. QED

So far, so good: nothing strange happens when we add transitivity to the basic hybrid
language. But as we will now show, transitivity is not enough to tame hybridization
when the backward looking modality (R™!) is present.

THEOREM 7.24. Local Sat for transitive frames in Hy((R™')) is EXPTIME-hard.

Proor. We will reduce the EXpPTIME-complete global K-Sat problem for uni-modal
languages to the local Sat problem over transitive frames of Hy({(R™')) with at least
one nominal. We assume without loss of generality that the propositional variables in
the hybrid language are those of the uni-modal language plus four extra propositional
variables 0, 1, 2, and 3. Define the translation ! as follows:

t

po=p
(mp)t = ¢!

(@AY = @' At

(Cp) = (RYAA(RTHEARBA(RTOA(RT)IAPY))).

Clearly ‘! is a linear reduction. The intuition behind this translation is to mimic one
R-step in an ordinary Kripke frame by a zigzag transition in a transitive hybrid frame.

/IU1“_1 ’U)3H_3

w0 welF2 wIFO

The picture above shows how an arrow from w to w’ in the original model would be
encoded in the transitive model, with intermediate stops at w;, we and ws. The propo-
sitional symbol 0 will mark the elements of the original model, the others are auxiliary
in the encoding.

Cramm 7.25. For any uni-modal formula ¢, ¢ is globally K-satisfiable iff ¢ A (R)0 A
[R](0 — ¢") is satisfiable in a hybrid model based on a transitive frame.

PrOOF OF CLAIM.
[=]. Suppose M I+ ¢, where M = (M, R,V) is a Kripke model. We now define a
transitive hybrid model M’ = (M’ R', V') as follows:
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- M'= (M x{0,1,2,3}) U{s}, for s ¢ M x {0,1,2,3}. For z € {0,1,2,3}, M* is
{(m,z) | m € M}. In what follows, we will use the notation m, instead of (m, z),
z € {0,1,2,3}. Points in M° will correspond to the points in the Kripke model
M; points in M, M? and M? are a “coding space” in which we can construct the
transitive relation we require. The point s is our spypoint.

— R’ is defined as follows

)
= x9,b =123 for some z € M, or

Zo,b=1x3 for some x € M, or
R'(a,b) < = x9,b=x; for some v € M, or

=yo,b =z, for some y,z € M & R(y,z), or

°S 2 2 2 8
|

=S

R’ codes an R-transition from point y to x in M as a forward step from yq to z;
followed by a backward, forward, backward sequence from z; to x3. This zig-zag
sequence corresponds to the nesting pattern modalities in the translation clause
for &. We leave the reader to verify that R’ is a transitive relation. Note that the
spypoint can see every point in the model.

— If p is a propositional variable not in {1,2,3,4}, then V'(p) = {mo | m € V(p)};
for p € {1,2,3,4}, V'(p) = MP, and V'(i) = {s}.

It follows by induction that for all m € M, for all uni-modal formulas ¥, M, m IF v iff
M’ mg IF 9t The interesting step is $ip. Proving M, m I- 1) implies M/, mg IF (O)?
is easy. For the other implication, suppose that M’ mq IF (O¢)t. Then M’ mg IF
(RY(A A (RTHE2A(R)BA(RTHOA(R )i AY)))). This implies that there exist
a; € M, by € M?, c3 € M? and ny € M° such that

a1 C3
< A4 < >
mo by no I wt

But by the definition of R’ it follows that a; = my, by = no, and c3 = n3. Hence,
as R'(mg,ay), it follows that R(m,n). Moreover, as M’ ng I 9!, by the inductive
hypothesis M, n I 1. Thus M, m Ik .

From this equivalence it follows that M’ s IF i A (R)0 A [R](0 — ¢"), and we have
proved the left to right direction of our claim.

[<]. Suppose M,w IF i A (R)0O A [R](0 — ¢"), where M = (M, R, V) is a transitive
hybrid model. Define a Kripke model M’ as follows:

M ={me M| R(w,m) & M,m I 0}. Note that M’ # { }, for M, w IF (R)0.
- R ={(m,n) € M'x M"| Ja,b,c € M.(R(m,a) & R(b,a) & R(b,c) & R(n,c)
&EMalF1& M bIF2& M, clF3)}.
— V= Vi



124 Chapter 7. Mapping Out Complexity

It follows by induction that for all m € M’, for all uni-modal formulas ¢, M, m |-
Pt iff M',m Ik «. Only the step for < is interesting. That M,m Ik ' implies
M’ m Ik 9 is straightforward. For the converse, suppose M’',m |k &, Then In €
M'(R'(m,n) & M',n ). Asn € M, we have that R(w,n), hence by the definition
of R', In,a,b,c € M.(R(m,a) & R(b,a) & R(b,c) & R(n,c) &R(w,n) & M’ ,n - ),
Moreover a, b, ¢ satisfy 1, 2, and 3 respectively. By the inductive hypothesis M, n IF 9.
Hence, as w denotes i and R(w,n), and as all points in M’ satisfy 0, we have M, n I+
0 A Pi Ayt Tt follows that M, m IF ()t

From this equivalence and M, w IF [R](0 — ') it follows that M’ I ¢, and we have
established the right to left direction of our claim. -

The theorem follows directly from the claim. QED

Clearly, (R™') played a crucial role in this proof, so if we want a PSPACE or lower
satisfiability result we will need to add further restrictions “to the past” to tame temporal
hybridization. We will learn how to do this in the following section. Now for the upper
bound, thanks to the Kleene star in PDL we can again use Theorem 7.20.

COROLLARY 7.26. Sat for transitive frames in Hs({(R™'), E) is EXPTIME-complete.

tt t

PRrROOF. Define a linear translation -* which is identical to -* in Corollary 7.21 for
atoms and Booleans, but handles (R) and (R™!) as follows: ((R)¢)" = (r;r*)(£)", and
(R7HO® = (r=L (r H*) (&), Tt is easy to see that ¢ is satisfiable over a transitive
frames iff (¢)" is satisfiable. QED

Hence, temporal hybridization on transitive frames still moves us outside the complexity
class of the original logic. But from now on things get better. Two main kinds of
transitive structures are usually considered as standard representations of time: strict
total orders for linear time, and transitive trees for branching time. In the next two
sections we will prove that in both cases hybridization is tamed.

7.4.2 Strict Linear Orders

For many applications time is modeled as linear. In particular, many temporal logics
used in software and hardware verification assume a linear structure which corresponds
with the sequence of states that a run of a program goes through [Pnueli, 1977; Manna
and Pnueli, 1992].

Of course, choosing linearity leaves many interesting options open, such as whether
density or discreteness holds, and whether or not initial and final points in time exist.
But complexity-wise such choices are irrelevant: the complexity of the satisfiability
problem for Hy((R™')) over any subclass of the class of strict total orders is the same
as for M((R™')). Given our remarks in Section 7.2 this should not come as a surprise:
over strict total orders, (R) and (R™') are strong enough to define D, as Dy < ((R)¢ V
(R71)¢) is valid. Thus we can eliminate all occurrences of nominals (and @ and E) by
simulating them using D; in effect, we do the reverse of what we did in Theorem 7.13.
Some care has to be taken to avoid a blow up in formula size during the elimination
process, but it is easy to define an inductive replacement similar to the one used in the
proof of Theorem 7.13. Thus:
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THEOREM 7.27. Let S be a subclass of the class of strict total orders. Up to a polynomial,
the complezity of local S-Sat is the same for Hy(<,E,D, @) as it is for M((R™')).

On many natural linear flows of time (for example, the class of all strict total orders, or
the class containing only (Q, <)) the complexity of Sat for M({R™')) is NP-complete
[Ono and Nakamura, 1980; Clarke and Sistla, 1985], that is, no worse than propositional
calculus, so Hn(<, E, D, @) will inherit these results.

Theorem 7.27 may seem a bit like cheating. We don’t pay any computational cost,
but this is because hybridization over strict total orders does not increase the expressive
power at our disposal. This is true, but it misses the point. In many applications of
temporal logic, reference to times is not an optional extra, it is fundamental. Nominals
can be seen as (and have been called) “clock variables” [Bull, 1970], and @;p read as “at
the 7-o’clock p”. It is clear that they might come handy when specifying the temporal
behavior of a system. To handle such problems naturally, we need formalisms which
allow us to deal with temporal reference directly, and adding @ and nominals gives us
an adequate level of abstraction. It is this level of abstraction (rather than the lower
level offered by D) that needs to be isolated and explored.

7.4.3 Transitive Trees

In discussions of temporal logic in philosophy, natural language semantics, and computer
science, the following intuition plays an important role: while several possible futures
may be allowed, the past has a linear structure. To put it another way, it is often
assumed that time has a tree-like structure, with the branching occurring only towards
the future. Formal analysis of this conception of time go as far back as the work of
William of Ockham in the fourteenth century [Ockham, 1969]. Logics for branching-
time have also been actively investigated in computer science [Ben-Ari et al., 1983;
Emerson and Halpern, 1986].

Call a directed graph (T, <) a tree if it is acyclic and connected, and every node has
at most one predecessor. A transitive tree is the transitive closure of a tree. In this
section we are interested in the satisfiability problem of Hy({R™')) over such frames.

Note that the spypoint argument used to prove EXPTIME-hardness in Theorem 7.24
will not work for transitive trees: the encoding of transitivity in the model M’ made
crucial use of branching towards the past (points in M look back to points in M° and
M?). And in fact, if we demand that our frames are transitive trees, we tame (R~') and
drop back into PSPACE. The key intuition comes from inspecting the structure of the
past in a transitive tree: if we generate the submodel by the converse of the accessibility
relation from any point in a transitive tree, we obtain a strict linear order. Thanks to
this property it will be easy to satisfy past formulas in small structures. Future formulas
will require more work, particularly when they interact with nominals. Nonetheless, we
will be able to show that all the required computations can be carried out in PSPACE.

NP-Complete Sub-fragments. Before we prove the announced PSPACE-result, con-
sider the sub-fragment of Hy((R™!)) in which we only have (R) formulas of the form
(R)i A [R]({R)i — ) for one fixed nominal i. Such a formula says that there is a state
named ¢ in the future and that ¢ holds at every state between now and the state named
i. In other words, (R)i A [R]((R)i — ) says the same thing as Until(z, ).
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For this fragment every satisfiable formula can be satisfied in a model of size polyno-
mial in the length of the formula, yielding NP-completeness. This is shown by a simple
submodel generation argument. Let M, m |- . If M, m Ik (R)i, create a submodel by
considering the -named state plus all its predecessors; otherwise create a submodel by
taking m plus all its predecessors. In both cases we obtain a linear model which still
satisfies ¢ at m. Since the models are linear, we can now use standard techniques from
temporal logic to create a poly-size model for ¢. Here again, we obtained a reduction
in complexity by guarding the modalities with nominals. An inspection of the above
argument shows that the restriction to just one nominal as guard is not needed. Whence:

THEOREM 7.28. Let L be the sublanguage of nominal tense logic in which every occur-
rence of a formula (R) is of the form (R)((R)i A ¢), for some i,p. Every L formula
which is satisfiable on a transitive tree is satisfiable on a transitive tree of size polynomial
in the length of the formula.

In the proof of the next theorem we use the corollary that the same results hold for
formulas of the form (R)((R)(i1 V... Vix) Ag). You can see this by distributing out the
disjunctions. This formula can be used to distinguish future formulas that need their
witnessing state before any named state from ones which don’t. Suppose in M there
are only finitely many states named by a nominal, say ij,...,it. Let M, m IF (R)¢p.
Then either M, m |k (RY((R)(i1 V... Vig) Ap) or M,m - (R)(—=(R)(i1 V... Vig) A ).
If the latter is false, this means that ¢ has to be true between m and some named state.

THEOREM 7.29. Local Sat for nominal tense logic over the class of transitive trees is
PSPACE-complete.

PROOF. PSPACE-hardness follows from results in [Ladner, 1977]. The real work is
to prove the PSPACE upper bound. Our argument will be similar to the one used in
Theorem 7.22, but now we should construct the appropriate tree structure in the game
played by Vbelard and dloise. Instead of Hintikka sets, the players will use sequences of
Hintikka sets which will play the role of branches in the model. But let us set up the
game; first we define the following notions.

For any formula ¢, define the closure set CI(£) as the smallest set containing &,
closed under subformulas, single negation and under the following rule: if i € CI(€)
then (R71)i € CI(£). Fix £&. A thread is a finite labeled frame (T, <,[) such that:

i. < is a weak total order (i.e., < is transitive and trichotomous),
ii. 1. T — Pow(Cl(€)),
iii. 1 labels with maximal consistent Hintikka sets over CI(£),
. if ¢ € I(z) then (R™1)i & I(2),
T < (R e € CL(§)} U {(R)p € CL(§} + 1,
vi. (Future coherence) if (R)¢ & I(z) and = < y, then {(R)p, v} Nl(y) = {},
vii. (Past saturation) (R )¢ € I(y) iff for some x, z < y and ¢ € I(z).
The size |t| of a thread ¢t = (T, <,l) is |T|, and we say that ¢t; = (T1,<y,l;) and

1ty = <T2, <q, lg) ﬁt at x € Ty NTy iff <T1, <1,l1>[{56T1 | s<iz} = <T27 <9, lQ)r{seT2 | s<ox}-
Two threads fit if there exists an x such that they fit at . You can think of threads as

<
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“pieces of branches,” we will construct full branches, and in the long ran the full tree
model, by “superposing” threads.

We first take care of the trivial case when |£| = 1. Then £ is either an atom or a
logical constant, and satisfiability is trivial. From now on we assume |£| > 1. We can
now specify the game for Vbelard and dloise. She should set up the playing board by
specifying a collection M, of threads such that:

i. for some thread t = (T, <,[) € My, for some z € T, £ € l(x),

i1. each two threads in M, fit,

iii. the number of threads in My is less than [NOM(C1(€))| + 1.

iv. for each nominal 7 in SF() there is a thread t = (T, <,l) € My, and z € T such
that ¢ € [(x),

v. let ¢ be a nominal in SF(§), ¢, ty two threads in My and xy € T}, x5 € T be such
that ¢ € [;(x1) and ¢ € ly(x2), then 1 = x5 and t; and ¢, fit at xq,

vi. (Necessary pre-nominal saturation) if there is t; = (11, <1, 11) € M, such that for
x1 € Th, {{R)p, (R)i} C li(xq), then there is to = (T7, <s,l3) € My such that ¢,
fits ¢, at z; and there is an z3 € T such that i € l5(x3) and either ¢ or (R)yp in
lo(x3), or there is another xy € Ty satisfying z7 <y 29 <o 23 and ¢ € ly(x3).

The “necessary pre-nominal saturation” condition deserves comment. With this condi-
tion, we are asking Jloise to take care of the demands of the form < which have to be
satisfied at a witnessing state which is a predecessor of some nominal. All in all, the
rationale behind M is that — when the threads are fitted together — it can be seen
as a transitive tree model in which no nominal occurs in the label of two distinct states
and in which all necessarily pre-nominal future formulas have a witnessing state.

If dloise cannot set up the board she loses. Otherwise Vbelard chooses one of the
threads in My, which will be the thread in use in the round. To start with, all the
elements in the thread in use are available. In each round there will be a thread ¢ in
use, with a subset of its domain available for Vbelard to pick from. Furthermore we will
keep a table S containing for each (R)¢ formula in CI(¢) a natural number S((R)¢p).
At the start, for all (R)p € Cl(€), S(R)p) = [£].

We are now ready to specify the movements of the players. In each round, Vbelard
points to an element x among the available elements in the thread ¢ in use, and to a
formula (R)g in [(x). z should be a maximal element containing (R)¢. Formally, for all
y € t, v <y implies (R)p, ¢ & l(y) and furthermore, there is no thread ¢t = (7", <", 1")
on the board, fitting ¢ at = such that either (R)y or ¢ are in I”(y) for some = <" y.

dloise’s answer depends on the value recorded for the formula chosen by Vbelard.

— If S({R)p) > 1, then she should play a thread ¢ = (T", <’, ) such that ¢ fits ¢ at x,
there is y € T" such that ¢ € I'(y) and <’ y, neither i nor (R)iisin l'(z) for z < z,
i € NOM, and |[{z € T" | x <’ z}| < S((R)y). If she cannot present such a t', she
loses. Otherwise, ¢’ becomes the thread in use and {z € T’ | x <’ z} the available
Hintikka sets for Vbelard. Furthermore S({R)¢y) is updated to |[{z € T" | z <’ z}|.

- If S((R)p) = 1, then (R)y has been played by Vbelard before. Hloise should
pick the Hintikka set €’ containing ¢ that fixed the defect the last time Vbelard
challenged (R)p. If t' = (Tf.er|2<ay U {n}, < U{(y,n) | y € T}, 1U (n,€)) for
n ¢ T is a thread she wins. Otherwise she loses.
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Notice that the values in S decrease as Vbelard repeats choices of (R)e (which he
cannot avoid as CI(€) is finite). This ensures termination of the game in at most
{(R)p € Cl(&)}] * |€| steps. To prove the theorem we should now establish that Jloise
has a winning strategy in the game described above if and only if £ is satisfiable; and
then observe that in each game only a polynomial number of Hintikka sets are displayed
on the board. (The extra information contained in the table S can obviously be coded
using just linear space in the length of £.)

Cramv 7.30. dloise has a winning strategy for the £-game iff € is satisfiable in a model
based in a transitive tree frame.

PRrOOF OF CLAIM.

[=] Suppose Jloise has a winning strategy in the {-game. We construct a model N' =
(N, R,V) as follows. Let M be the set of threads ever played by Jloise in her winning
strategy. N is obtained by “superposing” one by one any two threads in M at their
fitting point. More precisely, given two threads ¢ and ¢’ there is a maximal point z such
that ¢t and ¢’ fit. Hence for any thread ¢ we can identify a maximal point x such that ¢ fits
with some other thread at . The elements above x are “unique” to ¢; ensure uniqueness
by renaming and let M’ be the set of threads obtained in such a way. Notice that after
such a renaming, for any element z of any thread in M’ we can uniquely identify a
Hintikka set corresponding to z, and for any two elements x,y in threads t = (T, <, 1),
t=(T",<l')in M, if z,y € TNT' then z < y iff + <" y. Let N be the union of all
elements in threads in M’, R be the union of the < relations, and let V' assign to an
atomic symbol a the elements x in N such that a is in the Hintikka set corresponding
to x. If i is a nominal not in SF({) then V(i) is any singleton set in N. Since during
the setting up of the board nominals in M, are assigned to unique elements and dloise
never plays threads with new Hintikka sets containing nominals in her winning strategy,
V' is a hybrid valuation.

The following truth lemma holds in N: let ¢ € Cl(€), and s be any element in N,
then NV, s Ik ¢ iff ¢ € H(s), where for any = in N, H(z) is the Hintikka set corresponding
to x. This would set the left-to-right direction of the claim, except that the threads
t = (T, <,l) used in the construction of N' might contain clusters, i.e., maximal (by
inclusion) non empty sets S of T" such that for all z,y € S, 2 < y. But we can unravel
them by a standard technique, preserving satisfiability. Notice that worlds labeled by
nominals will never appear in clusters by conditions ) and wvii) in the definition of
threads, and hence they will not be duplicated by the unraveling. The unraveled model
will be a transitive tree.

[«<=] We should now prove that if £ is satisfiable, then Jloise has a winning strategy. Let
M be a transitive tree model such that M, w I+ . And let M/ = (M7, R/, V/) be a
transitive filtration of M under CI(¢). By properties of filtrations we know that M/ is
finite and R/ is transitive. Furthermore R/ has maximal (and minimal) elements, i.e.,
those |m| € M/ such that for all |m’| € M7, R/|m||m/| = R/|m/||m|. Also, elements of
MY can be uniquely identified with Hintikka sets over C1(£) (and we will treat them as
such). But |[M/] can still be exponential in [£].

For each element |m| € M/ we can built a thread t as follows. For each (R~!)¢p in
Im| choose a minimal predecessor |m/| of |m| which satisfies ¢. Order t by R’. Since
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the filtration comes from a transitive tree, a standard argument shows that t is past
saturated and hence a thread. Furthermore |¢| is linear in |£|. We call such t a thread
built from |m| in M/. Let ¢ be a formula satisfiable in M7. Then a thread for ¢ is a
thread ¢ from some |m|, such that M/, |m| IF ¢, but we require in addition that |m| is
R/-maximal satisfying o, and that t is long, i.e., for all other threads ¢’ built from |m/|
such that M/, |m/| IF ¢, [t'] < |t].

Let ¢t be a thread built from |m| and let |m/| be an element in ¢. Let |m”| be an
R7-successor of m/. It is not difficult to prove that there is a thread ¢ built from |m”|
that fits ¢ at m’. Furthermore ¢’ is linear in |£|. From this fact,

(%) if t is a thread built from an element in M/ and |m/| is any element in ¢ such
that M7, |m| I (R)p. Then there is a thread for ¢ that fits ¢ at |m]|.

All this machinery is used to specify Jloise’s answers to challenges made by Vbelard.
To show that dloise can set up the board properly we use Theorem 7.28. The theorem
says precisely that all past formulas and all necessarily pre-nominal future formulas can
be satisfied using only a polynomial number of states. With this setup it is guaranteed
that Vbelard can only point to defects (R)¢ which are not necessarily pre-nominal future
formulas. This ensures that in the case the antecedent of (%) above obtains, the needed
fitting thread can be chosen not to contain any nominal or (R)i formula.

With dloise’s groundwork taken care of, we now specify how dloise answers the
challenges of Vbelard. Suppose that Vbelard points to a defect formula (R)y in an
element |m| in t. If S((R)y) > 1, she answers with a thread ¢’ provided by (%), again
choosing t' to be maximal and long. As argued above she can answer with a thread in
which neither 7 nor (R)i appears in ¢’ above the fitting point.

By obtaining threads from M/, Jloise can always answer the moves of Vbelard.
What remains to be checked is the condition on decreasing lengths when Vbelard plays
a repeated formula. So assume that Vbelard has in a previous round chosen (R)p €
|m| € t;, and that Jloise answered with a long maximal thread ¢,. Furthermore he is
now choosing (R)p € |m/| € t3. We know that Jloise can produce a long maximal thread
t4 to answer the challenge. But it is immediate that if the size of ¢4 above |m/| is greater
than the size of t5 above |m/|, then ¢, was not a long maximal thread.

Suppose now that S({(R)¢) = 1 and let ¢; be the thread previously played by Jloise
as an answer, with ¢ € |m4|. Again by (%) we could produce a thread ¢’ fitting ¢ at m and
containing ¢ in some element |m’|. Furthermore, because of the decreasing condition,
we know that this time she can choose ' to be very short. Actually |m| is at “one step”
from the R/-maximal cluster satisfying ¢, and Jloise can choose any element of such a
cluster, in particular [m;|. -

As we already mentioned, the game stops in time quadratic in the size of £, furthermore
all the information ever played in the board can be encoded in polynomial space. Hence
the theorem follows. QED

What happens if we add E? Nothing — for we already have it: over transitive trees E¢
can be defined to be p V (R)p V (R 1o V (R (R)p.

COROLLARY 7.31. The transitive tree Sat for Hy({(R™'),E) is PSPACE-complete.
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7.5 Reflections

The following table summarizes the most important complexity results we presented
in the chapter and contrasts the effect of “hybridization” in terms of complexity, with
respect to modal languages without nominals (M).

Class of frames MUR™Y) [HN((RTY), @) [ M(R7Y),E) [HN((R7Y), @, E, D)
All frames PSPACE ExpPTIME ExpPTIME ExpTIME
Transitive PSPACE ExpTIME ExpTIME ExpTIME
Strict total orders NP NP NP NP
Transitive trees PSPACE PSPACE PSPACE PSprace

Some comments concerning the table. Hybrid temporal logic has an ExpPTiME-hard
satisfiability problem over both arbitrary frames (Corollary 7.21) and transitive frames
(Theorem 7.24). These results hold even without @, and only one nominal is needed to
establish them. Matching EXPTIME upper bounds hold for nominal tense logic, over
both arbitrary and transitive frames, even if E is added (Corollaries 7.21 and 7.26).
Over any class of strict total orders, the satisfiability problem for nominal tense logic is
the same as that of basic tense logic (Theorem 7.27); for example, for the class of all
strict total orders, nominal tense logic with E has an NP-complete satisfiability problem.
Over trees, nominal tense logic (both with and without @) is PSPACE-complete (Theo-
rem 7.29), even when extended with E or D (Corollary 7.31). With respect to pure-future
fragments, Theorem 7.15 and Theorem 7.22 show that hybridization does not damage
the fundamental complexity results for modal logics. Moreover, while adding E results
in an EXPTIME-complete satisfiability problem over arbitrary frames [Spaan, 1993], we
proved that over transitive frames the logic has a PSPACE-complete satisfiability prob-
lem (Theorem 7.22). In other words, transitivity is enough to “tame” E, we don’t need
to restrict ourselves to the guarded form offered by @ in this case.

Concerning hybrid languages with binders, in Theorem 7.1 we proved that even the
fragment of Hs(]) consisting of pure nominal-free sentences has an undecidable local K-
Sat problem. Only when we imposed severe restrictions, like considering only non-nested
occurrences of |, we were able to regain decidability (Theorem 7.10).

But perhaps the lesson to learn from this chapter lies rather on the methods we used
to arrive to these results. We have used (indirectly through Spaan’s result for Kog) the
technique of tiling to prove undecidability, or more directly the encoding of satisfiability
problems of known complexity to establish lower bounds. We also used encodings for
upper bounds, but in some of the most interesting cases (Theorems 7.15 and 7.29) we
resorted to model constructions games. We were able to enhance these methods by using
the spypoint technique which deserves to be more widely known. We believe that it will
prove useful in more general settings, and the description logic community, for one, has
already started to take advantage of it (see [Tobies, 2000al).



Part IV

The Things We’ve Learned

Vagando por el Quai des Célestins piso unas hojas secas y cuando levanto una y la miro bien
la veo llena de polvo de oro viejo, con por debajo unas tierras profundas como el perfume
musgoso que se me pega en la mano. Por todo eso traigo las hojas secas a mi pieza y las

sujeto en la pantalla de una ldmpara. Viene Ossip, se queda dos horas y ni siquiera mira la
lampara. Al otro dia aparece Etienne, y todavia con la boina en la mano, Dis donc, c’est
épatant, cal, y levanta la ldmpara, estudia las hojas, se entusiasma, Durero, las nervaduras,
etcétera.

Una misma situacion y dos versiones ... Me quedo pensando en todas las hojas que no veré
yo, el juntador de hojas secas, en tanta cosa que habrd en el aire y que no ven estos 0jos,
pobres murciélagos de novelas y cines y flores disecadas.

from “Rayuela,” Julio Cortdizar

We have completed our homework (and it was about time, being as we are on page 131).
There remain, of course, many directions in which we only took the first steps, but that
is good and well. We will explore those trails further during other trips through the
Kingdoms of Description and Hybrid Logics.

But did we advance on our general theme, the one introduced right in the opening
of Part I?7 What did we learn about Logic Engineering?

Well, there are probably as many answers to that question as people reading this
thesis. We have tried at least to make clear and provide support to our claim that it is
possible to have a wide range of options, when the time comes to choose a logic for a
specific reasoning or modeling task. We have also shown that there are many dimensions
to this range of options: expressive power, complexity, availability of effective reasoning
methods, presence or absence of important meta-logical properties, to mention some.
We can take any of the results or techniques we have discussed in the previous chapters
as an example of how to gauge the pros and cons of these possibilities.

We have centered our discussion on the case of description and hybrid logics, as they
provided an excellent playground to explore. Description languages offered us variety,
application examples, realistic and highly optimized implementations; hybrid languages
offered the proper model-theoretical tools to investigate and better understand them.
But we should take the work we have done in this thesis as an example of a more general
philosophy: choose the logic you will use as you choose any tool for a particular job.
You don’t use a pair of scissors to water your plants, or do you?

In Chapter 8 we will take a short look back to recall what we have done and where
we have been. We will browse through the snapshots of our trip and choose the nicest
to send home for all the family to see.






Chapter 8

Conclusions

Begin at the beginning
and go on till you come to the end;
then stop.

from “Alice’s Adventures in Wonderland,” Lewis Carroll

We started our work in Part I by discussing the general topic of Logic Engineering, or
the “subtle art of choosing the proper language.”

In Chapter 1, we argue that first-order logic, which has been the logic for years,
need not always be the proper choice. We back up this claim by first proving that the
satisfiability problem for FO is undecidable. This can be reason enough to disqualify FO
if the problem at hand requires one to deal with logical consequence in an effective way.
Notice that if instead we would be interested in a problem requiring model checking,
then FO would again enter the list of candidates. One way to interpret the undecid-
ability result for FO is as a sign that the language is too expressive — it lets us encode
problems which are too complex. If we were looking for effective reasoning techniques
then, conceivably, our problem should be simpler, i.e. decidable. But even with all its
expressive power, FO might just not provide the right kind of expressivity we need. We
show that this might be the case by proving that FO cannot characterize the transitive
closure of a binary relation. Once more, the point is this: we don’t need the scissors of
first-order logic when we are watering the roses, but this doesn’t imply that they won’t
be handy during the pruning season.

But Chapter 1 also aimed to introduce a methodology to obtain alternatives to FO.
We discussed different ways of identifying interesting fragments (and fragments of ex-
tensions) of first-order logic. We argued that traditional methods, like prenex normal
form or finite variable fragments, are not completely satisfactory, and we proposed, in-
stead, to capture relevant fragments via translations. The semantics of many formal
languages (including modal, description and hybrid languages) is given in terms of clas-
sical logics, and as such they can be considered fragments of classical languages. But
now, these fragments come together with an extremely simple representation (modal lan-
guages for example are usually introduced as “simple extensions of propositional logic”)
and with novel and powerful proof- and model-theoretical tools (simple tableaux sys-
tems, elegant axiomatizations, fine-grained notions of equivalence between models, new
model-theoretical constructions, game-theoretical characterizations, etc.) which let us
investigate their properties in detail.

We chose our case study, description and hybrid logics, starting on the description
logic side. DLs are the best example we know about of a collection of formal languages
which have been hand-tailored for specific tasks. The choice of hybrid languages came
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later, when we searched for the proper “modal counterpart” of description logics. After
introducing these two kingdoms in Chapters 2 and 3 (one of them built on the realms of
Computer Science, the other on those of Mathematical Logic), we brought them together
in Chapter 4 by carefully mapping out the roads that connect them.

The results in Chapter 4 show that cross-fertilization between hybrid and description
logics is possible and indeed rewarding. We have devised hybrid languages which work
nicely as the counterpart of certain description languages, allowing us to account neatly
for full knowledge bases in a modal way. We can now exploit to their maximum the
model-theoretical techniques in our modal tool-box in the widely diverse landscape of
description languages. Going in the other direction, hybrid languages will benefit from a
computational boost. Description logic provers can easily be adapted to handle certain
hybrid languages in a very efficient manner. And the two fields will, from now on,
share their “application space”: any given concrete problem will benefit from both a
description-like and a hybrid-like perspective.

In Part III we set forth to walk some of the paths we discovered in Chapter 4. In par-
ticular, in Chapter 5 we discuss direct resolution methods for modal-like languages. As
with tableaux, the addition of labels produces a simplification with respect to previous
proposals. We also gain in terms of flexibility as we have shown how easily extensions of
the basic labeled resolution method can be obtained. Excellent proof-theoretical behav-
ior seems to be a general characteristic of hybrid and description logics, and we argue
that the presence of nominals/individuals and the satisfiability operator @ (assertions
in the description logic case) goes a long way towards explaining it.

The work in this chapter shows that simple, direct resolution methods for modal
languages are indeed possible, and that the complexities of previous proposals hinged on
a certain lack of expressive power. The introduction of labels lets us perform resolution
at the “top level” only (outside modalities) and greatly simplifies the task of the prover.

In Chapters 6 and 7 we take a hybrid logic perspective as we dive into model-
theoretical issues. But we have already demonstrated in Chapter 4 how hybrid logic
results shed their light on description languages. Actually, in Section 4.5 we already
took advantage of the most important results in these two chapters and analyzed what
was their interpretation in description logic terms.

Chapter 6 covers issues related with expressive power. We took the language Hs(@,
1) as the main tune, and explored restrictions and extensions as variations on a theme.
By using a mixture of modal and first-order techniques (a hallmark of hybrid languages),
we have shown that Hs(@, |) captures an intrinsically modal first-order fragment: this
language corresponds to the formulas of FO which are invariant under generated sub-
models, mirroring the key modal notion of locality. It is very pleasing that this notion
can be pinned down so simply. Furthermore, the very general result on interpolation
for all pure extensions of Hs(@, |) tends to confirm that we are dealing with a natural
collection of ideas. These new results, complement the general completeness results for
the language provided in [Tzakova, 1999a]. The model theory of Hs(@Q, |) is extremely
elegant. The language seems to be in a state of “perfect equilibrium,” much in the same
way as the first-order language is. Investigating in detail this kind of logical systems
is always a worthwhile activity: much is to be learned by means of the wide collection
of tools they offer, and these lessons sometimes transfer to restrictions and extensions.
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We see this process in action in Chapter 6, where we are able to transfer results from
Hs(@Q, |) to extensions and restrictions.

The expressive power analysis we have carried out in this chapter tells us where
the boundaries fall. And for the case of Hs(@, |) we have obtained extremely clear
boundaries. But the notions of bisimulations we have investigated also show us how
to delimit the expressive power of weaker languages. The work concerning the inter-
polation and Beth definability properties also highlighted an interesting phenomena.
The interpolation property is usually taken as a “thermometer” for balanced language
design. Following that guide, Hs(@Q, |) is indeed well balanced but, as we show in Chap-
ter 7, even small fragments of the language are already undecidable. We conjecture,
though, that the intrinsic locality of Hs(@, |) would translate in more efficient decision
methods than those available for FO. On the other hand, weaker hybrid languages and
most description languages are computationally tractable but they usually fail to have
interpolation. We believe that the results regarding failure of interpolation we prove in
the chapter points to an expressivity gap. We know from the description logic commu-
nity that the addition of counting operators does not disturb the good computational
behavior and we conjecture that they will provide the needed expressivity to regain
interpolation.

Chapter 7 is devoted to complexity. After proving a sharp undecidability result for
Hs () and showing that decidability can be regained by imposing stringent restriction on
the binder, we turned to weaker languages in the proximities of Hs(@). These languages
are very close to standard description languages and hence transfer of results is easy in
this case. We show that the addition of nominals and @ to the basic modal logic K
does not modify its complexity. Hence, for this language, hybridization brings extra
expressiveness at no cost (except perhaps by a polynomial). When we explore the basic
temporal language K, instead, things are very different: the addition of a single nominal
shifts the complexity to EXPTIME. The rest of the chapter is devoted to “taming”
this complexity jump, and we show that in the most interesting classes of temporal
models (linear and branching time structures) complexity drops again and coincides
with the complexity of K; over these structures. As we discuss in their respective
sections, the results for linear and branching time are different in nature: the first
amounts to the realization that certain expressivity was already present in the language
and the identification of the proper level of abstraction; while the second covers a strict
increment of expressive power and requires a much more elaborated proof.

The lessons to learn in this chapter are related to the methods we employed in our
proofs. We obtained the complexity results we discussed above in a very homogeneous
way. We basically used encodings of satisfiability problems of known complexity for
lower bounds, and model construction games and encodings for upper bounds. In many
cases we “power-uped” translations by means of the spy-point technique (i.e., the use of
a single irreflexive point which have full access to a part of the model). The Spypoint
Theorem (Theorem 7.9) is a clear example of the strengths of this method. These tools
and methodologies are so powerful and versatile that it is usually possible to adapt them
to many diverse situations.

To complete Chapter 8 we will take up description and hybrid logics as separate
fields again, and discuss some of the main lines we touched on and clarified in our work.
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8.1 On Description Languages

It takes time for a modal logician to get used to how things are done in the description
logic community (we know by experience). And one of the reasons for this is the shift
from a local to a global perspective. The basic notion of validity in modal languages
is truth of a modal formula at a point in a model. Description logicians instead, are
interested in global notions (definitions and assertions) which are true throughout the
model, and hence take global consequence as basic.

In Chapter 4 we carefully analyzed this issue and explained how the local and global
notions of consequence interrelate. We also designed the hybrid logic counterparts of
description languages so that we can investigate this issue, and results like Theorems 4.8
and 4.9 or the discussion in Section 4.5.2 exploit this fact. By means of the existential
modality E we made available modal model-theoretical tools to the investigation of
properties of inference in terms of non-empty T-Boxes. The work also turned out to be
fruitful in pure hybrid logic terms as we were able to identify a useful normal form for
hybrid languages without binders (Proposition 4.2). The issue of globality vs. locality
has deep roots and can impact heavily on, for example, complexity issues. It is well
known that instance checking in ALC is in PSPACE for empty T-Boxes and EXpPTIME
without this restriction; or similarly in modal terms, the addition of E to the basic
modal language produces an exponential blow-up in the local satisfiability problem.
Notice though that this behavior is not because of “globality.” The modal logic S5 is
globality itself and its local satisfaction problem falls inside NP! We need both locality
“to tell things apart” and globality “to spread these differences throughout the model.”
We can witness the same behavior on the issue of transitivity vs. transitive closure we
discussed in Section 4.2. Languages with the ability to refer to the transitive closure
of a relation are usually computationally more expensive than those which can simply
define a relation to be transitive. In the former case we have two kinds of expressivity
(local and global), while we only have globality in the latter.

The work of this thesis has also brought more light to the relation between the A-
Box and T-Box in a description logic knowledge base. As we explained in Chapter 2,
there are methodological reasons why it is worth to attempt such a separation on the
available information we aim to model. And there are also important reasons which have
to do with implementations: enforcing this separation can lead to simple and efficient
reasoning algorithms. Some provers, like for example RACE, are actually able to classify
the T-Box component of a knowledge base independently of its A-Box, thus allowing
for inference in terms of different instantiations at a lower computational cost. But
enforcing this separation also has its price. As we showed in Section 4.5.3, only by
allowing the interplay of T- and A-Box information we can prove that a certain notion
of definability holds for the language. Furthermore, results like Theorem 7.15 show that
T- and A-Box information can indeed “live together” without further complexity costs.

Description logics seem to be finding their way in more and more diverse environ-
ments each day, and this is a trend that will not stop in the immediate future, on the
contrary. They offer a wide range of inference services to chose from, and they deliver
their goods in the form of extremely fast and optimized provers, together with a wealth
of expertise concerning how to better structure and exploit complex information.
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8.2 On Hybrid Languages

In their long (if sparse) history, hybrid languages have attracted a number of enthusiastic
advocates. Some have claimed that hybridization is a natural way to increase the ex-
pressive power of modal languages, others have been impressed by the proof-theoretical
options they open up, or the ease with which general results can be proved. Underneath
most of this work lies a simple idea: that by exploiting the notion of formulas as terms
to the full, we will be able to define systems combining the best of modal and classical
techniques.

We believe that the results we have presented confirm the interest of hybridization. In
writing this thesis it has become very clear that working with hybrid languages involves
a genuine interplay of modal and classical methods. For example, both Ehrenfeucht
games (or back-and-forth systems) and bisimulations were involved in the expressivity
results of Chapter 6, and the general interpolation result in Theorem 6.27 was proved
by combining the modal notion of canonical models with the classical idea of Henkin
models. The natural way these methods blend bodes well for further developments.

Nominals seem to add a new dimension to modal logic (like filling a hole that only
now we notice was there). And as we discussed in Chapter 3 they “cure” an asymmetry
at the heart of modal logic. Modal logic is locality itself, and once a local point of view
is adopted, once we evaluate formulas at a particular point in a model, the concept of
“terms as formulas” comes very naturally. And the existential modality E can simply be
added if we need to shift to a global perspective. But nominals are only an instance of
a more general theme which deserves much further analysis: sorting. Hybrid languages
are obtained from modal languages by extending the language with a new collection of
symbols together with a restriction on the interpretation this symbols will receive on
models. But the denotation of nominals (i.e., singletons) is probably just the most simple
extension. What about exploring more complex sorts like paths, connected components,
etc? And how do these sorts interact with one another? A neat example of sorted modal
logics are the computational tree logics CTL and CTL*. In a very general perspective,
hybrid logics as we know them today are just our first steps towards investigating the
more general class of sorted modal logics.

And of course there is the issue of binders. The classical quantifiers V and 3 are
clearly interesting and a straightforward alternative, but the modal perspective gives rise
to new options like |, a truly modal binder. And there are other possibilities (like the |1
of [Blackburn and Tzakova, 1998b] or, more generally, the | hierarchy), and of course
the many combinations of different binders for different sorts. These operators let us
capture powerful and natural new fragments of first-order logic without the complexities
of actually moving into first-order modal languages. But actually, we can also hybridize
first-order modal languages, and some recent preliminary results in our ongoing work
seem to indicate that again hybridization would lead to general results concerning for
example completeness and interpolation.

Hybrid logics will probably continue to play a role in the future. They offer high
expressive power, an elegant proof theory and plenty of connections with other fields
like temporal reasoning and knowledge representation. For the moment they taught us
a bit more about the structure of the landscape of fragments we are exploring.



138 Chapter 8. Conclusions

8.3 What the Future Brings

It is always difficult, and perhaps unwise, to cast bold predictions about what the future
will bring. But it doesn’t seem risky at all to say that in a number of years we will be
able to chose from a very broad menu of language options when working on a given
computational logic enterprise. And we will know in advance what the properties of
these languages are: which are the boundaries of the expressive range they offer, which
are their complexity prices, which are the available reasoning tools they offer, etc.

As the Queen says to Alice, on her trip on the other side of the looking-glass, ‘It’s
a poor sort of memory that only works backwards.” It would be more satisfying to
remember today a bit of what is to come. To remember (even if vaguely) of when we
will be able to understand how to identify the correct language for a given, specific need.

Some beautiful results have already been given to us, like the guarded fragments of
Andréka, van Benthem and Németi [1995] (“if a logic can be mapped here then it is
decidable”) or the work on complexity of modal logics of Spaan [1993] (“if a logic is
able to express this then it has at least this complexity”). The conditions for failure of
interpolation provided in [Areces and Marx, 1998] are in a similar line. The discussions
on robust decidability of Vardi [1997] and Gradel [1999] are another example.

What are the well behaved fragments and, more interestingly, what are the reasons
of their good properties? These are indeed important questions which the new field of
Logic Engineering is only just starting to unravel.
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